The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Hydrology and Earth System Sciences Discussions Année : 1999

The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

Résumé

The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area.
Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.
Fichier principal
Vignette du fichier
hess-3-55-1999.pdf (1.97 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt

Dates et versions

hal-00304482 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00304482 , version 1

Citer

B. Kruijt, C. Barton, A. Rey, P. G. Jarvis. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate. Hydrology and Earth System Sciences Discussions, 1999, 3 (1), pp.55-69. ⟨hal-00304482⟩

Collections

INSU EGU
51 Consultations
74 Téléchargements

Partager

Gmail Facebook X LinkedIn More