Exploring the interactions of gliadins with model membranes: effect of confined geometry and interfaces. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Biopolymers Année : 2009

Exploring the interactions of gliadins with model membranes: effect of confined geometry and interfaces.

Résumé

Mechanisms leading to the assembly of wheat storage proteins into proteins bodies within the endoplasmic reticulum (ER) of endosperm cells are unresolved today. In this work, physical chemistry parameters which could be involved in these processes were explored. To model the confined environment of proteins within the ER, the dynamic behavior of gamma-gliadins inserted inside lyotropic lamellar phases was studied using FRAP experiments. The evolution of the diffusion coefficient as a function of the lamellar periodicity enabled to propose the hypothesis of an interaction between gamma-gliadins and membranes. This interaction was further studied with the help of phospholipid Langmuir monolayers. gamma- and omega-gliadins were injected under DMPC and DMPG monolayers and the two-dimensional (2D) systems were studied by Brewster angle microscopy (BAM), polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and surface tension measurements. Results showed that both gliadins adsorbed under phospholipid monolayers, considered as biological membrane models, and formed micrometer-sized domains at equilibrium. However, their thicknesses, probed by reflectance measurements, were different: omega-gliadins aggregates displayed a constant thickness, consistent with a monolayer, while the thickness of gamma-gliadins aggregates increased with the quantity of protein injected. These different behaviors could find some explanations in the difference of aminoacid sequence distribution: an alternate repeated - unrepeated domain within gamma-gliadin sequence, while one unique repeated domain was present within omega-gliadin sequence. All these findings enabled to propose a model of gliadins self-assembly via a membrane interface and to highlight the predominant role of wheat prolamin repeated domain in the membrane interaction. In the biological context, these results would mean that the repeated domain could be considered as an anchor for the interaction with the ER membrane and a nucleus point for the formation and growth of protein bodies within endosperm cells.
Fichier principal
Vignette du fichier
Biopolymers2.pdf (323.2 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00550431 , version 1 (27-12-2010)

Identifiants

Citer

Amélie Banc, B. Desbat, Denis Renard, Yves Popineau, Cécile Mangavel, et al.. Exploring the interactions of gliadins with model membranes: effect of confined geometry and interfaces.. Biopolymers, 2009, 91 (8), pp.610. ⟨10.1002/bip.21188⟩. ⟨hal-00550431⟩
147 Consultations
327 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More