Skip to Main content Skip to Navigation
Theses

Retinoic acid signaling in chordates: the evolutionary history of a morphogen-dependent signaling

Abstract : One of the most striking features of multicellular animals, the metazoans, is their amazing morphological diversity. Even though phylogenetic research has made remarkable progress towards revealing how the abundance and variety of animal life forms relates on the molecular, cellular, tissue, and organismal level, the alteration of developmental programs has been revealed as a key aspect in this process. During development, a rather limited number of signaling pathways has been shown to be instrumental for generating metazoan diversity. The retinoic acid (RA) signaling pathway is one of these instrumental signaling cascades. A significant amount of time and work has been used to characterize the functions and roles of RA signaling during development, although further work is required to better understand the evolutionary history of the RA signaling network, from metabolism to signal transduction passing by the interactions with other signaling cascades and its developmental functions and how they evolve with time. In this context, model organisms with representative, vertebrate-like RA signaling cascades, such as the cephalochordate amphioxus, will be an important case-study in order to identify the blueprint of an ancestral RA network.The amphioxus RA signaling pathway was initially studied about 20 years ago, even though not much is known about the bioavailability of RA during development. Moreover, the target genes of the RA signaling pathway and their hierarchical relationship during amphioxus development represent an interesting open question. Therefore, this work aimed at providing a detailed description of two fundamental aspects of the RA signaling pathway during amphioxus development: (1) the regulation of the bioavailability of RA in the developing embryo and (2) the target genes under the control of the RA signaling pathway together with their hierarchical regulatory relationship. To address these questions, the European amphioxus, Branchiostoma lanceolatum, was used as a model system.During my research project, not only these questions were fundamental, but also the implementation of amphioxus as a reliable model system and thus the establishment of multiple aquaculture improvements as well as in vivo techniques, such as the microinjection of mRNAs into amphioxus eggs. Furthermore, to characterize the bioavailability of RA during development of amphioxus, I focused on the study of the enzymes that mediate the catabolism of RA endogenously, the CYP26 subfamily proteins. I thus described the evolutionary diversification of CYP26 genes in deuterostomes as well as their expression, their function and the mechanisms that govern the feedback loop controlled directly by RA during amphioxus development.Additionally, to shed light on the target genes under the control of the RA signaling pathway during amphioxus development, I combined pharmacological treatments using retinoid-specific drugs with two different techniques of high throughput sequencing: RNAseq, that revealed the entire RNA profile and thus the genes being expressed at a given moment in time, and ATACseq (assay for transposase-accessible chromatin) that provided a global overview of accessible regions of the chromatin (i.e. open chromatin regions). By combining the data obtained by these techniques, I revealed a new set of genes that are under the control of the RA signaling pathway as well as new potential regulatory loops driving RAR-mediated expression. Moreover, I established a framework to characterize gene hierarchies during development that can be widely applied to other signaling pathways and organisms.
Complete list of metadata

https://hal.archives-ouvertes.fr/tel-03408771
Contributor : Michael Schubert Connect in order to contact the contributor
Submitted on : Friday, October 29, 2021 - 12:37:01 PM
Last modification on : Monday, December 6, 2021 - 4:10:08 PM

Identifiers

  • HAL Id : tel-03408771, version 1

Citation

João Emanuel Marques Carvalho. Retinoic acid signaling in chordates: the evolutionary history of a morphogen-dependent signaling. Embryology and Organogenesis. Paris 6, 2017. English. ⟨tel-03408771⟩

Share

Metrics

Record views

9