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Abstract

The immune system consists of an innate and an adaptive branch that interact with each
other to preserve body homeostasis and defend the organism against invading
pathogens. This is partly achieved by the action of antibodies that can bind to antigen via
their Fab portion and trigger effector functions with their Fc portion. Produced by cells
of the adaptive immune system, antibodies enable cells of the innate immune system to
react in an antigen-specific manner. Antibodies are mainly characterized in or generated
from animal models that support particular infections, respond to particular antigens or
allow the generation of hybridomas. Due to the availability of numerous transgenic
mouse models and the ease of performing bioassays with human blood cells in vitro,
most antibodies from species other than mice and humans are tested in vitro using
human cells and/or in vivo using mice. In my thesis, I undertook a systematic approach
to characterize interactions between IgG from different species and mouse and human
IgG receptors (FcyRs) that will be a useful reference for the transition from one animal

model to preclinical mouse models or human cell-based bioassays.

Non-infectious diseases can arise from an imbalanced immune homeostasis. Allergic
conditions are one such example and are in general associated with a Th2-driven IgE-
dependent physiopathology involving mast cells and basophils. More recently, the
contribution of other cellular populations and antibody subclasses to allergic diseases
was put forward. To systematically characterize the immune phenotype of allergic
patients, we recruited a new cohort of patients severely allergic to wasp venom or
amoxicillin. Using fresh blood samples, I analysed steady state and induced immune
responses and compared them to healthy individuals. My preliminary data document a
trend for elevated Th2 and Th17 cells in allergic individuals and fewer but more mature
dendritic cells. They also illustrate a large inter-individual variability in terms of induced
immune responses. To identify immunological, genetic and environmental factors that
determine the concentration of total serum IgE in healthy individuals, I also explored
available data of an extensively analysed cohort of age- and sex-stratified 1000 healthy

donors (Milieu Intérieur). My analysis reveals that total serum IgE concentrations in
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these donors are associated with age, sex, smoking habits, certain HLA alleles, FceRI
expression on basophils, and a particular profile of cytokines released in whole blood

stimulation assays.

My thesis provides a basis for the in-depth characterization of the immune phenotype of
severely allergic patients and contributes to a better understanding of the parameters
that associate with serum IgE concentrations in healthy individuals. Additionally, my
work draws a comprehensive map of the interactions between IgG from different
species and mouse and human FcyRs that will help to anticipate FcyR-dependent
effector functions when using IgGs from other species with human or mouse effector

cells.

Keywords : Allergy; Immune phenotype; IgE; IgG; FcyRs; Interspecies cross-binding



Résumé

Le systéme immunitaire est constitué d'une branche innée et d’'une branche adaptative
qui interagissent ensemble et qui permettent de préserver '’homéostasie et de se
défendre contre des agents pathogenes. Ceci dépend notamment de I'action d’anticorps,
qui peuvent se lier a des antigenes via leur région Fab et activer des fonctions effectrices
grace a leur région Fc. Produits par les cellules du systeme immunitaire adaptatif, les
anticorps permettent aux cellules du systéme immunitaire inné de répondre de maniere
spécifique a un antigene donné. Les anticorps sont principalement caractérisés et
synthétisés en laboratoire, a partir de modeles animaux d’infections particulieres,

répondant a des antigenes d’intéréts, ou permettant la génération d’hybridomes.

Grace au développement de nombreux modeles de souris transgéniques et de la facilité
a effectuer des tests biologiques avec des cellules sanguins humaines in vitro, la plupart
des anticorps d’especes autres que murins et humains sont étudiés in vitro a partir de
cellules humaines et / ou in vivo en utilisant des modeles murins. Au cours de ma these,
j'ai entrepris une approche systématique afin de caractériser les interactions entre les
IgG de différentes espéces et les récepteurs aux IgG (FcyR) murins et humains. Ce travail
pourra a terme servir de référence pour le passage de modeles animaux a des modeéles

précliniques utilisant les souris, ou des bio-essais a partir de cellules humaines.

Des maladies non infectieuses peuvent étre le résultat d’'une homéostasie immunitaire
déséquilibrée. Les allergies en sont un exemple, et sont généralement associées a
physiopathologie orientée Th2, dépendante des IgE et faisant intervenir mastocytes et
basophiles. Récemment, la contribution d’autres populations cellulaires et d’autres sous-
classes d’anticorps a été mise en évidence lors de réactions allergiques. Dans le but de
caractériser systématiquement le phénotype immun de patients allergiques, nous avons
participé au recrutement d’'une nouvelle cohorte de patients séverement allergiques au

venin de guépe ou a l'amoxicilline. A partir de prélévements sanguins, j'ai analysé les



caractéristiques de leur état basal et lors de l'induction de réactions immunitaires, et les

ai comparés a des donneurs contrdles sains.

Mes résultats préliminaires démontrent une tendance a l'augmentation des cellules Th2
et Th17 chez les patients allergiques et suggerent une diminution de la taille de la
population des cellules dendritiques, mais qui sont néanmoins plus matures. Ils
illustrent également une grande variabilité interindividuelle lors de l'induction de
réponses immunitaires. Pour identifier les facteurs immunologiques, génétiques et
environnementaux qui déterminent la concentration d'IgE sériques totales chez des
individus sains, j'ai également étudié les données disponibles d'une cohorte de 1000
donneurs sains stratifiés par age et par sexe (Milieu Intérieur). Mon analyse révele que
les concentrations sériques totales d'IgE chez ces donneurs sont corrélés a des facteurs
tels que 1'age, le sexe, le tabagisme, certains alleles HLA, l'intensité d'expression de
Fc RI sur les basophiles et un profil particulier de cytokines libérées lors de tests de

stimulation du sang total.

Ma theése fournit ainsi une base pour la caractérisation approfondie du phénotype
immunitaire des patients gravement allergiques et contribue a une meilleure
compréhension des parametres associés aux concentrations sériques d'IgE chez des
individus sains. De plus, mon travail dresse une carte compléte des interactions entre les
IgG de différentes especes et les FcyR murins et humains, qui aideront a terme a
anticiper les fonctions effectrices dépendantes de FcyR lors de I'utilisation d'IgG d'autres

especes avec des cellules effectrices humaines ou murines.

Mots-clés : allergie ; phénotype immunitaire, IgE, IgG, FcyRs, interactions inter-especes.



1. Introduction

The immune system maintains body homeostasis through many aspects; these include
the surveillance and elimination of endogenous and exogenous factors, regulation of
inflammation, as well as the repair of damaged tissues. One can distinguish two arms of
the immune system that act through different mechanisms: the innate immunity and the
adaptive immunity. The innate immunity includes physical and chemical barriers,
cellular and humoral components, which non-specifically defend against pathogens. In
contrast, the adaptive immune system can specifically recognize and clear pathogens
through cell-mediated or/and antibody-mediated immune responses. In addition to its
specificity, another essential feature of the adaptive immunity is the immunological
memory, which allows a potent and effective recall response to already encountered

pathogen.

In the introduction I will first introduce features and functions of a healthy immune
response. While I will outline general mechanisms and important aspects of this
immune response, it is however important to bear in mind that the exact expression and
intensity of the immune response to challenges varies greatly from one individual to
another. It is shaped by our genetics, our personal life history and environmental factors
each individual is exposed to. In the second part I will give outline key concepts of
anunequilibrated immune response by introducing allergy as an example. As my main
Ph.D. project focus on allergy, I will start from clinical features of allergic disease, then

move to the immunopathogenesis of allergic reactions.
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1.1. Healthy immune response

1.1.1. Elements in innate immunity

From an evolutionary point of view, the innate immune system is the ancesteral branch
of the immune system. Sometimes falsely regarded as “simple” or even “primitive”, the
innate immune system defends the host against invading pathogens through rapid and
well-definded mechanisms. Indeed, these were so successful and effective that the

adaptive immune system made its apprearance only in jawed vertebrates?.

Innate immunity consists of physical and chemical barriers, cellular and humoral
components that non-specifically defend the body against pathogens. Physical barriers
include the skin and epithelial surfaces, which separate our body from the outside
environment? Moreover, the dry skin surface avoids the attachment of microbiome, and
mucus on the epithelium surface cooperates with cilia, which pushes the pathogen
outside of the body3. Chemical barriers like gastric acid with low pH inhibit the growth

of the pathogens (with Helicobacter pylori as an exception).

In vertebrates, a crucial function of innate immunity exerts through myeloid cells and
innate lymphoid cells. Myeloid cells mostly develop in the bone marrow and derive from
a common precursor cell the common myeloid progenitor, which gives rise to lineages of
megakaryoblast and platelets, erythrocytes, mast cells, granulocytes and monocytes.
Granulocytes include neutrophils, eosinophils and basophils. Monocytes can further

differentiate into macrophages or dendritic cells in tissues or lymphoid organs.

Most myeloid cells express different receptors capable of sensing pathogens and for
their recruitment to the local site during inflammation. Those receptors include pattern
recognition receptors (PPRs) for sensing pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs), chemokine receptors
guiding the migration of myeloid cells in distinct stages, complement receptors serving

as opsonins during the elimination of the pathogen* Among those receptors, Fc
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receptors (FcRs) that bind the Fc portion of antibodies stand out. FcRs equip cells of the
innate immunity with the capacity to react in an antigen-specific manner and hence
serve as a link between innate and adapative immunity. There are different types of Fc
receptors that bind to distinct antibody classes. For example, in humans FcyRs bind IgG;
FceRI and FceRII bind IgE, and Fca/puR binds both IgA and IgM. In my work I especially

focused on FcyRs that I will introduce in the following chapter in more detail.
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Human FcyRs

In humans, there exist 6 classical FcyRs: 4 activating FcyRs: FcyRI (CD64), FcyRIIA
(CD32A), FcyRIIC (CD32C), FcyRIIIA (CD16A); 1 inhibitory FcyR: FcyRIIB (CD32B); 1
FcyR without intracellular signalling motif, FcyRIIB (CD16B). FcyRIIIB is a
glycosylphosphatidylinositol (GPI) anchored protein, which also named human

neutrophil antigen (HNAs), and mainly express on neutrophils>®.

FcyR encoding genes and polymorphism

All genes encoding human FcyRs are found on chromosome 1: FCGR1A, FCGR1B, and
FCGR3C at the locus 1q21. The other genes encoding low affinity FcyRs cluster at 1q2378.
FcyRl is encoded by FCGR1A. FCGR1B and FCGR1C are pseudogenes®. The FCGR2A gene
arose from gene duplication events, which occured before primate divergence,
explaining why gene homology analysis reveals that FCGR2A is unique to humans and
primates1011, FCGR2A shows like FCGR3A a polymorphic variation that affect its affinity
to IgG. The best-characterized polymorphism of FCGR2A is H131R (rs1801274), which
decreased its binding affinity to IgG212 and is associated with susceptibility to auto-
immune disorders!3-17. More recently, a splice variant of FCGR2A, FcyRIIA (exon6*), has
been described819 that retains a cryptic exon in the cytoplasmic tail of the receptor. It
results in a gain-of-function allele that increases neutrophil sensitivity to IgG
stimulation?0. FCGR2C is the product of non-allelic homologous recombination between
FCGR2A and FCGR2B, which is only present in human and chimpanzee genomes 81021,
80% of individuals don’t express this receptor, because of a polymorphism introducing a
stop codon in its third exon (FcgR2C-Stop)2223. FCGR3A and FCGR3B are paralogous
genes and they are orthologous to mouse Fcgr4. For FCGR3A a polymorphism is
described inducing an amino acid change in positition 176, F or V24 FcyRIIIA-176V
shows an increased binding affinity to most IgG subclasses, which translates into a
better therapeutical response to monoclonal antibodies treatments2>26, For FCGR3B,

three variants have been described: NA1 (R3¢ Nes A7s Ds2 V106), NA2 (S36 Ses A7s Ns2 [106),
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and SH (S36 Ses D78 Ns2 [106)27. Those variants don’t result in detectable affinity difference

to IgGs'2 for FcyRIIIB.

Human FcyR expression and downstream signaling

Each FcyR shows a unique expression pattern on the different immune cells, and thus
contributes to immune responses in a specific fashion. As the only high affinity FcyR in
humans, capable of binding monomeric IgG, FcyRI is constitutively expressed on
monocytes, macrophages and DCs. There is also minor expression of FcyRI on
neutrophils at steady state. Upon in vitro activation by interferon-y (IFN-y) or
granulocyte colony-stimulating factor, the FcyRI expression can rapidely increase, up to
20 fold on neutrophils28-31, In addition, it can be inducible expressed on mast cells32,
FcyRIIA is the most abundantly expressed receptor and is present on all myeloid cells
including platelets33. FcyRIIB is highly expressed on B cells and basophils but poorly
expressed on monocytes, neutrophils, macrophages and DCs3435, FcyRIIC is expressed
by NK cells, monocytes, macrophage33 in 20% of individuals. FcyRIIIA is expressed by
NK cells, monocytes, macrophages and possibly at very low amounts by neutrophils3®.
FcyRIIIB is mainly restricted to neutrophils. Table 1 summarizes the human FcyRs

expression for each FcyR.
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FcyRI FcyRIIA FcyRIIB FcyRIIC* FcyRIIIA FcyRIIIB
B cells - - + - - i}
T cells - - - - - -
NK cells - - -+ + + -
Monocytes/macrophages + + +/- + + -
Neutrophils (+) + +/- + - +
DCs + + + - - -
Basophils - + + - - +/-
Mast cells (+) + - - - ,
Eosinophils - + - - - -
Platelets - + - - - -

Table 1 Human FcyRs expression pattern. +, indicates expression; -, no expression; +/-, very low
percentages or rare subsets express the receptor; * In Fcgr2c-ORF persons; 1 Detectable and functional

expression in nonconventional Fcgr2c-Stop persons. Adapted from37.

Upon crosslinking by polymeric ligands, FcyRs transduce signals to the cytoplasma.
Human FcyRIIA and FcyRIIC carry in the cytoplasmic portion their own
immunoreceptor tyrosine-based activation motif (ITAM) enabling cell activation. The
capacity of FcyRI and FcyRIIIA relies on their association with the accessory FcRy chain
carrying an ITAM. Human FcyRIIB negatively regulates the cell activation through
immunoreceptor tyrosine-based inhibition motif (ITIM)33. The exact function of
FcyRIIIB as a GPI-anchored protein devoid of any signalling motif remains a matter of
active debate38. Its abundant expression on the neutrophil surface at steady state, and
association with lipid rafts however suggests that it can contribute to cell activation via
co-clustering with integrins and by helping FcyRIIA to efficiently capture immune

complexes (I1Cs)2839.
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Binding of human IgGs to human FcyRs

In humans four different IgG subclasses exist. The binding specificity and affinity of each
human FcyR varies from one IgG subclass to another. Furthermore, most FcyRs display
some polymorphic variations that affect its affinity to IgG. By convention and depending
on their binding affinity for IgGs, human FcyRs are classified as high affinity and low
affinity FcyRs. The only human high-affinity FcyR is FcyRI, which has an equilibrium
association constant (KA) for human IgGs higher than 107 M-1. The other FcyRs are low
affinity FcyRs, with KA for human IgGs ranging from 104 to 107 M-149, High affinity FcyRs
can bind and retain to human monomeric IgG, whereas the low affinity FcyRs can only
reatin IgGs when they are present in immune complexes (ICs) or when opsonizing a
surface, which enables binding by avidity. Whether this differentiation is however
relevant in vivo remains debated, because immune complexes can rapidely displace
monomeric IgG from high-affinity FcyRs#0. Table 2 summarizes the binding affinity and

specificity of FcyRs for human IgGs. Section 1.2.2 will further introduce human IgGs.

Subclasses lgG1 lgG2 lgG3 IgG4
FoyRI 4 - ot ++
FcyRIIA H131 +++ ++ ++++ ++
FcyRIIAR131 +++ + ++++ ++
FcyRIIB/C + . ++ +
FcyRINAF176 ++ - ++++ -
FcyRINIA V176 +++ + ++++ ++
FcyRINB +++ - ++++ -
FcRn (at pH<6.5) +++ 4+ /4P T+

Table 2 Binding affinity of IgGs to FcyRs. @ Multivalent binding to transfected cells; * Depend on
allotype. Adapted from*!
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Mouse FcyRs

Mice express only four classical FcyRs>42. FcyRI, FcyRIIl and FcyRIV are activating FcyRs
and associate with the ITAM-carrying FcRy subunit for cell activation. As in humans,
mouse FcyRIIB contains an ITIM and is an important negative regulator of cell activation.
Mouse FcyRl is largely restricted to monocyte-derived DCs, and possesses a high affinity
for IgG2a, but low affinity to IgG2b*3 and IgG344. FcyRIIB and FcyRIII are expressed on
all myeloid cells, but not on platelets. Moreover, FcyRIII also expressed by NK cells and
NKT cells, whereas the inhibitory receptor is highly express by B cells. Both FcyRIIB and
FcyRIII can bind mouse IgG1, IgG2a and IgG2b with low affinity. Compared to the other
FcyRs, FcyRIV shows a restricted expression profile, being only present on macrophages,
neutrophils and a subset of monocytes, where it binds IgG2a and IgG2b with high
affinity33. In opposition to human FcyRs, mouse FcyRIIB, FcyRIIl and FcyRIV were

reported to also bind IgE.4345, Table 3 summarizes mouse FcyR expression.

FcyRl FcyRIIB FcyRlll FcyRIV

B cells - + - -
Tcells - - - -
NK cells - - ¥ _
Monocytes/macrophages - + + +
Neutrophils - + + +
DCs +* + + -
Basophils - + + -
Mast cells - + +

Eosinophils - + + -
Platelets - - - -

Table 3 Mouse FcyR expression pattern. +, Indicates expression; -, no expression; +/-, very low

percentages or rare subsets express the receptor; * monocyte-derived DCs. Adapted from33.
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1.1.2. Adaptive immunity

Two important features of adaptive immunity: specificity and memory

In the early 20th century, scientists had already been aware that the adaptive immune
system functioned through two main components: the cellular component*¢ and the
humoral (antibody) component*’. However, it was not until the 1960s that the cellular
players started to get characterized. In 1961, Miller described that thymectomies in
neonatal mice lead to infection and a remarkable paucity of certain lymophocytes in
peripheral immune organ8. Based on this observation, he proposed that thymus may
regulate the production of these lymphocytes especially in early life, and termed them
accordingly T cells. In addition, specially selected lymphocytes leaving from thymus
would migrate to other sites at about the time of birth. Only a few years later, these
findings were complemented by Cooper, who reported that the removal of a specific
organ (the bursa of Fabricius) in chickens lead to the suppression of immunoglobulin-
producing cells, suggesting that these cells originate from this organ. He therefore
named these cells B cells (for bursa) 4°. Together, those works identify and distinguish
the two main populations of cells responsible for the cellular and humoral components

of adaptive immunity.

These two lymphocyte populations share a critical feature of the adaptive immune
response: i) they exert pathogen-specific recognition and ii) they can give rise to an

immunological memory.

Pathogen-specific recognition is achieved through antigen receptors. These are unique
receptors that are composed of different gene segments V (variable) D (diversity) ]
(joining). These gene segments exist in several variants in the genome and their random
assembly (VD] recombination) generates a first level of diversity. Additional diversity is

created through the process of end joining, during which the enzymes contributing to
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this process add nucleotides or delete parts of these regions. Finally, during an immune
response, during which an expansion of a specific lymphocyte population is observed, a
process termed somatic hypermutation edits already recombined antigen receptors
thereby generating mutations of the receptor that may show increased binding to the
target (affinity maturation). In this way a comparably small number of genes can
generate a vast amount of antigen receptors with different specificities: B cell receptors
(BCR or antibodies) can display up to~1010 specificities, and T cell receptors (TCR) up to
~ 1012,

Another crucial feature for adaptive immunity is immunological memory, which relies
on the formation of memory T and B cells after immune responses>°. Although the term
“immunological memory” started to be widely used in the scientific literature only in the
1950s, the concept has been used in practice long time before>l. One example is
vaccination. At the end of the 18th century, Edward Jenner formalized the beneficial
effects of immunization with cowpox to prevent smallpox infections. 80 years later,
Louis Pasteur realized that injection of chickens with less virulent bacterial cultures
could protect them from chicken cholera®z. This observation revolutionized immunology
and marked the beginning of fruitful period of Pasteur, during which he pursued vaccine
studies against several infectious diseases: In 1881 he developed the vaccine against
anthrax; in 1885, he tested his first human vaccine against rabies, which saved (or not)
the life of a nine-year-old boy. Today vaccination is commonly used to protect against
various infectious diseases, as well as for the prevention against certain types of

infection-triggered cancers.

Traditionally, the concept of immunological memory is limited to T cells and B cells, and
it is based on the survival and rapid response of cells that have undergone somatic
recombination and clonal expansion. Recently, this paradigm has been expanded both in
terms of cells capable or acquiring memory as well as in terms of its appearance during
evolution. Immunological memory is no longer restricted to adaptive immune cells but
is also recognized in innate immune cells like NK cells, monocytes, and macrophages.

This was exemplified by the observation that mice deficient in T cells and B cells were
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capable of responding more rapidly to hapten exposure after sensitization than without.
This memory response was mediated by hapten-trained NK cells and could be
transferred to naive recipients through hapten-trained NK cells53. Similar observations
have been made for macrophages, which acquire memory through epigenetic

programming>4.

Adaptive immune cells appeared during evolution in jawed vertebrates. Hence,
immunological memory was believed to not exist in more ancient phyla. Recent studies
however suggest that some sort of immunological memory may be at work
independently of somatic recombination and clonal expansion. For example,
immunological memory in Dorsophila was reported to be achieved through RNA
interference amplification and dissemination. During viral infections, Drosophila
haemocytes are able to convert viral RNA to DNA, which induces the synthesis of virus-
derived siRNA. Those siRNAs can then be loaded into exosome-like vesicles and
transferred to naive cells to exert anti-viral immunity>>. Bacteria and archaea protect
themselves from phages through the now famous CRISPR (Clustered, regularly
interspaced, short palindromic repeats)- Cas system. Once invaded, the DNA from
phages was incorporated into CRISPR array, and then CRISPR array transcribed to
generate CRISPR RNAs. Finally, CRISPR RNAs guide a Cas protein complex to cut the

nucleic acids of the invador>®.
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Cell-mediated adaptive immunity

T cells

T cells originate from bone marrow progenitors, which migrate into thymus for
development®’. In the thymus, progenitor lymphocytes go through a series of
developmental steps. Based on their surface expression of CD4 and CD8, developing T
lymphocytes are named double negative (CD4-CD8- T cells), double positive (CD4+CD8*
T cells), and single positive (CD4+ T cells or CD8* T cells)>8. As double negative cells in
the thymic cortex, they start to undergo VD] recombination before migrating towards
the medulla of the thymus. Double positive T cells are selected through positive and
negative selection. In this process thymocytes have to interact via their TCR with its
binding partner, the major histocompatibility complex (MHC), loaded with self-antigens
on the thymic epithelium. During positive selection, a thymocyte bearing a TCR that does
not bind to an MHC or bind too weakly will undergo apoptosis. On the other hand during
negative selection, thymocytes that recognize self peptid-MHC complexes are eliminated
to avoid auto-immunity (central tolerance). After passing both selections, thymocytes
expressing either CD8 or CD4 on their surface reach the medulla. Single positive cells

then exit from the thymus to circulations as naive T cells>°.

Naive T cells circulate through the blood stream and lymphoid tissue until they
encounter MHC complex loaded with a peptide that they recognize, by which they
became activated. In humans, the MHC is coded on chromosome 6p21 is composed of 5
regions coding classes of human leukocyte antigen complex (HLA): extended class I,
class I, class 1], class Il and extended class II. Many HLA gene products are components
involved in the inflammatory response, antigen processing and presentation®. HLA
class I molecules, such as HLA-A,-B,-C, are express on all nucleate cells and are
responsible for presenting peptides from intracellular pathogens to CD8* T cells. HLA
class II, such as HLA-DP, -DQ, -DR, are exclusively expressed by professional antigen
presenting cells, notably dendritic cells, B cells, macrophages, and present peptides from

extracellularly derived antigens to CD4* T cells®l. Importantly, HLA genes show a high
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degree of polymorphism. There are 2110 alleles for HLA-A, -B, -C, and 954 alleles on
HLA-DP, -DQ, -DR®0. Detailed numbers of HLA allels are listed in Table 4. Although in
each individual expresses only 6 HLA genes, with maximal 12 different alleles, such a
gene pool results in a large number of possible variations and therefore heterogeneity in
a population. This is important for the overall fitness, because any HLA gene comes with

its own limitations and peptid preferences.

item under unauthorized distribution right

Table 4 Number of HLA alleles Category. This information was obtained from IMGT/HLA Database
release 2.22. Bold letters show the HLA genes with classical functions. Reprinted from Shiina T. ]J. Hum.

Genet. 200960,

In a primary immune response, naive CD8 T cells are activated when they recognize
their cognate antigen presented by MHC class I. Then the activated CD8* T cells undergo
clonal expansion reach to 104-10° clones in one week and differentiate into cytotoxic T
cells (CTLs)%2-64. CTLs not only have the capacity to quickly migrate between lymphoid

organs and peripheral tissue, but also have enhanced killing function®>. CTLs kill target
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cells through a contact-dependent mechanism®. Upon recognition CTLs will release
perforin and granzyme to target cells to induce cell death. Activation of naive CD4* T
cells results in the differentiation of T helper (Th) cells. Th cells regulate and orchestrate
the activity of the immune response mainly through the secretion of cytokines.
Depending on the cytokines secretion profile; several types of Th cells can be
distinguished: Th1 cells secrete IFN-y and IL-2, which augment the immune response
against the intracellular pathogen; Th2 cells mainly secrete IL-4, IL-5, IL-13 and
participate in antibody-mediated immunity; Th17 cells secreted IL-17, IL-22, TNF-a to
defend against extracellular bacteria. Of note, other types of T cells, like follicular helper
T cells (Tru cells), regulatory T cells (Tregs), as well as Gamma delta T cells (y& T cells)
contribute to the cellular compartment of the adaptive immunity, but will not be

introduce in this chapter.

The majority of effector T cells are short-lived. They die after the elimination of the
pathogens. Whereas a small fraction of primed T cells enters into a memory phase,
which provides long-term protection. Although further researches are still needed to
clarify the molecular pathways which determine the effector and memory fate of the T
cells, there is already some evidence suggesting that the transcriptional regulators
expressed during the early stage of immune response may determine the entry into
memory state®’. Memory T cells are a heterogeneous cell populations in terms of
phenotype, function, and also the anatomic site the locate to®8. Memory T cells can be
subdivided into distinct populations based on their phenotype: stem-cell memory T cells
(Tscm, CD45RA+*CCR7+CD95*CD122+), central-memory T cells (Tcv, CD45RA-CCR7%),
effector-memory T cells (Tem, CD45RA-CCR7-), and terminal effector cells (Temra,
CD45RA*CCR7-)6%70, Each of these memory subsets has distinct functions. Tcsm keeps the
stem-cell properties among memory T cells with the least differentiation status; self-
renew capacity and attribute to the other memory T cell subsets®2. Tcm express the
chemokine receptor CCR7 are prone to migrate to secondary lymphoid tissues to keep
central memory. Tem cells exert rapid effector functions and notably cytokine secretion
upon reactivation. CD4* Tem and CD8* Tem have different cytokine secrection profile.
CD4+ Tewm cells secrete high level of IL-4 and IL-5 and IFN-y. CD8* Tem only secrete IFN-

y79. Temrais a subset exhibiting “terminal effector”function”.
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Antibody-mediated immunity

B cells

B cell development takes place in a primary lymphoid organ (fetal liver and bone
marrow). Mature naive B cells subsequentially migrate towards secondary lymphoid
organ (lymph node and spleen) for functional maturation. Naive B cells circulate in the
blood and lymphoid tissues until they get activated by antigen’2. Depending on the type
of antigen, the antibody-mediated (or humoral) immune response can be dependent on
or independent of the help of T cells’3. For T-independent antigens, such as
lipopolysaccharides (LPS), B cells elicit rapid antibody response upon activation’4. The
majority of antigens, however, are T-dependent antigens, which means that such
antigens require a presention to T cells through MHC. Antigen presenting cells present
peptides of these antigens in their MHC class II to specific CD4* T cells. Those T cells
then help B cells proliferate and differentiate’>7¢ through secretion of cytokines and
direct B cell activating contact signals, such as CD40L expression. B cells can
differentiate along distinct pathways. Upon recognition of an antigen via their BCR, a
proportion of B cells differentiate into short-lived extrafollicular plasmablasts with the
ability to rapidly produce antibodies?377. Another fraction of B cells migrate into B cell

follicles where they undergo germinal center (GC) reaction?é.

In the GC, B cells vigorously proliferate, and their BCR is undergoes somatic
hypermutation (SHM), generating thereby new affinities and specificities. Spatially, GC
can be divide into the light zone (LZ) and dark zone (DZ)79-81. In the LZ B cells test their
BCR affinity to antigens presented by follicular dendritic cells (FDC): B cells with low
affinity BCR will undergo apoptosis; whereas high affinity BCR B cells with get
sufficiently stimulated and receive survival signals from limited numbers of Tru cells82.
These B cells can than either migrate from LZ to DZ for another round of clonal
expansion or stay in the LZ undergo class-switch recombinant’8. During class-switch
recombination, the Cpu gene (coding for the constant portion of the IgM heavy chain) is

replaced by one of the downstream CH genes: Cyl-4, Cal-2, or Ce. Class switch
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recombination enables the production of the different classes of antibodies with distinct
effector functions®3. Subsequencially, GC B cells differentiate into antibodies secreting

cells to participate in humoral immunity.

Human immunoglobulins

There are five classes of human immunoglobulins (Ig): IgM, IgD, IgA, IgG and
IgE8485 They are composed of two pairs of identical light and heavy chains, which are
linked together by interchain disulphide bonds®¢. The light chain consists of one N-
terminal variable domain (VL) and one constant domain (CL). The heavy chain has one
N-terminal variable domain (VH)#! with 3 (IgD, IgG, IgA) or 4 (IgM and IgE) constant
domains. All immunoglobulin classes (with the excepetion of IgE) possess a hinge region
between CH1 and CH2, which increases the flexibility of the molecule. The light chain
together with the VH and CH1 of the heavy chain forms the antibody-binding fragment
(Fab). Other parts of the heavy chain and the lower hinge region form the fragment
crystalline (Fc). The antibody binds to antigen through their variable region®’. Their Fc
part can trigger effector function by binding to Fc receptors expressed on or inside the

cells or complement components.

Immunoglobulins are glycoproteins, which are composed of 82%-96% protein and 4%-
18% of carbohydrate. These carbohydrate structures are critical determinants for their
biological activity. Imnmunoglobulins exert their function through different mechanisms,
such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent
cellular phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC).

Among the five Ig classes, IgG is the most abundant in the blood, the concentration goes
up to 10-15 mg/mL88. In humans, IgG can further subdivide into four subclasses IgG1,

IgG2, 1gG3, and 1gG4%8°.

Human IgG subclasses
Among all IgGs, IgG1 is the most abundant IgG subclass in circulation. IgG1 is capable of
binding to all of the IgG receptors and can induce ADCC, ADCP and CDC4L Of note, IgG1 is
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the most commonly used IgG subclass for the development of therapeutic antibodies.

Until now, there are 55 IgGl therapeutic antibodies approved in EU or US

(www.antibodysociety.org /resources/approved-antibodies/).

IgG2 are the dominat Ig class produced in response to bacterial capsular polysaccharide
antigens®. Compared with IgG1, IgG2 show a weaker binding to FcyRs. They can elicit
monocyte-mediated ADCC and macrophage-mediated ADCP. Their hinge region is rigid
when compared to IgG1, making it the most proteolytic cleavage resistant IgG subclass®’.
Until today, there are 10 approved IgG2  therapeutic antibodies

(www.antibodysociety.org /resources/approved-antibodies/) that target mainly

autoimmune diseases and metabolism disorders.

IgG3 shows potent binding to all FcyRs and is also a strong inducer of the complement
system. However, their effector functions are limited by their short half-life, which is
only 7 days (as compared to an average of 21 days for IgG1) and due to the presence of
an arginine at position 435 instead of a histidine, which is found in all other IgG
subclasses. This amino acid change reduces IgG3 interactions with the receptor for
antibody recycling named neonatal Fc receptor (FcRn)?l. Additionally, IgG3 has a long
hinge region containing up to 11 disulfide bridges in its core region, which makes it

susceptible to proteolytic cleavage®l.

IgG4 is mainly produced during long-term antigen exposure. It generally presents a
minor component of the Ig pool in the circulation (around 0,5 g/L). IgG4 is a poor
inducer of Fc-dependent and independent Ig effector functions. In vivo, IgG4 can
furthermore undergo Fab-arm exchange, thereby generating bi-specific, functional
monovalent antibodies®2. As a consequence, this bi-specific [gG4 show a diminished
capacity to form immune complexes (IC) that require cross-linking of antigens.
Together, this endows IgG4 with a possible anti-inflammatory role. The main

characteristics of human Ig subclasses are summerized in Table 5.
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Subclasses IgG1 lgG2 lgG3 IgG4
Structure \ | / \ v / \ % / \ /
General

Molecular mass (kD) 146 146 170 146
Amino acid in hinge region 15 12 622 12
Inter-heavy chain disulfide bonds 2 4b 112 2
Mean adult serum level (g/1) 6.98 3.8 0.51 0.56
Relative abundance (%) 60 32 4 4
Half-life (days) 21 21 7/21° 21
Placental transfer ++++ ++ /4R +++
Antibody respinse to:

Proteins ++ +/- ++ 44
Polysaccharides + +++ +/- +/-
Allergens + - - ++
Complement activation

C1q binding ++ + +++ -

Table 5 Human IgGs properties. 2 Depending on the allotype; ® for A/A isomer; ¢ After repeated

encounters with protein antigens, often allergens. Adapted from?3,

Mouse IgGs

Similar to humans, there exist 4 IgG subclasses in mice: IgG1, IgG2a/c, IgG2b and 1gG3%4-
%6, Whether a mouse expresses IgG2c (C57BL/6, NOD, SJL) or IgG2a (Balb/c and many
other strains) depends on the strain?67. IgG subclasses expression is influenced by
many factors, such as cytokine profile and the nature of antigen. Th1 cytokines and
protein antigen elicit T cell-dependent antibody production of IgG2a, IgG2b and IgG3.
Th2 cytokines induce the expression of IgG1>>IgG2a%. Carbohydrate antigen elicits T-
independent immune responses favoring the production of IgG3.
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Rat IgGs

In rat, there are also four IgG subclasses: [gG199, [gG2a100101 [g(G2b100.101 [gG2¢c102, It has
been proposed that rat and mouse Cy gene probably evolved from a common set of
ancestral genes: the rat y2c gene shows homology to mouse y3; the rat y2a/y1 pair to
mouse Y1; and the rat y2b is homologous to mouse y2a/2b. Functionally, all of the rat
IgGs can bind to complement component C1q, with rat IgG2b being the most effective

and rat IgG2c showing reduced activity103-105,

_-_ — I _-_ Cormmon rat and mouse
¥ gene precursor
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Figure 1 Proposed model for the evolution of rat and mouse C y genes. Adapted from103.

IgG-FcyRs interspecies cross-binding

Antibody and Fc receptor interactions play a critical role in the immune response. Since
the late 1980s this potential is being harnessed by the development of antibody-based
therapeutics. Indeed, there are today over 500 monoclonal antibodies licensed for use in
humans. Before their approval, these therapeutic antibodies have to go through
vigourous pre-clinical and clinical validations. Preclinical studies are often done in
animal models, and most frequently those are mouse models. Although humans and
mice share some similarities in IgG and FcyRs, their difference in genetics, affinity,
expression, endogenous IgG and polymorphic varations largly affect biological functions.
In order to anticipate therapeutic success of antibodies tested and developed in animal
models, a precise understanding of binding capacity between human and mouse FcyRs

and IgGs from various species is therefore of critical importance.
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Memory B cells

In adaptive immunity, B cell memory plays critical role in humoral immune response. As
previously mentioned, many memory B cells are produced during GC reactions. One
hypothesis proposes that the BCR affinity and antigen avidity determine the fate of B
cells in GC reaction: GC B cells with low-affinity BCRs differentiated into memory B cells;
those with high-affinity BCR differentiate into plasma cells and the intermediate-affinity
ones re-enter the GC reaction106. Besides, B cells with high-affinity BCR would get more
potent T cell help through CD40 signaling, when this help presented over prolonged
periods of time, B cells differentiate into plasma cellsl?’, In the re-activation phase,
memory B cells differentiate into plasma cells or re-enter GC. Although it still debated
how the memory fate decision is made, it plausible to think that it may depend on the
location of the memory B cell and/or the Ig isotype it expresses. Memory B cells with Ig
switched isotype may thus directly differentiate into plasma cells, whereas memory B
cells with an IgM isotype would re-enter GC, where they undergo affinity maturation and
further differentiated into memory B cells or plasma cells108-110, However, this view was
challenged by the observation that IgM memory B cells appeared to have much less GC
forming capacity than Ig switched memory B cells that rapidly re-form GCs upon antigen
re-exposure, leading to further diversification of their BCRs111. Furthermore, in malaria
rechallenge, IgM memory B cells were reported to directly differentiate into plasma cells

enabling them to rapidly secrete antibodies!12..

Plasma cells

Antibody-secreting cells mark the terminal stage in B cell differentiation, which includes
plasmablasts and plasma cells. Plasmablasts are antibody-secreting cells with the
capacity to divide and migrate. They can further differentiate into plasma cells. Plasma
cells are terminally differentiated B cells with the ability to secrete large amounts of
antibodies!13. The current paradigm proposes that two populations of plasma cells
existed: Short-lived plasma cells and long-lived plasma cells. Like memory B cells, long-
lived plasma cells are another cell population that through their existence keep the

memory of previous immunological challenges. The bone marrow provides niche for
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plasma cells. It provides factors and ligands (including IL-5, IL-6, TNF-a, BAFF, APRIL,
CXCL12) crucial for plasma cell survivalll4. It has been proposed that plasma cells,
stromal cells and eosinophils engaged in a complicated interplay necessary for the
survival of plasma cells (Figure 2): eosinophils and plasma cells attached to stromal cells
through chemokines (CXCR4 to CXCL12) and adhesion molecules (VLA-4 to VCAM-1);
components of the extracellular matrix, like hyaluronic acid and fibronectin, are also
involved in these interactions; the interaction between CD28 and CD80 promotes
plasma cells survival; plasma cells secrete Ig that binds to eosinophils and stimulates
their production of cytokines like IL-1 and TGF-B. These cytokines in turn induce
stromal cells to secrete IL-6 and CXCL12 required for the survival of plasma cells, and IL-

5 and GM-CSF for the maturation of eosinophils114,
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Figure 2 Possible interactions between the stromal reticulum, plasma cells, and

eosinophils. Reprinted from114.

Although the majority of long-lived plasma cells were found in the bone marrow, other
organs or tissues may also provide a niche for their survival. Indeed, intestinal stromal
cells expressed adhesion molecules like VCAM-1 and ICAM-1 and some cells in intestinal
mucosa (monocytes, macrophages, dendritic cells and also regulatory T cells) express
abundantly APRIL, the proliferation-inducing ligand!!>, suggesting that the intestine

could also serve as an survival niche for long-lived plasma cells. Furthermore, certain
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disease conditions may promote plasma cell survival outside the bone marrow. This has
for example been suggested for multiple sclerosis patients, in which the presence of
non-proliferating plasma cells in the central nervous system (CNS) was observed!19, or
in spleen biopsies of patients with primary warm autoimmune hemolytic and treated
with rituximabl17. More studies are however needed to clarify the presence of plasma

cell survival niches outside of bone marrow in healthy and pathological conditions.
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1.2.Example of an immune system out of balance - allergy

1.2.1. Clinical features of allergic diseases

Allergic diseases regroup a rather large spectrum of afflictions, including allergic asthma,
rhinitis and conjunctivitis, as well as atopic dermatitis, and hypersensitivity towards
food, drugs, insect stings and others. Common to all allergic conditions is the
overreaction of the immune system to a generally harmless trigger. The prevalence of
allergic diseases is rising dramatically worldwide in both developed and developing
countries. Allergies are now the most common chronic afflictions in Europe and affect
up to 20% of the population!!8. The European Academy of Allergology and Clinical
Immunology (EAACI) defines allergy as “a hypersensitivity reaction initiated by specific
immunologic mechanisms.”11® The term hypersensitivity is used to describe:
“Objectively reproducible symptoms or signs initiated by exposure to a defined stimulus

at a dose tolerated by normal person” 119,

Antigens at the origin of allergic diseases are termed allergens. Depending on the route
of exposure to an allergen, allergic patients will develop local symptoms: inhaled
allergens composed of pollen, fungi, animal products (from mammalian and arthropod),
dust and other small particles are likely to induce coughing, wheezing and shortness of
breath; ingested allergens like food or drugs, rather provoke swelling of the tongue
(Quincke’s edema), vomiting, and diarrhea. There exist also contact allergens (nickel,
chemicals/drugs applied topically) that often induce dysesthesia, pruritus, or purpura
on the exposed skin. In the case of drugs, venom or saliva of insects the allergens may be
injected and frequently trigger pruritus or erythema. In rare cases, allergies can be
overwhelming and evolve from locally restricted reactions to systemic manifestations
that can be life threatening. This is the case for anaphylaxis. “Anaphylaxis is a severe,
life-threatening generalized or systemic hypersensitivity reaction.”11° In Europe, 0.3% of
the population will experience anaphylaxis throughout their lives120. In the US, the
prevalence of anaphylaxis is even reported to be 5.1%120. Food, drugs, and hymenoptera

venom are the most common triggers of the anaphylaxis120,
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Allergy diagnosis

Overview

The diagnosis of allergic diseases always starts with a careful patient history and
physical examination. When an allergic disorder is suspected, a series of tests can be
conducted to confirm the presence of hallmarks of allergic physiopathology. Those tests
include allergen-specific IgE assay, basophil activation assay, skin tests, and in some
circumstances even challenge tests. Additional criteria listed in box I further apply in the

special case of anaphylaxis:
Anaphylaxis is highly likely if any one of the following three conditions is satisfied.
1. Acute onset of illness with:
Mucocutaneous involvement (pruritus, flushing, urticaria, angioedema) and one of the following:

A. Respiratory complications (wheezing, stridor, hypoxemia/cyanosis)
B. Hypotension® or end-organ damage (encephalopathy, kidney injury, etc.)

2.Two or more of the following occurring rapidly after exposure to known or likely allergen:

« Mucocutaneous involvement (pruritus, flushing, urticaria, angioedema)

- Respiratory complications (Wheezing, stridor, hypoxemia/cyanosis)

« Hypotension? or evidence of end organ hypoperfusion (encephalopathy, kidney injury, etc.)

« Persistent gastrointestinal symptoms (pain, nausea, vomiting)

3. Reduced BP soon after exposure to a known allergen.

a Hypotension in adults is regarded as systolic BP of <90 mm Hg or greater than a 30% decrease in systolic BP from the patient’s
baseline. Hypotension in infants and children: systolic BP < 70 mm Hg ( 1- 12 months); <(70 mm Hg + [2x age]) (1- 10 years);
<90 mm Hg (11-17 years); or >30% decrease in systolic BP.

Box I: Adapted from?21,
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Allergen-specific IgE assay

Allergen-specific IgE is generally considered to be a necessity for the occurance of most
allergies. Its clinical deterction is based on the incubation of patients’ samples, generally
serum, with allergens coupled to a solid phase, with subsequent specific detection and

quantification.

Basophil activation test

Basophils are besides mast cells the prototype of allergic effector cells. Whereas mast
cells are tissue resident cells and hence difficult to obtain, basophils can be directly
tested in fresh blood samples of patients. Both cell types express high-affinity IgE
receptors (FceRI) that capture circulating IgE enabling them to instantaneously react
upon exposure to allergens. In contrast to the allergen-specific IgE assay, the basophil
activation test (BAT) is a functional assay, which evaluates the response of basophils to
exposure with allergen. The principle of BAT is based on the detection of basophil
activation markers, such as CD63, CD203c, CD13, and CD69 by flow cytometry. There is
little consensus about gold standard conditions in which BATs should be executed and
as a consequence many clinical laboratories have established their own protocol and
criteria. Variations include use of whole blood or isolated peripheral blood mononuclear
cells (PBMCs), allergen concentrations tested, activation markers evaluated, addition of
IL-3 for basophil priming, and the formula to quantify BAT positivity. The sensitivity of
BAT varies from 55% to 97.6% depending on the allergen type?22,

Skin test

Skin tests are the most widely used functional in vivo tests in allergy diagnosis. In
analogy to the BAT that test IgE-loaded basophils, skin tests directly monitor the
response of resident mast cells. Upon challenge with the allergen, cross-linking of
allergen-specific IgE-loaded mast cells will degranulate and release mediators that

induce local vasodilation and increased capillary permeability. As a consequence, wheal-
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and-flare reactions appear within 15 min to 20 min upon challenge that can be
quantified by the allergologist. There are two types of skin tests: epicutaneous and
intracutaneous. The epicutaneous test is easy and rather safe to perform and causes
little pain. The intracutaneous test is 100 to 1000 more sensitive than epicutaneous test

and is more reproduciblel23,

Provocation tests

Compare to all the tests mentioned above, allergen challenge tests might be of the
biggest diagnostic use, but also bare the largest potentiel of causing adverse reactions23,
Provocation tests are based on the controlled introduction of the allergen through
inhalation, application, injection and ingestion and can be done as bronchial challenges
(especially in occupational asthma), nasal challenges for the diagnosis of allergic rhinitis,
oral challenges for the food or drug allergy and also injections for drug or insect sting
allergy. Due to the associated risk they need to be performed in appropriate supportive
care units. Challenge tests are especially useful in the absence of all classical signs of IgE-
driven allergies (specific IgE, positive BAT and skin test), in order to establish a

diagnosis.
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Allergens composition and example of allergic disease

As mentioned before, allergies can develop towards nearly every molecule the human
body is exposed to. With the exception of drugs, most allergy-inducing substances are
composed of different molecules that can alone or in combination trigger the reaction. In
my thesis, [ was particularly focused on allergies to wasp venom and the beta-lactam
antibiotics amoxicilline that I will introduce in more detail below. The three major
components in vespid/wasp venom are: VesV1, VesV2, and VesV5. VesV1 is a
phospholipase A1, which participates in the hydrolysis of phosphatidylcholine. VesV2 is
an enzyme hydrolyzing high molecular weight hyaluronic acid to derive smaller
oligosaccharides. VesV5 is a member of the CAP (cysteine-rich secretory
protein/antigen 5/pathogenesis related-1) family with unknown function24. Penicillin
belongs to beta-lactam antibiotic, which shares the common feature in their structure:
the 3-carbon and 1-nitrogen ring (beta-lactam ring)125. Penicillin group includes
penicillin G, penicillin V, ampicillin, amoxicillin and methicillin. Their structural
difference is based on R group on the acyl side chain2¢, Like most of the drugs, penicillin
is too small to be immunogenic; the allergic response to penicillin is against the
complexes of penicillin products covalently bound to self-proteins. The penicillin
allergen component derived from beta-lactam ring or a specific side chain R group. Upon
administration, the beta-lactam ring opens and forms several breakdown products.
Among those products, the major allergenic determinant is penicilloyl. In some cases,
individuals do not react to beta-ring products but react to R-chain groups!?7, which
means they could be sensitized to amoxicillin without developing allergic reaction to

penicillin G.
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Hymenoptera venom allergy

Hymenoptera venom allergy includes any allergic reaction cause by the sting of
Hymenoptera insects?8, 55%-95% of individuals are stung at least once by a
hymenoptera species in their lifetime!2°, The resulting reaction can range from local to
systemic anaphylactic124 with large local reactions and systemic anaphylactic reactions
being the most frequent ones. A large local reaction is defined as a swelling exceeding a
diameter of 10 cm and lasting for longer than 24 hours. The systemic anaphylactic
reaction includes generalized skin symptoms such as flushing, urticaria, dizziness,
dyspnea, and even cardiac or respiratory arrest. Systemic anaphylactic reactions are
further classified in different grades of severity according to Mueller!3? and Ring and

Messmer!31,

item under unauthorized distribution right

Table 6 (a) Classification of systemic reactions to insect stings by Mueller, (b) classification of

systemic reactions modified according to Ring and Messmer.

Diagnosis of hymenoptera sting allergy is based on information about the date of sting,
the severity of the symptoms, the interval between sting and symptoms, ideally the
insect itself in combination with the general allergic testing (epicutaneous or the
intracutaneous test; allergen-specific IgE test; other in vitro tests like basophil activation
test and leukotriene release test124). Patients that experienced a severe reaction will be
proposed to undergo venom immunotherapy, the only treatment able to reduce the
severity of allergic reactions. This therapy is effective in 77%-84% of patients with
allergies to honeybee venom, and 91%-96% of patients with wasp venom allergy32,

Mechanisms of allergen specific immunotherapy will be further discussed in section 4.3.
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Beta-Lactam drug allergy

Drugs are the most frequent trigger of anaphylaxis in adults133. Among those drugs,
beta-lactam antibiotics are the most common causative drugs. About 8% of individuals
in the USA are reported to have a history of penicillin allergy34. Depending on the time
interval between drug administration and the onset of allergic reactions, drug allergic
reactions can be classified as immediate, accelerated, and delayed!35. Typical symptoms
for the immediate reaction include urticaria, angioedema, and even anaphylaxis. The
diagnosis for beta-lactam drug allergy is difficult and includes skin testing, allergen-
specific IgE, drug provocation test, and BAT. It is however noteworthy that the BAT
frequently returns a negative result. Furthermore, it is frequently observed that re-
introduction of penicillin in individuals with reported penicillin allergy do not elicit
allergic reactions. Due to the diagnostic difficulties the European Network for Drug
Allergy and EAACI interest group on drug hypersensitivity recommended two diagnostic
algorithms: the short algorithm and the long algorithm13¢. The short algorithm is

depicted in Figure 3.

Clinical history and blood sample

—
Prick with BPO/MDM/culprit drug \
J' /’ Allergic
‘ Intradermal BPO/MDM/culprit drug
|

! ! +

‘ In vitro test - ‘ In vitro test + ‘

!

DPT with culprit drug ‘ S ‘ Repeated evaluation in 2-4 weeks?
Non allergic

Figure 3 Short algorithm for beta-lactam allergy diagnoses. BPO: benzylpenicilloyl; MDM: minor

determinants mixture; DPT: drug provocation test; (1) If chronology unknown for uncertain check for

late reading; (2) If positive clinical history and long interval of the reaction. Adapted from?3e.
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Notably, patients allergic to beta-lactam may be sensitized to several antibiotics from
the same family, while being tolerant to others. For those patients, it is not
recommended to prohibit the whole group of beta-lactams but carefully evaluate
reactivity to each molecule. Finally, for multi-sensitized patients there is the possibility
to move to alternative antibiotic families, such as cephalosporins that show little cross-
reactivityl3’. For all the above-mentioned reasons, immunotherapy is usually not

proposed to patients allergic to beta-lactams.
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Current allergy treatments and their limitations

To limit the clinical signs associated with allergic diseases, there exist three major
strategies: avoidance, control of symptoms by pharmacotherapy and allergen-specific
immunotherapy (AIT). Without doubt the most effective way to prevent the occurrence
of allergic reactions is to avoid any contact with allergen. Depending on the allergen,
however, this strategy can be anything ranging from easily achieved to inapplicable in
everyday life. Amoxicillin allergy is a good example for the first case. Amoxicillin is
generally not required on a daily basis and additionally it can be rather easily replaced
by an alternative drug of a different chemical class, when there is an indication for
antibiotic therapy. On the contrary, it is close to impossible to avoid exposure to host
dust mite-related allergens in daily life or pollen during flower season. Both types of
allergens spread through the air in such quantities that they are present everywhere in
the environment. In such cases, clinical signs of allergic diseases can be reduced by
pharmacotherapy. Currently, there are several kinds of anti-allergy medicines on
market: blockers or competitors of the most prominent allergic players, such receptor
antagonists of histamine or platelet activating factor (PAF) receptors, anti-IgE
monoclonal antibodies (mAbs), and mAbs interfering with IL-4/IL-13 signalling or the
IL-5 pathway. Finally, in some cases of allergy (e.g. hymenoptera venom and some cases
of food or pollen allergy), in which the causative allergen has been identified, AIT can be
applied aiming to profoundly alter the immune response of the patients to an allergen. It
can sustainably induce immune tolerance, allowing patients to re-expose themselves to
their allergic trigger without any or only mild adverse reactions; sometime even years

after cessation of AIT.

Pharmacotherapy to reduce symptoms associated with allergies

Bioactive mediators released from mast cells or basophils during allergic reactions are
at the origin of various clinical signs associated to allergies. For example, mast cell-
derived histamine binds to histamine 1 receptors (H1Rs) expressed by smooth muscle

cells, endothelium and sensory nerves in the periphery, resulting in
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bronchoconstriction, vasodilation and hyper-nociception. Therefore antihistamines (or
better H1R antagonists) are widely used to control the symptoms of allergic disease.
However, H1R are not only expressed in the periphery but also in the central nervous
system and additionally to HI1R three other histamine receptor exist that may be
blocked concomitantly if the drugs used are not specific enough to only block H1R. This
is the reason, why the first generation of antihistamines often caused side effects,
including dizziness, blurred vision, nausea and vomiting. The second antihistamine
drugs were designed to reduce their passage through the blood-brain barrier and thus
somnolence as a side effect, undesired effects on the periphery however remain a matter
of concern. Compared to the second generation, the third generation of antihistamines

further reduced those side effects, and show for examples no more cardiac toxicity38.

Anti-IgE monoclonal antibodies (Omalizumab and Ligelizumab)

Because IgE plays a central role in allergic reactions, reducing the amount of IgE in an
allergic individual became one of lead strategy to reduce allergic symptoms.
Omalizumab (Xolair®; Novartis) is humanized IgG1,k anti-IgE mAb, which binds to the
heavy chain Ce3 domain of free IgE, thus preventing its binding to FceRI13°. It triggers
the clearance of IgG-bound IgE, thereby leading to an immediate reduction of tIgE levels.
Because FceRI requires binding of IgE to be stabilized on the cell surface, Omaluzimab
treatment also reduces in the long run FceRI-expression levels on mast cells and
basophils’4? and hence mediator release and symptoms of allergic crises. This
observation is in agreement with my observation that serum IgE concentrations
positively correlate with basophil FceRI expression. Omalizumab has been approved in

2003 for the treatment of severe allergic asthma and chronic idiopathic urticarial4l.

The resolution of the crystal structure of omalizumab: IgE complex revealed that
omalizumab-Fab binds to the middle part of the IgE Ce3 domain, its heavy chain
interacts with a reagent proximal to the CD23 binding site and its light chain with a
segment proximal to FceRI binding sites142. This explains its capacity to only bind free
IgE. On average Omalizumab is administered at a dose of 75-375 mg every 2-4 weeks in
the case of asthma and at 150 mg or 300 mg every 4 weeks for urticaria. At a price of
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541$/150mg, the monthly cost of Omalizumab treatment therefore ranges between

$541-$2706, which is a heavy economic burden.

Last year, a second generation high-affinity humanized monoclonal anti-IgE antibody
named Ligelizumab has been tested in a phase 2b trail for chronic spontaneous
urticarial43. Compared to Omalizumab, patients needed 10 times lower doses of
Ligelizumab to achieve the same effect on IgE reduction. It could therefore present an

interesting alternative to Omaluzimab treatment.

Furthermore, Omaluzimab has been described to trigger adverse reactions and notably
anaphylaxis in 0.1-0.2% fraction of patients44145 [t also was reported to transiently
increase basophil sensitivityl46. It is therefore recommended to be used only when IgE
titers are lower than 500-700 IU/mL47, Our laboratory has recently published a Fc-
engineered Omalizumab which has the equivalent IgE blocking efficacy without inducing
FcyR-dependent adverse effect!48. In extension, a similar approach could be applied to

make Ligaluzimab safer.

Blockade of IL-4 and IL-13 signaling (Dupilumab)

IL-4 and IL-13 are critical cytokines involved in Th2 biased allergic reactions. They are
predominantly secreted by Th2 cells, ILC2s and basophils and trigger class-switch
reactions to IgE in antibodies secreting cells. In addition, they enhance the contractility
of smooth muscles in the airways, mucus production and expression of inducible nitric
oxide synthase in airway epithelial cell. [I-4 has furthermore been described to
upregulate collagen and fibronectin synthesis in fibroblasts thus participating to tissue
remodelling, which is hallmark of severe asthmal4°. Besides IL-4 and IL-13, Th2 cells
also produce large quantities of other cytokines, such as IL-5 and IL-9150, [L-5 promotes
eosinophil egress from the bone marrow in cooperation with eotaxin!>l. [L-9 attracts
mast cells to tissues and promotes their growth 152, Together these cytokines are

involved in many key aspect of the allergy pathology.

42



IL-4 and IL-13 exert their biological activity through binding to a heterodimeric
receptor, composed of the IL-4 receptor a-subunit and the IL-13 receptor al-subunit
(IL-4Ra/IL-13Ra1)1%3. IL-4 can additionally induce signal transduction through a
receptor complex made of IL-4Ra and the common gamma (yC) chain, shared among
many cytokine receptors. IL-13-driven cell activation can be counter-balanced through
expression of the IL-13 receptor a2 chain (IL-13Ra2), which does not contain a
intracellular signalling domain and competes with the activating receptor>4. It follows
that productive IL-4 and IL-13 signalling requires in all cases the IL-4Ra, which makes it

a prime target to contain exaggerated Th2-driven immune responses.

In 2017, the FDA has approved Dupilumab (Dupixent®), a human IgG4 anti-IL-4Ra
mAb149 for the treatment of moderate-to-severe atopic dermatitis. Its application was
since extended to moderate-to-severe asthma, and inadequately controlled chronic
rhinosininusitis with nasal polyps in adults. The administration of Dupilumab
significantly reduces Th2 associated cytokines, IgE levels and fractional exhaled NO
(FEno) concentration (as a measure for the extent of eosinophilic inflammation) in
asthma patients. However, it was also reported to transiently induce eosinophilia in a
fraction of the patients!4?. In addition, persistent anti-drug antibodies were also
observed in Dupilumab-treated patients, limiting its effect and use>. The list price for
Dupilumab exceeds with $3110 per month of treatment the costs of Omalizumab

treatment.

Anti-IL-5/ anti-IL-5R  monoclonal antibodies (Mepolizumab, Reslizumab, and

Benralizumab)

As mentioned above, IL-5 plays an essential role in eosinophil production and survival,
which made IL-5 and its receptor an attractive therapeutic target in allergic disease. IL-
5, IL-3 and GM-CSF belong to the $ common chain (c) cytokine family. They all bind to a
heterodimeric receptor consisting of the 3c and a cytokine specific a chain!56.Unlike IL-3
and GM-CSF, IL-5 is a homodimeric cytokine. It first binds to the IL-5Ra chain in its

homodimeric form and then this tertiary complex associates with the Bc subunit. In
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addition to Th2 cells and ILC2s, IL-5 can be secreted by eosinophils as an autocrine
growth factor or by mast cells. The IL-5 receptor is highly expressed on eosinophils and

their precursors, as well as on neutrophils and basophils in humans.

Eosinophil infiltration is one of the often-cited hallmarks of several allergic diseases and
notably asthma. In some asthma patients, eosinophil infiltration of the airways results in
reduced responses to bronchodilator therapy and inhaled corticosteroids. Two anti-IL-5

and one anti-IL-5R mAbs are available for the treatment of eosinophilic asthma.

Mepolizumab is a humanized IgG1 anti-IL-5 monoclonal antibody157. The administration
of Mepolizumab to severe eosinophilic asthma patients significantly reduces asthma
exacerbations and markedly decreases blood eosinophil numbers. No anti-drug
antibodies were described. Reslizumab is another anti-IL-5 mAb, it comes in the format
of a human IgG4. A recent study shows Reslizumab has higher binding affinity for IL-5

and a greater IL-5 inhibition potency in vitro than Mepolizumab?58,

Benralizumab is an anti-IL-5Ra mAb, which entered the market in 2017. The
administration of Benralizumab decreases the blood eosinophil numbers in patients
with baseline blood eosinophils> 300 cells per pL1>? and reduces the annual number of
asthma exacerbations. However, compared to Mepolizumab and Reslizumab,
Benralizumab shows a high rate of adverse reactions with around 10% of patients

experiencing serious adverse events during treatment160.

Allergen specific immunotherapy

Allergen specific immunotherapy (AIT) has been used for around 100 years16l. Its
application has been approved for respiratory allergies, venom hypersensitivity as well
as more recently for food allergy 162. The concept of AIT is to “desensitize” the immune
system by gradually increasing the allergen exposure until reaching a maintenance dose,

which is often comparable to the dose of exposure to the allergen upon a natural
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encounter. In comparison to drugs that control allergic symptoms or mAbs, patients
receiving AIT generally show long-term remission of symptoms after discontinuation.
This is due to the profound modulation of the immune system that is induced by AIT.
Generally, AIT consists of two phases: a build-up phase and a maintenance phasel®3.
Depending on the protocol, the build-up phase can last between days and months. For
example, in ultra-rush venom immunotherapy (VIT), the build-up phase is performed in
a single day with repeated incremental injections, whereas in the conventional protocol,
this phase lasts for four months with injections at defined intervals. After reaching the
maintenance dose, AIT enters a maintenance phase, which generally lasts for 3 to 5
years. AIT administration can be done subcutaneously, sublingually, or orally?32164.165,
Subcutaneous injections and oral immunotherapy during build-up stage require
specialized clinical settings as severe adverse reactions can occur in rare cases that
require immediate medical assistance. Sublingual immunotherapy is considered to be

sufficiently safe to be self-administered by the patient at home.

AIT re-establishes tolerance towards a given antigen or sometime even group of
antigens. It acts through different immune pathways that show considerable variations
between patients and as a function of the protocol employed. AIT was reported to
reduce Th2 cell and ILC2 numbers, and with them the production of IL-4 and IL-13166,
AIT was also described to induce both T and B regulatory cells and thus to increase
secretion of [L-10167168, B regulatory cells display an immunoregulatory receptor
profile, with the expression of CD25, PD-L1, SOCS3168. Antibody responses are also
modified during AIT, notably an increase of allergen-specific IgG4 can be observed, that
is considered to compete with IgE for allergen binding and to “neutralize” the antigen
due to its poor capacity to induce Fc-dependent effector functions!62-172 In the build-up
phase of AIT, there is often a transient increase of allergen-specific IgE to be observed
that gradually decreases during AIT173-175, but does not necessarily go back to baseline
levels. AIT was finally reported to decrease mast cells and basophils degranulation176.177,

as well as eosinophil infiltration to sites of allergic inflammation?78.

Compared to therapeutic mAbs, AIT has a low cost and together with its long-lasting
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beneficial effects could be considered the treatment of choice for all allergic diseases,
but in practice the use of AIT is limited for several reasons: Firstly, a complete cycle of
AIT lasts years, which can be as such a reason for some patients not to initiate the
treatment or for discontinuation. Adherence, however, notably to VIT is high132, which
might be due to the patients’ fear of reliving a severe allergic reaction if left untreated, or
the perspective a suffering life-long from allergic rhinitis. Secondly, the causative
allergen for a given allergy needs to be identified and available as a high-quality,
standardized allergen extract or recombinant protein needed for AIT. Together these
factors limit the actual application of AIT. Finally, an important disadvantage of AT lies
in that fact that there exist no validated biomarkers that could inform on the success of
the therapy. As a consequence patients treated with AIT often continue to live as if they
were still allergic. Also there are no markers defined that allow to estimate the chances
of a successful AIT for a given patient. Several biological parameters, including cell
populations or antibodies response have been reported to be different before and after
AIT and could be candidates for such “prediction” or “AIT success markers” in inhaled

allergen immunotherapy. They are summarized in Table 717°.
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Domains Biomarkers

Antibodies IgE (serum IgE, total IgE, serum IgE/ total IgE)

serum IgG4

IgA

Serum Inhibotory activity for IgE IgE-FAB

ELIFAB

Basophil activation CDe3

CD203c

Diamine oxidase

Basophil histamine release

Cytokines and chemokines Th2:IL-4, IL-13, IL-9, IL-17, eotaxin, TNF-a

Th1: IFN-y, IL-12

Regulatory: IL-10, TGF-p

Cellular biomarkers Treg cells
Breg cells
DCs
In vivo biomarkers Allergen provocation tests

Chamber studies

Table 7 Biomarkers for the prognosis of inhaled allergen immunotherapy. Adapted from17°.
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1.2.2. Immunopathogenesis of allergic disorders

In an attempt to clarify the immunopathologic mechanism of hypersensitivity, Gell and
Coombs classified the reactions into four different groups: Type I (immediate or
anaphylactic), Type II (cytotoxic, or cytolytic), Type III (antigen-antibody complex), and
Type IV (delayed or cell-mediated)!8%. During hypersensitivity reactions only one or
several reaction types can be at play at the same time. For example, the major reaction
in the immediate phase of penicillin allergy is Type I, and the Type IV pattern

participates in the late phase reaction123,

item under unauthorized distribution right

Figure 4 Summary of the four types of hypersensitivity reaction. Type I: mast cells or basophils (not
shown) bind to IgE through FceRI. Surface-bound IgE is cross-linked by allergen, which leads to the
actication of mast cells or basophils. Activated cells release mediators. Type II: Antibodies directly bind
antigen on target cells, which leads to CDC or cytotoxicity by Kkiller cells. Type III: Immune complexes are
deposited in the tissue, and induce complement activation, attract polymorphonuclear cells causing local
damage. Type IV: Antigen-specific T cells release cytokines, which attract and activate macrophages

leading to the damage. Reprinted from google: https://clinicalgate.com/immediate-hypersensitivi

type-i/

Classically, the allergic reaction considered to be Type I reaction, which is an IgE-
dependent Th2-biased immune reaction. Upon first exposure to an allergen, antigen-
presenting cells process and present allergen peptides through MHC class II to CD4+ T
cells. Antigen recognition and epithilum derived cytokines IL-25, IL-33 and thymic
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stromal lymphopoietin (TSLP) induce CD4* T cell activation181.182, Activated T cells get
expanded, secrete type 2 cytokines, upregulate chemokine receptors and integrins to
migrate to the inflammatory site. The type 2 cytokines promote eosinophil maturation
and survival, participate in airway hyperresponsiveness, as well as induce B cell isotype
switching to IgE183. During this process, Tru closely cooperate with Th2 cells to favor IgE
production!84, Apart from Th2 cells and Tru, another type of T cells, typeZ innate
lymphoid cells (ILC2) also participate. ILCZ develop from common lymphoid
progenitors. Although they lack antigen specific receptors, ILC2 could also respond to
certain cytokine stimulations (IL-25, IL-33 and TSLP) and secrete type 2 cytokines,
which contribute to tissue eosinophilia and mucus production!8>, One important
negative regulator cell type in this process are Tregs, which secrete anti-inflammatory

cytokines like IL-10 and TGF-[3186,

The IgE further binds to IgE receptors expressed on mast cells in tissue or basophils in
the circulation, thereby sensitizing them to the allergen recognized by that IgE. The
initial sensitizing phase is “silent “and not associated with any clinical signs. Upon re-
exposure to the same allergen, however, the allergen will cross-link the pre-bound IgE
on target cells. As a consequence, target cells get activated and release biologically active
mediators, such as preformed histamine, tryptase, chymase and proteoglycans, or newly
formed lipid-derived mediators, such as PGDz, LTBs, LTC4, LTD4 and LTE4. Those
mediators lead to an increase in vascular permeability and mucus production,
bronchoconstriction and vasodilation. It also attracts other immune cells to the
inflammatory sitel8’7. Moreover, a wide spectrum of cytokines and chemokines are
subsequently produced, further attracting cells to the inflammatory site, including

neutrophils and eosinophils, which sustain the inflammatory reaction.

In addition to the cells mentioned above, there is also other types of cells involved in this

classical pathway, which will be discussed in section 4.1.
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Allergen recognition

Recognition of allergens by specific antibodies can occur in different manners,
depending on the abundance and structures of the recognized epitope: 1) allergens like
polysaccharides often present several repeated epitopes sufficient to cluster IgE-bound
FceRI ; 2) very small molecules, such as haptens, have only one epitope are incapable of
cross-link antibodies by themselves; 3) Some allergens may have several different
epitopes with different binding specificity to antibodies; 4) for some allergens, the
epitopes could be the mixture of the three conditions!88, In addition, the distance
between epitope have an influence on the shape of the immune complex, thus this

distance can determine the strength of effector cell activation18°.

(A) (B)

Figure 5 Models of mast cell bound IgE binding to antigens. Two IgE molecules on FceRI receptors
attached to a mast cell can bind to (A) a single antigen with multiple identical epitopes (B) an oligomeric
antigen with identical epitopes on the subunits, (C) a single antigen with two different epitopes and (D)
two different antigens with different epitopes. Adapted from188, The structure of FceRI will introduce in

the following section.
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IgE receptors:

In humans, two IgE receptors exist that bind IgE at the Ce3 domain in its Fc portion: the
high affinity IgE receptor (FceRI) and low affinity IgE receptor (FceRII or CD23). FceRl is
expressed by mast cells and basophils in a tetrameric form, af3y2, and on dendritic cells,
monocytes and eosinophils in a trimeric form ay2190. Some reports also found FceRI
expressed on neutrophils from allergic individuals!®l. FceRI is an activating receptor

that transduces signal via the ITAM-containing associated common gamma chain.

CD23 has a broader expression profile and is present on B cells, follicular dendritic cells,
monocytes, macrophages, eosinophils, neutrophils and intestinal epithelium. Unlike the
classical Fc receptor FceRl, CD23 belongs to the C-type lectin superfamily. Its
extracellular domain contains a trimeric alpha-helical coiled-coil “head”, which is
connected to a “stalk” region. N-terminal of CD23 is intracellular, with two isoforms,
CD23a and CD23b. CD23a is constitutively expressed, whereas CD23b is inducibly

expressed in response to IL-4.

B{[Y Y

Tetrameric FceRl Trimeric FceRl CD23

Figure 6 IgE receptors. The high-affinity IgE receptor FceRI is expressed in its tetrameric form (left) a
trimeric form (middle). CD23, the low-affinity IgE receptor, is a type Il transmembrane protein (N-
terminus intracellular) assembled as a multimer with o-helical coiled-coil stalks terminating in IgE-

binding C-type lectin heads. Adapted from?°0.
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IgE

IgE is the most recently discovered immunoglobulin and was first described by Teruko
[shizaka in the 1960s192. Like all other human immunoglobulins, IgE consists of two
pairs of identical heavy and light chains, with four constant domains in its heavy chain.
However, IgE does not contain a hinge region, but uses disulphide bonds in the Ce2 to
connect the two heavy chains. Moreover, IgE is devoid of any complement-binding site.
IgE binds to both IgE receptors in a bent conformation??3. The crystal structure reveals
that in bent conformation, Ce2 domains are folded back onto Ce3 and Ce4 domains!94. As
a part of a BCR complex, membrane IgE exists in a bent and extended conformation. The
later conformation is optimal for capturing allergens, since it has a greater range of

conformational space.

Ce2

bent IgE bind to FceRla bent IgE as part of BCR extended IgE as part of BCR

Figure 7 Modeled structure of the entire IgE molecule in different biological contexts. Acutely and
rigidly bent IgE bound to FceRla (left), membrane bent IgE as part of the BCR (middle); extended IgE
conformation as part of the BCR (right). Adapted from1°5.

IgE is produced by plasma cells in lymphoid organs or local tissues, by both
extrafolicular and GC pathways. It appears, however, that early IgE results mainly from
extrafolicular production??¢, albeit with limited affinity maturation’. The role of IgE
production by the GC pathway, is currently under debate and will be discussed later.

There are two possibilities of class switch recombination described to move from an IgM
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producing cell to an IgE producer: direct switch and sequential switch. During direct
class switching, B cells will undergo Su-Se recombination. In the sequential switch, the B
cell will first switch towords an IgG producer (generally IgG1) and then recombine a

second time to gain IgE producing capacity (Su-Sy switch; then Sy-Sg) 198,

Regulation of serum IgE level by IgE receptors:

Due to the extremely high affinity of FceRI for IgE, it is difficult to estimate the total
amount of IgE in the human body, because most IgE will be bound to these receptors on
mast cells and basophils and not be free in the circulation. The IgE concentration in the
serum of a healthy individual ranges between 20.8-83.3 IU/mL1%°. The IgE serum
concentration seems to be regulated by binding of IgE to its receptors. In this context it
has been proposed that IgE binding to FceRI especially on dendritic cells and monocytes
induces its internalization and clearance?%0. Additionally, CD23 plays a dual role in IgE
level regulation, which is due to its susceptibility to be cleaved in its stalk region2%1. The
soluble and membrane form of CD23 are involved in IgE up- and down- regulation,
respectively. Soluble CD23 triggers up-regulation of IgE concentration through its
capacity to co-ligate CD21 and membrane IgE on transitional B cells and thus stimulate
B cell proliferation292, On the contrary, membrane CD23 cross-linked by IgE-antigen

complex inhibites B cell proliferation and IgE production?203.204,

Generation of IgE memory

How exactly IgE memory is kept is still a matter of active debate. One of the reasons is
that IgE* B cells and plasma cells are rare and particularly difficult to distinguish from
other types of B cells due to their expression of CD23 that can also bind IgE. Among all
plasma cells in blood, IgE* plasma cells account for only 0.32% in allergic patients and
only 0.06% in healthy individuals25. By analyzing blood B cell IGH repertoires from
healthy individuals and allergic patients, Looney et al. concluded that IgE* B cells can
derive from IgM+* B cells either through direct switching or from IgG-expressing B cells
following at least two sequential recombination events (IgM-IgG-IgE)2%. Blood, however,

does not seem to be a good source of IgE* B cells, because another study suggested that
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in allergic patients, the majority of allergen-specific IgE were produced locally, in
allergen-exposed tissues?07. In line with this observation, IgE-producing cells were
observed in human nasal mucosa, adenoids, tonsils, the lung, spleen and bone
marrow?208, It remains however an open question, whether these cells are capable to

constitute an IgE memory cell pool.

In mouse models, several studies have tried to solve this question and reached
seemingly contradictory conclusions: While Yang et al. described IgE*B cells in germinal
centers, these decreased in numbers after day 6 of immunization and notably showed
different patterns of mutations than IgE-producing plasma cells!?’, suggesting that GC
IgE B cells were not the precursors of IgE-producing plasma cells. In addition, Huizhong
Xiong et al. reported that IgE inherits fingerprints of somatic hypermutation of IgG1 GC
B cells2%9. On the contrary, Talay et al. observed IgE* GC B cells 35 days after parasite
infection. They also visualized a dynamic population of IgE-switched B cells in the
draining lymph node 13 days after infection by two-photon microscopy?1? and thus
proposed that IgE* GC B cells gave rise to IgE memory B cells and IgE plasma cells. As a
consequence, it is still unclear whether Ig memory is maintained in the form of IgG1+*
memory cells197.209 that require switching to yield new IgE-producing cells or directly as
IgE* memory cells210. In my opinion it is a caveat of many of the cited studies that they
used transgenic mice infected with parasites to study IgE memory. Parasites are indeed
well-known to induce a strong pan IgE responses that are not targeted to a given

antigen?11,
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Alternative anaphylaxis pathway

Many studies addressed the contribution of IgE-dependent mast cells and basophils
activation in the physiopathology of anaphylaxis. However, several arguments support
the hypothesis that anaphylaxis can occur without contribution of the classical type I
hypersensitivity reaction: 1) anaphylaxis can be induced in IgE-deficient mice
immunized with ovalbumin?12; 2) y1-antibodies were found to be capable of sensitizing
mice in cutaneous anaphylaxis?13;3) mast cell activation was not required in an
anaphylaxis mouse model?14 and histamine antagonists are not sufficient to prevent

anaphylactic symptoms in most models of anaphylaxis215,

Among IgE-independent anaphyalxis pathways, probably the best described one is IgG
dependent anaphyalxis. A large body of evidence support its existence in mice215-218,
Interestingly, whereas there seems to be a consensus on the fact that IgG (and FcgR) can
be at the origin of anaphylactic symptoms in mice, the effector cell population(s)
contributing to the reaction seems to vary depending on the model used?1°.

Among the four mouse FcyRs, FcyRIII is the activating IgG receptor with the largest
expression and not suprisingly was found to be the dominant contributor to IgG1-,
IgG2a-, and IgGZb-trinitrophenyl immune complex induced passive systemic
anaphylaxis. FcyRIV can also contribute at high doses of IgG2-induced reactions.
Depending on the IgG-subclass used to trigger the reaction, mast cells, basophils,
neutrophils, and monocyte/macrophages participate to different extends and hence the
reaction depends on histamine and/or platelet activating factor (PAF) 220, In a mouse
model deficient for FceRIl, FceRIl, FcyRI, FcyRIIb and FcyRIIl (5KO mice), active
anaphylaxis was dependent on neutrophil FcyRIV leading to the release of PAF221, Other
groups have suggested that basophils were the main inducers of IgG1l dependent
anaphylaxis?!>, which was put into question with the appearance of a new basophil-
deficient mouse model?22. And macrophages were suggested to be the main players in

anti Goat-IgD immunized mice challende with goat IgD?223

As already introduced (chapter 1.2.1 and 1.2.2), human and mouse IgG-FcyRs have

different properties in terms of binding affinities and expression profile. The use of mice
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expressing humanized FcyRs in the absence of mouse FcyRs, enabled my lab to
demonstrate that human FcyRIIA is sufficient to trigger both passive and active
anaphylaxis. Human FcyRIIA dependent anaphylaxis was associated with IgG-activation
of monocytes/macrophages and neutrophils leading to the release of PAF.224225 As part
of my thesis I contributed to further investigate the role of FcyRIIA-expressing cells in
this model. Notably, we focussed on the role of platelets that express FcyRIIA in humans,
but no IgG receptor in mice. We found that activation of FcyRIIA-expressing platelets
were activated by IgG ICs in vivo, leading to their aggregation and activation. This
translated into a severe thrombocytopenia and the release of serotonin by platelets,
which critically contributed to the severity of anaphylaxis?2>. Interestingly platelet
depletion prior to anaphylaxis was sufficient to prevent the reaction in mice expressing
exclusively hFcyRIIA, whereas it only reduced the allergic reaction in mice expressing all
human IgG receptors (hFcyRXI mice). The article describing these findings is attached to
this thesis (Annex 7.1). Similar findings were reported in mice that express hFcyRIIA in
WT mice?26. In addition, in the mouse strain comprising both low affinity activating
human FcyR (hFcyRIIA, hFcyRIIIA, and hFcyRIIIB) and inhibitory (hFcyRIIB), the
contribution of anaphylaxis is predominantly by hFcyRIIA, which is abundant on
neutrophils. Also, in this mouse strain, depletion of neutrophils protected the mice from

hypothermia227.

Building on the results obtained from mouse data, a clinical study could recently provide
new lines of evidence for a contribution of IgG-dependent pathway to human drug-
induced anaphylaxis. Human anaphylaxis severity was correlated with elevated anti-
drug IgG levels, FcgR downregulation on neutrophils, and associated with neutrophil
and platelet activation225228, Collectively, these examples illustrate that multiple
pathways can be at play in human anaphylactic reactions and therefore probably in

allergies in general.
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2. Summary and objectives

Until today it is largely unknown what events drive the development of allergies. The
same stimuli and exposure may trigger their occurrence in one individual, while others
remain tolerant. The goal of my thesis was to gain new insights into what makes a
person allergic and in which way the immune system of an allergic individual differs
from the one of a healthy person. To this aim, [ evaluated the immune phenotype in a
small number of allergic patients insteady state as well as in induced immune responses
and compared them to the phenotype of healthy individuals. I could also profit from the
available data of the Milieu Interieur cohort, an extensively analysed cohort of 1000
healthy donors to question which immunological, genetic and environmental factors
determine the concentration of serum IgE. Additionally, in an attempt to better predict
desired and adverse reactions to therapeutic antibodies and to guide the choice of target
formats, 1 evaluated the capacity of IgG from different species to bind human and
mouseFcyRs. Finally, I contributed to unveal the role of FcgRIIA-bearing platelets in IgG
anaphylaxis. This latter study was a side project and I therefore I decided to include the

article summarizing our findings in the annex.
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3. Results

3.1.Part I Environmental, immunological and genetic parameters associated with

total serum IgE concentration in healthy individuals

The term “Milieu Intérieur” was coined in1859 by Claude Bernhard to describe the
internal environment, which is at the basis of a “free and independent life." The immune
system plays a key role in maintaining this internal environment through its capacity to
prevent infections and malignant transformations as well as through its role in tissue
homoeostasis. Whenever this equilibrium is perturbed, inflammatory processes are
initiated that can either be resolved in a timely manner or trigger the onset of diseases if
they result in a permanent disequilibrium of the internal environment. Parameters that
determine the magnitude of this inflammation and the speed of its resolution are still ill

defined and include intrinsic, environmental, and genetic determinants.

The Milieu Intérieur (MI) project aims to determine what genetic and environmental
factors drive the human immune response. To do so, extended epidemiological and
biological data was collected from 1,000 healthy donors with a homogeneous ethnic
background, stratified across gender (50% men/women) and age (20 to 69 years). In
order to minimize pre-analytical biases, a huge effort has been made in the
establishment of standardized and robust procedures. In this context, a suite of whole
blood, syringe-based assay systems have been developed, thus permitting reproducible
assessment of induced innate and adaptive immune responses. The final goal is to define
healthy donor reference values for induced inflammatory genes and propose an
analytical strategy for deconvoluting inter-cellular interactions. This approach may help

identify new applications for therapeutic inhibition of selected cytokine pathways

The Milieu Interieur project set out to characterize the boundaries of a healthy immune
response, to reveal natural variations between individuals and to determine how
immune responses are influenced by environmental and genetic factors. To this aim, the
consortium recruited 1000 healthy donors spanning 5 decades of life with an equal
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representation of men and women. Extended epidemiological and biological data were
collected and efforts made to establish standardized and robust analysis procedures.
Notably, a collection of whole blood, syringe-based assay systems were developed to
allow reproducible assessment of induced innate and adaptive immune responses
(these procedures were likewise adapted to the WASPenIP study presented in chapter
3.2). The gathered information on the 1000 healthy donors were stored in a dataware
house and made accessible to members of the Milieu Interieur consortium. Figure 8

presents an overview on the collected samples and analysis effectuated for each

individual.

item under unauthorized distribution right

Figure 8 The scheme of the Milieu Interieur Project. Reprinted from:

http://www.milieuinterieur.fr/en/project/project-overview.

Numerous studies have described the pathways involved in different pathologies (e.g.,
infectious diseases, auto-immunity, allergy), but few have provided an exhaustive
description of healthy immune responses. However, knowledge of baseline responses in
healthy persons is crucial for the understanding of the pathologic context and can be

used as a reference.
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Despite an ever-increasing incidence of allergies in the global population, it is largely
unknown what events drive the development of allergies. The same stimuli and
exposures may trigger their occurrence in one individual, while others remain tolerant.
In the first part of my thesis, I explored the rich database from the Milieu Interieur
Consortium in collaboration with a bioinformatician to reveal associations between total
serum IgE concentrations and the immunological, environmental and genetic

determinants in healthy individuals.

[ surprising found that nearly 20 % of healthy individuals showed elevated total serum
IgE concentrations (>114 kU/L), while reporting no allergic disease or helminth
infection. [ confirmed that a number of social- demographic factors (age, sex, smoking
habit, and family history of allergic diseases), are associated with IgE concentrations,
and reproduced the tight relationship between serum IgE concentration and the level of
high-affinity IgE receptor (FceRI) expression on basophils. My analyses reveal that
individuals with high IgE concentrations in their serum, showed a distinct pattern of
secreted cytokines in certain whole blood stimulation assays and showed significant

overrepresentation of certain HLA alleles.

The following summarizes my findings in the form of an article, which will be submitted
to a scientific journal, as soon as we will have the green light from the Milieu Interieur

Consortium.
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3.2.PartII - Characterizing the immune phenotype of allergic individuals

WASPenlIP study

Introduction

Allergic diseases are often consider to be the result of a biased Th2/Th1 response,
resulting in the overproduction of Th2 cytokines (IL-4, IL-5 and IL-13) that favor IgE
secretion from B cells19°. These IgE are then bound by high affinity FceRI on mast cells
and basophils, thus arming them for immediate responses upon encounter of a cognate
allergen. However, this concept has been considerably extended by our growing
understanding of immunology. Apart from Th2 cells, other cells types have been
described to significantly contribute to allergyl¢t. For example, innate lymphoid cells,
which contribute to Th2 response through their production of IL-5 and IL-1322° and
promoting activated dendritic cells to drain lymph nodes for Th2 cell differentiation?23°.
Another study showed that infants suffering from food allergy had a higher CD14+
monocytes/CD4+* T cell ratio in their cord blood at birth.231 For the reason that CD14+
monocytes suppressed CD4* T cells IL-2 secretion; the absence of IL-2 decreased
activated natural regulatory T cells and promoted the differentiation of Th2 cells231.
Furthermore, allergic patients are known to respond differently to allergic specific
immunotherapy (AIT). AIT is frequently used in patients with pollen or insect sting
allergy and has proven effective in most patients to prevent or at least ameliorate
allergic symptoms. (Advanced discussion about benefit and limitation of AIT is in section
4.3) It follows that the mechanisms underlying allergic diseases are much more
complicated than previously thought and it highlights the necessity to reconsider allergy

as a systemic change of immune phenotype.

To systematically identify characteristic features of the allergic immune phenotype,
including immune particularities of steady state, induced immune responses, and to

what extand it is influenced by environmental and genetic factors, we applied an
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adapted methodology from the Milieu Interieur cohort analysis to a newly recruited
cohort of severely allergic patients, the WASPenIP cohort. Over a period of 3 years, we
aimed at recruiting two groups of severely allergic, but otherwise healthy patients: i) 30
individuals with wasp venom allergy, ii) 15 individuals with allergy to amoxicillin. This
clinical study was designed to achieve two goals: 1) the characterization of the immune
phenotype of allergic patients; and 2) the definition of novel biomarker candidates that

would allow prediction of the success of AIT.

The scope of this project unfortunately had to be revised several times throughout my
PhD: First, due to the delay in the legal validation, patient inclusions could only start
with a 6-month delay (May 2017 instead of December 2016). Secondly, whereas
estimations suggested that we would be able to recruit 20-30 patients a year, only four
patients could be included over the first year in our affiliated center. In order to adapt to
this situation, we opened our second recruitment center at the Hopital Bichat. Thirdly
and completely unexpected by all allergologists, there was a stock rupture of authorized
clinical grade wasp venom for diagnosis in the French market, putting all new inclusions
on ice for a period of nearly 9 months. Finally, our clinical lead collaborator left the
recruitment center, requiring 1) a new submission of legal forms to the ethics

committees, 2) the opening of a third center and 3) further delays.

For all the above reasons, only eight patients were included in this cohort, with three
wasp venom allergic patients and five amoxicillin allergic patients. To complement this
group of allergic patients, eight healthy donors were included as controls from the
Clinical Investigation and Access to BioResources platform (ICAReB) at the Institut

Pasteur.

As a consequence, the initial scope of my PhD project had to be revised and this
translational project only describes some of this preliminary work I have undertaken to
characterize the immune phenotype of allergic patients. All results reported in this

chapter are preliminary and reflect the state of the project at this moment (March 2020).
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Due to the small number of inclusions the analyses lack statistical power, but allow a

glimpse of what can be a possible outcome if confirmed with higher patient numbers.

In addition, to facilitate future mechanistic studies on wasp venom allergy and to
complete findings from the clinical cohort, I established a mouse model of experimental

wasp venom allergy that will be introduced in the second part of this chapter.

Materials and methods:

Patient recruitment

Samples came from the WASPenIP Cohort, which was approved by the Comité de
Protection des Personnes - Sud-Ouest et outre mer Il (Committee for the protection of
persons) on April 7th, 2016. The study was sponsored by Institut Pasteur (Pasteur ID-
RCB Number: 2016-A02013-48), and was conducted as a multi-centres interventional
study with minimal risks and constraints (RIPH 2). The original protocol was registered
under ClinicalTrials.gov (study# NCT01699893). The study planned to recruit two
groups of allergic individuals (30 allergic individuals to wasp venom the other 15 to
amoxicillin, aged [20 - 69]) having experienced either an anaphylactic reaction of >=
grade 3 or a quincke edema that are otherwise healthy. Patients were informed and
their consent obtained prior to inclusion. Until today, all allergic patients were recruited
at the Medical Center of the Institut Pasteur by Dr. Nhan Pham Ti and Dr. Alice
Seringulian. Blood samples from healthy individuals were obtained from the ICAReB

platform (Institut Pasteur) as part of their CoSImmGEn cohort.

Study design

Patients underwent two consecutive visits: At visit VO (enrolment), which was
conducted at least 6 weeks after exposure to the allergen, general demographic data,

serology and health parameters were recorded. Furthermore, an antigen-dependent
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basophil activation test (BAT) was conducted in the laboratory of Pr. Sylvie Chollet-
Martin at the Bichat hospital. If the BAT for wasp venom or amoxicillin, respectively, was
negative, the patient would not be recruited for a V1 visit. The laboratory of Pr. Sylvie
Chollet-Martin at the Bichat hospital monitored the presence of allergen-specific IgE
antibodies in the serum of patients. Although this parameter could confirm an allergic
phenotype, it would not be considered an exclusion criterion, if no allergen-specific IgE
antibodies could be detected; as long as the BAT yields a positive result. At visit V1
(inclusion) a detailed medical historiy and questionnaires collecting lifestyle and family
health history were collected. Furthermore, after blood drawing for immune assays and
genetic analysis, skin tests were undertaken to confirm the specific allergy and would

allow final diagnostics.

For patients with suspicion of allergy to amoxicillin:

Intra dermal skin testing was performed with diluted antibiotic solution. To this aim
dilutions of amoxicillin were prepared (1:100 to 1:10000)232. Following, intradermal
injection of physiological saline (control solution) and the amoxicillin solution were
injected in distinct sites, with minimal distances of 2 cm between the drops on the
palmar forearm. A positive skin reaction was characterised by the formation of a papule
with characteristic look of “orange peel”. After 15 to 20 min, the readings were done in

the same way as the prick test.

For patients with suspicion of allergy to wasp venom:

In subjects with a history of anaphylactic sting reaction, sensitization was confirmed by
the demonstration of venom sensitization by a skin test reaction to venom. Skin tests
were performed by skin prick or intradermal testing with stepwise incremental venom
skin tests. When the patient had a conclusive reaction at a set concentration the test can
be stopped. For skin prick test venom concentrations of 0.01-100 pg/ml were used.
Intradermally a 0.02 ml venom concentration ranging from 0.001 to 1 pg/ml was
injected into the volar surface of the forearm. The techniques were described in the

European position paper124,
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Based on the results of VO (BAT, wasp-specific IgE) and V1 (skin test) the decision was

taken if the patient receives immunotherapy to wasp venom or not.

Flow cytometry analysis

Flow cytometry procedures were adapted from the Milieu Interieur study?33. In brief, 2
mL fresh whole blood samples were collected on Li-heparin and washed by mixing with
PBS at a 1:1 ratio, followed by centrifugation at 1500 rpm for 5 min at room
temperature. The supernatant was aspirated and discarded, followed by the addition of
fresh PBS taking it to the same final volume as input whole blood. Antibody premixes
were prepared and 100 pl/ 200 pl of the resuspended cells was aliquoted into tubes
containing the pre-mixed antibody cocktail. The samples were shortly vortexed and
incubated 20 min in the dark at room temperature. Thereafter, all samples, irrespective
of the panel used, were resuspended in 2 ml of 1x RBC lysing solution (BD Biosciences,
ref. 349202), shortly vortexed and incubated 15 min at RT protected from light. After
centrifugation for 5 min at 1500 rpm, the supernatant was aspirated; the samples were
washed by 1mL of PBS and then resuspended in 200 pl PBS and immediately acquired
on a MACSQuant analyzer. Calibration of the instruments was done using MacsQuant
calibration beads (Miltenyi, ref. 130-093-607) and samples were acquired using bank
setting to avoid variation during sample processing in different days. Flow cytometry
antibodies were purchased from BD Bioscience or MiltenyiBiotec and listed in the

Supplementary Table 1.

Truculture stimulation

Preloaded TruCulture tubes (null, CD3/CD28, LPS, poly I:C) were purchased from RBM
Myriad and maintained at - 20 °C until use. Wasp venom (Citeq biologics) and
amoxicillin (Sigma) were aliquoted and added freshly to a set of null tubes on the day of
analysis. Within 15 min after blood collection, 1 ml of fresh whole blood drawn on Na-
heparine was added to each pre-warmed TruCulture tube (37 °C), mixed by several

inversions and incubated in a dry block incubator at 37 °C (= 1 °C) in room air for 22 h.
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At the end of the incubation period, tubes were opened and a plunger was inserted to
separate the sedimented cells from the supernatant. Supernatant were aliquot and
frozen at - 80 °C until protein analysis. Pellets were mixed with 1.6 mL of Trizol (Sigma),

votexed at RT for 10 min and then frozen at - 80 °C.

Truculture basophil activation test

A 600 pl sample of Truculture tubes containing wasp venom and amoxicillin was taken
after 1 hour of incubation at 37 °C. Li-heparin blood was used as negative control. The
samples were washed using 600 pl of PBS, centrifuged at 1500 rpm for 5 min at room
temperature and the pellet resuspended in 200 pl fresh PBS. The staining procedure was
the same as described above. The basophils were defined as CCR3+SSClewFceRI*cells. The
up-regulation of CD63* or CD203c* basophils were calculated as previously described?34

and showed in Figure 1.
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Figure 1 Quantitation of CD203c and CD63 up-regulation in basophils. Basophils were identified as
CCR3+SSClow cells (A). Up-regulation of CD203c in basophils was quantified as percentage of CD203c* cells
(FceRI*CD203c*) after stimulation (D) compared with no stimulation (B). Up-regulation of CD63 in
basophils was quantified as percentage of CD63+ cells (FceRI*CD63+) after stimulation (E) compared with

no stimulation (C).

Luminex multianalyte profiling

Supernatants from Truculture stimulations were analyzed by Luminex® xMAP

technology using a Human cytokine & chemokine (34 plex) ProcartaPlex (Thermo

Fisher), able to quantify Eotaxin/CCL11; GM-CSF; GRO alpha/CXCL1; IFN alpha; IFN

gamma; IL-1 beta; IL-1 alpha; IL-1RA; IL-2; IL-4; IL-5; IL-6; IL-7; IL-8/CXCLS; IL-9; IL-10;

IL-12 p70; IL-13; IL-15; IL-17A; 1L-18; IL-21; IL-22; 1L-23; IL-27; IL-31; IP-10/CXCL10;
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MCP-1/CCL2; MIP-1 alpha/CCL3; MIP-1 beta/CCL4; RANTES/CCL5; SDF1
alpha/CXCL12; TNF alpha and TNF beta/LTA simultaneously. We used Droparrays®
plates (Curiox), that allow the use of a single reagent batch for all tested samples. The

experimental procedure was prescribed in more detail inZ35.

Data analysis and statistical methods

Unless stated otherwise, I used unpaired Student's t-test and power test for flow
cytometry data; t-SNE analysis of cytokine responses were performed using the tsne
package in R. Graphs were generated with the graphical packages ggplot2 v.2.1.0,
ggpubr v.0.2.4 and GraphPad Prism 6.
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Results and Discussion:

3.2.1 WASPenlIP study

Cohort description

Until January 2020, we could only recruit eight allergic patients for the WASPenIP
cohort, with three wasp venom allergic patients and five amoxicillin allergic patients.
Those eight patients included five women and three men, aged 33 to 64. Among these
eight patients, only two patients declared they had family members affected by allergic
diseases (Table 1). Much information on each patient’s lifestyle including work and
living environment, eating habits, physical parameters and medical history were
available through the questionnaire. The low number of patients, however, did not allow
at this point identifying socio-demographic parameters associated with an allergic
immune phenotype with statistical significance. | therefore reported in the table below

only the intrinsic factors identified in the IgE study in chapter 3.1.
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Family allergic

Tobacco

= Sex A Al disease history Consumption
AD1 M 41 WASP venom Yes Smoker
AD 2 M 33 WASP venom Not known Ex-smoker
AD3 F 64 Amoxicillin Not known Non-smoker
AD 4 F 45 Amoxicillin No Ex-smoker
AD5 F 35 Amoxicillin Not known Smoker
AD 6 F 56 WASP venom No Non-smoker
AD7 M 61 Amoxicillin No Ex-smoker
AD 8 F 55 Amoxicillin Yes Ex-smoker
HC 1 M 54 N.C. N.C. N.C.
HC?2 F 54 N.C. N.C. N.C.
HC3 F 54 N.C. N.C. N.C.
HC 4 M 66 N.C. N.C. N.C.
HC5 F 21 N.C. N.C. N.C.
HC6 F 29 N.C. N.C. N.C.
HC7 F 37 N.C. N.C. N.C.
HC 8 M 31 N.C. N.C. N.C.

Table 1 Demographic information inWASPenIP cohort and healthy control subjects. AD, allergic

donor; HC, healthy control; F, female; M, male; N.C. not conducted.

Phenotype of blood cell populations in allergic individuals

To determine immune phenotypes in steady state conditions, I performed flow
cytometry analyses on the major cell populations in freshly drawn blood. The 7 flow

cytometry panels to monitor the blood cell populations included: 1) major cell lines in

91



blood, 2) T helper (Th) cells, 3) Memory T cell subsets, 4) Treg cells, 5) DCs, 6)
granulocytes, and 7) the panel corresponding to the basophil activation test (BAT).
These panels were designed in consideration of the limited amount of available blood
and to mirror to the best of our possibilities the panels used in the initial Milieu
Interieur study, while extending a number of parameters that seemed appropriate to
characterize blood samples from allergic patients (Figure 2) The gating strategy to

define cells populations are indicated in supplementary Figurel-6.

Lineage panel

Th panel

T cell panel Eosinophils SSC"*CCR3*

Treg panel

DC panel Activated Non-activated

PMN panel . :
Neutrophils CD16MCCR3"

BAT panel

Activated Non-activated
Naive Activated Memory

Basophils SSCMCCR3-
Naive c™M EM EMRA Thl Th2 Th17 Treg

CD16" CD14'"° mono CD16' CD14" mono

CD8B* cpat CD4*CD8" CD4*CD8R*
Monocytes (CD16MCD14")
TCRy&* TCRy&
pDC cDC1 cDC3
T cells (CD3*) NK cells (CD56*) bC
B cells (CD19%)
CD56" CD16/°NK cells CD16" CD16° NK cells

Figure 2 Immunophenotype included in WASPenIP study. Flow cytometry was used to analyze
major blood cells populations. The panels used for the measurement of a cell subsets are color-coded:
blue fill color - lineage panel; outlines of dark green - Th panel; light green - T cells panel; purple - Treg
panel; orange - DC panel; red - PMN panel; and pink as fill color for the BAT panel. Multiple outlines

indicate cells populations analysed in different panels.
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Because of the low number of allergic patients included, I had to pool the two groups:
wasp veom allergy and amoxicillin allergy together for statistical analysis. In the
following figures, I will therefore represent each individual donor to account for their
heterogeneity. Among all measured flow cytometry data (see Supplementary table 2),
only a couple of parameters showed a differential behavior that I will present in the

following:

As allergic conditions are often characterized by a Th2-biased immune response, I first
evaluated their T helper cell subsets. The three wasp venom allergic patients had
increased Th2 cell numbers compared to amoxicillin allergic patients and healthy
donors (Figure 3A); and all allergic donors had increased Th17 cell numbers (Figure 3B).
Only there was a trend in wasp venom allergic patients had higher percentages of Th2
and Th17 among all CD4 T cells (Figure 3C, 3D). There was no significant difference
between the cohort and control groups when I pooled the data from the two allergic

groups together.
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Figure 3 Number and phenotype of T cells subsets in WASPenIP cohort and healthy control
subjects. Number of Th2 cells (A) and Th17 cells (B) per mL blood and percentage of Th2 cells (C) and

Th17 (D) cells in CD4* T cells and were represented as individual measurements from amoxicillin

allergic patients (blue squares), wasp venom allergic patients (red triangles) and healthy individuals

(grey dots). Unpaired t-test on grouped allergic donors vs healthy subject were performed and P values

were indicated.
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To explore the memory T cell subsets proportion and their phenotype in allergic donors,
[ analyzed the data obtained from memory T cell panel. This panel included CD4+* and
CD8*naive, Tcm, Tem, Temra cells as well as their surface expression of HLA-DR and CCR7.
Interstingly, [ could only detect increased HLA-DR expression on naive CD4+ T cells from
allergic donors (Figure 4A), which could suggest that they stay in a priming state in
naive stage. Moreover, CD8* Tcwm, Tem, Temra from allergic patients expressed less CCR7
on their surface than their corresponding population from healthy donors (Figure 4B-
4D). CCR7 is expressed by DCs, B cells, and also memory T cells subsets and is critical for
homing of immune cells to secondary lymphoid organs!l’. It has been proposed that
CD8* CCR7* T cells suppress CD4* T cells proliferation and cytokine production in
vitro236. Thus the lower CCR7 expression on CD8 T cells from allergic donors may

translate into a reduced suppressive function from CD8* T cells to CD4* T cells.
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Figure 4 Phenotype of memory T cells subsets in WASPenIP cohort and healthy control subjects.
MFI of HLA-DR on naive CD4+* T cells (A) and CCR7 on CD8* Tcm cells (B), CD8* Tem cells (C), CD8* Temra
cells (D) were represented as individual measurements from amoxicillin allergic patients (blue
squares), wasp venom allergic patients (red triangles) and healthy individuals (grey). Unpaired t-test

on grouped allergic donors vs healthy subject were performed and P values were indicated.

Since the allergic immune response could also reflect a failure to maintain tolerance
towards a specific allergen23’, | also compared the absolute number, percentage and
subsets (naive, memory, activated) of T regulatory cells (Tregs) (Supplementary table 2).
Unexpectedly, most allergic donors had increased percentages of Tregs among total cells
(Figure 5). This difference however did not appear when looking at absolute numbers.

Because another study showed that Tregs from allergic donors inhibited less efficiently
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CD4* T cells proliferation and IL-5 production than T regs from healthy individuals238,
the increased Tregs in allergic cohort could be a compensatory mechanism to overcome

possibly defective inhibitory functions.
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Figure 5 Percentage of memory Tregs cells subsets in WASPenIP cohort and healthy control
subjects. Data were represented as individual measurements from amoxicillin allergic patients (blue
squares), wasp venom allergic patients (red triangles) and healthy individuals (grey). Unpaired t-test on

grouped allergic donors vs healthy subject were performed and P values are indicated.

In the DC panel, I observed a low percentage of cDC2 (Figure 6A) and high percentage of
pDC (Figure 6B) in allergic cohort, which was the opposite of what I had expected.
Human cDC2 expresses lectins, TLRs, NOD-like receptors and RIG-I-like receptors on
their surface and respond well to LPS, flagellin, poly I:C and R48423°. Upon stimulation,
they were capabile of secreting [L-12, IL-23, IL-1 and TNF-a. In an asthma mouse model,
cDC2 promoted eosinophil recruitment?40. Thus, it was surprising to me that allergic
patients had lower percentage of cDC2. Plasmacytoid DC are characterized by rapid
production of large quantities of type I and type Il interferons in response to viral
infections?39. Several studies indicated that pDC played a regulatory role in allergic
conditions?41-243, Heer and colleagues reported that pDCs were able to restore tolerance
in an asthma mouse model?43, while Antonia L and colleagues found that IFN secreted by

pDCs constrain the Th2 cytokines production. In addition, the number of cDC1, cDC2 and
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pDC showed a trend to be decreased in our allergic cohort compared to healthy
individuals (supplementary table 2). Of note, cDC2s and pDCs express higher levels of
the activation marker CD86 (Figure 6C-6F), which suggests that these cells, albeit

present in lower numbers, are more proficient in activating T cells in allergic individuals.
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Figure 6 Percentage and phenotype of cDC2 and pDC in WASPenIP cohort and healthy control
subjects. Percentage of cDC2s (A) and pDCs (B) among total DCs and Mean fluorescence intensity
(MFI) of HLA-DR and CD86 on cDC2s (C, E) and pDCs (D,F), were represented as individual
measurements from amoxicillin allergic patients (blue squares), wasp venom allergic patients (red
triangles) and healthy individuals (grey). Unpaired t-test on grouped allergic donors vs healthy

subject were performed and P values are indicated.

My lab showed previously that FcyRs and neutrophils play important roles in IgG-
mediated anaphylactic reactions. It was therefore of particular interest for me to
determine the phenotype of neutrophils and their expression of FcyRs in this cohort. I
found that neutrophils from allergic patients expressed more CD10 and CD32/FcyRII on
their surface (Figure 7A-7B). CD10 was described as a marker to distinguish mature
neutrophils from immature neutrophils in G-CSF treated donors. Whereas CD10*
neutrophils could inhibit T cells proliferation through a CD18-mediated contact-
dependent mechanism, CD10- neutrophils promoted T-cell survival, T cell proliferation
and IFN-y production!?2, Importantly, I could not detect CD10- neutrophils in the
individuals of the cohort, which is likely due to the fact that neutrophils without

inflammatory stimulation exit the bone marrow as mature cells.

CD32 regroup FcyRIIA, FcyRIIB and FcyRIIC. Neutrophils, however, express mainly
FcyRIIA and very little FcyRIIB. Very little is known about the factors that regulate CD32

expression on neutrophils. It is generally accepted that the engagement of FcyRIIA on
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neutrophils by IgG immune complexes triggers their internalization. However, for this to
happen in measurable proportions, there must be a certain amount of circulating
immune complexes in the blood. Here, however, the blood was taken at a distance from
any allergic event that may include the generation of allergen immune complexes with
anti-allergen IgG in these individuals that are otherwise healthy. It is therefore
remarkable that an increased CD32 expression of neutrophils could be observed in the
allergic individuals of our cohort compared to healthy donors. Neutrophils express large
amounts of CD16/ FcyRIIIB on their surface, which is also named neutrophil antigens
(NAs)56. Its abundant expression on the neutrophil surface at steady state, and
association with lipid rafts suggests that it can contribute to cell activation via co-
clustering with integrins and by helping FcyRIIA to efficiently capture immune

complexes (ICs) 2839,

Together an increased CD10 and CD32 expression could indicate a possible regulatory
role of neutrophils: on the one hand, neutrophils may contribute to regulate T cell
proliferation by increased CD10 expression; on the other hand, increased CD32 could
trap more allergen-IgG immune complexes on neutrophils and thereby decrease the
chance of allergen capture by FceRI-bound IgE on mast cells or basophils. Paralleling to
the observation on neutrophils, I also found an increased expression of CD16 (Figure 7C)
and CD32 (Figure 7D) on eosinophils of allergic patients. A similar finding was reported
for eosinophils from asthmatic patients, which was interpreted as a sign of eosinophil
priming associated with systemic inflammatory response during late asthmatic

response244,
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Figure 7 Phenotype of neutrophils and eosinophils in WASPenIP cohort and healthy control
subjects. Mean fluorescence intensity (MFI) of CD10 (A) and CD32 (B) on neutrophils, and MFI of CD16
(C) and CD32 (D) on eosinophils were represented as individual measurements from amoxicillin allergic
patients (blue squares), wasp venom allergic patients (red triangles) and healthy individuals (grey).

Unpaired t-test on grouped allergic donors vs healthy subject were performed and P values were

indicated.

Finally, we included in our FACS panel a panel aimed to analyse basophil phenotype and
activation. We used this panel to evaluate basophil activation at steady state and also
after 1-hour incubation of blood in the Truculture tube assays, either stimulated by
wasp venom or by amoxicillin. Allergic samples were stimulated systematically with

both compounds, amoxicillin serving as a control for the WASP-allergic samples, and
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wasp venom serving as a control for the amoxicillin-allergic samples. We named this test
“adapted basophil activation test” (adapted BAT), because it is a flow cytometry-based
functional assay for to diagnosis of allergic sensitization. Classical BAT analysis for

patient care was performed in parallel at the Hopital Bichat under the supervision of
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Figure 8 Basophil activation tests in WASPenIP cohort. Percentage of increased CD63* basophils
and CD203c* basophils upon stimulate with amoxicillin (A) or wasp venom (B) were represented as
individual measurements from amoxicillin allergic patients (blue squares) and wasp venom allergic

patients (red triangles).

Pascale Roland-Nicaise.

In steady state, basophils from allergic donors express low amounts of CD63 and
CD203c on their surface. Among the 5 amoxicillin allergic individuals only 1 showed
increased CD63* and CD203c* expression on basophils upon amoxicillin stimulation
(Figure 8A) in this adapted BAT and 1 wasp venom allergic patients out of three showed
increased CD203c but no increased CD63 expression on their basophils after wasp
venom stimulation (Figure 8B). On the other hand, all of these patients showed a
positive response in the classical BAT performed at the hospital. Basophil reactivity is
influenced by many factors!??2, such as time between blood collection and BAT;
anticoagulants used, whether IL-3 is used to prime basophils; and finally the range and

quality of the allergen. The cut-off values for a classical BAT used in amoxicillin allergy
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diagnostics is a minimum of 5% CD63* basophils, with 55% sensitivity and 80%
specificity?34. For wasp venom allergy, it was described as 2.5 - fold increase in the
number of activated basophils (>25%) as compared with the negative control (10%),
with 85.3% sensitivity and 83.3% specificity24>. The low sensitivity of this adapted BAT
could be due to the absence of IL-3 during the stimulation or the quantity (100ng/mL)

or quality (wasp venom extract) of allergen used.

Cytokines and chemokines concentration upon stimulation

In addition to the phenotyping of blood cells populations in steady state conditions, the
WASPenlIP study included the assessment of whole blood stimulation assays that aimed
to capture differences in induced immune responses between allergic patients and
healthy donors. To minimize variations between samples, we used preloaded Truculture
tubes, in which 1 ml of blood was added within 30 minutes of sampling. Six different
stimuli were included in the study: a null tube to measure baseline activation, LPS as a
mimic of a gram-negative bacterial infection, a-CD3/a-CD28 as a T cells stimulus, poly
[:C as a surrogate for a viral infection, and finally two tubes loaded with wasp venom,
and amoxicillin, respectively. After 22 hours incubation at 37°C, the supernatant was
recovered and, after a storage period at -80°C, subjected to quantification of 34

cytokines and chemokines using luminex technology.

My analysis shows that the inter-individual variations in such a small sample number is
too big to detect any significant differences using supervised statistical. Nevertheless, |
will describe some of the observed trends that seem interesting paths for future

investigations.

In the Milieu Interieur cohort approximately 1 out of 3 donors failed to fully respond to
stimulation with a-CD3/a-CD28246, It was therefore not unexpected that in our cohort 2
allergic patients and 2 healthy individuals failed to produce IL-2 (Figure 9A), 2 allergic
patients and 4 healthy individuals failed to produce IL-6 (Figure 9B) in response to a-

CD3/a-CD28 stimulation. All of the donors in our cohort and control group were capable
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of producing IFN-y (Figure 9C).
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Figure 9 IL-2, IL-6 and IFN-y concentration in whole blood stimulation assay following a-CD3/a-
CD28 stimulation. Dot plots with individual measurements for induced IL-2 (A), IL-6 (B) and IFN-y (C) in
response to incubation of whole blood with a-CD3/a-CD28 in allergic patients (wasp venom allergic
patients: red triangles, amoxicillin allergic patients: blue squares) and healthy subjects (grey dots). Mean

and SEM were indicated by overlaid horizontal bar and whiskers.

To question whether allergic patients in the cohort show a pronounced Th2 bias, I
compared Th2 cytokines following a-CD3/a-CD28 stimulation to the null condition.

Importantly my flow cytometry data revealed that there was no statistical difference in
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Th2 cell numbers, and Th2 cell percentage between healthy donors and allergic patients

in steady state, a difference could therefore only arise from cell intrinsic effects.
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Figure 10 Measurement of Th2 cytokine concentrations in Truculture supernatant. Dot plot with
individual measurements indicated IL-4, IL-5 and IL-13 concentration in response upon incubation of
whole blood without stimuli (A) and with a-CD3/a-CD28 (B) stimulation in allergic patients (wasp venom
allergic patients: triangles; amoxicillin allergic patients: blue squares) and healthy subjects (grey dots)
Incomplete responders are indicated with an x in the symbol. Mean and SEM were indicated by overlaid

horizontal bar and whiskers.

Without stimulation, there were no differences in IL-4, IL-5 and IL-13 concentrations
between the groups (Figure 10A). T cells stimulation induced measurable Th2 cytokine
concentrations irrespectively of the test group, but it appears that the blood from
allergic donors produced slightly more IL-4, IL-5 and IL-13 than cells from the control
group (Figure 10B). These data therefore suggest that allergic donors may respond
stronger after induction of Th2 cytokines upon T cells stimulation, in agreement with

Th2 biased immune responses.

Based on my observation that allergic donors show higher ratios of Th17 cells - CD4 T
cells in my flow cytometry analysis, I next investigated whether this difference would
also functionally translate into augmented cytokine concentrations typically associated

with Th17 cells upon T cells stimulation (Figure 11).
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Figure 11 Measurement of Th17 cytokine concentrations in Truculture supernatant. Dot plot with
individual measurements indicated IL-1A, IL-B, IL-17A, IL-22 and IL-23 concentration in response upon
incubation of whole blood without stimuli (A) and with a-CD3/a-CD28 (B) stimulation in allergic patients
(wasp venom allergic patients: triangles, amoxicillin allergic patients: blue squares) and healthy subjects

(grey dots). Mean and SEM were indicated by overlaid horizontal bar and whiskers.

As expected, there were little Th17 cytokines detected without stimulation (Figure 11A).
I however observed a tendency for augmented IL-17 and IL-22 secretion in blood
samples from allergic donors compared to controls, in agreement with my flow
cytometry data revealing augmented Th17 /CD4 T cell ratios. Inter-individual variations

within each group were high, precluding any analysis of significance.
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The hygiene hypothesis postulates that a the loss of infection pressure on the population
leading to the reduction of Th1l immunity, and as a consequence to an imbalance of
Th1/Th2 immunity, resulting in a higher incidence of allergic disorders247. Although I
did not observe a reduction of Th1 cells in allergic donors, I wanted to compare their
Th1 cytokine profile without stimulation, as well as following surrogate bacteria and

virus infection stimulants with LPS and poly I:C respectively (Figure 12).
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Figure 12 Measurement of Th1 cytokine concentrations in Truculture supernatant. Dot plot with
individual measurements indicated IFN-y and IL-12p70 concentration in response upon incubation of
whole blood without stimuli (A, D) and with a-CD3/a-CD28 (B, E) stimulation, with LPS (C, F) stimulation
in allergic patients (wasp venom allergic patients: triangles, amoxicillin allergic patients: blue squares)

and healthy subjects (grey dots). Mean and SEM were indicated by overlaid horizontal bar and whiskers.

Again, the inter-individual variations did not enable me to determine any clear trends
between the groups for neither IFN-y (Figure 12A-C) nor IL-12p70 (Figure D, E, F)

secretions.
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In the IgE association study, I could show that individuals with high serum IgE
concentrations secreted more of the regulatory cytokine IL-10 upon T cell stimulation
with a-CD3/a-CD28. [ therefore tested whether the IL-10 secretion was also augmented
in allergic individuals and compared the 6 conditions of stimulation (Figure 13).
Surprisingly, there is no difference between the null, T cell stimulation and LPS
stimulation. However, the wasp venom allergic individuals had even lower IL-10

secreted in Poly I: C, wasp venom and amoxicillin stimulation compared to the null

condition.
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Figure 13 Measurement of IL-10 concentrations in Truculture supernatant. Dot plot with individual
measurements indicated IL-10 concentration in response upon incubation of whole blood without stimuli
(A) and with a-CD3/a-CD28 (B) stimulation, with LPS (C) stimulation, with Poly I: C stimulation (D), with
wasp venom (E) and with (amoxicillin) in allergic patients (wasp venom allergic patients: red triangles,
amoxicillin allergic patients: blue squares) and healthy subjects (grey dots). Mean and SEM were indicated

by overlaid horizontal bar and whiskers.

With so few samples it is again difficult to determine a trend from these results. Notably
in the amoxicillin group there was a larger heterogeneity that was already visible in the

null condition. Surprisingly, in samples from wasp venom allergic individuals there

108



seemed to be lower IL-10 secreted upon poly [:C, wasp venom and amoxicillin

stimulation than in the null condition and less than in the controls and amoxicillin

allergic groups.

Indeed, for most of the chemokines tested, there was no difference between healthy

controls and the two groups of allergic patients, as exemplified for Eotaxin, an

eosinophil chemotactic protein (Figure 14).
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Figure 14 Measurement of Eotaxin concentrations in Truculture supernatant. Dot plot with
individual measurements indicated induced CCL5 levels in response upon incubation of whole blood
without stimuli (A), with a-CD3/a-CD28 (B), with LPS (C), with poly I: C (D), with wasp venom (E) and
with amoxicillin (F) in allergic patients (wasp venom allergic patients: red triangles, amoxicillin allergic

patients: blue squares) and healthy subjects (grey dots). Mean and SEM were indicated by overlaid

horizontal bar and whiskers.

Remarkably, however, the two groups of allergic donors showed a distinct response

from each other in certain conditions and for some released proteins. Of course, one has

to keep in mind the very low sample number, but to give just two examples: amoxicillin

allergic donors tended to produce more CCL5 (Figure 15) and CXCL12 (Figure 16) than
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wasp venom allergic donors in relevant and non-relevant allergen stimulation

conditions.
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Figure 15 Measurement of CCL5 concentrations in Truculture supernatant. Dot plot with individual
measurements indicated induced CCL5 levels in response upon incubation of whole blood without stimuli
(A), with a-CD3/a-CD28 (B), with LPS (C), with poly I: C (D), with wasp venom (E) and with amoxicillin
(F) in allergic patients (wasp venom allergic patients: red triangles, amoxicillin allergic patients: blue

squares) and healthy subjects (grey dots). Mean and SEM were indicated by overlaid horizontal bar and

whiskers.
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Figure 16 Measurement of CXCL12 concentrations in Truculture supernatant. Dot plot with
individual measurements indicated induced CCL5 levels in response upon incubation of whole blood
without stimuli (A), with a-CD3/a-CD28 (B), with LPS (C), with poly I: C (D), with wasp venom (E) and
with amoxicillin (F) in allergic patients (wasp venom allergic patients: red triangles, amoxicillin allergic
patients: blue squares) and healthy subjects (grey dots). Mean and SEM were indicated by overlaid

horizontal bar and whiskers.

Of course, this behaviour needs to be confirmed with a bigger number of included
patients. Our limited data concluded that in the steady state, allergic donors had
increased Th2 cells, Th17 cells as well as Tregs, although there was no difference in their
related cytokines been observed in our 6 conditions of stimulation. Of note, the
amoxicillin allergic patients had high CCL5 concentrations upon relevant and non-
relevant allergen stimulation. CCL5 was expressed by T cells upon stimulation?48, which
had been shown to play a critical role in recruiting leukocytes?4°. The high CCL5
concentrations in amoxicillin allergic patients indicated that in amoxicillin allergic
conditions, leukocytes were prone to be recruited in the circulation upon stimulation
and induced systematic reaction; while in wasp venom allergy, the situation was reverse.

The sensitization route in these two types of allergies could also explain such difference:
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oral/injection sensitization in amoxicillin allergy and skin sensitization (through insect
sting) in wasp venom allergy. Moreover, another potent leukocytes activator CXCL12

was also increased in amoxicillin allergic patients2>0.

In the next step, since the high inter-individuals variations could not provide us more
evidence on difference between allergic and healthy individuals from single cytokine
detected. I applied a machine-learning algorithm to visualize proximity of these multi-
dimensional samples in a two-dimensional space. For each of the conditions, I

performed a t-distributed stochastic neighbour embedding (t-SNE) analysis (Figure 17).
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Figure 17 T-SNE analysis of induced immune response in WASPenIP cohort. Data used for t-SNE
approach were cytokines and chemokine levels from null stimulation condition (A), CD3/CD28
stimulation condition (D), LPS stimulation condition (B), poly I:C condition (E), wasp venom condition
(), and amoxicillin condition (F). Each dot represented result calculated from one individual. Healthy
individuals are depicted in grey; amoxicillin allergic patients in blue; and wasp venom allergic patients in

red.

As expected allergic patients and controls showed an almost perfect mixing in the null
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condition with no clusters that could be identified (Figure 17A). But also in the other
conditions the groups stayed mostly mixed and no distinct clusters could be identified
that would allow separation of the patient groups (Figure 17). This failure to separate
the two or three groups is mostly due to the low sample number and the rather large

inter-individual variations.

Conclusion WASpenIP

Taken together, my analysis of the WASPenIP study remains preliminary due to the
small numbers of inclusions and the resulting limited statistical power. My results seem
to suggest that allergic patients present with increased Th2 cells and Th17 cells ratios,
augmented expression of HLA-DR in naive T cells, and CD86 on cDC2s and pDCs,
suggestive of a more mature/activated phenotype. My data further reveal a higher
expression of CD32 by neutrophils as well as CD16 and CD32 eosinophils and a higher
expression of CD10 on neutrophils. Finally, the analysis of induced immune responses
failed so far to identify different immune phenotype between allergic individuals and
healthy donors, it however seems to be in accordance with the data from the flow
cytometry analyses. Interestingly, analysis of induced responses points towards distinct
immune responses of wasp venom and amoxicillin allergic patients that need to be

confirmed with greater patient number.

3.2.2 Wasp venom allergy mouse model:

Clinical studies in humans remain often descriptive and it was my goal to accompany the
WASPenIP study with some fundamental research in a mouse model to tackle some
more mechanistic questions. Surprisingly there were only 2 reports on mouse models of
wasp venom allergy?251.252; both were both done in Balb/c mice, a mouse strain known to

favour Th2-driven immune responses.
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To be able to mechanistically investigate the physiopathology involved in sensitization
during wasp venom allergy, I chose to complement my research project with a wasp
venom allergy mouse model in C57Bl/6 mice. This would allow me to use transgenic
mice that are mostly on this background to address questions about the antibody

subclass, the effector cell type and the antibody receptors responsible for the reaction.

A wasp injects between 15pug-50 pg of wasp venom per sting128, Wasp venom is a natural
product of several components, the relative contribution of which may vary from one
preparation to another. After a first series of failed immunizations using only wasp
venom at natural sting doses via the subcutaneous route, I applied a standard
immunization procedure including adjuvant. [ augmented the venom dose and added an
adjuvant to obtain a good and reproducible level of immunization. I decided to use
Freund's Complete adjuvant/ Freund's Incomplete adjuvant (CFA/IFA), that induces a
similar antibody secretion profile in C57BL/6] mice as does alum adjuvant in Balb/c
mice (internal communication, unpublished). I used 100 pg of wasp venom in presence
of CFA/IFA to immunize mice via an intraperitoneal (i.p.) route. After a first injection of
wasp venom in CFA, three boosts of venom in IFA were separated by 2-4 weeks (Figure

18).
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Figure 18 Mouse model of wasp venom allergy. Wasp venom (100 pg) in emulsion with Complete
Freud’s adjuvant (CFA) was injected i.p. on day O, followed by three boosts with wasp venom in
Incomplete Freud’'s adjuvant (IFA) on day 14, 42 and 56. Blood was collected 7 days before each
immunization and challenge. Challenge was performed on day 70 with 100 pg of i.p. Injected wasp
venom. Rectal temperature measurements were taken over the course of the experiment using a digital

thermometer (YSI).

[ collected serum samples at baseline and 7 days before each immunization to monitor
wasp venom-specific antibodies by ELISA. Surprisingly, I found that most secondary
antibodies used in our ELISA assays to detect specific mouse Ig classes bound directly to
wasp venom, thus limiting significantly the choice of antibody to trace a successful

immunization.

Using anti-mouse kappa chain antibodies, however, I could monitor the induction of
wasp venom specific antibodies in the serum of all immunized mice. Fourteen days after
the final boost, I challenged the mice i.p. with 100 pg wasp venom. Anaphylactic
reactions in mice are characterized by a reduced mobility, oedema, loss of body
temperature and death in severe cases. As the most simple and objective measure, our
laboratory uses body temperature and eventually time of death to document

anaphylaxis.
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Although all mice showed similar wasp venom specific antibody levels following
immunization, only two-thirds of mice developed hypothermia after challenge (Figure
20/19). The heterogeneity in response could be caused by the already mentioned
variations in wasp venom composition, but also by differences in induced anti-wasp
venom antibody classes, notably IgE vs IgG. As our tools did not allow separating these
two phenomena, we decided to change the experimental approach and to focus on

immunizations elicited against only one component of wasp venom.
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Figure 19 Heterogenous hypothermia responses in mice sensitized and challenged with wasp
venom. Changes in body temperature in each time points after challenge with wasp venom in wasp
venom sensitized (red and blue dots) or PBS treated mice (black dot). N=4 in PBS treated group; 8 mice
showed hypothermia after challenge (red dots); 4 mice didn’t response to wasp venom challenge. T-test
was performed between responder group and control group separately in each time points. *P<0.05,

**P<0.01, ***P<0.001, ****P<0.0001.
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Figure 20 Relative wasp venom specific kappa levels. Blood was taken before immunization as BO and
after the first immunization B1, first boost B2, second boost B3 and last boost B4. The wasp venom
specific kappa ELISA were tested by coating plate with 10ug/mL wasp venom and detected with 1:4000
dilutions anti-mouse kappa antibody. Relative kappa level was calculated by dividing the OD values in

each sample to the standard sample (pooled serum from the immunized mice).

To this aim, I first tried to produce the major wasp venom allergens, Ves V1 and Ves V 5
in insect cells using a baculovirus infection approach?s3. However, despite a promising
production at low scale, it was impossible to obtain sufficient intact protein for
immunization of larger groups of mice. Building on the laboratory’s expertise in Expi293
liquid culture transfections, I then developed a mammalian expression system and could
successfully obtain large amounts of Strep-tagged Ves V 5. Supernatant from transfected
cells was purified on a streptactin column (Iba) and dialysed to remove biotin used for
protein elution. Currently, the immunizations are ongoing and first results will be
presented during my oral PhD defence. The Ves V 5 sensitization mouse model would
provide a tool for the mechanistical studies of wasp venom allergy. Once established, we
will apply our immunization protocol in the mice expressing human FceRI, human IgE
and human FcyRs, human IgG mouse model to clarify the contribution of classical
pathway and alternative pathway in wasp venom allergy. Moreover, Strep-tagged Ves V
5 could be a tool to label B cells specific for Ves V 5 in immunized mice or patient
samples (as done now in our lab), which would help in identifying the antibody

repertoires against Ves V 5.
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Supplementary Table 1 Antibodies used in Flow cytometry

Antigen

CD8b

CD4

CD56

CD45 (LCA)

CD14

CD19

CD16 (FcyRIIIA,
FcyRIIIB)

CD3

CD8b

CD4

CD185 (CXCR5)

CD294 (CRTH2)

CD196 (CCR6)

CD194 (CCR4)

CD183 (CXCR3, CKR-
L2, GPR9)

TCRg/&

CD8b

Viobility Fixable Dye

Fluorophore

VioBlue

VioGreen

VioBright 515

PE

PerCP-Vio700

PE-Vio770

APC

APC-Vio770

VioBlue

VioGreen

FITC

PE

PE-Vio615

PE-Vio770

APC

APC-Vio770

VioBlue

VioGreen

Clone

REA715

REA623

REA196

REA747

REA599

REA675

REA423

REA613

REA715

REA623

REA103

REA

REA190

REA279

REA232

REA

REA715
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Supplier

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Panel



CD45RA

CD25 (IL-2Ra)

HLA-DR

CD278 (ICOS)

CD127 (IL-7Ra chain)

CD4

CD8b

CD4

CD45RA

CD27

HLA-DR

CD8

CD197

(CCR7)

CD86 (B7-2)

Viobility Fixable Dye

CD19

CD3

CD335 (NKp46, NCR1)

CD1c (BDCA-1,R7,
M241)

CD303 (BDCA-2)

FITC

PE

PerCP-Vio700

PE-Vio770

APC

APC-Vio770

VioBlue

VioGreen

FITC

PE

PerCP-Vio700

PE-Vio770

APC

APC

VioBlue

VioGreen

VioGreen

VioGreen

BV510

VioBright FITC

PE

REA562

REA570

REA805

REA192

REA614

REA623

REA734

REA623

REA562

REA499

REA805

REA715

REA546

REA546

FM95

REA675

REA613

29A1.4

REA694

REA693
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Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

BD Biosciences

Miltenyi Biotech

Miltenyi Biotech



HLA-DR

CD141 (BDCA-3)

CD304 (BDCA-4,
Neuropilin-1, NRP1)

CDh14

CD193(CCR3)

CD16 (FcyRIIIA,
FcyRIIIB)

CD62L

CD32 (FcgRII)

CD10 (CALLA,

neprilysin)

CD184 (CXCR4)

CD177

CD66b (CEACAMS)

Viobility Fixable Dye

FceRla

CD193 (CCR3)

CD63 (LIMP1, LAMP-3)

CD203c

PerCP-Vio700

PE-Vio770

APC

APC-Vio770

VioBlue

VioGreen

FITC

PE

PerCP-Vio700

PE-Vio770

APC

APC-Vio770

VioGreen

FITC

PE

PE-Vio770

APC

REA805

REA674

REA774

REA599

REA574

REA423

145/15

2E1/ REA

REA877

REA649

REA258

REA306

REA758

REA574

H5C6

REA826
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Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech

Miltenyi Biotech



Supplementary Table 2 Immunephenotypes determined by flow cytometry

Mean Mean Standard
Phenotype Panel
(cohort) (control) Error
Number of CD45+ cells/mL 208404 146424 31349 1
Number of CD19+ cells/mL 4369 3355 1176 1
Number of CD3* cells/mL 30547 30613 6784 1
Number of CD4+* CD8- cells/mL 15775 19135 3362 1
Number of CD8* CD4- cells/mL 9901 8056 2572 1
Number of CD56* cells/mL 6418 5681,38 1397 1
Number of CD564im cells/mL 5904 5029 1249 1
Number of CD56h cells/mL 359 416,88 115,29 1
Number of neutrophil/mL 145122 91867 21489 1
Number of CD16*monocytes cells/mL 1154 1177 354 1
Number of CD16- monocytes cells/mL 285 203 124 1
% CD45+ cells in total cells 81,53 71,61 6,56 1
% of CD19+* cells in CD45* cells 1,91 2,26 0,44 1
% of CD3+ cells in CD45+ cells 13,56 22,16 3,12 1
% of CD4+CD8- cells in CD3+ cells 50,59 65,93 5,05 1
% of CD8+*CD4- cells in CD3+ cells 32,93 24,36 4,35 1
% of CD56* cells in CD45+ cells 2,94 4,19 0,80 1
% of CD564dim cells in CD56* cells 92,26 87,54 2,54 1
% of CD56Mi cells in CD56* cells 5,58 8,61 2,25 1
% of neutrophil in CD45+ cells 66,33 57,7 3,71 1
% of CD16- monocytes in monocytes 82,06 86,28 2,61 1
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% of CD16* monocytes in monocytes 17,63 13,70 2,59
Number of y6 T cells/mL 1557 2020 1322
Number of CD4+* CD8- cells/mL 25110 21385 5763
Number of Th1 cells/mL 6658 6599 1915
Number of Th2 cells/mL 335 203 66
Number of Th17 cells/mL 2551 1391 505
Number of CD8* cells/mL 8674 7322 2464
% of y8 T cells in total cells 0,79 0,81 0,39
% of CD4+ CD8- in total cells 16,09 8,90 2,01
% of Th1 cells in CD4+ cells 25,03 34,48 4,78
% of Th2 cells in CD4+ cells 1,34 1,06 0,24
% of Th17 cells in CD4+ cells 10,53 6,95 1,97
% of CD8* in total cells 5,08 3,17 0,69
% of CCR6*cells in CD8* cells 2,76 0,86 0,88
% of CCR6-cells in CD8* cells 96,40 98,38 1,03
Number of CD4+* CD8- cells/mL 40431 47557 7117
Number of Tregs/mL 3949 4028 787
% of CD4+CD8- in total cells 11,65 9,02 1,28
% of Tregs in total cells 1,09 0,76 0,10
% of activated Tregs in Tregs 19,81 21,26 2,92
% of memory Tregs in Tregs 55,31 61,16 3,73
% of naive Tregs in Tregs 24,28 17,33 3,58
MFI of ICOS on activated Tregs 1396 1127,75 201,60
MFI of ICOS on memory Tregs 745,38 605,88 109,41
MFTI of ICOS on naive Tregs 294,38 204,75 50,16
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Number of CD3* cells/mL 37127 38479 7574

Number of CD4+CD8- cells/mL 20880 23096 4821
Number of CD4+CD8a*cells/mL 373 480 236
Number of CD4* Tcm/mL 10975 10572 2602
Number of CD4+ Tgm/mL 1570 1553 555
Number of CD4+* Tgmra/mL 429 398 347
Number of naive CD4+ /mL 7906 10574 3416
Number of CD8+CD4- cells/mL 8937 11061 2557
Number of CD8* Tcm/mL 4036 5004 1373
Number of CD8* Tgm/mL 921 1736 679
Number of CD8* Tgmra/mL 1263 1029 652
Number of naive CD8* /mL 2717 3292 820
% of CD3* in total cells 18,89 14,46 5,98
% of CD4+CD8-in CD3+* cells 64,53 59,38 0,82
% of CD4+CD8at*cells in CD4+ cells 1,69 2,01 6,64
% of CD4+ Tcm in CD4+ cells 51,33 48,90 2,14
% of CD4+ Tgm in CD4+ cells 7,04 7,37 1,22
% of CD4+ Tgmra in CD4+ cells 1,86 1,54 8,78
% of naive CD4+ in CD4+ cells 39,77 42,19 5,98
% of CD8+*CD4- in CD3+* cells 23,51 2891 4,44
% of CD8* Tcm in CD8* cells 43,54 46,40 6,25
% of CD8* Tgm in CD8* cells 8,07 13,68 3,67
% of CD8* Temra in CD8* cells 11,09 8,23 4,03
% of naive CD8+* in CD8+* cells 37,31 31,71 8,09
MFI of HLA-DR on CD4* Tcm 177,83 141,28 44,13
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MFI of HLA-DR on CD4* Tgm 394,83 404 110,01
MFI of HLA-DR on CD4* Tgmra 364,12 134,15 157,97
MFI of HLA-DR on naive CD4+ 51,87 10,11 13,43
MFI of HLA-DR on CD8* T¢m 327,83 182,88 70,82
MFI of HLA-DR on CD8* Tgm 328,17 253,63 73,18
MFI of HLA-DR on CD8* Tgmra 252,33 164,40 80,61
MFI of HLA-DR on naive CD8+* 84,95 36,68 23,09
MFI of CCR7 on CD4+ Tcm 821,67 989,63 102,10
MFI of CCR7 on CD4+ Tgm 380,17 524,50 78,96
MFI of CCR7 on CD4* Temra 382,20 546,38 106,35
MFI of CCR7 on naive CD4+ 1885,33 1906,88 185,34
MFI of CCR7 on CD8* Tcm 424,83 589,88 66,18
MFI of CCR7 on CD8* Tgm 301,50 499,50 74,41
MFI of CCR7 on CD8* Temra 379 598,25 90,06
MFI of CCR7 on naive CD8* 1289,17 1232,13 181,99
Number of CD14+ cells/mL 18117 35414 6538
Number of cDC1/mL 24 39 9
Number of cDC2/mL 306 762 154
Number of pDC/mL 414 438 153
% of cDC1 in DC 0,03 0,03 -0,30
% of ¢cDC2 in DC 0,43 0,60 -2,82
% of pDC in DC 0,54 0,36 2,83
MFI of HLA-DR on cDC1 4413,75 3894,88 448,79
MFI of HLA-DR on cDC2 6081,88 4843,25 422,90
MFI of HLA-DR on pDC 4778,13 3687,00 388,10
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MFI of CD86 on cDC1 229,38 218,63 14,56
MFI of CD86 on cDC2 211,88 178,25 10,89
MFI of CD86 on pDC 181,50 155,75 8,23
Number of eosinophils/mL 4105 6569 1924
Number of neutrophils/mL 87441 137497 24439
Number of CD177+ neutrophils/mL 49420 83798 16795
Number of CD177int neutrophils/mL 8591 48425 25174
Number of CD177- neutrophils/mL 30383 33568 6608
% of neutrophils in total cells 37,29 50,75 5,98
% of eosinophils in total cells 1,74 2,39 0,58
% of CD177* neutrophils in neutrophils 52,23 62,04 6,67
% of CD177intneutrophils in neutrophils 8,78 26,87 11,91
% of CD177 neutrophils in neutrophils 40,14 25,59 7,55
MFI of CD16 on eosinophils 1554,71 1237,13 56,95
MFI of CD32 on eosinophils 5863,14 4525,25 418,48
MFI of CD62L on eosinophils 1582,57 1409,50 122,81
MFI of CD16 on neutrophils 6496,43 5578,88 660,35
MFI of CD32 on neutrophils 11829,00 9552,63 699,95
MFI of CD62L on neutrophils 3552,00 3331,88 324,77
MFI of CD10 on neutrophils 1689,43 675,38 251,74
MFI of CD66b on neutrophils 2702,57 1712,00 444,88
MFI of CD16 on CD177+ neutrophils 6716,57 5662,00 676,88
MFI of CD32 on CD177* neutrophils 11547,00 9399,50 684,35
MFI of CD62L on CD177* neutrophils 3662,14 3354,00 322,99
MFI of CD16 on CD177int neutrophils 6208,71 5377,50 677,01
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MFI of CD32 on CD177int neutrophils 12050,71 9808,38 705,98
MFI of CD62L on CD177it neutrophils 3398,86 3177,88 342,13
MFI of CD16 on CD177- neutrophils 6211,00 5336,13 668,68
MFI of CD32 on CD177-neutrophils 12011,86 9720,25 699,84
MFI of CD62L on CD177- neutrophils 3422,43 3220,25 329,42
Number of basophils/mL 1823 2453 378

% of basophils in total cells 0,52 0,53 0.08
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Supplementary Figure 1 Gating strategy used in panel 1 to define major cells populations in

blood
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Supplementary Figure 2 Gating strategy used in panel 2 to define Th cells.
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Supplementary Figure 3 Gating strategy used
phenotype.
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Supplementary Figure 4 Gating strategy used in panel 4 to define memory T cells subsets and

phenotype.
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Supplementary Figure 5 Gating strategy used in panel 5 to define DC subsets and

phenotype.
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Supplementary Figure 6 Gating strategy used in panel 6 to define neutrophils and eosinophils

and phenotype.

CDw125

CDw125 i

In Single cells

s
SSC-A CD62L

Phenotypes:

Neutrophils CD16"NCCR3-
Eosinophils SSCNCCR3*

In neutrophils
CD66b+ neutrophils
CD177+ neutrophils
CD10+neutrophils

In neutrophils and eosinophils:
CD62L MFI

CD32 MFI
CD16MFI

Single Cells
953

Single Cells
986

In neutrophils
A

133




3.3.Part III IgG-FcyRs interspecies cross-binding

Different animal models have been widely used in researches for the reason that they
shared some similarities with human. In the studies involved in antibodies and
antibodies receptor functions, it was inevitable that the human antibodies may bind to
the antibodies receptors expressed by the animal model, or the human cells with
antibodies receptor expression could bind to the endogenous antibodies produced by
animal model. Additionally, we also used antibodies from different species in in vitro and
in vivo experiment. The choice of host species or antibodies subclasses sometimes
influenced the experiment results. Thus, it is important to know the interspecies

antibodies-antibodies receptor-binding pattern, especially for IgG and FcyRs.

In analogy to the previous work from my group, [ evaluated the capacity of complexed
IgG from various species (human, mouse, macaque, rat, hamster, guinea pig, rabbit, goat,
horse, sheep, bovine and chicken (IgY)) to bind to human and mouse FcyRs by flow
cytometry. F(ab’)z-aggregated IgG and immune complexes (ICs, TNP-BSA - anti-TNP
IgG) were used in parallel. My results document the specific binding patterns for each of
these IgG (sub)classes and will be a useful reference for the transition from one animal

model to preclinical mouse models or human cell-based bioassays.

The results of my work are presented in form of an article. It will be submitted for
publication in a scientific journal once a limited number of control experiments have

been done.
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Abstract (194/200 Words)

Immunoglobulin G (IgG) is the predominant antibody class generated during infections and used for the
generation of therapeutic antibodies. Antibodies are mainly characterized in or generated from animal
models that support particular infections, respond to particular antigens or allow the generation of
hybridomas. Due to the availability of numerous transgenic mouse models and the ease of performing
bioassays with human blood cells in vitro, most antibodies from species other than mice and humans are
tested in vitro using human cells and/or in vivo using mice. In this process, it is expected, but not yet
systematically documented, that IgG from these species interact with human or mouse IgG receptors
(FeyRs). In this study, we undertook a systematic assessment of binding specificities of IgG from various
species - macaque, hamster, rat, rabbit, guinea pig, cow, sheep, goat, horse, chicken, and mouse and human
as controls - to the families of human FcyRs, including their polymorphic variants, and of mouse FcyRs. Our
results document the specific binding patterns for each of these IgG (sub)classes and will be a useful
reference for the transition from one animal model to preclinical mouse models or human cell-based

bioassays.

136



Introduction

Different animal models are used to study various aspects of immunity and in particular antibody-
driven functions. Therapeutic antibodies are often generated from and evaluated in different animal models
for efficacy and toxicity. Mice, rats and guinea pigs are primary models for infection studies, because they
share similarities to humans regarding symptoms and triggered immune responses. Macaques are regularly
used for preclinical vaccine development but while their IgG subclasses carry the same denomination as
their human counterparts, their sequences are different from and their structure less divergent than human
IgG subclasses'. IgG antibodies exert many of their biological functions through the crystallizable fragment
(Fc) that can engage IgG receptors (FeyRs) and complement”. Transfer of polyclonal IgG, purified antigen-
specific IgG fractions or even purified antibodies from hybridomas or cloned antibodies from various
species into validated in vitro bioassays involving human cells or into transgenic or advantageous strains of
mice for in vivo studies is tempting, but requires knowledge on IgG-FcyR interactions that may result from
these experimentations. In addition, IgGs from rabbit, rat, hamster, goat and sheep are widely used as
reagents for routine experimental procedures and notably immunostainings that may be affected by IgG-
FeyR interactions. In humans four IgG subclasses exist (Ig(G1-4) that all have specific binding profiles to the
six human FeyRs and their polymorphic variants, as demonstrated in our landmark publication’. Mice
produce four IgG subclasses (IgG1, 1gG2a/c, 1gG2b, 1gG3) and express four classical 1gG receptors. While
binding of IgG to FcyRs within a given species is rather well-documented™, only a few studies investigated

7-11

binding specificities across species using various assays . We therefore undertook herein to describe the

interaction of 1gG (sub)classes from twelve different species to human and mouse FcyRs.

Methods
Cells

Stably transfected CHO-K1 expressing either human or mouse FLAG-tagged FcyRs were cultured as described:,=.

Cells were used for binding experiments 3 days after passage. Ig binding, transfection level and FcyR expressed were

analyzed by flow cytometry (MACSQuant10/16, Miltenyi Biotec).
Antibodies and reagents

Bovine serum albumin (BSA) (Sigma-Aldrich) was tri-nitrophenylated by incubation with picric acid (Eastman
Kodak) and the product fractionated on a gel filtration column (AKTA, GE Healthcare). Collected TNP,-BSA was
biotinylated using the Pierce Biotin-Conjugated Molecule kit (Thermo Fisher). The hybridoma producing mAbs
mouse [gG2a anti-TNP (Hy1.2) were provided by S. Izui (University of Geneva, Geneva, Switzerland), IgG2b anti-
TNP (GORK) by B. Heyman (Uppsala Universitet, Uppsala, Sweden) and 1gG3 anti-TNP (C3110E3) by J. Van Snick
(Ludwig Institute for Cancer Research Ltd, Brussels, Belgium). Codon-usage optimized variable regions of the mouse

H and L chain hybridoma IGELa2 (X65772.1, X65774.1) were cloned into human pUCI9-Igyl-or -Igk expression
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vectors (a kind gift from Hugo Mouquet, Institut Pasteur, Paris), respectively. Antibody switch variants were
generated by replacement of the human L or H chain C regions by human C regions with 1gG2, IgG3 and 1gG4....;
mouse K L chain (AJ487682.1) or y2b H chain C regions (J00479.1); Cynomolgus k L chain (JN984930) or y1-4 H
chain C regions (IgG1: IN984927; 1gG2: IN984928; putative 1gG3: DJ444798, 1gG4: IN984929- — gene synthesis:
Synbio Technologies). All in house produced antibodies were obtained by FectoPRO (Polyplus) transfection of Expi
cells purified on a ProteinG column followed by a desalting column on an HPLC instrument (AKTA, GE Healthcare).

Immunoglobulin binding assays

Two types of IgG complexes were formed: i) F(ab’),-aggregated IgG complexes, preformed by incubating
10 wg/ml IgG (Table S1) with 5 ug/ml fluorescently-labeled anti-1gG F(ab’); fragments (Table S2) in MACS
buffer (PBS 0.05% BSA 2 uM EDTA pH7.4) for 30 minutes at 37°C; ii) immune complexes (ICs) made of
10 pg/mL anti-TNP IgG mAbs incubated with 3.3 pg/mL TNP3;-BSA-Biotin for 30 min at 37°C in MACS
buffer. 2 x 10° transfectants CHO cells expressing human or mouse FLAG-tagged FeyRs were incubated with
either of these two types of IgG complexes for 30 minutes at 4°C, washed, and cell-bound IgG complexes
were revealed using 1 pg/mL APC-labeled streptavidin for 30 minutes at 4°C.

Results and Discussion

The vast majority of human and mouse FcyRs display low affinities for human and mouse IgG,
precluding detectable interactions with IgG monomers. They do, however, readily interact with IgG
complexes, either immune complexes (ICs) made of antigen and antigen-specific IgG, or complexes made

*12 CHO transfectants

of anti-IgG F(ab’), fragments and IgG (Fab,Cs)". We used from our previous studies
expressing a single human or mouse FcyR to evaluate the binding of Ig complexes from different species,
including human, cynomolgus monkey, mouse, rat, hamster, rabbit, cow, horse, sheep, goat I1gG, and also
chicken IgY, for fluidity hereafter termed chicken IgG. Binding of Ig complexes was either assessed for all
species by incubation of these CHO cells with fluorescently-labelled Fab,Cs, but also in addition for mouse,
human and macaque IgG by incubating cells with preformed ICs of engineered switch-variants or
hybridomas of anti-trinitrophenyl (TNP) IgGs and biotinylated TNP-labeled BSA. Untransfected CHO cells

were included in each experiment to monitor unspecific binding.
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Figure 1: Binding of IgG complexes from indicated species to mFeyRs.

Heatmaps summarizing binding of complexed mouse (A), human (B), macaque (C), rat (D), hamster (E), and rabbit, guinea
pig, cow, sheep, goat, horse and chicken IgG (“others” (F)) to FLAG-tagged mFcyRs on CHO transfectants. Preformed
immune complexes (ICs) of biotinylated TNP.-BSA and anti-TNP IgG were revealed by streptavidin-APC, Fab.Cs formed
by aggregating IgG with fluorescently labeled-F(ab"). anti-1gG (F(ab"); fragment-specific for for rat, rabbit and goat). Values

are logl0 transformed MFI of 1gG binding and represent means of at least three independent experiments.

IgG binding to mouse FcyRs

To validate our approach, we first assayed mouse IgG subclasses with mouse FcyR interactions using
both types of IgG complexes (Figure 1A/S1A) and reproduced the pattern previously described by us and
others™®. Mouse IgG1 bound exclusively to mFeyRIIB and mFeyRIII, mouse IgG2a and 1gG2¢ bound to all
mFcyRs, mouse IgG2b to mFeyRIIB, mFeyRIT and mFeyRIV, and mouse IgG3 to mFeyRI'™. Unexpectedly,
mlgG3 immune complexes bound detectably to mFcyRIIL In terms of binding strength to mouse IgG
complexes, mFcyRI bound mlgG2a=2¢>>3, mFcyRIIB bound mlgGl=2a=2b=2c¢, mFcyRIIl bound
mlgG2a=2b=2¢>1 and mFcyRIV bound mlgG2a=2b=2c.

We next investigated binding of human IgG subclasses (IgG1, 1gG2, 1gG3, [gG4) to mouse FeyRs
using the same approach and conditions (Figure 1B/S1B). All four human IgG subclasses bound all mFcyRs,
with hIgG3 showing the strongest interactions among all subclasses. Our data using human IgG complexes
reveal more generalized crossbinding towards mFcyRs than previous reported using a binding competition
assay’ that might require stronger IgG-FeyR interactions to be revealed, or using surface plasmon resonance
(SPR) that relied on monomeric interactions between human IgG and mF cyRs®. Of note, we used herein the
Sa28P variant of hlgG4 that enhances its stability and minimizes the dissociation of its two heavy chains (a
process termed “Fab arm exchange”)"”. This enables its binding to mFcyRIIB'".

Similarly to human IgG subclasses, the four macaque IgG subclasses (IgGl, 1gG2, 1gG3, 1gG4)
complexed as anti-TNP mAbs in ICs bound to all mFeyRs (Figure 1C). Macaque IgG4 binding strength was
surprisingly stronger than the other subclasses: [gG4 > [gG3 > IgG1 = IgG2. Macaque Fab,Cs show overall
lower binding to mFcyRs than ICs (Figure S1C).

Fab,Cs from rat IgGl, 1gG2a, and IgG2b demonstrated a peculiar pattern (Figure 1D), with rat
IgG2b complexes binding to all mFeyRs'®, rat IgG1 complexes exclusively to mFeyRIIB and mFeyRIIL, and
rat IgG2a complexes not binding mFcyRs. This striking difference may explain why rat IgG2b depletes cells
in mice much more efficiently than rat IgG2a for the same target'’.

Hamster 1gG subclasses are still ill-defined and classified so far only as IgG1 and IgG3. They may
originate from Syrian (S) or Armenian (A) hamsters. All hamster IgGs tested showed poor binding to
mFcyRs, with low detectable binding of total IgG (S) and IgG1 (A) to mFeyRIII (Figure 1E). These results
are in agreement with the observation that the Armenian hamster IgG1 anti-mFcyRIV mAb 9E9 can also
block mFcyRIII in vivo through its Fc portion'®.

Other species, express only one IgG subclass (rabbit, chicken IgY), or could only be tested on a pool
of total IgG (horse - 7 IgG subclasses'”; sheep, cow and goat - 3 IgG subclasses™; guinea pig, - 1 or 2 IgG

subclasses’**; Figure 1F). Rabbit IgG complexes bound weakly to all mFcyRs with the exception of
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mFcyRIIB; guinea pig IgG to all mFcyRs; cow IgG bound only to mFeyRIIL; sheep IgG complexes did not
bind; goat IgG complexes only to mFcyRIII and mFcyRIV; horse IgG complexes only to mFcyRI above

background levels; chicken IgY complexes did not bind.
IgG binding to human FeyRs

To assess the binding of IgGs from different species to human FcyRs and their polymorphic variants,
hFcyRI, hFcyRIIA (Hi3; and R;31), hFeyRIIB, hFeyRIIIA (Fisg and Visg), and hFeyRIIIB (NA1, NA2, and
SH), we used a collection of CHO cells transfected with N-terminal FLAG-tagged hFcyRs sorted to express
comparable levels of each hFeyR®. This collection therefore allows ranking of interactions between similarly

complexed IgG subclasses.
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Figure 2: Binding of IgG complexes from indicated species to hFcyRs.

Heatmaps summarizing binding of complexed human (A), macaque (B), mouse (C), rat (D), hamster (E), and rabbit, guinea
pig, cow, sheep, goat, horse IgG and chicken IgY (“others” (F) to FLAG-tagged hFcyRs on CHO transfectants. Preformed
immune complexes (ICs) of biotinylated TNP.-BSA and anti-TNP IgG were revealed by streptavidin-APC, Fab.Cs formed
by aggregating IgG with fluoresently labeled-F(ab’). anti-IgG (F(ab'), fragment-specific for rat, rabbit and goat). Values are

log10 transformed MFI of IgG binding and represent means of at least three independent experiments.

ICs made of any of anti-TNP mAbs of the four human IgG subclasses bound to all hFcyRs, but with
different overall binding strength: 1gG3 > IgGl > 1gG2 > IgG4 (Figure 2A). Fab,Cs of the same mAbs
showed a very similar pattern, except for an undetectable interaction between hFcyRIIB and IgG2 (Figure
S2A). These datasets are mostly in agreement with our landmark study published in 2009° using polyclonal
human IgG subclasses, but reveal interactions using human IgG subclass mAbs: IgG2 interactions with
hFcyRIIB, and IgG2 and IgG4saasp interactions with hFcyRIIIAgsg and the three hFcyRIIIB variants. We
confirm that hFcyRIIB has the overall weakest capacity to bind IgG among all hFcyRs, and that
hFcyRIIIAy, 53 shows a higher avidity for IgG aggregates than its polymorphic variant hFeyRIIAF s,

Macaque IgG ICs made of anti-TNP macaque IgG subclasses showed a very similar binding pattern

than human IgG ICs, with macaque IgG4 ICs however demonstrating a stronger binding strength than the
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other subclasses: 1gG4 > [gG3 > IgG1 > 1gG2 (Figure 2B/S2B). As for human IgG subclasses, macaque 1gG
subclasses bound with the weakest strength to hFeyRIIB, as reported previously'.

Mouse IgG complexes demonstrated few interactions with hFeyRs (Figure 2C/S2C), as anticipated™.
Mouse IgGG1 complexes bound predominantly to hFeyRIIAg;3; and hFeyRIIA;31; mouse IgG2a and 1gG2ce
complexes to all hFcyRs except hFcyRIITAg ss and hFcyRIIIB variants; IgG2b complexes weakly to
hFcyRIIA variants and hFcyRIIB; 1gG3 complexes to FeyRI and weakly to hFeyRIIIAv;ss.

Rat IgG Fab,Cs demonstrated restricted binding to hFcyRs (Figure 2D). Rat 1gG1 Fab,Cs bound
hFcyRITAR 31 > hFeyRITAy 3 > hFeyRIIB; rat IgG2a complexes did not bind; rat IgG2b complexes bound
exclusively hFcyRI, hFcyRITIA 13 and hFeyRIITAvyss.

Hamster 1gG complexes demonstrated no binding to hFeyRs (Figure 2E), except a weak binding of
hamster IgG1 complexes to hFcyRIIARg 3, and even weaker to hFeyRIIA; 3.

Rabbit Fab,Cs demonstrated a weak binding to hFcyRIIA, hFcyRIIIA and hFcyRIIIB (Figure 2F).
This may explain the ability of rabbit IgG to trigger human neutrophil (which express hFcyRIIA and
hFeyRIIIB) responses in vitro™.

Unexpectedly, guinea pig IgG complexes demonstrated strong and selective interaction with hFeyRI,
hFcyRIITA and hFeyRIIIB variants, but no detectable interaction with hFcyRIIA, hFeyRIIB and hFeyRIIC
(Figure 2F).

Cow and Goat IgG Fab,Cs weakly interacted with hFcyRIIA and hFcyRIIIAysg and hFcyRII, as
reported”, and Goat IgG also detectably with hFeyRI and hFeyRIIB.

Horse IgG complexes bound only to hFeyRI above background levels.

Chicken [gY complexes did not bind to hFcyRs.

This study demonstrates that with the exceptions of sheep IgG and chicken IgY, it is to be expected
that IgG from species other than human and mice will interact with at least one, and mostly a sizeable
fraction of, human and mouse FeyR(s). Our study presents several limitations: Firstly, the level of 1gG
receptors expressed by these CHO transfectants does not reflect the endogenous expression of FeyRs. A
high (non-physiological) density of FcyRs on transfectants might enable avidity interactions that may not
occur in vivo. Also, some IgG complexes were generated using anti-IgG (H+L) F(ab”), fragments that may
alter the binding of the Fc domain with FeyR binding (Table S2), or even account for the absence of binding
of sheep IgG and chicken IgY complexes.

Collectively, our data draw a comprehensive map of interactions between IgG from various species
and mouse and human FcyRs. It allows inferring FeyR effector functions triggered by each of these 1gG

subclasses.
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Supplemental Material:

Supplemental Table 1: Primary antibodies used in the study

Species Antibody subclass Clone Source Secondary Ab used Antigen
Human IgG1, x (IgELa)* home made 109-606-097 TNP
IgG2, x (IgELa)* home made 109-606-097 TNP
IgG3, x (IgELa)* home made 109-606-097 TNP
IgG4, (IgELa)* home made 109-606-097 TNP
Macaque IgG1, x (IgELa)* home made 109-606-097 TNP
1gG2, (IgELa)* home made 109-606-097 TNP
IgG3, k (IgELa)* home made 109-606-097 TNP
1gG4, x (IgELa)* home made 109-606-097 TNP
Mouse IgGl, x 107.3 BD Biosciences 115-606-072 TNP
IgG2a, k Hyl.2 home made 115-606-072 TNP
1gG2b, GORK home made 115-606-072 TNP
1gG2c, K (IgELa)* home made 115-606-072 TNP
IgG3, x C3110E3 home made 115-606-072 TNP
Rat IgGl, k RTK2071 Biolegend 112-606-072 TNP-KLH
IgG2a, k RTK2758 Biolegend 112-606-072 KLH
1gG2b, RTK4530 Biolegend 112-606-072 TNP-KLH
Syrian Hamster IgG SHG-1 Biolegend 6062-02 TNP-KLH
Armenian Hamster IgG HTK&88 Biolegend 6062-02 TNP-KLH
Hamster IgGl, Al19-3 BD Biosciences 6062-02 TNP
Hamster 1gG3, k E36-239 BD Biosciences 6062-02 TNP-KLH
Rabbit Purified Serum TgG 011-000-003 Immfl f‘)‘;‘:g;’cmh 111-096-047 /
Guinea pig Purified Serum 1gG 006-000-003 Immiif)‘;:;’:eamh 706-606-148 /
Bovine Purified Serum IgG 001-000-003 Immiif:g;mh 101-606-003 /
Sheep Purified Serum IgG 013-000-003 Immiif)]:;’:earch 713-546-147 /
Goat Purified Serum 1gG 005-000-003 lmmii‘;‘:::emh 305-606-047 /
Horse Purified Serum 1gG 008-000-003 Immiif)‘:::eamh 108-606-003 /
Chicken Purified Serum IgY 003-000-003 nm iiﬂ;:;’s"emh 703-606-155 /
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Supplemental Table 2: Secondary antibodies used in the study

Specificity and Format Label Provider Order number Used for
F(ab'); Fragment Goat Alexa Fluor® 647 Jackson ImmunoResearch 109-606-097 Human/
Anti-Human IgG, Macaque
F(ab"), fragment specific
F(ab'), Fragment Goat Anti-Mouse  Alexa Fluor® 647 Jackson ImmunoResearch 115-606-072 Mouse
IgG,
F(ab'), fragment specific
F(ab'); Fragment Goat Anti-Rat Alexa Fluor® 647  Jackson ImmunoResearch 112-606-072 Rat
G,
F(ab'), fragment specific
Goat F(ab'"). FITC SouthernBiotech 6062-02 Hamster
Anti- Hamster
IgG(H+L)
F(ab'), Fragment Goat Anti-Rabbit FITC Jackson ImmunoResearch 111-096-047 Rabbit
IgG,
F(ab'), fragment specific
F(ab"), Fragment Donkey Anti- Alexa Fluor® 647 Jackson ImmunoResearch 706-606-148 Guinea Pig
Guinea Pig
1gG (H+L)
F(ab'), Fragment Goat Anti-Bovine ~ Alexa Fluor® 647 Jackson ImmunoResearch 101-606-003 Cow
IgG (H+L)
F(ab"), Fragment Donkey Anti- Alexa Fluor® 488 Jackson ImmunoResearch 713-546-147 Sheep
Sheep
1gG (H+L)
F(ab'); Fragment Rabbit Anti-Goat ~ Alexa Fluor® 647 Jackson ImmunoResearch 305-606-047 Goat
1eG
F(ab"), fragment specific
F(ab'); Fragment Goat Anti-Horse  Alexa Fluor® 647 Jackson ImmunoResearch 108-606-003 Horse
1gG (H+L)
F(ab'), Fragment Donkey Anti- Alexa Fluor® 647 Jackson ImmunoResearch 703-606-155 Chicken
Chicken IgY (IgG) (H+L)
Anti-Flag APC Miltenyi biotec 130-101-565
Anti-hFeyRI (10.1) FITC BD Pharmingen 555527
Anti-hFeyRIIA (IV 3) FITC StemCell Technologies 60012FI
Anti-hFeyRIIB (2B6) FITC home made /
Anti-hFeyRII (3G8) FITC BD Pharmingen 555406
Anti-mFcyRI (290322) FITC R&D Systems FAB20741G
Anti-mFeyRIIB (AT130-2) APC eBioscience 17-0321-80
Anti-mFcyRIIII (2.4G2) FITC BD Pharmingen 553144
Anti-hFeyRIII (270053) FITC R&D Systems FABI19601F
Anti-hFeyRIV (9E9) FITC home made /
Streptavidin APC BD Biosciences 554067
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Supplemental Figure 1:
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Figure S1: Binding of Fab.Cs from indicated species to mFcyRs.
Heatmaps summarizing binding of Fab.Cs of mouse (A), human (B), macaque (C) IgG with fluorescently labeled-F(ab’).

anti-IgG (F(ab'), fragment-specific) to mFcyRs. Values are logl0 transformed MFI of IgG binding and represent means

of at least three independent experiments.
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Supplemental Figure 2
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Figure S2: Binding of Fab.Cs from indicated species to hFcyRs.
Heatmaps summarizing binding of Fab.Cs formed of human (A), macaque (B) and mouse (C) IgG with fluorescently

labeled-F(ab’). anti-IgG (F(ab'), fragment-specific) to hFcyRs. Values are logl0 transformed MFI of IgG binding and

represent means of at least three independent experiments.
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Supplemental Figure 3
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Supplemental Figure 3: Characterization of CHO transfectants. CHO transfectants expressing no, or a single human (A)
or mouse (B) FcyR were analyzed by flow cytometry. Histograms represent fluorescent intensity of unstained cells (grey),
cell stained with an anti-Flag (red) or with indicated FeyR-specific antibodies (green).
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4. Discussion:

Until today, it is still unclear how the switch in immunity occurs that renders a given
individual allergic. One possibility is that these individuals are prone to develop
allergies, and that factors like lifestyle, environmental exposure but also genetic factors
may pre-dispose otherwise healthy individuals to develop an allergic condition
throughout their lifes254, As many allergic diseases are characterized by a Th2 biased IgE
mediated immune response, we hypothesized that elevated total serum IgE (tIgE)
concentration may identify in a cohort of healthy donors, individuals at risk for
developing allergies. Unexpectedly, I identified in a 1000-healthy donor cohort a large
variability of the tIgE concentrations among individuals, ranging from 1-3,000 IU/mL,
and around 20% of the participants with a serum IgE concentration above the normal
range 114 IU/mL. This is different to other studies that reported 21-83 IU/mL. This
observation drove me to question which intrinsic and extrinsic factors lead to high tIgE
concentration in these donors and I will discuss the question whether this elevated tIgE
could serve as an indicator of a transitional immune state towards an allergic condition

in chapter 4.1.

In the second results part of my thesis, [ attempted to compare the immune phenotypes
of severely allergic patients with healthy controls. However, due to the limited number
of recruited patients, this part of my PhD remains preliminary. Until today, I could
observe some immune characteristics of allergic donors that are in agreement with
previously reported findings (e.g. increased Th2 and Th17 cells), but also made some
new observations that were previously not described (increased HLA-DR in naive CD4+T
cells and decreased CCR7 on CD8* Tcum, Tem and Temra). Notably, some of the measured
immune parameters appear to be different in amoxicillin allergy and wasp venom
allergy, indicating that many pathways may lead to allergies, involving different cellular
actors and cytokines and are hence affected differently by environmental and genetic
parameters. I will discuss in chapter 4.2 whether it is possible to define one allergic

immune phenotype to regroup all the individual causes that may underlie allergy.
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Finally, in the last chapter 4.3 of the discussion I will come back to my results of the
interspecies IgG- FcyR cross-binding study that I undertook during the last part of my
thesis. Beyond the discussion that is already integrated in the article, I will discuss the
results on the observed interaction patterns from an evolutionary point of view,

highlighting expected relationships and surprising results.

[ will then conclude my work and provide some outlooks into future steps of this

research in the perspectives.
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4.1. High total serum IgE, an indicator for individuals at-risk to develop an

allergic condition?

item under unauthorized distribution right



item under unauthorized distribution right



item under unauthorized distribution right



4.2. One allergicimmune phenotype fits all?

One of the major goals of the WASPenIP cohort is to answer the question whether all
wasp venom allergic individuals have a similar immune phenotype, when compared to
healthy controls; and whether this immune phenotype resemble the one of amoxicillin-
allergic donors. In other words: does an allergic immune phenotype exists that extends
over a specific allergy and embraces all causes of allergy that have in common to
potentially cause severe systemic reactions, such as anaphylaxis? And even all types of
allergies, be it hay fever, food allergies, atopic dermatitis or even allergic asthma? The
simplified model of allergy as a Th2 biased, IgE-dependent immune response would
indeed suggest so, however my preliminary data from the WASPenIP study suggest that
allergic donors show an individually dysregulated immune phenotype with a more or
less pronounced involvement of the different immune compartments. In this chapter, I

will discuss the implication of these different cellular players in allergic diseases.

My results show that the variations of immune parameters tested were larger among
amoxicillin allergic patients than among wasp venom allergic patients, suggesting that

amoxicillin allergy shows a more heterogeneous phenotype.

Although allergic diseases are characterized by Th2 response, however, in the two types
of allergies we tested, their Th2 cell numbers and percentage of Th2 cells among all the
CD4+ T cells did not a show significant difference compared to healthy donors. One
reason for this might be that we analysed these blood samples more than 6 weeks after
allergen exposure, at a time when allergen-triggered immune reactions are thought to
have come back to baseline levels. In addition, in contrast to exposure with other types
of allergens such as house dust mite or pollen, the contact of amoxicillin and wasp
venom can be avoided in daily life. It was therefore even more surprising that, unlike

Th2 cells, Th17 cells in both allergic groups were augmented.

Implication of Th17 cells in allergic diseases
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Th17 cells are characterized by the capacity to secrete IL-17 cytokines2¢?. The IL-17
cytokine family consist of IL-17A, [L-17B, IL-17C, IL-17D, IL-17E, IL-17F and contributes
to immunity through the induction of chemokines such as CXCL1, CXCL2 and CXCLS,
which attract myeloid cells2%8 and cytokines such as IL-6 and GM-CSF that promote
inflammation?¢. Although Th17 cells are the major source of IL-17, other cells like CD8*

T cells, natural killer T cells, y6 T cells, and ILC3s can also produce IL-17270.

Recently, there is increasing evidence for the participation of the Th17 pathway in
allergic diseases, and especially in severe asthma. In severe asthma patients the number
of IL-17 producing cells presented in the bronchoalveolar lavage fluid, lung biopsies,
sputum, and in the blood was positively correlated with asthma severity and
accompanied by neutrophil infiltration?7!. Furthermore, gene expression analysis from
endobronchial tissues of asthmatic patients separated patients into three phenotypical
clusters, which were Th2-high, Th17-high, Th2 and Th17 low?272. Notably, both of the
Th2-high and Th17-high phenotypes were associated with both neutrophil and
eosinophil infiltration272. It possible that co-induction of Th2 and Th17 reflects a
compensatory mechanism aiming at limiting an unbalanced cytokine production. Other
in vitro and in vivo studies suggested that Th2 cytokines are negatively regulated Th17
cytokines273.274, which could explain why I could not detect elevated numbers of Th2
cells in the WASPenIP cohort, characterized by increased Th17 cells numbers. Previous
research further demonstrated that asthma patient’s infiltration of neutrophils in the

lung resistant to corticosteroid therapy?58.

Furthermore, to reduce airway inflammation, corticosteroids can be given locally or
systematically. In nowadays inhaled corticosteroid are one of the major medicines to
control asthma crises. However, 10% of asthma patients are resistant to this therapy?27>.
Some of these patients show a high degree of neutrophil infiltration in the lungs,
together with elevated IL-17 levels in the airway tissues or in the bronchoalveolar
lavage fluids, suggesting that IL-17 could be causal in this neutrophil accumulation.
Corticosteroids have been suggested to exert anti-apoptotic effects on neutrophils and

thus prolong their survival, whereas they seem to have the opposite effect on
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eosinophils27¢, It has also been reported that the infiltration of neutrophils resulted from
corticosteroid therapy2??7. In the WASPenIP cohort, I could not observe elevated
neutrophil numbers that accompanied the augmented Th17 cells. This might be due to
the fact that I sampled blood and not tissue from allergic sites or by the fact that the
allergies I was studying are not chronic conditions like asthma (in which the neutrophil

accumulation could be escalated by the corticosteroid therapy).

Monocytes/ macrophages

Human monocytes are a heterogeneous cell population of mononuclear cells that
circulate in the blood. Two subsets are generally distinguished based on their
expression of CD16 on their surface. Classical monocytes are CD14++CD16- 278, they
exert multiple functions to preserve homeostasis, and contribute to pathogen defence
and tissue repair. Inflammatory monocytes express CD16 on their surface and notably
expand during inflammatory conditions?79.280, Depending on the expression level of
CD16, these can be further divided into two subsets with proinflammatory properties:
intermediate CD14+*CD16* monocytes and non-classical CD14+*CD16** monocytes?278.
Interestingly, the percentage of CD14+*CD16* monocytes was reported to increase in the
blood of patients with severe asthma as compared to patients with mild/moderate
asthma 281, In the WASPenlIP study, I also included the detection of monocyte subsets in
the flow cytometry analysis panels. However, I could not observe the increase of CD16*
blood monocytes. A possible reason could be that CD16* monocytes depend on
sustained allergen stimulation for their expansion. K. Kowal and colleagues showed that
house dust mite allergic patients had elevated CD14+*CD16* monocytes upon bronchial
challenges in the blood282. Another possibility could be that CD16* monocytes only
contribute to severe asthma instead of amoxicillin allergy or wasp venom allergy. Upon
extravasation and migration into tissues, monocytes can differentiate into macrophages.
Depending on the microenvironment, macrophages can polarize into classically
activated macrophages (M1) or alternatively activated macrophages (M2)283. Similar to
the concept of Th1-Th2, M1 macrophages are induced by LPS and exert pro-
inflammatory functions, such as the release of IFN-y, in response to clearance of
intracellular pathogens; on the contrary M2 macrophages will be induced by exposure to
IL-4 and IL-13 and play important roles in clearance of damaged cells as well as in
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wound healing?84. Increased M2 macrophage polarization has been observed in a mouse
model of allergic airway inflammation28> and in human asthma, M2 macrophages were
reported to become a major source of IL-13, thus driving the amplification of Th2
response283. In the WASPenlIP cohort I only had access to blood samples and therefore
could not analyse tissue macrophages. However, in the wasp allergic mouse model, we

could evaluate the role of M2 macrophages in the future.

Dendritic cells

It has been proposed that pDCs balance allergic inflammatory conditions through
induction of T regulatory cells by the release of retinoic acid and the induction of
retinaldehyde dehydrogenase enzymes. Several lines of research have shown a role for
tolerogenic pDCs in allergic diseases including allergic asthma. In a clinical study, it was
found that the number of pDCs in infancy inversely correlates with asthma development
during the first five years of life286. A recent study shows that human tonsilar pDCs
suppress effector T cell through the induction of Tregs287. In mice, the depletion of pDC
caused the lung inflammation in asthma model?43, and the increased number of pDC
could alleviate the asthma-like symptoms?288. Moreover, other study also showed the
tolerogenic roles of pDC in food allergy28?. In our study, I observed an increased
percentage of pDC and a decrease percentage of cDC2 in the blood of allergic patients as
compared to healthy donors. This observation was surprising, because cDCs were
described to participate in the initiation of Th2 responses and to attract eosinophils into
tissues290. On the other hand, I observed that cDCs in the allergic donors were more
activated and expressed elevated levels of CD86 and HLA-DR, which makes them more

proficient in activating naive T cells.

Importantly, although allergic donors had increased Th17 cells, pDCs and Tregs in their
blood, their Th1 cytokines, Th2 cytokines, Th17 cytokines and IL-10 were comparable
with healthy donors in the six whole blood stimulation conditions. This could be a
consequence from the above-described homeostasis between inflammatory and anti-

inflammatory responses, which restrict exaggerated responses by any of these cell
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types. In contrast to the comparable cytokine levels, some of the chemokines showed
distinct expression between healthy donors and allergic patients in certain stimulatory
conditions. Amoxicillin allergic patients had a tendency to release more CCL5 and
CXCL12 upon stimulation with relevant allergens. CCL5 is chemotactic for T cells,
eosinophils, and basophils and CXCL12 for T cells and monocytes, suggesting that these
patients could show enhanced leukocyte mobilization into the circulation. As mentioned
in the chapter 3.2, this difference may be related to the sensitizing route: amoxicillin
sensitization occurs most likely systemically, whereas wasp venom sensitization

happens in skin.

item under unauthorized distribution right

Figure 9 Molecular mechanisms in allergic inflammation. Reprinted from?2°1,

In conclusion, and as summarized in Figure 9, multiple cellular players contribute to
allergic diseases and their respective contribution may differ from one allergic disease
to another, and more importantly from one patient to another. While some features may
be shared between different allergic conditions and/or patients it is unlikely that a
unique immune phenotype is at the origin or these diverse conditions, which indicated

that on allergic immune phenotype could not fit all of the allergic conditions.
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4.3. From antibody evolution to application.

In the last part of my thesis, I evaluated the binding of IgG (sub) classes from different
species to human and mouse FcyRs. This allowed me to draw a comprehensive map of
interspecies cross-binding interactions that allows inferring FcyR effector functions
triggered by each of these IgG subclasses in in vitro studies using human cells or in vivo
when using mouse models. In the following chapter, I would like to discuss these results
from an evolutionary point of view. I will therefore begin this chapter with a brief

introduction to the evolution of immunoglobulins and FcyRs.

The evolution of immunoglobulins

The diversity of the adaptive immune system relies on immunoglobulins (Ig), T cell
receptors (TCR), and MHC. Expression of both Ig and TCR requires somatic
recombination of germline-coded gene segments and evolved in vertebrates almost 500
million years ago. With the exception of agnatha (lamprey and hagfish), all vertebrates
possess Ig of the M class (Figure 10) that exist in both a membrane-bound as well as in a
secreted forml!, revealing that IgM are the evolutionary oldest and most successful Ig
still found in mammals today. Cartilaginous fish have three types of immunoglobulins
IgM, IgW, and IgNAR (new antigen receptor). Their IgM is an orthologue to mammalian
IgM and can be present as monomers or pentamers. [gW has two membrane-expressed
forms and two secreted forms with different CH length. Compare to IgM and IgW, IgNAR
appears to be the most recent isotype and shows some homology to mammalian IgD.
The ray-finned fish also has three immunoglobulin classes IgM, IgD, and IgZ (catfish lack
IgZ). 1gZ is a smaller than IgM and possesses only limited complement activation
function. Interestingly, the ray-finned fish C§ locus is already linked to Cy, and therefore
presents a similar organisation as observed in mammals. In amphibians, such as Xenopus
tropicalis, five immunoglobulin classes can be found: IgM, IgD, IgX, IgY, and IgF. IgX
appears to be an analogue of mammalian IgA, whereas IgF and IgY show sequence
similarities, with IgF and IgY having two and three constant domains, respectively. IgY
indeed is thought to be a key isotype during immunoglobulin evolution84. It has been
suggested that it originates from an IgM gene duplication event and is present in

reptiles, together with IgM, IgD, and IgX, and in chicken alongside with IgA and IgM84.
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Except for analogy to IgX, IgA also shares features with IgM and IgY. IgG and IgE finally

appeared in mammals (the duck-billed platypus) and are thought to have derived from

IgY292,
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Figure 10 The different immunoglobulin classes evolved in various clades of vertebrates. Filled

cycles mark whole-genome duplication events. Reprinted from?.

IgG in mammals

As one of the most recent immunoglobulin classes, IgG plays an important role in the
immune homeostasis in circulation. During my thesis, [ investigated crossbinding of IgGs
from different mammalian species and the chicken IgY to mouse and human FcyRs. |
focused on species that are among the most relevant models used in immunology to
develop models of infections, test antibody-related hypotheses or generate hybridomas.

Among mammalian IgG, 1 tested IgGs from Perissodactyla (horse/Equus caballus),
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Artiodactyla (ruminants: cow/Bos taurus, goat/Hircus capra and sheep/Ovis aries),
Lagomorpha (rabbit/ Oryctolagus cuniculus), Rodents (hamster/ Cricetinae, guinea pig/
Cavia porcellus, rat/ Rattus and mouse/ Mus musculus), and Primates (Cynomolgus
monkey/ Macaca fascicularis and human/ Homo sapiens). The overall phylogenetic

relationship between the species used in my work is depicted in Figure 11.

Tree scale:

Equus caballus
— Bos taurus

Ovis aries

{ Capra hircus
Homo sapiens
Macaca fascicularis

Oryctolagus cuniculus
Cavia porcellus
Cricetulus migratorius
Mesocricetus auratus
Mus musculus

Rattus norvegicus

Figure 11 Species tree generated with PhyloT. Representation in ITOL IgG/Fc R tree. Fasta
sequences aligned using ClustalW with standard settings for slow/accurate alignment of Protein

sequences. Species trees were generated using the PhyML Bootstrap method.

The evolutionary relationships of these species is mostly conserved on the level of IgG
immunoglobulins, with maybe the exception of rabbit/rabbit IgG that appear closer
related to rodents in the species tree and whose IgG forms a (badly supported) node
with primates. It is noteworthy that IgG subclasses from a given animal showed
sometimes a closer relationship with the same subclass from a closely related species
(e.g. mouse, rat and hamster IgG1), and sometimes with other IgG subclasses within a

given animal (rat IgG1 and IgG2a) (Figure 12).
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Figure 12 Phylogenetic analyses of selected mammalian IgG and chicken IgY. Protein sequences
were aligned using ClustalW with standard settings for slow/accurate alignment of Protein sequences.
Trees were generated using the PhyML Bootstrap method. Alignements were done on the whole constant
region sequence, including CH1, hinge, CH2, CH3 (and CH4 for Gallus). * Indicates hypothetical /predicted

protein, # indicates truncated sequences after CH3 domain.

As expected, chicken IgY forms an outgroup of the IgG tree and also did not bind to any
human or mouse FcyR in the assays I used. This suggests that chicken IgY is an antibody
class of choice to avoid unspecific (FcR-mediated) binding when working with mouse or

human cells or tissues. In horse seven IgG subclasses were identified2?3. Horse IgG1-7
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bind to Staphylococcal protein A and protein G with different affinities, show differences
in complement Clq engagement and have different capacities to induce respiratory
burst in equine peripheral blood leukocytes2?4. Due to a lack of tools, I could only test
whole equine IgGs in my work, and surprisingly these bound only to the human and
mouse high affinity IgG receptor, FcyRI. This is an interesting observation and may
explain the successful use of horse-derived snake venom antiserum in humans29. Cow,
goat and sheep all belong to Bovidae, in which three subclasses of IgG were identified2°¢.
For all these species we again only had access to whole purified IgG. Unexpectedly, 1gG
complexes from these three species showed different binding to human and mouse
FcyRs: sheep IgG did not bind to either mouse or human FcyRs, whereas goat and cow
IgG complexes showed the same binding pattern, with binding to human FcyRI, FcyRIIA
H131, FcyRIIIA V131, and all the mouse FcyRs. How can we reconcile this discrepancy?
Indeed, in order to aggregate IgGs, I used anti-IgG F(ab’)2 fragments. Whenever
available, I used F(ab’)2 fragments directed against the F(ab’)2 fragment of the target
antibody. For sheep, cow, horse, guinea pig and chicken these were, however, not
available. I therefore used for anti-IgG (H+L) to aggregate IgG from these species that
could bind to the Fc portion of these IgGs and interfere or even block the interaction site
with FcyRs Rabbit only have one IgG subclass297 that bound to all mouse and human
activating FcyRs except human FcyRI, consistent with the use of rabbit IgG to trigger

human FcyR-expressing cells in vitro228.

Guinea pig has two IgG subclasses???, but we could only retrieve the sequence of one of
them. The phylogenetic analyses showed that those two Guinea pig IgG subclasses are
next to each other. Rabbit IgG was closer to human IgG, whereas guinea pig IgG are
closer to mouse IgGs. Thus it is not a surprise to us that the binding patterns of those
rabbit and guinea pig IgGs are similar, with rabbit IgGs showing a boarder binding
profile to human FcyRs. Nevertheless, it is interesting to see that guinea pig IgGs have

also a potent binding avidity for human FcyRs.

Syrian hamsters used in laboratories are believed to have originated from only three to

four littermates captured in 1930300, All the hamster IgGs I could test (Syrian hamster
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total IgG, Armenian hamster IgG1, Armenian hamster [gG3, Armenian hamster total 1gG),
Syrian hamster IgG, Armenian hamster IgGl, and Armenian hamster IgG bound to
mouse FcyRIIl and weakly to human FcyRIIA R131. Armenian hamster IgG3 did not bind
to any human or mouse FcyRs. The divergent evolutionary time of hamster from
Muridae was twice as long as the split between mouse and rat; this could explain the
rather poor binding of complexed hamster IgGs to mouse (and human) FcyRs (Figure 10

and301),

As indicated in the introduction, it has been proposed that mouse and rat IgGs derived
from a common set of ancestral genes: with rat y2c gene showing homology to mouse y3;
the rat y2a/y1 pair to mouse y1; and the rat y2b is homologous to mouse y2a/2b. Our
results partially support this hypothesis: complexed mouse IgG1, and rat IgG1l showed
the same binding pattern to mouse and human FcyRs, rat I[gG2a, however only showed
very weak interactions with FcyRs; mouse IgG2a/2b/2c binding resembled the pattern

observed with rat IgG2b.

Macaques are widely used non-human primates for studies on vaccination and infection
diseases, especially HIV. Cynomolgus monkeys have four IgG subclasses. Their intron-
exon organization is similar to their human counterparts and also their amino acid
sequences share 86.3-90.3% with human IgGs. Macaque IgG1-4 carry however a number
of amino acid changes which are thought to be potentially affecting their effector
functions392. In agreement with their evolutionary proximity, we found the macaque

IgGs shared overall a very similar binding pattern with their human counterparts.

IgG-FcyRs cross binding between human and mouse

The phylogenetic analysis of human and mouse FCGR genes in Figure 13 reveals the
sometimes misleading denomination of these genes in the two species, which mixes
historical discovery with functional resemblance. The FCGR1 locus separated from the
low affinity IgG receptor locus and indeed mouse and human FCGR1 are closely related.
Thus one could expect that mouse and human FcyRI show similar binding patterns to

IgGs from different species. Indeed, both FcyRIs bound to all human complexed IgGs
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with lowest binding to human IgG2; and to mouse IgG2a/c and IgG3 and much weaker
or not to mouse IgG1l and IgG2b. Human FcgRIIA, 1IB and IIC derived from gene
duplication and exon swapping events. Albeit the closer evolutionary relationship of
mouse FcgRIIB to human FcgRIIB, than to human FcgRIIA, the binding pattern of mouse
FcyRIIB showed higher overlap to the one observed for human FcyRIIA (H131).

Other than what one may think from the common denomination mouse and human FcyR
do not show many similarities. Indeed, mouse FcyRIII is rather related to mouse FcyRIIB
and the human FcyRIIIA and FcyRIIIB show commonality with mouse FcgRIV. Among
the 4 mouse FcyRs, mouse FcyRIII displayed the broadest binding profile: interacting
with all complexed human and mouse IgGs. However, its counterpart human FcyRIIIA
and FcyRIIIB selectively bound to mouse IgGs: human FcyRIIIA F176 bound to mouse
IgG2c; FcyRIIIA F176 bound to mouse IgG2a/c and IgG3; FcyRIIIB did not bind any

mouse IgGs.

While these similarities may explain some of the observed binding patterns, they can not
explain all the observations, I have made during this study. On example is the mouse
FcyRIV: Although the amino acid sequence clusters with human FcyRIIIA and FcyRIIIB,
its binding pattern to mouse IgGs rather resembles the one of human FcyRIIB. Indeed,
the phylogenetic analysis is based on the alignment of the whole amino acid sequence of
the different receptors whereas the binding to IgG is mediated by certain regions of the

receptor and strongly depends on a couple of amino acids393.

This also explains why some well-documented polymorphisms of human FcyRs show
such a strong impact on IgG binding of the receptors. FcyRIIA H131 is generally
described to show better binding to human IgG2 than hFcyRIIA, except for mouse IgG1.
Additionally, I could confirm that the human FcyRIIIA V176 variant showed more

binding to all human IgGs tested, and extend this observation to IgGs from other species.
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Figure 13 Phylogenetic analyses of human and mouse FcgR proteins. FcgR protein sequences were
aligned using ClustalW with standard settings for slow/accurate alignment of Protein sequences. Trees
was generated using the PhyML Bootstrap method detailed below.

Collectively, my data adds interesting insights into the co-evolution of IgGs and FcyRs

and identifies crossbinding patterns between IgGs from different species and human

and mouse FcyRs that allow inferring FcyR effector functions.
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5. Perspective

The results of my thesis can be summarized by three major outcomes:

In healthy individuals, total serum IgE concentrations are associated with age, sex,
smoking habits, certain HLA alleles, FceRI expression on basophils, and a particular
profile of cytokines released in whole blood stimulation assays. The observation that the
group of individuals with high IgE concentrations contained a two times higher
proportion of individuals with a reported family history of allergic diseases (12.4 %
instead of 6 % in the overall cohort), suggests that this group is “at-risk” of developing
allergies. This should be particularly true for individuals that present with persisting
high IgE concentrations, because their “milieu interieur” may be permanently

challenged by augmented cytokine productions and notably cytokines of the Th2 type.

My preliminary data from the analysis of the WASPenIP cohort suggest that classical
features of an allergic immune phenotype are conserved in this cohort. Data from
induced immune responses, however, are yet too preliminary to draw solid conclusions.
This study will continue after my PhD. We expect that we will be able to present a
complete description on immune phenotypes of these two types of allergies at the end of
the study. Furthermore, the WASPenIP study will in the future include the analysis of
wasp venom allergic individuals before and after 1 year of VIT, which will shed light on
the changes induced by this therapy in these allergic patients. It will be particularly
interesting to test whether we can define biomarker candidates that will allow
measuring the success of VIT, and/or predict the appropriateness of this therapy for
individual patients. As VIT is unsuccessful in 10% of treated patients after 2-3 years of
therapy, it would be very informative to determine, which immune parameters preclude
successful VIT, in order to propose to these patients’ alternative treatment approaches

before engaging into this long therapeutic process.

The wasp venom allergy mouse model that [ have established will further provide a

valuable tool for more mechanistic studies of wasp venom allergy. To my knowledge, it
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is the first model working in C57BL/6 mice, the genetic background on which most
genetically modified lines were generated. Using these transgenic mice will enable to
identify key components of the effector phase of this allergy model. Furthermore, this

model will help to answer the following questions:

e Where is anatomical IgE production site and does it depend on the location of
antigen exposure?
e How are allergen-specific memory B cells produced?

e (Can we detect allergen-specific long-lived plasma cells?

Indeed, as outlined in my introduction the mechanisms underlying IgE memory are still
very much debated and this model may help to elucidate the generation of allergen-
specific memory B cells and antibody producing cells, because we have in the laboratory
the capability to functionally phenotype these cell types using microfluidics-based single
cell approaches to identify specific antibody producing cells in droplets using

fluorescently labelled recombinant antigen(s).

Lastly, my analysis of the binding of IgG from various species to human and mouse
FcyRs provide a comprehensive map of their interactions that provides a useful
reference for the transition from one animal model to preclinical mouse models or
human cell-based bioassays. It allows inferring FcyR-dependent effector mechanisms at
play when using IgG(s) from “exotic” species in mice or in vitro on human cells. It adds
also to our understanding of IgG and FcyR co-evolution. In the future, it would be
interesting to test isolated subclasses from species from which only pooled total IgG
could be tested during my PhD. Furthermore, the aggregation of IgGs using F(ab’)2 anti-
IgG F(ab’)2, but even more so using F(ab’)2 anti-IgG (H+L), is suboptimal and probably
shows limited steric resemblance with antigen-induced IgG aggregation. It would
therefore be interesting to test the binding of immune complexes formed with these
antibodies to mouse and human FcyRs, to comfort the observations made with F (ab’2)

aggregates.
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Neutrophils are best known for their critical role in host defense, for which they utilize
multiple innate immune mechanisms, including microbe-associated pattern recognition,
phagocytosis, production of reactive oxygen species, and the release of potent
proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their
well-established contribution to innate immunity, neutrophils were more recently reported
to interact with various other cell types, including cells from the adaptive immune
system, thereby enabling neutrophils to tune the overall immune response of the host.
Neutrophils express different receptors for IgG antibodies (Fcy receptors), which facilitate
the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-
linking of several receptors. Indeed, FcyRs (via IgG antibodies) confer neutrophils with
a key feature of the adaptive immunity: an antigen-specific cell response. This review
summarizes the expression and function of FcyRs on human neutrophils in health and
disease and how they are affected by polymorphisms in the FCGR loci. Additionally,
we will discuss the role of neutrophils in providing help to marginal zone B cells for the
production of antibodies, which in turn may trigger neutrophil effector functions when
engaging FcyRs.

Keywords: neutrophils, Fcy receptors, IgG, immune complexes, B cells

INTRODUCTION

Neutrophils are key players of the innate immune response. They are the most abundant leukocytes
in the human blood (4.5-11 x 103/mm?). Following a circadian rhythm, neutrophils are released
from the bone marrow (1-3) and circulate in the blood for 4-6 days (4, 5). If they are not attracted
to sites of inflammation, they will express markers of aged neutrophils, and preferentially home
to the liver, spleen, or bone marrow, where they undergo apoptosis and are cleared by resident
macrophages (6-8). This immunologically silent mechanism allows for maintaining a high number
of functional neutrophils in the blood (55-70% of all blood leukocytes in the periphery), while
guaranteeing a quick removal of deregulated or altered neutrophils. The tight control of neutrophil
homeostasis is critical for the organism as many of their effector functions [i.e., production
of reactive oxygen species (ROS), release of neutrophil extracellular traps (NETs), or granules
containing potent proteases and lipophosphatases (9)] bare the potential to be deleterious for the
host and damage surrounding tissues and organs.

Neutrophils express various receptors that enable them to respond almost instantaneously to
diverse inflammatory stimuli and danger signals. Among these, receptors for the constant region
of IgG immunoglobulins (FcyRs) stand out. They bestow on neutrophils the capacity to react
in an antigen-specific way—hence to acquire a key feature of the adaptive immunity. FcyRs
enable neutrophils to interact with and respond to monomeric or aggregated immunoglobulins,
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antigen-antibody immune complexes, and opsonized (antibody-
coated) particles, cells, or surfaces. Humans express six classical
FcyRs:  FcyRI/CD64,  FcyRIIA/CD32A,  FcyRIIB/CD32B,
FcyRIIC/CD32C, FcyRIIIA/CD16A, and FcyRIIIB/CD16B
(Table 1). All these FcyRs bind at least two of the four different
human IgG subclasses with association constants (K, ) ranging
from 8 x 107 down to 2 x 10* M~! (10).

All FcyRs, except for FcyRIIB and FcyRIIIB, are classical
activating receptors. Their activating signals are transduced by
an immunoreceptor tyrosine-based activation motif (ITAM)
that is either present in the cytoplasmic domain of the
FcyR itself (FcyRIIA/FcyRIIC) or in an associated signaling
subunit, notably the FcRy chain. Upon FcyR aggregation by
multimeric ligands, Src family kinases phosphorylate these
motifs, allowing the activation of a signaling cascade, involving
the spleen tyrosine kinase (SYK), phosphatidylinositol 3-kinase
(PI3K), phospholipase C (PLC)-y, Rho, and Rac, resulting
in calcium mobilization, cell activation, cytokine/chemokine
production, and cell migration (11-13). Counterbalancing these
activating FcyRs, the inhibitory receptor FcyRIIB possesses
an immunoreceptor tyrosine-based inhibition motif (ITIM) in
its intracytoplasmic domain. Upon its co-engagement with
an activating receptor, the phosphorylated ITIM recruits the
inositol polyphosphate-5-phosphatase SHIP1 (14) that negatively
regulates the signaling cascades initiated by ITAM-containing
receptors (15-17). Moreover, several FCGR polymorphisms have
been described in humans, adding to the complexity of this
receptor family with overlapping functions and affinities for their
ligands that collaborate, regulate, or compete with each other to
tune cellular responses.

In this review, we will focus on IgG receptors (FcyRs) on
neutrophils and their role and regulation in steady state and
inflammatory conditions.

TABLE 1 | Classical FcyRs and their expression on neutrophils.

Neutrophil Fcy Receptors

EXPRESSION AND ROLE OF FCyR ON
NEUTROPHILS DURING HOMEOSTASIS

Blood neutrophils from healthy individuals express large
amounts of a rather atypical FcyR, the FcyRIIIB. FcyRIIIB
is a glycophosphatidylinositol (GPI)-anchored protein with
no signaling capacity on its own. It was first described on
neutrophils in 1982 with the means of a newly developed
monoclonal antibody (mAb, 3G8) that also recognizes FcyRIIIA
on monocytes and NK cells (18). Incubation of neutrophils
with 3G8 could efficiently block binding of rabbit IgG-opsonized
sheep erythrocytes and soluble rabbit IgG immune complexes
(ICs), demonstrating that the newly identified receptor is
an IgG Fc receptor (18). FcyRIIIB is one of the most
abundant proteins on the surface of neutrophils, with each
cell expressing between 100,000 and 200,000 copies (19). In
resting neutrophils, the receptor is equally distributed over the
cell membrane and is present in both low- and high-density
detergent-resistant membranes (DRMs) (20). Additionally,
intracellular storage compartments have been described that
allow rapid FcyRIIIB mobilization to the cell surface upon
receptor engagement (21, 22). Previously thought to have no
signaling function, it is now generally accepted that FcyRIIIB
can trigger neutrophil activation. Following multivalent cross-
linking, FcyRIIIB accumulates in high-density DRMs (20) and
elicits downstream signals, leading to Ca%t mobilization, cell
adhesion, and degranulation, but not to respiratory burst (23-
27). The exact intracellular signaling cascade remains a matter
of debate (20, 27-29), but seems to involve phosphorylation of
the Src kinase Hck, mitogen-activated kinases (MAPKs) ERK
(extracellular signal regulated kinase), and p38 and the tyrosine
kinase Pyk2 (30-32). In this context, it is noteworthy that the
3G8 antibody, which is often used to block FcyRIIIB, can trigger

VN N

N ¢

Structure

Name FcyRI FcyRIIA FcyRIIB FcyRIIC FcyRIIIA FcyRIIIB

CD CD64 CD32A CD32B CD32C CD16A CD16B

Gene FCGR1A FCGR2A FCGR2B FCGR2C FCGR3A FCGR3B

Alleles - H1z1 R131 logo Togo Qs7 stops7 V176 F176 NA1 NA2 SH
Affinity High Low to medium Low to medium Low to medium Low to medium Low to medium
Expression on resting < 2,000 copies 30,000-60,000 Low to none; increase when Low to none Low to none 100,000-200,000
neutrophils copies 2B4 promotor haplotype copies

Neutrophil expression in Up to 10-fold increased Upregulated in Low to none; increase when Low to none Low to none 100,000-200,000

inflammatory conditions expression in presence of
IFN-y and G-CSF

presence TNF-a

2B4 promotor haplotype

copies, subject to
shedding
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intracellular Ca-mobilization and neutrophil aggregation on its
own. This cell activation requires co-engagement of another
neutrophil FcyR, FcyRIIA via the Fc portion of the intact
antibody (33). The main functions of neutrophil FcyRIIIB during
homeostasis are the removal of spontaneously forming ICs from
the vasculature, and the maintenance of the soluble FcyRIIIB
(sFcyRIIIB) pool. FcyRIIIB-bound ICs are internalized through
a mechanism used by GPI-anchored receptors and fluid-phase
endocytosis (27), thereby clearing ICs without triggering further
cell activation that could be deleterious to the host. sFcyRIIIB
is present in serum of healthy individuals at concentrations of
5nM (34). It is generated by proteolytic cleavage of surface
FcyRIIIB on activated and apoptotic neutrophils (34, 35). Despite
its relative abundance, the function of sFcyRIIIB remains elusive.
sFcyRIIIB retains Fc-binding capacities and hence competes
with membrane low-affinity receptors to dampen Fc-dependent
immune reactions (36, 37). Due to the fact that FcyRIIIB binds
to multimeric IgG1 and IgG3, but not or poorly IgG2 or IgG4
(10), the biological activity of these latter IgG subclasses should
not be affected by sFcyRIIIB. Notably, both IgG2 and IgG4 also
bind less well to other low-affinity FcyRs (with the exception
of FcyRITA-H131) (10). Adding to this possible immune-
modulatory function, it also has been reported that sFcyRIIIB
can bind to complement receptors CD11b/CD18 or CR3/Mac-
1 and CD11¢/CD18 or CR4 via lectin/carbohydrate interactions
(38). These interactions can result in cytokine production by
neutrophils and monocytes or may inhibit B2 integrin-dependent
adhesion and subsequent transendothelial migration (38).

Neutrophils constitutively express a second low-affinity 1gG
receptor, the FcyRIIA. Albeit less abundant than FcyRIIIB,
each neutrophil expresses between 30,000 and 60,000 copies
of FcyRIIA (19). Interestingly, this receptor was described to
have a lower affinity for IgG on resting than on primed or
activated neutrophils (39), a feature that has been attributed to
its interactions with integrins (40). Upon efficient cross-linking
of FcyRIIA in vitro, neutrophils become activated, degranulate,
and produce inflammatory mediators and ROS and trigger
neutrophil extracellular trap (NET) formation (27, 41-44). More
recent data, however, suggest that resting neutrophils rather
poorly respond to FcyRIIA-induced activation. One possible
explanation for these divergent observations may be found in
the purification techniques used to isolate neutrophils. Indeed,
density gradient centrifugation or dextran sedimentation used to
be the standard techniques. Nowadays, neutrophils are mostly
isolated by negative selection procedures that maintain the cells
in isotonic buffer, but expose them to magnetic fields. Indeed,
while comparative data between the procedures are sparse (45,
46), possible differences in neutrophil priming and purity need
to be taken into account when interpreting the data.

In contrast to the abundant FcyRIIIB and FcyRIIA,
neutrophils express less than 2,000 copies of the high-affinity
FcyRI (19). Ligation of FcyRI on resting neutrophil with a specific
antibody does not induce a significant degree of cell activation
(47) and neutrophils show poor binding to monomeric IgG1 and
phagocytosis of IgG-opsonized particles (48, 49). Neutrophils
can also express FcyRIIB; however, its detection is variable
among individuals ranging from low to undetectable (27, 50).
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Although it is well-established that co-engagement of FcyRIIB
potently inhibits FcyR-driven cell activation (15-17), it is
questionable if the low expression of FcyRIIB on neutrophils
could oppose signals generated by the other FcyRs in this
context. Finally, a very recent report suggests that neutrophils
may also express modest amounts of FcyRIIIA (51), a receptor
that was previously thought to be exclusively expressed by NK
cells and monocytes (52). In this study, the authors report that
FcyRIITA engagement on neutrophils from FcyRIIIB-deficient
and normal individuals efficiently triggers cell activation and
mediates phagocytosis of IgG-opsonized beads that could not be
blocked by anti-FcyRIIA F(ab’), fragments (51). Many different
groups have studied FcyR expression on neutrophils before, but
were incapable to affirm FcyRIIIA expression. This might be due
to the fact that most antibodies used to study FcyRIII recognize
both FcyRIITA and FcyRIIIB, and that FcyRIIIB deficiency is
rare. In a study from 1994, one can however appreciate some
residual FcyRIIT [3G8] staining on neutrophils from paroxysmal
nocturnal hemoglobinuria patients [a disorder characterized by
the deficiency of glycosyl phosphatidylinositol (GPI)-anchored
proteins in blood cell membranes] and an FcyRIIIB-deficient
patient, as well as on neutrophils treated with GPI-phospholipase
C as compared to an isotype control (53). This residual binding,
if specific, could support the hypothesis of a low expression
of FcyRIITA on neutrophils. The central piece of evidence for
FcyRIITA expression on neutrophils in the recent report is a
single FcyRIIIB-deficient donor, whose genotype was confirmed
by RT-PCR and not by sequencing of the FcyR locus. This allows
speculation about a cryptic FcyRIIIB expression in this donor.
Furthermore, if a low expression of FcyRIIIA can be confirmed
in other FcyRIIIB-deficient donors, it will be necessary to clarify
to what extent it can contribute to neutrophil effector functions
in vivo. One point is certain, this study refuels the discussion
about the capacity of FcyRIIIB to trigger cell activation and
suggests that neutrophil activation observed following receptor
cross-linking with anti-FcyRIII F(ab’)2 fragments or ICs can be
rather attributed to FcyRIIIA than to the GPI-anchored receptor.

NEUTROPHIL FCyR IN AN
INFLAMMATORY CONTEXT

Neutrophil FcyR expression can change dramatically in the
context of an inflammation or infection. Notably, FcyRI is
strongly upregulated in the presence of inflammatory cytokines
such as interferon-y (IFN-y) or granulocyte colony-stimulating
factor reaching up to 20,000 copies per cell (19, 48, 54, 55). This
confers neutrophils the capacity to efficiently bind monomeric
IgG (48), phagocytose IgG-opsonized bacteria (49), exert anti-
fungal functions (56), and induce ROS production in response
to FcyRI cross-linking (47). FcyRI upregulation also enables
neutrophils to efficiently trigger antibody-dependent cytotoxicity
(ADCC) (55). As a consequence, neutrophil FcyRI expression
has been shown to reflect infection state and disease activity in
numerous inflammatory conditions (57-61), and a low CD64
expression is a marker for sustained remission in Crohn’s disease
patients receiving infliximab (62). Consecutively, neutrophil
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CD64 has been discussed as an interesting biomarker, especially
in the case of sepsis (57). Sepsis diagnosis includes a blood
culture that allows specific identification of the disease-causing
bacteria and their antibiotic resistances, but takes up to 2 days
to generate results. Precious time, during which patients with
sepsis suspicion commonly receive broad-spectrum antibiotics
to avoid deterioration of their condition. This common practice
has it flaws, because antibiotics are not adapted in case of
non-bacterial infections, and because some bacteria require
specific antibiotics and are not targeted by broad-spectrum ones.
Certainly, inappropriate use of antibiotics contributes to the
increase of antibiotic resistance among different bacteria that has
been classified as “one of the biggest threats to global health,
food security, and development today” by the WHO. Neutrophil
CD64 expression was proposed as a way to detect infection so
that timely decisions and treatment refinement can be made.
Neutrophil CD64 can be evaluated within 1-2h, making it a
rapid diagnostic and prognostic marker. Indeed, a study reported
not only elevated CD64 expression in septic patients compared
to healthy controls, but also a decrease in CD64 expression
following treatment with an appropriate antibiotic compared
to inefficient treatment (63). However, not all studies find in
neutrophil CD64 a reliable marker for sepsis detection, and
different studies report divergent sensitivity and specificity for
sepsis detection by neutrophil CD64 (64-67). Two meta-analyses
report a large heterogeneity in study design and results (68, 69).
This may be due to the fact that this test can be run in any
laboratory with a flow cytometer and that the results can be
expressed either as percentage of neutrophils expressing CD64 or
as mean fluorescent intensity of the whole neutrophil population.
In the absence of a standardized assay, each laboratory needs
to establish its own cutoff. Furthermore, confounding factors
(previous use of antibiotics, delayed culture collection, etc.)
may result in a negative result from the microbiological test
that, as a consequence, poses problems with the classification
of the patients. Given the low costs of the assay, neutrophil
CD64 remains an interesting candidate to monitor in case of
sepsis suspicion. Larger prospective studies are however required
to conclude on its sensitivity and suitability as a biomarker,
especially in light of new approaches for sepsis diagnosis and the
evolution of our understanding of sepsis as a condition involving
not only the bacterial infection and its resulting immune
response, but also changes in coagulation, immunosuppression,
and organ dysfunction (70).

IFN-y treatment has little effect on neutrophil FcyRIIA
expression but can induce FcyRIIB expression (albeit on a low
level) and, depending on the experimental conditions, may
induce FcyRIIIB down-modulation (19, 71). FcyRITA expression
on neutrophils may however be induced by TNF-a (72).
As a consequence, primed neutrophils and neutrophils from
individuals with inflammatory conditions show enhanced FcyR-
dependent responses (73-75).

Finally, IgG ICs can also be at the onset of inflammation,
allergic reactions, and autoimmunity (76, 77). This is notably
the case, when the amounts of circulating ICs suddenly rise
and exceed the body’s capacity to silently remove them, when
ICs form that are insoluble and “precipitate” onto endothelial
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cells, or when autoantibodies bind to large surfaces, i.e., cartilage,
thereby opsonizing phagocytosis-resistant structures. All these
conditions can be mimicked in vitro and helped to understand
that soluble 1Cs require primed neutrophils to efficiently trigger
external ROS production and degranulation, while insoluble
ICs can activate unprimed neutrophils, leading to intracellular
ROS production, degranulation, and sustained liberation of
inflammatory mediators such as IL-8 and leukotriene B4
(LTB4) that sustain neutrophil-driven inflammation (73, 78).
An elegant study, using transgenic mice expressing either
FeyRIIA or FcyRIIIB or both in the absence of endogenous
activating FcyR, demonstrated that FcyRIIIB has a primordial
role in the homeostatic removal of soluble ICs within the
vasculature, whereas FcyRIIA engagement by soluble ICs in
tissues generates NETs, a pro-inflammatory process linked to
autoimmunity (27, 44). Engagement of either FcyR by deposited
ICs leads to neutrophil accumulation (44). These data illustrate
the specialized role of FcyRs in triggering neutrophil effector
functions, despite their overlapping binding properties to IgG.

GENETIC VARIATIONS AFFECTING
NEUTROPHIL FCyR EXPRESSION AND
FUNCTIONS

A number of polymorphisms have been identified in the FCGR
loci that affect their biological functions and may consequently
impact the individual’s susceptibility for diseases and their
capacity to respond to therapies based on monoclonal antibodies.
This is notably the case for polymorphisms that alter the affinity
of FcyRs for IgG, thus directly affecting their capacity to clear
immune complexes.

Until today, no polymorphism of FcyRI has been identified
that modifies the affinity of the receptor for IgG or its
associated functions. In contrast, the low-affinity IgG receptor
locus on chromosome 1q23.3 coding for all FCGR2/3 genes is
home to multiple genetic variants, including single-nucleotide
polymorphisms (SNPs) and copy number variations (CNVs).
These genetic variants display heterogeneity among ethnic
groups (79). The best-characterized polymorphism of FCGR2A
results in substitution of an arginine residue by a histidine at
position 131 (rs1801274) that results in a receptor variant with
an improved binding to IgG2 (and to a lesser extent to IgG1 and
IgG3) (80). The FCGR2A-R131 variant is therefore expected to
show lower clearance of IgG immune complexes and is indeed
associated with susceptibility to auto-immune disorders (81-
85) and recurrent bacterial infections with encapsulated bacteria
(86). The FCGR2A-H131 variant, on the other hand, predisposes
individuals to Kawasaki disease and Myasthenia gravis (87, 88).
More recently, a splice variant of FCGR2A, FcyRIIa(exon6*), has
been described that retains a cryptic exon in the cytoplasmic
tail of the receptor (89, 90). This results in a gain-of-function
allele that increases neutrophil sensitivity to IgG stimulation
and hence predisposes to anaphylactic reactions following IVIg
infusions in patients with hypogammaglobulinemia (71). As
described above, FcyRIIB is poorly expressed on neutrophils
(50). A specific haplotype in the promoter region, termed 2B.4,
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was shown to augment FcyRIIB expression on myeloid cells,
including neutrophils (91). This promoter variant enables a more
efficient binding of the transcription factors GATA4 and Yin-
Yangl, resulting in a higher promoter activity and hence higher
FcyRIIB expression (92). Surprisingly, this gain-of-function
promoter haplotype was found to be associated with systemic
lupus erythematous (SLE) (91). A possible explanation might
reside in an FcyRIIB-dependent inhibition of IC-phagocytosis,
but experimental data to support this hypothesis are still missing.
Additionally, a polymorphism of FCGR2B (rs1050501) results
in the replacement of a threonine by an isoleucine in the
transmembrane domain (1232T). The presence of threonine in
that position entails a failure of FcyRIIB to enter lipid rafts and,
as a consequence, reduces its ability to inhibit activatory receptors
(93). For FCGR3B, three different allotypes have been described,
resulting from five non-synonymous polymorphisms that all
affect the neutrophil antigen (NA) located in the membrane-
distal Ig-like domain. These variants are termed NAI (R3s Ngs
Azg Dgr Vige), NA2 (S3s Ses Azg Niga Lios), and SH (S36 Ses
D7g Nga Lige) (94). They do not result in detectable differences
in affinity for hlgG subclasses (10). The NA1 allotype was
nevertheless reported to increase phagocytosis of IgG-opsonized
particles (95) and is associated with a reduced responsiveness
to IVIG therapy in Kawasaki disease (96). The SH allotype is
the rarest allele and less well-characterized. Recently, it has been
reported to be associated to increased FCGR3B copy numbers
(79) that could account for the higher FcyRIIIB expression levels
described earlier (97).

A rather large number of studies have associated a single
FeyR polymorphism with the induction or severity of antibody-
related diseases, or the efficacy of antibody-based therapies.
It is however important to bear in mind that all low-affinity
IgG receptors are encoded in a single locus on chromosome 1
(1923). Indeed, a high degree of linkage disequilibrium has been
reported for the FCGR2/3 locus (79, 98, 99) that are strongly
linked to ethnic background (79). Association studies should
therefore take into account the entire locus and not investigate
an isolated gene (100). Adding to the complexity of the 1q23
locus, gene copy number variations (CNVs) have been described
for FCGR3A, FCGR3B, and FCGR2C that directly impact the
expression level of the receptors (97). These CNV can include
deletions of parts of the locus, giving rise to FCGR2A/2C chimeric
genes, reducing the expression and function (ROS induction)
of the resulting receptor (101). CNVs of FCGR3B have been
associated to a number of autoimmune disorders, including SLE,
rheumatoid arthritis, and systemic auto-immunity (102-106).
Indeed, fewer than two copies of FCGR3B have been associated
to SLE susceptibility (107, 108), which has been confirmed in
meta-analysis (109, 110).

Lastly, 0.03-0.1% of the population show a deficiency of
FCGR3B (and the FCGR2C gene) (101, 107). While most
studies did not find an association of the FCGR3B™! genotype
with a disease phenotype, one report suggested an association
with SLE (102, 111, 112). This apparent contradiction with
the finding that low copy numbers increase SLE susceptibility
could be due to the low frequency of this genotype in the
population, resulting in an insufficient power for calculation.
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On the other hand, FcyRIIIB-deficient individuals were included
at the estimated frequency in a selective cohort of healthy
donors with a long list of exclusion criteria, suggesting that
FeyRIIB deficiency remains undetected in most carriers (113).
This suggests that FCGR3B deficiency does not directly cause
disease, but possibly aggravates disease pathogenesis when ICs
are accumulating.

REGULATION OF NEUTROPHIL FCyRS

The best-described pathway of inhibiting activating FcyRs
is, without doubt, through co-engagement of the inhibitory
FcyRIIB by the same immune complexes (114, 115). However,
as mentioned earlier, human neutrophils express little to
no FcyRIIB (50), and it appears therefore mandatory that
neutrophils rely on other mechanisms to regulate their activation
by FeyRs.

Recently, several groups have reported that the glycosylation
state of the IgG antibodies significantly modifies their affinity
for FcyRs (116-118). Indeed, all human IgG contain a single N-
linked glycan positioned at asparagine 297 in the antibody Fc
portion, which is critical for their interaction with FcyRs. Several
studies have illustrated how the composition of the Fc glycan
influences IgG effector functions (119, 120) (Figure 1A). As an
example, IgG Fc glycans lacking fucose display a greatly enhanced
affinity to the FcyRs, FeyRIIIA, and FeyRIIIB, compared to
fucosylated IgG. Besides their well-established improvement
of NK cell-dependent ADCC in vivo (121-123), afucosylated
IgG used to opsonize target cells also activate neutrophils
more efficiently than wild-type IgG, inducing pro-inflammatory
cytokines and phagocytosis of target cells, but no ROS production
or antibody-dependent cellular cytotoxicity activity (124).
Addition of an afucosylated anti-CD20 mAb (obinutuzumab) to
blood samples from RA and SLE patients resulted in a superior
B cell deletion than wt anti-CD20 mAb, concomitantly with
neutrophil and NK cell activation (125), suggesting that both
cells cooperate to eliminate target cells in vifro. Opposing these
results, another study reported FcyRIIIB-dependent inhibition
of neutrophil ADCC or trogocytosis of solid cancer cells coated
with either anti-HER2 mAb (trastuzumab) or anti-EGFR mAb
(cetuximab). Notably, copy numbers of FcyRIIIB could be linked
to the inhibitory effect and blocking FcyRIIIB with F(ab’); 3G8
improved target cell killing (126). Further studies are required
to determine whether these discrepancies depend on the target
cell (solid tumor vs. hematological) and how neutrophil FcyRITIB
(and FcyRIITA) (51) contribute to cancer elimination in vive.
Terminal sialylation of the Fc glycan, instead, decreases the
affinity for activating FcyRs (while maintaining the affinity for
inhibitory FeyRIIB), and sialylated IgG has reduced capacity
to initiate ADCC in vive (118, 127). This might explain why
antibodies against autoantigens can often be detected months
to years before the first sign of an autoimmune inflammation
(128-130). De-sialysation of these antibodies might therefore
be a hallmark of autoimmune disease progression (131, 132).
In this context, it is noteworthy that a recent report evidenced
the potential of in vivo glycan engineering of antibodies to
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modulate of IgG effector functions. Indeed, application of
soluble glycosyl-transferases could reduce autoantibody-induced
inflammation in models of arthritis and nephrotoxic nephritis
(133). However, it remains to be determined whether these
very promising findings are exclusively due to IgG glycan
modulation or the result of a more complex alteration of multiple
glycan structures.

Sialic acid residues have recently been reported to contribute
to another mechanism of FcyR regulation (Figure 1B). Prompted
by the finding that CD18-deficient neutrophils show an enhanced
recruitment to IgG-coated endothelium (134) and that an SNP
in the CD18 integrin Mac-1 (rs1143679) is a risk factor for
SLE (135), Saggu et al. investigated the interaction between
FeyRITIA and Mac-1 on the cell surface. The authors convincingly
show that the extracellular portion of Mac-1 in its inactive
bend configuration interacts with sialylated FcyRIIA on resting
neutrophils and thereby lowers the affinity of the receptor for
IgG (40). Interestingly, once the interaction between FcyRITA
and IgG is sufficiently strong to overcome this increased
activation threshold, Mac-1 assists FcyRIIA to induce cell
spreading (136). This study provides a mechanistic explanation
for the observation made earlier that FcyRIIA appears to have
a lower affinity for IgG on resting neutrophils than on pre-
activated ones.

Other molecules have been suggested to interact and modulate
FeyRITA activity. These include the ITIM-containing CD300a
that can be rapidly mobilized from an intracellular pool to the
surface of peripheral blood neutrophils following stimulation.
Co-engagement of CD300a and FcyRITA reduced FcyRITA-
dependent activation in an in vitro system (137) (Figure 1C).
Furthermore, two plasma proteins produced in the liver during
the acute phase of inflammations were described to interact
with FcyRIIA (and FcyRIIIB), the C-reactive protein (CRP)
and the serum amyloid P (SAP) component (138, 139). CRP
preferentially interacts with the FcyRITA-R131-allele and can act
like an opsonin, triggering the uptake of CRP-coated particles
(140) (Figure 1D). Interestingly, IgG ICs can reduce CRP
binding to FcyRIIA, whereas the reverse is not true (141). SAP
was similarly described to act as an opsonin that could enhance
phagocytosis via FcyRs (139). Additionally, it was described
to reduce neutrophil adhesion by binding to FcyRITA (142).
Whether SAP binding can regulate IgG-dependent FcyRIIA
activation remains however to be determined.

Another possibility to modulate FcyR-induced cell activation
is to regulate receptor availability on the cell surface. This
can be achieved by receptor internalization (8, 90, 93),
translocation from intracellular storage compartments to the
cell surface (22), or shedding of the extracellular portion of
the FcyR. This latter phenomenon is best documented for
FcyRIIIB, which is rapidly and efficiently cleaved from the
cell surface following neutrophil stimulation (143), and during
neutrophil apoptosis (34, 35). The main protease responsible
for this ectodomain shedding appears to be ADAMI7 (A
Desintegrin and Metalloprotease-17) (144) that is rapidly
activated following multiple cell stimulating pathways, such as
FcyR/CR-dependent phagocytosis or stimulation with fMLP or
PMA (145) (Figure 1E). ADAM17 activation appears to require
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activation of caspase 8 and mitochondrial ROS production
(146). Supporting an important role for the regulation of cell
activation by ADAM17, ADAM17 deficiency in humans has been
associated with severe inflammatory disorders of the skin and the
gut, resulting in recurrent sepsis and poor survival (147, 148).
Similar to the ectodomain shedding of FcyRIIIB, reduction of
surface FcyRIIA on Langerhans cells and activated neutrophils
has been described (39, 149). These initial observations have
recently gained attention by the demonstration that TLR-induced
activation resulted in the cleavage of extracellular FcyRIIA on
the neutrophil surface, thus removing the N-terminal portion
of the receptor (150) (Figure 1F). This cleavage has functional
consequences for the neutrophils. It reduces their phagocytic
activity, while augmenting their propensity to produce NETs,
thereby supporting the concept that phagocytosis and NETosis
could be neutrophil effector functions that oppose each other,
as had been suggested by the finding that NETosis was reduced
when microbes where small enough to be phagocytized (151).
Similarly, neutrophils from SLE patients and especially their low-
density granulocytes that were reported to spontaneously release
NETs (152) seem to express less “full-length” FcyRIIA than
neutrophils from healthy donors (150). This might explain why
neutrophils from SLE patients fail to efficiently clear circulating
ICs and are NET-prone (153). The cleavage of the N-terminal
portion of FcyRIIA involves a PI3K-dependent production of
ROS and seems to be mediated by the serin-protease furin
(150); the exact mechanism of its action, however, as well
as the fate and role of the N-terminal fragment of FcyRIIA
following cleavage remains to be discovered. Similarly, questions
on the stability, function, and possibly altered affinity of the
shortened membrane-bound FcyRIIA justify further research in
this area.

Finally, it has been suggested that FcyRIIIB could represent
an efficient modulator of FcyRIIA activity in neutrophils.
Indeed, the weakly signaling FcyRITIB predominantes FcyRITA
expression on resting neutrophils. Furthermore, CD16B extends
out further from the cell surface membrane (154, 155), implying
that FcyRIIIB is likely to capture circulating immune complexes,
thus competing with and preventing FcyRIIA-IgG interactions.
The picture is very different with regard to activated neutrophils
that, through FcyRIIIB ectodomain shedding, grant access to
cell-activating FcyRITA (154).

CROSS-TALK OF NEUTROPHILS AND B
CELLS

Collectively, these studies underline the critical involvement of
IgGs in the modulation of neutrophil activity. Indeed, IgGs
through FcyRs render neutrophils capable to act to threats
to the host in an antigen-specific manner, but are also the
trigger for tissue damage if autoantigens are being targeted.
Interestingly, there is accumulating evidence that neutrophils
are not mere effector cells of the immune system, but actively
shape and modulate immune responses through interactions
with other cells and the release of mediators. In the context of
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IgG-dependent immunity, their recently described interactions
with B cells are of particular interest.

Data from patients receiving G-CSF suggested that
neutrophils can communicate with B cells through production
of BAFF (B cell-activating factor) (156), a molecule known to
sustain B cell survival and responsiveness (157, 158). Similarly,
APRIL (A Proliferation Inducing Ligand) was suggested to
be an important survival proliferation factor for human B
cells, which additionally drives class-switching reactions (159-
161). Neutrophils constitutively secrete APRIL (162), but
circulating neutrophils fail to directly activate B cells. Upon
infection, neutrophil-derived APRIL is retained by heparan
sulfate proteoglycans in mucosal tissues, thereby creating a
niche for local plasma cell survival and sustained antibody
production (163). Similarly, it has been reported that diffuse
large B cell lymphoma secretes chemokines to recruit APRIL-
producing blood neutrophils to the tumor (162) and that
high APRIL concentrations in tumors are correlated with
decreased patient survival rates (164). In SLE, neutrophils
interact with B cells in many different ways. SLE neutrophils
were reported to show increased expression of BAFF, APRIL,
and IEN-a that fuels B cell development and autoantibody
production in the bone marrow. In the circulation, SLE
neutrophils secrete increased amounts of IL-6 upon IFN-a
stimulation that supports survival and maturation of B cells and
plasma blasts (165). Concomitantly, they are also NET-prone
and release LL37-DNA complexes that trigger polyclonal B
cell activation via TLR9, giving rise to more NET-specific
autoantibodies (166).

Neutrophils can also be found in multiple locations of the
spleen, including the perifollicular zone, around the marginal
zone (MZ) and the red pulp (167-170). Their exact role in
each of these compartments is not fully understood. In the
spleen, a specialized subset of neutrophils has been described
that has the capacity to provide B cell support. These “B
cell helper neutrophils” (Npy) are located around the MZ of
healthy human donors and express high levels of the B cell-
stimulating cytokines BAFE, APRIL, and IL-21 in response to
microbial stimuli and thereby provide help to MZ B cells to
trigger antibody production against T cell-independent antigens
(169). In patients with severe congenital neutropenia (SCN),
CD27+1gD'" circulating MZ B cells and levels of IgM, IgG,
and IgA antibodies against T cell-independent antigens were
less abundant than in healthy subjects (169). Contradicting
this report, no Npy could be identified in spleen samples
from organ transplant donors (171); also, similar numbers of
CD27+IgD+ memory B cells were reported in patients suffering
from chronic idiopathic neutropenia and healthy subjects (172).
In addition to BAFF and APRIL, Pentraxin3 (PTX3) has been
proposed to be a neutrophil-derived factor that supports B
cell functions (173). PTX3 is stored in secondary granules of
neutrophils and released upon stimulation with Toll-like receptor
agonists (174). PTX3 binds to MZ B cells and enhances the
secretion of class-switched IgG in the presence of BAFF (173).

The capacity of neutrophils to secrete B cell-stimulating factors
enables them to directly interact with the adaptive immune
system and shape antibody responses, which, in turn, can
trigger potent neutrophil effector functions. This underlines
the complexity of our immune system and the multiple layers
of regulation that are at play to efficiently protect us from
external threats.

CONCLUDING REMARKS

Collectively, the discussed literature exemplifies how our
understanding of neutrophils has evolved from their early
descriptions as simple first-line defense cells, equipped with
powerful weapons to defend the host but unable to differentiate
between different threats, to portrayals of cells capable of
tailoring their responses according to their environment. We now
appreciate that neutrophils interact with various other cell types,
integrate complex stimuli, and cooperate with other players
of the immune system to fine-tune their responses. The role
and regulation of FcyR on neutrophils is not an exception to
this rule. Early reports frequently suggested that IgG ICs had
very strong neutrophil-activating capacities, but more recently,
a much more detailed picture has been drawn, taking into
account the size, solubility, composition, and location of ICs.
Furthermore, IgG enables neutrophils to function as antigen-
specific cells; at the same time, accumulating evidence suggest
that neutrophils in turn tune the activity of (at least some)
B cells to regulate antibody production. Much remains to be
discovered and hopefully new techniques will allow us to unravel
previously unappreciated functions of neutrophils and revise
others. We are looking forward to hearing more about these
exciting cells.
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Abstract

The immune system consists of an innate and an adaptive branch that interact with each other to preserve body homeostasis and
defend the organism against invading pathogens. This is partly achieved by the action of antibodies that can bind to antigen via their
Fab portion and trigger effector functions with their Fc portion. Produced by cells of the adaptive immune system, antibodies enable
cells of the innate immune system to react in an antigen-specific manner. Antibodies are mainly characterized in or generated from
animal models that support particular infections, respond to particular antigens or allow the generation of hybridomas. Due to the
availability of numerous transgenic mouse models and the ease of performing bioassays with human blood cells in vitro, most
antibodies from species other than mice and humans are tested in vitro using human cells and/or in vivo using mice. In my thesis, I
undertook a systematic approach to characterize interactions between IgG from different species and mouse and human IgG
receptors (FcyRs) that will be a useful reference for the transition from one animal model to preclinical mouse models or human cell-
based bioassays.

Non-infectious diseases can arise from an imbalanced immune homeostasis. Allergic conditions are one such example and are in
general associated with a Th2-driven IgE-dependent physiopathology involving mast cells and basophils. More recently, the
contribution of other cellular populations and antibody subclasses to allergic diseases was put forward. To systematically
characterize the immune phenotype of allergic patients, we recruited a new cohort of patients severely allergic to wasp venom or
amoxicillin. Using fresh blood samples, I analysed steady state and induced immune responses and compared them to healthy
individuals. My preliminary data document a trend for elevated Th2 and Th17 cells in allergic individuals and fewer but more
mature dendritic cells. They also illustrate a large inter-individual variability in terms of induced immune responses. To identify
immunological, genetic and environmental factors that determine the concentration of total serum IgE in healthy individuals, I also
explored available data of an extensively analysed cohort of age- and sex-stratified 1000 healthy donors (Milieu Intérieur). My
analysis reveals that total serum IgE concentrations in these donors are associated with age, sex, smoking habits, certain HLA alleles,
FceRI expression on basophils, and a particular profile of cytokines released in whole blood stimulation assays.

My thesis provides a basis for the in-depth characterization of the immune phenotype of severely allergic patients and contributes to
a better understanding of the parameters that associate with serum IgE concentrations in healthy individuals. Additionally, my work
draws a comprehensive map of the interactions between IgG from different species and mouse and human FcyRs that will help to
anticipate FcyR-dependent effector functions when using IgGs from other species with human or mouse effector cells.

Keywords : Allergy; Immune phenotype; IgE; IgG; FcyRs; Interspecies cross-binding

Résumé

Le systeme immunitaire est constitué d’'une branche innée et d'une branche adaptative qui interagissent ensemble et qui permettent
de préserver I'homéostasie et de se défendre contre des agents pathogénes. Ceci dépend notamment de l'action d’anticorps, qui
peuvent se lier a des antigenes via leur région Fab et activer des fonctions effectrices grace a leur région Fc. Produits par les cellules
du systéme immunitaire adaptatif, les anticorps permettent aux cellules du systéme immunitaire inné de répondre de maniéere
spécifique a un antigéne donné. Les anticorps sont principalement caractérisés et synthétisés en laboratoire, a partir de modéles
animaux d’infections particuliéres, répondant a des antigenes d’'intéréts, ou permettant la génération d’hybridomes.

Grace au développement de nombreux modéles de souris transgéniques et de la facilité a effectuer des tests biologiques avec des
cellules sanguins humaines in vitro, la plupart des anticorps d’espéces autres que murins et humains sont étudiés in vitro a partir de
cellules humaines et / ou in vivo en utilisant des modéles murins. Au cours de ma these, j'ai entrepris une approche systématique afin
de caractériser les interactions entre les IgG de différentes espéces et les récepteurs aux IgG (FcyR) murins et humains. Ce travail
pourra a terme servir de référence pour le passage de modeéles animaux a des modeles précliniques utilisant les souris, ou des bio-
essais a partir de cellules humaines.

Des maladies non infectieuses peuvent étre le résultat d'une homéostasie immunitaire déséquilibrée. Les allergies en sont un
exemple, et sont généralement associées a physiopathologie orientée Th2, dépendante des IgE et faisant intervenir mastocytes et
basophiles. Récemment, la contribution d’autres populations cellulaires et d’autres sous-classes d’anticorps a été mise en évidence
lors de réactions allergiques. Dans le but de caractériser systématiquement le phénotype immun de patients allergiques, nous avons
participé au recrutement d’une nouvelle cohorte de patients sévérement allergiques au venin de guépe ou a l'amoxicilline. A partir
de prélévements sanguins, j’ai analysé les caractéristiques de leur état basal et lors de I'induction de réactions immunitaires, et les ai
comparés a des donneurs controles sains.

Mes résultats préliminaires démontrent une tendance a l'augmentation des cellules Th2 et Th17 chez les patients allergiques et
suggerent une diminution de la taille de la population des cellules dendritiques, mais qui sont néanmoins plus matures. Ils illustrent
également une grande variabilité interindividuelle lors de l'induction de réponses immunitaires. Pour identifier les facteurs
immunologiques, génétiques et environnementaux qui déterminent la concentration d'IgE sériques totales chez des individus sains,
j'ai également étudié les données disponibles d'une cohorte de 1000 donneurs sains stratifiés par dge et par sexe (Milieu Intérieur).
Mon analyse révele que les concentrations sériques totales d'IgE chez ces donneurs sont corrélés a des facteurs tels que I'age, le sexe,
le tabagisme, certains alleles HLA, l'intensité d'expression de FceRI sur les basophiles et un profil particulier de cytokines libérées
lors de tests de stimulation du sang total.

Ma these fournit ainsi une base pour la caractérisation approfondie du phénotype immunitaire des patients gravement allergiques
et contribue a une meilleure compréhension des paramétres associés aux concentrations sériques d'IgE chez des individus sains. De
plus, mon travail dresse une carte compléte des interactions entre les IgG de différentes espéces et les FcyR murins et humains, qui
aideront a terme a anticiper les fonctions effectrices dépendantes de FcyR lors de l'utilisation d'IgG d'autres espéces avec des cellules
effectrices humaines ou murines.

Mots-clés : allergie ; phénotype immunitaire, IgE, IgG, FcyRs, interactions inter-espéces.





