The Tropical Tropopause Layer 1960–2100 - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Discussions Année : 2008

The Tropical Tropopause Layer 1960–2100

Résumé

The representation of the Tropical Tropopause Layer in 13 different Chemistry Climate Models designed to represent the stratosphere is analyzed. Simulations for 1960–present and 1980–2100 are analyzed and compared to reanalysis model output. Results indicate that the models are able to reproduce the basic structure of the TTL. There is a large spread in cold point tropopause temperatures that may be linked to variation in TTL ozone values. The models are generally able to reproduce historical trends in tropopause pressure obtained from reanalysis products. Simulated historical trends in cold point tropopause temperatures and in the meridional extent of the TTL are not consistent across models. The pressure of both the tropical tropopause and the level of main convective outflow appear to be decreasing (increasing altitude) in historical runs. Similar trends are seen in the future. Models consistently predict decreasing tropopause and convective outflow pressure, by several hPa/decade. Tropical cold point temperatures increase by 0.2 K/decade. This indicates that tropospheric warming dominates stratospheric cooling at the tropical tropopause. Stratospheric water vapor at 100 hPa increases by up to 0.5–1 ppmv by 2100. This is less than implied directly by the temperature and methane increases, highlighting the correlation of tropopause temperatures with stratospheric water vapor, but also the complex nature of TTL transport.
Fichier principal
Vignette du fichier
acpd-8-1367-2008.pdf (919.7 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00328261 , version 1 (18-06-2008)

Identifiants

Citer

A. Gettelman, T. Birner, V. Eyring, H. Akiyoshi, D. A. Plummer, et al.. The Tropical Tropopause Layer 1960–2100. Atmospheric Chemistry and Physics Discussions, 2008, 8 (1), pp.1367-1413. ⟨hal-00328261⟩
369 Consultations
175 Téléchargements

Partager

Gmail Facebook X LinkedIn More