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 ABSTRACT 

This thesis focuses on the design of new versatile and compliant end-effectors for collaborative 
robot works, which are based on multi-segment dual-triangle tensegrity mechanisms that can be 
actuated independently to achieve the desired configuration with the required stiffness properties. 
Different with the conventional rigid robot end-effectors, it was demonstrated from the stiffness 
analysis that such type of mechanism can achieve high flexibility, designers can evaluate the stiffness 
sensitivity of this mechanism with respect to an arbitrary initial configuration for different combination 
of the geometric parameters, external loading and the springs pre-stresses. Besides, the buckling and 
quasi-buckling phenomenon of this serial mechanism under the loading were detected. And an 
analytical method allowing to compute the critical force causing the buckling for this serial structure 
with an arbitrary number of segments was proposed, which is based on the eigenvalue analysis of the 
some special matrix depending on both geometric and elastostatic parameters. This allows designers 
to predict or avoid the dangerous states of this mechanism by properly changing the geometric 
parameters and control inputs. Furthermore, the optimization-based kinematic control strategies were 
proposed in this thesis, which allow this redundant multi-segment mechanism to achieve the target 
endpoint location and avoid collisions between not only the mechanism end-point but also the 
mechanism body and the workspace obstacles. The advantages of the developed technique are 
confirmed via the computing simulation, and the results show that this redundant serial mechanism 
has a very flexible shape changing capacity while passing through the task space. 

Keywords: Robot end-effector, compliant manipulator, tensegrity mechanism, stiffness analysis, 
kinematic control. 

  



Abstract 

iv 

 

  



 

v 

 CONTENTS  

ACKNOWLEDGMENT .................................................................................................................................... i 

ABSTRACT ...................................................................................................................................................... iii 

CONTENTS ....................................................................................................................................................... v 

LIST OF FIGURES ......................................................................................................................................... vii 

LIST OF TABLES ........................................................................................................................................... xii 

LIST OF SYMBOLS ...................................................................................................................................... xiii 

INTRODUCTION ............................................................................................................................................. 1 
Motivation .............................................................................................................................................. 1 

Thesis goal and research problems ........................................................................................................ 2 

Thesis structure ...................................................................................................................................... 3 

Main contributions ................................................................................................................................. 5 

Publications and conference presentations ............................................................................................ 7 

CHAPTER 1  FLEXIBLE SERIAL MANIPULATORS AS END-EFFECTORS FOR 
COLLABORATIVE ROBOTS ........................................................................................................................ 9 
1.1 Robot end-effector design: conventional approaches and current trends .................................. 10 

1.2 Tensegrity mechanisms and their application in robotics .......................................................... 13 

1.2.1 Definition and history of tensegrity structures .................................................................... 13 

1.2.2 Mechanical properties of tensegrity structures ................................................................... 16 

1.2.3 Tensegrity structures in robotics ......................................................................................... 18 

1.3 Stiffness of flexible manipulators and existing modelling techniques ...................................... 21 

1.3.1 Finite Element Analysis ...................................................................................................... 21 

1.3.2 Matrix Structural Analysis method (MSA) ......................................................................... 24 

1.3.3 Virtual Joint Method ( VJM ) .............................................................................................. 30 

1.4 Non-linear stiffness behaviour of flexible robotic manipulators ............................................... 38 

1.4.1 Buckling phenomenon in continuous mechanical systems ................................................. 38 

1.4.2 Buckling in discrete mechanical systems and robotics ....................................................... 43 

1.4.3 Summary: thesis goal and principle tasks (research problems) .......................................... 57 

CHAPTER 2 COMPARISON OF TENSEGRITY MECHANISMS FOR DESIGN OF MULTI-
SEGMENT ROBOT END-EFFECTORS ..................................................................................................... 61 
2.1 Possible architectures of manipulating mechanisms for robot end-effectors ............................ 62 

2.2 Stiffness properties of the dual-triangle tensegrity mechanism ................................................. 65 

2.2.1 Geometrical model and static equilibrium equation ........................................................... 65 

2.2.2 Equilibrium configurations and their stability .................................................................... 66 



Contents  

vi 

2.2.3 Controlling mechanism configurations ............................................................................... 73 

2.3 Stiffness properties of the X-shape tensegrity mechanism ........................................................ 75 

2.3.1 Geometrical model and static equilibrium equation ........................................................... 75 

2.3.2 Equilibrium configurations and their stability .................................................................... 79 

2.3.3 Controlling mechanism configurations ............................................................................... 83 

2.4 Comparison of the dual-triangle and X-shape tensegrity mechanisms ..................................... 84 

2.5 Summary .................................................................................................................................... 86 

CHAPTER 3 ANALYSIS OF A TWO-SEGMENT MECHANISM  COMPOSED OF DUAL-
TRIANGLES ................................................................................................................................................... 89 
3.1 Stiffness analysis of a straight configuration ............................................................................. 89 

3.2 Stiffness analysis of non-straight configurations ....................................................................... 93 

3.3 Controlling mechanism configurations ...................................................................................... 96 

3.4 Summary .................................................................................................................................... 98 

CHAPTER 4 ANALYSIS OF THREE-SEGMENT MECHANISM COMPOSED OF DUAL-
TRIANGLES ................................................................................................................................................. 101 
4.1 Stiffness analysis of a straight configuration ........................................................................... 101 

4.2 Stiffness analysis of a non-straight configuration .................................................................... 110 

4.3 Controlling mechanism configurations .................................................................................... 117 

4.4 Summary .................................................................................................................................. 125 

CHAPTER 5 ANALYSIS OF MULTI-SEGMENT MECHANISM COMPOSED OF DUAL-
TRIANGLES ................................................................................................................................................. 129 
5.1 Stiffness analysis of a straight configuration ........................................................................... 129 

5.2 Stiffness analysis of a non-straight configuration .................................................................... 139 

5.3 Controlling mechanism configurations .................................................................................... 148 

5.4 Summary .................................................................................................................................. 161 

CONCLUSIONS AND PERSPECTIVES ................................................................................................... 163 
Contributions of the thesis ................................................................................................................. 163 

Limitations of obtained results .......................................................................................................... 165 

Further investigations and perspectives ............................................................................................. 166 

Publications ........................................................................................................................................ 168 

Journal papers ................................................................................................................................. 168 

Book chapters ................................................................................................................................. 168 

International conference proceedings ............................................................................................. 168 

REFERENCES .............................................................................................................................................. 171 

 



 

vii 

 LIST OF FIGURES 

Fig. 1. 1: Different types of robot end-effector: (a) two-finger gripper of a serial industrial manipulator 
(Haugaløkken et al., 2018); (b): vacuum gripper of Delta parallel robot (Nordin et al., 2016); (c): multi-finger 
gripper of Shadow Dexterous Hand (Li et al., 2019); (d): soft gripper of mGrip made of elastomers (“Soft 
Robotics mGrip Circular kit,” n.d.). ................................................................................................................... 11 

Fig. 1. 2: Examples of soft compliant robot end-effectors: (a) Snake Robots (Wright et al., 2012); (b): Soft 
Tentacle Gripper of Fest Company (Müller et al., 2020); ................................................................................. 12 

Fig. 1. 3: Typical stable tensegrity structures composed of rigid bodies connected by tensile parts: (a) 
Snelson’s 3DOF X-piece, 1948 (Skelton and Oliveira, 2009). (b): 2-segment serial tensegrity mechanism 
(Furet and Wenger, 2019a). (c): 2DOF planar tensegrity mechanism (Boehler et al., 2015). ........................... 14 

Fig. 1. 4: Examples of tensegrity structures in engineering, art and architecture (a): the tensegrity tower crane 
(b) model of the tensegrity spherical architecture designed by R. Buckminster Fuller, 1979; (c): the Kurilpa 
Bridge based on tensegrity structure in Australia designed by Baulderstone, 2007; (d): the tensegrity geodesic 
dome of the Montreal Biosphère in Canada designed by R. Buckminster Fuller, 1967 (these images are from 
Wikipedia). ........................................................................................................................................................ 15 

Fig. 1. 5: Examples of tensegrity structures in robotic mechanisms: (a) SUPERball of NASA, 2015 
(Sabelhaus et al., 2015); (b) the tunably compliant spine-like tensegrity robots of NASA (Mirletz et al., n.d.); 
(c) CMMWorm of the Case Western Reserve University, 2012 (Kernbaum et al., 2009); (d) the continuous 
compliant robotic fish by Harbin Institute of Technology, 2019 (Chen and Jiang, 2019). ................................ 19 

Fig. 1. 6: Typical geometric elements in FEA. .................................................................................................. 21 

Fig. 1. 7: Example of FEA applications to the design optimization of industrial robotic manipulator (Bugday 
and Karali, 2019). .............................................................................................................................................. 23 

Fig. 1. 8: MSA modeling of cantilever and unsupported beams: nodes, deflections and wrenches(Alexandr 
Klimchik et al., 2019b). ..................................................................................................................................... 25 

Fig. 1. 9: MSA modeling of two-link systems with different connections ....................................................... 27 

Fig. 1. 10: VJM modeling of two-link manipulator: rigid links and compliant joints ...................................... 31 

Fig. 1. 11: VJM modeling of two-link manipulator with an elastic and a passive joint. ................................... 34 

Fig. 1. 12: Deformation of the Euler column under an axial compressive load. ............................................... 38 

Fig. 1. 13: Possible shapes of beam after buckling (pinned ends) .................................................................... 39 

Fig. 1. 14: The shape of the compressed beam for different end conditions (Le is efficient length for critical 
force computing Fc=π2EI/Le

2). ......................................................................................................................... 40 

Fig. 1. 15: Force-deflection relations for different beam bending shapes under axial load .............................. 42 

Fig. 1. 16: Possible equilibrium shapes of a thin plate under one-directional compressive loading. ................ 43 

Fig. 1. 17: Possible equilibrium shapes of a thin plate under two-directional compressive loading. ............... 43 

Fig. 1. 18: Examples of two-bar mechanisms where the buckling phenomenon is observed. .......................... 44 



List of figures 

viii 

Fig. 1. 19: The load-deflection and energy curves for two-link mechanism with internal linear spring (α=π/3).
 ........................................................................................................................................................................... 45 

Fig. 1. 20: Mechanism shapes in equilibrium configurations for the loading FC=0.5kL, which is lower than 
FC=0.9kL (case α=π/3). ...................................................................................................................................... 45 

Fig. 1. 21: The load-deflection and energy curves for two-bar mechanism with internal linear spring (case 
α=0, i.e. straight initial configuration). ............................................................................................................. 47 

Fig. 1. 22: The load-deflection and energy curves for two-bar mechanism with internal rotational spring (case 
α=0, i.e. straight initial configuration). ............................................................................................................. 47 

Fig. 1. 23: The load-deflection and energy curves for two-bar mechanism with internal rotational spring (case 
α=π/6, i.e. non-straight initial configuration). ................................................................................................... 48 

Fig. 1. 24: The load-deflection and energy curves for two-bar mechanism with external linear spring (case 
α=0, i.e. straight initial configuration). .............................................................................................................. 49 

Fig. 1. 25: The load-deflection and energy curves for two-bar mechanism with external linear spring (case 
α=π/12, i.e. non-straight initial configuration). ................................................................................................. 50 

Fig. 1. 26: Example of three-bar mechanisms with the buckling phenomenon. ............................................... 52 

Fig. 1. 27: Force-deflection curves for the initial “straight” and “quasi-straight” configurations and four 
possible equilibriums with the stable shapes (U+, U–) and unstable shapes (Z+, Z–). ........................................ 54 

Fig. 1. 28: Evolution of the initial straight mechanism shape after the buckling: two possible equilibriums with 
U-shape and Z-shape. ........................................................................................................................................ 55 

Fig. 1. 29: Force-deflection curves for the initial “U-configuration” and four possible equilibriums with the 
stable shapes (U+, U–) and unstable shapes (Z+, Z–). ......................................................................................... 55 

Fig. 1. 30: Force-deflection curves for the initial “Z-configuration” ................................................................ 56 

Fig. 1. 31: Evolution of energy-ϕ curves for stable configuration for the initial “Z-configuration. ................. 57 

 

Fig. 2. 1: Mechanical design of McKibben Artificial Muscles: (a) basic components of the muscle (Zhao et al., 
2018); (b) state of the muscle before and after compression (Zhao et al., 2017); ............................................. 62 

Fig. 2. 2: Examples of serial-parallel manipulators actuated the artificial muscles (Kumar Hari Shankar Lal 
Das et al., 2016; Zhao et al., 2017). ................................................................................................................... 63 

Fig. 2. 3: Examples of serial-parallel manipulators based on the X-shape tensegrity mechanisms (Wenger and 
Chablat, 2019). .................................................................................................................................................. 64 

Fig. 2. 4: Proposed architecture of serial-parallel manipulators based on the dual-triangle tensegrity 
mechanisms ....................................................................................................................................................... 64 

Fig. 2. 5: Geometry of a single segment mechanism. ....................................................................................... 65 

Fig. 2. 6: The torque-angle curves and static equilibriums for L1
0= L2

0 (q0=0). ................................................ 67 

Fig. 2. 7: Monotonic and non-monotonic regions of the parameter plane for L1
0= L2

0 ..................................... 68 

Fig. 2. 8: Location of stable “●” and unstable “o” equilibriums with respect to geometric boundary [-β12, -β12].



List of figures 

ix 

 ........................................................................................................................................................................... 70 

Fig. 2. 9: Regions of equilibrium stability for different inputs L1
0, L2

0. ............................................................ 72 

Fig. 2. 10: The torque-angle curves and static equilibriums for L1
0≠ L2

0 (q0=π/6). ........................................ 73 

Fig. 2. 11: Relations between the control input∆ , sensitivity coefficient K, stiffness coefficient Kq and the 
desired configuration angle q (unloaded case Mext=0). ...................................................................................... 74 

Fig. 2. 12: Relations between the control input Δ, sensitivity coefficient K, stiffness coefficient Kq and the 
desired configuration angle q (loaded case Mext≠0). .......................................................................................... 74 

Fig. 2. 13: Geometry of an X-shape tensegrity mechanism for three typical configurations: (a) initial 
configuration with q=0; (b) intermediate configuration; (c) extreme configuration with q=qmax. ..................... 75 

Fig. 2. 14: The torque-angle curves and static equilibriums for X-shape mechanism (L1
0= L2

0). ..................... 80 

Fig. 2. 15: The critical value of configuration angle q for different combination of the control input L0 and the 
parameters a, b................................................................................................................................................... 80 

Fig. 2. 16: Regions of equilibrium stability for different inputs L1
0, L2

0 for X-shape tensegrity mechanism. .. 82 

Fig. 2. 17: Relations between the control input and the desired configuration angle q ( a=10 ). ................... 84 

 

Fig. 3. 1: The two segment mechanism in the “straight” and “non-straight” configurations. ........................... 89 

Fig. 3. 2: Force-deflection relations Fx(δx, δy), Fy(δx, δy) corresponding to unloaded straight configuration for 
different combinations of geometric parameters a, b, L0. .................................................................................. 91 

Fig. 3. 3: Force-deflection relations Fx(δx, δy), Fy(δx, δy) corresponding to unloaded straight configuration 
with parameters a/b=1.1, Lo/b=0.7. ................................................................................................................... 92 

Fig. 3. 4: Sensitivity of the stiffness coefficients of the two-segment mechanism with respect to initial 
unloaded configuration for different geometric parameters. ............................................................................. 94 

Fig. 3. 5: Force-deflection relations  Fx(δx, δy), Fy(δx, δy)  corresponding to unloaded non-straight 
configuration (Δx, Δy)=(5, 0) with geometric parameters a/b=1.1, Lo/b=0.7. ................................................... 95 

Fig. 3. 6: Unloaded-stiffness ellipses of the two-segment mechanism and the evaluation through the 
workspace. ......................................................................................................................................................... 95 

Fig. 3. 7: Relations between the required control inputs Δ1, Δ2 and the desired end-point position (x, y) for the 
two-segment mechanism with geometric parameters a/b=1.1, Lo/b=0.7  (unloaded case Fx=Fy=0). ............... 96 

Fig. 3. 8: Relations between the control input ∆  and the desired end-point position (x, y)  with geometric 
parameters a/b=1.1, Lo/b=0.7 (unloaded case Fx=-3, Fy=3). ............................................................................. 97 

Fig. 3. 9: Workspace size/shape of the two-segment mechanism for different geometric parameters (a, b). ... 98 

 

Fig. 4. 1: The three-segment mechanism in the “straight” and “non-straight” configurations. ...................... 102 

Fig. 4. 2 Energy curves E(q1) for different combinations of manipulator geometric parameters a/b, Lo/b:  
“blue curves”─ positive configuration with q3>0;  “green curves” ─ negative configuration with q3<0;  ● ─ 
stable equilibrium;  ● ─ unstable equilibrium. ............................................................................................... 103 

∆



List of figures 

x 

Fig. 4. 3: Feasible (─) and unfeasible (---) configurations caused by geometric constrains on the joint angles.
 ......................................................................................................................................................................... 104 

Fig. 4. 4: Eight different stable and unstable equilibriums for manipulator parameters a/b=0.75, Lo/b=0.7. . 104 

Fig. 4. 5 Correspondence between the maxima/minima of the energy curves E(q1) and zeros of the external 
torque Me(q1). .................................................................................................................................................. 105 

Fig. 4. 6 Force-deflection curves and stiffness coefficients for the “straight” initial configuration. .............. 107 

Fig. 4. 7: Energy curves E(q1) for non-straight initial configuration and displacement (Δx, Δy)=(b/2, 0),  “blue 
curves” ─ feasible configuration with q3>0;  “green curves” ─ feasible configuration with q3<0;  “black 
curves”─ unfeasible configuration; “red point ●”─ stable equilibrium;  “black point ●” ─ unstable 
equilibrium. ...................................................................................................................................................... 111 

Fig. 4. 8: Force-deflection curves and stiffness coefficients for “non-straight” initial configuration with 
different parameters (a, b, Lo ) and displacement (Δx, Δy)=(b/2, 0). ................................................................ 112 

Fig. 4. 9 Stiffness ellipses of the three-segment mechanism for the unloaded mode and their evaluation 
throughout the workspace. ................................................................................................................................ 113 

Fig. 4. 10 Force-deflection relations of three-segment mechanism for non-straight initial configuration with  
(x, y)0=(5.5b, 0). ................................................................................................................................................ 115 

Fig. 4. 11 Stiffness coefficients of three-segment mechanism for non-straight initial configuration with (x, 
y)0=(5.5b, 0). ..................................................................................................................................................... 116 

Fig. 4. 12 Evolution of the manipulator configuration under the loading. ....................................................... 117 

Fig. 4. 13: Kinematic control of a redundant manipulator via minimization of objectives #a and #b ............. 118 

Fig. 4. 14: Relations between the control inputs (Δ1, Δ2, Δ3) and the desired end-point position (x, y) with an 
initial configuration q0=(-0.1. 0.1, 0.1) and parameters a/b=1.0, Lo/b=1.0 (unloaded case Fx=Fy=0). ............ 120 

Fig. 4. 15: Relations between the control inputs (Δ1, Δ2, Δ3) and the desired end-point position (x, y) with an 
initial configuration q0=(-0.1. 0.1, 0.1) and parameters a/b=1.0, Lo/b=1.0 (loaded case Fx= -3, Fy=3). ......... 121 

Fig. 4. 16: Kinematic control of the 3-segment manipulator using linear interpolation in (q1, q2, q3)-space and 
global minimization of the joint increments (PTP motion, objective #b)........................................................ 122 

Fig. 4. 17: Kinematic control of 3-segment manipulator using linear interpolation in (x, y)-space and local 
minimization of the joint squared increments (LIN motion, objective #c). .................................................... 122 

 

Fig. 5. 1: The multi-segment manipulator in the “straight” and “non-straight” configurations. ..................... 130 

Fig. 5. 2: The energy functions E(q1, q4), E(q1, q2) and their critical points corresponding to the static 
equilibriums for the end-effector location δx/b=0.3, δy=0 and manipulator parameters a/b=1.0, L0/b=1.0 .... 132 

Fig. 5. 3: The contour plots of the energy functions E(q1, q4), E(q1, q2) for different manipulator configurations 
at the end-effector location δx/b=0.3, δy=0 and geometric parameters a/b=1.0, L0/b=1.0 .............................. 133 

Fig. 5. 4: The force-deflection curves for the 4-link manipulator with the geometric parameters a/b=1.0, 
L0/b=1.0, k=1, (δx=var, δy=0). ........................................................................................................................ 134 



List of figures 

xi 

Fig. 5. 5: The energy function E(q1, q2) and manipulator equilibriums of initial U-shape configuration (end-
effector deflection δx/b=0.4, δy=0;  geometric parameters a/b=1.0;  q4>0). ............................................... 140 

Fig. 5. 6: The energy function E(q1, q2) and manipulator equilibriums of initial Z-shape configuration (end-
effector deflection δx/b=0.2, δy=0;  geometric parameters a/b=1.0; q4>0). .................................................. 141 

Fig. 5. 7: The energy function E(q1, q2) and manipulator equilibriums of initial U-shape configuration (end-
effector deflection δx/b=0.8, δy=0;  geometric parameters a/b=1.0;  q4>0). ............................................... 141 

Fig. 5. 8: Force-deflection curves Fx(δx), Fy(δx) and manipulator shape changing under the loading for initial 
U-shape with (x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. .................................................... 142 

Fig. 5. 9: Force-deflection curves Fx(δx), Fy (δx) and manipulator shape changing under the loading for initial 
Z-shape configuration with (x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. .............................. 142 

Fig. 5. 10: Stiffness coefficients under the Fx- and Fy-loading for initial U-shape configuration with (x0, y0) = 
(7.7b, 0) and geometric parameters a/b=1.0 .................................................................................................... 146 

Fig. 5. 11: Stiffness coefficients under the Fx-loading for initial Z-shape configuration with (x0, y0) = (7.7b, 0) 
and geometric parameters a/b=1.0 .................................................................................................................. 147 

Fig. 5. 12: Unloaded stiffness ellipses of the four-segment manipulator inside the workspace. .................... 147 

Fig. 5. 13: Generation of obstacle-free path using graph-base presentation of the task space and discrete 
dynamic programming..................................................................................................................................... 152 

Fig. 5. 14: Task space coordinate transformation for the discretization. ......................................................... 153 

Fig. 5. 15: Example of obstacle-free path generation for the robot end-effector (obstacle dimensions are 
increased to take into account the end-effector size) ....................................................................................... 153 

Fig. 5. 16: Speed-up of searching algorithm for generating obstacle-free path by applying dynamic 
programming with decreasing discretization step ........................................................................................... 153 

Fig. 5. 17: Computing the distances dij between the robot joints and obstacles ............................................. 154 

Fig. 5. 18:: Example of collision-free motion control for multi-segment manipulator (for the case when the 
end-effector is moved along the given straight line without the orientation constraint). ................................ 158 

Fig. 5. 19: Example of collision-free motion control for multi-segment manipulator (for the case when the 
end-effector is moved along the given curve with the orientation constraint). ............................................... 158 

 

 

  



 

xii 

 LIST OF TABLES  

Table 1 History of the VJM method development and some important contributions (Anatol Pashkevich et al., 
2011) .................................................................................................................................................................. 36 

Table 2 Examples of two-bar mechanisms where the buckling phenomenon are observed ............................. 51 

Table 3 Possible manipulator shapes in static equilibrium ............................................................................. 109 

Table 4 Linear kinematic control of serial manipulator based on the least square joint increments (LIN 
motion, objective #c) ....................................................................................................................................... 124 

Table 5 Algorithm of the force-deflection relation of redundant serial manipulators..................................... 135 

Table 6 Nonzero eigenvalues and corresponding eigenvectors of matrix B-1A for 4-segment manipulator with 
the geometric parameters a/b=1.0, L0/b=1.0, k=1............................................................................................ 137 

Table 7 Possible manipulator shapes in static equilibrium after the buckling for n=4. .................................. 138 

Table 8 Different initial configurations of the manipulator for the end-point location (x0, y0) = (7.7b, 0). .... 139 

Table 9: Evolution of the manipulator shape under the loading for δx=var, δy=0. ........................................ 143 

Table 10 Optimal path searching algorithm for the robot end-effector based on the discrete dynamic 
programing ...................................................................................................................................................... 150 

Table 11 Algorithm of collision-free motion control for multi-segment manipulator when the end-effector is 
moved along the given path with the orientation constraint. ........................................................................... 159 

 

 

 

  



 

xiii 

 LIST OF SYMBOLS 

 
rΛ  Diagonal matrix describing the boundary conditions of the rigid connections 
pΛ  Diagonal matrix describing the boundary conditions of the passive connections 

†( )TJ , †J  Pseudo-inverse matrices of the considered matrices 

[L×] Skew-symmetric matrix derived from the length vector L 

Aj matrix, composed of inequality constraints 

A_eq 3×n Jacobian matrix related to J, equality constraints parameters 

A_Neq Matrix, inequality constraints parameters 

Ai, Bi, Ci, Di Block matrices that are obtained using MSA technique  

bj Vector, composed of the minimum safe distance dmin_ij 

b_eq Vector, related to dp and manipulator orientation angles, equality constraints 

b_Neq Vector, inequality constraints 

B(i, j) 
m n× binary matrix describing the obstacle locations: B(i, j)=1 denotes the point 

( , )i jL  inside of the obstacle 

C0 Unloaded compliance matrix 

CF Loaded compliance matrix 

Cq Compliance matrix of the mechanisms/manipulator 

Delt_L0 Vector, configuration control inputs of each segment of the manipulator 

dst(i) 
Vector containing the lengths of the shortest sub-paths connecting the initial point 

0( ,0)iL and an arbitrary intermediate target point ( , )i jL  

Dst(i) 
Internal vector containing the lengths for all possible sub-paths between the initial 
point 0( ,0)iL and an arbitrary intermediate target point ( , )i jL  

dp Current end-effector deflection (between the current and the desired locations) 

dq Current joint increment corresponding to dp 

eij Unit vector with the direction from joint pi to obstacle 0pj 

F, Fi Vector, external force applied to the mechanism/manipulator ends 

F0 Vector, initial external loading applied to the mechanism end 

I Identity matrix 



List of symbols 

xiv 

ind(i, j) 
m n× Matrix of the previous row indices for the optimal sub-paths connecting the 
initial point 0( ,0)iL and an arbitrary point ( , )i jL  

indP( j) 
Vector of optimal row indices 0 1{ , ,..., }ni i i  describing the collision-free shortest 
path between the initial point 0( ,0)iL  and the target point ( , )ni nL  

J Kinematic Jacobian matrix of the mechanical system/manipulator 

Ja 
Composed of element T

ij i⋅e J  corresponding to the active constraints in collision-
free kinematic optimization algorithms  

Je 
Composed of all elements T

ij i⋅e J  from the inequality constraints in collision-free 
kinematic optimization algorithms 

J0 Kinematic Jacobian matrix related to the unloaded initial configurations q0 

Jaggr Aggregating Jacobian matrix corresponding to the deflection ΔΘ 

Ji Manipulator partial Jacobian matrix with respect to the ith joint 

Jq Kinematic Jacobian matrix related to the angle q  

Jθ Kinematic Jacobian matrix related to the angle θ of the passive joint 

K, Kij Square matrix, stiffness matrix of the mechanism 

Kaggr Aggregate stiffness matrices composed of Kq and Klink  

KC Stiffness matrix of the considered system/manipulator 

KF Loaded stiffness matrix 

Kg Partial stiffness matrix that is related to the external loading F 

Klink Stiffness matrix of the beam/link material 

Kq Diagonal matrix composed of the joint stiffness coefficients of the manipulators 

L Vector, lengths of each links of the mechanisms/manipulators 

L0 Matrix, symmetrically distributed linear springs initial lengths of manipulators 

L(i, j) m n× Matrix of point locations in task space 

M Vector, external torque applied to the mechanism/manipulator ends 

Me, Mq Torques generated be springs on each joints of the manipulator  

p Vector, end-point location of the mechanisms or manipulators 

pt Points locating on the path between the initial and target end-effector location 

pc Current endpoint location of the manipulator 

P0, P0 Initial point location in the manipulator task space (x, y) 



List of symbols 

xv 

Path(i, j) 
m n× Matrix of the minimum lengths of the optimal sub-paths connecting the 
initial point 0( ,0)iL and an arbitrary intermediate target point ( , )i jL  

Path Matrix, the obtained point locations on the path from the initial to target point. 

Pg, Pg Target point location in the manipulator task space (x, y) 

Pij Vector, from the ith joint to the jth obstacle 

pob Matrix, location of the obstacles in workspace 
0pj Location of obstacle central point 

rob Vector, effective radius of the obstacles 

pi Vector, locations of joint qi  

q Vector, joint configuration angles of the mechanisms or manipulators 

q0, q0 Vector, mechanism/manipulator unloaded initial configurations 

qc Vector, current joint configuration angles 

S0 Vector, related to the links lengths of manipulator 

S1 Matrices related to the links lengths of manipulator  

S(u, v) Matrix composed of points locations describing several big areas in task space 

Set_Qout 
Matrix, joint configuration angles corresponding to all the manipulator current 
motion 

Set_Delt 
Matrix, configuration control inputs of each segment  corresponding to all the 
manipulator current motion 

T Vector, the manipulator joint torques; 

Tz Diagonal matrix describing the rotation transformation around z-axis by angle π 

v Eigenvector 

W, Wi Vector, external wrench (force/torque) applied to the mechanism/manipulator ends 

ΔΘ Vector, rotation, translation and joint angle deflection of the mechanism system 

Δϕ Vector, rotation deflection of the mechanism ends 

δF Increment of the external loading applied to the mechanism end 

Δp Vector, translation deflection of the mechanism or manipulator ends 

δp Vector, end-point translation deflection caused by the loading increment δF 

Δp0 Vector, end-point translation deflection caused by the initial loading F0 

Δq Vector, joint angle deflections of the mechanisms or manipulators 



List of symbols 

xvi 

δq Vector, joint angle deflections caused by the loading increment δF 

Δq* Optimal solution for avoiding collisions between the manipulator body and the 
obstacles in task space 

Δt, Δti Vector, deflection of the mechanism or manipulator ends 

( ), ( )i iM q K q′  Stiffness coefficients of the joint qi 

ϕ Manipulator joint angle parameter 

λ 
Parameters describing the mechanism-manipulator shape (obtained by computing 
the critical force causing the buckling)  

µ 
Parameters describing the mechanism-manipulator shape (obtained by computing 
the critical force causing the buckling) 

(•) Gradient function 

µeq 
Energy factor describing the mechanism-manipulator shape (obtained by 
computing the critical force causing the buckling) for 0iq →  

(x0, y0) Initial end-point location of the mechanism/manipulator 

ai, bi Geometric parameters of the tensegrity mechanisms 

Ci, Cijk Describing cos(qi) of angle qi and cos(qi+ qj+ qk) of angle qi, qj and qk respectively 

Cyy Beam/link/manipulator compliance coefficient in the lateral deflection y 

Cθy 
Beam/link compliance coefficient related to the bending angle θ (around z-axis) 
while deflection is in the lateral deflection y 

delta 
Distance increment between the points ( , )i jL  and ( , 1)i j′ +L  computed using 
the function ( _ , _ )dist  

det(•) Determinant of matrix 

dij Distance between the ith joint and the jth obstacle 

dj
0 Allowable minimum value for avoiding collision to the jth obstacle  

dmin_ij The minimum safe distance between the ith joint and the jth obstacle 

E Young’s modules of the beams 

E(Δ), E(qi) Mechanism/manipulator strain energy  

F Force generated by the springs 

FC, FCi Critical force causing the buckling phenomenon 

Fe External force applied to the mechanism/manipulator end-point 

fx (•), fy (•) Forward kinematic functions in x- and y-direction respectively 



List of symbols 

xvii 

Fx, Fy External force applied to the end-point in x- and y-direction respectively 

Fx
0, Fy

0 Critical force causing the buckling in x- and y-direction respectively 

G Coulomb’s modules of the beams 

I Minimum area moment of the column/beam cross section 

i0 Row index defining the initial point location 0( ,0)iL  

ind_optPij Element of ( , )i jind  

Iy Second moments of the beams respect to the direction of y  

Iz Second moments of the beams respect to the direction of z  

J Polar moment of the beams 

j0 Row index defining the target point location ( , )ni nL  

k, ki Springs stiffness coefficients 

ki Stiffness coefficients of joint qi 

Kxx Beam/link/manipulator stiffness coefficient in the x-deflection 

Kyy Beam/link/manipulator stiffness coefficient in the lateral deflection y 

L, Li Length of the beams or links of the mechanisms/manipulators 

L0, Lij
0 Free length of the springs that applying pre-stress to the tensegrity mechanisms  

Mext, Me External torque applied to the mechanisms 

Mi, Mi(qi) Internal torques generated by the elastic joint qi 

optP 
Length of the shortest collision-free path connecting the initial point 0( ,0)iL  and 
the target point ( , )ni nL  

optPij Element of ( , )i jPath  

phi Manipulator orientation angle 

qC Mechanism configuration angle corresponding to the buckling phenomenon 

qcrit Critical values of configuration angles obtained from K(qi)=0 

qe Configuration angle corresponding to the equilibriums 

qi Mechanism configuration angle 

qi
0 Mechanism initial unloaded configuration angle 

qi
max Limited values of joint angles 

rj Obstacle radius 

S Cross-section area of the beams 



List of symbols 

xviii 

Si, Sijk Describing sine(qi) of angle qi and sine(qi+ qj+ qk) of angle qi, qj and qk respectively 

Sw Workspace area of manipulators 

Ti External torque acting on the joint qi  

U Strain energy stored in the springs 

V Mechanism system potential energy 

var Variables 

w, w(x) Lateral deflection of the column/beam 

x(tj), y(tj) Current location of the end-point while moving 

α, αi Mechanism joint angle parameter 

Δ Mechanism translation deflection 

Δ(q), Δ(qi) Control inputs for adjusting the pre-stress of the tensegrity mechanisms 

Δ(x), Δ(y) End-point increments in Cartesian system 

ΔC Mechanism translation deflection corresponding to the buckling phenomenon 

Δqi Angle deflections of joint qi 

δx, δy Deflections of the mechanism/manipulator end-point 

 
  



 

1 

 INTRODUCTION 

Motivation 

Nowadays, robots are used in many fields for complicated non-conventional tasks, such as 
helping with surgery operations, exploring the environment or repairing fiber optic cables in the deep 
ocean, working in extreme environment (high temperature, radiation, etc.), most of which require 
interacting and collaborating with humans. For this reason, the end-effectors, as the most important 
part of the robots that actively interacting with the environment, are required to execute rather 
complicated motions and to be more flexible than the other parts of the robotic manipulators. 
Consequently, the problem of designing more maneuverable end-effectors are getting more and more 
attention from robotic engineers.  

In practice, the robot end-effectors essentially differ in their designs, which depend on both the 
executed task and the robot architecture. In manufacturing industry the robot end-effectors are usually 
equipped with specific tools for welding, machining, laser or plasma cutting, etc. There are also some 
other types of end-effectors in this area that are allow to grasp, hold or move the target objects. The 
latter are usually equipped with some gripper mechanisms that can physically grasp by direct impact 
upon the object, or penetrate the surface of the object. Besides, in the precision machinery or 
semiconductor industry, in order to avoid damage to the objects, the more popular approach is to use 
some devices that can generate the attractive or adhesion forces applying to the objects surface, like 
vacuum. However, there are a number of modern applications where the users are not satisfied with 
the traditional rigid end-effectors; so they tried to design different kinds of soft grippers that can 
collaborate with humans and handle fragile objects, like glass, bakery items. But as follows from the 
relevant studies, the pure soft end-effectors usually cannot provide great output forces, so they are not 
very attractive in many application fields. On the other hand, combining rigid and elastic or soft 
components often allows to achieve desired properties and to find reasonable compromise between the 
end-effector compliance and its ability to generate desired force applied to the object. 

One of the promising approaches to obtain the desired end-effector properties is using small serial 
manipulators composed of large number similar segments possessing large or even infinite degree of 
kinematic redundancy. From the point of view of bioinspired robotics, they are very close to an 
elephant trunk or snake robots, which can achieve complex motions with high flexibility, and are long 
and large enough to fit the desired work environment. These advantages are quite important especially 
for designing the collaborative robots, as they can ensure the safe contact between the robot end-
effectors and humans. These motivate us to use the compliant multi-segment serial manipulator as the 
end-effector rather than conventional simple ones. And to the best of our knowledge, the tensegrity 
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mechanisms, which are assembly of compressive parts and tensile parts that can change not only their 
stiffness but also their shapes and sizes in any constrained environment, are very promising for the 
above mentioned applications. They allow designers to use simultaneously advantages of rigid and 
elastic or soft components, and to obtain properties required in many fields, such as medical, 
underwater and aerospace. Their high flexibility and compliances also let them being quite “soft” for 
using as the robot end-effectors, which allow to avoid the traditional collision problem that is critical 
for conventional rigid robots. For these reasons, this thesis focuses on the compliant serial structures 
composed of a number of similar modules or segments, each of which is based on the tensegrity 
mechanisms. Particular attention will be payed to their elastostatic properties and static stability with 
respect to the external loading. Also, the kinematic control issues for such redundant architectures will 
be considered. 

The practical importance of these problems is also confirmed by financial support provided by 
the China State Scholarship Fund (No. 201801810036) of the project “CSC-Centrale Schools Program” 
founded by the China Scholarship Council. 

Thesis goal and research problems  

This thesis focuses on the design of new versatile and compliant end-effectors for collaborative 
robot works, which are based on multi-segment planar tensegrity mechanisms that can be actuated 
independently to achieve the desired configuration with the required stiffness properties. To achieve 
this goal, the following problems should be solved: 

Problem 1: 

Comparison study of different tensegrity mechanisms and selection of the best architecture 
for design of multi-segment robot end-effectors. 

Problem 2: 

Stiffness analysis of the multi-segment dual-triangle mechanism for both unloaded and 
loaded modes and detection of possible nonlinear behaviour under the loading as well as the 
buckling phenomenon.  

Problem 3: 

Development of the kinematic control strategies for redundant multi-segment mechanism 
based on dual-triangles allowing to achieve the target endpoint location and avoid collisions 
with the workspace obstacles. 
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Thesis structure 

To address the above defined problems, the thesis is organized as follows.  

Chapter 1: 

This part is devoted to the state of art and literature review on the flexible mechanisms or 
compliant manipulators as the robotic end-effectors for collaborative robots. It includes a 
review of the conventional and current novel trends in designing the robotic end-effectors, 
and a review of the tensegrity mechanisms and their applications in robotics. That allows us 
to choose the dual-triangle tensegrity mechanisms as the base segment of the compliant robot 
end-effector in this thesis. Three typical stiffness analysis techniques are presented here, 
from which the VJM technique is chosen as the best for the mechanism stiffness analysis in 
this work. In addition, the buckling phenomenon in both the traditional mechanical systems 
and the robotic manipulators were analyzed and compared in this part, which provided us 
with theoretical base for analysis of nonlinear stiffness behavior in the following chapters. 
In general, this chapter allowed us to define the goal and the problems studied in this thesis 

Chapter 2: 

This part deals with the stiffness analysis and stability study of two potential tensegrity 
architectures (X-shape and dual-triangles), which are both actuated by adjusting the pre-
stress of the springs located on two sides of the mechanisms, and selection the best of them 
as the base segment for the compliant serial manipulator end-effector proposed in this thesis. 
It was demonstrated for the dual-triangle mechanisms that for different combinations of the 
geometric parameters, the force-deflection relation curves may be either monotonic (a single 
equilibrium) or non-monotonic (one stable and two unstable equilibriums). While for the X-
shape mechanisms, the force-deflection relation curve is always non-monotonic with one 
stable and two unstable equilibriums. Corresponding stability conditions for both X-shape  
and dual-triangle mechanisms were presented, and the control strategy for changing the 
mechanism configuration through adjusting the pre-stress of the springs (for both loaded and 
unloaded model) was also proposed in this chapter. This allowed to choose appropriate 
geometric parameters and springs pre-stresses ensuring the mechanism controllability. These 
results were confirmed by relevant simulation analysis. 

Chapter 3: 

This part is devoted to the stiffness analysis of the two-segment serial structure based on the 
dual-triangle tensegrity mechanism for both straight and non-straight initial configurations. 
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For this manipulator, the stiffness matrix was obtained through the VJM technique, and the 
conventional inverse kinematic transformation for two-link serial manipulator was used 
straightforwardly. The particularity of this serial mechanism is that, for the initial straight 
configuration, the buckling phenomenon was detected, and the critical force causing the 
buckling was obtained analytically. The control strategy presented in chapter 2 was also 
enhanced. The simulation results confirmed the efficiency of the developed technique. 

 Chapter 4: 

This part is devoted to the analysis of the redundant three-segment serial structure composed 
of the dual-triangles. Both the analytical and numerical methods were used to find the stable 
and unstable equilibrium configurations, and to predict the corresponding manipulator 
shapes. Similar to the previous chapter, it was demonstrated that either buckling or quasi-
buckling phenomenon may occur under the loading if the manipulator initial configuration 
is straight or non-straight one, and the critical force was obtained analytically. Further, the 
stiffness analysis was carried on for both loaded and unloaded modes, the stiffness matrices 
were computed using the VJM technique. At last, some useful optimization techniques were 
applied to solve the geometric redundancy problem, and to ensure the stability of the 
manipulator configurations with respect to the external forces/torques applied to the end-
effector. Relevant kinematics control strategies based on these techniques were proposed, 
the efficiency and accuracy of which were confirmed by the simulation results. 

Chapter 5: 

This part is focusing on the general case, dealing with the analysis of the redundant multi-
segment serial structure composed of the dual-triangles. For practical convenience, the four-
segment manipulator is considered as the basic illustrated example. It was discovered that 
under the external loading such manipulator may have six equilibrium configurations but 
only two of them are stable. In the neighborhood of these configurations, the manipulator 
behavior was analyzed using the VJM technique. This approach allowed us to propose an 
analytical technique for computing the critical force causing the buckling and evaluate the 
manipulator shape under the loading. Further, the redundancy resolution in kinematic control 
of such mechanism while moving in a multi-obstacle environment was considered. The 
general problem was decomposed into two sub-problems, which deal consequently with the 
collision-free path planning for the mechanism end-point and the collision-free motion 
planning for the mechanism body. The first of them was solved via discrete dynamic 
programming, the second one was solved using quadratic programming with mixed linear 
equality/inequality constraints. Relevant simulation studies confirmed the efficiency of the 
proposed technique. 
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Main contributions 

This thesis focuses on the design of new versatile and compliant end-effectors for collaborative 
work of robots and human operators, which are based on multi-segment planar tensegrity mechanisms 
that can be actuated independently to achieve the desired configuration with the required stiffness 
properties. To achieve this goal, three main problems were considered, which were solved gradually 
by increasing number of segments in the considered compliant mechanism. The main results and 
contributions of this thesis can be summarized as follows.  

For the Problem #1, dealing with the comparison study of different mechanisms that can be used 
for designing compliant end-effectors, two potential tensegrity architectures (X-shape and dual-
triangles) were considered. For both of them, configuration can be adjusted by means of the 
controllable elastic springs locating on the two edges. It was shown that both of these two options 
ensure high flexibility and may be potentially used for designing soft robot end-effectors. For practical 
reasons, the main attention was paid to the symmetrical structure and to the case of equal spring pre-
stress, for which the analytical condition of equilibrium stability was derived. Also, the relation 
between the external torque and the deflection was obtained which showed that the X-shape 
mechanism has always non-monotonic force-deflection relation, while for the dual-triangle one it is 
possible to achieve the monotonic force-deflection curve. The latter allowed us to conclude that the 
dual-triangle tensegrity mechanism has essential advantages for the considered application, and it was 
chosen as the basic structure for the compliant serial manipulator considered in this thesis. 

The main results and contributions related to the problem #1 include the following issues. 

(i) There were obtained analytical stability conditions and equilibrium configurations (stable 
and unstable) for both X-shape and dual-triangle tensegrity mechanisms for unloaded and 
loaded modes, which allow user to select the mechanical architecture ensuring the 
controllability of the manipulator based on such segments.  

(ii) It was shown that for different combinations of the geometric parameters for the dual-
triangle mechanisms, the force-deflection relation curves may be either monotonic (a single 
stable equilibrium) or non-monotonic (one stable and two unstable equilibriums). While for 
the X-shape mechanisms, the force-deflection relation curve is always non-monotonic with 
one stable and two unstable equilibriums. 

For the Problem #2, dealing with the stiffness analysis of the multi-segment dual-triangle 
mechanism, both unloaded and loaded modes were considered, and specific mechanical properties 
were analysed in detail. Particular attention was paid to the mechanism stiffness behaviour for the 
straight and non-straight initial configurations. In this study, the analytical stiffness/compliance 
matrices were derived using the VJM technique that allow designers to evaluate the stiffness sensitivity 
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of this structure with respect to an arbitrary initial configuration for different geometric parameters, 
external loading and the springs pre-stresses. Besides, the force-deflection relations were obtained, 
which allowed us to detect the buckling and quasi-buckling phenomenon in this serial mechanism 
under the loading. The main theoretical contribution is an analytical method allowing to compute the 
critical force causing the buckling for the serial structure with an arbitrary number of segments, which 
is based on the eigenvalue analysis of the some special matrix depending on both geometric and 
elastostatic parameters. This allows designers to predict or avoid the dangerous states of this 
mechanism by properly changing the geometric parameters and control inputs.   

The main results and contributions related to the problem #2 include the following issues 

(i) The stiffness/compliance matrices of this mechanism for both unloaded and loaded mode, 
which were obtained using the VJM technique, as well as the mechanism force-deflection 
curves. 

(ii) Mechanism equilibrium configurations (both stable and unstable ones) and their 
classification, which were obtained using the energy method.  

(iii) Detection of specific mechanical property of this mechanism i.e. the buckling phenomenon, 
which can be observed for the straight initial configuration if the external loading exceeds 
certain critical value.  

(iv) Detection of the quasi-buckling phenomenon for the non-straight configuration, when the 
mechanism resistance in certain direction may be suddenly lost under the loading, while the 
resistance in other directions still exists. 

(v) Analytical technique for computing the critical force causing the buckling, which is based 
on the eigenvalues analysis applied to some special matrix. This technique is rather general 
and can be applied to other serial manipulators of similar structure. 

For the Problem #3, dealing with the kinematic control of considered redundant multi-segment 
mechanism, the optimization-based control strategies were proposed allowing to achieve the target 
endpoint location and avoid collisions to the workspace obstacles. To generate the desired motions, it 
is proposed to decompose the general control problem in three separate ones. The first of them focuses 
on the separate segments and is targeting on achieving the desired joint angles of the dual-triangle 
mechanisms via adjusting the spring pre-stresses. The second sub-problem concentrates on the 
redundancy resolution for the multi-segment manipulator ensuring the end-point displacement to the 
desired location using minimal joint motion increments. The third sub-problem deals with the obstacle-
avoidance kinematic control ensuring safe distances between the manipulator segments and some 
objects located inside of the manipulator workspace. Because of computation of complexity, the last 
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sub-problem was further divided in two sequential steps: (a) collision-free path planning for the 
manipulator end-effector; (b) collision-free path planning for the manipulator body, i.e. including 
intermediate segments. The proposed kinematic control strategy was carefully verified via the 
computing simulation, which confirmed its advantages and abilities in achieving of the desired 
manipulator flexibility and shape changing capacity. 

The main results and contributions related to the problem #3 include the following issues 

(i) The kinematic control technique for a single segment, which allows to achieve the desired 
joint angles of the dual-triangle tensegrity mechanism via anti-symmetrical adjusting the 
spring pre-stresses (for both loaded and unloaded modes). 

(ii) The collision-free path planning technique for the mechanism end-point, which is based on 
discrete dynamic programming that provides the shortest path for reaching the desired target 
point avoiding the workspace obstacles.  

(iii) The minimum joint motion control technique, which is based on the quadratic optimization 
with linear equality constraints that ensures the redundancy resolution and the manipulator 
end-point displacement to the desired location with minimal joint increments. 

(iv) The obstacle-avoidance kinematic control technique for the manipulator body, which is 
based on quadratic programming with mixed linear equality and inequality constraints, 
allowing to pass through the multi-obstacle environment without collisions while 
implementing the desired end-point path.  

In general, combination of all results related to the problems 1, 2, 3 allow to achieve the desired 
goal, i.e. to develop a new robot end-effectors based on compliant serial structures composed of a 
number of similar modules or segments, each of which contains a tensegrity mechanism. 

Publications and conference presentations 

The main results obtained in this thesis have been published in 9 works. Among them, there are 
two papers in international journals (Journal of Mechanisms and Robotics; International Journal of 
Mechanical Engineering and Robotics Research), a book chapter (In: Lecture Notes in Electrical 
Engineering), proceedings of six international conferences (ICINCO, International Conference on 
Informatics in Control, Automation and Robotics; IDETC, International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference; ICCCR, International 
Conference on Computer, Control and Robotics; CASE, International Conference on Automation 
Science and Engineering; APMS Advances in production management systems). 



Introduction 

8 

  



 

9 

 CHAPTER 1 
 FLEXIBLE SERIAL MANIPULATORS AS END-EFFECTORS 

FOR COLLABORATIVE ROBOTS 

 

 
1.1 Robot end-effector design: conventional approaches and current trends .................................. 10 
1.2 Tensegrity mechanisms and their application in robotics .......................................................... 13 

1.2.1 Definition and history of tensegrity structures ................................................................ 13 
1.2.2 Mechanical properties of tensegrity structures ............................................................... 16 
1.2.3 Tensegrity structures in robotics ..................................................................................... 18 

1.3 Stiffness of flexible manipulators and existing modelling techniques ....................................... 20 
1.3.1  Finite Element Analysis ............................................................................................... 20 
1.3.2 Matrix Structural Analysis method (MSA) ..................................................................... 23 
1.3.3 Virtual Joint Method ( VJM ) .......................................................................................... 29 

1.4 Non-linear stiffness behaviour of flexible robotic manipulators ............................................... 38 
1.4.1 Buckling phenomenon in continuous mechanical systems ............................................. 38 
1.4.2 Buckling in discrete mechanical systems and robotics ................................................... 43 
1.5 Summary: thesis goal and principle tasks (research problems) ......................................... 57 

 

 

This chapter is devoted to the state of art and literature review on the flexible 
mechanisms or compliant manipulators as the robotic end-effectors for 
collaborative robots. It includes a review of the conventional and current novel 
trends in designing the robotic end-effectors, and a review of the tensegrity 
mechanisms and their applications in robotics. That allows us to choose the dual-
triangle tensegrity mechanisms as the base segment of the compliant robot end-
effector in this thesis. Three typical stiffness analysis techniques are presented here, 
from which the VJM technique is chosen as the best for the mechanism stiffness 
analysis in this work. In addition, the buckling phenomenon in both the traditional 
mechanical systems and the robotic manipulators were analyzed and compared in 
this part, which provided us with theoretical base for analysis of nonlinear stiffness 
behavior in the following chapters. In general, this chapter allowed us to define 
the goal and the problems studied in this thesis 
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1.1 Robot end-effector design: conventional approaches and current trends  

In robotics, the end-effector is the end part of the robotic manipulators that interacting with the 
environment. For achieving the complicated movements, the end-effector should be usually more 
maneuverable than the other parts of the robots. In practice, the robot end-effectors essentially differ 
in their designs, which depend on both the executed task and the robot architecture (Lan et al., 2010; 
Ma and Yang, 2016; Mohammad et al., 2018; Pedersen et al., 2005; Tavakoli et al., 2005). In the first 
industrial robots, the end-effectors were usually composed of the gripper mechanisms, which can hold 
or grasp the target objects (Becedas et al., 2011; Bicchi, 2000; Gilardi and Sharf, 2002; King et al., 
2009; Singh et al., n.d.; Yang and Wang, 2008). For example, in Fig. 1. 1a it is shown a typical end-
effector of a serial industrial manipulator, which has two rotational degree of freedoms and where a 
two-finger device can close and grasp objects (Haugaløkken et al., 2018). Sometimes such 
manipulators are equipped with a 3-d.o.f. grippers, and the number of fingers may be three or more. 
In contrast, the famous Delta parallel manipulators, which are very maneuverable because of the 
parallel architecture, are often equipped with a simple vacuum gripper mechanism as shown in Fig. 1. 
1b (Nordin et al., 2016). 

The above two types of end-effectors are simple and generally used in industry. Nowadays, there 
are a number of non-industrial applications, especially with collaborative robot work, that require more 
sophisticated end-effectors. For instance, the Shadow Dexterous Hand shown in Fig. 1. 1c is equipped 
with a multi-finger gripper, which can achieve 24 movements and owns 20 degrees of freedom, 
allowing increased flexibility in grasping and manipulating a range of objects (Li et al., 2019). 
Moreover, there are a number of modern applications where the users are not satisfied with the rigid 
end-effectors; so they tried to design different kinds of soft grippers that can handle fragile objects, 
like glass, bakery items, etc. One of such examples is shown in Fig. 1. 1d, which presents the 
pneumatically powered mGrip gripper that is made of soft elastomers. At present, there are also some 
new types of the end-effectors that can achieve the similar tasks but are based on new principles rather 
than the traditional mechanisms. For example, the end-effectors that are composed of magnetic devices, 
or some electronic devices (Kim et al., 1992; Tsui et al., 2004). It is worth mentioning that there are a 
number of other type robot end-effectors that are used for specific industrial tasks, different from the 
above mentioned grasping and object manipulation (such as welding, machining, laser or plasma 
cutting, composite fibber placement, etc.) (Abele et al., 2007; Fang et al., 2013; Groppe, 2007; Guo et 
al., 2015; Kordi et al., 2007; Liang and Bi, 2010; Zhang et al., 2005), but they are out of scope of this 
thesis. 

This work concentrates mainly on the robot end-effectors employed for object grasping and 
manipulation. Depending on the gripping type, such devices can be classified into four following 
groups. 
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 Impactive: jaws or claws that physically grasp by direct impact upon the object (used in 
assembling, packaging, etc.); 

 Ingressive: pins, needles or hackles that physically penetrate the surface of the object (used in 
textile, carbon and glass fiber handling); 

 Astrictive: attractive forces applied to the objects surface (whether by vacuum, magneto- 
or electro adhesion); 

 Contigutive: requiring direct contact for adhesion to take place (such as glue, surface tension or 
freezing). 

 

Fig. 1. 1: Different types of robot end-effector: (a) two-finger gripper of a serial industrial manipulator 
(Haugaløkken et al., 2018); (b): vacuum gripper of Delta parallel robot (Nordin et al., 2016); (c): multi-finger 
gripper of Shadow Dexterous Hand (Li et al., 2019); (d): soft gripper of mGrip made of elastomers (“Soft 
Robotics mGrip Circular kit,” n.d.).  

In designing conventional robot end-effectors, only rigid parts are usually used for connecting 
articulating joints (such as hinges, axles, or bearings), while elastic deformation of links/joints are 
considered undesirable. However, there are a growing number of applications that require compliant 
mechanisms that contain passive or active elastic members such as springs or motors, and can gain 
their motions from the constrained bending of flexible parts. This allows users to increase the 
flexibilities of devices and achieve complex motions in very constraint environment. (Albu-Schaffer 
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et al., 2008; Frecker et al., 1997; Howell, 2013; Leidner, 2019; Pan et al., 2018; Wang and Chen, 2009) 

A new trend in robotics is to use some flexible continuum compliant devices as the end-effector 
rather than conventional simple ones. Designers choose the soft flexible mechanisms as the end-
effector, such as the total compliant manipulator body (Camarillo et al., 2009, 2009; Gravagne and 
Walker, 2002; Kang et al., 2013; Konishi et al., 2001; Kumar et al., 2017; McMahan et al., 2006, 2005; 
Trivedi et al., 2008). Because sometimes the end-effector should be long or large enough so that it can 
fit the desired work environment and achieve the complicated movements. Two examples of such 
design are shown in Fig. 1. 2 . The first of them presented in Fig. 1. 2a is the snake robots used for 
rescuing. Here, the robot itself can be treated as an end-effector, which is composed of similar modular 
parts that can be added or subtracted to change its length. It can move rapidly through unstructured 
environments and avoid obstacles by going around or over them, or through small holes in the obstacle, 
such as a rock pile (Wright et al., 2012). Another example is the robotic elephant trunk of Festo 
Company (Fig. 1. 2b) (Müller et al., 2020). In this case, the small pure soft end-effector is connected 
with the large soft body, which are all activated by pneumatic. In both examples, the compliance allows 
robots working safety with human and also achieving complicated movements that traditional rigid 
manipulators cannot. In the field of modern robotics, there are also some new kinds of manipulators 
appeared, with multi-d.o.f., and a large or even infinite degree of kinematic redundancy, which may 
be used for the end-effectors design (Chirikjian, 1993; Huang et al., 2010; Marchese et al., 2014a; Rolf 
and Steil, 2012; Wang et al., 2013; Webster and Jones, 2010). 

 

Fig. 1. 2: Examples of soft compliant robot end-effectors: (a) Snake Robots (Wright et al., 2012); (b): Soft 
Tentacle Gripper of Fest Company (Müller et al., 2020); 

For designing the flexible robot end-effectors, similar principles as robotic manipulators can be 
referred. Generally, the robotic manipulators can be classified into three types, conventional discrete, 
serpentine, and continuum robots (Robinson and Davies, 1999). The first one is made of traditional 
rigid components, such design is usually used in industry. The second type, the serpentine robots, uses 
discrete joints but combine very short rigid links with a large density joints, which produce smooth 
curves and make the robot similar to a snake or elephant trunk (Chirikjian and Burdick, 1995). And 
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finally the third type, the continuum robots are different with the serpentine robots, they do not contain 
any rigid links or joints, they are very smooth and soft, bending continuously when working (Yang et 
al., 2006). Both the serpentine and continuum robots received very great attention in the recent years, 
their highly articulated structures make them well suited for many applications, such as inspection and 
operation in highly constrained environments (Chirikjian and Burdick, 1994). But the pure soft 
continuum robot cannot provide great output force, and considering at the application field, difficulties 
of design and analysis, the research of it is not so more as the serpentine robots. Thus, combining rigid 
and elastic or soft components to make part of robot manipulator becomes a popular and useful practice. 
The typical earlier hyper-redundant robot designs and implementations can be date to 1970s, 
(Anderson, V. C., & Horn, R. C., 1970), which includes a series of plates interconnected by universal 
joint and elastic control components for pivotable action with respect to one another, through adjusting 
the elastic control components, it can be pivoted to desired positions resulting in a snake-like 
movement of the entire arm assembly (Cieślak and Morecki, 1999; Gravagne and Walker, 2000a, 
2000b; Morecki et al., 1988; Rolf and Steil, 2012; Yang and Zhang, 2015). 

Recently, robotic engineers started intensively use new types of mechanical structures in 
compliant robot design. One of the promising trends is employing the tensegrity mechanisms as the 
robot end-effectors. This approach allows efficiently combine useful properties of rigid and elastic or 
soft components and achieve high flexibility similar to an elephant trunk or snake robot (Gravagne et 
al., 2003; Grzesiak et al., 2011; Hannan and Walker, 2003; Rolf and Steil, 2014; Tanaka and Matsuno, 
2014; Webster and Jones, 2010; Wright et al., 2012; Yang and Zhang, 2015). For these reasons, this 
thesis focuses on the compliant serial structures composed of a number of similar modules or segments, 
each of which is based on the tensegrity mechanisms. Particular attention will be payed to their 
elastostatic properties and static stability with respect to the external loading. Also, the kinematic 
control issues for such redundant architectures will be considered.  

1.2 Tensegrity mechanisms and their application in robotics  

Recently, robotic engineers started intensively use new types of manipulator mechanisms based 
on tensegrity structures, which are assembly of compressive parts and tensile parts held together in 
equilibrium. Because of their numerous advantages, such structures look very promising for robot end-
effector design. Let us consider them in detail. 

1.2.1 Definition and history of tensegrity structures 

In literature, the word tensegrity appeared several decades ago as a conjunction of the two words, 
tension and integrity (Fuller, 1962; Snelson, 1965), (Motro, 1990; Motro and Raducanu, 2003; Pugh, 
2020; Skelton and Oliveira, 2009). It is usually used to describe the mechanical structures belonging 
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to the class of prestressable ones, which should stay at the equilibrium state with the preload inside of 
the tensile parts. Such structures have some important particularities separating them from the normal 
pre-stressable structures that have been studied by mechanical engineers for many years. Usually, the 
compressive parts of tensegrity structures are rigid bodies or bars, and the tensile parts are created 
from strings or cables connected to each other and to the rigid bodies end by end. This kind of 
structures is able to keep its original form (i.e. statically stable) and have many special advantages, 
like low weight and high flexibility, that attracted attention of many researchers (Bel Hadj Ali and 
Smith, 2010; Jáuregui, 2020; Schenk et al., 2007; Skelton et al., 2001, 2002; Snelson, 2012; Tran and 
Lee, 2010; Wang et al., 2020; Wenger and Chablat, 2018, 2019a; P. Zhang et al., 2014).  

 

Fig. 1. 3: Typical stable tensegrity structures composed of rigid bodies connected by tensile parts: (a) 
Snelson’s 3DOF X-piece, 1948 (Skelton and Oliveira, 2009). (b): 2-segment serial tensegrity mechanism 
(Furet and Wenger, 2019a). (c): 2DOF planar tensegrity mechanism (Boehler et al., 2015). 

One of the first tensegrity structures widely described in literatures is the famous “X-piece” of 
Kenneth Snelson proposed in 1948 (Skelton and Oliveira, 2009). This three-dimensional structure is 
composed of two rigid wooden “X” pieces made up by rigid bars and cables as shown in Fig. 1a. One 
can change the shape of this art as they wish through adjusting the tensile cables, and also maintain 
the same shape but increase or decrease the internal force of the tensile cables. It is worth mentioning 
that, this structure may achieve multiple equilibrium configurations, both stable and unstable ones. 
Also, this “X-piece” can be considered as a basic module of more complicated structures, created by 
increasing the number of the pieces in serial or parallel.  

Classification for the tensegrity structures is usually based on the number of independent rigid 
bodies and tensile parts. In particular, in literature can be found numerous examples of tensegrity 
structures of class 1 (with a single rigid body and a single cable), class 2 (with two rigid bodies and 
two cables), and so on (Motro and Raducanu, 2003; Skelton and Oliveira, 2009). It should be noted 
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that this classification can be easily applied for the simple structures only, because there are a number 
of cases when the definition of this classification is not evident. For instance, this two X-piece structure 
from Fig. 1. 3a composed of 2 rigid bodies and many tensile cables cannot be named through the above 
classification. 

 

Fig. 1. 4: Examples of tensegrity structures in engineering, art and architecture (a): the tensegrity tower crane 
(b) model of the tensegrity spherical architecture designed by R. Buckminster Fuller, 1979; (c): the Kurilpa 
Bridge based on tensegrity structure in Australia designed by Baulderstone, 2007; (d): the tensegrity geodesic 
dome of the Montreal Biosphère in Canada designed by R. Buckminster Fuller, 1967 (these images are from 
Wikipedia).  

Besides of the X-piece, there are a number of other interesting tensegrity structures that attracted 
attention of mechanical engineers. For instance, a planar tensegrity manipulator made of two similar 
segments in series, which are composed of two rigid bars and linear springs held together was studied 
by Philippe Wenger et al (Fasquelle et al., 2022; Furet et al., 2019a, 2019b; Furet and Wenger, 2019a, 
2019b, n.d.; Muralidharan et al., 2020; Wenger and Chablat, 2019b; Wenger and Furet, 2021). Here, 
there are four bars for each segment (two on bottom and top and other two crossed inside) and two 
linear elastic springs on two side of the segment. They form an hourglass shape or X shape, as shown 
in Fig. 1. 3b. By adjusting the springs the segment can change its shape and stiffness as desired. While 
different with the Snelson’s X-piece, here the two crossed bars inside do not contact each other, they 
are two independent parts that allows this mechanism achieving more complicated motions. Another 
mechanism based on X-piece architecture is presented in Fig. 1. 3c (Boehler et al., 2015). Here the 
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tensegrity structure has two inside crossed bars only, but it includes four adjustable tensile parts. There 
are two linear springs on the top and left, and two adjustable tensile cables or strings with actuators on 
the bottom and right. Such design allows this type of tensegrity mechanism having larger workspace 
compared with other ones, and also let the mechanism being more flexible allowing implementing 
more complicated tasks. In literature, there are a number of other examples, where the tensegrity 
structures demonstrated very promising properties and unique advantages compared to totally rigid 
mechanisms (Booth et al., 2020; Furet et al., 2019b; Skelton and Oliveira, 2009). 

Tensegrity structures are used in many fields, for example in engineering, arts architecture and 
medical (Fu, 2005; Levin, 2002), where they are integrated in design of the plane wings, antenna, steel 
cable bridge and some towers, as shown in Fig. 1. 4. The simplest of them is a well-known tower crane 
shown in Fig. 1. 4a, where the steel trusses are connected with wire ropes, and the crane can keep 
balance in stable way for different working conditions by using suitable numbers and types of wire 
ropes through computing the limit force of it. Another familiar example of tensegrity structure is the 
bicycle wheels. The wheels are connected with a lot of adjustable metal tension-spoke, such design 
allows the bicycle wheels being light and stable. While here the rigid body is a circle rather as the 
normal straight one, which means it is no need to consider the stable equilibrium here without any 
external load, as all the forces focusing on the central point are already stable themselves.  

More interesting and attractive tensegrity structures can be found in architecture. In particular, R. 
Buckminster Fuller designed many architectures based on tensegrity structures, which are quite stable 
and light, and also very beautiful. Some examples are shown in Fig. 1. 4b and Fig. 1. 4d, where the 
spherical and shell tensegrity structures can achieve the largest internal space and ultimate load by 
using the least materials. For this application area, the tensegrity structures allow designers to fix or 
improve the partial objects rather than to change the whole structure body. Plenty of similar tensile and 
compressive parts held together also maintaining the structure steadier than the other types. Another 
famous architecture application of tensegrity structures is the Kurilpa Bridge (Fig. 1. 4c), where the 
straight bridge body is held by many tensile steels along it, which are connected with the columns 
locating on the bridge. It is similar to a mechanical chain, and it is not hard to imagine that if the tensile 
steels can be adjusted and the bridge body can be also bended or rotated, this structure will be flexible 
and controllable. In fact, this excellent properties give very interesting prospective for new designs in 
mechanisms and robotics, which are considered in detail below.  

1.2.2 Mechanical properties of tensegrity structures 

In general, the tensegrity mechanisms exhibit high flexibilities with lower weight, but their design 
requires careful investigation of static equilibrium configurations and their stability. For a tensegrity 
mechanism of equilibrium state, while there is no external forces, the connections between each strings 
and rigid bars are torqueless (e.g. via frictionless ball-joints or so-called passive joint), if there is a way 
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to let the structure be stable equilibrium through the internal force generated by the internal tensile 
members, then we say the structure have a tensegrity configuration. If no tensile strings are required 
and/or no set of tensile strings exist to let the structure be stable equilibrium, then it is not a tensegrity 
configuration. (Bing, 2019; Deng and Kwan, 2005; Masic et al., 2005; Tibert and Pellegrino, 2003; 
Vassart and Motro, 1999; Zhang and Ohsaki, 2006, n.d.) 

It is quite different with the structures that stabilized by the external forces, as any stable or 
unstable equilibriums may occur under the external forces. Actually, to verify if the equilibrium 
configuration is stable or not, one should do the stiffness analysis of the mechanism, i.e. in practice it 
means if the structure can return to the original given configuration after the application of arbitrarily 
small perturbations anywhere within the configuration, it is stable equilibrium, otherwise, it is not. As 
an example in Fig. 1. 3b, the cable-driven X-shape tensegrity structures were considered in (Furet, M., 
et al. 2018), where each section was composed of four fixed-length rigid bars and two springs. For this 
mechanism, the authors investigated influence on the cable lengths on the mechanism equilibrium 
configurations, which maybe both stable and unstable. 

There is also a very important and useful property that let the tensegrity mechanism being favorite 
to designers, it is the variable stiffness. Because of the elastic strings or cables of the tensegrity 
mechanisms, one can change the stiffness by using different pre-stress generated by the elastic 
components without changing its shape. Of course, by suitable design of the geometric structure, one 
can get the same stiffness from different structure shape. This quite special property gives the 
tensegrity mechanism a very flexible structure. Besides, it allows to get the desired configuration or 
the same stiffness either applying the external force or not, through the rule to choose the magnitude 
of the pre-stress in practical designs. Also, comparing to other mechanism structures, the tensegrity 
mechanisms can provide rather large stiffness. It means that to generate a same force the tensegrity 
mechanism may just need a very small “motion” and also a very light weight, which is very attractive 
in robotics (Amendola et al., 2018; Crane et al., 2005; Guest, 2011; Li et al., 2010; Murakami, 2001; 
Tran and Lee, 2010; L.-Y. Zhang et al., 2014; Zhang et al., 2012).  

Further, designers can also do some optimization to reduce the weight of the tensegrity 
mechanism. One of the possible approaches is based on the well-known buckling formula, which 
considers the moment when the rigid bars are buckling under the pre-stress. It is possible to combine 
the Euler’s formula with the mass-density formula together, then get the relationship between the 
geometric parameters of the rigid bars and the critical force causing the buckling, and at last to get the 
minimal mass of the bars (Carpentieri et al., 2017; Chen and Skelton, 2020; Fraternali et al., 2015; Ma 
et al., 2020; Nagase and Skelton, 2014; Skelton et al., 2016, 2014). Additionally, one can also use the 
same method to compute the largest critical force by changing the geometric shape without changing 
the mechanism mass, which just need to do the optimization of the geometric parameters of the 
structure.  
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In literature, there are already some research focusing on the geometric buckling phenomenon in 
tensegrity mechanisms, with special attention to the work space and singularities analysis (Goyal et 
al., 2020; Masic et al., 2006; Murakami, 2001; Rimoli, 2018, n.d.; Rimoli and Pal, 2017; 
Shekastehband et al., 2012; Stamenovic´ and Coughlin, 1999; Volokh et al., 2000). One group of 
related works (Arsenault and Gosselin, 2006) deals with the mechanism composed of two springs and 
two length-changeable bars. The authors analysed the mechanism stiffness using the energy method, 
and demonstrated that the stiffness of this mechanism always decreases when it is subjected to external 
loads with the actuators locked, which may lead to “buckling”. Some other research in this area 
(Wenger and Chablat, 2018) focus on the three-spring mechanisms, for which the equilibrium 
configurations stability and singularity were analysed. Using these results the authors obtained 
conditions under which the mechanism can work continuously, without the “buckling” or “jump” 
phenomenon.  

It is worth mentioning that majority of works dealing with the stiffness analysis of tensegrity 
structures assume that the primary source of the mechanism flexibility is stiffness of tensile parts while 
there remaining ones are considered as absolutely rigid. Thus, the material deformation is not usually 
presented in the model and the force that will buckle a bar is not accurately predicted. However, if one 
want to know the behavior of this mechanism under large stress (when the bars are bending), or high 
accuracy is required, then the beam stiffness must be also taken into account.  

1.2.3 Tensegrity structures in robotics  

Recently, a number of researchers combined the tensegrity mechanism with the robots, which 
allowed to design excellent novel manipulators that can change not only their stiffness but also their 
shapes and sizes. This yielded many useful examples of the tensegrity robots that are used in medical, 
domestic and military applications, such as underwater, aerospace, for inspecting pipelines, patrolling 
or maintaining tortuous plumbing, for exploring complex underwater structures, or for search and 
rescue missions (Aldrich et al., 2003; Arsenault and Gosselin, 2008; Booth et al., 2020; Caluwaerts et 
al., 2014; Graells Rovira and Mirats Tur, 2009; Masic and Skelton, 2004; Paul et al., 2005; Rieffel and 
Mouret, 2018; Shibata et al., 2009; Zappetti et al., 2020). Their primary advantages are caused by the 
variable stiffness allowing the tensegrity robots to have high flexibility and compliances, and 
consequently easily changing their shapes to satisfy any constrained workspace. The high compliances 
also let the tensegrity robots being quite “soft”, which allowed to avoid the traditional collision 
problem that is critical for convergent rigid manipulators (Chen et al., 2017; Chung et al., 2019; 
Gravish and Lauder, 2018; Koizumi et al., 2012; Marchese et al., 2014b, 2013; Mintchev et al., 2018, 
2018; Roper et al., 2011; Sfakiotakis et al., 1999; Wen et al., 2020). Additionally, as combining with 
more advanced novel materials and control algorithms, the tensegrity robots become more and more 
closed to biological structures, which motivate designers to use them in robot end-effectors (replacing 
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operator hands) that is the primary goal of this thesis.   

One of the most famous tensegrity robots is the Spherical Under actuated Planetary Exploration 
Robot ball (SUPERball) of NASA, which is shown in Fig. 1. 5a. It is an all-in-one landing and mobility 
platform based on tensegrity structures, which is designed to explore other planets in the future. It is a 
collapsible, terrestrial robot based on a tensegrity toy. Before working, the shape of SUPERball is just 
like a bunch of sticks, every rigid sticks are held together in the smallest volume, while after unfolding, 
all the sticks acted by the cables build up a big cube. The sphere-like matrix of cables and joints give 
the robot the ability to withstand being dropped from a spacecraft high above a planetary surface and 
hit the ground with a bounce. While it is not possible for a traditional robot without buffer device 
facing to the same substantial impact. Another advantage is that the joints could adjust to roll the 
SUPERbot in any direction quickly without limited by the obstacles on the ground, unlike the wheeled 
robots, which must move very slowly and carefully to avoid damage. Also, here this tensegrity 
structure reduce the robot weight as much as possible, and improve its maneuverability greatly.  

 

Fig. 1. 5: Examples of tensegrity structures in robotic mechanisms: (a) SUPERball of NASA, 2015 
(Sabelhaus et al., 2015); (b) the tunably compliant spine-like tensegrity robots of NASA (Mirletz et al., n.d.); 
(c) CMMWorm of the Case Western Reserve University, 2012 (Kernbaum et al., 2009); (d) the continuous 
compliant robotic fish by Harbin Institute of Technology, 2019 (Chen and Jiang, 2019).  

Another interesting example is the spine-like robot (Fig. 1. 5b) that was also designed by NASA. 
It is composed of similar rigid parts and tensile cables, and is inspired from the biological spine. The 
goal is to let the spine-like robot being flexible as spine and also can be made up by similar independent 
modular tensegrity parts. This type of robots have the excellent ability to achieve complicated and 
difficult manipulation tasks through demonstration of simulations and experiments.   
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In bio-inspired robotics, the biologically inspired Compliant Modular Mesh Worm robot 
(CMMWorm) shown in Fig. 1. 5c is one of the famous and outstanding works. Miniaturized versions 
of worm-like robots could find multiple applications in medicine, such as endoscopy or angioplasty. 
Instead of the traditional design of soft-bodied worm-like robot, they improved the structure and 
peristaltic motion by adding the hoop actuators that are made of steel cable wrapped around the robot. 
That change the typical structure of the soft body, which is developed using long braided pneumatic 
actuators (artificial muscles), into a tensegrity structure. Different is that here the force inside of the 
tensile cables are activated by the internal fluid pressure inside of the shape memory alloy (details are 
in reference), not as the other tensegrity structures that directly generate the forces inside of the tensile 
cables. This robot shows quite outstanding performances, it can imitate the peristaltic motion of worms 
perfectly and go through very small gap easily.  

Another similar example is the tensegrity continuous compliant robotic fish designed by Harbin 
Institute Technology University (see Fig. 1. 5d), the main flexible structure of the robotic fish body 
was composed with a series of rigid segments linked with tensegrity joints by means of tension 
elements, and each rigid segment can rotate around tensegrity-compliant joint and have no direct 
contact with each other. It is a serial-parallel structure that can both have the variable stiffness of serial 
compliance tensegrity mechanism and the stability of the parallel mechanism. This tensegrity robotic 
fish can swimming like a fish underwater by controlling the vibrational mode of desired kinematics of 
locomotion. They had improved the structure compared to the other compliant robotic fish, avoided 
the energy loses of friction and increased the flexibility through their control algorithm. 

The tensegrity structures have also been used for some other soft bio-robots or robotic 
manipulators, such as the elephant trunk robot, octopus robot, artificial arm and shoulder et al, due to 
their compliant and flexible capabilities. They are designed for many different purpose, include 
replacing the human beings or the traditional robots to work in the dangerous or limited space, avoiding 
the undesired problems caused by people (like the surgery in medicine), and helping people with 
mobility impairments to work (Fasquelle et al., 2022; Feng et al., 2021; Hustig-Schultz et al., 2016; 
Levin, 2002; Mirletz et al., 2015; Moored et al., 2006; Sun et al., 2019; Venkateswaran et al., 2021, 
2020). All these application requiring the robots to move exactly accurate as people wish, by means 
that the robots can achieve a serious of continuous motions with high accuracy while working in an 
environment with obstacles. That needs not only an excellent tensegrity structure, but also an efficient 
kinematic control strategy, so the controllable tensegrity robots are still in focus of many researchers. 
As there may be many stable or unstable equilibrium configurations for tensegrity mechanisms, the 
variable stiffness control for tensegrity mechanisms are quite complicated, which let the stiffness 
analysis for tensegrity robots be so important. The robots may work without any external load or with 
quit large external load, a simple stiffness model describing the robots as in traditional mechanics is 
not enough at all, some accuracy stiffness analysis method concerning both loaded, unloaded and the 
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buckling phenomenon should be taken into account. 

1.3 Stiffness of flexible manipulators and existing modelling techniques 

It is natural that for the flexible manipulators considered in this thesis, the stiffness is the primary 

property to be analyzed. It is usually evaluated via stiffness/compliance matrices showing reaction of 

the robot end-effector location and its shape to the external force/torque. Currently, there are three 

popular methods for computing these matrices: the Finite Element Analysis (FEA), the Virtual Joint 

Method (VJM) and the Matrix Structural Analysis (MSA) (Alexandr Klimchik et al., 2019b; Anatol 

Pashkevich et al., 2011), which are considered in detail below. 

1.3.1 Finite Element Analysis  

The main idea of FEA is to decompose the physical model of the mechanical structure on a 

number of rather small (finite) elements and to introduce compliant relations between adjacent nods 

described by relevant stiffness matrices (Borst et al., 2012; Hrennikoff, 2021; Hughes, 2012; Ramm et 

al., 2003; Stein, 2014). Then, a number of simple equations describing relations between the element 

deformations and the corresponding forces/torques are introduced, which are further assembled into a 

larger system of equations that describes the entire structure. It is worth mentioning that FEA is a rather 

modern stiffness modelling technique that requires essential computation efforts, but its background 

can be dated back to the 18th century, when Leonhard Euler presented the famous Euler-Bernoulli 

beam theory. Further, several investigations related to Finite Element Analysis were developed in the 

next century (Bathe and Dvorkin, 1986; Courant, 1943, 1943; Hughes and Hulbert, 1988; Jirouseka 

and Guex, 1986; LANGEFORS, 1952; Melenk and Babuška, 1996; Schellbach, 1851; Simo and Rifai, 

1990; Zienkiewicz and Cheung, 1971). FEA is widely used in mechanics and is included in most of 

3D modelling software packages. 

 

Fig. 1. 6: Typical geometric elements in FEA.  
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During the FEA-based simulation process, there are usually six steps, which are supported by 

corresponding software tools: 

(1) Creation of 3D model: a proper 3D model of the designed mechanical structure is built using 

a computer, which contains the accurate geometric parameters of the important parts, but 

ignores the geometric features of the unimportant parts. The reason for such simplification 

is that the complicated 3D model will increase the calculation time and difficulty, especially 

the parts that give insignificant or no influence on the stiffness of the total structure.   

(2) Material definition: for an obtained 3D model, the material properties should also be defined, 

which include some parameters describing the material resistance under external loading, 

such as the Elastic Modulus. These parameters are usually known, they will be used to 

compute the deformation of each small element in step (4).   

(3) Definition of loads and boundary conditions: at this step the external loads (or sometime 

internal loads for close-loop structure) and the boundary conditions describing connections 

of the mechanical structure are defined. This step allows to obtain some additional equations 

that are further used to compute the forces and torques applied to each parts.  

(4) Meshing: it is the most important step in the FEA modelling, which essentially influences 

the modelling accuracy and simulation time. Here, the 3D model is divided into many small 

elastic elements that are further presented as a set of discrete nodes with flexible connections 

between them. There are many types of geometric element used in FEA, for example the 

two-dimensional triangle and quadrilateral, and the three-dimensional tetrahedron, pyramid 

and hexahedron, which are shown in Fig. 1. 6. In practice, selection of the FEA element 

may influence the simulation results. So, to choose the better one, some other methods or 

comparative experiments are usually carried on. It should be mentioned that to decrease the 

computation time, suitable number and geometric size of the finite elements should be 

defined for each parts of the mechanism structure.         

(5) Simulation: it is the step that consumes the most of the total FEA modelling time. The 

computer takes into account all the finite elements obtained above, derives the stiffness 

models for all of these elements, and then assembles them in the global system of equations 

describing the force-deflection relations for the total mechanism. Then, after solving these 

systems, the desired deflections are computed for each node showing the mechanism 

reaction to the given loads. Besides, the global stiffness matrix for the considered 
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mechanism structure is computed. 

(6) Post-processing and visualization: in this step, some additional computations are executed 

allowing to present the simulation results in a better way. Usually, the 3D model of the 

mechanism is used with different colors showing the stress distribution as shown in Fig. 5. 

Also, the contour plots or animations of the force-deflection for the considered mechanism 

structure may be obtained. These allow directly to find the mechanism weak parts, and also 

detect some special phenomenon in mechanism stiffness behavior.    

 

Fig. 1. 7: Example of FEA applications to the design optimization of industrial robotic manipulator (Bugday 
and Karali, 2019). 

An evident advantage of the FEA method is that it can describe the structure deformation and its 

corresponding stress using the obtained approximated stiffness function continually. Every rather small 

part of the structure is taken into account and its partial stiffness of each direction in the space can be 

obtained, an example of the simulation of the steel beam based on FEA is shown in Fig. 1. 7 (Bugday 

and Karali, 2019). However, the accuracy of FEA and the number of the discretization step while 

calculation are not related directly. It means that although FEA requires a large numbers of finite 

elements, but the round-off errors due to the excessive meshing may reduce the accuracy. Besides, the 
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problem of limited computer memory and the difficulty of the high-dimension matrix inversion is 

rather critical.  

In the frame of the FEA technique, the robotic manipulator can be described in many details with 

the real shape of its components, allowing to compute the deformation and stress distribution along 

the links. However, since the manipulator structure becomes more and more complicated, it may 

contains both serial and parallel components, the FEA technique causes rather high computational 

expenses for the repeated re-meshing and re-computing. Besides, the manipulator may contains both 

active and passive joints also, which are quite difficult to be described in the FEA model. So in robotics, 

this method is usually applied at the final design stage only, or for some robots made of novel materials. 

For this reason, the FEA technique is not very attractive for the stiffness analysis of the tensegrity 

mechanisms. In contrast, the Virtual Joint Method (VJM) method and the Matrix Structural Analysis 

(MSA) method considered below look more suitable for the tensegrity structures studied in this thesis.  

1.3.2 Matrix Structural Analysis method (MSA)  

This method incorporates the main ideas of FEA but operates with rather large compliant elements 

such as beams, arcs, cables, etc. This obviously leads to the reduction of the computational expenses 

and, in some cases, allows us to obtain an analytical stiffness matrix for the specific task (Clinton et 

al., 1997; D’Altri et al., 2019; Deblaise et al., 2006; Gallagher, 2014; Ghali et al., 2017; Huang et al., 

2002; Alexandr Klimchik et al., 2019b; Li et al., 2002; McGuire et al., 2000; Papadrakakis and 

Sapountzakis, 2018; Pashkevich et al., 2009). Similar to the FEA-modeling the MSA method gives 

forces/torques and displacements for each node, but here it has a clear physical interpretation 

(manipulator active or passive joint), which can be useful for some tasks. For parallel robots, this 

method has been developed in works (A. Klimchik et al., 2018; Alexandr Klimchik et al., 2018a, 2018b, 

2019a), where a general technique for stiffness modeling of the manipulator with rigid/flexible links 

and passive joints was proposed. It has been illustrated by stiffness analysis of parallel manipulator of 

Delta architecture where the links were approximated by regular beams. The latter causes some doubts 

in the model accuracy compared to the combination of the FEA and VJM techniques that are being 

developed here. Besides, this result was obtained under the assumption that the external forces/torques 

are relatively small (i.e. for the unloaded mode), and it is unlikely that such approach can be enhanced 

to take into account particularities of manipulator behavior in loaded mode. In addition, here there 

exists a problem of the stiffness matrix computation for the manipulator singular configurations. 

From a computational point of view, the MSA method is less complicated than the FEA-based 
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one. In spite of the fact that MSA still involves matrix operations of rather high-dimension, it gives a 

reasonable trade-off between the accuracy and computational time, provided that links approximations 

by the beam elements are realistic. It should be also noted that, in their general formulations, the FEA 

and MSA methods are closed: both of them interpret physical system as a set of nodes with mutual 

flexible connections. The main difference is that the MSA operates with true physical objects (like 

beams, arcs and others), while the FEA decomposes them into small finite elements. So, the MSA can 

be treated as a special case of the FEA that has already found its application in robotics. 

 

Fig. 1. 8: MSA modeling of cantilever and unsupported beams: nodes, deflections and wrenches(Alexandr 
Klimchik et al., 2019b). 

To introduce the basic principle of the MSA technique, let us apply it first to the simplest 

mechanical systems, such as the cantilever and unsupported beams. In classical mechanics, the 

stiffness properties of the cantilever beam (fixed at one side, see Fig. 1. 8a) are described by the Hook’s 

law that defines a linear relationship between the applied external wrench (force/torque) W and 

corresponding deflection Δt at the free-end. 

 = ⋅W K Δt  (1. 1) 

where K is 6×6 stiffness matrix. It should be mentioned that here Δt  is a 6-dimensional deflection 

vector that includes both translational [ , , ]T
x y zp p p= ∆ ∆ ∆Δp  and rotation [ , , ]T

x y zϕ ϕ ϕ= ∆ ∆ ∆Δφ  

components. Similarly, the wrench vector W is also 6-dimensional and contains both the force 

[ ]T
x y zF ,F ,F=F  and torque [ ]T

x y zM ,M ,M=Μ  components. In general case, the stiffness matrix K 

from the Hook’s law is symmetric and positive definite but may include a number of off-diagonal 

elements (Alexandr Klimchik et al., 2019b). For typical beams commonly used in practice (with 

regular cross-section) the stiffness matrix can be computed analytically as the formula shown in (1.2) 

in below, where L is the beam length, S is the beam cross-section area, Iy, Iz are the second moments, 

J is the polar moment, E and G are Young’s and Coulomb’s modules of the beam material, respectively. 

For more complicated beam shapes, the above matrix can be obtained numerically by means of the 

FEA method using technique proposed in (Borst et al., 2012; Hughes, 2012; Kim et al., 2018). 
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 

− ⋅ ⋅ 

K   (1. 2) 

For the unsupported beam (with two non-fixed ends, see Fig. 1. 8b) that are used in MSA as 
principal components, it is necessary to define the deflections and wrenches for both sides. The latter 
will be further referred to as “u ”and “v ”or “1”and “2”. In this case, the stiffness model is presented 
in an extended form 

 
1 11 12 1

2 21 22 212 12×

     
= ⋅     

     

W K K Δt
W K K Δt  (1. 3) 

that relates the deflections on both sides 1Δt , 2Δt  and corresponding wrenches W1, W2 by means of 
12×12 extended stiffness matrix composed of four 6×6 blocks K11, K12, K21, K22 . It is clear that this 
12×12 matrix is rank deficient since the wrenches W1, W2 should satisfy the static equilibrium 
equation that defines linear dependence between the matrix rows in (1.3). To find the submatrices K11, 
K22, the boundary conditions should be taken into account, which describes the deflection and force at 
the beam endpoints. In this case, it is easily to assume that either 1 0=Δt  or 2 0=Δt , then by taking 
it into (1.3), one can get the desired 6×6 blocks, which can be expressed via the classical 6×6 matrix 
K from equation (1.1) in the following way  

 
11 22

3 3 3 3 3 3 3 3
12 22 21 11 21

3 3 3 3

; ;

;
[ ] [ ]

T
z z

T
T

× × × ×

× ×

= ⋅ ⋅ =

   
= − ⋅ = − ⋅ =   × ×   

K T K T K K
I 0 I 0

K K K K K
L I L I

 (1. 4) 

where [ ]×L  is the 3×3 skew-symmetric matrix derived from the beam length vector L and I  is the 
identity matrix, zT is the 6×6 diagonal matrix describing the rotation around z-axis by angle π. 

For more complicated mechanical systems, which are composed of several beams with different 

connections, the desired MSA-based stiffness model can be derived by aggregating the MSA models 

of separate beams taking into account relations describing the connections. For example, for the two-

link system with rigid connection (as in Fig. 1. 9a), the force deflection relations for the first link can 

be written using the formula in (1.5) in the below, where nodes numbers 0, 1 denote the coordinate 

system locating on the endpoints.  
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1 121 22

    
= ⋅    

    

W ΔtK K
W ΔtK K

 (1. 5) 

 

Fig. 1. 9: MSA modeling of two-link systems with different connections 

Similarly, for the second link, the MSA-model relation can be obtained using the coordinate 
transformation of the basic expression, which yields  

 
2 2

2 211 12
2 2

3 321 22

T T
z z z z

T T
z z z z

 ⋅ ⋅ ⋅ ⋅   
= ⋅    ⋅ ⋅ ⋅ ⋅    

W ΔtT K T T K T
W ΔtT K T T K T

 (1. 6) 

where zT  is the 6×6 matrix describing the rotation around z-axis allowing to transform the frame 

1 1 1( , , )x y z  to 2 2 2( , , )x y z . Then, by combing (1.4), (1.5) and taking into account the boundary 

conditions describing connections of the link ends, 

 0 1 2 1 2; ;= = = −Δt 0 Δt Δt W W  (1. 7) 

where the first expression describes the left fixed end (node 0) and the remaining ones define the rigid 
connection between the two links, one can get the desired MSA-based model of the considered two-
link system with the rigid connection,  

 
1 2 2

222 11 12
2 2

3 321 2212 1 12 112 12

T T
z z z z

T T
z z z z× ××

 + ⋅ ⋅ ⋅ ⋅   
= ⋅    ⋅ ⋅ ⋅ ⋅    

0 ΔtK T K T T K T
W ΔtT K T T K T

 (1. 8) 

which allows us to compute the deflections 2Δt , 3Δt  corresponding to the wrench 3W  applied at 

the right endpoint (node 3). It can be proved that elimination of 2Δt  leads to the following expression 

 3 3C= ⋅∆W K t   (1. 9) 
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where CK  is the desired stiffness matrix of this two-link system that is related with the stiffness 

matrices of the separated beams in the following way 

 2 2 1 2 1 2
22 21 22 11 12( )T T T T

C z z z z z z z z
−= ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅K T K T T K T K T K T T K T  (1. 10) 

It should be mentioned that here the matrix CK  is non-singular and invertible. 

For the two-link system with passive connection (as in Fig. 1. 9b), the problem cannot be solved 

in a straightforward way as above. Here, the force deflection relations for the separate beams can be 

also written as (1.4) and (1.5). However, the boundary conditions for this case are different and may 

be presented as follows 

  0 1 2

1 2 1 2

; ( ) ;
( ) ; ;

r

r p p

= ⋅ − =

⋅ + = ⋅ = ⋅ =

Δt 0 Λ Δt Δt 0
Λ W W 0 Λ W 0 Λ W 0

 (1. 11) 

where the subscripts “r” and “p” denote the rigid and passive connections, and the corresponding 

matrices rΛ , pΛ  describing the passive joint are (1,1,1,1,1,0)r diag=Λ , (0,0,0,0,0,1)p diag=Λ . 

The first of them rΛ  ensures that the angle deflection in the direction of z-axis is not taken into 

account, as well as that the 3-rd Newton’s law is not applied to the corresponding wrench components. 

The second matrix pΛ  is used to ensure that these wrench components (torques with respect to the 

z-axis) are equal to zero. It should be mentioned that here both rΛ  and pΛ  are diagonal matrices 

but in the general case, for arbitrary direction of the passive joint axis, they can be non-diagonal.  

Using such boundary conditions (1.10) and combining them with the link MSA models (1.4) and 
(1.5), one can obtain the following linear system with 12 zero rows  

  

6 6
1

122 6 6 6 6
2 2

26 6 11 12
1 2 2

322 11 12 18 1
2 2

3 6 6 21 2230 1 30 18

r r

p

p T p T
z z z z

r r T r T
z z z z

T T
z z z z

×

× ×

×

×

×× ×

 − 
   ⋅         = ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅      ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅    
   ⋅ ⋅ ⋅ ⋅   

0 Λ Λ 0
0 ΔtΛ K 0 0
0 Δt0 Λ T K T Λ T K T
0 ΔtΛ K Λ T K T Λ T K T

W 0 T K T T K T

 (1. 12) 

that can be further presented in a more compact way as follows 
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Δt
W C D

Δt
 (1. 13) 

where the detailed expressions for the block matrices 1 1 1 1, , ,A B C D  can be found in (A. Klimchik et 
al., 2019b). Further, similar to the above case, expression (1.12) can be simplified by eliminating 1Δt , 

2Δt , which yields the desired stiffness model  

 3 3C= ⋅∆W K t  

with the stiffness matrix  

 1
1 1 1 1C

−= − ⋅ ⋅K D C A B  (1. 14) 

which should be obviously rank-deficient because of the passive joint.  

For the two-link system with elastic connection (as in Fig. 1. 9c), the general force deflection 

relations of the separate links (1.4) and (1.5) should be considered together with the boundary 

conditions describing the elastic connections that are presented as follows 

 0 1 2

1 2 2 2 1

; ;
( ) ; ( )r e e

qK
= = −

⋅ − = ⋅ = ⋅ ⋅ −

Δt 0 W W
Λ Δt Δt 0 Λ W Λ Δt Δt

 (1. 15) 

where qK  is the stiffness coefficient of the elastic connection, the subscripts “r” and “e” denote the 

rigid and elastic connections, and the corresponding diagonal matrices are (1,1,1,1,1,0)r diag=Λ , 

(0,0,0,0,0,1)e diag=Λ . Here the matrix rΛ  also ensures that the angle deflection in the direction of 

z-axis is not taken into account. However, the second matrix eΛ  is used here to describe the Hook’s 

law which is applied to the rotation around z-axis.  Similar to the previous case, the equations (1.4), 

(1.5) and (1.11) can be also presented in a more compact way as 

 
1

12 1 2 2
2

3 2 2 18 1818 1
3 18 1

×

××
×

 
     = ⋅          

Δt
0 A B

Δt
W C D

Δt
 (1. 16) 

with the slightly different block matrices 2 2 2 2, , ,A B C D  that can be found in (A. Klimchik et al., 

2019b). Further, the above expression (1.12) can also be simplified by eliminating 1Δt , 2Δt  and that 
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yields the desired stiffness model 

  3 3C= ⋅∆W K t  

with the full-rank stiffness matrix (1.17) that depends on both the stiffness properties of the beams and 
the stiffness coefficient of the elastic connection.  

 1
2 2 2 2C

−= − ⋅ ⋅K D C A B  (1. 17) 

Hence, as follows from the above presented case studies, the MSA technique allows us to compute 
the system stiffness matrix quite easy compared to the FEA technique. It is obviously that this approach 
can be straightforwardly used for the multi-link system with the given different types of connections. 
For the MSA, the final expression is simpler and includes the matrices of lower dimensions than FEA 
method. For example, in (A. Klimchik et al., 2019; Alexandr Klimchik et al., 2018b) the authors used 
the MSA technique to study the NAVARO robot, which is a 3-d.o.f. planar parallel manipulator with 
variable actuation schemes. By combining all equations describing the constraints and boundary 
conditions, they first expressed the stiffness model of the separate manipulator legs using 120×120 
matrices for each of them, which were further simplified to the form with a matrix of size 42×42. So, 
in spite of evident advantage compared to the FEA method, the MSA technique still requires numerical 
inversion of matrices of rather high dimension. The later motivates us to investigate another stiffness 
modeling approach, the VJM method, which is computationally simpler especially for the serial 
mechanical structures.     

1.3.3 Virtual Joint Method ( VJM )   

This method was first introduced by Salisbury and Gosselin (Gosselin, 1990; Majou et al., 2007; 

Salisbury, 1980) who assumed that all flexibilities of the multilink robot are located in the connection 

joints that are presented as one-dimensional springs with corresponding stiffness coefficient, which 

are combined together using the kinematic Jacobian. This allows to obtain the robot 

stiffness/compliance matrix of a rather simple form, which is widely used in many research works 

devoted to the manipulator stiffness analysis. The main idea of this technique is an extension of the 

conventional rigid-body model of the robotic manipulator, where the links are treated as rigid but the 

joints are assumed to be compliant (in order to accumulate all types of existing flexibilities in the joints 

only) (Alici and Shirinzadeh, 2005; Alexandr Klimchik et al., 2012; Klimchik et al., 2014; Pashkevich 

et al., 2009; Sun et al., 2016; Taghvaeipour et al., 2012; Wang et al., 2017; Zhang, 2005). To introduce 

the VJM technique in detail, let us consider a planar two-link manipulator as a simple example, which 

is shown in Fig. 1. 10. 
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For this manipulator, the relation between the joint angle deflections 1 2[ , ]Tq q∆ = ∆ ∆q  and the 

end-defector deflections [ ], Tx y∆ = ∆ ∆p  can be obtained from the differential geometric model as 

shown in (1.18) in below, 

 

Fig. 1. 10: VJM modeling of two-link manipulator: rigid links and compliant joints 

 q∆ = ⋅∆p J q  (1. 18) 

where  is the kinematic Jacobian matrix of this manipulator that is written here in the following way 

  1 1 2 12 2 12

1 1 2 12 2 12
q

L S L S L S
L C L C L C
− − − 

=  + 
J

qJ  (1. 19) 

and depends both on the link lengths L1 , L2 and the manipulator joint angles 1 2( , )q q=q  included in 
expressions 1 1cosC q= , 1 1sinS q= , 12 1 2cos( )C q q= + , 12 1 2sin( )S q q= + . Besides, from the static 
equilibrium condition, the manipulator joint torques 1 2[ , ]TT T=T  and the external force [ , ]T

x yF F=F  
applied to the end-effector are related by the equation 

 T
q+ ⋅ =T J F 0  (1. 20) 

where T can be computed using the Hook’s law and expressed via the joint deflections ∆q  and the 

diagonal matrix 1 2( , )q diag k k=K  of the joint stiffness coefficients as follows 

 q= ⋅∆T K q  (1. 21) 

After combining these geometric and static equations, one can obtain the linearized force-deflection 

relation   

 ( )1 T
q q q

−∆ = − ⋅ ⋅ ⋅p J K J F  (1. 22) 

allowing us to compute the manipulator reaction ∆p  to the external force F. Thus we obtain the 
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desired compliance matrix qC  of this manipulator 

 1 T
q q q q

−= ⋅ ⋅C J K J  (1. 23) 

and its Cartesian stiffness matrix, which is the inverse of qC   

 ( ) 11 T
C q q q

−−= ⋅ ⋅K J K J  (1. 24) 

It should be mentioned that here the compliance matrix qC  is usually invertible, except of some 

singular configurations with 2 0q =  or 2q π= ± . 

Geometrically, the VJM technique is equivalent to adding to the joints some auxiliary virtual 

joints, such as the rotational springs in the above presented case. For some other cases, the links can 

also be considered as elastic, whose stiffness may be described as the stiffness coefficient or beam 

matrix, then combined with the corresponding Jacobian matrix one can also obtain the similar results. 

Corresponding extension of this method is known as an enhanced VJM technique (A. Klimchik et al., 

2012; Anatol Pashkevich et al., 2011). Let us present it for the same two-link planar manipulator shown 

in Fig. 8 for which the elasticity of each link can be described by a 3×3 matrix derived directly from 

the 6×6 matrix (1.2) describing a three-dimensional beam 
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It should be mentioned that such presentation deals with additional elastic deflections ( , , )zx y ϕ∆ ∆ ∆ . 

So totally, the extended VJM model includes eight deflections where six of them are related with the 

link elasticities and the remaining two 1 2( , )q q∆ ∆  describe the joint flexibilities. After combining 

these deflections in a single vector  

 1 2 1 1 1 2 2 2[ , , , , , , , ]z zq q x y x yϕ ϕ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆Θ  (1. 26) 

and aggregating the joint/link stiffness matrices in a single one 

 (1)

(2)
8 8

q

aggr link

link ×

 
 =  
  

K
K K

K
  (1. 27) 
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we can obtain the desired expression for the compliance matrix  

 1 T
q aggr aggr aggr

−= ⋅ ⋅C J K J  (1. 28) 

which includes the aggregating Jacobian aggrJ  of size 2×8 corresponding to the deflection vector 

∆Θ : 

 1 1 2 12 2 12 1 1 2 12 12 12

1 1 2 12 2 12 1 1 2 12 12 12 2 8

0
0aggr

L S L S L S C S L S C S
L C L C L C S C L C S C

×

− − − − − − 
=  + 

J  (1. 29) 

It is obvious that, compared to the MSA method, such technique essentially simplifies the robot 

stiffness analysis and it can also be used for the multi-link serial manipulator. So, at present it is the 

most popular stiffness analysis method in robotics. 

The VJM technique is also useful for the stiffness analysis of the parallel manipulators, relevant 

case studies can be found in (Gosselin, 1990; A. Klimchik et al., 2012; Wang et al., 2017). The simplest 

parallel manipulator considered here has several separate serial chains that are connected to each other 

at the end-effector only. Physically, each serial chains has the same end-defector deflection Δp , but 

the external loading F is distributed between the chains in such a way that 1 2 ...= + +F F F  where 
( )
C

i
i = ⋅∆F K p . Thus the total Cartesian stiffness matrix for this manipulator is the sum of partial ones 

of each chain and the linearized force-deflection relation is expressed as follows 

    ( )

1
Δ

n
i

C
i=

= ⋅∑F K p  (1. 30) 

It should be noted that in literature (A. Klimchik et al., 2012; Klimchik et al., 2014) there are a number 

of examples where the partial stiffness matrix of the chains are rank-deficient but the total Cartesian 

stiffness matrix is non-singular. And this technique was also extended for parallel manipulators with 

more complicated geometry where the serial chains are not connected in a single point but are linked 

to a rigid or flexible platform. However, for some parallel manipulators of complicated architectures 

(with internal close-loops or parallelogram-based links), this formula cannot be used straightforwardly, 

some essential modifications are required. 

Another important extension of the VJM method is related to taking into account the influence of 

the passive joints. For serial kinematic chains with passive joints the problem has been studied in detail 

in (Anatol Pashkevich et al., 2011). Let us illustrate this approach for a simple two-link manipulator 
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with the passive connection between the first and second links and the elastic connection between the 

first link and the base as shown in Fig. 1. 11. For this manipulator, the end-effector deflection can be 

expressed from the geometry as  

 q q θ θ∆ = ⋅∆ + ⋅∆p J J  (1. 31) 

 

Fig. 1. 11: VJM modeling of two-link manipulator with an elastic and a passive joint. 

where qJ  is the kinematic Jacobian matrix of this manipulator related to the angle q of the elastic 

joint, θJ  is the Jacobian matrix related to the angle θ of the passive joint. As the second joint is the 

passive one, it does not generate the internal torque, so here 2 0T =  while the torque for the first joint 

is computed similar to the above case, i.e. 1 1T k q= ⋅∆ . Then from the static equilibrium condition we 

can rewrite the equation 2 0T =  as 

 0T
θ ⋅ =J F  (1. 32) 

For the elastic joint, the force-deflection relation can also be expressed similarly as the above  

 1
1

T
q q qq k −⋅∆ = − ⋅ ⋅ ⋅J J J F  (1. 33) 

Further, by combining (1.31) and (1.32) we can get the redundant system of equations describing the 
relation between the external force F and end-effector deflection ∆p    

 
1

1

3 3
0 θ0

T
q q

T

k θ

θ

−

×

∆     
= ⋅    

    

p FJ J J
J

 (1. 34) 

where the passive joint angle θ is treated as the redundant variable. From this system, the desired force-

deflection relation C= ⋅∆F K p  can be found either numerically or analytically. The first approach is 

based on the direct inversion of the relevant 3×3 matrix in (1.33) and extracting from it the 2×2 sub-

matrix corresponding to 1
1

T
q qk −J J . The second approach yields the following expression for the 
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Cartesian stiffness matrix   

 ( ) 11 1 1 1T T
C θ θθ θ

−− − − −= −K C C J J C J J C  (1. 35) 

where 1
1

T
q qk −=C J J  is the compliance matrix . 

It is worth mentioning that here the 3×3 matrix in (1.33) is invertible but its inversion reduces the 
2×2 stiffness matrix Kc which is rank-deficient. Hence, it is not impossible to compute the compliance 
matrix for this manipulator, it does not exist for the serial chain with a passive joint from the point of 
view of mechanics. This method was also generalized for the serial chains with an arbitrary number of 
flexible links and an arbitrary number of passive and/or elastic connections (Anatol Pashkevich et al., 
2011). Its main advantage is the computational simplicity, since the number of the virtual springs does 
not influence on the size of matrix to be inverted. Besides, the method does not require manual 
elimination of the redundant variables corresponding to the passive joints, since this operation is 
inherently included in the numerical algorithm. 

The VJM technique was also extended to the case when the manipulator is subject of essential 
loading (both internal and external). In contrast to the unloaded case, where the external force δ=F F  
is assumed to be very small, here the force 0 δ= +F F F  is rather large. So, the derivatives included 
in Jacobian must be computed for another configuration variable ( )+ ∆q q  where q  corresponds to 
the unloaded case, and ∆q  denotes the joint deflection caused by the loading 0F . Nevertheless, the 
static equilibrium condition is also written here using (1.19) and (1.20) that yields the basic equation 
for the loaded equilibrium  

 T
q q⋅ + ⋅∆ =J F K q 0  (1. 36) 

where Jacobian qJ  is computed for ( )+ ∆q q  and qK  denotes the virtual joint stiffness coefficients. 
Within this technique, the total end-effector deflection 0 δ∆ = ∆ +p p p  is also presented as a sum of 
two components where 0∆p  is caused by the loading 0F  and δp  corresponds to δF . Application 
of the above equation for the loading 0 δ= +F F F  and computing relevant differentials yields 

   ( ) ( )T
q qδ δ⋅ + ⋅∆ =J F K q 0  (1. 37) 

that can be further rewritten as follows 

 
T
q T

q q

d
d

δ δ δ
 

⋅ + ⋅ + ⋅ =  
 

J
q F J F K q 0

q
 (1. 38) 
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where the part including the Jacobian derivative T
qd dJ q  can be presented as g δ⋅K q  with 

 
T T T

1

,...,g
i n n n

q q q
×

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

J J F J FK F =  (1. 39) 

Details concerning such presentation can be found in (Chen and Kao, 2000). Further, after combining 
(1.36) with the linearized geometric model qδ δ= ⋅p J q  and some simplifications, the desired force-
deflection relation for this loaded mode can be written as 

 ( ) 1 T
q q g qδ δ

−
= ⋅ − ⋅ ⋅p J K K J F  (1. 40) 

The latter also allows us to obtain the loaded stiffness matrix of the manipulator  

 ( )
11 T

C q q g q

−− = ⋅ − ⋅  
K J K K J  (1. 41) 

which depends on both the virtual joint stiffness coefficients included in qK  and also the loading 
amplitude included in gK . It should be mentioned that here the Cartesian stiffness matrix CK  is 
related to rather small displacement δp  caused by the force deviation δF  with respect to the 
loading F. At the same time, the deflection ∆p  corresponding to the large force F as well as the 
corresponding deflection of the configuration angles ∆q  should be computed from the basic static 
equilibrium equation (1.35). It is also worth mentioning that in literature can be also found some 
modifications of the above method allowing to compute the Cartesian stiffness matrix for other types 
of external loading and internal loads (Alici and Shirinzadeh, 2005; Chen and Kao, 2000; Merlet et al., 
2016) (Quennouelle and Gosselin, 2009a, 2009b). 

The latest developments in the VJM-based modeling operate with 6-dimensinal virtual springs 

describing the link elasticities that are identified using the FEA-based technique (Anatol Pashkevich 

et al., 2011). This leads to essential increasing of the VJM method accuracy that becomes comparable 

with the accuracy of the FEA method, but with much lower computational expenses. History of the 

VJM method development and some important contributions are presented in Table 1.  

Table 1 History of the VJM method development and some important contributions (Anatol Pashkevich et al., 
2011) 

Publications  Model & assumptions Stiffness matrix 

(Salisbury, 1980) Serial manipulator, 
1T

C θ θθ
− −=K J K J  
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elasticity in actuator 

(Ciblak and Lipkin, 2021, 1999; 

Gosselin, 1990;  

Pigoski et al., 1998) 

Parallel manipulator 

elasticity in actuators for 

non-overconstrained 

1T
C θ θθ

− −=K J K J  

 (Xi et al., 2004; Zhang et al., 

2004) 

Serial kinematic chain 

without passive joints, 

elasticity in virtual joints 
( ) 11 T

C i i i
i

θ θ θ

−−=∑K J K J  

(A. Pashkevich et al., 2011; 

Pashkevich et al., 2010) 

Serial kinematic chain with 

passive joints, elasticity in 

virtual joints 

11*
0* *

T
qC

T
q

θ θ θ

−−  
=        

J K J JK
J

 

(Zhang and Gosselin, 2002) 

Parallel manipulator without 

cross-linking between 

kinematic chains 

1

( ) ( ) 1;i i T
C C C j j j

i j
θ θ θ

−

− 
= =  

 
∑ ∑K K K J K J  

(Alexandr Klimchik et al., 

2012; Anatol Pashkevich et al., 

2011) 

Parallel manipulator without 

cross-linking between 

kinematic chains 

( )i
C C

i
=∑K K

11( ) *
0* *

Ti
i i i qiC

T
qi

θ θ θ

−−  
=        

J K J JK
J

 

(Alici and Shirinzadeh, 2005; 

Chen and Kao, 2000;  

Merlet et al., 2016) 

Serial or parallel manipulator 

with external loading (non 

over-constrained) 
( ) 1T

C gθ θθ
− −= −K J K K J  

(Quennouelle and Gosselin, 

2009a, 2009b) 

Parallel manipulator with 

external loading and 

supplementary geometric 

constraints (cross-linkings) 

( ) 1T
C g Iθ θθ

− −= − +K J K K K J  

(Yi and Freeman, 1992) 

Parallel manipulator with 

external loading, inertia and 

gravity loads, joint stiffness 

actuation redundancy 

1T
C uθ θ

− −=K J K J  
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Summarizing advantages of the VJM-based technique for the manipulator stiffness analysis, it is 

worth mentioning its simplicity compared to the FEA and the MSA approaches because of lower 

dimensions of the matrices, especially for the multi-link serial manipulator that composed of the 

similar parts. For this particular case, which is in the focus of this thesis, the above presented 

expressions allow us to obtain the manipulator stiffness matrix rather straightforwardly. Besides, the 

VJM approach is very promising for investigating some specific phenomenon in the stiffness behavior 

of the manipulators based on the tensegrity structures studied in this work. Some examples of such 

nonlinear analysis for the simple manipulators are presented in the next section. 

1.4 Non-linear stiffness behaviour of flexible robotic manipulators 

1.4.1 Buckling phenomenon in continuous mechanical systems 

In mechanics, buckling is mainly known from Euler-Bernoulli theory (Jones, 2006; Khang et al., 
2009, 2009; Muvdi and McNabb, 2012; Trahair, 2019) of a slender column acted by an axial 
compressive load. Under the small loading, the column keeps its initial straight shape, but if this load 
is larger than some critical value, the column suddenly bends or buckle. This phenomenon can be 
explained using the column bending equation  

 
2

2 0d wEI Fw
dx

+ =  (1. 42) 

which allows to compute the column lateral deflection ( )w x caused by the axial compressive load F 
as shown in Fig. 1. 12. In this equation, x denotes the distance from the column fixed end, E is the 
Young’s modulus of the material, and I is the minimum area moment the column cross section. It is 
also assumed that here 0 x L≤ ≤ , where L is the column length. As known from mathematics, the 
general solution of this equation can be expressed as  

 ( ) sin( ) cos( )w x A x B xλ λ= +  (1. 43) 

 

Fig. 1. 12: Deformation of the Euler column under an axial compressive load. 

Where 2 F EIλ =  and A, B are some constants computed from the boundary conditions (0) 0w =
and ( ) 0w L = . It can be easily seen that the left-end boundary condition (0) 0w =  yields the second 
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constant 0B = , while the right-end one ( ) 0w L =  leads to the equation sin( ) 0A Lλ = , from which one 
can get that either A=0 or sin( ) 0Lλ = .  

The first case produces the trivial solution ( ) 0w x =  corresponding to the straight column shape 
(without bending). However, the second case yields a number of non-trivial solutions with different 
parameterλ  

 ; 0,1,...,n
n n n
L
πλ = =  (1. 44) 

which for 0n ≠ describes different bending shapes presented in Fig. 1. 13. It is clear that such λ  
must also satisfy the above equation 2 F EIλ = , which leads to the following expression of the so-
called critical loads 

 
2

2
2 ; 0,1,...,cn
EIF n n n

L
π

= =  (1. 45) 

corresponding to different bended shapes. In engineering, these loads are usually treated as the critical 
ones causing the column buckling. From mechanical point of view, each critical load corresponds to 
the static equilibrium with different column shape, different endpoint displacement and different strain 
energy caused by elastic deformation. It is clear that some of these equilibriums cannot be observed in 
practice. In particular, for the load 1F F<  only the trivial solution ( ) 0w x =  corresponding to the 
straight column shape exists and is stable, while for 1F F=  the solution ( ) 0w x =  becomes unstable 
and the non-trivial solution ( ) sin( )w x A x Lπ=  appears, which corresponds to the bended column 
shape described by 1/2 of sine function (see Fig. 1. 13, n=1). It is also clear that 1 2 3...F F F< < , so the 
non-trivial solutions with n>1 cannot be observed in practice. (In some cases, the shapes with n>1 can 
be observed if bracing is placed at the points where w=0 to prevent buckling at lower loads). It is also 
worth mentioning that the constant A cannot be determined from the considered boundary conditions, 
it is simply assumed that A is very small. 

 

Fig. 1. 13: Possible shapes of beam after buckling (pinned ends) 

It should be noted that the above results corresponds to the case to so-called pin-ended column 
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with perfect passive joints (with zero torques) at the both ends. For the general case dealing with more 
other types of column fixing, it is necessary to use the forth-order differential equation   

 
4 2

4 2 0d w d wEI
dx dx

+ =  (1. 46) 

with greater number of boundary conditions depending on the column fixing. In particular, there are 
three cases here (Leipholz, 2013; Timoshenko and Gere, 2009a):  

(a)pined end: ( ) 0w x =  and  
2

2 0d w
dx

=  

(b)fixed end: ( ) 0w x =  and  
2

2 0d w
dx

=  

(c)free end: 
2

2 0d w
dx

= and 
3

3 0d w dwEI
dx dx

+ =  

In any of these cases, the general solution of the differential equation (1.46) is  

 ( ) sin( ) cos( )w x A x B x Cx Dλ λ= + + +  (1. 47) 

Here A, B, C, D are some constants computed from the above the boundary conditions. In literature 
(Lee, 2001; Muvdi and McNabb, 2012; Zahavi et al., 2001), there is detailed analysis of all possible 
cases with different combination of boundary conditions, for which there were obtained expressions 
for the column shapes  ( )w x  and corresponding the critical forces iF . Relevant results are presented 
in Fig. 1. 14，where the efficient length Le involved in the critical force computing is also shown.  

 

Fig. 1. 14: The shape of the compressed beam for different end conditions (Le is efficient length for critical 
force computing Fc=π2EI/Le2). 
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Summarizing the above classical results dealing with the column buckling, it worth mentioning 
that the problem is usually treated in a pure mathematical way, where the eigenvalues iλ  and Eigen 
functions ( )w x  are obtained for certain differential operators. Then the critical forces iF  are 
computed via the eigenvalues iλ . However, the weak point of the classical approach is that the usual 
right-end boundary condition ( ) 0w L = neglects the axial deflection caused by changing of the column 
shape. Besides, at least one of the constants A, B, C, D cannot be found from the given data. The later 
does not allows us to obtain the force-deflection relation after buckling and evaluate stability of 
possible equilibriums.  

The above presented Euler-Bernoulli theory allows also to predict buckling in other mechanical 
structures composed of flexible beams, which can be found in robotics. In particular for a single beam 
this theory can be applied almost the straightforward way assuming that after the buckling, the beam 
is bended and their right-end boundary condition is written as ( ) 0w L −∆ = , where ∆  denotes the 
axial deflection under the load. Also, as follows from the beam bending theory, the shape of the bended 
beam in the equilibrium state is described by one of the possible expressions 

 ( ) sin( ); , 1,2,..,nw x A x d L n
d
π

= = −∆ =  (1. 48) 

and the corresponding axial load is  

 
2

2
2 ; 1,2,...EIF n n

d
π

= =  (1. 49) 

The latter allows us to easily obtain a number of force-deflection relations describing the beam 
evolution after the buckling  

 
2

2
2( ) ; 1,2,...

( )
EIF n n

L
π

∆ = =
−∆

 (1. 50) 

that correspond to different beam shapes (1/2 of sine, full sine 3/2 of sine, etc.). It is clear that ( )F ∆   
is a monotonically increasing function as shown in Fig. 1. 15. So, after the buckling the beam behavior 
is continuous, i.e. the axial force increasing and leads to progressive increasing of the sine amplitude 
A in expression (1.48). It can be proved that for relatively small deflection ∆ , this amplitude can be 
estimated from expression 

 ( )2 ; 1,2,...A L d d n
nπ

≈ − =  (1. 51) 

derived from the geometric assumption that the curved beam length is also equal to the original length 
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L. The open question however is related to the stability of the possible equilibrium shapes (1.48), which 
differ in parameter n. To answer this question let us compare the potential energy stored in the beam 
for different shapes. It is clear that this energy can be evaluated as the work of the force ( )F ∆  on the 
interval [0, ]∆  

 
2

2

0

( ) ; 1,2,...
( )

E F d n EI n
L L
π∆ ∆

= ∆ ∆ = =
−∆∫  (1. 52) 

So the potential energy for the half-sine shape is the smallest of all possible ones and only this shape 
can be observed in practice. In the following sections these half-sine shapes of the loaded beam will 
be compared with the minimum-energy shape of the loaded serial manipulator. 

 

Fig. 1. 15: Force-deflection relations for different beam bending shapes under axial load 

Another conclusion from the classical theory, which will be useful further for robotics, is related 
to computation of the critical force using some elements of the beam stiffness matrix. As known from 
the literature (Muvdi and McNabb, 2012), the stiffness properties of the beam in the lateral direction 
can be expressed in the following way 

 
3 2

3

12 ; ;
3 2yy yy y

EI L LK C C
L EI EIθ= = =  (1. 53) 

where yyK  and yyC  denote the beam stiffness and compliance in the lateral direction, L is the beam 
length and E is the Young’s modulus of the material, I is the corresponding area moment the cross 
section. The latter allows us to rewrite the primary expression for the critical force in the following 
way 

 
2 2 2

1 1 1
1or ;

12 3 2c yy c c
yy y

LF K L F F
C Cθ

π π π
= = =  (1. 54) 
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which allows user easily estimate the critical force using data obtained from very simple experiments 
giving either stiffness yyK  or compliance coefficient yyC  of the beam. In the following sections this 
approach will be also verified for the multi-link robotic manipulators whose stiffness behavior can be 
roughly approximated by the beam model. 

Finally, it worth mentioning that the buckling phenomenon can be also observed for the 3-
dimensional plates, which are subject to compressive loads. In particular, for the case of the one-
directional compressive loading shown in Fig. 1. 15, there are infinite number of possible equilibrium 
shapes with n=1, 2, … waves but only the shape with n=1 is stable and is really seen in practice (as for 
the flexible beam studied above). Similar phenomenon can be also observed for two-dimensional 
compressive loadings when possible equilibrium shapes include multiple peaks/hollows as shown in 
Fig. 1. 16 and Fig. 1. 17, but only the single-peak shape is stable. From intuitive point of view, such 
buckling phenomenon may be also detected for parallel robotic manipulators that are subject to 
compressive loading.  

 

Fig. 1. 16: Possible equilibrium shapes of a thin plate under one-directional compressive loading. 

 

Fig. 1. 17: Possible equilibrium shapes of a thin plate under two-directional compressive loading. 

1.4.2 Buckling in discrete mechanical systems and robotics 

In additional to continuous systems, buckling phenomenon was also detected in a number of 
mechanisms composed of rigid/flexible links and springs, which are connected by passive or elastic 
joints. Several examples of such mechanisms with one degree of freedom are presented in Fig. 1. 18. 
Let us consider them in detail.  

Case (a): two-bar mechanism with internal linear spring. For this mechanism, the static 
equilibrium equation can be written as follows 
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2sin( ) cos( )

springFF
q qα α

=
− −

 (1. 55) 

where F is the external force, Fspring is the force generated by the spring, q is the mechanism 
configuration angle, α is an angle defining the mechanism initial shape as shown in Fig. 1. 18a. Using 
these definitions, the elastic force of the spring Fspring and the deflection Δ of the force application point 
can be expressed as  

 
( )

( )
2 cos( ) cos( )

sin sin( )
springF kL q

L q

α α

α α

= − −

∆ = − −
 (1. 56) 

where k is the stiffness coefficient of the spring and L is the length of the links. These allows us to get 
the desired force-deflection relation F(Δ) of the considered mechanism and present it in the following 
parameter form.  

 
( )

cos cos( ) 4 sin
cos

( ) sin sin

F kL

L

ϕ αϕ ϕ
ϕ

ϕ α ϕ

−
=

∆ = −

 (1. 57) 

where ϕ=α–q. An example of the obtained force-deflection curve for α=π/3 is presented in Fig. 1. 19a, 
which clearly shows that the function F(Δ) is not a monotonic one and has both a local minimum and 
a local maximum. In practice, this property causes very specific (discontinuous) mechanism behavior 
under the loading. In particular, when the force is small and increasing gradually from zero value, the 
configuration angle is also increasing slowly. So, the mechanism shape and the configuration angle q 
are changing continuously. However, when the force reaches some critical values FC defined by the 
local maximum of F(Δ), the mechanism suddenly changes its shape and both the configuration angle 
q and the deflection Δ essentially increase demonstrating the buckling phenomenon similar to the 
Euler’s column. Further, when the external force F is greater than FC, the mechanism reaction to the 
external loading for this new shape remains continuous. 

 

Fig. 1. 18: Examples of two-bar mechanisms where the buckling phenomenon is observed. 
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It is worth mentioning that in theory of the elastic stability (Timoshenko and Gere, 2009a), the 
above described phenomenon is also called “snap-through buckling” which is typical for the curved 
arch with transverse loading. As follows from Fig. 1. 20 showing possible equilibrium configurations 
for relatively small load F<FC, the snap-through buckling is also observed in the considered 
mechanism, which snaps from one stable configuration to another stable configuration when the load 
reaches the critical value F=FC. It is clear that for such critical loading the configuration  and  are 
merged, the stability is lost and the mechanism snaps into stable configuration  (see Fig. 1. 19 and 
Fig. 1. 20).  

 

Fig. 1. 19: The load-deflection and energy curves for two-link mechanism with internal linear spring (α=π/3). 

 

Fig. 1. 20: Mechanism shapes in equilibrium configurations for the loading FC=0.5kL, which is lower than 
FC=0.9kL (case α=π/3). 

The above buckling phenomenon can be also explained using the energy method, by considering 
maximums and minimums of the potential energy curves corresponding to the stable and unstable 
equilibriums respectively (Timoshenko and Gere, 2009b). As known from the general theory, the 
potential energy V of the considered mechanism can be expressed as follows 

 ( ) ( ) ( )V q U q F q= − ⋅∆  (1. 58) 

where U is the strain energy stored in the spring, F is the applied conservative load and deflection Δ is 
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the distance moved by F in its direction. It can be easily proved that for the considered mechanism the 
strain energy can be expressed as follows 

 2 22 (cos cos )U kL α ϕ= −  (1. 59) 

where ϕ=α–q. So, using expression for the deflection Δ(q) from (17), one can get the final expression 
for the potential energy  

 ( )2 2( ) 2 (cos cos ) sin sinV q kL F Lα ϕ α ϕ= − − ⋅ −  (1. 60) 

which obviously includes the force F as a parameter. The examples of the energy curves on the plane 
(V, Δ) are presented in Fig. 1. 19b, which clearly show that for F<FC the energy curve has two local 
minimums and a single local maximum. For F=FC, there are two stationary points: a saddle point 
obtained by max/min merging and a local minimum. Further, for F>FC, a single local minimum exists 
only. Obviously, it is in good correspondence with the force-deflection curves F(Δ) presented in Fig. 
1. 19a showing that the equation F(Δ)=C may have different number of roots (one, two or three). Using 
the static equilibrium conditions (1.58) the critical force for this mechanism can be computed from the 
equation dF(q)/dq=0, which yields 3cos cos 0α ϕ− =  leading to the final expressions for the force  

 
3

2/3
3

cos cos4 1 cos
cosCF kL α α α

α
−

= −  (1. 61) 

and corresponding configuration angle and deflection 

 
3

2/3

acos( cos )

(sin 1 cos )
C

C

q

L

α α

α α

= −

∆ = − −
 (1. 62) 
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Fig. 1. 21: The load-deflection and energy curves for two-bar mechanism with internal linear spring (case 
α=0, i.e. straight initial configuration). 

In the case of α=0 corresponding to the straight initial configuration, the above equations produce 
continuously monotonic force-deflection curves passing through the zero point F(Δ)=(0, 0) as shown 
in Fig. 1. 21a. So, the mechanism always resist to the external loading. Corresponding energy curves 
are shown in Fig. 1. 21b, all of them have a single minimum defining stable equilibriums with different 
Δ≠0  depending on the external loading F. Hence, the considered 1-d.o.f. two-link mechanism with 
the internal linear spring may demonstrate the snap-through buckling behavior that may be found in 
some robotic manipulators. 

  

Fig. 1. 22: The load-deflection and energy curves for two-bar mechanism with internal rotational spring (case 
α=0, i.e. straight initial configuration). 

Case (b): two-bar mechanism with internal rotational spring. For this mechanism, the static 
equilibrium equation is sin( ) 2FL q kqα + = , which allows us to get the desired force-deflection 
relation F(Δ) in the following form. 

 
( )

2( )
sin( )

( ) 2 cos cos( )

kqF q
L q

q L q
α
α α

=
+

∆ = − +

 (1. 63) 

where F is the external force, q is the mechanism configuration angle, α is an angle defining the 
mechanism initial shape, k is the stiffness coefficient of the rotational spring and L is the length of the 
links. An example of this force-deflection curve for the case α=0 (i.e. for the straight initial 
configuration) is presented in Fig. 1. 22a, which shows that at first the function F(Δ) goes from the 
zero to a non-zero value without changing the deflection Δ until achieving the critical force causes the 
buckling. Then it increases monotonically as the deflection increasing. Clearly, this is very similar to 
the Euler’s column behavior but here only a single equilibrium configuration is possible corresponding 
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to n=1 in (1.49). Exact value of the critical force for the considered 1-d.o.f mechanism in the straight 
configuration (α=0) can be found by computing the limit of F(q) for q=0: 

 
0

2lim ( ) ; for 0C q

kF F q
L

α
→

= = =  (1. 64) 

The above buckling phenomenon can be also explained using the energy curves defined by 
general expression (1.58). Here the strain energy stored in the rotational spring is 22U kq=  and the 
potential energy of this mechanism can be expressed as  

 ( )2( ) 2 2 cos cos( )V q kq FL qα α= − − +  (1. 65) 

For the case α=0 the energy curves on the plane (V, Δ) are presented in Fig. 1. 22b, which show 
that for CF F≤  the energy minimum is achieved when Δ=0 and the equilibrium is stable and 
corresponds to the straight shape of the mechanism (q=0). In contrast, for CF F>  the energy 
minimum is achieved when Δ≠0, which corresponds to the non-straight mechanism shape in the stable 
equilibrium state. It is clear that this shape depends on the external force F. 

 

Fig. 1. 23: The load-deflection and energy curves for two-bar mechanism with internal rotational spring (case 
α=π/6, i.e. non-straight initial configuration). 

In the case of α≠0 corresponding to the non-straight initial configuration, the above equations 
produce continuously monotonic force-deflection curves passing through the zero point F(Δ)=(0, 0) 
as shown in Fig. 1. 23a. So, the mechanism behavior is similar to a simple non-linear spring that 
always resist to the external loading (providing that the geometric constraint 2 cosL α∆ ≤  is not 
violated). Corresponding energy curves are shown in Fig. 1. 23b, all of them have a single minimum 
defining stable equilibrium with different Δ≠0 depending on the external loading F. 

Hence, the considered 1-d.o.f. two-link mechanism with the rotational spring may demonstrate 
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the so called “bifurcation” buckling similar to the Euler’s column which is quite different from the 
“snap-through” buckling considered above (compare Fig. 1. 21 and Fig. 1. 23). 

Case (c): two-bar mechanism with external linear spring. For this mechanism, we can get the 
force F(q) and the deflection Δ(q) from the static equilibrium equation

( )2 tan( ) sin( ) sinF q kL qα α α+ = + −  and from the geometry in the following way 

 
( )

sin( ) sin( ) cos( )
2 sin( )

( ) 2 cos cos( )

kL qF q q
q

q L q

α α α
α

α α

+ −
= +

+

∆ = − +

 (1. 66) 

where F is the external force, q is the mechanism configuration angle, k is the stiffness coefficient of 
the external linear spring and L is the length of the rigid links. It is clear that here similar to the above 
case (b) the shape of the force-deflection curve F(Δ) essentially depends on the initial configuration 
angle α. In particular, for α=0 corresponding to the straight initial configuration, this curve is 
discontinuous at the point Δ=0 as shown in Fig. 1. 24a. Also, similar to the case (b), at first the function  
F(Δ) goes from the zero to a non-zero value without changing the deflection Δ until achieving the 
critical force causes the buckling. However, after the buckling, the force F decreases linearly as the 
deflection Δ is increasing, which corresponds to the negative stiffness and mechanism instability after 
the buckling. The latter shows quite different performance of the mechanism (c) under the loading 
compared to the previous cases (a) and (b). Using the above equations the critical force causing the 
buckling can be found by computing the limit of F(q) for q=0, which gives us  

 
0

lim ( ) ; for 0
2C

q

kLF F q α
→

= = =  (1. 67) 

 

Fig. 1. 24: The load-deflection and energy curves for two-bar mechanism with external linear spring (case 
α=0, i.e. straight initial configuration). 
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To analyze the above buckling phenomenon using the energy method, let us express first the strain 
energy stored in the external linear spring as  

 ( )221 sin( ) sin
2

U kL qα α= + − . (1. 68) 

This allows us to get the following expression for the full potential energy of this mechanism 

 ( ) ( )221( ) sin( ) sin 2 cos cos( )
2

V q kL q FL qα α α α= + − − − +  (1. 69) 

and find its equilibrium configurations via the maximums/minimums of V(q) with respect to q. For the 
case α=0, several energy curves on the plane (V, Δ) are presented in Fig. 1. 24b. As follows from this 
figure, for F<FC there is a minimum point at Δ=0 and a maximum point at Δ=0, which are 
corresponding to the stable and unstable equilibriums respectively. It is clear that in practice, only the 
stable equilibrium is observed. Further, for F=FC, there is only a maximum point on the energy curve, 
where the buckling is happened and the corresponding equilibrium is unstable. And finally, for F>FC, 
there is only maximum point on the energy curve at Δ=0, so the stable equilibrium configurations for 
such large force do not exist. 

 

Fig. 1. 25: The load-deflection and energy curves for two-bar mechanism with external linear spring (case 
α=π/12, i.e. non-straight initial configuration). 

In the case of α≠0 corresponding to the non-straight initial configuration, the above equations 
produce continuous and non-monotonic force-deflection curve passing through the zero point (F, 
Δ)=(0, 0) as shown in Fig. 1. 25a. So, the mechanism behavior is similar to the case (a), where at the 
beginning the mechanism resists to the external force and takes a stable equilibrium configuration. 
However, later when the external force reaches its critical value, the mechanism loses its resistance 
and moves until stopped by its geometric constraints ( 2 cosL α∆ ≤ ) because of its negative stiffness. 
Corresponding energy curves are shown in Fig. 1. 25b, which also confirms the described mechanism 
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behavior. 

Table 2 Examples of two-bar mechanisms where the buckling phenomenon are observed 

 

The critical force for this case α≠0 can be computed straightforwardly from the equation
( ) 0dF q dq = , which yields 3sin sin ( ) 0qα α− + =  leading to the final expression for the force  

 
3

2/3
3

sin sin 1 sin
2 sinC

kLF α α α
α
−

= −  (1. 70) 

and corresponding configuration angle and deflection 

 ( )2/3 2/3acos 1 sin ; 2 cos 1 sinC Cq Lα α α α= − − ∆ = − −  (1. 71) 

Hence, the considered 1-d.o.f. two-link mechanism with the external linear spring may demonstrate 
the “quasi-snap-through” buckling behavior which is quite different from the “snap-through” buckling 
and “bifurcation” buckling considered above for the case (a) and (b). Summary of the stiffness 
properties for all considered 1-d.o.f mechanism (a), (b), (c) is given in Table 2.  

Case (d): three-bar mechanism with internal rotational springs. For this mechanism, the 
buckling phenomenon was also described in literature (Rimoli, 2018). Let us consider it in detail 
assuming that it is composed of three similar rigid links of the same length L and two rotational linear 
springs with stiffness coefficient k , as shown in Fig. 1. 26. The left end point of this mechanism is 
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connected to the base by a passive joint, there are two linear springs located on the second and the 
third joints, the right end point is also equipped with a passive joint and is moved horizontally by the 
external force F.  

 

Fig. 1. 26: Example of three-bar mechanisms with the buckling phenomenon. 

It is also assumed that the orientation angle of the first link is denoted as ϕ, and the initial values 
of the second and the third angles are α1 and α2 respectively. Under the loading F the right end point is 
moved to the left, which is described by the deflection Δ and corresponding orientation angles α1+q1 

and α2+q2. Using these notations, the end-point coordinates for the initial configuration can be 
expressed as  

 0 1 1 2

0 1 1 2

cos cos( ) cos( )
sin sin( ) sin( )

x L L L
y L L L

ϕ ϕ α ϕ α α
ϕ ϕ α ϕ α α

= + + + + +
= + + + + +

 (1. 72) 

Under the loading, the end-point moves to a new position 

 1 1 1 1 2 2

1 1 1 1 2 2

cos cos( ) cos( )
sin sin( ) sin( )

x L L q L q q
y L L q L q q

ϕ ϕ α ϕ α α
ϕ ϕ α ϕ α α

= + + + + + + + +
= + + + + + + + +

 (1. 73) 

that can be also expressed as via the deflection ∆  as 

 0 ; 0x x y= −∆ =  (1. 74) 

It should be noted that here, because of the geometric constraints y0=y=0. To find the angles q1, q2 
corresponding to the external force F, it is necessary to consider the static equilibrium equation that 
generally is written as follows  

 + =TJ F M 0  (1. 75) 

where F=[Fx Fy] is the external force, M is the internal torques in the joints that can be computed via 
the angles q1, q2 as M=[0 kq1 kq2]T and J is the Jacobian matrix of size 2×3 that is expressed as follows 
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 0 01 012 01 012 012

0 01 012 01 012 012

S S S S S S
L

C C C C C C
− − − − − − 

= ⋅  + + + 
J . (1. 76) 

Here S0=sinϕ, C0=cosϕ, S01=sin(ϕ+α1+q1), C01=cos(ϕ+α1+q1),  and S02=sin(ϕ+α1+q1+α2+q2), 
C02=cos(ϕ+α1+q1+α2+q2). Taking into account that the static equilibrium corresponds to minimum of 
the potential energy, for known equilibrium configuration described by the angles 1 2( , , )q qϕ , the 
external force can be obtained from (1.75) by using the Moore-Penrose pseudo inverse 

 †
( ) ( ) ( ) = − ⋅ 

TF q J q M q  (1. 77) 

where † 1( ) ( )−=T TJ J J J , and q=(ϕ, q1, q2). It is clear that for such equilibrium configuration the 
corresponding end-effector deflection Δ(q) can be straightforwardly computed from equation (1.74). 

It should be noted that the above equations operate with three variables (ϕ, q1, q2), but the problem 
dimension can be easily reduced using the analytical solution of the geometric equations (1.73) for the 
end-effector location (x, y)=(x0–Δ, 0). The latter allows us to replace the initial configuration space (ϕ, 
q1, q2) by a reduced space (Δ, ϕ), which is more convenient for the stiffness analysis. This reduction 
can be easily executed by applying the inverse-kinematics of a 2-link manipulator that yields the 
following expressions for the angles q1, q2. 

 
( )

( )
2 2 2 2

1 0 0 2 2 1

atan2 ,

atan2( sin , cos ) atan2 ,

q S C

q y L x L LS L LC

α

ϕ ϕ ϕ α

= −

= − −∆ − − + − −
 (1. 78) 

where ( ) ( )2 2 2 2
2 0 0cos sin 2 2C x L y L L Lϕ ϕ = −∆ − + − −  , 2

2 21S C= ± − . Hence, using the above 
transformation, a single redundant variable ϕ corresponding to the equilibrium configuration can be 
found from the given Δ using condition of the min/max of the spring strain energy, i.e. 

arg min ( , )E
ϕ

ϕ ϕ= ∆  for stable equilibrium and arg max ( , )E
ϕ

ϕ ϕ= ∆  for unstable one, where the 
strain energy of this mechanism can be expressed as 

 2 2
1 2( , ) ( , ) ( , )

2 2
k kE q qϕ ϕ ϕ∆ = ∆ + ∆  (1. 79) 

It should be mentioned that here, assuming that ∆  is given, minimization of the full potential energy  

 ( , ) ( , ) xV E Fϕ ϕ∆ = ∆ − ⋅∆  (1. 80) 

is not necessary for computing the redundant variable ϕ. 
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Fig. 1. 27: Force-deflection curves for the initial “straight” and “quasi-straight” configurations and four 
possible equilibriums with the stable shapes (U+, U–) and unstable shapes (Z+, Z–). 

Some simulation results based on the above expressions are presented in Figs 1.27, 1.28, 1.29, 
1.30. They include the force-deflection curves describing the manipulator resistance to the external 
loading for different initial configurations defined by the parameters α1 and α2. As follows from them, 
for the initial straight or quasi-straight configuration (see Fig. 1. 26) the manipulator stiffness behavior 
is similar to the behavior of the compressed Euler’s column considered above (Fig. 1. 15). In particular, 
there are also here four equilibriums (U+, U–) and (Z+, Z–) corresponding to the half-sine-shape and 
sine-shape of the compressed column. However, only (U+, U–) are stable and either U+ or U– 
equilibriums can be observed in practice that depending on small initial perturbations of (α1, α2). For 
example, as shown in Figs 1.27b, for relatively small (α1, α2)= (ε, ε) the initial U+ configuration is the 
only stable one that can be observed.  

To compute the critical force for the initial “straight” configuration (see Fig. 1. 27), let us use the 
geometric approach allowing to assume that after the buckling the manipulator takes either “U” or “Z” 
shape with small angle ϕ as shown in Fig. 1. 28, where the configuration angles are correspondingly 
(ϕ, -ϕ, -ϕ) or (ϕ, -3ϕ, 3ϕ). In the first case (U-shape), the kinematic Jacobian can be expressed as 

 0 sin sin
1 2cos 1 cos cos

L
ϕ ϕ

ϕ ϕ ϕ
 

= ⋅  + + 
J  (1. 81) 

giving the following solution of the static equilibrium equation + =TJ F M 0  

 sin ; 0x yF k L Fϕ ϕ= =  (1. 82) 

that yields the first critical force  
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= = . (1. 83) 

Similarly, in the second case (Z-shape), for small ϕ ε=  the kinematic Jacobian is  

 0
3 2 1

L
ε ε− 

= ⋅  
 

J  (1. 84) 

for which the static equilibrium equation gives the following value of the critical force 

 3C
x

kF
L

=  (1. 85) 

As follows from Fig. 1. 27, the obtained expressions for the critical force are in good correspondence 
with the simulation results. 

 

 Fig. 1. 28: Evolution of the initial straight mechanism shape after the buckling: two possible equilibriums 
with U-shape and Z-shape.  

 

Fig. 1. 29: Force-deflection curves for the initial “U-configuration” and four possible equilibriums with the 
stable shapes (U+, U–) and unstable shapes (Z+, Z–). 
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In contrast to the previous case, for the initial U+-configuration with rather large initial angles  
(α1, α2)=(–π/4, –π/3) there are four different equilibriums corresponding to four different force-
deflection curves, which are shown in Fig. 1. 29. For the U+ configuration that is continuously changed 
from the initial configuration, there is no buckling phenomenon happened. While for the other three 
U– and (Z+, Z–) configurations that are totally different from the initial one, there are the buckling 
phenomenon caused by the suddenly change of the mechanism shape under the large enough critical 
force, which can be also treated as the jumping of the configuration. It is quite hard for this jumping 
to happen, so in practice only the stable U+ equilibrium can be observed instead of these three 
equilibriums. 

And finally, for the initial Z–-configuration with (α1, α2)=(π/10, –π/10), the manipulator stiffness 
behavior has some particularities compared with the cases described above. In particular, the force-
deflection curve for this manipulator shown in Fig. 1. 30 is not smooth, and there is here the buckling 
phenomenon happened. It is worth mentioning that, similar to the above cases, here there are also four 
different equilibriums (two stable and two unstable ones). Nevertheless, in this case for the detail 
analysis, only a single stable configuration is taken into account, which corresponds to the continuous 
change of the mechanism stable shape under the loading. This evolution can be also illustrated by the 
energy curves on the (E, ϕ) plane as shown in Fig. 1. 31.  

  

Fig. 1. 30: Force-deflection curves for the initial “Z-configuration”  

As follows the obtained figures, at the beginning, the mechanism keeps the initial configuration 
with negative ϕ<0 and changes continuously its shape (as shown in Fig. 1. 31a), then, after the force 
F reaches some critical value, the angle ϕ becomes equal to zero ϕ =0 (as shown in Fig. 1. 31b), and 
the mechanism stiffness essentially reduces and the buckling is occurring. Further, for the higher 
loading, this angle is positive ϕ>0, the mechanism maintains the stable equilibriums configuration 
(corresponding to the minimum potential energy) and the deflection changing under the external force 
is monotonic (see Fig. 1. 31c, d). It is worth mentioning that for some configurations the observed 
manipulator shape does not correspond to the global minimum of the potential energy (as in Fig. 1. 
31e), but the mechanism is not able to jump to this new configuration, instead it keeps maintaining the 
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configuration of the local minimum of the potential energy (see Fig. 1. 31f). 

Summarizing all the above case studies dealing with the discrete mechanical system, we can 
conclude that some mechanical structures can demonstrate the non-linear stiffness behavior with 
sudden change of the mechanism geometric configuration and its stiffness coefficient. Usually, such 
behavior is typical for initial straight configurations that under the loading can be suddenly replaced 
by a curved one, similar to the half-sine shape of the compressed Euler’s column. However, the 
buckling phenomenon where also detected for some other initial configurations (non-straight ones) 
that were not studied in Euler’s column theory. For instance, under the loading the three-bar serial 
mechanism can suddenly change its configuration from the so-called “Z-shape” to “U-shape” and 
essentially reduce the stiffness coefficients. So, it is quite possible that similar phenomenon can be 
observed in multi-link tensegrity mechanisms studied in the following chapters of this thesis.  

 

Fig. 1. 31: Evolution of energy-ϕ curves for stable configuration for the initial “Z-configuration. 

1.4.3 Summary: thesis goal and principle tasks (research problems) 

As follows from the presented review, collaborative robots involved in complicated tasks require 
new types of the soft end-effectors that possess high compliance and good manoeuvrability. The 
traditional industrial robots are usually equipped with rigid end-effectors, which cannot execute 
complicated motions in constraints environment and ensure safe collaboration with human operators. 
This motivates development of new compliant mechanisms that are used as the robot end-effectors, 
which replace traditional rigid devices. They should be much longer but lighter than the conventional 
ones, and also have excellent deformation capacities in very limited workspace. One of possible 
approaches in designing such mechanisms is using artificial muscles as the actuating components. 
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However, this approach is not very attractive in industrial robotics because it usually requires 
additional source of energy for actuation (pneumatic or hydraulic). Another difficulty is associated 
with the control complexity and low manipulation accuracy. These issues motivate designers to create 
new soft serial mechanisms using tensegrity structures that are proved to be very efficient in other 
applications such as civil engineering, architecture and art. In these structures, it is possible to combine 
useful properties of rigid, elastic or soft components and achieve high flexibility similar to an elephant 
trunk or snake robot. 

The above mentioned issues motivate the primary goal of this thesis, which focuses on 
development of new robot end-effectors based on compliant serial structures composed of a number 
of similar modules or segments, each of which contains a tensegrity mechanism. Because of industrial 
applications and assumed human-robot collaboration, particular attention should be payed to the 
mechanism elastostatic properties as well as the static stability with respect to the external loading. 

To achieve this goal, the following problems should be solved: 

Problem 1: 

Comparison study of different tensegrity mechanisms that can be potentially employed in 
considered applications and selection of the best architecture for design of multi-segment 
robot end-effectors. 

Problem 2: 

Stiffness analysis of the multi-segment dual-triangle tensegrity mechanism (that was 
selected as the best architecture for the end-effector) for both unloaded and loaded modes 
and detection of possible nonlinear behaviour under the loading as well as the buckling 
phenomenon.  

Problem 3: 

Development of the kinematic control strategies for redundant multi-segment mechanism 
based on dual-triangle tensegrity mechanisms allowing to achieve the target endpoint 
location and avoid collisions with the workspace obstacles. 

To address these problems, the remainder of the work is organized as it follows. Chapter 2 deals 
with the statics and stiffness analysis of two potential tensegrity architectures (X-shape and dual-
triangles) and selection the best of them for the robot end-effector base segment. Chapter 3 focuses on 
the stiffness analysis and control of the two-link serial chains composed of the dual-triangles for both 
loaded and unloaded mode. Chapter 4 concentrates on the mechanical properties and kinematic control 
of the three-link serial chains based on dual-triangle tensegrity segments. In Chapter 5, the stiffness 
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analysis and the kinematic control strategies are extended for the case of multi-link redundant serial 
manipulator composed of the dual-triangles. And finally, Conclusion summarizes the main results and 
contributions, and also gives prospective for future research. 

 



Chapter 1: Flexible serial manipulators as end-effectors for collaborative robots 

60 

  



 

 

 CHAPTER 2 
COMPARISON OF TENSEGRITY MECHANISMS FOR DESIGN 

OF MULTI-SEGMENT ROBOT END-EFFECTORS 

 

 
2.1 Possible architectures of manipulating mechanisms for robot end-effectors ......................... 62 
2.2 Stiffness properties of the dual-triangle tensegrity mechanism ............................................. 65 

2.2.1  Geometrical model and static equilibrium equation .................................................... 65 
2.2.2  Equilibrium configurations and their stability ............................................................. 66 
2.2.3  Controlling mechanism configurations ......................................................................... 73 

2.3 Stiffness properties of the X-shape tensegrity mechanism .................................................... 75 
2.3.1  Geometrical model and static equilibrium equation ..................................................... 75 
2.3.2  Equilibrium configurations and their stability ............................................................. 79 
2.3.3  Controlling mechanism configurations ........................................................................ 83 

2.4 Comparison of the dual-triangle and X-shape tensegrity mechanisms .................................. 84 
2.5 Summary ................................................................................................................................ 86 

 

This chapter is devoted to the stiffness analysis and stability study of two 
potential tensegrity architectures (X-shape and dual-triangles), which are both 
actuated by adjusting the pre-stress of the springs located on two sides of the 
mechanisms, and selection the best of them as the base segment for the compliant 
serial manipulator end-effector proposed in this thesis. It was demonstrated for 
the dual-triangle mechanisms that for different combinations of the geometric 
parameters, the force-deflection relation curves may be either monotonic (a single 
equilibrium) or non-monotonic (one stable and two unstable equilibriums). While 
for the X-shape mechanisms, the force-deflection relation curve is always non-
monotonic with one stable and two unstable equilibriums. Corresponding stability 
conditions for both X-shape and dual-triangle mechanisms were presented, and 
the control strategy for changing the mechanism configuration through adjusting 
the pre-stress of the springs (for both loaded and unloaded model) was also 
proposed in this chapter. This allowed to choose appropriate geometric 
parameters and springs pre-stresses ensuring the mechanism controllability. 
These results were confirmed by relevant simulation analysis. 
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2.1 Possible architectures of manipulating mechanisms for robot end-effectors 

In this work we aim to develop the design methodology for serial redundant soft mechanisms 
which are used as the robot end-effectors. One of possible choices for such applications is the artificial 
muscle actuated manipulator, which is composed of similar segments that are adjusted by controlling 
the artificial muscles located symmetrically around of its geometrical central axis. An excellent 
example of such mechanisms is the famous McKibben Artificial Muscle (Ganguly et al., 2012; Mori 
et al., 2010; Tondu et al., 1994; Tondu and Lopez, 2000; Wickramatunge and Leephakpreeda, 2010), 
which is composed of two main parts, an inner elastomeric rubber tube surrounded by a braided sheath 
as shown in Fig. 2. 1. The artificial muscles can change their shape by controlling the pressure of the 
fluid medium inside of the rubber tube. When the injected pressure of the fluid is increasing, the tube 
will expand radially but compress axially because the materials of the braid sheath are non-elastic soft, 
and the axial tension force occurs correspondingly. In contrast, when the internal pressure is decreasing, 
the tension force becomes smaller. It is similar to the elastic springs or hydraulic cylinders but the 
artificial muscles are lighter and softer, especially for the robotic manipulators composed of them. For 
example, Fig. 2. 2a shows a serial manipulator composed of three similar segments, each of which is 
based on three parallel artificial muscles. Each artificial muscle is adjusted independently by 
controlling their internal pressure, so when the internal pressure are different the muscles will be 
compressed to different lengths and then the manipulator will bend to the desired direction. In Fig. 2. 
2b, the robot-arm is composed of the pneumatic artificial muscles, here there are some additional 
mechanisms to help increasing the stability and the accuracy of this arm. 

 

Fig. 2. 1: Mechanical design of McKibben Artificial Muscles: (a) basic components of the muscle (Zhao et al., 
2018); (b) state of the muscle before and after compression (Zhao et al., 2017);  

However, one of the disadvantages of the artificial muscles is that the force-deflection relations 
of them are highly nonlinear, not as simple as for the classical elastic springs, there is no accurate 
formulas. So, the related research is usually based on the practical experiments. Another disadvantage 
is that the axial deflections of the artificial muscles cannot be controlled accurately, which means that 
when the injected pressure of the fluid is increasing the muscles may compress to the shortest length 
straightforwardly, because the internal rubber tube and the outside braided sheath are both too soft so 
that they tend to become the largest volume under the internal pressure. Besides, as the artificial muscle 
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is similar to the springs that can only generate/resist the axial force, the manipulator composed of them 
should be combined with some rigid components or structures to increase the stability, such as the 
example in Fig. 2. 2b Moreover, because the artificial muscles are made up of rather soft materials 
that are not as stable as the rigid mechanisms, it should be mentioned in practice to avoid the external 
collision to damage the muscles. So the artificial muscle actuated manipulators are still not possible to 
achieve the desired configuration or bending angle in practice. While this type of architecture is still 
interesting if the artificial muscles are replaced by some other elastic mechanisms, like springs or 
hydraulic cylinders, with which the manipulators can be still adjusted in the similar way to the ones 
actuated by the artificial muscle. And the manipulators may maintain their flexibility and soft features 
but their motions can be achieved more accurately. This motivates us to achieve the desired soft 
properties for serial soft robot end-effectors using another design, which are based on the tensegrity 
mechanisms that potentially allows us to eliminated the disadvantages of the artificial muscles. In the 
frame of this thesis, only planar tensegrity mechanisms are considered, but the obtained results are 
easily generalized for the three-dimensional case. 

 

Fig. 2. 2: Examples of serial-parallel manipulators actuated the artificial muscles (Kumar Hari Shankar Lal 
Das et al., 2016; Zhao et al., 2017). 

As follows from the previous chapter there are some tensegrity mechanisms showing excellent 
abilities in flexible operations and load capacity, and in addition, they are more lighter than the 
traditional mechanisms. One of the most promising tensegrity structures for our application (soft robot 
end-effectors) is the X-shape tensegrity mechanism, which is considered in detail in the previous 
chapter (see Fig. 1.3b). This mechanism is composed of four rigid bars (two crossed ones) and two 
adjustable edges controlled by cables or springs. Similar to the artificial muscle actuated manipulator, 
each of the edges can be controlled independently, this tensegrity mechanism was demonstrated that 
can achieve the desired configuration and can be controlled accurately in a large workspace (Fasquelle 
et al., 2022). It is clear that the serial manipulators composed of this type of tensegrity mechanisms 
(see Fig. 2. 3) are highly compliant and they may be as soft as the artificial muscle actuated manipulator. 
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So, based on these advantages, we will consider the tensegrity mechanisms as the basic segment for 
the serial redundant soft robot end-effectors in this thesis. This design is inspired by the artificial 
muscles that are actuated by the internal fluid press. Here we consider the pre-stress springs as the 
actuating components and their original lengths as control inputs. In this way, one can change the 
control inputs of the pre-stress springs to generate the desired torque, which allows the mechanism to 
achieve the desired configurations in stable equilibriums.  

 

Fig. 2. 3: Examples of serial-parallel manipulators based on the X-shape tensegrity mechanisms (Wenger and 
Chablat, 2019c). 

 

Fig. 2. 4: Proposed architecture of serial-parallel manipulators based on the dual-triangle tensegrity 
mechanisms  

For comparison study, in this chapter we will not only consider the X-shape tensegrity 
mechanisms, but also propose a new design of soft serial manipulator based on the dual-triangle 
tensegrity mechanisms (see Fig. 2. 4). In this case, each manipulator segment is composed of two rigid 
triangles connected by a passive joint, and two elastic edges. And this mechanism is also adjusted by 
the pre-stress springs locating on the two sides. The adjusting ways of the pre-stress springs and the 
artificial muscles are similar, it is clear that they are almost equivalent from this point of view. However, 
the manipulators based on the dual-triangle mechanisms have some potential advantages that are very 
important for manipulator control. For this reason, the following sections focus on elastostatic analysis 
of the one-degree-of-freedom tensegrity mechanisms that are treated in this thesis as the basic element 
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of the soft serial manipulator, which is used as a robot end-effector. 

2.2 Stiffness properties of the dual-triangle tensegrity mechanism 

2.2.1 Geometrical model and static equilibrium equation 

Let us consider first a 1-d.o.f. segment of the total flexible structure to be studied, which consists 
of two rigid triangles connected by a passive joint whose rotation is constrained by two linear springs 
as shown in Fig. 2. 5. It is assumed that the mechanism geometry is described by the triangle 
parameters (a1, b1) and (a2, b2) , and the mechanism shape is defined by the angle that can be adjusted 
by means of two control inputs influencing on the spring lengths  L1 and L2. Let us denote the spring 
lengths in the non-stress state as 0

1L  and 0
2L ，and the springs stiffness coefficients 1k  and 2k . 

       

Fig. 2. 5: Geometry of a single segment mechanism. 

To find the mechanism configuration angle  corresponding to given control inputs 0
1L  and 

0
2L , let us derive first the static equilibrium equation. Here, the forces 1F , 2F  generated by the springs 

can be obtained from Hook’s law as follows. 

 0 0
1 1 1 1 2 2 2 2( );     ( )F k L L F k L L= − = −  (2. 1) 

where L1and L2 are the spring lengths AD , BC  corresponding to the current value of the angle q. 
These values can be computed from the triangles AOD∆ and BOC∆  using the formulas 

 
2 2

1 1 1 2 1 2 1

2 2
2 2 1 2 1 2 2

( ) 2 cos( )

( ) 2 cos( )

L c c c c

L c c c c

θ θ

θ θ

= + +

= + +
 (2. 2) 

where 2 2
1 1 1c a b= + , 2 2

2 2 2c a b= +  and the angles 1θ , 2θ   are expressed via the mechanism 
parameters as follows 

q
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1 12 2 12 12 1 1 2 2, , atan( / ) + atan( / )q q a b a bθ β θ β β= + = − =   (2. 3) 

The torques 1 1 1M F h= ⋅ , 2 1 1M F h= ⋅  created by the forces 1F , 2F  in the passive joint O can be 
computed using the triangle area relations 1 1 1 2 1sin( )L h c c θ= , 2 2 1 2 2sin( )L h c c θ=  of AOD∆  and 

BOC∆ , which yield the following expressions 

 
0

1 1 1 1 1 1 2 1
0

2 2 2 2 2 1 2 2

( ) (1 ( )) sin( )
( ) (1 ( )) sin( )

M q k L L c c
M q k L L c c

θ θ

θ θ

= + −

= − −
  (2. 4) 

where the difference in signs is caused by the different direction of the torques generated by the forces 

1F , 2F  with respect to the passive joint. 

Further, taking into account the external torque extM  applied to the moving platform, the static 
equilibrium equation for the considered mechanism can be written as follows 

 1 2( ) ( )+ 0extM q M q M+ =   (2. 5) 

Solving this equation we can get the rotation angle q defining the mechanism equilibrium configuration 
and corresponding to the control inputs 0

1L , 0
2L  and the external torque extM  applied to the moving 

platform. This equation is highly nonlinear and cannot be solved analytically, so it is reasonable to 
apply the numerical Newton technique, which leads to the iterative scheme  

 ( )1 ( ) ( )k k k k
extq q M q M M q+ ′= − +   (2. 6) 

where 1 2( ) ( ) ( )M q M q M q= + , and the derivative ( ) ( )M q dM q dq′ =  can be computed analytically, 
in order to speed up the computations. 

2.2.2 Equilibrium configurations and their stability 

Let us now evaluate the stability of the mechanism under consideration, which shows its 
resistance against the external disturbances. In general, this property highly depends on the equilibrium 
configuration defined by the angle q, which satisfies the equilibrium equation ( ) 0extM q M+ = . As 
follows from the relevant analysis, the function ( )M q  can be either monotonic or non-monotonic 
one, so the single-segment mechanism under study may have multiple stable and unstable equilibriums, 
which are studied in detail below. 
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Fig. 2. 6: The torque-angle curves and static equilibriums for L10= L20 (q0=0). 

To analyze the mechanism equilibriums, let us consider the torque-angle curves 

1 2( ) ( ) ( )M q M q M q= +  defined by (2.3) and presented in Fig. 2. 6. It is clear that for the monotonic 
function  with negative derivative ( see Fig. 2. 6a ) increase of the external loading Mext always 
leads to higher mechanism resistance, so the equilibrium is unique and stable. However, in the non-
monotonic case, while increasing the external loading, it is possible to achieve a point where the 
mechanism does not resist any more and suddenly changes its configuration as shown in Fig. 2. 6b. It 
is worth mentioning that similar phenomenon can be observed in other mechanism and is known in 
mechanics as “buckling”. Hence, in the non-monotonic case, there maybe three solutions of the 
equilibrium equation (two stables and one unstable).  

As follows from the above presented figures, the static equilibrium defined by angle q is stable if 
and only if the corresponding derivative ( )M q′  is negative. However, taking into account possible 
shapes of the torque-angle curves ( )M q  that can be either monotonic or two-model one, the 
considered stability condition can be simplified and reduced to the derivative sign verification at the 
zero point only, i.e. 

 ( )
0

0
q

M q
=

′ <  (2.7) 

which is easy to verify in practice. It should be noted that here the derivative ( )M q′  represents the 
equivalent rotational stiffness of the mechanism for the unloaded configuration with q=0. 

To express the above derivative  analytically, let us represent the function M(q) in the 
following way 

 ( ) ( ) ( )
0 0
1 2

1 2 1 1 1 2 2 2
1 1 2 2

1 sin 1 sinL LM q c c k c c k
L L

θ θ
θ θ

   
= − ⋅ − − ⋅      

   
 (2.8) 

( )M q

( )M q′
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Fig. 2. 7: Monotonic and non-monotonic regions of the parameter plane for L10= L20 

This allows us to express the mechanism stiffness in general case as follows 

( ) ( ) ( )( ) ( )( )
0 0 2 2 0 2 2 0

2 21 2 1 2 1 1 1 2 2 2
1 2 1 1 1 2 2 2 3 3

1 1 2 2 1 1 2

1 2

2

1 1( ) L L c c k L c c k Lc c k cos c c k cos sin sinM q
L L L L

θ θ
θ θ θ θ

θ θ
   
− + − − −      

 
′

 
=  (2. 9) 

For the special cases  and , which are needed for further analysis, the above 
expression is simplified respectively to 

 ( )
( )( ) ( )

2 0 0
2 2 0 0 12 1 1 2 2
1 2 1 1 2 2 1 2 12 1 2

122
30

1

( )
q

M q
LL

sin k L k Lc c k L k L c c cos k kβ β
ββ=

 +
− + + + − 


=


′    (2. 10) 

 
( ) ( )( )120

0 0 2
2 2 01 2 12

1 2 1 12 1 2 2 1 2 1 1
12 1 2 1

3
2

2(
2 2

) 2 1 1
q

L L sinc c k cos c c k c c k L
c c

M q
L Lβ

ββ
β β=

   
− + − −   


=


′  + 

 (2. 11) 

where 

  ( ) 2 2
12 121 21 22 cosL c c c cβ β= + +  and ( ) 2 2

1 22 121 212 cos2 2L c c c cβ β= + +  

Here the geometry constrain is taken into account which making sure that triangles AOD∆  and 
BOC∆  (See Fig. 2. 7) exist at the same time. 

Let us also consider in detail the symmetrical case, for which 1 2a a= , 1 2b b= , 1 2c c= , 1 2k k= ,

1 2
o oL L= . In this case, we can omit some indices and present the torque-angle relationship as well as the 

stiffness expression in the more compact forms:  

 ( ) 0 12
122 cos sin cos sin

2 2
qM q ck c q L ββ = − 

 
 (2. 12) 

0q = 12q β= ±
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 0 12
122 cos cos cos cos

2 2
( )M q qck c q L ββ = −


′ 


 (2. 13) 

where the control input L0 must satisfy the condition 0 2oL b< < , as follows from the mechanism 
geometry (see Fig. 2. 5). To distinguish the monotonic and non-monotonic cases presented in Fig. 2. 
7, it is also necessary to compute the derivative  for the unloaded equilibrium configuration

0q = , which after simplification can be expressed in the following way  

 ( )( )0
2 22( )

q
ok b L bM q a

=
= − −′  (2. 14) 

The latter allows us to present the condition (2.5) of torque-angle curve monotonicity as 

 
20

2 1L a
b b

  > −     
 (2. 15) 

and separate the parameter plane in two regions, monotonic and non-monotonic ones as shown in Fig. 
2. 7. As follows from Fig. 2. 7a, the unloaded equilibrium is always stable if a b> . Otherwise, to have 
stable unloaded equilibrium, the control inputs 1 2

o oL L=  should be higher than certain value. 

 ( )22 1 ; 1, 2o
iL b a b i > − = 

 (2. 16) 

The monotonic and non-monotonic cases are also illustrated by Fig. 2. 7b, which includes the energy 
curves  

 ( )22 0
1

1( ) ( )
2 ii

E q k L q L
=

= −∑  (2. 17) 

as the function of the rotation angle q. As follows from this figure, the energy ( )E q  has either a single 
minimum 0q =  corresponding to a stable equilibrium, or two symmetrical minima 

 
( )

0

2 22 arccos
2e

L bq
b a

 
 = ±
 − 

 (2. 18) 

and a local maximum 0q =  corresponding to two stable equilibriums and one unstable equilibrium. 

For the symmetrical case with equal control inputs 0 0
1 2L L= , let us also compute the torques (2.8) 

at the boundary points 12q β= ± .  

( )M q′
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 ( )( )
12

0 2 2
2 2

2 222( )
q

b aabkM q L a b
a bβ=±

−− +
+

= ±   (2. 19) 

which allows us to decide if the stable equilibriums in the non-monotonic case are located inside of 
the interval of feasible rotation angles [ ]12 12,q β β∈ − + . It can be proved that the relevant condition 
can be expressed as follows 

 ( )2
0

2

2 2

2 b a
L

b a

−

+
>  (2. 20) 

 

Fig. 2. 8: Location of stable “●” and unstable “o” equilibriums with respect to geometric boundary 
[-β12, -β12]. 

and allows user to estimate if the energy minimum is achieved inside or on the border of the feasible 
region of q. A physical interpretation of this inequality is shown in Fig. 2. 8, where two cases are 
presented. In the first case, the mechanism is unstable in the desired configuration q=0 and jumps to 
one of two possible stable configurations eq q= ±  that are located inside of mechanical limits. In the 
second case, the mechanism is also unstable in the equilibrium configuration q=0 but it jumps to one 
of the mechanical limits 12q β= ±  (because the stable configurations are out of the limits). So, a static 
error appears in both cases, whose value is equal to either 12β±  or eq± . For this reason, it is 
necessary to avoid in practice the parameters combinations producing non-monotonic torque-angle 
curves. 

It is also useful to investigate the case when the control inputs are not equal, i.e. 0 0
1 2L L≠ , 

assuming that they produce the desired stable configuration with the output angle 0q ≠ . In this case, 
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the torque and its derivative can be presented as follows. 

 ( ) 2 0 012 12
12 1 22 cos sin sin sin

2 2
q qM q c k q ck L Lβ ββ + − = − − 

 
 (2. 21) 

 ( )
0 0 0 0

2 2 1 2 1 22 cos cos sin
2 2 2 2

( ) L L q L L qk b a q k bM q a
 + −

= − − −


′ 


 (2. 22) 

where all notations are the same as in the above expressions (2.7) and (2.8). It is clear that to implement 
such control, the desired configuration must correspond to stable equilibrium for which ( ) 0M q = , 

( ) 0M q′ < . It is also obvious that for 0 0
1 2L L<  the equilibrium correspond to positive angle 0q > , and 

vice versa.  

It can be proved from the equilibrium equation that the control inputs 0
1L , 0

2L  insuring the 
desired output angle q   must satisfy the linear relation 

 0 012 12
1 2 12sin sin 2 cos sin

2 2
q qL L c qβ β β+ −
− =  (2. 23) 

which gives infinite set of control variables ( )0 0
1 2,L L , which may correspond either to a stable or 

unstable equilibrium, depending on the derivative ( )M q′ . To analyze sign of the derivative, let us 
consider separately two cases: a b>  and a b< . In the first case, when a b>  and mechanism 
geometry imposes the constrain 2q π< , so all three terms of (2.22) are negative, and the desired 
equilibrium configuration q  is stable. In the second case, when a b<  and the angle q maybe out of 
the range [ ]2, 2π π− , and the equilibrium maybe unstable. Corresponding separation curves can be 
found from the conditions ( ) 0M q =  and ( ) 0dM q dq = , which yield the following system of linear 
equations with respect to the control variables 0

1L , 0
2L . 

 0 012 12
1 2 12sin sin 2 cos sin

2 2
q qL L c qβ β β+ −   − =   

   
 (2. 24) 

 ( )0 0 2 2
1 2sin cos sin cos 2 cos

2 2 2 2 2 2 2 2
a q b q a q b qL L b a q   − − + = − −   

   
 (2. 25) 

whose solution allows us to present the stability condition in the following form 

 
0

3 31 2 cos sin
2 2

L b a a q q
b a b b

  > − +  
  

 (2. 26) 
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0

3 32 2 cos sin
2 2

L b a a q q
b a b b

  > − −  
  

 (2. 27) 

 

 

Fig. 2. 9: Regions of equilibrium stability for different inputs L10, L20. 

It is worth mentioning that in the case of q=0 the above expressions give the stability condition 
(2.24). Hence, to achieve the desired configuration q it is necessary to apply the control inputs 0

1L , 0
2L  

satisfying both the equilibrium condition (2.22) and the stability conditions (2.23). Corresponding 
regions of 0

1L , 0
2L  are presented in Fig. 2. 9, which clearly shows for which combination of control 

inputs the desired configuration q can be reached geometrically and it is statically stable. This results 
are also confirmed by the case study presented in Fig. 2. 10 that demonstrate the monotonic and non-
monotonic torque-angle curves for the parameters a/b=0.75, and control inputs (a) 0

1 0.88L b= ,
0
2 0.92L b= , and (b) 0

1 0.75L b= , 0
2 0.65L b= , which produce the unloaded equilibrium configurations 

with the same angle 0 6q π=   (but with different stability properties). It should be also noted that 
here there are only two equilibriums in the non-monotonic case presented in Fig. 2. 8b, while normally 
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three equilibriums exist for equal control inputs as shown in Fig. 2. 10b. The latter is caused by the 
geometric constrains which eliminate the third equilibrium for non-equal control inputs. 

 

Fig. 2. 10: The torque-angle curves and static equilibriums for L10≠ L20 (q0=π/6). 

2.2.3 Controlling mechanism configurations 

As follows from the mechanism structure (see Fig. 2. 5), the desired configuration is defined by 
single variable q which is adjusted by two control variables 0

1L and 0
2L . The latter creates redundancy 

and ambiguity in control inputs selection. To eliminate this difficulty, it is reasonable to define 0
1L and

0
2L  in a symmetrical way, i.e. as 0 0

1L L= −∆  and 0 0
2L L= + ∆ . This allows us to rewrite (2.19) as 

follows  

 2 2 02 ( )sin( ) sin( ) cos( )
2 2q
q qM k b a q L b a = − − ⋅ + ∆ ⋅ ⋅  

 (2. 28) 

and present the control law  for the unloaded case ( ) in the following way  

 
0 2 2sin( 2) ( )sin( )( )

cos( 2)
L b q b a qq

a q
− −

∆ =  (2. 29) 

It should be noted that the desired configuration defined by the angle q should always satisfy the 
geometric constrains 

 
( )

( )
2atan ,

2atan ,

q a b a b

q a b a bπ

< ≤

< − >
 (2. 30) 

( )q∆ 0extM =
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that can be easily obtained from the geometry analysis. The obtained control law ( )q∆  as well as the 
corresponding sensitivity and stiffness coefficient are presented in Fig. 2. 11. As follows from these 
figures, for the proposed control strategy it is necessary carefully select initial values of control inputs

0 0
1 2L L= , in order to avoid the negative equivalent rotational stiffness causing instability of the desired 

configuration of the mechanism. 

 

Fig. 2. 11: Relations between the control input Δ, sensitivity coefficient K, stiffness coefficient Kq and the 
desired configuration angle q (unloaded case Mext=0). 

 

Fig. 2. 12: Relations between the control input Δ, sensitivity coefficient K, stiffness coefficient Kq and the 
desired configuration angle q (loaded case Mext≠0). 

It is worth mentioning that the above equations were derived assuming that the external loading 

extM  is equal to zero. So, in more general case when 0extM ≠ , the control law must be revised. It can 
be proved that to achieve the desired configuration with the angle q and the external loading extM , the 
control input ∆  should be computed using an expression 

 
0 2 22 sin( 2) ( )sin( )( , )

cos( 2)
ext

ext
M k L b q b a qq M

a q
+ ⋅ − −

∆ =
⋅

 (2. 31) 
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which shows that in the loaded case, the symmetrical configuration with q0=0 is achieved by applying 
a non-zero control input that compensate the external loading. Relevant simulation results are shown 
in Fig. 2. 12. However, it is necessary to be careful about selection of the parameter L0 which in some 
cases can cause negative stiffness leading to the buckling phenomenon.  

2.3 Stiffness properties of the X-shape tensegrity mechanism 

2.3.1 Geometrical model and static equilibrium equation 

Let us consider now an X-shape tensegrity mechanism, which consists of four rigid links and two 
elastic edges, where there are two linear springs located as shown in Fig. 2. 13. For this mechanism 
all the links and springs are connected by passive joints and it is assumed that the initial orientation 
angles are 0

1β  and 0
2β , and the primary geometric parameters are (a1, b1) and (a2, b2), where 

( 1,2)i ia b i≤ = . Here, the mechanism shape is defined by the lengths of the elastic edges AD and BC, 
which are denoted as L1 and L2. It is also assumed that the stiffness coefficients of the springs 
incorporated in the elastic edges are k1 and k2, while their initial unstressed lengths are 0

1L  and 0
2L . 

Similar to the previous section, the later are considered as the control inputs influencing on the 
mechanism shape. More details of such type of tensegrity mechanisms were presented in (Furet and 
Wenger, 2019a), while in this work we concentrate mainly on the comparison analysis with the dual-
triangle mechanism considered above. 

 

Fig. 2. 13: Geometry of an X-shape tensegrity mechanism for three typical configurations: (a) initial 
configuration with q=0; (b) intermediate configuration; (c) extreme configuration with q=qmax. 

To find the mechanism equilibrium condition, let us first assume that the orientation angle q is 
known and it is defined as shown in Fig. 2. 13b. Also let us define the unknown variables 1β  and 2β  
as the values of the angle BAD∠  and ADC∠  respectively. It is clear that here the angle 1β  can 
be expressed as 1 2 qβ π β= − − . Besides, as follows from the cosine theorem, apply to the triangles 

ABD∆  and ACD∆ , the considered variable are related in the following way 
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2 2 2
1 1 1 1 2 1
2 2 2
1 2 2 1 2 2

2 cos( )
2 cos

L a a L q b
L a a L b

β

β

+ + + =

+ − =
 (2. 32) 

which gives us two independent equations with respect to two variables 2β  and L1. By solving these 
equations one can obtain the values of L1(q) and 2( )qβ  with respect to angle q. Then, similar 
technique can be also applied to the triangle ACD∆ , for which one can get the angle DAC∠  if  
is obtained already. That gives us the following expression 

 
2 2 2
1 2 2

2 1

( )DAC acos
2 ( )

L q b a
b L q
+ −

∠ =  (2. 33) 

So, the angle ϕ  in triangle  can be obtained as 1 DACϕ β= −∠ , from which one can get the 
length of the other elastic edge L2 from the cosine theorem as follows 

 2 2
2 1 2 1 2( ) 2 cosL q a b a b ϕ= + −  (2. 34) 

Thus, the configuration of this mechanism corresponding to the orientation angle q is obtained.  

Further, it is necessary to take into account that the forces F1, F2 generated by the springs can be 
obtained from Hook’s law as follows 

 0 0
1 1 1 1 2 2 2 2( );     ( )F k L L F k L L= − = −  (2. 35) 

Further, the torques created by the forces F1, F2 in the virtual passive joint O can be computed 
from the geometric and physic analysis, from which the static equilibrium condition can be obtained. 
However, it should be stressed that in this case (in contrast to the dual-triangle mechanism) the virtual 
passive joint O is not fixed and such computation is complex. For this reason, more convenient and 
universal way for getting the static equilibrium condition is using the energy method. It can be proved 
that the total potential energy U of this mechanism can be expressed using (2.36) as shown in below, 
where 1( )L q∆ and 2( )L q∆  are the elastic edge deflections that are computed from the expressions 

2 2
1 1( ) ( )L q L q b a∆ = − −  and 2 2

2 2( ) ( )L q L q b a∆ = − + − . 

 1 1 2 2( ) ( ) ( )U q F L q F L q= − ⋅∆ + ⋅∆  (2. 36) 

It is worth mentioning that in the above expression the minus sign shows that the work generated by 
the force F1 is negative, because the angle deflection caused by it is in the different direction with the 
current increment of the angle q. Finally, after some simplifications, the mechanism total energy with 

1L

ABC∆
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respect to the angle q is expressed as follows  

( )2 2 0 0 0 0 2 2
1 1 2 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )U q k L q k L q k L q L k L q L k L q k L q k L k L b a= − − + + + + − − −  (2. 37) 

Using this expression, the total torque applying to the end platform CD can be computed as the 
derivative of the energy function U(q) with respect to the orientation angle q. So, for the unloaded case, 
the desired static equilibrium configuration of this mechanism can be obtained from the minimum 
energy condition, which yields 

 ( ) 0dU q
dq

=  (2. 38) 

For the loaded case, taking into account the external torque Mext applied to the end platform, the static 
equilibrium equation for the considered mechanism can be written as follows 

 
( ) + 0ext

dU q M
dq

=
 

(2. 39) 

It should mentioned that for this X-shape mechanism, the obtained static equilibrium equation is 
highly nonlinear and cannot be solved analytically, but the derivative ( )dU q dq  can be easily 
obtained from (2.37) analytically. Hence, in the general case, numerical computing of equilibrium 
configuration corresponding to the external torque Mext does not create particular difficulties. However, 
in practice, non-symmetrical architecture of such type of mechanisms is not attractive for designers, 
because multi-segment serial manipulators composed of such non-symmetrical sections are difficult 
to control (computations are rather complex).   

Let us now evaluate the stability of the mechanism under consideration and concentrate on the 
symmetrical case, for which 1 2a a a= =  and 1 2b b b= = . In this case, DE DC a= = and

1 2β β ψ= = , where 1β  can be expressed via the angle q as follows 

 
1 2 2

qπβ β −
= =  (2. 40) 

Thus the length 1( )L q  of (2.32) can be found analytically as  

 2 2 2
1( ) sin cos

2 2
q qL q a b a= + −  (2. 41) 

Besides, here 1BCD=π β∠ − , so the length L2 can be computed use the cosine theorem for the triangle
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BCD∆ , i.e.  

 2 2 2
2 2 12 cosL a aL bβ+ + =  (2. 42) 

which allows to present the function of L2(q) in the following way 

 2 2 2
2 ( ) sin cos

2 2
q qL q a b a= − + −  (2. 43) 

The above expressions also allow us to find the length of midline PQ, which is considered as the 
distance between the platform and the base of this mechanism  

 2 2 2( ) cos
2PQ
qL q b a= −

 
(2. 44) 

So, for the symmetrical architecture, the derivative of the potential energy with respect to q from (2. 
37) can be written as  

 ( ) ( )0 2 2 0 2 21 2
1 1 1 2 2 2

( ) ( )2 ( ) 2 ( )dU dL q dL qk L q L b a k L q L b a
dq dq dq

= − + + − ⋅ + − + + − ⋅
 

(2. 45) 

where the derivatives of the lengths L1(q), L2(q) are  

 

2
1

2 2 2

2
2

2 2 2

( ) 1 1 sincos
2 2 4

cos
2

( ) 1 1 sincos
2 2 4

cos
2

dL q q a qa
dq qb a

dL q q a qa
dq qb a

= +
−

= − +
−  

(2. 46) 

These allow us to rewrite the static equilibrium condition ( ) + 0extdU q dq M =  in a simplified form 
and easily find the orientation angle q for given control inputs 

0
1L , 0

1L  parameters a, b and external 
load Mext. 

It should be mentioned that the maximum/minimum values for the variable q can be found from 
the geometric analysis, which shows that when the links AC and AB are parallel, this mechanism will 
achieve the limited configuration as shown in Fig. 2. 13c. In this case lim BCDq = ∠ , which can be 
computed from the cosine theorem applied to the triangle , which yields BCD∆
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 ( )
( )

22 2
2 2 1 1

lim
2 2 1

acos
2

a b a b
q

a b a
+ − −

=
−

 (2. 47) 

and allows us to present the geometric constraints for angle q in the following form [ ]lim lim,q q q∈ −  

2.3.2 Equilibrium configurations and their stability 

To analyze stability of the equilibrium configurations, let us consider the second derivative of the 
potential energy U(q) with respect to q, which for symmetrical case can be expressed as follows 

 
( )

( )

22 2
0 2 21 1

1 1 1 12 2

2 2
0 2 22 2

2 2 2 2 2

( ) ( )2 2 ( )

( ) ( )2 2 ( )

d U dL q dL qk k L q L b a
dq dq dq

dL q dL qk k L q L b a
dq dq

 
= − + − + + − − 

 

 
− + − + + − 

 

 (2. 48) 

where the second order derivatives of  L1(q), L2(q)  are  

 

2 2 2 2
1

32
2 2 2 2 2 2

2 2 2 2
2

32
2 2 2 2 2 2

( ) 1 1 cos ( sin )sin
4 2 4

cos 4 cos2 2

( ) 1 1 cos ( sin )sin
4 2 4

cos 4 cos2 2

dL q q a q a qa
dq q qb a b a

dL q q a q a qa
dq q qb a b a

 
 
 = − + −
 

− −
 

 
 
 = + −
 

− −
 

 (2. 49) 

First, let us assume that the stiffness coefficient of the springs are equal, i.e. 1 2k k k= = , as well as the 
values of two control inputs, i.e. 0 0 0

1 2L L L= = . That allows us to rewrite the above formulas in a more 
compact way and the internal torque computed for the mechanism midpoint P can be derived from 

( ) ( )M q dU q dq=  and rewritten as   

 
0 2 2

2

2 2 2

( ) sin 2
2 cos

2

L b aM q ka q
qb a

 
 + − = ⋅ −
 − 
 

 (2. 50) 

It should be noted that here by solving the unloaded equilibrium condition , we can get more 
than one solutions that describe both stable and unstable equilibriums of this mechanism:  

( ) 0M q =
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( )2

0 2 2
2

1 2,3 4,5 2 2

20; ; acos 1
8

L b abq q q
a a

π
 + − 

= = ± = ± − − 
 
 

 (2. 51) 

The first group of these solutions 1 0q =  or 2,3q π= ±  do not violate any geometric constraints 
(i.e. exist mathematically), while the existence of 4,5q  depends on the value of the spring pre-stress 

L0. According to the cosine value range [-1, 1], we can get the following condition for existence of q4,5 

 2 2 03 4b a L b− ≤ ≤  (2. 52) 

 

Fig. 2. 14: The torque-angle curves and static equilibriums for X-shape mechanism (L10= L20). 

 

Fig. 2. 15: The critical value of configuration angle q for different combination of the control input L0 and the 
parameters a, b.  

It is sure that for the symmetric architecture ( 1 2a a a= = and 1 2b b b= = ,), from the geometry the 
relation between the parameters is b>a, and the control inputs should be less than the length of the 
edge, i.e. 0 2 2L b a< − . So the above two solutions of (2. 51) do not exist at all. It means that for this 
X-shape tensegrity mechanism, there is only one stable equilibrium configuration q=0 for the unloaded 
mode. 
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To evaluate the mechanism stability for the obtained equilibrium configurations defined by the 
angle q, let us compute the corresponding stiffness coefficients that can be found from the second 
derivative of the energy 2( ) ( )K q dU q dq′′= . Relevant computations yield the following analytical 
expression  

 
0 2 2 0 2 2

2 4 2
3

2 2 2 2 2 2

( ) cos 2 sin
2 cos 8 cos2 2

L b a L b aK q ka q ka q
q qb a b a

 
 + − + − = − −
 − − 
   

(2. 53) 

It is clear that the static equilibrium defined by angle q is stable if and only if there is the resistance 
for the external load, i.e. the corresponding stiffness coefficient K(q) is negative. Taking into account 
the shape of the curve M(q) shown in Fig. 2. 14, the desired stability condition can be simplified and 
reduced to the derivative sign verification at the zero point only, i.e. 

 ( )
0

0
q

K q
=
<  (2. 54) 

So, it is necessary to compute the derivative K(q) for the unloaded equilibrium configuration , 
which after simplification can be expressed in the following way  

 
0 2 2

2
0 2 2

( ) 2
2q

L b aK q ka
b a=

 + −
= −  −   

(2. 55) 

The latter allows us to present the stability condition of the unloaded mechanism as 

 0 2 23L b a< −  (2. 56) 

Since for this mechanism, it is assumed that a<b, for the case of equal control inputs 0 0
1 2L L=  it 

is obviously from the geometry that 0 2 2L b a< − . So, this mechanism has stable equilibrium for 
unloaded mode. The latter is also confirmed by the energy-q curve shown in the right-hand part of 
Fig. , which shows that for 0extM =  there is a single stable equilibrium configuration corresponding 
to the minimum of energy. However, as also follows from this figure, under the loading ( 0extM ≠ ) the 
mechanism stability is ensured only for some limited values of the configuration angle [ ],cri criq q q∈ − , 
where the stiffness coefficient is negative. If the angle q is outside of this range, the stiffness coefficient 
is positive and the mechanism is unstable and does not resist to the external loading. The critical values 
of criq can be computed from the condition ( ) 0critK q = , they are presented in Fig. 2. 15 as functions 
of geometric parameters a, b and the spring pre-stress L0. As follows from this figure, to achieve the 
stable state of this mechanism, the desired configuration angle q and the corresponding a, b and L0 

0q =
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should be selected from the area below the presented curves.   

If the mechanism control inputs are not equal, i.e. 0 0
1 2L L≠ , the angle q corresponding to the 

unloaded equilibrium configuration is not equal to zero 0q ≠ . In this case, the torque and its derivative 
functions can be rewritten as follows. 

 

( )

( ) ( ) ( )

2 2 0 0
2 0 01 2

1 2
2 2 2

22 2
2 2 2 2 0 0 0 0

1 2 1 23
2 2 2

2( ) sin 2 cos
2 2

4 cos
2

1 cos 4 cos
( ) 2 cos 2 sin

4 2
16 cos

2

b a L L ka qM q ka q L L
qb a

a q b q ka qK q ka q ka b a L L L L
qb a

 
 − + + = − + −
 − 
 

− + +
= − + − + + − −

−

(2.57) 

Similarly to the above case, the equilibrium condition for the unloaded mode may be presented as
( ) 0M q = , which yields the following equation for computing the configuration angle q 

 ( )
2 2 0 0

0 01 2
1 2

2 2 2

22 sin 4 0
2

2 cos
2

q b a L La L L
qb a

 
 − + + − + − =
 − 
   

(2. 58) 

 

Fig. 2. 16: Regions of equilibrium stability for different inputs L10, L20 for X-shape tensegrity mechanism. 

It is clear that the above equation may have multiple solutions but the equilibrium stability condition 
can be also expressed as ( ) 0K q < , which leads to the following inequality 
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( )( ) ( )
2 2

2 2 0 0 0 0
1 2 1 23

2 2 2 2 2 2

cos sin8 cos 2 sin 0
2

cos 4 cos2 2

q a q qa q a b a L L L L
q qb a b a

 
 
 − + − + + − − − <
 

− −
 

(2.59) 

Relevant computation results are presented in Fig. 2. 16, which allows to choose the control inputs 0
1L , 

0
2L  corresponding to the desired equilibrium configuration q. It is worth mentioning that the mapping 

( )0 0
1 2,q L L→ , i.e. there exist infinite number of control inputs 0

1L , 0
2L   corresponding to the desired 

angle q.   

2.3.3 Controlling mechanism configurations 

As follows from the mechanism structure (see Fig. 2. 13), the desired configuration is defined by 
a single variable q which is adjusted by two control variables 0

1L , 0
2L . The latter creates redundancy 

and ambiguity in control inputs selection. To eliminate this difficulty, it is reasonable to define 0
1L , 

0
2L  in a symmetrical way, i.e. as 0 0

1L L= −∆  and 0 0
2L L= + ∆ . This allows us to rewrite (2.27) as 

follows  

 
2 2 2

2 0

2 2 2 2 2 2

sin( ) sin 2 cos
2

2 cos 2 cos
2 2

b a ka q qM q ka q L ka
q qb a b a

 
 − = − + − ∆
 − − 
 

 (2. 60) 

and present the control law ( )q∆  for the unloaded case ( 0extM = ) in the following way  

 2 2 2 2 2 0

2 2 2

sin
2( ) 4 cos

2
cos

2

qa qq b a b a L
qb a

 
∆ = − − − +  

 −
 (2. 61) 

It should be noted that the desired configuration defined by the angle q should always satisfy the 
geometric constrains (2.47) ensuring that the unloaded equilibrium is stable. The obtained control law 

( )q∆  is presented in Fig. 2. 17a.  

It is worth mentioning that the above equations were derived assuming that the external loading 

extM is equal to zero. So, in more general case when 0extM ≠ , the control law must be revised. It can 
be proved that to achieve the desired configuration with the angle q and the external loading extM , the 
control input ∆  should be computed using an modified expression 
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 2 2 2 2 2 0

2 2 2

sin
2( , ) 4 cos

2cos cos2 2

ext
ext

qaM qq M b a b a Lq qka b a

 
∆ = + − − − +  

 −
 (2. 62) 

which shows that in the loaded case, the symmetrical configuration with q0=0 is achieved by applying 
a non-zero control input that compensate the external loading, as shown in Fig. 2. 17b.  

 

Fig. 2. 17: Relations between the control input and the desired configuration angle q ( a=10 ).  

2.4 Comparison of the dual-triangle and X-shape tensegrity mechanisms 

In the previous sub-sections, we have considered two types of tensegrity mechanisms, both of 
which can be a candidate for designing a multi-segment compliant serial chain that is in the focus of 
this thesis. The first of these mechanisms (see Fig. 2. 5) is composed of two rigid triangles connected 
in a passive joint and two elastic edges. The second mechanism (called here as an X-shape one) consists 
of four rigid links and two elastic edges as shown in Fig. 2. 13. In both cases the mechanism 
configuration is adjusted by pre-stressing the springs located on the elastic edges, which are treated as 
the control inputs.  

For the dual-triangle mechanism, the configuration angle q limits are caused by the geometric 
issues. It was proved that for the symmetrical architecture the configuration angle may achieve a quite 
big range, such as [ ]2, 2π π− . It means that a serial manipulator composed of the dual-triangle 
mechanisms may provide a large workspace by choosing suitable combination of the geometric 
parameters a, b and control input L0. It is also worth mentioning that such type of tensegrity 
mechanisms may have either monotonic or non-monotonic force-deflection relation with either stable 
or unstable equilibrium configuration. This property depends on the geometric parameters a, b and 
spring pre-stress L0 that must satisfy certain constraints obtained in sub-section 1.2. It is clear that for 
the monotonic case the mechanism always have a single stable equilibrium when the configuration 

∆
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angle q is inside of the geometric constraints. However, for the non-monotonic case, the mechanism 
has an unstable equilibrium when the configuration angle q is smaller than some critical value critq or 
larger than critq− , but when the configuration angle q is outside of this range the mechanism may have 
two symmetrical stable equilibriums (the existence of them is depending on the geometric constraints). 
From engineering point of view the monotonic force-deflection relation is an essential advantage of 
the dual-triangle mechanism, which ensures stability of the desired configuration and the mechanism 
resistance to the external loading.    

For the X-shape tensegrity mechanism, it was proved that the geometric constraints are not so 
hard as above. Potentially, this may provide a rather large range for the configuration angle q and a 
quite large workspace. However, this large range of q cannot be achieved in practice because of the 
equilibrium stability issues. In particular, the force-deflection relation for this mechanism is always 
non-monotonic, so the configuration angle q should be inside of the smaller range [ ],crit critq q q∈ −  
ensuring the mechanism stability (out of this range there may exist two unstable equilibriums). It 
means that practical workspace is essentially smaller than the geometric limits. More details on this 
issue are given in section 2.3.3, where the critical values qcrit was obtained for different combination 
of the geometric parameters a, b and the spring pre-stress L0, it was shown that the critical value qcrit 
is usually smaller than 2π .  

From point of view of stiffness properties, the dual-triangle and X-shape mechanisms are quite 
similar, except of the high loading case when the X-shape mechanism may demonstrate buckling 
because of non-monotonicity of the force-deflection relation. However, for the dual-triangle 
mechanism the stiffness coefficient on the joint with respect to the configuration angle q can be 
presented analytically, which allows potential user to control the manipulator stiffness in real time. 
Besides, the direct/inverse kinematic relations for the dual-triangle mechanisms are also simpler 
because there is a fixed passive joint here. In particular, for the manipulator composed of such 
mechanisms, the lengths of each links are constant, so the kinematics is similar to the typical serial 
manipulator and the computations are simpler and faster. In contrast, for the X-shape tensegrity 
mechanism, there is no fixed joint thus the lengths of the two elastic edges L1, L2 are nonlinearly related 
to the configuration angle q and they cannot be expressed via q straightforwardly. Also, it is not 
possible to express analytically the stiffness coefficient with respect to q. Hence, for the manipulator 
composed of such mechanisms, the kinematic and elastostatic computations are rather difficult and do 
not well suit to the real-time implementation.  

Hence, the dual-triangle tensegrity mechanism has essential advantages for the considered 
applications compared to the X-shape ones. In particular, the dual-triangle structure can always have 
the stable equilibrium if suitable parameters a, b and spring pre-stress L0 are chosen. On the other hand, 
for the X-shape tensegrity mechanism the stable equilibrium can only be achieved when the absolute 
value of the configuration angle q is smaller than the certain critical value depending on the geometric 
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parameters. So, in this thesis, we will consider the serial manipulator composed of the dual-triangle 
tensegrity mechanisms, relevant results are presented in the following chapters. 

2.5 Summary  

This part deals with the stiffness analysis and stability study of two potential tensegrity 
architectures (X-shape and dual-triangles), each of which can be used in design of compliant robot 
end-effectors.  

The main contributions are related to the comparison analysis of the mechanical properties of 
these mechanisms and the control strategy for changing the mechanism configurations. The two 
length-controllable elastic edges of these mechanisms can generate internal preloading, which is a very 
promising design and very convenient for constructing of a multi-section serial structures with high 
flexibility that are needed in many modern robotic applications. For practical reasons, the main 
attention is paid to the symmetrical structure. In particular, the case of equal spring pre-stress was 
investigated in detail and analytical condition of equilibrium stability is obtained. The relation between 
the external torque and the deflection is also obtained allowing to find loaded equilibriums.  

It is demonstrated for the dual-triangle mechanisms that for different combinations of the 
geometric parameters, the force-deflection relation curves may be either monotonic (a single 
equilibrium) or non-monotonic (one stable and two unstable equilibriums). While for the X-shape 
mechanisms, the force-deflection relation curve is always non-monotonic with one stable and two 
unstable equilibriums. It was proved for the dual-triangle mechanisms that depending on parameters 
combinations, the actuation can lead to either the desired mechanism configuration (corresponding to 
a stable equilibrium) or undesired configuration corresponding to shifted stable equilibrium or joint 
limits. In the following chapters, these results will be used for the stiffness analysis of multi-section 
mechanisms that may demonstrate unusual behavior under static load and suddenly change its 
configuration. 

In more details, new results and contributions of Chapter 2 include the following issues 

(i) Stiffness analysis of the X-shape and dual-triangle tensegrity mechanism based on the VJM 
technique, which allows to easily obtain the lower dimensional stiffness matrices compared 
to other methods, and get the mechanism stability condition analytically. 

(ii) The mechanism stability conditions are presented analytically and different equilibriums of 
these two types of mechanisms are obtained, which allows user to select the mechanical 
architecture ensuring the mechanism controllability.  

(iii) The proposed control strategy allows to achieve the desired mechanism configuration 
through anti-symmetrical adjusting the pre-stress of the springs (for both loaded and 
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unloaded model).  

It should mentioning that for both symmetrical and non-symmetrical architectures, the stiffness 
models and the stability conditions of these mechanisms are presented. Although the main attention in 
this thesis is only paid to the symmetrical one, relevant results for the non-symmetrical one can also 
be obtained in a similar way.  

The main results of Chapter 2 are published in the following works: (Zhao et al., 2021a, 2020). 
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This chapter is devoted to the stiffness analysis of the two-segment serial 
structure based on the dual-triangle tensegrity mechanism for both straight and 
non-straight initial configurations. For this manipulator, the stiffness matrix was 
obtained through the VJM technique, and the conventional inverse kinematic 
transformation for two-link serial manipulator was used straightforwardly. The 
particularity of this serial mechanism is that, for the initial straight configuration, 
the buckling phenomenon was detected, and the critical force causing the buckling 
was obtained analytically. The control strategy presented in chapter 2 was also 
enhanced. The simulation results confirmed the efficiency of the developed 
technique. 

3.1 Stiffness analysis of a straight configuration 

 

Fig. 3. 1: The two segment mechanism in the “straight” and “non-straight” configurations.  
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Let us consider first an aggregated mechanism presented in Fig. 3. 1, which is composed of two 
segments considered in the previous section. It is assumed that the left hand-side of the mechanism is 
fixed and the desired configuration corresponds to the “straight” shape with 1 2 0q q= = that is 
achieved by applying equal control inputs to all segments. Under the influence of the external force

eF , the end-effector moves from the unloaded equilibrium configuration ( ) ( )0 0, 4 ,0T Tx y b= to a new 
equilibrium with the end-effector location ( , ) (4 , )T T

x yx y b δ δ= −  corresponding to the nonzero 
angles ( )1 2,q q . Let us evaluate the mechanism resistance to the external force eF  for this “straight” 
configuration described by the force-deflection relations ( , )x x yF δ δ and ( , )y x yF δ δ . 

It is clear that if the end-effector deflection ( , )x yδ δ  is given, the configuration angles ( )1 2,q q can 
be computed from the mechanism geometry, using the triangle equations 

 1 12

1 12

2 4
2

x

y

b bC bC b
bS bS

δ
δ

+ + = −
+ =

 (3. 1) 

that can be solved using the technic used in the invers kinematics of the two-link robotic manipulator, 
which yields 

 
( )

( )
1 2 2

2 2 2

atan2( , ) atan2 ,2

atan2 ,

q y x b bS b bC

q S C

= − − +

=
 (3. 2) 

where ( )( )2 2 2 2
2 5 4C x b y b b= − + − , 2

2 21S C= ± − . It is worth mentioning that two symmetrical 
solutions are possible here and both of them may be feasible, i.e. belong to the geometric limits 
described by (1.30). Then, for each segment the torque generated by the elastic virtual spring can be 
computed using (1.12), which for this mechanism is rewritten as 

 ( ) ( )2 22 sin sin , 1, 2
2

o i
i i

qM q k b a q bL i = − − =  
  (3. 3) 

This allows us to obtain the desired equilibrium equation, which relates the virtual spring torques
( )iM q  and the external force ( ),

T

x yF F in the following form 

 ( )
( )

1

2

0xT
q

y

FM q
J

FM q
   

+ =  
  

 (3. 4) 

where qJ is the Jacobian matrix, which is derived from the geometry model and is written as follows 

 ( )1 1 2 1,2 2
2

1 1 2 1,2

2
; det 2

2q q

bS bS bS
J J b S

bC bC bC
− − − 

= = + 

，

，

 (3. 5) 
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and 1 1cosC q= , 1 1sinS q= , ( )12 1 2cosC q q= + , ( )12 1 2sinS q q= + . After substitution of the virtual 
torques ( )iM q  in the above equilibrium equation, we can find the desired external force 
corresponding to the end-effector displacement ( ),x yδ δ expressed via the angles (q1, q2) 

 
( )
( ) ( )

2 2
1 1

20
2 2

sin sin 2
2 , 0

sin sin 2
x T

q
y

F q q b a
kJ q

F q q bL
− −    −

= ≠     −     
 (3. 6) 

allowing us to obtain the desired force-deflection relation in the neighborhood of the straight 
configuration where the Jacobian is invertible. Relevant force-deflection curves for different 
combinations of the mechanism parameters are presented in Fig. 3. 2.  

 

Fig. 3. 2: Force-deflection relations Fx(δx, δy), Fy(δx, δy) corresponding to unloaded straight configuration for 
different combinations of geometric parameters a, b, L0. 

As follows from the force-deflection curves presented in Fig. 3. 2, the mechanism stiffness 
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behavior for the considered configuration possesses some particularities. In particular, at the beginning 
the mechanism resistance in the x-direction is infinite (corresponding curves do not go through the 
zero point). Further, when the loading is increasing, the mechanism resistance behavior is quasi-linear. 
Hence, the buckling phenomenon is observed when the external force increases gradually and the 
mechanism configuration angles suddenly change from zero to non-zero values. To find the critical 
force for the buckling, let us compute the limits of ( ),x yF F  while ( ), (0, 0)x yδ δ → . As follows 
from the mechanism geometry, which include a triangle with edges length of b and 2b, if the first angle 

1q ε=  is small enough, the second angle can be approximately expressed as 2 3q ε≈ − . The later 
allows us to write the Jacobian in the following form 

 0 2
3q

b
J

b b
ε 

≈  
 

 (3. 7) 

and rewrite equation (3.6) as 

 
2 2

0

0 2 2
2

3 3 3 2

T
x

y

F b b a
k

F b b bL
ε ε ε

ε ε

− −   −   
≈ ⋅      −      

 (3. 8) 

that gives us the desired critical forces in the x- and y- directions 

 
( ) ( )
( )

0 2 2

0
0

0

lim 5 2 3

lim 0

o
x x

y y

F F k b a bL b

F F
ε

ε

ε

ε
→

→

 = = − − 
= =

  (3. 9) 

 

Fig. 3. 3: Force-deflection relations Fx(δx, δy), Fy(δx, δy) corresponding to unloaded straight configuration 
with parameters a/b=1.1, Lo/b=0.7. 

It should also be mentioned that the buckling phenomenon can be observed if and only if 
( )0 2 22 1L b a b> − , which in the previous section was considered as the boundary condition 
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separating the monotonic and non-monotonic areas in Fig. 2.7 ( see in (2.15) ). In this case, the 
unloaded straight configuration is stable and it resists to the external loading if 0

x xF F< . In contrast, 
if the geometry satisfies the opposite condition: ( )0 2 22 1L b a b< −  as shown in Fig. 3. 2c, the 
unloaded configuration is unstable and the mechanism suddenly jumps from the initial position to 
slightly different stable equilibriums (even without external loading), which can be treated as the 
“jumping” phenomenon. The properties of the force-diflection relations ( , )x x yF δ δ  and ( , )y x yF δ δ  
can be also estimated from the 3D-plots presented in Fig. 3. 3 where the buckling corresponds to the 
discontinuty at the point ( , ) (0,0)x yδ δ = . 

3.2 Stiffness analysis of non-straight configurations 

To evaluate the mechanism stiffness for the general case, let us assume that the initial unloaded 
configuration is non-straight, i.e. 2 0q ≠ , which guaranties that the kinematic Jacobian is non-singular 
and can be inverted. This allows us to rewrite the equilibrium equation in the following way 

 1x T
q q q

y

F x
J K J

F y
δ
δ

− −   
= −   

  
 (3. 10) 

where the diagonal matrix 1 2( , )q q qK diag K K=  is composed of the stiffness coefficients of the virtual 

joints ( )qi i iK dM q dq=  described by (2.22). This equation also allows us to express the mechanism 

2×2 stiffness matrix explicitly in the following form 

 1T
F q q qK J K J− −=   (3. 11) 

where  

 
2 2

xx xy
F

yx yy

k k
K

k k
×

 
=  
 

 (3. 12) 

is the symmetrical positive definite matrix composed of scalar stiffness coefficients kxx, kyy for the 
directions x, y, as well as a mixed stiffness coefficient kxy.  

Let us investigate now the sensitivity of the above stiffness coefficients with respect to the control 
inputs 0

1iL  and 0
2iL , assuming that both segments of the mechanism are controlled by single inputs, 

i.e. 0
11 1L var= , 0

21 2L var= and 0 0
12 22L L const= = , which insure the desired unloaded end-point location 

( , ) = (4 , 0)x y b x−∆ . Corresponding computation results for several case studies are presented in Fig. 
3. 4, they demonstrate that the stiffness of the two-segment mechanism is very sensitive to its initial 



Chapter3 : Analysis of Two-Segment Mechanism Composed of Dual-triangles 

94 

unloaded configuration. In particular, the mechanism stiffness coefficients for the x-direction are 
essentially reducing while the displacement x∆  is increasing. It should be mentioned that, to have 
the stable equilibrium configuration, both two segments of the mechanism should satisfy the stability 
condition presented in the previous section. The latter is illustrated by Fig. 3. 4c, where the right-hand 
side segment of the mechanism is stable ( 2 0qK < ), while the left-hand side segment is in unstable 
configuration ( 1 0qK > ). So the left-hand side segment moves until being stopped by the rotation angle 
constrain. This situation is also in accordance with the control inputs location on the parameter plane 
( 0 0

1 2,L b L b ) shown in Fig. 2. 9b, which allows evaluate the segment stability in the unloaded 
configuration. 

 

 

Fig. 3. 4: Sensitivity of the stiffness coefficients of the two-segment mechanism with respect to initial 
unloaded configuration for different geometric parameters. 

The stiffness properties of the two-segment mechanism for the non-straight initial configuration 
can be also estimated from 3D-plots of the force-diflection relations ( , )x x yF δ δ  and ( , )y x yF δ δ  
presented in Fig. 3. 5, which correspond to the non-loaded displacements ( , ) (5,0)x y∆ ∆ = . As 
follows from this plots, the forces Fx and Fy are changing continuously with respect to the deflections
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( , )x yδ δ , and there is no the buckling phenomenon, that was detected for the straight initial 
configuration (see Fig. 3. 3 in subsection 3.1). 

 

Fig. 3. 5: Force-deflection relations  Fx(δx, δy), Fy(δx, δy)  corresponding to unloaded non-straight 
configuration (Δx, Δy)=(5, 0) with geometric parameters a/b=1.1, Lo/b=0.7. 

 

Fig. 3. 6: Unloaded-stiffness ellipses of the two-segment mechanism and the evaluation through the 
workspace. 

Another way of evaluating the mechanism stiffness properties is based on the singular value 
decomposition (SVD) of the 2x2 stiffness matrix computed at the initial unloaded point. This approach 
allows us to estimate the max/min compliance of the mechanism via the stiffness matrix singular values. 
Geometrically, it can be also described by the stiffness ellipse that is produced by the linear mapping 
(3.10) of the unit circle 2 2 1x yδ δ+ =  in the deflection space into the force space (Fx , Fy). It can be 
proved that the lengths of the major and minor semi-axes of this ellipse are equal respectively to the 
maximum and minimum singular values of the stiffness matrix. Example of the stiffness ellipses for 
the case a/b=1.1, Lo/b=0.7 and the evaluation though out the workspace is presented in Fig. 3. 6. As 
follows from this figure, the mechanism resistance to the external force in the longitudinal direction is 
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much higher than in the transverse one. Also, the mechanism longitudinal compliance increases while 
the initial configuration becomes closer to the straight one. 

3.3 Controlling mechanism configurations  

To achieve the desired end-point position (x, y), the two-segment mechanism must be controlled 
by two pairs of the control inputs ( 0 0

11 12,L L ) and ( 0 0
21 22,L L ). To simplify the mechanism control, let us 

apply the asymmetrical approach proposed in subsection 1.3 allowing to use only two control variables  
( 1 2,∆ ∆ ) producing four physical control inputs: 0 0

11 1L L= −∆ , 0 0
12 1L L= + ∆  for the first segment, and 

0 0
21 2L L= −∆ , 0 0

22 2L L= + ∆  for the second one. Since the considered two-segment mechanism is non-
redundant, the values of the control variables corresponding to the desired end-point position can be 
easily computed using the above presented expressions for the two-link manipulator inverse 
kinematics (2.2) and one-segment mechanism control law (1.26). The latter yields the following 
algorithm for controlling law of the two-segment mechanism:  

 Using expressions (3.2), compute the configuration angles 1( , )q x y and 2( , )q x y corresponding 
to the desired end-point position (x, y). 

 Using expression (2.29), compute the control inputs 1 1( )q∆ and 2 2( )q∆  for the first and second 
segments corresponding to the configuration angles (q1, q2). 

 

Fig. 3. 7: Relations between the required control inputs Δ1, Δ2 and the desired end-point position (x, y) for the 
two-segment mechanism with geometric parameters a/b=1.1, Lo/b=0.7  (unloaded case Fx=Fy=0).  
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An example of computing based on the above algorithm is presented in Fig. 3. 7, where the 
mechanism parameters a/b=1.1, L0/b =0.7 were chosen to ensure the mechanism stability in the 
unloaded mode 0extM = (see subsection 3.3). 

In more general case when the external forces (Fx , Fy) are not equal to zero, the control inputs 
( 1 2,∆ ∆ ) should be computed using equation (2.31) that includes the virtual joint torques ( 1 2,M M ) 
ensuring the mechanism equilibrium. These torques can be obtained from the static equilibrium (3.4). 
Corresponding algorithm allowing to find the control inputs ( 1 2,∆ ∆ ) for the desired end-point position 
(x, y) for the loaded case as presented below.  

 Using expressions (3.2), compute the configuration angles 1( , )q x y and 2( , )q x y corresponding to 
the desired end-point position (x, y). 

 Using expression (3.4), compute the joint torques ( )1 2,M M from the external force (Fx , Fy) 

 Using expression (2.31), compute the control inputs 1 1 1( , )q M∆ and 2 2 2( , )q M∆  for the first and 
second segments corresponding to the configuration angles (q1, q2) and the joint torques
( )1 2,M M . 

 

Fig. 3. 8: Relations between the control input ∆  and the desired end-point position (x, y)  
with geometric parameters a/b=1.1, Lo/b=0.7 (unloaded case Fx=-3, Fy=3). 

An example of computing based on the above algorithm is presented in Fig. 3. 8, where the 
geometric parameters are similar to the previous figure. To confirm reasonable choice of geometric 
parameters 1a b ≈  with respect to the mechanism control, Fig. 3. 9 presents several cases that differ 
in the workspace shape and size (as well as the workspace area Sw ). As follows from this figure, in 
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practice it is preferable to have the (a, b) parameter ratio about 1a b ≈ , which ensures the maximum 
workspace area. 

 

 

Fig. 3. 9: Workspace size/shape of the two-segment mechanism for different geometric parameters (a, b). 

3.4 Summary  

This chapter deals with the stiffness analysis of the two-segment serial tensegrity mechanism 
based on the dual-triangles architecture, which was selected as the base segment for designing 
compliant robot- end-effector.  

For this mechanism, both straight and non-straight initial configurations were considered; the 
main contributions are concentrating on the mechanical stiffness properties. The obtained analytical 
stiffness matrices derived using the VJM technique allow designers to evaluate the stiffness sensitivity 
of this structure with respect to an arbitrary initial configuration for different geometric parameters. 
Besides, the force-deflection relations for the desired end-point location were obtained analytically by 
solving the static equilibrium equation. The latter allowed us to detect the buckling phenomenon of 
this serial mechanism and compute the corresponding critical force.  
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In more details, new results and contributions of Chapter 3 include the following issues 

(i) The force-deflection relations of this mechanism for both straight and non-straight initial 
configurations, which were obtained using the VJM technique.  

(ii) Specific mechanical property of this mechanism i.e. the buckling phenomenon was detected 
if the initial configuration of this serial mechanism is straight and external loading exceeds 
the certain critical value. This critical value of the loading causing the buckling was obtained 
analytically by solving the elastostatic equilibrium equations. 

(iii) The control strategy proposed in the previous chapter was extended for the two-segment 
case. Its efficiency was confirmed by simulation results for both loaded and unloaded modes. 

It should mentioning that for this mechanism, the stable states can be easily ensured by choosing 
suitable geometric parameters and springs pre-stress according to the stability condition obtained in 
Chapter 2. However, for the large deflection while considering the geometric constraints, the obtained 
mechanism stability conditions are more complex compared to the single-segment case.  

The main results of Chapter 3 are published in the following works: (Zhao et al., 2021a). 

  



Chapter3 : Analysis of Two-Segment Mechanism Composed of Dual-triangles 

100 

 



 

 

 CHAPTER 4 
ANALYSIS OF THREE-SEGMENT MECHANISM 

COMPOSED OF DUAL-TRIANGLES 

 

 
4.1 Stiffness analysis of a straight configuration ....................................................................... 101 
4.2 Stiffness analysis of a non-straight configuration ................................................................ 110 
4.3 Controlling mechanism configurations ................................................................................ 117 
4.4 Summary .............................................................................................................................. 126 

 

This chapter is devoted to the analysis of the redundant three-segment serial 
structure composed of the dual-triangles. Both the analytical and numerical 
methods were used to find the stable and unstable equilibrium configurations, and 
to predict the corresponding manipulator shapes. Similar to the previous chapter, 
it was demonstrated that either buckling or quasi-buckling phenomenon may 
occur under the loading if the manipulator initial configuration is straight or non-
straight one, and the critical force was obtained analytically. Further, the stiffness 
analysis was carried on for both loaded and unloaded modes, the stiffness 
matrices were computed using the VJM technique. At last, some useful 
optimization techniques were applied to solve the geometric redundancy problem, 
and to ensure the stability of the manipulator configurations with respect to the 
external forces/torques applied to the end-effector. Relevant kinematics control 
strategies based on these techniques were proposed, the efficiency and accuracy 
of which were confirmed by the simulation results. 

4.1 Stiffness analysis of a straight configuration 

Let us consider a manipulator composed of three similar sections connected in series as shown in 
Fig. 4. 1, where the left hand-side is fixed and the initial configuration is a “straight” one 
( 1 2 3 0q q q= = = ). This configuration is achieved by applying equal control inputs to all mechanism 
segments. For this manipulator, it is necessary to investigate the influence of the external force

( , )e x yF F F= , which causes the end-effector displacements to a new equilibrium location 
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( ) ( ), 6 ,
TT

x yx y b δ δ= −  corresponding to the nonzero configuration variables ( )1 2 3, ,q q q . It is also 
assumed here the external torque extM  applied to the end-effector is equal to zero. 

 

Fig. 4. 1: The three-segment mechanism in the “straight” and “non-straight” configurations. 

Let us evaluate first the mechanism resistance with respect to external load for this “straight” 
configuration, which is described by the force-deflection relations ( , )x x yF δ δ and ( , )y x yF δ δ . It can be 
easily proved from the geometry analysis that the configuration angles ( )1 2 3, ,q q q satisfy the following 
direct kinematic equations 

 1 12 123

1 12 123

6 2 2
2 2

x

y

b b bC bC bC
bS bS bS

δ
δ
− = + + +

= + +
 (4. 1) 

where 1 1cosC q= , 1 1sinS q= , ( )12 1 2cosC q q= + , ( )12 1 2sinS q q= + ,  ( )123 1 2 3cosC q q q= + +  and
( )123 1 2 3sinS q q q= + + . These two equations include three unknown variables and allow us to compute 

two of them assuming that the remaining one is known. For instance, if the angle 1q  is assumed to be 
known, the rest of the angles q2, q3 can be computed from the classical invers kinematics of the two-
link manipulator as follows 

 
( )

( )
3 3 3

2 1 1 3 3 1

atan2 ,

atan2( 2 , 2 ) atan2 ,2

q S C

q y bS x b bC bS b bC q

=

= − − − − + −
 (4. 2) 

where ( ) ( )2 2 2 2
3 1 12 2 5 4C x b bC y bS b b = − − + − −  , 2

3 31S C= ± − . It is clear that the latter 
expressions provides two group of possible solutions corresponding to the positive /negative 
configuration angles 3 0q ≥ and 3 0q ≤ .  

To find a stable manipulator configuration under the loading, let us apply the energy method. It 
is clear that the end-effector displacement caused by the external loading leads to some deflections in 
the mechanism springs, which allows us to compute the manipulator energy as  

 ( )
3 2 20

1 1

1
2 ij ij

i j
E k L L

= =

= −∑∑  (4. 3) 

where ijL and o
ijL  are the spring lengths in current and initial (unextended) states respectively. 



Chapter4 : Analysis of three-segment mechanism composed of dual-triangles 

103 

Because the manipulator end-effector is assumed to be fixed at the point ( ) ( ), 6 ,
TT

x yx y b δ δ= − , the 
above energy can be expressed via one of the three variables q1, q2 or q3. Assuming that variable q1 is 
chosen as an independent one, the desired stable configurations can be found by computing local 
minima of energy function  

 
1

1( ) min
q

E q →  (4. 4) 

  

 

Fig. 4. 2 Energy curves E(q1) for different combinations of manipulator geometric parameters a/b, Lo/b: 
 “blue curves”─ positive configuration with q3>0;  “green curves” ─ negative configuration with q3<0;  
● ─ stable equilibrium;  ● ─ unstable equilibrium. 

Examples of such energy curves E(q1) for several typical cases are presented in Fig. 4. 2. As 
follows from this figure, the considered curves are symmetrical with respect of the angle q1 and number 
of equilibriums can be either four or eight (two stable and two unstable, or four stable and four 
unstable). However, the number of global minima is always equal to two. It is worth mentioning that 
while considering the equilibrium configurations defined by minimum/maximum of the energy, it is 
necessary to be sure that all the configuration angles q1, q2, q3 are feasible, i.e. belong to the geometric 
limits described by inequalities (2.30). Importance of this issue is illustrated by Fig. 4. 3, where the 
feasible and unfeasible parts of the energy curves are presented by solid and dashed lines respectively. 
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Fig. 4. 3: Feasible (─) and unfeasible (---) configurations caused by geometric constrains on the joint angles. 

 

 

 

Fig. 4. 4: Eight different stable and unstable equilibriums for manipulator parameters a/b=0.75, Lo/b=0.7. 

In more detail, the stable and unstable equilibriums are shown in Fig. 4. 4, where there are 
presented both the energy curves and the manipulator shape corresponding to the case study from Fig. 
c. As can be seen from these figures, for such combination of parameters there are two globally stable 
equilibriums (Fig. 4. 4a, b ), two locally stable equilibriums (Fig. 4. 4e, f ) and four unstable 
equilibriums (Fig. 4. 4c, d, g, h). It can be also noticed that the stable equilibriums correspond to the 
“Z” shape of the manipulator, while the unstable equilibriums correspond to the “U” shape. Besides, 
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for this case study, the “jumping” phenomenon can be observed for which the angle q1 suddenly jumps 
from the initial zero value to the non-zero one under the influence of the external loading. The latter is 
in a good agreement with Fig. 4. 4c showing that here the geometric parameters (a/b, Lo/b) belong to 
the unstable area on the relevant plane. 

 

Fig. 4. 5 Correspondence between the maxima/minima of the energy curves E(q1) and zeros of the external 
torque Me(q1). 

An alternative way to compute the configuration angles q1, q2, q3 at the equilibrium state is based 
on the torque equation Me(q1)=0, which is implicitly used in the energy method. The latter is illustrated 
by combined plots of the energy-torque curves computed for the initial “straight” configuration 
presented in Fig. 4. 5, which shows that the max/min of the energy E(q1) correspond to zeros of the 
torque Me(q1)=0. This allows to present the equilibrium equations in the following way. 

 
1 2 3

1 2 3

1 2 3

( , , )
( , , )
( , , ) 0

x

y

e

f q q q x
f q q q y

M q q q

=
=
=

 (4. 5) 

where (.)xf  and (.)yf  are the direct kinematic functions from equation (4.3) and (.)eM  is the 
external torque at the end-point with the Cartesian coordinates (x, y). Further, to find the external forces 
corresponding to this end-point location, it is necessary to use the force-torque equilibrium equation  

 
1

2

3

0
q x

T
q q y

q e

M F
M J F
M M

   
   + =   

     

 (4. 6) 



Chapter4 : Analysis of three-segment mechanism composed of dual-triangles 

106 

which relates internal torques Mq1, Mq2, and Mq3 in all manipulator segments and the force/torque at 
the end-point. In this equation, the internal torques can be computed using previously derived 
expression from Section 2.1 

 ( )2 2 02 sin sin ; 1, 2, 3
2

i
qi i

qM k b a q bL i = − ⋅ − =  
 (4. 7) 

and the Jacobian matrix Jq can be computed using the standard technique for the three-link manipulator 
and presented as follows 

 
1 12 123 12 123 123

1 12 123 12 123 123

2 2 2
2 2 2

1 1 1
q

bS bS bS bS bS bS
J bC bC bC bC bC bC

− − − − − − 
 = + + + 
  

 (4. 8) 

where S and C with corresponding indices have the same meaning as in (4.1). Assuming that the 
Jacobian is non-singular (i.e. the loaded manipulator is already out of the straight configuration), the 
external force/torque can be expressed directly as 

 
1

2

3

x q
T

y q q

e q

F M
F J M
M M

−

  
   = −   

      

  (4. 9) 

where the inverse matrix T
qJ −  can be computed analytically. In particular, a conventional formula  

 
det

T
qT

q T
q

J
J

J

∗

−
  =  (4. 10) 

with the determinant   

 1 2 2det det( )T
q qJ J L L S= =   (4. 11) 

and the adjoint matrix  

 
2 12 1 1 2 12 1 1

2 12 1 1 2 12 1 1

2 3 3 1 3 23 2 3 3 1 2 2 1 3 23

T
q

L C L C L C L C
J L S L S L S L S

L L S L L S L L S L L S L L S

∗
− − 

   = − −   
 − − + 

  (4.12) 

yields the following analytically expression for the external loading  
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12 1 12 1 1

12 1 12 1 2
2

3 23 3 2 23 3

1
2

2

x q

y q

e q

F C C C C M
F S S S S M

bS
M bS bS bS bS bS M

 − −   
    = − − −     

    − − +     

  (4. 13) 

where L1=2b,, L2=2b and L3=b are the link lengths for the equivalent three-link manipulator. The 
above expression also gives us an analytical formula for the external torque (.)eM for the system of 
equations (4.5) 

 ( ) ( )3 1 23 3 2 2 23 3
2

1 2
2e q q qM S M S S M S S M

S
 = − − + + +    (4. 14) 

 

 

Fig. 4. 6 Force-deflection curves and stiffness coefficients for the “straight” initial configuration. 

The above obtained formula for 1 2 3( , , )eM q q q  allows us to rewrite the system of the equilibrium 
equation (4.5) in the extended form as shown in (4.15) in below, whose solution (q1, q2, q3) may 
correspond to either to stable or unstable equilibrium of the manipulator configuration. Then, using 
expressions Fx (q1, q2, q3) and Fy (q1, q2, q3) obtained from (4.13), one can get the external loading (Fx, 
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Fy) corresponding to the end-effector position (x, y), which finally allows us to generate the desired 
force-deflection curves. 

 
( ) ( )

1 12 123

1 12 123

3 1 23 3 2 2 23 q3

2 2 0
2 2 0

2 0q q

b bC bC bC x
bS bS bS y

S M S S M S S M

 + + + − =


+ + − =
 − + + + =

 (4. 15) 

Examples of such curves for several case studies are presented in Fig. 4. 6, where it is assumed 
that under the loading the manipulator moves along with x-axis, i.e. x varδ = , 0yδ = . As follows from 
this figure, in the most cases the force-deflection curves are quasi-linear but some of them they include 
discontinuities (jumps) and do not pass through the zero point. The latter means that the corresponding 
manipulator possesses very specific particularity known as the “buckling” property, for which the 
configuration angles may suddenly change their values while the external force increases gradually. 
Besides, in the case presented in Fig. 4. 6c, the manipulator demonstrates the “jumping” phenomenon, 
because the initial (unloaded position) is unstable and the manipulator suddenly changes its shape even 
for extremely low loading. 

To compute the critical force o
xF causing the buckling, let us assume that the configuration angles 

q1, q2 and q3 are small enough but not equal to zero. This allows us to derive a linearized stiffness 
model in the neighborhood of qi=0 (i=1, 2, 3). Under such assumptions, the first and second equations 
from (4.1 1 1 2 3 3 2,q q q qα α= ⋅ = ⋅ 5 1 12 123 2 0q q q+ + = ) can be presented in the following form  

 

2
2 2 123
1 12

123
1 12

( )
2

2 ( )
2

x

y

qb q q

qb q q

δ

δ

= + +

= + +
  (4. 16) 

which allows us to present the condition 0yδ =  as . Applying similar linearization to the third 
equation from (4.15), one can get the additional relation for the configuration angles 

2 2
1 3 2 2 3 3 0q q q q q q− + + = ensuring the equality 0eM = . Further, combining these two obtained relations 

and considering q2 as an independent variable, it is possible to express q1, q3 in the following way 

  (4. 17) 

where  

 { } { }1 30.7791, 0.32421 11 21 1;
20 4

9 0.8956, 1.3956α α− − −
± + ± −

= − ∈ = ∈   

The latter gives us four possible manipulator geometric configurations corresponding to the static 
equilibrium, two with U-shape and two with Z-shape (see Table 3). Corresponding external forces Fx, 
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Fy ensuring the static equilibrium can be computed from the general expression (4.13), which can be 
rewritten in scalar form 

 
( )

( )

12 1 1 12 2 1 3
2

12 1 1 12 2 1 3
2

1
2

1
2

x q q q

y q q q

F C M C C M C M
bS

F S M S S M S M
bS

 = − − + + 

 = − − + + 

 (4. 18) 

and also linearized for small configuration angles, which yields  

 ( ) ( )2 2 0
1 3 2

2

2 2 ; 0
2x y

kF b a bL q q q F
bq

 ≈ − − − + − ≈    (4. 19) 

Further, taking into account (4.17) the desired critical force can be expressed in the following way 

 ( )2 2 0

0
lim 2

i

o
x xq

kF F b a bL
b

λ
→

 = = − ⋅ − −    (4. 20) 

where  

21 14 0.9417 for U-shape
10
21 14 1.8583 for Z-shape
10

λ

 −
≈ −= 

− − ≈ −

 

Table 3 Possible manipulator shapes in static equilibrium 

 q1 q2 q3 Geometric configuration Stability  

Case of  “+√”  
‒ + + U shape: 

q1
q2

q3  stable 

+ ‒ ‒ U shape: q1

q2
q3  stable 

Case of  “-√” 
‒ + ‒ Z shape: 

q1
q2

q3

 unstable 

+ ‒ + Z shape: q1
q2

q3  unstable 

 

It is worth mentioning that the obtained expression allows also to derive the static stability 
condition for the straight configuration. In fact, this configuration is stable if and only if 0o

xF < , 
which is equivalent to ( )2 22 ob a bL− < and is in agreement with above obtained inequality (1.14) 
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defining the monotonicity of the torque-angle curves for the manipulator segments. 

Finally, let us compare the U-shape and S-shape equilibrium configurations from point of view 
their static stability. It can be easily proved that for the small configuration angles qi the end-effector 
deflection xδ  can be expressed in the following way  

 2
2x qδ µ=   (4. 21) 

where 

21 21 1.2791 for U-shape
20
21 21 0.8209 for Z-shape
20

µ

 +
≈= 

− + ≈

 

The latter means that for the similar deflections xδ , the U-shape has smaller configuration angles 

iq  compared to the Z-shape, which ensures smaller energy for the U-shape and in good agreement 
with the energy curves presented in Fig. 4. 2. 

4.2 Stiffness analysis of a non-straight configuration 

Let us consider now the case when the manipulator initial configuration is a non-straight one, 
which corresponds to the non-zero angles ( 0, 1,2,3o

iq i≠ = ). Similar to the above section, the 
equilibrium is defined by three equations (4.5) that are derived from the direct kinematics and from 
the zero external torque assumption 0eM = . It can be also proved that here the energy curves have the 
“∞-shape” as for the straight configuration considered before. However, depending on the initial end-
effector location (x, y), these energy curves may be non-symmetrical and can be even discontinuous 
and include cusp points. Typical examples of such curves corresponding to end-point location 
( ) ( ), 5.5 , 0T Tx y b= are presented in Fig. 4. 7, where the discontinuity caused by the geometric 
constraint (1.27) is clearly visible. In particular, in cases (a) and (b) the energy curves consist of two 
separate U-shape parts that yield two symmetrical stable equilibriums and four unstable ones. Such 
separation is caused by the geometric constrains on the angles max

i iq q≤ . In case (d), the energy curve 
consists of four separate feasible parts that provide four stable and four unstable equilibriums, but only 
two of them can be observed in practice (corresponding to the global minimum of the energy). 
However, the energy curves for the case (c) cannot be treated in the same way, because such 
combination of a, b, o

iL  provides non-monotonic torque-angle curves for the segments (see subsection 
1.2), and even separate parts of the manipulator are unstable in this case. It should be stressed that in 
the cases (a), (b), (d) each segment of the mechanism is statically stable. It should be also noted that 
there are a number of unfeasible sections ( black lines ) inside all energy curves, where at least one of 
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the angles q2 or q3 is out of the allowable geometric limits.  

The above presented case studies corresponding to end-effector initial position 
( ) ( ), 5.5 , 0T Tx y b= can be also illustrated by the force-deflection curves presented in Fig. 4. 8. As 
follows from them, there is no buckling phenomenon in the cases (a), (b), (d), these curves are quasi-
linear and pass through the zero point. Besides, the buckling detected in the case (c) cannot be observed 
in practice because of non-stability of the separate manipulator segments. 

 

 

Fig. 4. 7: Energy curves E(q1) for non-straight initial configuration and displacement (Δx, Δy)=(b/2, 0),  
“blue curves” ─ feasible configuration with q3>0;  “green curves” ─ feasible configuration with q3<0;  
“black curves”─ unfeasible configuration; “red point ●”─ stable equilibrium;  “black point ●” ─ unstable 
equilibrium. 

To evaluate the manipulator stiffness matrix for the non-straight configuration, let us first find the 
joint torques for all manipulator segments using equations (2.8) 

2 2 0 0
1 22( )sin cos sin cos sin ; 1,2,3

2 2 2 2
i i i i

qi i i i
q q q qM k b a q L a b L a b i    = − − ⋅ + ⋅ + ⋅ − ⋅ =        

 (4. 22) 

and compute the derivatives providing equivalent stiffness coefficients in the joints qi qi i
K dM dq=  
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0 0
2 2 1 22( )cos sin cos sin cos ; 1,2,3

2 2 2 2 2 2
i i i i i i

qi i
L q q L q qK k b a q a b a b i

    = − − − ⋅ + ⋅ + − − =        
 (4. 23) 

This allows us to apply the VJM method and to express the unloaded stiffness matrix of the considered 
manipulator as 

 ( ) 10 1 T
F o qo oK J K J

−−=   (4. 24) 

 

 

Fig. 4. 8: Force-deflection curves and stiffness coefficients for “non-straight” initial configuration with 
different parameters (a, b, Lo ) and displacement (Δx, Δy)=(b/2, 0). 

where the subscript “o” denotes the variables corresponding to the unloaded initial configuration. 
Further, if we express the 2x3 submatrix of the Jacobian (4.8) for this configuration as 

11 12 13

21 22 23 2 3
o

J J J
J

J J J
×

 
=  
 

 

The desired compliance matrix of the unloaded mode can be expressed analytically in the following 
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way 

 

2 2 2
11 12 13

1 2 30 1
2 2 2
21 22 23

1 2 3

*

*

q q qT
F o qo o

q q q

J J J
K K K

C J K J
J J J
K K K

−

 
+ + 

 = =  
 + +
  

  (4.25) 

where 1 2 3( , , )qo q q qK diag K K K= is the matrix of size 3×3. 

Similar to section 3.2, the stiffness properties of the unloaded manipulator may be also illustrated 
by the set of ellipses describing mapping of the unit force 1F =  into the deflection ( , )x yδ δ . An 
example of such analysis for the case of a/b=1.0, Lo/b=0.9 is presented in Fig. 4. 9, which shows that 
the resistance of the three-segment mechanism to the external force in the longitudinal direction is 
much higher than in the transverse one. Also, the mechanism longitudinal stiffness essentially 
increases while the initial configuration becomes closer to the straight one. 

 

Fig. 4. 9 Stiffness ellipses of the three-segment mechanism for the unloaded mode and their evaluation 
throughout the workspace. 

For the loaded mode, the manipulator stiffness matrix can be computed using the extended VJM 
technique proposed in (Chen and Kao, 2000). Within this technique, let us assume that there is a non-
negligible deflection ( ), Tx y∆ = ∆ ∆  caused by the external force ( )Tx yF F F= , and there is a small 
deflection ( ), Tx yδ δ δ= caused by this force variation ( ),

T

x yF F Fδ δ δ=  that corresponds to the 
joint angle variations 1 2 3( , , )Tq q q qδ δ δ δ= . 

As follows from the equilibrium equation TM J F= ⋅ , corresponding variation of the joint torque 
can be expressed as 

 
T

TdJM q F J F
dq

δ δ δ
 

= ⋅ + ⋅ 
 

  (4.26) 

where the part including the Jacobian derivative TdJ dq  can be rewritten as  
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3 3

1 1

T T T

i i g
i ii i

dJ J Jq F q F F q K q
dq q q

δ δ δ δ
= =

     ∂ ∂
⋅ = ⋅ = ⋅ = ⋅    ∂ ∂     

∑ ∑   (4. 27) 

where gK  is the 3×3 matrix describing the influence of loading F on the manipulator Jacobian J  

 
1 2 3 3 3

T T T

g
J J JK F F F
q q q

×

 ∂ ∂ ∂
= ⋅ ⋅ ⋅ ∂ ∂ ∂ 

  (4. 28) 

that can be also written in the extended form as 

 
21 11 22 12 23 13

22 12 22 12 23 13

23 13 23 13 23 13 3 3

x y x y x y

g x y x y x y

x y x y x y

J F J F J F J F J F J F
K J F J F J F J F J F J F

J F J F J F J F J F J F
×

 − + − + − +
 = − + − + − + 
 − + − + − + 

  (4. 29) 

Further, after expressing the virtual joint torque variation as qM K qδ δ= ⋅  and its substitution 
to (4.27), the variable qδ can be presented as  

 ( ) 1 T
q gq K K J Fδ δ

−
= − ⋅ ⋅   (4. 30) 

which allows us to find the end-effector deflection J qδ δ= ⋅  and finally to obtain the desired loaded 
compliance and stiffness matrices 

 
( )
( )

1

11

T
F q g

T
F q g

C J K K J

K J K K J

−

−−

= −

 = −  

  (4. 31) 

It is worth mentioning that all the Jacobian and the joint stiffness matrices qK , gK  must be computed 
for the loaded equilibrium configuration, which is different from the initial unloaded one. ( It requires 
relevant solution of the non-linear equations considered above. ) 

To illustrate importance of the loaded stiffness analysis, the obtained expressions were applied to 
several cases study focusing on the manipulator stiffness changing under the external loading. For all 
considered cases, it was assumed that the initial manipulator configuration is a non-straight one, with 
the end point location ( ) ( ), 5.5 , 0o ox y b= . Under the loading the configuration angles corresponding 
to the external force ( ),

T

x yF F F= were computed from (4.13) numerically (using Newton’s Method).  

There were compared three combinations of the geometric parameters { }0.75; 0.9;1.1a b∈ , 
relevant results are presented in Figs. 4.10 - 4.12. As follows from these figures, in most cases the 
manipulator stiffness essentially changes if the external loading is applied. In particular, the 
manipulator resistance in the x-direction becomes lower and lower while the force Fx is increasing (see 
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Fig. 4. 10a). In contrast, the resistance in the y-direction with respect to the force Fy becomes higher 
and higher while this force is increasing (see Fig. 4. 10b). These results are also confirmed by the Kxx 

and Kyy plots presented in Fig. 4. 11, which show enormous lost of x-direction resistance under the Fx 
loading (it can be treated as a “quasi-buckling”, see Fig. 4. 11a for the stiffness coefficient Kxx). On 
the other side, while increasing the force Fy, the stiffness coefficient Kyy is very small at the beginning, 
then it is increasing until reaches the maximum value, and then it is decreasing (see Fig. 4. 11b).  

 

 

Fig. 4. 10 Force-deflection relations of three-segment mechanism for non-straight initial configuration with  
(x, y)0=(5.5b, 0). 

To explain the above mention results from geometrical and physical point of view, Fig. 4. 12 
shows an evolution of the manipulator configuration under the loading with relevant stiffness 
coefficients Kxx and Kyy plots (corresponding to the case a/b=0.75). In this figure, there are presented 
four representative configurations showing shapes of all segments and their position with respect to 
the joint limits. As follows from them, the observed sudden change of the stiffness (see Fig. 4. 12a and 
Fig. b) occurs when one of the segment is close to its joint limits, when the equivalent rotational 
stiffness coefficient is very low. Hence, in practice it is necessary to avoid applying too high loading 
causing approaching to the joint limits and losing the manipulator stiffness. 
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Fig. 4. 11 Stiffness coefficients of three-segment mechanism for non-straight initial configuration with 
(x, y)0=(5.5b, 0). 
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Fig. 4. 12 Evolution of the manipulator configuration under the loading. 

4.3 Controlling mechanism configurations 

It is clear that to achieve the desired end-point position (x, y), there is an obvious redundancy here 
related to selection of three configuration angles 1 2 3( , , )q q q allowing to reach the target point 
described by two Cartesian coordinates (x, y), but this problem is outside of the stiffness analysis and 
should be solved using other techniques (obstacle avoidance, minimization of joint motions, etc.). The 
simplest way to overcome the redundancy problem is to minimize the joint motions via moving from 
the initial configuration o o o

1 2 3( , , )q q q  to a final one 1 2 3( , , )q q q  corresponding to the desired end-point 
(x, y). This objective can be expressed formally in several ways, for example as  

#a Minimization of the total sum of the joint angle absolute increments  

 
3

1
mino

i i
i

q q
=

− →∑   (4.32) 

#b Minimization of the largest joint angle absolute increment 
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 max mino
i ii

q q− →   (4.33) 

 

Fig. 4. 13: Kinematic control of a redundant manipulator via minimization of objectives #a and #b 

It is clear that such optimization problem should be solved with respect to the two scalar 
constraints arising from the direct kinematic equations (4.1). The latter gives us a simple numerical 
technique where the joint angle q1 is an independent variable and there are remaining angles q2, q3 are 
computed via the inverse kinematics (4.2) taking into account the duality expressed by the ‘± ’ sign. 
An example of such approach is presented in Fig. 4. 13 where the objectives #a and #b give slightly 
different solutions both of which are acceptable in practice.  

An alternative approach to minimize the joint motion quantity is to use the sum of increment 
squares as an optimization objective  

 ( )
3

2

1

mino
i i

i

q q
=

− →∑   (4.34) 

which will be further referred to as the strategy #c. For this objective, if the initial and target points are 
close enough, we can apply linearization and express the direct kinematic constraints in the form of 
two linear equations 

 

o
1 1

o o
2 22 3

o o
3 3

ij

q q
x x

q q
y y

q q
×

 −
−    = ⋅ −    −   − 

J   (4. 35) 

where 

 1 12 123 12 123 123 11 12 13

1 12 123 12 123 123 21 22 23 2 3

2 2 2
2 2 2ij

bS bS bS bS bS bS J J J
bC bC bC bC bC bC J J J

×

− − − − − −   
= =   + + +   

J   (4. 36) 

Such approach leads the following constraint optimization problem: minimize the function of the joint 
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angle increments 1 2 3, ,q q q∆ ∆ ∆  

 ( )2 2 2
1 2 3 1 2 3

1( , , ) min
2

f q q q q q q∆ ∆ ∆ ∆ + ∆ + ∆ →   (4. 37) 

subject to the equality constraints 

 
( )
( )

1 1 2 3 11 1 12 2 13 3

2 1 2 3 21 1 22 2 23 3

( , , ) 0

( , , ) 0

g q q q x J q J q J q

g q q q y J q J q J q

∆ ∆ ∆ ∆ − ∆ + ∆ + ∆ =

∆ ∆ ∆ ∆ − ∆ + ∆ + ∆ =





  (4. 38) 

These problem can be solved using the Lagrange technique by minimizing the function of five 
variables  

 1 2 3 1 2 1 1 2 2( , , , , ) (.) (.) (.) minL q q q f g gλ λ λ λ∆ ∆ ∆ + + →   (4. 39) 

where 1λ  and 2λ  are Lagrange multipliers. Further, after setting to zero the gradient 0L∇ = , which 
is composed of the partial derivatives iL q∂ ∂∆ , jL λ∂ ∂∆ , one can obtain the following scalar 
equations with respect to the variables iq  and jλ .  

 

2

1

3 3

1 2
1 1

0 ; 1, 2, 3

;

i j ji
j

i i i i
i i

q J i

J q x J q y

λ
=

= =

∆ − = =

= ∆ = ∆

∑

∑ ∑
  (4. 40) 

that can be presented in the matrix form as follows 

 
T

3 13 3 3 2

2 3 2 2

×× ×

× ×

  ∆−    
⋅ =     ∆    

q 0I J
λ pJ 0

  (4. 41) 

where ( )T
1 2 3, ,q q q∆ = ∆ ∆ ∆q , ( )T

1 2,λ λ=λ , ( )T,x y∆ = ∆ ∆p . Using the block matrix inverse, the 
desired solution can be expressed as 

 
T T 1 T T 1

3 1
T 1 T 1

( ) ( )
( ) ( )

− −
×

− −

∆  −   
= ⋅    ∆−    

q 0I J JJ J J JJ
λ pJJ J JJ

  (4. 42) 

which yields the following vector of the joint angle increments 

 ( ) 1T T −
∆ = ∆q J JJ p   (4. 43) 

where the term ( ) 1T T −
J JJ  is the matrix pseudo-inverse of Moore-Penrose. It should mentioned that 

here the endpoint deflection dp should be small enough to ensure the implementability of the 
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linearization (4.35). 

 

Fig. 4. 14: Relations between the control inputs (Δ1, Δ2, Δ3) and the desired end-point position (x, y) with an 
initial configuration q0=(-0.1. 0.1, 0.1) and parameters a/b=1.0, Lo/b=1.0 (unloaded case Fx=Fy=0).  

To achieve the equilibriums of the three-segment manipulator with respect to the desired 
configurations obtained through the above methods, the three-segment mechanism must be controlled 
by three pairs of the control inputs ( 0 0

11 12,L L ), ( 0 0
21 22,L L ) and ( 0 0

31 32,L L ). To simplify the mechanism 
control, let us apply the asymmetrical approach used in subsections 1.3 and 2.3, which allows to use 
only three control variables ( 1 2 3, ,∆ ∆ ∆ ) producing six physical control inputs 0 0

1i iL L= −∆ , 
0 0
2i iL L= + ∆  with 1, 2, 3i = , where the values of i∆ are computed using formulas from the one-

segment mechanism control law (2.29). These give us the following algorithm for the control of the 
three-segment mechanism: 

 Using the direct kinematics equations (4.1) and additional objectives allowing to resolve the 
kinematic redundancy, compute the configuration angles 1( , )q x y , 2 ( , )q x y and 3( , )q x y
corresponding to the desired end-point position ( , )x y  and ensuring the manipulator “minimum 
motions” of the joints. 

 Using expression (2.29), compute the control inputs 1 1( )q∆ , 2 2( )q∆ and 3 3( )q∆  for the three 
segments corresponding to the configuration angles (q1, q2, q3). 

An example of computing based on the above algorithm is presented in Fig. Fig. 4. 14, where the 
mechanism parameters a/b=1.1, L0/b =0.7 were chosen to ensure the mechanism stability in the 
unloaded mode 0extM = (see Section 2.3), and the initial configuration is 0 ( 0.1, 0.1, 0.1)q = − . 

In more general case when the external forces (Fx, Fy) are not equal to zero, it is also suggested 
to solve the redundant invers kinematic problem using the above presented objectives #a, #b, #c (i.e. 
to use the configuration angles q1, q2, q3 from the unloaded case), but to compute the modified control 
inputs allowing to compensate the external load. Corresponding algorithm implementing such 
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technique is presented below.  

 Using the direct kinematics equations (4.1) and additional objectives allowing to resolve the 
kinematic redundancy, compute the configuration angles q1(x, y), q2(x, y), and q3(x, y), 
corresponding to the desired end-point position (x, y) and ensuring the manipulator “minimum 
motions” of the joints. 

 Using expression (4.6), compute the joint torques 1 2 3( , , )M M M  allowing to compensate the 
external force (Fx,Fy) applied at the manipulator end-point. 

 Using expression (2.31), compute the control inputs 1 1( )q∆ , 2 2( )q∆ and 3 3( )q∆  for the three 
segments corresponding to the configuration angles (q1, q2, q3) and the joint torques

1 2 3( , , )M M M . 

An example of computing based on the above algorithm is presented in Fig. 4. 15, where the 
geometric parameters are similar to the previous figure. It can be demonstrated that such algorism can 
ensure the stable configurations of the manipulator. 

 

Fig. 4. 15: Relations between the control inputs (Δ1, Δ2, Δ3) and the desired end-point position (x, y) with an 
initial configuration q0=(-0.1. 0.1, 0.1) and parameters a/b=1.0, Lo/b=1.0 (loaded case Fx= -3, Fy=3). 

It should be noted that the above presented methods allow to find the manipulator configuration 
angles at the target point only, without answering the question how to move the joints from the initial

0
iq  to the goal g

iq values. However in practice, the manipulator controller must implement continuous 
motion allowing to achieve the target point while moving the end-effector along some desired curves 
(linear, circular, etc.). The latter requires computing the time-profiles of the joint coordinates ( )iq t ,

g[0, ]t t∈ , which are usually based on the linear interpolation either in joint space 1 2 3( , , )q q q or task 
space (x, y). These techniques are also known in industry as PTP and LIN motion planning methods 
respectively, they are considered below in detail.  
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 Fig. 4. 16: Kinematic control of the 3-segment manipulator using linear interpolation in (q1, q2, q3)-space 
and global minimization of the joint increments (PTP motion, objective #b).  

PTP motion: In this case, it is assumed that the target configuration angles g
iq  (i=1, 2, 3) 

corresponding to the given target point g( , )gx y  are obtained before the motion planning, using 
numerical minimization of any of the objectives #a, #b, #c , which evaluate the difference g 0−q q  
in joint angles between the initial 0q  and final gq configurations. Further, the intermediate 
configurations ( )iq t  ( g[0, ]t t∈ ) are computed via straightforward linear interpolation in the following 
way  

 [ ] ( )0
g 1,  ( ) 1 ( ) ( 2,  ) ; [0, ], 3g

i i iq t t q t q t itα α ⋅ == − ⋅ + ∈   (4. 44) 

where the interpolation parameter [ ]( ) 0,1tα ∈ , ( )g0 t t≤ ≤  satisfies the boundary constraints
(0) 0α = , (g) 1α = . Simulation example of the PTP (point-to-point) motion is presented in Fig. 4. 16, 

which clearly shows that this type of kinematic control allows to achieve the desired target point 
g( , )gx y but the task space trajectory is essentially nonlinear.  

 

 Fig. 4. 17: Kinematic control of 3-segment manipulator using linear interpolation in (x, y)-space and local 
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minimization of the joint squared increments (LIN motion, objective #c).  

LIN motion: For this type of motion, the intermediate configurations ( )iq t  ( g0 t t< < ) are 
computed using the linear interpolation in the (x, y) space 

 [ ]
[ ]

0

g0

( ) 1 ( ) ( )
; [0, ],

( ) 1 ( ) ( )

g

g

x t t x t x
t t

y t t y t y
α α
α α

= − ⋅ + ⋅
∈

= − ⋅ + ⋅
  (4.45) 

and local minimization of the local joint increments iq∆ , (i =1,2,3) corresponding to the Cartesian 
increments, 

 1

1

( ) ( )
; 1,2,...

( ) ( )
j j j j

j j j j

x x t x t t
j n

y y t y t t
−

−

∆ = − −
=

∆ = − −
  (4. 46) 

where the interpolation parameter is computed as i i nα =  that ensures uniform discretization of the 
time interval g[0, ]t t∈ . It is clear that the minimization of the local joint increments 

[ ]1 2 3, , minq q q∆ ∆ ∆ →  

can be executed using any of the above objectives #a, #b, #c, but the last one #c is the most attractive 
computationally because it allows to apply the analytical expression (4.43) for computing iq∆ . It 
should be stressed here, ( ,j jx y∆ ∆ ) are small and the linearization via Jacobian is justified. Simulation 
example of the LIN (linear) motion is presented in Fig. 4. 17, which clearly shows that this type of 
kinematic control allows to achieve the desired target point g( , )gx y and the task space trajectory is 
strictly linear. 

And it should be also noted that for the given initial endpoint position 0 0 0[ , ]Tx y=p  of 
manipulators, the corresponding initial configuration angles 0q  are usually known in practice. But 
theoretically if designers can ensure that the given initial configuration angles correspond to the stable 
equilibrium of the manipulators, then there are many possible configurations for redundant serial 
manipulators  

In this case, for our redundant serial manipulator composed of dual-triangle tensegrity 
mechanisms, one simple way to define the initial configuration angles 0q  correspond to the initial 
endpoint position 0 0 0[ , ]Tx y=p  is using the minimum elastic energy approach minE(q). Let us first 
assume that the symmetrically distributed linear springs have the same initial lengths 0 0

1 2L L=  (see the 
mechanism structural in Fig. 2.5 and 4.1), then users can find the configuration angles corresponding 
to the stable equilibrium (minimum energy point) from the energy method presented in the previous 
(see section 4.1). Further, users can also redefine the control inputs (spring initial lengths) 
corresponding to the obtained configuration angles by using our control law presented in Chapter 2, 
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i.e. the expression (2.31), which allows the manipulator to achieve the absolute minimum elastic 
energy (zero energy value) corresponding to the initial configuration. The the algorithm of the 
continuous motion control of this manipulator is presented in Table 4. 

Table 4 Linear kinematic control of serial manipulator based on the least square joint increments (LIN 
motion, objective #c) 

Inputs 

p0 [ 0, 0]Tx y=p0 , manipulator end-defector initial location 
pg [ , ]Txg yg=pg , manipulator end-defector target location 
q0 n×1 vector, the initial configuration angles of the manipulator 
F [ , ]TFx Fy=F , external loading on the end-effector of the manipulator 

k n×1 vector, stiffness coefficient of each joints of the manipulator 

L0 
2×n matrix, the symmetrically distributed linear springs initial lengths of 
the manipulator (see structure figure 5.1) 

a, b geometric parameters of the manipulators 

m 
Number of motion steps between the initial and target end-effector 
position 

Local 
variables 

pt 
[ , ]Txt yt=pt , points locating on the path between the initial and target 

end-effector location 
pc Current endpoint location of the manipulator 
dp dp = pt - pc , current end-effector deflection  
dq n×1 vector, current joint increment corresponding to dp 
qc n×1 vector, current joint configuration angles 
Me External torque of each joint of the manipulator 

Delt_L0 
n×1 vector, configuration control inputs of each segment of the 
manipulator 

J 2×n Jacobian matrix that corresponding to qc 

alpha Interpolation parameter 

Outputs 

Set_Qou
t 

n×m matrix, joint configuration angles corresponding to all the 
manipulator current motion  

Set_Delt 
n×m matrix, configuration control inputs of each segment  
corresponding to all the manipulator current motion 

(1) Joint limit of manipulator segments 

If  a/b<=1 
 Joint_limit = 2*atan (a/b); 
Else 
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 Joint_limit = pi - 2*atan (a/b); 
End 
(2) Main algorithm loop of continuous motion configurations control 

Set_Qout:=zeros(m, 
n); 

Set_Delt:=zeros(m, n); qc: = q0; pc = p0 

For  i = 1 to m 
 alpha: = i/m; 
 pt: = (1 - alpha)  p0 + alpha  pg;  
 dp: = pt – pc;  
 J: = fun_of_Jacobian(qc, b); 
 dq: = J’  inv(J  J’)  dp; 
 qc: = qc + dq; 
 For  j = 1 to n 
 If  Abs( qc(j) ) > Joint_limit; 
 qc(j): = sign( qc(j) )  Joint_limit; 
 End 
 End 
 pc = fun_direct_kinematic(qc, b); 
 Set_Qout (:, i): = qc; 
 Me: = J’  F; 
 Delt_L0: = fun_of_Delt_L0(a, b, k, L0, qc, Me);  
 Set_Delt (:, i): = Delt_L0; 
End 

 

Summarizing results presented in this section, it should be noted that here the kinematic 
redundancy of the 3-segment manipulator was created by the special definition of the 2-dimentional 
task space (x, y), which does not take into account the end-effector orientation ϕ . It is clear that an 
alternative definition of the task space (3-dimentional) with the orientation component ( , , )x y ϕ  
eliminates the redundancy, so the relevant control strategies do not require any minimization of the 
joint angle increments (similar to section 2.3). However, in the case of the multi-segments serial 
manipulators with higher redundancy, the minimum joint motion principle is useful while is more 
difficult computationally. It will be considered in detail in the next chapter.  

4.4 Summary  

This chapter deals with the analysis of the redundant three-segment serial tensegrity mechanism 
composed of the dual-triangles, which was selected as the base structure for designing compliant robot- 
end-effector.  
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The main contributions are in the area of specific mechanical properties of this redundant 
mechanism under the loading, and also in the domain of the kinematic control strategies allowing to 
reach the target end-point location. Similar to the previous chapters, some complicated behavior under 
the loading (such as buckling) was detected, which allows designers to choose proper geometric 
parameters and control inputs to avoid the dangerous states of this mechanism. An analytical way for 
obtaining the force-deflection relations and the equilibriums is presented and confirmed by the energy 
method. That allows find the possible manipulator shapes under the loading and to estimate the 
stability of the corresponding configuration. Relevant kinematics control strategies based on the 
nonlinear optimization techniques were proposed, which allow to achieve minimum increments of the 
joint motions. These strategies were carefully investigated via simulation, and the approach based on 
quadratic optimization techniques with linear equality constraints (minimizing the sum of the joint 
increments square) is selected, which was confirmed more efficient from the results. This idea will be 
extended in the following chapter and used for controlling more complicated manipulator motions in 
a constrained environment.  

In more details, new results and contributions of Chapter 4 include the following issues: 

(i) The stiffness matrices of this mechanism for both unloaded and loaded mode were obtained 
using VJM technique, and the relations between the end-effector deflection and the external 
load were derived analytically by eliminating the mechanism redundancy using the extended 
Jacobian matrix. 

(ii) The equilibrium configurations were obtained using the energy method for different 
combinations of geometrical and mechanical parameters; corresponding results show that 
both symmetrical stable and unstable equilibriums may exist. 

(iii) The quasi-buckling phenomenon was detected, when the mechanism resistance in one 
direction (in Cartesian coordinates) may suddenly disappear during the deformation under 
the loading, while the resistance in another direction still exists. 

(iv) The critical force causing the buckling was obtained analytically by solving the system of 
static equilibrium and kinematic equations; and the classification of possible equilibrium 
configurations of this mechanism was given (including stable and unstable ones). 

(v) Kinematic control strategies for the considered tensegrity mechanism were proposed, which 
are based on the quadratic optimization techniques with linear equality constraints, ensuring 
the end-effector displacement to the desired location using minimal increments of joint 
motions, and ensuring elastostatic stability of the manipulator shape with respect to the 
external forces/torques applied on the end-point. 
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It should mentioning that the observed quasi-buckling or jumping phenomenon was detected 
when one of the segments is close to its joint constraints. Hence, in practice it is necessary to avoid 
applying too high loading causing this dangerous state. It is also worth mentioning that in this chapter, 
the kinematic redundancy of this mechanism is considered only for the desired end-point location in 
the 2-dimentional task space (x, y). However, similar control strategies can be applied in three-
dimensional space for the multi-segments serial manipulators with higher redundancy while taking 
into account the orientation angle. This idea is used in the following chapter. 

The main results of Chapter 4 are published in the following works: [Zhao, W.; Pashkevich, 
2021a], [Zhao, W.; Pashkevich, 2021b]. 
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This chapter is devoted to the general case, dealing with the analysis of the 
redundant multi-segment serial structure composed of the dual-triangles. For 
practical convenience, the four-segment manipulator is considered as the basic 
illustrated example. It was discovered that under the external loading such 
manipulator may have six equilibrium configurations but only two of them are 
stable. In the neighborhood of these configurations, the manipulator behavior was 
analyzed using the VJM technique. This approach allowed us to propose an 
analytical technique for computing the critical force causing the buckling and 
evaluate the manipulator shape under the loading. Further, the redundancy 
resolution in kinematic control of such mechanism while moving in a multi-
obstacle environment was considered. The general problem was decomposed into 
two sub-problems, which deal consequently with the collision-free path planning 
for the mechanism end-point and the collision-free motion planning for the 
mechanism body. The first of them was solved via discrete dynamic programming, 
the second one was solved using quadratic programming with mixed linear 
equality/inequality constraints. Relevant simulation studies confirmed the 
efficiency of the proposed technique. 

5.1 Stiffness analysis of a straight configuration 

Let us consider now a general case dealing with a manipulator composed of n similar sections 
connected in series as shown in Fig. 5. 1, where the left hand-side is assumed to be fixed. First, let us 
concentrate on the stiffness analysis of the “straight” initial configuration for which 0,iq i= ∀  
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( ) ( ), 2 ,0x y nb=  and the external loading (0,0)eF = . This configuration is achieved by applying 
equal control inputs ( 0 , 1,2,..., , 1,2ijL i n j= = ) to all mechanism segments. Under such assumptions, it 
is necessary to investigate the influence of the external force ( , )e x yF F F= , which causes the end-
effector displacements in the neighborhood of ( ) ( ), 2 ,0x y nb= , moving it to a new equilibrium 
location ( ) ( ), 2 ,x yx y n b δ δ= ⋅ −  corresponding to some nonzero configuration variables 
( 1 2, ,..., nq q q ). It is also assumed here the external torque extM  applied to the end-effector is equal to 
zero.  

 

Fig. 5. 1: The multi-segment manipulator in the “straight” and “non-straight” configurations. 

In engineering practice, the mechanism resistance to the external load is usually described by the 
force-deflection relations ( , )x x yF δ δ and ( , )y x yF δ δ , which can be derived from the manipulator 
kinematic and elastostatic analysis. As follows from the manipulator geometry, to achieve the desired 
end-effector displacement ( , )x yδ δ , the manipulator configuration angles ( 1 2, ,..., nq q q ) must satisfy the 
following direct kinematic equations 

 

-1

1 1 1

-1

1 1 1

2 2 cos( ) cos( )

2 sin( ) sin( )

jn n

x i i
j i i

jn n

y i i
j i i

n b b b q b q

b q b q

δ

δ

= = =

= = =

 
⋅ − = + + 

 
 

= + 
 

∑ ∑ ∑

∑ ∑ ∑
 (5.1) 

where the parameter b defines the length of separate segments (see Fig. 2.5). It is clear that these two 
equations include n unknown variables ( 1 2, ,..., nq q q ), which create redundancy of the order n-2. This 
redundancy will be resolved below by applying the minimum elastic energy principle allowing to find 
the desired equilibrium configuration angles. And as known from the static analysis, the manipulator 
equilibriums must satisfy the following matrix equation  

 
1

T

2

0
... ...

0

q
x

n
y

qn

M
F
F

M
×

   
     + ⋅ =            

qJ  (5.2) 
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which includes the manipulator Jacobian  
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η η η
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qJ  (5.3) 

where  

2 1,2,..., 1
1j

for j n
for j n

η
= −

=  =
 

It should be noted that the static equilibrium equation provides n additional scalar relations applied 
to the n+2 variables (q1, q2,…, qn) and ( , )x yF F . So totally, combining both geometric and elastostatic 
equations (5.1) and (5.2) one can obtain n+2 nonlinear equations for n+2 unknowns, assuming that
( , )x yδ δ are known.  

Obviously, in general case such nonlinear system can only be solved numerically, using Newton’ 
method for example. However, for relatively small n it is possible to apply the technique from the 
previous section 3.1. For instance, if n= 4 the geometric model (5.1) allows us to reduce analytically 
the number of unknown variables down to two. In particular, if the angles 1q and 2q  are assumed to 
be known, the remaining ones q3 and q4 can be computed from the classical invers kinematics of the 
two-link manipulator as follows 

 ( )4 4 4

3 1 2 1 2

atan2 ,
( )

q S C
q q qϕ ϕ

=

= − − +
 (5.4) 

where ( ) ( )2 2 2 2
4 2 2 5 4C x x y y b b = − + − −  , 2

4 41S C= ± − , the coordinates 2 2( , )x y are computed 
as 2 1 1 22 cos( ) 2 cos( )x b b q b q q= + + + , 2 1 1 22 sin( ) 2 sin( )y b q b q q= + + , and

( )1 2 2atan2 ( ),( )y y x xϕ = − − , ( )2 4 4atan2 ,2bS b bCϕ = + . It is clear that the above latter expressions 
provides two group of possible solutions corresponding to the positive /negative configuration angles

4 0q ≥ and 4 0q ≤  corresponding to ...± . 

Further, similar to the Section 4.1, instead of directly using static equilibrium condition (5.2), it 
is possible to compute the two-variable energy function ( , )i jE q q  and find its minimums and 
maximums numerically,  

 , ,
( , ) min, ( , ) max

i j i j
i j i jq q q q

E q q E q q→ →  
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which obviously define the stable and unstable equilibriums respectively. Examples of such 
computations are presented in Fig. 5. 2 and Fig. 5. 3, where two cases are considered with the 
independent variables 1 4( , )q q  and 1 2( , )q q . 

 

Fig. 5. 2: The energy functions E(q1, q4), E(q1, q2) and their critical points corresponding to the static 
equilibriums for the end-effector location δx/b=0.3, δy=0 and manipulator parameters a/b=1.0, L0/b=1.0 

As follows from these figures, in each case there are two global maximums and two global 
minimums corresponding to the stable and unstable equilibriums respectively. Besides, there are also 
two saddle points here that were discovered after numerical analysis of the energy function gradient. 
Obviously, the saddle points correspond to the unstable equilibriums. So totally, for the considered 
combination of the geometric parameters (a/b, Lo/b) and end-effector deflections (δx, δy), the energy 
functions ( , )i jE q q  allows to detect six equilibriums: two stable ones with “U-shape” of the 
manipulator and for unstable ones where the manipulator has “Z-shape”. It should be noted that these 
results is in good agreement with section 3.1, where for the three-link manipulator the “U-shape” 
equilibriums were stable and the “Z-shape” equilibriums were unstable. Besides, it is also worth 
mentioning that for other combination of the geometric parameters (a/b, Lo/b) and end-effector 
deflections (δx, δy), the energy function may have higher number of critical points (with local min/max) 
and corresponding equilibriums, similar to Fig. 4.2 from section 4.1. 

The energy method allows us also to obtain the force-deflection relations describing the 
manipulator resistance to the external force. In fact, the energy minimums defining stable equilibriums 
provides us with the configuration angles 1 2( , ,..., )nq q q  allowing to find the force ( , )x yF F  
corresponding to the given displacement ( , )x yδ δ . This force can be directly computed from the over 
determined system of n linear equations (5.2), which includes only two unknown variables ( , )x yF F . 
It can be easily proved that, for the equilibrium configurations, this linear system is consistent because 
it is derived from the zero-gradient condition 1( ,..., ) 0nE q q∇ = . The latter allows us to apply the 
Moore-Penrose pseudo-inverse yielding the following expression for the forces 
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Fig. 5. 3: The contour plots of the energy functions E(q1, q4), E(q1, q2) for different manipulator configurations 
at the end-effector location δx/b=0.3, δy=0 and geometric parameters a/b=1.0, L0/b=1.0  
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1T ...
q
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y
qn

M
F
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−
 
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q q qJ J J   (5.5) 

where both the Jacobian qJ  and the joint torques iMq  are computed using the configuration angles 
of the stable equilibriums. Applying such technique for different ( , )x yδ δ  one can get the desired 
force-deflection relations ( , )x x yF δ δ and ( , )y x yF δ δ . Examples of such curves for the case n=4 and 
(δx=var, δy=0) are presented in Fig. 5. 4, which clearly demonstrate the buckling phenomenon 
occurring at the beginning of deflection. Besides, after the buckling the force xF  increases very slowly, 
i.e. the stiffness coefficient in the x-direction is very small. It should be mentioned that, these curves 
are similar to the ones obtained above for the cases n=2 and n=3 (see sections 3.1 and 4.1). This allows 
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us to assume that in the general case with 2n ≥ , in the “straight configuration”, the stiffness properties 
of the considered multi-segment manipulator are essentially nonlinear and force-deflection relations 
are discontinuous, which is observed physically as the “buckling” phenomenon. This conclusion will 
be strictly proved below using the linearization technique allowing us also to compute the buckling 
critical force, as well as the stiffness coefficients after the buckling.  

Similar to the previous study for solving the configuration angles corresponding to the given 
endpoint position of the redundant manipulator from the underdetermined system (see equation 4.37 
and 4.43). Here this formula also allows us to find a least-squares solution that minimizes the error 

q q− ⋅M J F  of the overdetermined system (5.5). For redundant serial manipulators, theoretically, 
there may be more than one possible configurations corresponding to the desired endpoint deflection. 
But it should be mentioned that the above formula is derived from the static equilibrium equation (5.2), 
which means that it should be applied only for computing the external loading corresponding to the 
equilibrium configurations of the manipulator.  

From the previous analysis it is clear that the redundant serial manipulators may have either stable 
or unstable static equilibrium configurations, which can be achieved by applying different external 
loading. However, in practice, only the stable static equilibrium is feasible, since any influence can 
cause a sudden big change in the configuration corresponding to the unstable equilibrium, which can 
be treated as a “jump motion”. Thus, the considered configuration angles q in formula (5.5) are 
corresponded to the stable static equilibrium, which can be obtained from the minimum elastic energy 
approach minE(q) that mentioned in the previous. And for any other different endpoint deflection of 
the manipulator, users should first find the corresponding configuration angles by using the energy 
approach, then get the corresponding external loading through the formula (5.5)  

 

Fig. 5. 4: The force-deflection curves for the 4-link manipulator with the geometric parameters a/b=1.0, 
L0/b=1.0, k=1, (δx=var, δy=0). 

The algorithm of get the force-deflection relation of the n-segment serial manipulators is shown Table  
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Table 5 Algorithm of the force-deflection relation of redundant serial manipulators 

inputs 

dp dp = pt – pc, manipulator end-defector deflection 
k n×1 vector, stiffness coefficient of each joints of the manipulator 

L0 
2×n matrix, the symmetrically distributed linear springs initial lengths of 
the manipulator (see structure figure 5.1) 

a, b geometric parameters of the manipulators 

Local 
variables 

E(k, L0, a, b, q(dp)) 
Elastic potential energy function for the given end-defector deflection dt 
corresponding to all the possible configuration angles q(dt) of the serial manipulator.  
notation: theoretically there are infinite possible configurations when n >2 

minE 
scalar, global minimum value of the elastic potential energy function E(k, 
L0, a, b, q(dp)) 

qE 
n×1 vector, the configuration angles corresponding to minE, which is the 
stable static equilibrium configuration of the manipulator 

( )q qEM   
nx1 vector, joint torques corresponding to the stable static equilibrium 
configuration of the manipulator, which can be obtained by the general 
equation (2.21) 

( )q qEJ  
2xn matrix, jacobian matrix corresponding to the stable static equilibrium 
configuration of the manipulator 

outputs F 
[ , ]TFx Fy=F , external loading corresponding to the stable static 

equilibrium configuration of the manipulator, which are obtained by (5.5) 

 

The above presented numerical results can be confirmed analytically, assuming that both the end-
effector displacement ( , )x yδ δ  and the angles 1 2( , ,..., )nq q q  are small enough to apply the 
geometric model linearization. This technique allows us to rewrite the geometric equation (5.1) as 
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and to present the Jacobian in the following form 
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For example, for n=4 the simplified Jacobian and corresponding matrices 1S , 0S  are expressed as  

 

 

1 2 3 4

1 2 3 4T
1 0

1 2 3 4

1 2 3 4

7 5 3 7 7 5 3 1 7
5 5 3 5 5 5 3 1 5

; ;
3 3 3 3 3 3 3 1 3

1 1 1 1 1 1

q q q q
q q q q

b
q q q q
q q q q

− − − −     
     − − − −     = ⋅ = − =
     − − − −
     − − − −     

qJ S S  (5.8) 

The latter allows us to rewrite the static equilibrium equation (5.2) as 

 1
1 0eq x yK b F F− ⋅ + ⋅ + ⋅ =q S q S 0  (5.9) 

where eq i iK dMq dq=  is the equivalent stiffness of the manipulator rotation joints computed by 
linearization i eqi iMq K q≈ ⋅  of the torque expression (2.3) for 0iq →  which yields  

 ( )2 2 02eqi
kK b a bL
b
 = − −   (5.10) 

Further, let us assume that δy=0 and combine corresponding constraints obtained from the geometric 
model (5.6)  

 [ ] T
02 1 2 3 ... 1 0n n− − ⋅ ≡ =q S q  (5.11) 

with the static equilibrium condition (5.9), which yields the following matrix equation with n+2 
unknowns n∈q R  and ,x yF F    
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that can be further rewritten in the form  

 ( )xF⋅ +A B ν = 0  (5.13) 

where 
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It can be easily seen that, the obtained matrix equation (5.13) with unknowns 1n+∈Rν  and xF  
is similar to the equation considered in the classical matrix analysis for computing of the matrix 
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eigenvectors and eigenvalues. In fact, it can be proved that the matrix B is invertible, i.e. ( )det 0≠Β , 
so (5.13) can be presented in the standard form as 

 ( )1 1 xFλ λ− − ⋅ = −B A I ν = 0;  (5.15) 

Hence, the desired critical force 0
xF  for the buckling can be computed using the largest (in absolute 

value) eigenvalue of the matrix 1−B A  

 
1

0 maxx i
i

F λ
−

 = − 
 

 (5.16) 

which corresponds to the smallest amplitude of the external force xF  ensuring the equilibrium with 
0≠q . For example, for n=4 and 1 1eqK b− = , relevant computing yields the following eigenvalues  

{ }1.746, 0.734, 0.520, 0, 0iλ ∈ − − −  

whose eigenvectors are presented in Table 1. It can be also proved that in general case 3n ≥ , there 
are exactly n-1 nonzero eigenvalues here, it can be proved by analyzing the roots of polynomial
det( - ) 0λ =A B .  

Table 6 Nonzero eigenvalues and corresponding eigenvectors of matrix B-1A for 4-segment manipulator with 
the geometric parameters a/b=1.0, L0/b=1.0, k=1. 

 λ  1α  2α  3α  4α  5α  

#1 -1.746 0.525 -0.227 -0.719 -0.388 -0.075 

#2 -0.734 0.352 -0.707 0.162 0.590 -0.050 

#3 -0.520 0.124 -0.387 0.589 -0.699 -0.018 

 

Using the obtained eigenvectors 1 1,..., n−ν ν  corresponding to the nonzero eigenvalues, it is possible 
to express the joint variables qi and the force Fy as  

 1, 1,..., ;i i y nq t i n F tα α += ⋅ = = ⋅  (5.17) 

where iα  are the components of the eigenvector [ ]T1 1,..., nα α +=ν and t is an arbitrary small number. 
This presentation allows us to express the manipulator elastostatic energy  

2 2eq eq iE K q= ∑   
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in equilibrium configuration as   

 2 2

1

1
2

n

eq eq i
i

E K tα
=

= ⋅∑   (5.18) 

and also to compute from (5.6) the corresponding deflection xδ , which yields   

 
2 2-1

2 2 2

1 1 1

1
2

jn n

x i i x
j i i

b t t tδ α α µ
= = =

   = + ⋅   
  

∑ ∑ ∑   (5.19) 

The latter allows us to compare the elastostatic energy corresponding to different equilibriums with 
the same xδ , which defines the parameters 1 1

x xt bδ µ− −=  and leads to the following expression for 
the energy 

 
2

eq
eq eq xE K

b
µ

δ= ⋅  (5.20) 

where 

 

2

1
2 2-1

1 1 1

1
2

n

i
i

eq
jn n

i i
j i i

α
µ

α α

=

= = =

=
     +        

∑

∑ ∑ ∑
 (5.21) 

Table 7 Possible manipulator shapes in static equilibrium after the buckling for n=4. 

 q1 q2 q3 q4 Geometric shape Stability Energy factor µeq 

Case #1 
q1<0 

‒ + + + U shape: 
 

stable 1.1447 

‒ + ‒ + Z shape: 
 

unstable 3.8429 

‒ + ‒ ‒ ZU shape: 
 

unstable 2.7272 

Case #2 
q1>0 

+ ‒ ‒ ‒ U shape: 
 

stable 1.1447 

+ ‒ + ‒ Z shape: 
 

unstable 3.8429 

+ ‒ + + ZU shape: 
 

unstable 2.7272 

 

Besides, such presentation allows us to express the forces xF , yF  in the equilibrium neighborhood 
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after buckling as  

 
0 1, n

x x y x
x

F F F
b
α δ
µ
+≈ ≈  (5.22) 

which is in good agreement with Fig. 4.4, where the curve ( )x xF δ  is quasi-linear and the shape of 
the curve ( )y xF δ  follows to the shape of  .  

The obtained presentation of the joint angles i iq tα= ⋅  allows also to evaluate the manipulator 
shape in the possible equilibrium configurations. As follows from the above, the eigenvector 
computing for the matrix 1−B A  provides us with n-1 different sets of { }1,..., nα α  corresponding to 
nonzero eigenvalues. Each of such set yields to two symmetrical equilibriums (one for t>0 and another 
for t<0), whose shape can be evaluated by analyzing the signs of iα . Hence, the total number of the 
different equilibriums is equal to 2(n-1), and two of them providing the minimum of the elastostatic 
energy (5.20) are globally stable. Example of possible manipulator shapes in static equilibrium after 
the buckling for n=4 are presented in Table 7, where similar to the previous chapter (dealing with n=3) 
the “U-shape” is stable and “Z-shape” is unstable. Besides, there is here an additional “ZU-shape” that 
is also unstable.   

5.2 Stiffness analysis of a non-straight configuration 

Let us consider now the case when the initial configuration of the n-link manipulator is a non-
straight one, which corresponds to the non-zero angles ( 0 0, 1,2,...,iq i n≠ = ) and the initial end-point 
location 0 0( , ) (2 , 0)x y n b x= ⋅ − ∆  with 0x∆ > . Similar to the previous chapters, it is assumed that 
the corresponding control inputs 0 0

1 2( , ) 1,2,..,i iL L i n=  are computed from expression (2.31), where
0 0
1i iL L= −∆ , 0 0

2i iL L= + ∆  and 0L b= . It is clear that if 3n ≥  this manipulator is redundant with 
respect to the end-effector location control in the (x, y)-plane. So, for given 0 0( , )x y  the configuration 
angles 0

iq  cannot be computed in a unique way. For this reason, we will consider two typical initial 
shapes of the manipulator, which were previously referred to as the U-shape and Z-shape (Section 4.2). 

Table 8 Different initial configurations of the manipulator for the end-point location (x0, y0) = (7.7b, 0). 

 Initial shape 
Initial configuration angles 

q1 q2 q3 q4 

Case #1 U-shape:  ‒0.3093 +0.1348 +0.4246 +0.2288 

Case #2 Z-shape:  ‒0.1136 +0.3768 ‒0.6242 +0.7869 
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Examples of such initial shapes for n=4 are presented in Table 8, their elastostatic properties will be 
carefully studied below. 

First, let us investigate the force-deflection relations ( )xF xδ  and ( )yF xδ  corresponding to the 
end-effector displacement with 0yδ = , i.e. from the initial location 0 0( , ) (2 , 0)x y n b x= ⋅ − ∆  to the 
current one ( , ) (2 , 0)x y n b x xδ= ⋅ − ∆ − where xδ is the end-effector deflection caused by the 
external forces ( , )x yF F  and x∆  denotes the initial displacement of the end-effector. Similar to the 
Section 4.1, let us apply the energy method allowing us to find possible equilibrium configurations 
corresponding to the given xδ . In this case, the geometric constraint coming from the given end-
effector location can be presented in the form  

 

-1

1 1 1

-1

1 1 1

2 cos( ) cos( ) 2

2 sin( ) sin( ) 0

jn n

i i x
j i i

jn n

i i
j i i

b b q b q n b x

b q b q

δ
= = =

= = =

 
+ + = ⋅ − ∆ − 

 
 

+ = 
 

∑ ∑ ∑

∑ ∑ ∑
 (5.23) 

allowing us to reduce the number of variables in the energy function 1 2 2( , ,... )nE q q q −  by applying the 
2-link manipulator inverse kinematics to compute the remaining angles 1( , )n nq q− . Further, by 
detecting the max/min and saddle points of the function 1 2 2( , ,... )nE q q q −  it is possible to find the 
configuration angles for all possible equilibriums, to evaluate their stability and compute the external 
forces ( , )x yF F  corresponding to the end-effector deflection xδ  from (5.5). 

 

Fig. 5. 5: The energy function E(q1, q2) and manipulator equilibriums of initial U-shape configuration (end-
effector deflection δx/b=0.4, δy=0;  geometric parameters a/b=1.0;  q4>0). 
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Examples of such computations for n=4 are presented in Figs 5.5, 5.6 and 5.7, where the end- 

 

Fig. 5. 6: The energy function E(q1, q2) and manipulator equilibriums of initial Z-shape configuration 
(end-effector deflection δx/b=0.2, δy=0;  geometric parameters a/b=1.0; q4>0). 

 

Fig. 5. 7: The energy function E(q1, q2) and manipulator equilibriums of initial U-shape configuration (end-
effector deflection δx/b=0.8, δy=0;  geometric parameters a/b=1.0;  q4>0). 

effector elastic deflection is { }0.2 ,0.4 ,0.8x b b bδ ∈  and the initial shapes correspond to 0.3x b∆ =  
(see Table 8). As follows from these figures, for the initial U-shape the energy surfaces 1 2( , )E q q  are 
similar to ones presented in Fig. 5. 5b. In particular, all these surfaces contain a single maximum, a 
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single minimum and a single saddle point. Also, their evolution with respect to xδ  is continuous, 
their topology remains the same while increasing the deflection xδ . In contrast, for the initial Z-shape, 
the energy surfaces 1 2( , )E q q  are quite different, their evolution with respect to xδ  is discontinuous. 
The latter leads to sign-changing of some configuration angles iq  under the external loading F as 
shown Fig. 5. 6 (see angle q1 for instance). Besides, if the deflection xδ  is big enough as in Fig. 5. 
7, the energy surfaces may contain a “hole”, i.e. an unfeasible area, caused by violation of the 
geometric constraints max

i iq q≤  (2.27) inside of the manipulator segments (see Section 2.3). 

By applying the above presented energy method and computing minimums of the energy function 

1 2 2( , ,... ) minnE q q q − →  for different xδ , it is possible to obtain the desired force-deflection relations 
( )xF xδ and ( )yF xδ . It is clear that these minimums correspond to the stable equilibriums that are 

observed in practice. Examples of such computations for n=4 are presented in Fig. 5. 8 and Fig. 5. 9.  

 

Fig. 5. 8: Force-deflection curves Fx(δx), Fy(δx) and manipulator shape changing under the loading for initial 
U-shape with (x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0.  

 

Fig. 5. 9: Force-deflection curves Fx(δx), Fy (δx) and manipulator shape changing under the loading for initial 
Z-shape configuration with (x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. 
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For the initial U-configuration, the change of the manipulator shape is smooth, the resistance of 
the manipulator is gradually increasing while the deflection xδ becomes bigger. However, the stiffness 
coefficient in the x-direction is continuously decreasing. This tendency is observed until the 
manipulator reaches its geometric constraints. In contrast, for the initial Z-configuration, there are two 
intervals of the manipulator deformation. At the beginning when xδ  is relatively small the 
manipulator maintains its Z-shape and the resistance against the external force is monotonically 
increasing, similar to the previous case. Further, when the deflection xδ  is bigger than some critical 
value, the buckling phenomenon is occurring, and the manipulator resistance against the external force 
is not increasing any more. Correspondingly, the stiffness coefficient  xdF dx  becomes very small, 
the stiffness coefficient  ydF dx  changes its sign and the manipulator does not keep its initial Z-
shape (some of the angles iq  change the signs). Finally, after the buckling, the manipulator moves in 
the direction of its internal geometric constraints. Some more details concerning evolution of the 
manipulator shape and its stiffness coefficients under the loading for both x- and y-directions are 
presented in Table 9.  

Table 9: Evolution of the manipulator shape under the loading for δx=var, δy=0. 

 Initial shape Stiffness coefficients and shape under the loading 

Case #1 

U-shape: 
 

0

0

7.7
0

x b
y

   
=   

   
 

  

Case #2 

Z-shape: 
 

0

0

7.7
0

x b
y

   
=   

   
 

  

 

Hence, in practice, it is preferable to use the U-shape if the workspace obstacles (external 
constraints) allows. It should be also noted that for the Z-shape it is necessary to avoid high loadings 
exceeding the critical force causing buckling. 

Now, in addition to the above presented force-deflection relations ( )xF xδ  and ( )yF xδ  derived 
from the assumption of varxδ = , 0yδ = , let us analyze the changing of the manipulator stiffness 
coefficients under the loading ( ),x yF F  without imposing any kinematic constraints of the end-
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effector location. To obtain the desired relations it is necessary to compute the configuration angles 

1( ,..., )nq q  corresponding to the manipulator equilibriums for different given external loading 
( ),x yF F . It is clear that these angles can be found numerically by solving system of n independent 
equations (5.2) describing the static equilibrium condition (by applying Newton’s method for instance). 
However, the initial guess of the angles 0 0

1( ,..., )nq q  should be evaluated correctly, to ensure that they 
are in the neighborhood of the minimum energy configuration, because only such cases can be 
observed in practice. Such initial guess can be obtained using the above presented energy method 
applied in the space 1( ,..., )nq q  with rather rough grid with large step. Also the desired angles 
corresponding to the external loading ( ),x yF F  can be found using the Matlab function fminsearch 
which minimizes the sum of the squared residuals i.e.     

 ( )
2

T
1 1 2
,..., x

n n n
y

F
q q fminsearch

F× ×

      = + ⋅        
q qM J  (5.24) 

where both the internal torques qM  and the Jacobian qJ  depend on the angles 1( ,..., )nq q . It should 
be also mentioned that it is possible to simplify the problem of the initial guess 0 0

1( ,..., )nq q  selection 
by gradually increasing the forces ( ),x yF F  and using solutions from the previous loaded equilibrium 
as the initial guess for the next one corresponding to ( ),x x y yF F F F+ ∆ + ∆ . However, when the forces 
( ),x yF F  approach the buckling point, the initial guess from the previous step is not suitable because 
the configuration angles are changing essentially and only the straightforward energy method allows 
to obtain the correct initial guess. 

Further, when the equilibrium configuration angles 1( ,..., )nq q  corresponding to the given forces 
( ),x yF F  are computed, it is possible to find the desired stiffness coefficients using the formula (4.31) 
from the previous chapter  

 ( ) ( )
11 1T T;
−− − = − = − F q q g q F q q g qC J K K J K J K K J  (5. 25) 

where the n×n matrix of the joint elastic stiffness coefficients 1( ,..., )eq eqidiag K K=qK  can be 
computed similarly as in the Section 2.2. 

 ( )
0 0 0 0

2 2 1 2 1 22 cos cos si 1,n ,
2

2,...
2 2 2

,i i i i
q

i
ie i

iK i nL L q L L qk b a q k b a
 + −

= − − ⋅ − =⋅ 
 

 (5. 26) 

It should be stressed that here, the control inputs 0
1iL  and 0

2iL  are constant values, which correspond 
to the initial unloaded joint angles iq . The second matrix gK  containing the stiffness coefficients 
caused by the loading is symmetrical and can be computed as follows 
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21 11 22 12 2 1

T
22 12 2 1

2 1

...
... ...
... ... ... ...
... ... ...

x y x y n x n y

x y n x n y

i

n x n y n n

J F J F J F J F J F J F
J F J F J F J F

q
J F J F

×

− + − + − + 
 − + − +∂  =
 ∂
 − + 

g
JK F  (5. 27) 

It is obviously that when the external forces are equal to zero ( )0, 0F = , the stiffness matrix 
expression is reduced to the form, which is known from the unloaded mode analysis 

 11 T −−=   q q qK J K J  (5. 28) 

It should be also mentioned that, in contrast to the classical n-link serial manipulators, here the 
diagonal matrix qK  is configuration dependent (not constant) because each initial configuration with 
the angles 1( ,..., )nq q  produces its own control inputs 0

1iL  and 0
2iL  included in the expression (5.29). 

Besides, similarly to the Section 4.2, here the unloaded compliance matrix 0C  can be expressed 
analytically in the following way  

 

2 2 2
11 12 1

1 21 T
0 2 2 2

21 22 2

1 2

... *

* ...

n

q q qn

n

q q qn

J J J
K K K

J J J
K K K

−

 
+ + + 

 = =  
 + + +
  

q q qC J K J  (5. 29) 

Further, to illustrate practical importance of the above presented results, they were applied to the 
case n=4 assuming that the initial (unloaded) end point location is ( ) ( )0 0, 7.7 , 0x y b= , and the initial 
shape is either U- or Z- one. The configuration angles under the loading, corresponding to the external 
force ( ),x yF F F= , were computed numerically using the technique proposed above. Relevant results 
of the initial U-shape and Z-shape are presented in Fig. 5. 10 and Fig. 5. 11 respectively.  

As follows from these figures, the manipulator stiffness essentially changes if the external loading 
is applied. For the initial U-shape case, the absolute value of the manipulator stiffness coefficient |Kxx| 
decreases first, while the force Fx is increasing (see Fig. 5. 10a), until Fx is reaching some critical value 
when |Kxx| is the minimum, then it begins to increase slowly. In contrast, the stiffness coefficient Kxy 

(describing the manipulator reaction in the y-direction) changes its sign under the loading. These 
stiffness properties can be also interpreted from the geometrical and physical point of view, using the 
right-hand side of the Fig. 5. 10a, which shows the evolution of the manipulator configuration under 
the loading. In general, such manipulator behavior can be treated as “quasi-buckling”, because for 
certain loading Fx the stiffness in both x- and y-direction is very small. And the manipulator rotates 
quickly until one of the segment goes close to its joint limits, where the equivalent rotational stiffness 
coefficient is very low. Hence, in practice it is necessary to avoid applying too high loading in x-
direction causing approaching either to the “quasi-buckling” or the joint limits and losing the 
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manipulator stiffness.  

 

 

Fig. 5. 10: Stiffness coefficients under the Fx- and Fy-loading for initial U-shape configuration with (x0, y0) = 
(7.7b, 0) and geometric parameters a/b=1.0 

On the other side, while increasing the force Fy (i.e. in the orthogonal direction), the absolute 
value of the stiffness coefficient |Kyy| is monotonically increasing first, then it keeps the same tendency 
slowly (see Fig. 5. 10b) because of the restriction of the geometric length of the manipulator. At the 
same time, the stiffness coefficient Kyx demonstrates non-monotonic behavior. Such performance can 
be seen from the evolution of the manipulator configuration at the right-hand side of Fig. 5. 10b, where 
the manipulator end-point moves towards the extreme location, as far as possible from the initial one. 
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Therefore, the high loading in y-direction should be also avoided, to prevent from the manipulator 
changing its shape change to a pure straight line (see case IV).     

 

Fig. 5. 11: Stiffness coefficients under the Fx-loading for initial Z-shape configuration with (x0, y0) = (7.7b, 0) 
and geometric parameters a/b=1.0 

 

Fig. 5. 12: Unloaded stiffness ellipses of the four-segment manipulator inside the workspace. 

However, for the second case study dealing with the initial Z-shape, the stiffness properties under 
the loading are quite different compared to the U-shape case. In particular, as follows from Fig. 5. 11, 
under the Fx-loading, the absolute value of the stiffness coefficient |Kxx| decreases gradually at the 
beginning, then it decrease quickly to zero. In contrast, the absolute value of the stiffness coefficient 
|Kxy| increases monotonically. This phenomenon can be also treated as “quasi-buckling” because for 
certain loading the manipulator stiffness in x-direction is equal to zero, and the stiffness in y-direction 
is very high. These results are illustrated geometrically by the right-hand side of Fig. 5. 11 showing 
the evolution of the manipulator configuration under the Fx –loading. It is clear that here each segment 
of the manipulator tends to move close to its geometric limits before the “quasi-buckling” is occurring. 
In such configuration, even quite small change of the external force may lead to large manipulator 
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deflection, so in practice, it is reasonable to avoid such situations. It is worth mentioning that the case 
of Fy –loading is not presented in Fig. 5. 11, because it is quite similar to the U-shape case. 

Similar to the previous chapters, the stiffness properties of the unloaded manipulator may be also 
illustrated by the set of ellipses describing mapping of the unit force 1F =  into the deflection
( , )x yδ δ . An example of such analysis for the case of n=4 is presented in Fig. 5. 12, which shows that 
the resistance of the four-segment manipulator to the external force in the longitudinal direction is 
much higher than in the transverse one. Also, the mechanism longitudinal stiffness essentially 
increases while the initial configuration becomes closer to the straight one. 

5.3 Controlling mechanism configurations 

To control motions of the considered multi-segment mechanism it is necessary to develop special 
technique that allows user to achieve two goals: (i) minimize the redundant joint motions while 
ensuring the desired end-effector location; (ii) ensure safe distances between the manipulator segments 
and the obstacles located inside of the workspace. The first of these problems, the redundancy 
resolution, was considered in detail in previous section 3.3, which demonstrate that the most attractive 
computation technique is based on local minimization of square sum of the joint angle increments∆q . 

 T

1

min
n

i
i

∆
=

∆ ⋅∆ →∑ q
q q  (5. 30) 

subject to the geometric constraint 

 ∆ = ⋅∆p J q  (5. 31) 

where ∆p  is the desired end-effector displacement (small enough to apply the linearization) , J  is 
the kinematic Jacobian corresponding to the current manipulator configuration q . As it was proved 
before, the solution of this constraint optimization problem can be easily found analytically, by means 
of the Jacobian pseudo-inverse 

 ( ) 1T T −
∆ = ∆q J JJ p  (5. 32) 

which gives obviously advantages compared to alternative approaches based on minimization of the 
sum or absolute value of the increments iq∆  (see expressions (3.32) and (3.33) from the previous 
chapter). It should be mentioned that this technique is suitable for redundancy resolution for both two- 
and three-dimensional task spaces (x, y) and ( , , )x y ϕ considered above, which create redundancies of 
order n-2 and n-3 respectively. 

The second problem dealing with the workspace obstacle avoidance can be also divided in two 
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steps: (a) collision-free path planning for the manipulator end-effector; (b) collision-free path planning 
for the manipulator body, i.e. intermediate segments. Let us consider them consecutively.  

To find the best collision-free path for the end-effector let us apply the discrete dynamic 
programming technique allowing to generate the shortest trajectory in the task space, which connects 
the initial and target points 0p , gp  while avoiding the given obstacles. To apply this technique, let 
us discretize first the task space (x, y) and present it as a two-dimensional set of nodes defined in the 
following way  

 ( )0 0( , ) , , 0,1,... , 0,1,...i j x x j y y i i m j n= + ∆ ⋅ + ∆ ⋅ = =L   (5. 33) 

x∆ , y∆ are the discretization steps such that the index j=0 corresponds to the initial point 0p  and 
the index j=n corresponds to the target point gp , i.e. 0gx x x n= + ∆ ⋅ . Using such presentation the 
desired trajectory can be presented as the sequence of the nodes 

 0 1 1( ,0) ( ,1) ... ( , 1) ( , )n ni i i n i n−→ → → − →L L L L  (5. 34) 

with the purely geometric definition of the distances between the successive nodes as   

 { } 2 2 2( , ), ( , 1) ( )dist i j i j y i i x′ ′+ = ∆ ⋅ − + ∆L L  (5. 35) 

To take into account possible collisions between the robot end-effector and the workspace obstacles, 
let us also define the binary matrix B of size m n×  whose elements { }( , ) 0, 1i j ∈B  are equal to zero 
if there is no collision between the manipulator end-effector and the workspace obstacles at the node 

( , )i jL , (otherwise, it is equal to one). It is worth mentioning that the above presentation neglects the 
robot end-effector dimensions and presents it as a point. For this reason, while computing the matrix 
B it is reasonable to modify slightly the obstacle models and increase their dimensions by the value of 

2 2a b+ , where a, b are the geometric parameters of the manipulator segments (see Fig 2.5). 

Such formalization operating with the discretized task space { }( , )i jL , which includes the 
obstacles defined by the binary matrix B, allows us to present the original problem of the collision-
free path planning for the manipulator end-effector as the classical shortest-path searching on the graph:  

find the optimal path (5.34) on the graph connecting adjacent columns of { }( , )i jL , which (i) connects 
the given nodes 0( ,0)iL and ( , )ni nL , (ii) passes through allowable nodes only ( , ) 0i j =B  and (iii) 
satisfies the optimization criterion  

 { }
{ }

1

1
0

( , ), ( , 1) min
n

j j ij
dist i j i j

−

+
=

+ →∑ L L  (5. 36) 
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It should be noted that the desired trajectory is defined by the sequence of the row indices{ }0 1, ,..., ni i i , 
where both 0i  and ni  are given (they are defined by the initial and target points). It is clear that the 
above shortest-path problem can be solved via the discrete dynamic programming that is based on the 
following expression 

 { }{ }* *
1( ) min ( ) ( , ), ( , 1) , 0,1,...,j ji

d i d i dist i j i j i m+ ′ ′ ′= + + ∀ =L L  (5. 37) 

where *( )jd i  denotes the shortest distance between the initial node 0( ,0)iL  and the node ( , )i jL  
corresponding to the optimization of the lower dimension ( j n≤ ). This expression is applied 
sequentially starting from j=1 and ending with j=n-1, and memorizing the row indices { }* *

1 1,..., ni i −

obtained form (5.40), and corresponding to all intermediate optimal paths. At the final step, a single 
node *( , )ni nL  corresponding to the desired endpoint is selected, and the desired solution is obtained 
through the backtracking allowing to find the remaining row indices { }* *

1 1,..., ni i −  describing the 
optimal path.  

Table 10 Optimal path searching algorithm for the robot end-effector based on the discrete dynamic programing  

Inputs 

( , )i jL  m n× matrix of point locations in task space 

0i  row index defining the initial point location 0( ,0)iL  

ni  row index defining the target point location ( , )ni nL  

( , )i jB  m n× binary matrix describing the obstacle locations:  
B(i, j)=1 denotes the point ( , )i jL  inside of the obstacle 

Outputs 

( )jindP  
Vector of optimal row indices 0 1{ , ,..., }ni i i  describing the collision-free 
shortest path between the initial point 0( ,0)iL  and the target point 

( , )ni nL  

optP  Length of the shortest collision-free path connecting the initial point 

0( ,0)iL  and the target point ( , )ni nL  

Local 
variables 

( , )i jPath  m n× matrix of the minimum optimal sub-paths lengths connecting the 
initial point 0( ,0)iL and an arbitrary intermediate target point ( , )i jL  

( , )i jind  m n× matrix of the previous row indices for the optimal sub-paths 
connecting the initial point 0( ,0)iL and an arbitrary point ( , )i jL  

( )idst  Vector, containing the shortest sub-paths lengths of connecting the initial 
point 0( ,0)iL and an arbitrary intermediate target point ( , )i jL  
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( )iDst  Internal vector containing the lengths for all possible sub-paths between 
the initial point 0( ,0)iL and an arbitrary intermediate point ( , )i jL   

optPij  Element of ( , )i jPath  

_ind optPij  Element of ( , )i jind  

delta  Distance increment between the points ( , )i jL  and ( , 1)i j′ +L  
computed using the function ( _ , _ )dist  

(1)Path searching 

: zeros( , )m n=ind ;   : zeros( , )m n=Path ;   { }0 1
: ( ,0), ( ,1)

m
dist i i

×
=   dst L L , i∀ ; 

For  j = 1 to n-1; 
 For  i = 1 to m; 
 If  B(i, j+1) = 1 
 :delta NaN= ; 
 Else 
 : zeros( ,1)m=Dst  
 For  k = 1, m; 
 If  B(k, j) = 0 
 { }: ( , ), ( , 1)delta dist k j i j= +L L ; 
 Else 
 :delta NaN= ; 
 End 
 ( ) : ( )k k delta= +Dst dst ; 
 End 
 [ ], _ : min( )optPij ind optPij = Dst ;  ( , ) : _i j ind optPij=ind ;  ( , ) :i j optPij=Path ; 
 End 
 End 
 : (:, )j=dst Path ; 

End 

: ( , )noptP i n= ind  

(2)Backtracking  

: zeros( 1,1)n= −indP ;  _ target : ni i= ; 
For  j = 1 to n-1 
 

t arg_ target : ( , )eti i n j= −ind ; 
 ( ) : _ targetn j i− =indP ; 

End  
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More detailed description of the develop algorithm is presented in Table 10, it consists of two 
main sections. The first section implements the dynamic programming technique described by (5.40), 
by applying it sequentially to the problems of order 2, 3, … , n. This allows us to find a number of 
optimal sub-paths connecting the given initial point 0( ,0)iL  and an arbitrary intermediate target point 

( , )i jL . Corresponding shortest sub-path lengths are stored in the matrix ( , )i jPath , while the matrix 
( , )i jind  contains the pointers to the previous optimal nodes. By repeating this procedure and 

increasing the second index up to j = n, the desired optimal solution is obtained that corresponds to the 
collision-free shortest path connecting the points 0( ,0)iL  and ( , )ni nL . This solution is extracted 
from the matrices ( , )i jPath and ( , )i jind  as the second stage by applying the backtracking: 

1 ( , )n ni i n− = ind , 2 1( , 1)n ni i n− −= −ind , … . 

 

Fig. 5. 13: Generation of obstacle-free path using graph-base presentation of the task space and discrete 
dynamic programming 

Geometric explanation of this technique is given as in Fig. 5. 13, where it is assumed that the 
spatial location of the initial and target points corresponds to the motion “from left to right”. It is clear 
that all other type of motions can be easily found by applying slightly different task space discretization 
as shown in Fig. 5. 14. 

Efficiency of this technique has been confirmed by the simulation study. An example of obstacle-
free path generation with discretization of 20×20 is presented in Fig. 5. 15. It should be mentioned that 
here, to take into account the end-effector size, the obstacles were slightly increased. As follows from 
this study, for such relatively rough discretization the algorithm is very fast (it took only 46ms to find 
the optimal solution for this case). However, for finer discretization the computing time may increase 
essentially. To over this difficulty, a two-step modification of the path-generation algorithm was also 
proposed. 
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Fig. 5. 14: Task space coordinate transformation for the discretization. 

 

Fig. 5. 15: Example of obstacle-free path generation for the robot end-effector (obstacle dimensions are 
increased to take into account the end-effector size) 

 

Fig. 5. 16: Speed-up of searching algorithm for generating obstacle-free path by applying dynamic 
programming with decreasing discretization step 

The basic idea of the proposed modification is to find first an initial solution with the rough 
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discretization and to improve it further using relatively small discretization step (and applying at the 
both steps the same numerical technique based on the discrete dynamic programming). Geometric 
explanation of this approach is presented in Fig. 4.14, where at the first step the task space is divided 
into several big areas ( , )u vS , { }0,1,...u m⊂ , { }0,1,...v n= . Then after applying the above presented 
technique, the confident areas in every column in the task space could be found, which contain the 
possible points for connecting the shortest path, and the corresponding trajectory could be obtained 
with the indices expressed as follows 0 1 1( ,0) ( ,1) ... ( , 1) ( , )n nu u u n u n−→ → → − →S S S S . As the 
second step, it is only necessary to search for the points ( , ) ( , )v vi v u v∈L S  inside of the confident 
areas obtained from the first step. It is clear that this approach allows us to essentially increase the 
computing speed. 

The basic idea of the proposed modification is to find first an initial solution with the rough 
discretization and to improve it further using relatively small discretization step (and applying at the 
both steps the same numerical technique based on the discrete dynamic programming). Geometric 
explanation of this approach is presented in Fig. 5. 16, where at the first step the task space is divided 
into several big areas ( , )u vS , { }0,1,...u m⊂ , { }0,1,...v n= . Then after applying the above presented 
technique, the confident areas in every column in the task space could be found, which contain the 
possible points for connecting the shortest path, and the corresponding trajectory could be obtained 
with the indices expressed as follows 0 1 1( ,0) ( ,1) ... ( , 1) ( , )n nu u u n u n−→ → → − →S S S S . As the 
second step, it is only necessary to search for the points ( , ) ( , )v vi v u v∈L S  inside of the confident 
areas obtained from the first step. It is clear that this approach allows us to essentially increase the 
computing speed. (reduce .. ms in our simulation example).  

 

Fig. 5. 17: Computing the distances dij between the robot joints and obstacles  

To solve the second sub-problem from the above defined ones, which deals with collision-free 
path planning for the manipulator body, let us assume that the optimal path for the end-effector is 
already known and the kinematic redundancy resolution technique must ensure not only the minimum 
of the joint increments (5.32), but also guarantee the safety distances between the obstacles and the 
manipulator intermediate segments. The latter condition can be expressed in the following way 

 o 0( , ) , 1,2,... ; 1,2,...,ij i j jd dist d i n j m≥ ∀ = ∀ =p p

 (5. 38) 
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where ijd denotes the distance between the ith joint and the jth obstacle, and 0
jd  is the allowable 

minimum value for the jth obstacle that takes into account its size (equivalent radius). In more details, 
these definitions are explained in Fig. 5. 17, where the joint axis locations are described by the points 
{ , }i i∀p  and the obstacles are approximated by the circles with the centers o{ }jp and radiuses { }jr . 
To present the above collision-free constraints in more convenient way, let us take into account that 
for small ∆q the joint axis displacement i∆p can be computed using the linearized expression 

i i∆ ⋅∆p = J q , where iJ  is the manipulator partial Jacobian matrix with respect to the ith joint that 
can be expressed as 

 1 1 2 1 1

1 1 2 1 1 2

sin sin ... sin

cos cos ... cos

i k i k i k

k s k s k s
k s k s k n s

i i k i k i k

k s k s k s
k s k s k n s n

q q q
b

q q q

η η η

η η η

= = = = = =

= = = = = = ×

      − − −      
      = ⋅

      
      

      

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
J  (5. 39) 

Here similar to (5.3), b is the manipulator geometric parameter, 2kη = for k n<  and 1kη =  
for k n= . It worth mentioning that in contrast to (5.3), here the last ( )n i−  columns of Jacobian iJ  
are composed of zeros. Such linearization allows us to present the desired o( , )i jdist p p as the 
projection of the displacement vector i∆p  onto the line segment connecting the points ip  and o

jp  
(see Fig. 5. 17), i.e. in the following form  

 T
ij ij id = ⋅ ⋅∆e J q  (5. 40) 

where the unit vector ije  is computed as ( )o o
ij i j i j= − −e p p p p . So finally, for the n segment 

manipulator with m different task space obstacles, the m n× collision-free constraints (5.40) can be 
rewritten as the following way 

 0 0, 1,2,... ; 1,2,...,T
ij i jd i n j m⋅ ⋅∆ − ≥ = =e J q  (5. 41) 

where the safety parameter 0 2 2
j jd r a b= + +  is computed taking into account both the obstacle 

equivalent radius jr  and the manipulator geometric parameters a, b. Such presentation of the 
collision-free constraints allow us to replace the optimization problem (5.29), (5.30) involved the 
manipulator redundancy resolution by the following one. 

minimize the square sum of the joint angle increments∆q  

 T

1
min

n

i
i ∆
=

∆ ⋅∆ →∑ q
q q  (5. 42) 

subject to the geometric constraint on the end-effector displacement 
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 ∆ = ⋅∆p J q   (5. 43) 

and the collision-free constraints  

 0 , 1,2,... ; 1,2,...,T
ij i jd i n j m⋅ ⋅∆ ≥ ∀ = ∀ =e J q  (5. 44) 

applied to the intermediate joint locations 

It is clear that from the mathematical point of view it is the quadratic optimization with the mixed 
linear equality and inequality constraints, 

The main particularity of the above optimization problem is related to influence of the inequality 
constraints (5.44) on the final solution. In particular, some of them can be stronger than the other ones, 
leading to the situation when only limited number of non-equalities (5.44) are active. However, the 
constraint classification on the active/non-active ones is not a trivial problem. In this work, it is 
proposed the following technique to solve this optimization problem: 

(1) First, try to release all inequality constraints and find the optimal solution *∆q  of this reduced 
problem using the formula (5.44).  

(2) For the obtained solution *∆q , verify all inequality constraints (5.44) and find those that are 
violated. If no one of constraints is violated, *∆q  is treated as the final solution.  

(3) If some of the inequality constraints are violated, the strongest of them is selected for each 
joint and transformed into the equality constraint. This selection is executed on the base of 
“the distance to the obstacle” computed straightforwardly from the left-hand side of (5.43). 

(4) Then the problem is solved for the extended set of equality constraints and the obtained new 
optimal solution *∆q  is evaluated by starting from the step (2).  

To find the optimal solution for the extended optimization problem at step (4), the Lagrange 
technique can be applied dealing with the minimization of the function  

 ( ) ( )T 01( , , ) min
2

T T
ij ij i j

active
L dµ∆ = ∆ ∆ + ⋅ ⋅∆ − ∆ + ⋅ ⋅∆ − →∑q q q J q p e J qλ µ λ   (5. 45) 

which requires the zero-gradient ( , , ) 0L∇ ∆ =q λ µ  and leads to the following linear system 

 T T
a a a∆ − ⋅ − ⋅ ⋅∆ − ∆ = ⋅∆ − =q J J J q p J q dλ µ = 0; 0; 0   (5. 46) 

where the matrix Ja and the vector da are composed of element T
ij i⋅e J  and 0

jd  corresponding to the 
active constraints, and λ  and µ  are the Lagrange multipliers. It is clear that this system can be 
solved in a usual way that produces the following expression  
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†

a a

∆   
∆ = ⋅   

   

J p
q

J d
 (5. 47) 

where the symbol denotes the matrix pseudo-inverse of Moore-Penrose, i.e. † 1( )T T −=A A AA . 

The above presentation technique is simple and easy to implement. However sometimes it can 
produce sub-optimal solutions that can be essentially improved. In this cases, it is reasonable to apply 
the Karush-Kuhn-Tucker (KKT) approach, which generalizes the method of Lagrange multipliers 
allowing only equality constraints. Corresponding system of equations derived from the necessary 
condition of optimality    

 T T∆ − ⋅ − ⋅ ⋅∆ − ∆ = ⋅∆ − − =e eq J J J q p J q d sλ µ = 0; 0; 0  (5. 48) 

which includes an additional slack variable vector 0≥s  allowing to transform the inequality 
constraints to equality ones, and where the matrix eJ  and the vector d  are composed of all elements 

T
ij i⋅e J  and 0

jd  from the inequality constraints (5.44). As follows from the KKT technique, the vectors 
µ  and s  corresponding to the desired minimum must satisfy the following condition  

0; 0; 0T = ≥ ≥s sµ µ  

So, if 0ks =  the corresponding inequality constraint is active. Otherwise, if 0ks >  this 
constraint is ignored by setting 0kµ = . As follows from literature (Allende and Still, 2013; Gordon 
and Tibshirani, n.d.; Izmailov and Solodov, 2003), KKT algorithm can be easily implemented using 
the Newton’s method. 

To demonstrate the efficiency of the developed approach, it was applied to a case studies dealing 
with 20-segment manipulator control in environment with multiple obstacles. Relevant simulation 
results are presented in Fig. 5. 18 where the manipulator end-effector is assumed to move along the 
straight line (LIN motion), and the manipulator body motion is limited by two obstacles located in 
opposite sides. As follows from this figure, the proposed approach is able to adjust the manipulator 
shape at each step to avoid collision while ensuring the desired location of the end-effector. It should 
be stressed that here the desired end-effector orientation is not defined, the task is only to ensure the 
desired end-effector position (x, y).  

Finally, it should be mentioned that the above presented results can be also generalized for the 3-
dimentionϕ al task space ( , , )x y ϕ , which in addition to the end-effector location (x, y) takes into 
account the end-effector orientation angle. This generalization leads to an additional equality constraint 
that can be easily expressed via the configuration angles q and included in (5.47) by using the extended 
Jacobian of size 3×n obtained by adding the third line composed of ones [1, 1, …, 1] to the matrix 
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(5.42) of size 2×n. Relevant simulation results are presented in Fig. 5. 19, where the manipulator end-
effector must follow the curved path located inside of the narrow gap between the obstacles. In addition, 
it is required that the end-effector orientation ϕ  should be tangent to the prescribed path. This case 
study also confirms the efficiency of the developed control algorithms which ensure both the 
manipulator body and the end-effector passing through the narrow gap. The algorithm of this motion 
control is shown in Table 11, where the shortest path from the initial to the target point in the workspace 
is assumed already obtained based on the above dynamic programming technique (see Table 10). 

 

Fig. 5. 18:: Example of collision-free motion control for multi-segment manipulator (for the case when the 
end-effector is moved along the given straight line without the orientation constraint). 

 

Fig. 5. 19: Example of collision-free motion control for multi-segment manipulator (for the case when the 
end-effector is moved along the given curve with the orientation constraint). 
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Table 11 Algorithm of collision-free motion control for multi-segment manipulator when the end-effector is 
moved along the given path with the orientation constraint. 

Inputs 

p0 , manipulator end-defector initial location 
pg , manipulator end-defector target location 
q0 n×1 vector, the initial configuration angles of the manipulator 
F , external loading on the end-effector of the manipulator 

k n×1 vector, stiffness coefficient of each joints of the manipulator 

L0 
2×n matrix, the symmetrically distributed linear springs initial lengths 
of the manipulator (see structure figure 5.1) 

path 
2× w matrix, point locations on the path from the initial  p0 to target 
point pg. 

pob 2×m matrix, location of the obstacles 
rob m×1 vector, radius of the obstacles 
a, b geometric parameters of the manipulators 

m 
Number of motion steps between the initial and target end-effector 
position 

Local 
variables 

pt  
, points locating on the path between the initial and target 

end-effector location 
pc Current endpoint location of the manipulator 
dp dp = pt - pc , current end-effector deflection  
dq n×1 vector, current joint increment corresponding to dp 
qc n×1 vector, current joint configuration angles 
Pij Vector, from the ith joint to the jth obstacle 
eij Unit vector of Pij 
bj n×1 vector, composed of dmin_ij 

b_eq 
3×1 vector related to dp and manipulator orientation angles, equality 
constraints  

b_Neq Vector, inequality constraints 
Me External torque of each joint of the manipulator 

Delt_L0 
n×1 vector, configuration control inputs of each segment of the 
manipulator 

J 2×n Jacobian matrix that corresponding to qc 

Aj n×n matrix, composed of inequality constraints 

A_eq 3×n Jacobian matrix related to J, equality constraints parameters,  

[ 0, 0]Tx y=p0
[ , ]Txg yg=pg

[ , ]TFx Fy=F

[ , ]Txt yt=pt
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A_Neq Matrix, inequality constraints parameters 

phi Manipulator orientation angles 

dmin_ij The minimum safe distance between the ith joint and the jth obstacle 

Outputs 
Set_Qout 

n×w matrix, joint configuration angles corresponding to all the 
manipulator current motion  

Set_Delt 
n×w matrix, configuration control inputs of each segment  
corresponding to all the manipulator current motion 

(1) Joint limit of manipulator segments 

If  a/b<=1 
 Joint_limit = 2*atan (a/b); 
Else 
 Joint_limit = pi - 2*atan (a/b); 
End 
(2) Main algorithm loop of continuous motion configurations control 

Set_Qout:=zeros(m, n); Set_Delt:=zeros(m, n); qc: = q0; pc = p0 
For  s = 1 to w 
 pt: = path(:,w); 
 dp: = pt – pc;  
 J: = fun_of_Jacobian(qc, b); 
 pc: = fun_direct_kinematic(qc, b); 
 phi: = atan2( pt(2), pt(1) );  
 H:= eye(n);  f: = zeros(n, 1);  A_eq: = [J; ones(1, n)];  b_eq:= [dp; phi – sum(qc)]; 
 A_Neq: = [];  b_Neq:= []; 
 For  j = 1 to m 
 Aj: = zeros(n, n);  bj:=  zeros(n, 1); 
 For  i = 1 to n 
 Pij:= pob(:, j) - pc(:, i); 
 eij:= Pij  inv( norm(Pij) );  dmin_ij:= norm(Pij) - rob(j) - sqrt(a2 + b2); 
 Aj(i, 1:i): = eij’  J(:, 1:i);  bj(i, 1):=  dmin_ij 
 End  
 A_Neq: = [ A_Neq; Aj];  b_Neq:= [ b_Neq; bj]; 
 End  
 dq: = quadprog(H, f, A_Neq , b_Neq , A_eq, b_eq); 
 qc: = qc + dq; 
 For  t = 1 to n 
 If  Abs( qc(t) ) > Joint_limit; 
 qc(t): = sign( qc(t) )  Joint_limit; 
 End 
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 End 
 Set_Qout (:, s): = qc; 
 Me: = J’  F; 
 Delt_L0: = fun_of_Delt_L0(a, b, k, L0, qc, Me);  
 Set_Delt (:, s): = Delt_L0; 
End 

 

5.4 Summary  

This part is focusing on the general case dealing with the analysis of mechanical properties and 
kinematic control of the redundant multi-segment serial tensegrity mechanism composed of the dual-
triangles. The main contributions are related to the stiffness analysis as well as investigating of the 
stability and buckling phenomenon for this serial structure. Another contribution of this part is the 
optimization-based kinematic control strategy for this redundant mechanism allowing to minimize the 
joint motions and avoiding the workspace obstacles.  

The structure of this chapter as well as the applied methods are similar to the previous ones, 
however it deals with the general case where the number of segments is arbitrary. Compared to the 
previous chapters, here the number of equilibriums may be quite large. For example, for the four-
segment mechanism, there are six equilibrium configurations (two symmetrical stable ones). For the 
general case, the stiffness/compliance matrices for both unloaded and loaded mode were obtained 
using the VJM technique, as well as analytical force-deflection relations. Besides, the buckling and 
quasi-buckling phenomenon for this serial mechanism were also detected; and an analytical method 
was proposed allowing computing the critical force causing the buckling. Also, the optimization-based 
kinematic control strategies from the precious chapters were generalized allowing to generate 
collision-free motions with the shortest end-point path and minimum increments in the actuated joints. 
The efficiency of the proposed technique was confirmed by simulation results, which shows that such 
control allows manipulator achieving excellent flexibility and ability of shape changing. 

In more details, new results and contributions of Chapter 5 include the following issues 

(i) The equilibrium configurations for multi-segment mechanism were obtained using the 
energy method, and the classification of stable/unstable shapes were presented.  

(ii) The stiffness matrices of this mechanism for both unloaded and loaded mode were obtained 
using VJM technique, and the relations between the end-effector deflection and the external 
load were derived analytically. 

(iii) The buckling and quasi-buckling phenomenon were detected via the stiffness and stability 
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analysis for both unloaded and loaded modes. The critical values of the loading causing the 
buckling were obtained analytically using eigenvalues technique, which can be generally 
used for the similar structure of serial manipulators.  

(iv) The collision-free path planning technique based on discrete dynamic programming was 
proposed, which provides the shortest path for the mechanism end-point reaching the desired 
target point without collisions with workspace obstacles. 

(v) The obstacle-avoidance kinematic control strategies for the mechanism body was proposed, 
which is based on quadratic programming with mixed linear equality and inequality 
constraints. Efficiency of this technique was evaluated via simulation, which confirmed the 
mechanism ability of achieving excellent variable-stiffness properties and collision-free 
passing through the multi-obstacle environment. 

It should mentioning that the universality of the main results of this chapter allow easily 
generalizing them for the serial multi-segment manipulators that are based on other mechanisms 
(different from dual-triangles). Also, slight modification of the proposed kinematic control algorithms 
allows to generate collision-free trajectories controlling both position and orientation of the end-
effector. 

The main results of Chapter 5 are published in the following works: [Zhao, W.; Pashkevich, 
2021a], [Zhao, W.; Pashkevich, 2021b], [Zhao, W.; Pashkevich, 2021c]. 

 

  



 

 

 CONCLUSIONS AND PERSPECTIVES 

Contributions of the thesis 

This thesis focuses on the design of new versatile and compliant end-effectors for collaborative 
work of robots and human operators, which are based on multi-segment planar tensegrity mechanisms 
that can be actuated independently to achieve the desired configuration with the required stiffness 
properties. To achieve this goal, three main problems were considered, which were solved gradually 
by increasing number of segments in the considered compliant mechanism. The main results and 
contributions of this thesis can be summarized as follows.  

For the Problem 1, dealing with the comparison study of different mechanisms that can be used 
for designing compliant end-effectors, two potential tensegrity architectures (X-shape and dual-
triangles) were considered. For both of them, configuration can be adjusted by means of the 
controllable elastic springs locating on the two edges. It was shown that both of these two options 
ensure high flexibility and may be potentially used for designing soft robot end-effectors. For practical 
reasons, the main attention was paid to the symmetrical structure and to the case of equal spring pre-
stress, for which the analytical condition of equilibrium stability was derived. Also, the relation 
between the external torque and the deflection was obtained which showed that the X-shape 
mechanism has always non-monotonic force-deflection relation, while for the dual-triangle one it is 
possible to achieve the monotonic force-deflection curve. The latter allowed us to conclude that the 
dual-triangle tensegrity mechanism has essential advantages for the considered application, and it was 
chosen as the basic structure for the compliant serial manipulator considered in this thesis. 

The main results and contributions related to the problem 1 include the following issues 

(i) There were obtained analytical stability conditions and equilibrium configurations (stable 
and unstable) for both X-shape and dual-triangle tensegrity mechanisms for unloaded and 
loaded modes, which allow user to select the mechanical architecture ensuring the 
controllability of the manipulator based on such segments.  

(ii) It was shown that for different combinations of the geometric parameters for the dual-
triangle mechanisms, the force-deflection relation curves may be either monotonic (a single 
stable equilibrium) or non-monotonic (one stable and two unstable equilibriums). While for 
the X-shape mechanisms, the force-deflection relation curve is always non-monotonic with 
one stable and two unstable equilibriums. 

For the Problem 2, dealing with the stiffness analysis of the multi-segment dual-triangle 
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mechanism, both unloaded and loaded modes were considered, and specific mechanical properties 
were analysed in detail. Particular attention was paid to the mechanism stiffness behaviour for the 
straight and non-straight initial configurations. In this study, the analytical stiffness/compliance 
matrices were derived using the VJM technique that allow designers to evaluate the stiffness sensitivity 
of this structure with respect to an arbitrary initial configuration for different geometric parameters, 
external loading and the springs pre-stresses. Besides, the force-deflection relations were obtained, 
which allowed us to detect the buckling and quasi-buckling phenomenon in this serial mechanism 
under the loading. The main theoretical contribution is an analytical method allowing to compute the 
critical force causing the buckling for the serial structure with an arbitrary number of segments, which 
is based on the eigenvalue analysis of the some special matrix depending on both geometric and 
elastostatic parameters. This allows designers to predict or avoid the dangerous states of this 
mechanism by properly changing the geometric parameters and control inputs.   

The main results and contributions related to the problem 2 include the following issues 

(i) The stiffness/compliance matrices of this mechanism for both unloaded and loaded mode, 
which were obtained using the VJM technique, as well as the mechanism force-deflection 
curves. 

(ii) Mechanism equilibrium configurations (both stable and unstable ones) and their 
classification, which were obtained using the energy method.  

(iii) Detection of specific mechanical property of this mechanism i.e. the buckling phenomenon, 
which can be observed for the straight initial configuration if the external loading exceeds 
certain critical value.  

(iv) Detection of the quasi-buckling phenomenon for the non-straight configuration, when the 
mechanism resistance in certain direction may be suddenly lost under the loading, while the 
resistance in other directions still exists. 

(v) Analytical technique for computing the critical force causing the buckling, which is based 
on the eigenvalues analysis applied to some special matrix. This technique is rather general 
and can be applied to other serial manipulators of similar structure. 

For the Problem 3, dealing with the kinematic control of considered redundant multi-segment 
mechanism, the optimization-based control strategies were proposed allowing to achieve the target 
endpoint location and avoid collisions to the workspace obstacles. To generate the desired motions, it 
is proposed to decompose the general control problem in three separate ones. The first of them focuses 
on the separate segments and is targeting on achieving the desired joint angles of the dual-triangle 
mechanisms via adjusting the spring pre-stresses. The second sub-problem concentrates on the 
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redundancy resolution for the multi-segment manipulator ensuring the end-point displacement to the 
desired location using minimal joint motion increments. The third sub-problem deals with the obstacle-
avoidance kinematic control ensuring safe distances between the manipulator segments and some 
objects located inside of the manipulator workspace. Because of computation of complexity, the last 
sub-problem was further divided in two sequential steps: (a) collision-free path planning for the 
manipulator end-effector; (b) collision-free path planning for the manipulator body, i.e. including 
intermediate segments. The proposed kinematic control strategy was carefully verified via the 
computing simulation, which confirmed its advantages and abilities in achieving of the desired 
manipulator flexibility and shape changing capacity. 

The main results and contributions related to the problem 3 include the following issues 

(i) The kinematic control technique for a single segment, which allows to achieve the desired 
joint angles of the dual-triangle tensegrity mechanism via anti-symmetrical adjusting the 
spring pre-stresses (for both loaded and unloaded modes). 

(ii) The collision-free path planning technique for the mechanism end-point, which is based on 
discrete dynamic programming that provides the shortest path for reaching the desired target 
point avoiding the workspace obstacles.  

(iii) The minimum joint motion control technique, which is based on the quadratic optimization 
with linear equality constraints that ensures the redundancy resolution and the manipulator 
end-point displacement to the desired location with minimal joint increments. 

(iv) The obstacle-avoidance kinematic control technique for the manipulator body, which is 
based on quadratic programming with mixed linear equality and inequality constraints, 
allowing to pass through the multi-obstacle environment without collisions while 
implementing the desired end-point path. 

In general, combination of all results related to the problems 1, 2, 3 allow to achieve the desired 
goal, i.e. to develop a new robot end-effectors based on compliant serial structures composed of a 
number of similar modules or segments, each of which contains a tensegrity mechanism. 

Limitations of obtained results 

In spite of numerous essential advantages, there are still several limitations in the obtained results 
that are presented below 

(i) Only serial structure is considered in this thesis, while for the parallel or serial-parallel 
manipulators composed of the dual-triangle tensegrity mechanisms, the corresponding 
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stiffness properties and stability conditions may be essentially different, as well as some 
specific mechanical phenomenon (i.e. the buckling or quasi buckling) may be observed in 
other configurations. 

(ii) It is assumed here that the external loading is applied to the manipulator end-point only, 
but in practice there are some cases when several external loadings are acting on the 
manipulator; also, there may exist some other specific phenomenon, such as the local 
buckling (when partial shape of some segments is straight). 

(iii) The quasi-buckling phenomenon (i.e. when the mechanism resistance to the external 
loading is suddenly lost for one direction only) was analysed for several case studies only, 
the general technique for computing the corresponding critical force causing this 
phenomenon and the condition when it occurs was not developed.   

(iv) Accuracy of the proposed obstacle-avoidance kinematic control strategy is limited. 
Because of the imperfection of the selected optimization method and large number of the 
related constraints, the manipulator body cannot move exactly along the required end-
point trajectory while passing through the multi-obstacle environment.  

It should be stressed that the first two limitations are related to some more general cases of 
manipulator architectures, the third one is not typical for the considered applications, and the last one 
can be overcome by selection proper optimization software. So, all these limitations are not critical 
with respect to the main results obtained in this thesis. Some of these issues will be in the focus of the 
future work. 

Further investigations and perspectives  

To generalize the obtained results, it is reasonable to continue research in several directions and 
to concentrate on the following issues 

(i) To improve the considered dual-triangle tensegrity mechanism by using some non-linear 
elastic components instead of the linear springs. This allows us to achieve more flexible 
motions and better compliance properties, but related elastostatic analysis will produce 
the stiffness/compliance matrices of more complicated nonlinear form. From the practical 
point of view, this approach allows the manipulator to generate larger loading with less 
deflection, and vice versa. 

 

(ii) To extend the investigation of the dual-triangle tensegrity mechanism considered in this 
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thesis for the three-dimensional case. It is expected that for the single segment, there may 
be many similarities with the two-dimensional case, so the stiffness and stability 
conditions can be obtained using the developed technique. However, for the serial 
manipulator composed of several three-dimensional dual-triangles, there may be some 
particularities during the analysis, new stable configurations and buckling phenomenon, 
which may produce some new results of practical significance.  

(iii) To extend the presented elastostatic analysis of the considered manipulator for the cases 
of more complicated or large external loadings. First, it is reasonable to consider the case 
when there are many external/internal loadings acting on the manipulator body, which is 
quite similar to that when the human arms or elephant trunks holding some objects. 
Second, it is important to study the cases when the external loading is large enough (larger 
than some critical values) that causing the rigid components bending or even failure; the 
condition of such phenomenon should be obtained, as well as the loading critical values. 

(iv) To investigate the parallel or serial-parallel multi-segment manipulators composed of the 
dual-triangle tensegrity mechanisms. Similar investigation techniques and methods may 
be used in this case, but the corresponding stiffness and stability conditions may be 
essentially different, as well as some specific mechanical properties (buckling). This 
allows us to select the best structure after comparison analysis and design a more stable 
and flexible manipulator in practice. 

(v) To analyse the quasi-buckling phenomenon in the compliant serial manipulators (i.e. 
when the mechanism resistance to the external loading is suddenly lost in one direction 
only); the corresponding critical force causing this phenomenon and the condition when 
it occurs should be obtained for general cases. 

(vi) To investigate some other specific mechanical properties that can be observed for the 
considered compliant serial manipulator, such as the local buckling phenomenon (when 
partial shape of some segments is straight). This phenomenon may occur in some special 
case, such as when there are more than one external loadings acting at different joints. 

(vii) To improve the proposed obstacle-avoidance kinematic control strategy by taking into 
account more constraints (arising from manipulator geometry or desired shape of 
manipulator body). The main goal of this problem is to increase the flexibility and 
controllability of this manipulator, let the manipulator move along the required end-point 
trajectory while passing through the multi-obstacle environment with the desired 
manipulator shape.  

The research results presented in this thesis were obtained in the frame of financial support 
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provided by the China State Scholarship Fund (No. 201801810036) of the project “CSC-Centrale 
Schools Program” founded by the China Scholarship Council. Their practical implementation and 
further development will be performed in frame of the subsequent projects that have recently been 
started by REV team of LS2N. 
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Titre :  Conception d'un effecteur pour robots collaboratifs 

Mots clés :  Effecteur de robot, robot souple, mécanisme de tenségrité, analyse de la rigidité, 
contrôle cinématique. 

Résumé : L’objectif de cette thèse est la 
conception de nouveaux effecteurs polyvalents 
et souples pour les robots collaboratifs, qui sont 
basés sur des mécanismes de tenségrité multi-
segments à double-triangle qui peuvent être 
actionnés indépendamment pour obtenir la 
configuration désirée avec de bonne propriétés 
de rigidité. Contrairement aux effecteurs rigides 
conventionnels, l'analyse de la rigidité a 
démontré que ce type de mécanisme peut 
atteindre une grande flexibilité ; les concepteurs 
peuvent évaluer la sensibilité de la rigidité de ce 
mécanisme par rapport à une configuration 
initiale arbitraire pour différentes combinaisons 
de paramètres géométriques, de charge 
externes et de précontraintes des ressorts. Le 
phénomène de flambage et de quasi-flambage 
de ce mécanisme sous chargements a été 
étudié. Une méthode analytique permettant de 
calculer la force critique de flambage pour cette 
structure avec un nombre arbitraire de segments  

a été proposée.  Elle est basée sur l'analyse 
des valeurs propres d'une matrice dépendant 
des paramètres géométriques et 
élastostatiques. Cela permet aux concepteurs 
de prédire ou d'éviter les états dangereux de ce 
mécanisme en modifiant correctement les 
paramètres géométriques et les entrées de la 
commande. De plus, les stratégies de contrôle 
cinématique basées sur l'optimisation ont été 
proposées dans cette thèse, ce qui permet à ce 
mécanisme multi-segment redondant 
d'atteindre l'emplacement d’une cible et d'éviter 
les collisions entre l’effecteur et le corps du 
robot et les obstacles de l'espace de travail. 
Les avantages de la technique développée 
sont confirmés par la simulation informatique, 
et les résultats montrent que ce mécanisme 
redondant en série a une capacité de 
changement de forme très flexible tout en 
traversant l'espace de travail. 

 

Title : Design of Robot End-Effector for Collaborative Robot Works 

Keywords: robot end-effector, compliant manipulator, tensegrity mechanism, stiffness analysis, 
kinematic control. 

Abstract: This thesis focuses on the design of 
new versatile and compliant end-effectors for 
collaborative robot works, which are based on 
multi-segment dual-triangle tensegrity 
mechanisms that can be actuated independently 
to achieve the desired configuration with the 
required stiffness properties. Different with the 
conventional rigid robot end-effectors, it was 
demonstrated from the stiffness analysis that 
such type of mechanism can achieve high 
flexibility; designers can evaluate the stiffness 
sensitivity of this mechanism with respect to an 
arbitrary initial configuration for different 
combination of the geometric parameters, 
external loading and the spring’s pre-stresses. 
Besides, the buckling and quasi-buckling 
phenomenon of this serial mechanism under the 
loading were detected.  And an analytical 
method allowing to compute the critical force 
causing the buckling for this serial structure with 

an arbitrary number of segments was 
proposed, which is based on the eigenvalue 
analysis of the some special matrix depending 
on both geometric and elastostatic parameters. 
This allows designers to predict or avoid the 
dangerous states of this mechanism by 
properly changing the geometric parameters 
and control inputs. Furthermore, the 
optimization-based kinematic control strategies 
were proposed in this thesis, which allow this 
redundant multi-segment mechanism to 
achieve the target endpoint location and avoid 
collisions between not only the mechanism 
end-point but also the mechanism body and 
the workspace obstacles. The advantages of 
the developed technique are confirmed via the 
computing simulation, and the results show 
that this redundant serial mechanism has a 
very flexible shape changing capacity while 
passing through the task space. 
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