On the effects of vertical air velocity on winter precipitation types - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Natural Hazards and Earth System Sciences Année : 2007

On the effects of vertical air velocity on winter precipitation types

Résumé

The various precipitation types formed within winter storms (such as snow, wet snow and freezing rain) often lead to very hazardous weather conditions. These types of precipitation often occur during the passage of a warm front as a warm air mass ascends over a cold air mass. To address this issue further, we used a one-dimensional kinematic cloud model to simulate this gentle ascent (?10 cm/s) of warm air. The initial temperature profile has an above 0°C inversion, a lower subfreezing layer, and precipitation falls from above the temperature inversion. The cloud model is coupled to a double-moment microphysics scheme that simulates the production of various types of winter precipitation. The results are compared with those from a previous study carried out in still air. Based on the temporal evolution of surface precipitation, snow reaches the surface significantly faster than in still air whereas other precipitation types including freezing rain and ice pellets have a shorter duration. Overall, even weak background vertical ascent has an important impact on the precipitation reaching the surface, the time of the elimination of the melting layer, and also the evolution of the lower subfreezing layer.
Fichier principal
Vignette du fichier
nhess-7-231-2007.pdf (245.88 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00299418 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00299418 , version 1

Citer

J. M. Thériault, R. E. Stewart. On the effects of vertical air velocity on winter precipitation types. Natural Hazards and Earth System Sciences, 2007, 7 (2), pp.231-242. ⟨hal-00299418⟩

Collections

INSU EGU
78 Consultations
247 Téléchargements

Partager

Gmail Facebook X LinkedIn More