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Toward Certification for Free!
∗

Correct-By-Construction ML Oracles with Polymorphic LCF Style

SYLVAIN BOULMÉ and ALEXANDRE MARÉCHAL, Univ. Grenoble Alpes, CNRS, Grenoble INP,
VERIMAG, 38000 Grenoble, France

How can we reduce the required effort to develop certified programs in proof assistants such as Coq? A major
trend is to introduce untrusted oracles able to justify their answers by producing a certificate, i.e. a witness of
their computations. A trustworthy result is then built from this certificate by a certified checker. This alleviates
the burden of proof. However, generating certificates may lead to obfuscate the oracle code.

We present Polymorphic Factory Style, a design pattern that removes the need for certificates while preserving
confidence in the computations: oracles directly compute a trusted result by invoking certified operators and
datastructures extracted from Coq. ML oracles only handle these datastructures as polymorphic values, which
forbids them to forge incorrect results. Part of the certification relies on parametricity and is delegated to the
ML typechecker. We demonstrate the relevance of Polymorphic Factory Style for the certification of a realistic
library: an abstract domain of convex polyhedra.

CCS Concepts: • Software and its engineering→ Polymorphism; •Theory of computation→ Program
verification; Invariants; Type theory; • Mathematics of computing→ Solvers;

Additional Key Words and Phrases: Abstract Domain of Polyhedra, Coq, Linear Programming, Parametricity.

1 CONTEXT AND CONTRIBUTIONS

Our concern is the formal certification of programs in a proof assistant like Coq. We propose a
new programming style which is particularly adapted for certifying the results of solvers which
solutions are hard to discover but easy to verify. Our approach reduces the development effort
in Coq by delegating part of the verification to the OCaml typechecker. We will illustrate our
design on the development of a realistic library: a certified abstract domain of polyhedra. First,
let us summarize the three major trends for certifying programs within Coq: autarkic, skeptical
with certificates, and skeptical LCF style. We evaluate their Trusted Computing Base (TCB), i.e.
the volume of code they need to trust. We also describe how they combine with OCaml and their
ability to use imperative datastructures for better performance.

Autarkic Approach. A program can be directly implemented and proved correct in Coq following
the autarkic approach [Barendregt and Barendsen 2002]. This approach provides safety without
runtime verifications and reduces the TCB to the Coq proof-checker only (see Figure 1(a)). The
program can furthermore be used outside of Coq thanks to a built-in Coq process named extraction,
which exports the Coq code into OCaml– at the price of adding both the extraction process and
the OCaml compiler into the TCB. The development of an efficient implementation following the
autarkic approach is both very development-time consuming and restrictive, since it forbids the
use of efficient imperative datastructures.

∗In reference to the seminal “Theorems for Free!” of Wadler [1989].
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Fig. 1. Three methods of certified computations: autarkic, certificate-driven and with LCF Style.

Skeptical Approach with Certificates. The program can rather be implemented in a two-tier
architecture: (1) an OCaml backend provides an untrusted oracle that performs efficient but
unproved computations, and generates certificates driving the reconstruction of a trusted result;
(2) a Coq frontend uses the backend oracle and certificates to provide the certified result (see
Figure 1(b)). The frontend is then extracted from Coq into OCaml and the whole software –
backend and frontend – is finally compiled by OCaml into binaries. Therefore, the TCB of this
approach contains the Coq proof-checker, its extraction process, and the OCaml compiler.
This approach requires the definition of a Coq certificate format and a Coq checker able to

interpret and verify it. Certificate generation does not guarantee the absence of bugs in the oracle.
This approach ensures however a partial correctness property: when the oracle terminates and
provides a well-formed certificate, the frontend can build a certified result that satisfies the formal
specification of the program. On the other hand, if the oracle provides an ill-formed certificate, it
will not pass the check and the frontend can fail or return a trivially correct – but weak – result.

Skeptical Method with LCF Style. For complex datastructures, certificates can be tricky to manipu-
late, in particular for nested computations. In order to completely avoid the handling of certificates,
we are tempted by another style of skeptical certification, called LCF style. The name “LCF” stands
for Logic for Computable Functions – a prover at the origin of ML where theorems were handled
through an abstract datatype [Gordon et al. 1978]. This LCF style is still at the heart of HOL
provers. It is much lighter than the preceding one, because it avoids the introduction of a certificate
format for representing certified computations. Instead, the OCaml oracle directly performs trusted
computations by using a factory of operations (the “Factory” of Figure 1(c)) that are implemented
and certified in Coq before extraction. The key idea is that such a factory can only build logical
consequences of some given set of axioms.

This style of certification relies on one assumption: the frontend can trust results produced by an
external oracle that uses its certified operators. However, in presence of references, type abstraction
is generally not sufficient on its own to ensure this property: for example, nothing prevents an
imperative OCaml program from cheating by returning a result obtained from a previous run.
This naive LCF style could therefore be unsound for certification (wait Section 3.1 for details), but
introducing parametric polymorphism will elegantly avoid this flaw.
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A Sound LCF Style by Parametric Polymorphism. This paper builds upon the work of Boulmé
and Vandendorpe [2019] that uses LCF style to safely embed imperative programs into a Coq
development. Their approach allows the developer to never formally reason about effects of
imperative functions, but only about their results. Formal guarantees are obtained by combining
parametric reasoning over polymorphic functions with verified defensive programming. This follows
the work from Wadler [1989] who showed that “theorems for free” are derivable from the type of
polymorphic functions. For instance, in the purely functional setting of Wadler [1989], a function
of type 'a -> 'a is necessarily the identity. In the imperative setting of Boulmé and Vandendorpe
[2019], if a function of type 'a -> 'a returns a result, then this result equals the input parameter;
but, the function may also not terminate normally, or produce arbitrary side-effects while returning
its result.

Boulmé and Vandendorpe aimed at certifying a SAT-solver, a program that checks the satisfiability
of a Boolean formula in conjunctive normal form (a conjunction of clauses, i.e. disjunctions of
literals). Modern SAT-solvers are often required to produce proofs of unsatisfiability, which can be
shown by a succession of resolutions yielding ⊥. The resolution operator combines two clauses
containing complementary literals (C1 ∨ l , C2 ∨ ¬l) to produce the logical consequence C1 ∨C2. In
particular, (l , ¬l) entails ⊥. In order to certify unsatisfiability while still benefiting from complex
solver optimizations, the authors implemented a Coq type for clauses and a resolution operation1
proved to build only logical consequences of its operands. The solver can then perform the difficult
part, that is finding the good resolutions that yields ⊥, and replay those with the extracted certified
resolution operator. Finally, the unsatisfiability is verified if the certified clause built by the oracle
is syntactically ⊥.

Contributions and Overview. In this paper, we report on the application of the LCF style of Boulmé
and Vandendorpe [2019] to the development of a realistic library: a certified abstract domain of
polyhedra for static analysis. Through this case study, the paper presents a new programming style,
called Polymorphic Factory Style (PFS), for developing correct-by-construction oracles in a skeptical
approach. We will show that polymorphism is a simple and efficient way to solve the soundness
issue of naive LCF style. Results produced by oracles are correct once the operators of the factory
are proved to preserve the desired property. 2
After introducing the domain of polyhedra, the paper presents PFS on increasingly complex

operators. We will begin in Section 2 with a simple application of PFS on a Boolean operator
checking the emptiness of a polyhedron. This case is very similar to the unsatisfiability test of
Boolean formulas mentioned previously. Section 3 details PFS on the projection operator, which
transforms a polyhedron into another one by eliminating some variables from it. This illustrates
that PFS is not limited to unsatisfiability tests: it can also transform a datastructure by applying
operations that preserve a given invariant. This will be our archetype example, on which we will
show why naive LCF style could be unsound and compare PFS to various alternatives. We will
explain how correctness proofs are expressed in Coq from the type of PFS oracles in Section 4.
Section 5 illustrates the expressiveness of polymorphic factories on a binary operator that computes
the convex union of two polyhedra. Finally, Section 6 shows that using an adequate factory, it is
possible to generate compact certificates for embedding our oracles within Coq tactics.
Through the application of polymorphic factories to four examples, we hope to demonstrate

that the modular and expressive design of PFS simplifies certified developments while allowing
optimization and instrumentation.

1To get smaller proofs, they actually use a more complex backward n-ary resolution rule, but the proof principle is similar.
2Our source code is available at http://github.com/VERIMAG-Polyhedra/VPL.

http://github.com/VERIMAG-Polyhedra/VPL
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2 INTRODUCTORY EXAMPLE: EMPTINESS TEST

This section presents our case study, the certification of an abstract domain of polyhedra. Then, it
introduces PFS on the emptiness test operator (is_empty) of the domain. This is a direct adaptation
of the unsatisfiability check of Boolean formulas mentioned in Section 1 to convex polyhedra. We
will certify is_empty by exhibiting a combination of constraints that yields a contradiction, in the
same way that clauses are combined by resolution to obtain ⊥.

2.1 Certifying an Abstract Domain of Polyhedra

A static analyzer may be used to prove the absence of runtime errors – such as arithmetic or
memory overflows – in all possible executions of a program. In abstract interpretation [Cousot and
Cousot 1977], the analyzer attaches to each program point an invariant, which is a property satisfied
by all reachable states at this point. These invariants belong to classes of predicates called abstract
domains that must provide operators for computing the disjunction of two invariants (join), their
conjunction (meet), and the existential quantification of a variable in an invariant (proj). They must
also provide tests for implication between invariants (is_included) and unsatisfiability (is_empty).

A static analyzer is correct3 provided that it does not miss any reachable state. This requirement
has repercussions on abstract domains: to formally ensure the analyzer correctness, all operators on
abstract domains must be proved to compute overapproximations. In particular, we do not need to
prove that operators are precise (i.e. they compute tight results), even though they are in practice.

In the following, we focus on the abstract domain of convex polyhedra on Q [Cousot and Halb-
wachs 1978], which is able to handle linear relations between numerical variables x ≜ (x1, . . . ,xn) ∈
Qn . For simplicity, we do not consider integer or floating point variables in this paper. A convex
polyhedron is a conjunction of linear constraints of the form

∑
i aixi ▷◁ b where ai ,b are constants

in Q and ▷◁ is ≥, > or =. A polyhedron is represented as a list of Cstr.t, which is the type of linear
constraints.4
A lot of libraries feature polyhedral calculus, but only a few certify their results. The Coq-

Polyhedra library [Allamigeon and Katz 2017] follows the autarkic approach; according to their
authors, the goal of this library is not to perform efficient computations, but to formalize a large
part of the convex polyhedra theory by using reflexive proofs. Fouilhé et al. [2013] developed the
Verified Polyhedra Library (VPL), an abstract domain for the certified Verasco static analyzer
[Jourdan et al. 2015], by using uncertified code through a skeptical approach. Unlike most polyhedra
libraries, VPL uses the constraints-only representation of polyhedra in order to ease its certification
in Coq.5 Implementing this skeptical approach requires first to introduce a certificate format that
captures the information needed to prove the correctness of the polyhedral operators. Fortunately,
proving their correctness reduces to verifying implications6 between polyhedra, in conjunction
with other simple verifications that depend on the operator. For example, polyhedron P is empty iff
P ⇒ P∅, where P∅ is a single contradictory constant constraint such as 0 ≥ 1. The emptiness of P∅
is thus itself checkable by a simple rational comparison.

Farkas’ lemma gives a simple way to prove polyhedral implications [Farkas 1902]. It states that
any nonnegative linear combination of the constraints of a polyhedron P is an obvious logical

3We make a distinction between correctness and soundness. We say that a program or an operator is correct w.r.t. a given
specification. We rather use soundness to qualify the sanity of an approach. In particular, a correction proof can be unsound,
as we will see in Section 3.1.
4As we only deal with convex polyhedra, the adjective convex is often omitted in the remaining of the paper.
5Most polyhedra libraries maintain a double representation of polyhedra as constraints and as generators, i.e. vertices and
rays. Certifying them would require to prove the correctness of Chernikova’s conversion algorithm. Instead, Fouilhé looked
for efficient polyhedra operators in constraints-only representation.
6Note that a polyhedral implication P1 ⇒ P2 is geometrically an inclusion between polyhedra P1 ⊆ P2.
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consequence of P . For instance, x ≥ 3∧y ≥ 0 implies 2 · (x ≥ 3)+ 1 · (y ≥ 0) = 2x +y ≥ 6, meaning
that any point satisfying x ≥ 3 ∧ y ≥ 0 also satisfies 2x + y ≥ 6. Moreover, Farkas’ lemma states
that any polyhedral implication can be proved thanks to such simple computations on constraints
and thus provides a theoretical foundation for designing the certificate format of polyhedral
operators [Besson et al. 2010]. The formulation below is restricted to polyhedra with non strict
inequalities only, and Section 5.1 will provide a generalization to polyhedra with equalities and
strict inequalities.

Lemma 2.1 (Farkas 1902). Let P1 and P2 be two polyhedra containing only non strict inequalities.
Let us call Farkas combination of P1 any nonnegative linear combination of P1 constraints.
Any Farkas combination of P1 is a logical consequence of P1. Moreover, if P1 ⇒ P2 then
• either P1 is empty and there exists a Farkas combination of P1 producing the contradictory
constraint 0 ≥ 1,
• or each constraint of P2 is a Farkas combination of P1.

For instance, the polyhedron x ≥ 3∧y ≥ 0∧−2x−y ≥ −5 is empty, as shown by the combination
2 · (x ≥ 3) + 1 · (y ≥ 0) + 1 · (−2x − y ≥ −5) = 0 ≥ 1. In general, finding the right combination
requires a Linear Programming (LP) solver [Chvatal 1983].

2.2 Emptiness Test Certification

We now illustrate our method for developing a certified abstract domain on operator is_empty
of type Cstr.t list -> bool. This operator checks the existence of a point of Qn satisfying the
constraints of the input polyhedron. First, let us see how it is implemented in A. Fouilhé’s VPL,
following the skeptical approach with certificates.
Here, the OCaml oracle for is_empty returns a certificate as the list of coefficients of a Farkas

combination that gives 0 ≥ 1. The OCaml type of the oracle is thus
Back.is_empty: Cstr.t list -> Cert.t option

where the None answer means that the input polyhedron is not empty, and a Some answer gives a
certificate of type Cert.t allowing the frontend to establish the polyhedron emptiness. From Cert.t,
the frontend computes the result of the combination with its own certified Coq datastructures of
constraints and obtains 0 ≥ 1 (if nothing went wrong in the oracle).

In actual fact, the VPL certificates of Fouilhé and Boulmé [2014] are more complex than sketched
above (wait Section 3.2 for more details). And, in an informal discussion, A. Fouilhé stated that the
code generating them was particularly difficult to develop and debug. He concluded that simplifying
this process would be helpful. Hence, let us try to implement our operator in LCF style.
In LCF style, the oracle has two versions of each constraint: (1) an untrusted one of type

BackCstr.t, combining complex datastructures and GMP rationals; (2) a second one of type
FrontCstr.t, extracted from Coq, on which the oracle can only apply factory operators. Given
an empty polyhedron, the backend uses an untrusted solver to efficiently find the contradictory
Farkas combination and then builds a certified combination of type FrontCstr.t using the factory
operators extracted from Coq. Then, the frontend only has to check that the resulting constraint is
syntactically 0 ≥ 1. In the backend, is_empty has the type
Back.is_empty: (BackCstr.t * FrontCstr.t) list -> FrontCstr.t option

However, this naive LCF operator is not safe. An imperative OCaml program could cheat by
returning a contradictory constraint obtained from a previous run, and making FrontCstr.t opaque
from the oracle point of view is not sufficient to prevent this. Such an unsoundness is not present in
standard LCF provers. They avoid it at the price of a greater complexity in the implementation of the
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“factory of theorems”, where they represent theorems by sequents (thus, recording the hypotheses
of the theorem in addition to its conclusion). This discussion will be detailed in Section 3.3.

Alternatively, we introduce PFS, which consists in abstracting the certified datatype FrontCstr.t
by a polymorphic type 'c in the oracle. Roughly speaking, the key idea is that the polymorphic
nature of this type prevents a result from being stored and reused later: it is forbidden by the OCaml
typechecker (more details in Section 3.4). The oracle is provided with operators on this datatype
grouped in a factory of type 'c lcf. In our case, this factory contains what is necessary to combine
constraints, namely an addition between two constraints and a multiplication of a constraint by a
coefficient. Polymorphism ensures that the oracle can only produce correct results by combining
its inputs using the operators of the factory. The type of the is_empty oracle becomes

Back.is_empty: 'c lcf -> (BackCstr.t * 'c) list -> 'c option

Polymorphism of PFS is a simple and efficient way to solve the soundness issue of naive LCF
style. Results produced by oracles are correct by construction provided that the operators of the
factory preserve the desired correctness property. In the following, we detail the content of the
factory and how it applies on the projection of polyhedra.

3 PFS ORACLES EXPLAINEDWITH A DETAILED EXAMPLE: THE PROJECTION

This section gives a tutorial on PFS oracles, illustrated on operator proj of the abstract domain of
polyhedra. This operator performs the elimination of existential quantifiers on polyhedra. More
precisely, given a polyhedron P and a variable x , (proj P x) computes a polyhedron P ′ such that
P ′⇔ ∃x , P . Let us consider the example of Figure 2. Predicate P0 expresses that q is the result of
the Euclidean division of x by 3, with r as remainder. Predicate P1 “instantiates” P0 with x = 15.
Then, predicate P ′1 corresponds to the computation of ∃r , P1 (as a polyhedron on Q).

P0 ≜


x = 3 · q + r

∧ r ≥ 0
∧ r < 3

[C1]

[C2]

[C3]

P1 ≜ P0 ∧ x = 15 [C4]

P ′1 ≜


x − 15 = 0

∧ q − 4 > 0
∧ 5 − q ≥ 0

[C ′1]
[C ′2]
[C ′3]

Fig. 2. Computation of P ′1 as “proj P1 r”

Geometrically, proj P x represents the orthogonal projection of a polyhedron P according to direc-
tion x . The standard algorithm for computing this projection is Fourier-Motzkin elimination [Fourier
1827]. Ongoing research is trying to improve efficiency with alternate algorithms [Howe and King
2012; Maréchal et al. 2017]. But in our two-tier approach, the correctness proof of proj does not
need to consider these implementation details.
As mentioned in Section 2.1, we assume that for proving the correctness of our surrounding

software (typically, a static analyzer), we do not need to prove P ′⇔ ∃x , P but only (∃x , P) ⇒ P ′.
Thus, we only want to prove the correctness of proj as defined below.

Definition 3.1 (Correctness of proj). Function proj is correct iff any result P ′ for a computation
(proj P x) satisfies (P ⇒ P ′) ∧ x < V (P ′) whereV (P ′) is the set of variables appearing in P ′ with
a non-null coefficient.

The condition x < V (P ′) ensures that variable x is no longer bounded in P ′. As dynamic checking
of this condition is fast and easy, we only look for a way to build P ′ from P which ensures by
construction that P ⇒ P ′. For this purpose, we exploit Farkas’ lemma as follows. Internally, we
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handle constraints in the form “t ▷◁ 0” where t is a linear term and ▷◁ ∈ {=, ≥, >}. Hence, each input
constraint “t1 ▷◁ t2” is first normalized as “t1 − t2 ▷◁ 0”. Then, we generate new constraints using
only the two operations of Definition 3.2. Obviously, such constraints are necessarily implied by P .

Definition 3.2 (Linear Combinations of Constraints). We define operations + and · on normalized
constraints by
• (t1 ▷◁1 0) + (t2 ▷◁2 0) ≜ (t1 + t2) ▷◁ 0
where ▷◁≜ max(▷◁1, ▷◁2) for the total increasing order induced by the sequence =, ≥, >.
• n · (t ▷◁ 0) ≜ (n · t) ▷◁ 0
under preconditions n ∈ Q and, if ▷◁ ∈ {≥, >} then n ≥ 0.

For example, P ′1 is generated from P1 by the script on the
right hand-side. Here tmp is an auxiliary constraint, where
variable x has been eliminated from C1 by rewriting using
equality C4.

tmp ← C4 + −1 ·C1
C ′1 ← C4
C ′2 ← 1

3 · (C3 + tmp)
C ′3 ← 1

3 · (C2 + −1 · tmp)

In the following, we study how to design – in OCaml– a certified frontend Front.proj that
monitors Farkas’ combinations produced by an untrusted backend Back.proj. Section 4 will then
formalize Front.proj in Coq.

3.1 Naive but Unsound LCF Style

In a first step, we follow the LCF style introduced in Section 2.2. We thus consider two datatypes for
constraints: modules BackCstr and FrontCstr define respectively the representation of constraints
for the backend and the frontend.
Each module is accessed both in the backend and in the
frontend, but the frontend representation is abstract for
the backend. Hence, the visible interface of FrontCstr for
the backend is given on the right-hand side. Type Rat.t

represents set Q, and add and mul represent respectively
operators + and · on constraints.

module FrontCstr: sig
type t
val add: t -> t -> t
val mul: Rat.t -> t -> t

end

Going back to our example, P ′1 is firstly computed from P1 using backend constraints. Indeed,
with its own representation, the backend finds the solution by efficient computations, combining
complex datastructures, GMP rationals and even floating-point values. On the contrary, the frontend
representation is based on certified code extracted from Coq. In particular, it uses internally the
certified rationals of the Coq standard library, where integers are represented as lists of bits. Once
a solution is found, the backend thus rebuilds this solution in the frontend representation. The
easiest way is to make Back.proj compute the certified constraints (of type FrontCstr.t) in parallel
of its own computations. Hence, we propose a first version of Back.proj, called Back.proj0, with
the following type.
Back.proj0: (BackCstr.t * FrontCstr.t) list -> Var.t -> FrontCstr.t list

Let us define two functions: a certified function occurs: Var.t -> FrontCstr.t -> bool such that
occurs x c tests whether x ∈ V (c) and an untrusted function export: FrontCstr.t -> BackCstr.t

that converts a frontend constraint into a backend one. Then, we implement Front.proj as follows:
let Front.proj (p: FrontCstr.t list) (x: Var.t): FrontCstr.t list =

let bp = List.map (fun c -> (export c, c)) p in
let p' = List.map snd (Back.proj0 bp x) in
if List.exists (occurs x) p'
then failwith "oracle error"
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else p'

Front.proj only dynamically checks that x < P ′. In particular, it does not verify that P ⇒ P ′

holds, because it should follow directly from the correctness of FrontCstr.add and FrontCstr.mul.
Ideally – mimicking a LCF-style prover – function Back.proj0 uses type FrontCstr.t as a type of
theorems. It derives logical consequences of a list of constraints (of type FrontCstr.t) by combining
them with FrontCstr.mul and FrontCstr.add. Like in a LCF-style prover, there is no explicit “proof
object” as value of this theorem type.

Unfortunately, this approach is unsound. We now provide an example which only involves two
input polyhedra that are reduced to a single constant constraint. Let us imagine an oracle wrapping
function memofst given below. Assuming that it is first applied to the unsatisfiable constraint 0 ≥ 1,
this first call returns 0 ≥ 1, which is a correct answer. However, when it is then applied to the
satisfiable constraint 2 ≥ 0, this second call still returns 0 ≥ 1, which is now incorrect! This
unsoundness is severe, because even a faithful programmer could, by mistake, implement such a
behavior while handling mutable datastructures.

let memofst:FrontCstr.t -> FrontCstr.t =
let first = ref None in
fun c ->

match !first with
| None -> (first := Some c); c
| Some c' -> c'

3.2 Generating an Intermediate Certificate

In order to avoid the unsoundness issue of the naive LCF style, we could instead introduce an
intermediate datastructure representing a trace of the backend computation. Then, the frontend
would use this trace to rebuild the certified result using its own certified datastructures. Such a
trace has the form of an Abstract Syntax Tree (AST) and is called a certificate. This approach was
used to design the first version of the VPL [Fouilhé and Boulmé 2014; Fouilhé et al. 2013]. In the
following, we detail the process of certificate generation and why we prefer avoiding it.

We define below a certificate type named pexp. It represents a type of polyhedral computations,
and depends on type fexp that corresponds to Farkas combinations. Constraints are identified by
an integer. Type pexp provides a Bind construct for computing auxiliary constraints like tmp in the
example of P ′1.

type fexp =
| Ident of int
| Add of fexp * fexp
| Mul of Rat.t * fexp

type pexp =
| Bind of int * fexp * pexp
| Return of fexp list

Figure 3 gives an example of certificate for P ′1, where each input constraint Ci is represented by
“Ident i”. The intermediate constraint tmp is bound to identifier 5.

Bind (5, Add (Ident 4, Mul (−1, Ident 1)),
Return [ Ident 4;

Mul (1/3, Add (Ident 3, Ident 5));
Mul (1/3, Add (Ident 2, Mul (−1, Ident 5))) ])

Fig. 3. A certificate for P ′1
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Next, we easily implement in Coq a Front.run interpreter of pexp certificates (corresponding to
the “checker” part of Figure 1) and prove that it only outputs a logical consequence of its input
polyhedron.

Front.run: pexp -> (FrontCstr.t list) -> (FrontCstr.t list)

Let us precise that when a pexp uses certificate identifiers that have no meaning w.r.t. Front.run,
this latter fails. For the following, we do not need to precise how identifiers are generated and
attached to constraints. We let this implementation detail under-specified.

Now, we need to turn Back.proj0 into a function Back.proj1 where each BackCstr.t constraint
in input is associated to a unique identifier.

Back.proj1: (BackCstr.t * int) list -> Var.t -> pexp

However, Back.proj1 is more complex to program and debug than Back.proj0. Indeed, in LCF-
style, certified operations run in “parallel” of the oracle. On an oracle bug (for instance, if the oracle
multiplies an inequality by a negative scalar), the LCF-checker raises an error right at the point
where the bug appears in the oracle: this makes debugging of oracles much easier. On the contrary,
in presence of an ill-formed certificate, the developer has to find out where does the ill-formness
come from in its oracle. Moreover, an oracle like Back.proj1 needs to handle constraint identifiers
for Bind according to their semantics in Front.run. As detailed in Section 5, this is particularly
painful on Fouilhé’s implementation of the join operator, because a binary operator involves two
spaces of constraint names (one for each “implication proof”). In the following, we present two
solutions that fix the issue of naive LCF style.

3.3 Standard LCF Style

Intuitively, the lying function memofst of Section 3.1 exploits the fact that constraints of the result
P ′ are typed with a single type of “theorems”, whereas these “theorems” are relative to a given set
of axioms: the input constraints of P . The standard LCF style fixes this issue by memorizing in the
type of “theorems” the set of axioms in which these theorems has been derived. In other words, in
standard LCF style, a Farkas combination is encoded by a sequent “P ⊢ C” where P is a polyhedron
and C a constraint: P is the polyhedron to which the Farkas combination is applied and C is the
result of the Farkas combination. This enables the front-end to dynamically check that oracles do
not mix these sequents in an unsound way.

Figure 4 sketches a standard LCF style implementation in OCaml. For the sake of simplicity, this
implementation uses BackCstr.t as an internal representation of constraints: a sequent “P ⊢ C” is a
encoded as a pair (P ,C) where P is a list of constraints and C a constraint. This implementation
thus wraps operations of BackCstr module, but with defensive verifications ensuring that such a
pair (P ,C) does always satisfy the invariant “P ⇒ C”.
Finally, some additional checks are necessary in front-end operations. For example, for the

is_empty operation of Section 2, FrontCstr provides an operation proves_unsat enabling to prove
that a given polyhedra P1 is UNSAT from a sequent “P2 ⊢ C” where C is trivially UNSAT: to this
end, proves_unsat additionally checks that P1 and P2 are syntactically equal.
In standard LCF style, an oracle can still use the memofst function. But this will be detected

at runtime and rejected by the frontend. As explained below, Polymorphic Factory Style (PFS)
improves this by preventing the cheating memofst at compile-time (by static typechecking). Moreover
it makes the implementation of the front-end even more lightweight, since some defensive checks
are removed.
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module FrontCstr: sig

( ∗ r e s t r i c t e d i n t e r f a c e f o r Backend c ompu t a t i o n s ∗ )
type t
val add: t -> t -> t
val mul: Rat.t -> t -> t

( ∗ e x t e n d e d i n t e r f a c e f o r F r o n t e n d c ompu t a t i o n s ∗ )
val import: BackCstr.t list -> t list
val export: t list -> BackCstr.t list
val proves_unsat: BackCstr.t list -> t -> bool
...

module FrontCstr = struct

type t = BackCstr.t list * BackCstr.t
let add (p1,c1) (p2,c2) =

assert (p1 == p2); (p1, BackCstr.add c1 c2)
let mul r (p,c) =

assert (Rat.is_nonnegative r); (p, BackCstr.mul r c)

let import p = List.map (fun c -> (p,c)) p
let export p = List.map snd p
let proves_unsat p1 (p2,c) =

assert (p1 == p2); BackCstr.is_unsat c
...

Fig. 4. Interface and (Sound) Implementation of FrontCstr in Standard LCF Style

3.4 Polymorphic Factory Style

The principle of PFS is very simple: instead of abstracting the “type of theorems” (i.e. type
FrontCstr.t) using an ML abstract datatype, we abstract it using ML polymorphism. As explained
above, the lying function memofst of Section 3.1 exploits the fact that we have a static type of
theorems, whereas when we interpret constraints of the result P ′ as theorems, they are relative
to the input constraints of P . Hence, this issue would disappear by using instead a dynamic type,
generated at each call to the oracle. Using ML polymorphism, we actually express that our oracle is
parameterized by any of such dynamic type of theorems.

In practice, the type FrontCstr.t used in backend oracles – e.g. Back.proj – is replaced by 'c. In
order to allow the backend to build new “theorems” – i.e. Farkas combinations – we introduce a
polymorphic record type lcf (acronym of Logical Consequences Factory).

type 'c lcf = {
add: 'c -> 'c -> 'c;
mul: Rat.t -> 'c -> 'c

}

Then, the previous oracle Back.proj0 that we defined for the simple LCF style is generalized into

val Back.proj: 'c lcf -> (BackCstr.t * 'c) list -> Var.t -> 'c list
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Intuitively, function Back.proj0 could now be redefined as (Back.proj {add=FrontCstr.add; mul=

FrontCstr.mul}).
Let us point out here that the type of Back.proj implementation must generalize this signature,

and not simply unify with it. This directly forbids memofst trick: if we remove the type coercion
from the code of memofst, the type system infers memofst: '_a -> '_a where '_a is an existential
type variable introduced for a sound typing of references [Garrigue 2002; Wright 1995]. Hence, a
cheating use of memofst would prevent oracles (like Back.proj) from having an acceptable type.

In other words, the unsoundness of memofst is detected statically, at compile-time. This is a first
significant advantage over standard LCF style, where it was only detected at runtime. Moreover, in
PFS, Farkas combinations do not need to track the list of axioms P , because this is only necessary for
the defensive checks of standard LCF style. PFS is slightly simpler and more efficient than standard
LCF style. This is a second advantage over standard LCF style. Beyond these two advantages,
Section 5 and Section 6 illustrate that the polymorphic style provides interesting opportunities
to reuse oracles for free, whereas, in the style based on type abstraction, this would require a
refactorization of oracles with explicit functors.

4 FORMALIZING PROJ FRONTEND IN COQ

In order to program and prove Front.proj in Coq, we need to declare Back.proj and its type in
Coq. This is achieved by turning Back.proj into a Coq axiom, itself replaced by the actual OCaml
function at extraction. However, such an axiom may be unsound w.r.t a runtime execution. In
particular, a Coq function f satisfies ∀x , (f x) = (f x). But, an OCaml function may not satisfy this
property, because of side-effects or because of low-level constructs distinguishing values considered
equal in the Coq logic. Section 4.1 recalls the may-return monad introduced by Fouilhé and Boulmé
[2014] to overcome this issue. Section 4.2 explains how PFS oracles are embedded in this approach.

4.1 Coq Axioms for External OCaml Functions

Let us consider the Coq example on the right
hand-side. It first defines a constant one as the
Peano’s natural number representing 1. Then, it
declares an axiom test replaced at extraction
by a function oracle . At last, a lemma congr is
proved, using the fact that test is a function.
The following OCaml implementation of oracle
makes the lemma congr false at runtime:
let oracle x = (x == one)

Definition one: nat := (S O).

Axiom test: nat → bool.
Extract Constant test ⇒ "oracle".

Lemma congr: test one = test (S O).
auto.

Qed.

Indeed (oracle one) returns true whereas (oracle (S O)) returns false, because == tests the
equality between pointers. Hence, the Coq axiom is unsound w.r.t this implementation. A similar
unsoundness can be obtained if oracle uses a reference in order to return true at the first call, and
false at the following ones. Fouilhé and Boulmé [2014] solve this problem by axiomatizing OCaml
functions using a notion of non-deterministic computations. For example, if the result of test is
declared to be non-deterministic, then the property congr is no more provable. For a given type A,
type ??A represents the type of non-deterministic computations returning values of type A: type
??A can be interpreted as P(A). Formally, the type transformer “ ?? . ” is axiomatized as a monad
that provides a may-return relation{A: ??A→ A→ Prop. Intuitively, when “k : ??A” is seen as
“k ∈ P(A)”, then “k { a” means that “a ∈ k”. At extraction, ??A is extracted like A, and its binding
operator is efficiently extracted as an OCaml let-in.
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For example, replacing the test axiom by “Axiom test : nat → ?? bool” avoids the above
unsoundness w.r.t the OCaml oracle. The lemma congr can still be expressed as below, but it is
no longer provable.

∀ b b', (test one){b → (test (S O)){b' → b=b'.

The soundness of this approach has been investigated by Boulmé and Vandendorpe [2019]. However,
it is still an open conjecture.

4.2 Reasoning on PFS oracles in Coq

Let us now sketch how the frontend is formalized in Coq. We define the type Var . t as positive –
the Coq type for binary positive integers. We build the module FrontCstr of constraints encoded
as radix trees over positive with values in Qc, which is the Coq type for Q. Besides operations
add and mul , module FrontCstr provides two predicates: ( sat c m ) expresses that a model
m satisfies the constraint c ; and ( noccurs x c ) expresses that variable x does not occur in
constraint c.

sat: t → (Var.t → Qc) → Prop.
noccurs: Var.t → t → Prop.

We also prove that sat is preserved by functions add and mul . Then, these predicates are lifted to
polyhedra p of type ( list FrontCstr . t ) .

Definition sat p m := List.Forall (fun c ⇒ FrontCstr.sat c m) p.
Definition noccurs x p := List.Forall (FrontCstr.noccurs x) p.

Because front_proj invokes a non-deterministic computation (the external oracle as detailed
below), it is itself a non-deterministic computation. Here is its type and its specification:

front_proj: list FrontCstr.t → Var.t → ??( list FrontCstr.t).
Lemma front_proj_correctness: ∀ p x p',

(front_proj p x) { p' → (∀ m, sat p m → sat p' m) ∧ noccurs x p'.

We implement front_proj in PFS, as explained in Section 3.4. First, we declare a lcf record
type containing operations for frontend constraints. These operations do not need to be declared
as non-deterministic: in the Coq frontend, they will be only instantiated by pure Coq functions.
Then, back_proj is defined as a non-deterministic computation. The type of back_proj is given
uncurried in order to avoid nested “??” type transformers. At extraction, this axiom is replaced by
a wrapper of Back.proj from Section 3.4.

Record lcf A := { add: A → A → A; mul: Qc → A → A }.
Axiom back_proj: ∀ {A},

((lcf A) * (list (FrontCstr.t * A))) * Var.t → ??( list A).

Like in Section 3.4, back_proj receives each constraint in two representations: an opaque one of
polymorphic type A and a clear one of another type. For simplicity, this paper uses FrontCstr . t
as the clear representation on the Coq side. 7
Now, let us sketch how we exploit our polymorphic back_proj to implement front_proj

and prove its correctness. For a given p : ( list FrontCstr . t ) , parameter A of back_proj is
instantiated with wcstr ( sat p ) where wcstr ( s ) is the type of constraints satisfied by any model
7In order to avoid unnecessary conversions from FrontCstr.t to BackCstr . t (that would be hidden in back_proj
wrapper), our actual implementation uses instead an axiomatized type which is replaced by “BackCstr.t” at extraction:
this is similar to the implementation of Fouilhé and Boulmé [2014].
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satisfying s. In other words, wcstr ( sat p ) is the type of logical consequences of p, i.e. the type
of its Farkas combinations. Hence, instantiating parameter A of back_proj by this dependent type
expresses that combinations from the input p and from the lcf operations are satisfied by models
of p. Concretely, ( front_proj p x ) binds the result of ( back_proj ( ( mkInput p ) , x ) ) to
a polyhedron p ' and checks that x does not occur in p ' .

Record wcstr(s: (Var.t → Qc) → Prop) :=
{ rep: FrontCstr.t; rep_sat: ∀ m, s m → FrontCstr.sat rep m }.

mkInput: ∀ p, lcf(wcstr(sat p)) * list(FrontCstr.t * wcstr(sat p)).

Actually, rep_sat above can be seen as a data-invariant attached to a rep value. This invariant is
trivially satisfied on the input values, i.e. the constraints of p. And, it is preserved by lcf operations.
These two properties are reflected in the type of mkInput . The polymorphism of back_proj is a
way to ensure that back_proj preserves any data-invariant like this one, on the output values.
Hence, the fact that ( back_proj ( ( mkInput p ) , x ) ) preserves wcstr ( sat p ) is a kind of
“theorems for free” a la Wadler [1989] and [Reynolds 1983], resulting from a parametricity property
over unary relations of the underlying Coq+OCaml type-system. See [Boulmé and Vandendorpe
2019] for more details.

5 THE FLEXIBLE POWER OF PFS ILLUSTRATED ON CONVEX HULL

This section provides an advanced usage of polymorphic factories through the join operator. It first
gives another non-trivial example of correct-by-construction oracle. It also illustrates the flexible
power of PFS, by deriving join from the projection operator of Section 3.4. On this join oracle,
PFS induces a drastic simplification by removing many cumbersome rewritings on certificates.
Indeed, we simply derive the certification of the join operator by invoking the projection operator
on a direct product of factories. As we detail below, such a product computes two independent
polyhedral inclusions, in parallel.

In abstract interpretation, join approximates the disjunction of two
invariants. For the abstract domain of polyhedra, this disjunction
geometrically corresponds to the union of two polyhedra P ′ ∪ P ′′.
However, in general, such a union is not a convex polyhedron.
Operator join thus overapproximates this union by the convex
hull P ′ ⊔ P ′′ that we define as the smallest convex polyhedron
containing P ′ ∪ P ′′. For instance, given

P ′ ≜ {x1 ≤ 0, x2 ≤ 0,x1 ≥ −1, x2 ≥ −1}

P ′′ ≜ {x1 ≥ 0, x2 ≥ 0,x1 + x2 ≤ 1}

P ′⊔P ′′ ≜ {x1 ≥ −1, x2 ≥ −1, x1+x2 ≤ 1, x2−x1 ≥ −1, x2−x1 ≤ 1}
as represented on the right hand side figure as the black outline.

The correctness of join, given in Definition 5.1, is reduced to two implications themselves proved
by Farkas’ lemma. More precisely, on a computation (join P ′ P ′′), the oracle produces internally
two lists of Farkas combinations that build a pair of polyhedra (P1, P2) satisfying P ′ ⇒ P1 and
P ′′⇒ P2. Then, the frontend checks that P1 and P2 are syntactically equal. If the check is successful,
it returns polyhedron P1.

Definition 5.1 (Correctness of join). Function join is correct iff any result P for a computation
(join P ′ P ′′) satisfies (P ′⇒ P) ∧ (P ′′⇒ P) .
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5.1 Extended Farkas Factories

The factory operations of Definition 3.2 are sufficient to compute any result of a projection, but they
do not suffice for the convex-hull and more generally for proving all kinds of polyhedra inclusions.
The definition 5.2 given here completes this set of operations. The following lemma ensures its
completeness for proving polyhedra inclusions. It extends Lemma 2.1 for polyhedra with equalities
and strict inequalities.

Definition 5.2 (Extended Farkas Combination). An extended Farkas combination may invoke one
of the five operations:

• (t1 ▷◁1 0) + (t2 ▷◁2 0) ≜ (t1 + t2) ▷◁ 0
where ▷◁≜ max(▷◁1, ▷◁2) for the total increasing order induced by the sequence =, ≥, >.
• n · (t ▷◁ 0) ≜ (n · t) ▷◁ 0
under preconditions n ∈ Q and, if ▷◁ ∈ {≥, >} then n ≥ 0.
• weaken((t ▷◁ 0)) ≜ (t ≥ 0), for all linear term t and ▷◁∈ {=, ≥, >}.
• cte(n, ▷◁) ≜ (n ▷◁ 0) assuming n ∈ Q and n ▷◁ 0.
• merge((t ≥ 0), (−t ≥ 0)) ≜ (t = 0), for all linear term t .

Besides the operations of Definition 5.2, we also define ⊤ as a shortcut for cte(0,=) that thus
corresponds to constraint 0 = 0. Hence, ⊤ is neutral for operations + and · on constraints. It is thus
a very convenient default value in our oracles.

Lemma 5.3 (Extended Farkas Lemma). Let P1 and P2 be two convex polyhedra on Q such that
P1 ⇒ P2. Then,

• either P1 is empty and a contradictory constant constraint (e.g. 0 > 0) is a Farkas combination
of P1,
• or each constraint of P2 is an extended Farkas combination of P1.

Proof. Our proof has three cases.

(1) If P1 is unsatisfiable, then we build the expected contradictory constant constraint using
Fourier-Motzkin elimination, i.e. by successive projection of each variable of P1. Actually,
this contradictory constant is built by using only operations from Definition 3.2.

(2) Otherwise, let “t ▷◁ 0” be a constraint of P2 such that ▷◁∈ {≥, >}. By hypothesis, P1 ⇒ P2, so in
particular P1 ⇒ t ▷◁ 0. By defining the complementary of ▷◁ (written ▷◁) as {≥, >}\{▷◁}, we get
that polyhedron P1∧−t ▷◁ 0 is unsatisfiable. By the proof of case (1), there exists a contradictory
constant constraint −λ0 ▷◁′ 0 where ▷◁′∈ {≥, >,=} such that −λ0 =

∑k
i=1 λi .ti − λk+1.t and

for all i , λi ≥ 0 and P1 ⇒ ti ≥ 0. Moreover λk+1 > 0, otherwise P1 would be unsatisfiable.
Thus, we have t = 1

λk+1
· (λ0 +

∑k
i=1 λi .ti ).

Hence, constraint t ≥ 0 is generated by combining only constraints of P1 and constraint
cte(λ0, ≥) with operators + and ·, and possibly a final ⇓. If λ0 > 0, then constraint t > 0 is
also generated in a similar way but from cte(λ0, >) (and avoiding ⇓). Let us consider the case
where ▷◁ is > and λ0 = 0. In this case, ▷◁′ is > (because 0 ▷◁′ 0 is contradictory) whereas ▷◁ is
≥. Thus, there exists i ∈ [1,k] such that λi > 0 and ti > 0 is a constraint of P1. Hence, t > 0
is generated from P1 constraints using only operations of Definition 3.2.

(3) At last, let “t = 0” be a constraint of P2 when P1 is satisfiable. We build this constraint as
the result of operator “&” on the two extended Farkas combinations associated to inclusions
P1 ⇒ t ≥ 0 and P1 ⇒ −t ≥ 0, themselves built like case (2) above.

□
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From now on, we only consider extended Farkas com-
binations and omit the adjective “extended”. Defini-
tion 5.2 leads to extend our factory type as given on
the right-hand side.
Fields top, weaken and merge correspond respectively
to ⊤, ⇓ and &. Type cmpT is our enumerated type of
comparisons representing {≥, >,=}.

type 'c lcf =
{ top: 'c;

add: 'c -> 'c -> 'c;
mul: Rat.t -> 'c -> 'c;
weaken: 'c -> 'c;
cte: Rat.t -> cmpT -> 'c;
merge: 'c -> 'c -> 'c }

5.2 Encoding join as a Projection

Most polyhedra libraries use the double representation of polyhedra, as constraints and as generators.
Computing the convex hull P ′ ⊔ P ′′ using generators is easy. It consists in computing the union of
generators and in removing the redundant ones. In constraints-only, the convex hull is computed
as a projection problem, following the algorithm of Benoy et al. [2005]. The convex hull is the set
of convex combinations of points from P ′ and P ′′, i.e.{

x | x ′ ∈ P ′, x ′′ ∈ P ′′, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = α ′ · x ′ + α ′′ · x ′′
}

(1)

To express that a point belongs to a polyhedron in a more computational way, we introduce
the following matrix notation. We denote x ′ ∈ P ′ by A′x ′ ≥ b ′, where each line of this system
represents one constraint of P ′. Similarly, x ′′ ∈ P ′′ is rewritten into A′′x ′′ ≥ b ′′. The previous set
of points (1) becomes

{x | A′x ′ ≥ b ′, A′′x ′′ ≥ b ′′, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = α ′ · x ′ + α ′′ · x ′′} (2)

Then, by eliminating variables α ′, α ′′, x ′ and x ′′, we obtain P ′ ⊔ P ′′. Note that we cannot use
directly operator proj to compute this projection because the set of points (2) is defined with a
nonlinear constraint x = α ′ ·x ′+α ′′ ·x ′′. We go back to linear constraints by applying the changes
of variable y ′ := α ′ · x ′ and y ′′ := α ′′ · x ′′. By multiplying matrix A′x ′ ≥ b ′ by α ′ and A′′x ′′ ≥ b ′′

by α ′′, we obtain equivalent systems A′y ′ ≥ α ′ · b ′ and A′′y ′′ ≥ α ′′ · b ′′. The set of points (2) is
now described as

PH ≜ {x | A′y ′ ≥ α ′ · b ′, A′′y ′′ ≥ α ′′ · b ′′, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = y ′ +y ′′} (3)

For our previous example, PH is the set of points x ≜ (x1,x2) that satisfy
−y ′1 ≥ 0, −y ′2 ≥ 0, y ′1 ≥ −α

′, y ′2 ≥ −α
′ (A′y ′ ≥ α ′ · b ′)

y ′′1 ≥ 0, y ′′2 ≥ 0, −y ′′1 − y
′′
2 ≥ −α

′′ (A′′y ′′ ≥ α ′′ · b ′′)
α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1 (Encoding convex combinations)
x1 = y

′
1 + y

′′
1 , x2 = y

′
2 + y

′′
2

Operator join finally consists in eliminating variables α ′, α ′′, y ′ and y ′′ from PH . The presence
of equalities or strict inequalities requires an additional pass that follows the projection, involving
operators weaken and merge of the factory. We omit this step in the paper in order to keep our expla-
nations simple. Moreover, in practice, encoding (3) could be done more efficiently by considering
less variables, exploiting the fact that α ′′ = 1 − α ′ and y ′′ = x − y ′. But as this complicates the
understanding and does not affect much the certification, we will not consider this improvement.
In the following, we compare certificate style to PFS for proving join from results of proj. In

order to have a simpler presentation, we limit here to the case where polyhedra contain only non
strict inequalities.
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5.3 Proving join with Certificates

As previously explained about Definition 5.1, the correctness of join is ensured by building the
convex hull P from two Farkas combinations, one of P ′ and one of P ′′. Fouilhé et al. [2013] described
how to extract such combinations from the result of the projection of PH . As in the rest of the
polyhedra library they developed, they proceed in a skeptical way with certificates. Thus, their
join has the following type:

Back.join1 : (BackCstr.t * int) list -> (BackCstr.t * int) list ->
pexp * pexp

It takes the two polyhedra P ′ and P ′′ as input, and each of their constraints is attached to a unique
identifier, as explained in Section 3.2. It returns two certificates of type pexp, one for each inclusion
P ′⇒ P and P ′′⇒ P of Definition 5.1.

Let us now detail how Fouilhé et al. retrieve such certificates from the projection of PH . Consider
operator Back.proj1_list that extends Back.proj1 from Section 3 by eliminating several variables
one after the other instead of a single one. Assume that Back.proj1_list PH [x1, . . . ,xq] returns
(P, Λ) where Λ is a certificate of type pexp showing that PH ⇒ P . Λ can be represented as a matrix
where each row Λi · contains the coefficients of a Farkas combination showing PH ⇒ Ci , where Ci
is the ith constraint of P .

Since α ′, α ′′, y ′ and y ′′ do not appear in P (they have been eliminated by projection), PH ⇒ P
holds whatever the value of these variables. In particular, certificate Λ remains valid for any
assignment of (α ′, α ′′, y ′, y ′′). The key idea is to find well-chosen assignments in order to
retrieve certificates for P ′ ⇒ P and P ′′ ⇒ P out of Λ. Indeed, recall that PH is the set of convex
combinations α ′ · x ′ + α ′′ · x ′′ of points x ′ ∈ P ′ and x ′′ ∈ P ′′. By setting α ′ = 1 and α ′′ = 0, PH
becomes restricted to P ′. More precisely, considering assignment σ1 ≜ (α ′ = 1, α ′′ = 0, y ′′ = 0),
PH becomes {x | A′y ′ ≥ b ′, 0 ≥ 0, 1 ≥ 0, 0 ≥ 0, 1 + 0 = 1, x = y ′} that simplifies into

{x | A′x ≥ b ′, 1 ≥ 0} (4)

which is equivalent to P ′. By applying the Farkas combinations from Λ onto this new set of
constraints, we obtain a certificate showing that P ′ ⇒ P . The same reasoning applied with
assignment σ2 ≜ (α ′ = 0, α ′′ = 1, y ′ = 0) leads to P ′′⇒ P .

5.4 Proving join with a Direct Product of Polymorphic Farkas Factories

In PFS, we use the following type for join’s oracle:

Back.join : 'c1 lcf -> (BackCstr.t * 'c1) list ->
'c2 lcf -> (BackCstr.t * 'c2) list ->
('c1 -> 'c2 -> 'c3) -> 'c3 list

In this polymorphic type, variable 'c1 (resp. 'c2) represents the type of logical consequences of P ′
(resp. P ′′), whereas variable 'c3 represents the type of logical consequences of P ′ ∪ P ′′, i.e. the type
of constraints that are both logical consequences of P ′ and P ′′ (see Definition 5.1). The Back . join
oracle is parametrized by a certified operator (given by the frontend) of type 'c1 -> 'c2 -> 'c3 and
called unify. This unify operator simply tests whether the two input constraints are syntactically
equal: in this case, this constraint is trivially a logical consequence of P ′ ∪ P ′′. Otherwise, unify
fails: it returns a top constraint (or raises an error). Hence, Back.join builds a convex polyhedron
P which includes—by construction—the set P ′ ∪ P ′′.
Internally, this oracle first builds a pair of polyhedra (P1, P2) of type ('c1 list)*('c2 list)

and then computes P by pairwise applying unify to these two lists. Hence, alternatively to a result
of type ('c1 -> 'c2 -> 'c3) -> 'c3 list, we could also design Back.join for a result of type
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let factory_product (lcf1: 'c1 lcf) (lcf2: 'c2 lcf): ('c1 * 'c2) lcf =
{

top = (lcf1.top , lcf2.top);
add = (fun (c1,c2) (c1 ',c2 ') -> lcf1.add c1 c1', lcf2.add c2 c2 ');
mul = (fun r (c,c') -> lcf1.mul r c, lcf2.mul r c');
weaken = (fun (c,c') -> lcf1.weaken c, lcf2.weaken c');
cte = (fun r cmp (c,c') -> lcf1.cte r cmp c, lcf2.cte r cmp c');
merge = (fun (c1,c1 ') (c2,c2 ') -> lcf1.merge c1 c1', lcf2.merge c2 c2 ');

}

Fig. 5. Direct product of two Farkas Factories

('c1 list)*('c2 list), and let the frontend build P from this result. These two alternatives are
more or less equivalent, because building P from the pair (P1, P2) is very easy to implement and
prove correct in Coq.
We said that for computing the convex hull, join eliminates variables α ′, α ′′, y ′ and y ′′ from

PH . Recall that the projection operator that we defined for PFS in Section 3.4 has type

Back.proj: 'c lcf -> (BackCstr.t * 'c) list -> Var.t -> 'c list

As we did for the certificate approach, let us define Back.proj_list that extends Back.proj by
eliminating a list of variables.

Back.proj_list: 'c lcf -> (BackCstr.t * 'c) list -> Var.t list -> 'c list

The Back.join oracles is parametrized by two Farkas factories, but it needs to call Back.proj_list
on a single one. To do so, Back.join will provide Back.proj_list with a combination of its own
two factories. Although the parameter 'c lcf of Back.proj_list was originally designed to be
provided by the frontend, nothing forbids the backend to tune it. This is where the flexibility of
PFS comes into play! More precisely, Back.join combines the two factories of types 'c1 lcf and
'c2 lcf into a new one of type ('c1 * 'c2) lcf given in Figure 5. This factory computes with
frontend constraints from P ′ and P ′′ in parallel: it corresponds to the direct product of the two
initial Farkas factories.
Now, let us detail how to build PH . To be compatible with the combined factory, each backend

constraint of PH must be attached to a frontend constraint of type 'c1 * 'c2. Constraints of P ′
– that have type (BackCstr.t * 'c1) – are converted into type (BackCstr.t * ('c1 * 'c2)) by
being attached to constraint lcf2.top of type 'c2. Similarly, constraints of type (BackCstr.t * 'c2)

are attached to constraint lcf1.top of type 'c1. Then, we need to apply the changes of variable
y ′ := α ′ · x ′ and y ′′ := α ′′ · x ′′ as explained above. But we have no way of doing this on frontend
constraints: the backend can only apply factory operators on them, and none allows the addition of
new variables. Fortunately, we are only interested in specific values for these new variables, values
from assignments σ1 and σ2 defined in the previous section. These evaluations make both variables
y ′ and y ′′ vanish, as in Equation (4). Thus, to build the frontend version of constraints of PH , we
evaluate them directly on each assignment as follows:
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BackCstr.t −→ BackCstr.t * ( 'c1 * 'c2 )

A′x ′ ≥ b ′


A′1x

′ ≥ b′1 −→ A′1y
′ ≥ b′1 , (

[
A′1y

′ ≥ α ′b′1
]
σ1︸                 ︷︷                 ︸

A′1x
′≥b′1

, [⊤]σ2 )

...
A′px

′′ ≥ b′p −→ A′py
′ ≥ b′p , (

[
A′py

′ ≥ α ′b′p
]
σ1︸                  ︷︷                  ︸

A′px
′≥b′p

, [⊤]σ2 )

A′′x ′′ ≥ b ′′


A′′1x

′′ ≥ b′′1 −→ A′′1y
′′ ≥ b′′1 , ( [⊤]σ1 ,

[
A′′1y

′′ ≥ α ′′b′′1
]
σ2︸                   ︷︷                   ︸

A′′1 x
′′≥b′′1

)

...
A′′qx

′ ≥ b′′q −→ A′′qy
′′ ≥ b′′q , ( [⊤]σ1 ,

[
A′′qy

′′ ≥ α ′′b′′q
]
σ2︸                    ︷︷                    ︸

A′′qx
′′≥b′′q

)

Finally, we add constraints α ′ ≥ 0, α ′′ ≥ 0 and α ′ + α ′′ = 1 that must be given in type
BackCstr.t * ('c1 * 'c2). However, they contain variables α ′ and α ′′ that were not present in the
input polyhedra P ′ and P ′′. Once again, we build directly their evaluation in σ1 and σ2. Constraints
1 ≥ 0 and 0 ≥ 0 are built in types 'c1 or 'c2 thanks to operator cte from factories lcf1 and lcf2.
Note that α ′+α ′′ = 1 is not given here because it evaluates to (⊤,⊤), and can therefore be discarded.

BackCstr.t −→ BackCstr.t * ( 'c1 * 'c2 )
α ′ ≥ 0 −→ α ′ ≥ 0 , ( [α ′ ≥ 0]σ1︸      ︷︷      ︸

1≥0

, [α ′ ≥ 0]σ2︸      ︷︷      ︸
0≥0

)

α ′′ ≥ 0 −→ α ′′ ≥ 0 , ( [α ′′ ≥ 0]σ1︸       ︷︷       ︸
0≥0

, [α ′′ ≥ 0]σ2︸       ︷︷       ︸
1≥0

)

As an example, let us focus on the proof that P ′ and P ′′ both imply −x1 − x2 ≥ −1, which is a
constraint of P ′ ⊔ P ′′. We build PH as described above, and obtain from its projection a frontend
constraint, that is

(−x1 ≥ 0, 0 ≥ 0) + (−x2 ≥ 0, 0 ≥ 0) + (1 ≥ 0, 0 ≥ 0) + (0 ≥ 0, −x1 − x2 ≥ −1)

= (−x1 − x2 ≥ −1, −x1 − x2 ≥ −1)
The left-hand side of each term is the frontend constraint of type 'c1, and the right hand side is of
type 'c2. From P ′ point of view, we obtain −x1 − x2 ≥ −1 as the combination of −x1 ≥ 0, −x2 ≥ 0
and the constant constraint 1 ≥ 0 that comes from α ′ ≥ 0. On the other hand, −x1 − x2 ≥ −1 is
a constraint of P ′′ and is directly returned as a frontend constraint of type 'c2. The projection
returns such results for each constraint of the convex hull P ′ ⊔ P ′′.
In conclusion, with a well chosen factory, we define our PFS join as a simple call to proj_list.

This makes our implementation much simpler than Fouilhé’s one, where the two certificates of join
are obtained from the one of proj_list by tedious rewritings that perform on-the-fly renamings of
constraint identifiers.

6 GENERATING COMPACT CERTIFICATES FROM A PFS ORACLE

We designed PFS in order to avoid certificate generation in a skeptical approach based on Coq
extraction. Yet, certificates are still useful for other applications. This section demonstrates that
PFS is also relevant in this case.

For example, Boulmé and Maréchal [2018] have embedded the guard oracle of the VPL inside a
Coq tactic that simplifies Coq proofs thanks to polyhedral computations. This tactic requires an
OCaml oracle that produces a Coq AST – i.e. a kind of certificate – typechecked by the Coq kernel.
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This AST represents a polyhedral computation, itself encoded as a value of a Coq inductive type
– similar to the pexp type of Section 3.2. The tactic then applies a Coq version of the Front.run

interpreter of Section 3.2 to this certificate of type pexp.
Certificates could also provide a way to reduce the TCB w.r.t. our current approach. We could

imagine certifying each run of our OCaml oracles by generating a Coq term representing this run.
For example, this term would be dumped in a Coq source file (in Gallina syntax) and checked by
the Coq compiler. Coq extraction and OCaml would no longer be part of the TCB. With respect to
the above tactic, this would also avoid trusting the dynamic loading of oracles in the Coq runtime.
But, obviously, this approach would make our library much more complicated to integrate into
realistic software.
Now, let us explain why PFS is very relevant to implement certificate generating oracles. As

detailed in Section 3.4 and in Section 5, polymorphic factories provide an abstract layer that simplifies
the implementation of oracles. The code generating certificates can then be easily factorized for
a family of oracles, as illustrated in Section 6.1. Moreover, by defining a well chosen factory, we
produce a compact AST without slowing too much its generation. This factory actually produces a
DAG, from which the final AST is extracted after a dependency analysis. For example, intermediate
results that are actually not needed for the AST are discarded. Similarly, when an intermediate
computation is used at least twice, we define a binder that stores this result into an intermediate
variable. These two optimizations, explained in Section 6.3, avoid useless or redundant computations
in the AST interpreter. Another optimization is performed on the DAG: top nodes are eliminated,
and multiplication by constants are factorized. Section 6.2 gives the factory that produces the DAG,
and how this last optimization is applied on the fly.

6.1 Factorizing the AST Generation from PFS Oracles

The DAG datastructure provides the interface below, which helps to wrap PFS oracles of the VPL.
Type dsctr is the type of nodes in the DAG. Constant dag_factory provides a factory instance for
our PFS oracles. Function import converts an input polyhedron into an input suitable for oracles.
Finally, function export converts the output of oracles into an AST of type pexp.

type dcstr
val dag_factory: dcstr Back.lcf
val import: BackCstr.t list -> (BackCstr.t * dcstr) list
val export: ('a * dcstr) list -> pexp

From this interface, wrapping a given PFS oracle into an AST producing oracle is straightforward.
For example, we define below ast_proj which wraps the Back.proj PFS oracle of Section 3.4.

let ast_proj (p: BackCstr.t list) (x: Var.t): pexp =
export (Back.proj dag_factory (import p) x)

Below, Section 6.2 defines dag_factory and import that makes the PFS oracle builds the DAG.
Section 6.3 describes the analysis of this DAG in export to produce a compact AST.

6.2 A Factory Producing a DAG

For simplicity, we illustrate the generation of the DAG on the following sub-factory of the one of
Section 5.1.

type 'c lcf = { top: 'c; add: 'c -> 'c -> 'c; mul: Rat.t -> 'c -> 'c }
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During the DAG generation, we eliminate the neutral element top that induces useless nodes. We
also factorize multiplications by rational constants. These propagations are directly achieved by
the operations of dag_factory.

type dcstr = {
def: op;
mutable id: int;
mutable nbusers: int;
( ∗ o t h e r om i t t e d f i e l d s ∗ )

} and op =
| Ident_
| Top
| Add_ of dcstr * dcstr
| Mul_ of Rat.t * dcstr

The type dcstr of nodes in the DAG is implemented on
the right hand-side. This is a record type with a field def

containing the “operation” at this node. An operation of
type op corresponds either to an input constraint (construc-
tor _Ident) or to an operation on constraints. Operations
_Add and _Mul refer to nodes of type dcstr, and such a node
can be shared between several operations by pointer shar-
ing. Mutable fields of dcstr, like id and nbusers, are only
used during function export. They represent auxiliary data
on the node, which are computed by the dependency anal-
ysis and useful to generate the final AST.

We call a node dc1 a direct ancestor of a node dc2 iff dc2

appears in dc1.def (i.e. as arguments of Add_ or Mul_). It corresponds to the fact that the computation
represented by dc1 depends on the result of the computation represented by dc2. Here, dc2 is a
reference that may have several direct ancestors but, by construction, it can not be a direct or
indirect ancestor of itself.

Most new nodes of the DAG are generated through a call to (make_dcstr d) where d is a value of
type op. This call initializes field def with value d and other fields with default values (these latter
being only used in export). The only exception is on Ident_ nodes that are created with a positive
field id giving their name in the final AST.

let make_dcstr ?id:(i=0) d : dcstr = { def=d; id=i; nbusers =0; ( ∗ . . . ∗ ) }

Let us now detail the implementation of import and dag_factory. On a given polyhedron p,
function import associates a new Ident_ node to each constraint c of p. The name of each of these
nodes – given by its field id – corresponds to the position of c in the list p.

let import p = List.mapi (fun i c -> (c, make_dcstr ~id:(i+1) Ident_ )) p

In dag_factory, functions smart_mul and smart_add are smart constructors of nodes which eliminate
Top nodes and factorize Mul_ nodes as much as possible.

let dag_factory = {top = make_dcstr Top; add = smart_add; mul = smart_mul}

This process corresponds to applying the rewriting rules of Figure 6, where ⊤, + and · represent a
node where the field def is respectively Top, Add_ and Mul_ and where c , c1 and c2 are some other
existing nodes. Since these smart constructors assume that their node in inputs are already rewritten,
they only perform O(1) rewriting steps at each call. Moreover, (smart_mul n c) assumes that scalar
n is not zero and that if n is negative then c is an equality. These two last assumptions are of course
valid on our PFS oracles, and they are preserved by the rewriting rules of Figure 6.

For instance, on a witness “n1 ·c1 +n2 ·
(
⊤ +

n1
n2
· c2

)
” generated from a PFS oracle (where n1 > 0),

the factory builds a node corresponding to “n1 · (c1 + c2)”. Let us remark that some useless nodes,
such as “n1

n2
· c2”, are generated in the DAG during this process. But they do not pollute the final

AST, thanks to the dependency analysis of the next section.
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n · ⊤ → ⊤ 1 · c → c n1 · (n2 · c) → (n1 × n2) · c

⊤ + c → c c + ⊤ → c (n1 · c1) + (n2 · c2) →


n1 ·

(
c1 +

n2
n1
· c2

)
if n1 > 0

n2 ·
(
n1
n2
· c1 + c2

)
if n1 < 0

Fig. 6. Elimination of Top Nodes and Factorization of Mul_ Nodes in the DAG

6.3 Producing the AST

We aim here to produce certificates like examples given in Figure 3 at page 8, where derived
constraints used in at least two Farkas combinations (of type fexp) are named by a Bind instead of
having their combination duplicated. This is achieved by function export. We now summarize how
this function builds a compact AST using a named representation in binders, and where unbound
names represent input constraints (while giving their position in the input list).

The oracle, instantiated with dag_factory, returns a list of output constraints of type (BackCstr.t
* dsctr). Function export first extracts dsctr values from this list, and obtains the list of roots from
which we start our dependency analysis on the DAG. By analyzing descendants of each root, we
look for nodes that have at least two direct ancestors (among the descendants of the roots). Such
nodes are then sorted according to a topological sort and are named with unique positive integers
(in field id) above the maximum name of reachable _Ident nodes. These nodes induce a Bind node
associating their id field to their Farkas combination. On the contrary, descendants of roots which
have a null id field – they have thus exactly one direct ancestor – are directly replaced by their
Farkas combination in the AST without an intermediate Bind node.

In conclusion, PFS completely hides the issue of handling binders in the core of our oracles. This
handling is factorized over our PFS oracles within a dedicated component, able to produce compact
certificates.

7 RELATEDWORKS AND CONCLUSION

The skeptical approach has been pioneered in the design of two interactive provers, Automath
[de Bruijn 1968] and LCF [Gordon et al. 1979]. Both provers reduce the soundness of a rich
mathematical framework to the correctness of a small automatic proof checker called the kernel.
But, their style is very different. LCF is written as a library in a functional programming language
(ML) which provides the type of theorems as an abstract datatype. Its safety relies on the fact
that objects of this type can only be defined from a few primitives (i.e. the kernel). Each of them
corresponds to an inference rule of Higher-Order Logic in natural deduction. On the contrary,
Automath introduces a notion of “proof object” and implements the kernel itself as a typechecker,
thanks to Curry-Howard isomorphism. LCF style is more lightweight – both for the development
and the execution of proof tactics – whereas the proof object style allows a richer logic (e.g. with
dependent types). Nowadays, the kernel of skeptical interactive provers is still designed according
to one of this style: Coq has proof objects whereas HOL provers are in LCF style.
Since the 90’s, the skeptical approach is also applied in two kinds of slightly different contexts:

making interactive provers communicate with external solvers like Maple [Harrison and Théry
1998], and verifying the safety of untrusted code, like in “Proof Carrying Code” [Necula 1997]. In
Coq, it is also applied to the design of proof tactics communicating with external solvers [Armand
et al. 2011, 2010; Besson 2006; Grégoire et al. 2008; Magron et al. 2015], and to certify stand-alone
programs like compilers or static analyzers which embed some untrusted code [Besson et al. 2010;
Blazy et al. 2015; Jourdan et al. 2015; Tristan and Leroy 2008].
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Actually, there are now so many works related to the skeptical approach that it seems impossible
to be exhaustive. With respect to all these works, the contribution of this paper is to propose a
design pattern, called Polymorphic Factory Style (abbreviated as PFS), in order to certify in Coq the
results of an untrusted ML oracle. This pattern is illustrated on a new implementation of the VPL,
a certified abstract domain of convex polyhedra initially developed in [Fouilhé et al. 2013] and used
in the certified Verasco static analyzer [Jourdan et al. 2015]. To summarize, the VPL contains a
set of oracles producing witnesses that correspond to nonnegative linear combinations which are
logical consequences of their inputs.
In PFS, i.e. polymorphic LCF style, oracles produce these witnesses as ordinary ML values (e.g.

linear constraints). In other words, instead of building a certificate that the Coq frontend uses to
compute the certified value, the oracle directly generates this value by using certified operators of
the Coq frontend. This provides several benefits over certificates with no counterpart: the Trusted
Computing Base induced by PFS remains the same as in the version with certificate generation. First,
it makes the oracle development easier. Ill-handling of certified operators is much straightforward
to debug. Without a certificate to build, it naturally removes cumbersome details such as handling
of binders. As a consequence, in our implementation of the VPL, the length of the OCaml coded
devoted to certification has been divided by two! Second, polymorphism ensures that oracle results
are sound by construction. In the polyhedra library, it means that oracles can only produce logical
consequences of their input. This property is proved for free from the types of the oracles, in the
spirit of the “theorems for free” coined by Wadler [1989]. Third, polymorphism makes witness
generation very flexible and modular. Generating a compact certificate is still possible if necessary,
e.g. for embedding an oracle within a Coq tactic. Moreover, PFS is even more lightweight than
standard LCF style, as it does not need to memorize an explicit type of “theorems”. Finally, PFS
forbids some incorrect oracles statically (by OCaml typechecking), while standard LCF style rejects
them only at runtime.

In parallel of our work, [Boulmé and Vandendorpe 2019] have also successfully applied PFS for
the certification of Boolean SAT-solvers. In their work, the factory is reduced to a single operation
based on propositional resolution, while the OCaml oracle is a parser of unsat certificates emitted
by a SAT-solver. This illustrates that PFS may be applied in many verification problems.
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