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Abstract

In today’s society, information is becoming ever more pervasive. With the advent of the digital
age, collecting and storing these near-infinite quantities of data is becoming increasingly
easier. In this context, designing new Pattern Discovery methods, that allow for the semi-
automatic discovery of relevant information and knowledge, is crucial. We consider data made
of a set of descriptive attributes, where one or several of these attributes can be considered as
target label(s). When a unique target label is considered, the Subgroup Discovery task aims
at discovering subsets of objects – subgroups – whose target label distribution significantly
deviates from that of the overall data. Exceptional Model Mining is a generalization of
Subgroup Discovery. It is a recent framework that enables the discovery of significant local
deviations in complex interactions between several target labels. In a world where everything
has to be optimized, Multi-objective Optimization methods, which find the optimal trade-offs
between numerous competing objectives, are of the essence. Although these research fields
have given an extensive literature, their cross-fertilization has been considered only sparsely.

Given collected data about a process of interest, we investigate the design of methods
for the discovery of relevant parameter values driving the its optimization. Our first con-
tribution is OSMIND, a Subgroup Discovery algorithm that returns an optimal pattern in
purely numerical data. OSMIND leverages advanced techniques for search space reduction
that guarantee the optimality of the discovery. Our second contribution consists of a generic
iterative framework that leverages the actionability of Subgroup Discovery to solve optimiza-
tion problems. Our third and main contribution is Exceptional Pareto Front Mining, a new
class of models for Exceptional Model Mining that involves cross-fertilization between Pattern
Discovery and Multi-objective Optimization. In-depth empirical studies have been carried
out on each contribution to illustrate their relevance. Our methods are generic and can be
applied to many application domains.

To assess the actionability of our contributions in real life, we consider the problem of plant
growth recipe optimization in controlled environments such as urban farms, the application
scenario that has motivated our work. It is an intrinsic Multi-objective Optimization problem.
We want to apply our pattern discovery methods to discover parameter values that lead to an
optimized growth. Indeed, finding optimal settings could have tremendous repercussions on
the profitability of urban farms. On synthetic and real-life data, we show that our methods
allow for the discovery of parameter values that optimize the yield-cost trade-off of growth
recipes.

Keywords: Subgroup Discovery, Exceptional Model Mining, Multi-objective Optimization,
Urban Farms, Plant Growth Recipes
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Résumé

Dans la société actuelle, l’information devient de plus en plus pervasive. Avec l’avènement de
l’ère du numérique, collecter et stocker ces quantités presque infinies d’informations devient de
plus en plus accessible. Dans ce contexte, la conception de méthodes de découverte de motifs
permettant la découverte semi-automatique d’informations pertinentes ou de connaissances
est cruciale. Nous considérons des données mettant en jeu un ensemble d’attributs descriptifs,
avec un ou plusieurs de ces attributs qui peut (peuvent) être considéré(s) comme variable(s)
cible(s). Quand on a un seul attribut cible, la découverte de sous-groupes vise à découvrir des
sous-ensembles d’objets – des sous-groupes – dont la distribution de l’étiquette cible dévie
significativement de celle de l’ensemble des données. La fouille de modèles exceptionnels est
une généralisation de la découverte de sous-groupes. C’est un cadre récent permettant la
découverte de déviations locales significatives dans des interactions complexes entre plusieurs
variables cibles. Dans un monde où tout doit être optimisé, les méthodes d’optimisation
multi-objectifs, qui trouvent les compromis optimaux entre plusieurs variables concurrentes,
sont essentielles. Bien que ces différents domaines de recherche possèdent une littérature
riche, leur fertilisation croisée n’a été que peu étudiée.

Avec la disponibilité de données collectées sur un processus d’intérêt, nous nous intéressons
à la conception de méthodes permettant la découverte de valeurs de paramètres pertinentes
pour son optimisation. Notre première contribution est OSMIND, un algorithme de découverte
de sous-groupes qui retourne un motif optimal dans des données purement numériques. OS-
MIND exploite des techniques avancées de réduction de l’espace de recherche garantissant
l’optimalité de la découverte. Notre seconde contribution consiste en un framework itératif
générique qui met à profit l’exploitabilité de la découverte de sous-groupes pour résoudre des
problèmes d’optimisation. Notre troisième et principale contribution est la fouille de frontières
de Pareto exceptionnelles, une nouvelle classe de modèles pour la fouille de modèles excep-
tionnels, qui implique une fertilisation croisée entre la découverte de motifs et l’optimisation
multi-objectifs. La pertinence de chacune de nos contributions a été confirmée à travers des
études empiriques approfondies. Nos méthodes sont génériques et peuvent être utilisées dans
de nombreux domaines d’application.

Pour évaluer l’exploitabilité de nos contributions en situation réelle, nous considérons le
problème d’optimisation de recettes de pousse de plantes en environnements contrôlés tels que
les fermes urbaines, le scénario d’application qui a motivé nos travaux. Améliorer la pousse
des plantes est un problème intrinsèquement multi-objectifs. Nous souhaitons appliquer nos
méthodes de découverte de motifs pour découvrir les valeurs de paramètres menant à une
pousse optimisée. En effet, découvrir ces réglages optimaux pourrait avoir des répercussions
importantes sur la rentabilité des fermes urbaines. À partir de données synthétiques et
réelles, nous démontrons que nos méthodes permettent la découverte de valeurs de paramètres
optimisant le compromis rendement/coûts de recettes de pousses.

Mots clés: Découverte de Sous-Groupes, Fouille de Modèles Exceptionnels, Optimisation
Multi-objectifs, Fermes Urbaines, Recettes de Pousse de Plantes
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Chapter 1

Introduction

1.1 Context

This thesis was completed thanks to a public grant funded by the French Single Inter-Ministry
Fund (FUI AAP 24). The project, titled Digital Urban Farming 4.0 (DUF 4.0) was conducted
as a collaboration between Atos, an IT services and consulting company, Ferme Urbaine Ly-
onnaise (FUL, Lyon Urban Farm) a startup company that is specialized in the design and
selling of urban farms, and the LIRIS at INSA Lyon. The main objective of the project was
to build one of the first urban and fully digital farms.
In this project, each participant was to bring its own specialized skill set and technical knowl-
edge to the table. Atos was selected to lead the overall project and ensure its progression and
completion according to the original plan. As an international giant of IT services, they were
in charge of developing everything related to the digitalization of the urban farm prototype,
including data access, data retrieval, and IT support. FUL, as the urban farm specialist had
a central place in the project, and was supposed to design and provide a fully functional
and automated prototype, but also deep knowledge of the inner workings of an urban farm,
and everything related to expert agronomic knowledge. For its part, the LIRIS was tasked
with developing innovative data science and artificial intelligence solutions to optimize diverse
processes, like, e.g., plant growth or maintenance.
At the beginning of my PhD, back in November 2018, the urban farm of FUL was very
much still a prototype, where only the growth of plants in a fully controlled environment
was completed. Everything else – e.g., farm automation, data collection – was still under
construction, and although several data science related ideas had been identified to optimize
the future digitalized farm, the exact problems that this thesis would try to solve were still
unclear. To pinpoint which problems would be most relevant and would have the biggest
impact on the future of the farms if solved, we had to proceed to a deep dive into vertical
urban farming.
Nowadays, conventional farming methods have to face many tough challenges like, for in-
stance, soil erosion and groundwater depletion. The concept of vertical urban farms (see,
e.g., AeroFarms, Infarm, Bowery Farming1) can be part of a solution. These farms allow for
a significant reduction in water consumption while being able to optimize both the quan-
tity and quality of plants. In their current form, vertical urban farms have to face a major

1https://aerofarms.com/, https://infarm.com/,https://boweryfarming.com/.
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problem: operating and infrastructure costs keep them from being profitable at large scale
in almost all existing cases. In this context, the development of computer-based methods al-
lowing the optimization of urban farming processes would be a big step toward urban farms
becoming successful.
Urban farms are able to produce large amounts of data thanks to numerous sensors, that
can be stored locally or in the cloud such that various artificial intelligence and data mining
methods can be used. New insights about the plant growth process itself but also other new
services could therefore theoretically be provided to farm owners. Several scientific prob-
lems that could potentially be solved using computed-based methods had been identified.
Among them, we found predictive maintenance, anomaly detection, the detection of inter-
esting events, and plant growth optimization. From this list, it seemed like optimizing plant
growth, if solved, would have the biggest impact on profitability. Furthermore, the scientific
challenges behind building methods to optimize plant growth were attractive to me and to
the DM2L team of the LIRIS, which I was a part of. We therefore decided to put our focus
on the optimization of plant growth recipes in controlled environments.
In controlled environments such as vertical farms, the number of parameters influencing plant
growth can be relatively important (e.g., temperature, hygrometry, water pH level, nutrient
concentration, LED lighting intensity, CO2 concentration). These parameters can all be su-
pervised from the moment the plants are planted up to the day of harvest. Experts can
specify a priori the expected values for these descriptive attributes, following what we will
now call plant growth recipes. There are numerous ways of measuring the relevance of the
harvested crops (e.g., cost, yield, size, flavor, or chemical properties). In other terms, we can
retrieve several targets that can be used to evaluate the value of a given crop. In general, for
a given type of plant, some expert knowledge exists regarding the sub-systems (e.g., to model
the impact of nutrient on growth, the effect of LED lighting on photosynthesis, the energy
consumption w.r.t. the temperature instruction) but we are far from a global understanding
of the interactions between the various underlying phenomena. In other words, setting the
optimal instructions for the diverse set of parameters given an optimization task remains an
open problem.
Can we learn from available recipe records to suggest new ones that should provide better
results w.r.t. the selected target attributes? Furthermore, as the urban farm of FUL was
still in the prototype phase, we were aware that real-life growth data would be unavailable
for most of the doctorate. Therefore, can we also design innovative solutions to assess the
relevance of our developed methods, such that they can be directly implemented into working
urban farms once the time comes?
We decided to address the issue by means of pattern discovery techniques, a domain of
predilection of DM2L.
It is important to note that while the focus of the research was put on optimizing urban
farms, we decided to develop generic methods that could be applied to other projects related
to the so-called Industry 4.0 area.

1.2 Pattern Discovery and Multi-Objective Optimization

As society becomes ever more digitalized, giant improvements in computing power and data
storage have been made. While only a few years ago data availability used to be a hindrance
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to the development and validation of new methods, researchers now have at hand large
masses of information to exploit. Extracting only relevant and actionable patterns from such
data using computer-based techniques is a tangible challenge that has the potential to yield
enormous benefits for many entities.
The need to discover interesting patterns in data is nothing new. Association Rule Mining,
which allows for the discovery of rules describing outstanding relationships between several
attributes, was introduced almost 30 years ago (Agrawal et al., 1993). Let us now imagine a
dataset composed of several descriptive attributes about the eating habits of a large number
of people and whether they are overweight or not. With this data at hand, we could discover
rules such as:

soda “ “every day”^ junk food “ “often” ùñ overweight “ True

and
soda “ “every day” ùñ junk food “ “often”

From these rules, we can extract relevant information: (1) people who drink soda every day
and eat junk food often tend to be overweight, (2) people who drink soda every day are likely
to often eat junk food.
Nowadays, a large part of data that is available can be defined as labeled data, i.e., data
made of objects defined by a set of descriptive attributes and a target label. Discovering
interesting knowledge in such data – known as Subgroup Discovery (SD) – is an important
pattern discovery task that has captured the attention of researchers for 25 years. SD aims
at discovering subsets of objects in data – subgroups – whose target label distribution signif-
icantly deviates from that of the overall data. In SD, the search space of subgroups consists
of a large set of subgroup descriptions, and each description is made of a set of constraints
on some attributes of the dataset.
Association Rule Mining and SD are closely related. In Association Rule Mining several
attributes can exist in both the antecedent and consequent of the rules, and two given rules
can have different attributes as consequent. SD, however, restricts the discovery to rules
that discriminate a predefined target attribute. For example, given the previous example,
the target attribute could be the binary label “overweight”. Then, we could be interested in
discovering subsets of the population (subgroups) that are more likely to be overweight than
the norm (the overall dataset).
The global problem that is tackled in this thesis regards the development of innovative Pattern
Discovery methods to help solving optimization problems when typical existing algorithms
cannot be applied. We consider a setting where there is a need to discover optimal values of
descriptive attributes that lead to the optimization of one or several numerical targets. In
this context, the use of SD is relevant.
For example, let us imagine a scenario where we have at hand several attributes describing
isolation properties of houses and a target label that defines, for each house, its energy con-
sumption. In this setting, discovering a subgroup of houses that optimize energy consumption
is extremely relevant. Indeed, the description of the subgroup would detail interesting isola-
tion properties that lead to reduced energy consumption. The information provided by the
description of the subgroup is therefore directly actionable to optimize the process: it can
easily be exploited to build new houses with better isolation and reduced energy consump-
tion.
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When only one target label is considered, SD can be applied. However, it is inherently lim-
ited to a single target, and there is a need for a framework that allows discovering the same
kind of interesting information when several target labels have to be optimized at the same
time. Exceptional Model Mining (EMM) is the task that allows this. It is a pattern discov-
ery framework introduced more recently (Duivesteijn et al., 2016) as a generalization of SD.
EMM is able to handle data where two or more targets exist, enabling the discovery of more
complex interactions between variables. In EMM, we consider models instead of simple dis-
tributions on the target labels, and we look for subgroups whose models deviate significantly
from the same model fitted on the entire dataset. Using the same scenario as for SD but
now with both the energy consumption and the cost of the house as target labels, we could
be interested in discovering informative subgroups of houses that optimize the energy/cost
trade-off. Exploiting the descriptions of these subgroups would help in designing new houses
with optimized energy/cost trade-offs. This is a difficult task: discovering optimal trade-offs
between several variables is the subject of an entire field of research, namely Multi-objective
Optimization (MOO).

Having access to generic methods that can solve any given optimization problem is essential
to the development and proper functioning of numerous complex processes. Multi-objective
optimization (Deb, 2014) is a sub-field of Multi-criteria Decision Making that is focused on
finding globally optimal solutions for real-life problems that involve a set of usually conflict-
ing objectives. For simple problems, we can use methods that transform the multi-objective
optimization problems into single-objective ones and discover a single globally optimal so-
lution. When dealing with more complex scenarios – such as plant growth optimization –
scalarization techniques lead to sub-optimal results and using proper MOO methods that
yield not one, but a set of optimal solutions is needed.
Inspired by nature and based on concepts from the theory of evolution (Eiben and Smith,
2015), evolutionary algorithms, and more precisely genetic algorithms represent by far the
most widely used methods in MOO. As global optimization techniques, genetic algorithms
are driven to converge toward global solutions, rather than local ones. Therefore, in the MOO
setting, genetic algorithms aim at discovering the set of globally optimal solutions, i.e., the
globally optimal trade-offs between the considered objectives.
Cross-fertilization between MOO methods and Pattern Mining techniques has unfortunately
received little attention thus far, and even more so when the focus is being put on SD and
EMM. In this thesis, we consider several complex problems that appear when we want to
couple Pattern Discovery and MOO to solve real-life problems.

1.3 Problems Addressed in this Thesis

We want to design innovative Pattern Discovery methods to solve a particular set of Multi-
objective Optimization problems, i.e., settings where there is a need to discover optimal
parameter values when several numerical objectives are optimized at the same time. The
application scenario at the heart of this research is the design of better plant growth recipes
in controlled environments. Indeed, plant growth optimization is an intrinsic MOO problem
where several competing objectives – such as yield and energy cost – need to be optimized
concurrently. Therefore, optimizing plant growth means finding the best trade-offs between
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these objectives. This is a crucially complex task: when optimizing recipes, the underlying
model is unknown and experiments are severely limited due to time and cost constraints,
making it impossible to exploit existing MOO approaches. We therefore need to devise
methods that support the discovery of relevant and exploitable information in such MOO
settings. To answer these limitations, let us now identify 3 important and open problems
that need to be solved.

• Problem #1: How can we exploit Pattern Discovery to discover relevant parameter
values for Single-objective Optimization problems?

While numerous optimization problems are multi-objective by nature, others only involve
one objective to optimize. In the absence of knowledge about the underlying models that
govern these processes, we need to be able to provide actionable information about the ideal
parameters that lead to an optimized objective. For example, in the absence of knowledge
about the cost of growth recipes, finding the ideal growing conditions that lead to an optimized
yield is relevant. We therefore need to explore the development of pattern discovery methods
that will help solve this problem.

• Problem #2: How can we leverage Pattern Discovery to discover relevant parameter
values for Multi-objective Optimization problems?

As most real-life optimization problems involve multiple competing objectives, a large part of
our work needs to focus on devising methods that can enable the discovery of relevant infor-
mation about the parameter values that lead to optimal trade-offs between these objectives.
For example, plant growth optimization can involve not only maximizing the yield but also
minimizing the cost of the recipes at the same time. In this setting, finding the environment
parameter values that optimize both objectives simultaneously is crucial.
However, answering these two crucial problems would be of limited importance, if their rel-
evance could not be confirmed in a real-life situation. This leads us to introduce our third
and last problem.

• Problem #3: In the absence of real data, how can we assess the performance of our
contributions?

Since obtaining access to real-life plant growth data is difficult, we need to find ways to
assess the relevance and actionability of our methods on comparable problems and/or data.
Notice however that producing synthetic data can be hard when qualitative aspects are to
be assessed.

1.4 Contributions

Having now introduced the main problems that this thesis tackles, we detail our contributions.

1.4.1 OSMIND: A New Algorithm for Optimal Subgroup Discovery in
Purely Numerical Data

Subgroup Discovery is a local pattern detection technique that aims at discovering subsets of
objects in a dataset – subgroups – whose target label distribution significantly deviates from
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that of the whole dataset. Mining subgroups in purely numerical data has unfortunately
received little attention thus far. The few proposed methods usually involve the use of
discretization methods on the numerical attributes. It is however well-known for inducing
loss of information, suboptimal results, and irrelevant patterns.
To solve these issues, we propose OSMIND – Optimal Subgroup Mining in Numerical Data –,
an SD algorithm that enables the discovery of an optimal pattern in purely numerical data
when the qamean family of quality measures is considered. To ensure the optimality of the
search, we consider the search space of interval patterns as defined in (Kaytoue et al., 2011).
OSMIND leverages the concept of closure on the positives adapted to a numerical setting to
compress the size of the search space. Furthermore, we introduce a new tight optimistic
estimate and exploit advanced techniques that allow for the pruning of irrelevant patterns
efficiently. Finally, we demonstrate the relevance of OSMIND against the state of the art
algorithm SD-MAP* (Atzmueller and Lemmerich, 2009) in a thorough empirical evaluation.

1.4.2 Exceptional Pareto Front Mining: A New EMM Model Class to
Support Multi-Objective Optimization.

While OSMIND is a good first step toward discovering relevant parameter values (i.e., the
description of the optimal subgroup) driving the optimization of a process, it is by essence
limited to single-objective problems. However, in reality, most processes involve various com-
peting objectives that need to be optimized concurrently. We therefore consider Exceptional
Model Mining, a framework that generalizes SD and is able to deal with problems where
several objectives are involved and complex interactions between them have to be (better)
understood. While the literature on Pareto-based MOO is well-supplied, existing approaches
cannot be used when the underlying model is unknown and/or experiments are limited due
to time and cost constraints. There is a need for methods that would support the discovery
of relevant and exploitable information in such settings.
We design a new class of models for EMM, namely Exceptional Pareto Front Mining (EPFM),
and introduce two methods that fit the class: Exceptional Pareto Front Deviation Mining
(EPFDM) and Exceptional Pareto Front Approximation Mining (EPFAM). EPFDM discov-
ers exceptional deviations between the shape of the Pareto front left by the absence of a
subgroup of objects and the shape of the Pareto front of the overall dataset. EPFAM enables
the discovery of models that approximate exceptionally well the true Pareto front. To reframe
these contributions in our MOO setting: EPFDM can serve as a data analysis tool to dis-
cover interesting knowledge regarding MOO problems, while EPFAM enables the generation
of Pareto optimal solutions with a higher probability by exploiting the description of the best
subgroup (i.e., the best approximation). The relevance and effectiveness of both approaches
are confirmed through a thorough empirical study that includes a use case to hyperparameter
optimization in Machine Learning.

1.4.3 Optimizing Plant Growth Recipes in Controlled Environments.

The relevance of both our SD and EMM approaches has been validated to support the discov-
ery of relevant sets of parameter values for single and multi-objective optimization processes.
We investigate their actionability for plant growth recipe optimization in controlled environ-
ments.
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We first find a way to exploit an existing crop simulator to generate synthetic recipes that
replicate a controlled environment. Using synthetic recipes, we then investigate the optimiza-
tion of plant growth in a controlled environment when a single objective is considered. Since
existing methods fall short of real-life constraints, we propose a new iterative optimization
framework – based on a virtuous circle principle – that exploits the actionability of subgroup
descriptions to generate better growth recipes. Indeed, at each iteration, the description of
the optimal subgroup of recipes is directly used to sample the recipes of the next iteration.
Next, we show how EPFM can be used to support recipe optimization in a multi-objective
setting. In particular, we propose a simple iterative process that exploits EPFAM and the
descriptions of subgroups to iteratively optimize the yield/cost trade-off of recipes.
Finally, we apply both our SD and EMM methods to optimize the growth recipes of basil
thanks to a temporary access during summer 2020 to a real-life FUL operational urban farm.
Preliminary results confirm the potential of our methods to optimize recipes, both in single-
objective and multi-objective optimization settings.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

• In Chapter 2, we first propose an overview of the SD task, its different components, and
the various contributions which have been introduced since its inception. We propose
a more detailed review of the contributions for SD in numerical domains, i.e., when
numerical attributes and/or numerical targets are considered. We then investigate
optimal SD for each type of dataset that is commonly encountered in SD. Finally, we
consider the overall literature of EMM, the fairly recent generalization of SD.

• In Chapter 3, we first detail the reasons why studying the cross-fertilization between
Pattern Discovery and MOO is relevant. We then propose an overview of MOO, that
provides important information regarding the relevance and actionability of existing
methods to help solve our problems. We first review both classical and Pareto-based
approaches to MOO. Next, we consider the literature on quality evaluation and bench-
mark functions for MOO. Then, we detail existing tools and application cases of MOO.
Finally, we propose a detailed review of cross-fertilization between Pattern Discovery
and MOO.

• Chapter 4 is dedicated to our first contribution, the OSMIND algorithm for an optimal
SD in purely numerical data. We leverage the concept of closed interval patterns and
advanced enumeration and pruning techniques. The relevance of our algorithm is stud-
ied empirically and its added value with regard to the state of the art is illustrated.
This contribution has been published in the Proceedings of the 2020 Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining (PAKDD) (Millot et al., 2020a), and
the Proceedings of the 2020 conférence Extraction et Gestion des Connaissances (EGC)
(Millot et al., 2020b).

• In Chapter 5, we investigate methods that exploit Exceptional Pareto Front Mining
(EPFM), a new model class for EMM. Two approaches, Exceptional Pareto Front De-
viation Mining (EPFDM) and Exceptional Pareto Front Approximation Mining (EP-
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FAM) are detailed. Then, an in-depth empirical evaluation, as well as an application
scenario to hyperparameter optimization in Machine Learning, confirm the relevance
of these methods. This contribution has been partially published in the Proceedings of
the 2021 SIAM International Conference on Data Mining (SDM) (Millot et al., 2021).
An extended version is currently under review for publication in the Data Mining and
Knowledge Discovery (DAMI) journal (submitted in March 2021).

• Chapter 6 investigates the actionability of our contributions for plant growth recipe
optimization in controlled environments like urban farms, the real-life setting that has
motivated our research. Furthermore, an iterative optimization framework based on
the actionability of SD is introduced. The relevance of our methods to optimize plant
growth recipes in both single and multi-objective optimization settings is validated on
synthetic and real-life data. Part of this chapter has been published in the Proceedings
of the 2020 International Symposium on Intelligent Data Analysis (IDA) (Millot et al.,
2020c).

• Chapter 7 concludes and details perspectives for future work.

1.6 List of Publications

Peer-reviewed French national conferences:

• Alexandre Millot, Rémy Cazabet, and Jean-François Boulicaut. Découverte d’un
sous-groupe optimal dans des données purement numériques. In Extraction et Gestion
des Connaissances : EGC 2020, Bruxelles, Belgique, January 27-31, 2020, pages 25-36.
Best academic paper award.

Peer-reviewed international conferences with proceedings:

• Alexandre Millot, Rémy Cazabet, and Jean-François Boulicaut. Exceptional Model
Mining meets Multi-objective Optimization. In Proceedings of the 2021 SIAM Interna-
tional Conference on Data Mining, SDM 2021, Alexandria, Virginia, U.S, Apr 29, 2021
– May 1, 2021, pages 378-386.

• Alexandre Millot, Rémy Cazabet, and Jean-François Boulicaut. Optimal subgroup
discovery in purely numerical data. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, PAKDD 2020, Singapour, Singapour, May 11-14, 2020, pages 112-
124.

• Alexandre Millot, Romain Mathonat, Rémy Cazabet, and Jean-François Boulicaut.
Actionable subgroup discovery and urban farm optimization. In International Sympo-
sium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020,
pages 339-351.

The following work is currently undergoing the reviewing process:
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• Alexandre Millot, Rémy Cazabet, and Jean-François Boulicaut. Exceptional Model
Mining to support Multi-objective Optimization. In Data Mining and Knowledge Dis-
covery, 38 pages. (Submitted in March 2021).





Chapter 2

Subgroup Discovery and
Exceptional Model Mining

In this chapter, we have several goals in mind: (i) to propose a detailed overview of
both Subgroup Discovery and Exceptional Model Mining, (ii) to introduce an in-depth
review of both Subgroup Discovery in numerical domains and Optimal Subgroup Dis-
covery, as well as their current limitations, (iii) to introduce and formalize the concepts
necessary to the understanding of the rest of the thesis. We first propose an overview of
the Subgroup Discovery process, its components, and the numerous contributions which
have been made to the field since its inception. We propose a more detailed review
of the contributions proposed for Subgroup Discovery in numerical domains, i.e., with
numerical attributes and/or numerical targets. We investigate existing approaches that
enable the discovery of the optimal subgroup, for each type of dataset that is commonly
encountered in Subgroup Discovery. Finally, we consider the overall literature that deals
with Exceptional Model Mining, the generalization of Subgroup Discovery.

11
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2.1 Introduction

Over the past 25 years, the digital revolution led to giant improvements in computing power,
data storage, and information recording. While in the past data availability used to be a
problem for researchers, they now have to deal with large masses of information to exploit and
information overload is a real growing concern. Extracting interesting and actionable patterns
from such data using computer-based techniques is a real challenge that could yield enormous
benefits for researchers, companies, and society as a whole. The need to discover patterns
in data is nothing new. Association rule mining, which allows for the discovery of rules that
describe interesting relations between attributes of a dataset, was introduced almost 30 years
ago (Agrawal et al., 1993). Using data mining methods for knowledge discovery (Piatetsky-
Shapiro et al., 1996) then became an important area of research, that lead to the introduction
of numerous new contributions throughout the years. Although the development of new
techniques, algorithms, and methodologies for efficient pattern discovery in diverse scenarios
has been a focus of most researchers in the past, the focus has more recently turned to the
discovery of the right patterns (see, e.g., (Bringmann and Zimmermann, 2009)). Indeed,
when dealing with large search spaces, a gigantic number of patterns can be discovered, of
which only a few might actually be relevant and exploitable. Nowadays, a large chunk of data
that is being processed could be defined as labeled data, i.e., data made of objects defined
by a set of descriptive attributes and one or several labels. Discovering relevant patterns in
labeled data, e.g., thanks to Subgroup Discovery (SD) is an important data mining subarea
that has captivated the attention of numerous researchers.
The remaining of this chapter is organized as follows. Section 2.2 contains an overview of
SD and a formalization of the discovery task. In Section 2.3, we review SD with numerical
attributes. We investigate SD with numerical targets in Section 2.4. Optimal SD is considered
in Section 2.5. In Section 2.6, we review contributions made to EMM. Finally, Section 2.7
concludes.

2.2 Overview of Subgroup Discovery

2.2.1 Definition

Subgroup Discovery is a local pattern detection technique (Morik et al., 2005) whose birth
is attributed to (Klösgen, 1996, Wrobel, 1997), although the idea of discovering “interesting
subgroups in a database” was already pointed out in (Siebes, 1995). It aims at discovering
subsets of objects in a dataset – subgroups – whose target label distribution statistically
deviates from that of the overall dataset. To measure the significance of that deviation, a
quality measure that takes into account both the generalization power of the subgroup and
its deviation from the norm is usually used. Interestingly, subgroups are defined by means of
patterns that are also called descriptions. These patterns are by construction understandable
by humans and can help in discovering interesting knowledge. Following its introduction, nu-
merous contributions (Atzmueller, 2015, Herrera et al., 2011) which investigate the different
facets of SD have been proposed. It is interesting to note the close relationships that SD
holds with association rule mining (Agrawal et al., 1996) and frequent pattern mining (Han
et al., 2000), but also emerging patterns (Dong and Li, 1999) and contrast sets (Bay and
Pazzani, 2001).
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In Subgroup Discovery, a dataset pG,M, T q is a set of objects G, a set of attributes M ,
and a single target T . In a given dataset, the set of attributes M and the target T can con-
tain real or nominal values. Table 2.1 depicts an example of a dataset structure that can be
used in SD. It is made of 5 descriptive attributes, of which 4 are nominal and 1 is numerical.
It has a unique binary target.
SD has been mainly concerned with nominal attributes and binary target labels. To deal
with numerical data, prior discretization of the attributes (Fayyad and Irani, 1993, Garcia
et al., 2013) is usually required. Numerical target labels can also be discretized (Moreland
and Truemper, 2009). However, discretization generally involves loss of information such that
the optimality of the returned subgroups w.r.t. a given measure cannot be guaranteed.

Table 2.1: Toy example of a dataset.

gender age status occupation smokes Cancer

g1 M 25 Married Nurse Yes No
g2 F 59 Single Engineer Yes Yes
g3 M 64 Divorced Researcher No No
g4 M 33 Single Driver No No
g5 F 61 Married Teacher Yes Yes

The search space of subgroups consists of a very large set of subgroup descriptions (or
intents), and each description is made of a set of constraints on some attributes of the
dataset. Those constraints are linked to each other to form a proper subgroup descrip-
tion using boolean operators. The type of constraints considered on the attributes (e.g.,
ă,ą,ď,ě,“,‰,interval membership), as well as the type of boolean operators (e.g., AND,
OR, NOT ) define what we call the pattern language.
Considering the standard “ constraint for nominal attributes, intervals membership for
numerical attributes, and conjunctions pANDq of attributes to build the descriptions, an
example of subgroup description that respects the defined pattern language using the toy
dataset of Table 2.1 would be x age P [59,64] AND status = ‘Married’ y.

Given a pattern language and a dataset, subgroups can be enumerated by applying a
refinement operator either on their description (intent) or on their coverage (extent). We
now give proper definitions of the intent and extent of a subgroup.

Definition 1. The intent of a subgroup p is given by pd “ xϕ1, . . . , ϕ|M |
D

where each ϕi is a
restriction on the domain value of mi PM .

Definition 2. The extent of a given subgroup p, denoted extppq Ď G, is the set of objects of
G that satisfy the restrictions of pd.

For example, given the toy dataset in Table 2.1, we could consider a subgroup whose
intent is x gender = ‘M’ AND age P [25,64] y and whose extent is tg1, g3, g4u.
Although most SD settings consider a comparison between subgroups and the overall dataset,
comparing subgroups and their complements can be considered, e.g., in (Pieters et al., 2010).
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Definition 3. The complement of a subgroup p, denoted p, consists in the set of objects of
the dataset that are not in extppq.

For example, the complement of the subgroup defined in the previous example and sup-
ported by x gender = ‘M’ AND age P [25,64] y is tg2, g5u.
When a refinement operator is applied to the description of a subgroup p (i.e., when a new
constraint is added to the description), it produces a specialization of p.

Definition 4. Let pd and p1d be the descriptions of subgroups p and p1. p1d is said to be a
specialization of pd if and only if pd Ă p1d.

For example, a specialization of x gender = ‘M’ AND age P [25,64] y is x gender = ‘M’
AND age P [25,64] AND smokes = ‘No’ y, and its extent is tg3, g4u.

2.2.2 Search Space Exploration

Exploring the search space efficiently is among the most critical problems of SD since the
size of the search space grows exponentially in the number of attributes. Many enumeration
strategies for the subgroup discovery process have been studied. They can be grouped into 2
main categories: heuristic and exhaustive.
Heuristic approaches are employed when the search space is too large to be handled exhaus-
tively. Using such strategies, the guarantee to discover optimal patterns is lost, at the benefit
of tractability and running time. The goal is then to develop a strategy that enables the dis-
covery of high-quality patterns without neglecting diversity. Although several strategies have
been introduced (Lavrac et al., 2004, Luna et al., 2013, Mampaey et al., 2015), the search
space is most commonly explored using breadth-first search, as in the well-known beam search
algorithm. (Van Leeuwen and Ukkonen, 2013) and (Proença et al., 2021) contain examples
of algorithms that exploit beam search to discover high-quality non-redundant subgroups.
Sampling-based methods (Boley et al., 2011, 2012), although less common and heuristic by
nature, have also been used sparsely for subgroup discovery. Their main advantage is the
discovery of high-quality patterns in a very low amount of time. In this strategy, a statistical
distribution based on the optimization of quality criteria is usually designed, such that pat-
terns that optimize those criteria have a much higher probability to be generated.
Exhaustive algorithms, that trade-off execution time – and possibly feasibility – for the guar-
antee of the optimality of the discovery, are popular in SD. Since the search space is usually
too large to enumerate the patterns exhaustively, diverse techniques can be used to render
the search tractable. Compressing the search space through the use of equivalence classes
and closure systems (Boley and Grosskreutz, 2009, Grosskreutz and Paurat, 2011, Lemmerich
et al., 2010) are common approaches. Pruning the number of candidates using anti-monotone
constraints (Kavšek et al., 2003) and optimistic estimates on the quality of the specializa-
tions of subgroups (Belfodil et al., 2019a, Grosskreutz et al., 2008, Lemmerich et al., 2016a,
Zimmermann and De Raedt, 2009) is also widely used for exhaustive SD. Finally, special
data structures that improve the efficiency of the search can be used, such as in SD-Map
(Atzmueller and Puppe, 2006a) which exploits the well-known FP-trees (Han et al., 2000),
and (Lemmerich et al., 2016a) that considers a modified bitset-based data structure.
Finally, the use of anytime algorithms that allow for the retrieval of the best set of patterns at
any given moment during the search has been investigated, although sparsely too. MCTS4DM
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(Bosc et al., 2018) and Refine&Mine (Belfodil et al., 2018) are both anytime algorithms.
Anytime subgroup discovery combines some of the strength of the previous strategies: (i) it
provides subgroups instantly if needed, (ii) a set of high quality and highly diverse subgroups
can be retrieved at anytime, (iii) the quality of subgroups increases as time goes on, (iv) the
discovery goes from heuristic to exhaustive if the search is left to run until complete, though
it is not possible in most of the real cases. The use of an anytime algorithm for subgroup
discovery in labeled sequential data was also investigated in (Mathonat et al., 2019, 2021).

2.2.3 Relevance of Subgroups

When applying subgroup discovery methods, we have to deal with a huge number of pat-
terns, of which only a few will be of interest in a given context. There is therefore a need to
define criteria that will allow us to differentiate between relevant and irrelevant subgroups,
hopefully during the search and not in a post-processing step. The idea that (i) user-defined
constraints can specify a priori desired properties for patterns and (ii) enumeration techniques
can exploit (efficiently) these constraints to avoid the computation of irrelevant patterns has
given rise to the prolific research domain of constraint-based data mining. This has been the
core algorithmic contribution to the so-called inductive database framework (Boulicaut et al.,
2005, Dzeroski et al., 2010).

Primitive constraint can refer or not to data. Many useful primitive constraints make use
of interestingness measures (see surveys on such measures in for instance (Freitas, 1999, Geng
and Hamilton, 2006)). Researchers have studied smart properties of useful constraints to be
able to perform an efficient search of a priori relevant descriptive patterns like, for instance,
frequent and valid association rules. Constraint-based Subgroup Discovery has been studied
as well (Lavrač and Gamberger, 2006). For instance, we can consider syntactic constraints on
the descriptive attributes like a maximum number of conditions in the intent of the subgroups,
or a proper range of values for each attribute. We can also exploit constraints on the size of
the extent of the subgroup, i.e., a minimum (maximum) number of objects.

We may use primitive constraints that specify the search for the Top-K best patterns with
respect to a given quality measure. Indeed, considering a given dataset, the interestingness
of each subgroup can be measured by a numerical value. Usually, the value quantifies the
discrepancy between the target label distribution of the subgroup and that of the overall
dataset (i.e., its discriminative power). Since important discrepancies can easily be achieved
with small subsets of objects, a factor that takes into account the coverage of the subgroup
in some form (i.e., its generalization power) is usually introduced in the quality measure. In
SD, new quality measures can be designed or adapted for each given context. Therefore, we
find a large panel of indicators in the literature, such as measures for binary targets (Herrera
et al., 2011, Li et al., 2014), for numerical targets (Boley et al., 2017, Lemmerich, 2014), and
also for multi-class nominal targets (Abudawood and Flach, 2009).

For binary targets, the most commonly used measure is the Weighted Relative Accuracy
(WRAcc) (Lavrač et al., 1999). The WRacc compares the proportion of positive objects in
the extent of the subgroup to the proportion of positive objects in the overall dataset. It is
given by:

WRAccppq “ freqppq ˆ pδextppq ´ δextpHqq
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with freqppq the frequency of the subgroup in the dataset, δextppq the proportion of positive
objects in the extent of p, and δextpHq the proportion of positive objects in the overall dataset.
The frequency serves as a generalization optimizer so that subgroups with larger coverage
are favored. The WRAcc takes values in the range [-0.25,0.25].

As an example of quality measure for numerical targets, we propose to consider the
popular family of quality measures based on the mean introduced in (Lemmerich et al.,
2016a). Given a subgroup p, its quality is given by:

qameanppq “ |extppq|
a ˆ pµextppq ´ µextpHqq, a P r0, 1s

with µextppq the mean of the target label for p, µextpHq the mean of the target label for the
overall dataset, |extppq| the cardinality of extppq and a a parameter that controls the number
of objects in the subgroups. With lower values of a, smaller subgroups are favored, while it
is the opposite for larger values of a.

It is interesting to note that constraints on the minimum significance or interestingness
required for the subgroups can also be used to guide the search.

Generalization-aware subgroup discovery.

In SD, we often discover subgroups whose target distribution is close to that of one or
more of its generalizations. In this setting, the subgroups might be deemed interesting ac-
cording to a quality measure, although they are not since they do not deviate from their
generalizations. To remedy this problem, generalization-aware (Lemmerich and Puppe, 2011,
Lemmerich et al., 2013) subgroup discovery can be exploited to prune irrelevant specializa-
tions that might make the result set less diverse. In generalization-aware subgroup discovery,
the quality of a subgroup is measured by comparing it to its generalizations. To do this, a
relatively simple modification on common measures can be applied, such that we compare
the distribution of the target in the subgroup and the distribution of the target in its best
generalization. With generalization-aware SD, a basic measure can be defined as:

qppq “ genppq ˆ pψextppq ´max
GĂp

ψextpGqq

with genppq the generalization power of the subgroup, ψextppq the target label distribution in
the extent of p, and max

GĂp
ψextpGq the target label distribution of the generalization of p that

deviates the most from the overall dataset.

Statistical significance.

A common issue with subgroup discovery methods is the lack of statistical significance behind
many of the patterns described as “interesting” or “relevant”. Although several contribu-
tions have been made for the discovery of statistically significant patterns in association rule
mining (Hämäläinen, 2010, Zhang et al., 2004) and the generic pattern mining framework
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(Hämäläinen and Webb, 2019), few works have investigated the notion of statistical signifi-
cance in the patterns produced by subgroup discovery algorithms.
The most significant work in the SD field is that of (Duivesteijn and Knobbe, 2011). It is ar-
gued that SD suffers from the multiple comparisons problem, i.e., when looking for exceptional
deviations in a large search space, an algorithm is bound to discover interesting subgroups,
although most of those might correspond to false discoveries. The authors therefore build a
statistical model that detects false discoveries – through the generation of a random baseline
model – such that the statistical significance of each subgroup can be validated by comparing
its deviation from the statistical model. Going further, the authors propose the application
of this method to determine the statistical significance of quality measures. This is done
by measuring by how much the top subgroups found with a given quality measure deviate
from the random baseline generated for that measure. By applying this method to several
well-known quality measures, their statistical significance can be compared. Twelve measures
are compared, and the authors conclude that the worse measures are Purity and Sensitivity,
while χ2 has the highest statistical significance.
The discovery of statistically non-redundant subgroups was investigated in (Li et al., 2014).
To this end, odds ratio is used as a statistically sound quality measure, and the statistical sig-
nificance of the subgroups is measured using the confidence intervals of odds ratios. Finally,
they introduce an algorithm for the optimal subgroup discovery of statistically non-redundant
subgroups using tight optimistic estimates and a pruning strategy. However, this only works
when the odds ratio quality measure is considered.

Background knowledge and subjective interestingness.

Exploiting background knowledge (e.g., expert knowledge, domain literature, or informa-
tion specific to a given setting) can be an important part of the subgroup process for many
application scenarios. The concept of Expert-guided Subgroup Discovery was introduced in
(Gamberger and Lavrac, 2002a) and (Gamberger and Lavrac, 2002b). Expert-guided Subgroup
Discovery is an iterative discovery process that involves exploiting the input of an expert at
each step of the process. In a first step, a set of apriori interesting subgroups are selected
and presented to the expert, who gives directions according to his knowledge as to how to
proceed for the next iteration. The expert can select a subset of more interesting subgroups,
or give his input on the selection or removal of certain descriptive variables for example. Con-
sequently, the pattern mining process exploits both expert knowledge and objective measures
for the discovery of relevant and exploitable subgroups. Both contributions provide a proper
methodology for the discovery of exploitable information using expert knowledge, and apply
it to real-life scenarios to show its relevance.
Exploitation of background and expert knowledge in the subgroup discovery process has also
been studied in-depth for Knowledge-intensive Subgroup Discovery (Atzmueller and Puppe,
2006b, Atzmueller et al., 2004, 2005). They propose to apply as much background knowledge
as possible from the start of the discovery process, but also to add knowledge throughout the
interactive iterative process. For subgroup discovery, background knowledge can take many
forms. It can consist in applying constraints on the different components of the discovery
process. For example, constraints can be applied to the values of the descriptive attributes,
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but also constraints can be used to remove irrelevant attributes. Expert preferences can also
be included in the design of the quality measure. The pattern language can also be modified
to take into account relevant knowledge, and weights can be used on descriptive attributes to
drive the search on certain parts of the search space. Using background knowledge can help
avoiding the discovery of too many subgroups, but also discovering uninteresting subgroups.
Through application scenarios in the medical field, it was shown that exploiting background
knowledge can help focusing the search on already known interesting parts of the search
space, leading to the discovery of subgroups of higher quality.

Avoiding redundancy.

One of the main problems of subgroup discovery and other pattern discovery methods is
the sheer amount of redundant patterns that can be discovered during the discovery process.
There is therefore a need for techniques that favor the discovery of diverse subgroups. The
most common technique is to use weighted covering, which exploits a weighting scheme on
the objects of the dataset (Kavsek and Lavrac, 2004a, Kavšek et al., 2003, 2004, Lavrac et al.,
2004) in an iterative process. In this approach, each object of a given dataset is assigned a
weight (usually 1) at the start of the search process, and a quality measure that takes into
account the weight of each object in its computation is devised. Then, the given SD algo-
rithm is executed, and the best subgroup found is retrieved. Next, the weight of each object
that is part of the best subgroup is decreased following the predefined weighting scheme. The
SD algorithm is repeated once again, but this time using the reweighted objects, and so on.
The principle behind this method is to iteratively reduce the quality of subgroups made of
objects that have already been part of the best subgroups in the previous iterations. Using
this technique, the diversity of the set of discovered subgroups is usually greatly improved.
The well-known CN2-SD and Apriori-SD algorithms use such a weighting scheme. This
approach was inspired by the sequential covering approach introduced in the CN2 algorithm
(Clark and Niblett, 1989), although in CN2 the objects that are part of the best pattern at
each iteration are removed from the dataset instead of being reweighted. (Scholz, 2005) also
introduced an iterative process using a weighted scheme for the discovery of a small diverse
set of interesting subgroups. However, contrary to existing approaches, the new weighting
scheme allows for the incorporation of previously discovered knowledge in the reweighting,
such that already discovered knowledge should not be rediscovered in the next iterations. The
incorporation of prior knowledge is made possible through the use of Rejection Sampling.
The concept of subgroup set discovery was introduced by (Van Leeuwen and Knobbe, 2012).
In subgroup set discovery, instead of looking at individual subgroups, we are interested in
the discovery of sets of high-quality non-redundant subgroups. A method to mine for such
subgroup sets – called Diverse Subgroup Set Discovery (DSSD) – is devised for both subgroup
discovery and exceptional model mining. The relevance of the approach compared to weighted
covering is studied, and results show that DSSD can find comparable results in a significantly
lower amount of time.
In (Belfodil et al., 2019a), a new approach for subgroup set discovery that incorporates both
the interestingness and the diversity of the subgroup in the same quality measure is intro-
duced. The corresponding efficient algorithm, FSSD (Fast Subgroup Set Discovery) is able
to discover overall better and more diverse subgroups than CN2-SD and DSSD in a shorter



2.2. Overview of Subgroup Discovery 19

amount of time. The concept of skyline was exploited in (Van Leeuwen and Ukkonen, 2013)
to mine for sets of high-quality non-redundant subgroups that offer the best trade-offs be-
tween quality and diversity. (Li et al., 2014) also introduced an optimal algorithm for the
discovery of statistically non-redundant subgroups.
Finally, (Bosc et al., 2018) proposed an anytime algorithm – MCTS4DM – for the discovery of
a diverse set of subgroups by cross-fertilization of Monte Carlo Tree Search (MCTS) and SD.
MCTS finds local optima iteratively by generating random simulations of the search tree and
guiding the search exploiting an exploration/exploitation trade-off, which ensures the diver-
sity of the resultant subgroups. One of the main strengths of MCTS4DM is that any pattern
language can theoretically be used, e.g., nominal data, numerical data, using conjunctions,
or disjunctions on attributes, etc.

2.2.4 Optimizing the Search

Compressing the search space.

In subgroup discovery, the size of the pattern search space can quickly become too large
to handle, especially when exhaustive enumeration strategies are involved. In Association
Rule Mining, condensed representations of the data in the form of δ-free sets have been used
to discover simple rules the characterize classes (Crémilleux and Boulicaut, 2003). Using
closure operators and equivalence classes (Bastide et al., 2000, Grosskreutz and IAIS, 2012,
Soulet et al., 2004, Wang, 2005) are popular solutions to reduce the number of explored sub-
groups. (Garriga et al., 2008) introduced the concept of closed-on-the-positives for binary
labeled data by adapting the existing closure system of itemsets. In (Boley and Grosskreutz,
2009), the authors make use of extension-based classes of equivalence, such that each exten-
sion has only one pattern. (Lemmerich et al., 2010) developed the BSD algorithm for the
discovery of relevant subgroups. Relevant subgroups are a very restrictive class of patterns,
that is, a subset of closed and closed-on-the-positives subgroups. (Grosskreutz and Paurat,
2011) also introduced an efficient algorithm for top-K subgroup discovery using a relevancy
check on patterns. It is interesting to note that these methods for compressing the search
space can also be used to avoid redundancy, as in (Boley and Grosskreutz, 2009, Li et al.,
2014).

Pruning the search space.

When the number of potential subgroups is too large to be efficiently explored, pruning
techniques that allow for removing entire parts of search space from the discovery process
can be exploited. Optimistic estimates, that define upper-bound values for the quality of
entire sets of patterns, are the most common way of pruning the search space (Li et al., 2014,
Morishita and Sese, 2000): if the optimistic estimate of a subgroup is lower than the required
minimal quality, it is useless to consider its specializations.

Definition 5. Given a subgroup p and a quality measure q, an optimistic estimate for q,
denoted as bsq, is a function that gives an upper bound for the quality of all specializations
of p. Formally, @s Ď p : qpsq ď bsqppq.
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In (Grosskreutz et al., 2008), the authors introduce the concept of tight optimistic esti-
mates for subgroup discovery with binary targets. An optimistic estimate is said to be tight
if it is the most restrictive estimate that can be made (i.e., the lowest value) according to the
information available. Optimistic estimates for numerical targets have also been investigated
in (Lemmerich, 2014, Lemmerich et al., 2016a). Although optimistic estimates cover most
of the pruning used in SD, anti-monotone constraints can also be exploited in certain cases,
e.g., if a minimum coverage is defined for the subgroups.

Handling big data.

Subgroup discovery in big data is explored in both (Cano et al., 2008) and (Padillo et al.,
2016). Indeed, the subgroup discovery process faces difficulties when either the search space
is too large, or when the cost of computing each subgroup is too high. The use of a combina-
tion of stratification and instance selection algorithms is investigated in (Cano et al., 2008)
to remedy these issues. Using a different approach, (Padillo et al., 2016) makes use of the
MapReduce framework and optimistic estimates to efficiently explore the search space. Both
approaches show the relevance of their methods in experimental studies.

2.2.5 Tools and Applications

To democratize the use of SD, several easy-to-use tools have been developed. Although
numerous software allow for the development, plug-in, and use of subgroup discovery algo-
rithms (Alcalá-Fdez et al., 2009, Berthold et al., 2009, Meeng and Knobbe, 2011, Witten
and Frank, 2002), few specialized SD tools exist. The VIKAMINE (Visual, Interactive and
Knowledge-intensive Analysis and Mining Environment) system (Atzmueller and Lemmerich,
2012) was introduced in 2005, and then refined throughout the years. The system contains
several subgroup discovery algorithms, as well as widely used quality measures that enable
fast and efficient subgroup discovery for any user. Data preparation and visualization tools
are also available. Numerous advanced functions for the analysis of the characteristics of the
discovered subgroups are also accessible.
With Python becoming the standard programming language for data analysis-related tasks,
the pysubgroup (Lemmerich and Becker, 2018) package for subgroup discovery was recently
developed. Based on the most widely used data processing Python packages – Pandas and
Numpy – pysubgroup provides a simple and exploitable framework where only a few lines of
code are needed to run a subgroup discovery process on a dataset. It currently features the
most widely used subgroup discovery enumeration strategies (e.g., Apriori, beam search,
BSD, depth-first-search, best-first-search) and numerous quality measures for binary and nu-
merical targets. Furthermore, the package can easily be extended with new algorithms and
quality measures by users. Finally, visualization functionalities that improve the exploitabil-
ity of the results are also available.

Although the subgroup discovery process itself still struggles to find its place in the toolbox
of most companies for data-related tasks, numerous real-life application cases (Atzmueller
and Puppe, 2008, Lavrač et al., 2004) to subgroup discovery in diverse domains have been
presented in the last 20 years.
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A common use of subgroup discovery at the start of the century was its application in the
medical field. Indeed, we find several application cases detailed in (Gamberger et al., 2003)
for the detection of coronary heart disease risk groups, in (Mueller et al., 2009) for breast
cancer diagnosis, and also in (Gamberger et al., 2007) where an iterative approach to the
discovery process is applied to analyze brain ischaemia data.
Election data analysis was explored in (Grosskreutz et al., 2010). Using 2009 German federal
Bundestag election data and socio-economic information, the authors seek out to discover sub-
groups that describe interesting voting behavior. Among other results, the authors discover
subgroups of voters with a strong preference for the winning party, and whose socio-economic
description contains information such as “high average living space per accommodation” and
“high share of detached houses”.
More recently, SD was exploited to identify key factors of student academic performance
(Pass or Fail) (Helal et al., 2019). In their experiments, the authors find, among other re-
sults, that the students who are the most likely to fail either come from low socio-economic
backgrounds or were admitted through special entry requirements.
In (Centeio Jorge et al., 2021), spatio-temporal data that describes interactions between chil-
dren in the school play yard was analyzed and the subgroup discovery process was exploited.
One of the goals was to discover subgroups of children that presented exceptional behavior.
Relevant behaviors, although already known by domain experts, such as gender homophily,
and individuals having strong influence on groups of peers were detected.
Subgroup discovery was also applied to biological data aggregation in (Pieters et al., 2010),
to UK traffic data analysis in (Kavsek and Lavrac, 2004b), to logistics data in (Sternberg and
Atzmueller, 2018), to smart electricity meter data in (Jin et al., 2014), and for uncovering
structure-property relationships of materials in (Goldsmith et al., 2017).

2.2.6 Subgroup Discovery in Atypical Data

Although we have now given a wide overview on contributions related to SD, several other
specialized contributions also exist. We first find a Redescription Mining approach to SD in
(Gallo et al., 2008). Given a dataset made of boolean values, the goal is to discover subgroups
for which at least two significantly different descriptions exist (in terms of Boolean formulas).
Algorithms that exploit pruning techniques are introduced, and experimental results show
the relevance of the approach.
Community Detection in graphs using subgroup discovery is investigated in (Atzmueller et al.,
2016). The goal is to discover subsets of nodes (subgroups) that show a deviation from the
norm of the overall graph. An exhaustive branch-and-bound algorithm that exploits efficient
pruning techniques is also presented. The discovery of interesting subgroups in graph data
is also explored in (Deng et al., 2020). A method is developed to mine for pairs of nodes
(subgroups) whose edge density is significantly different (higher or lower) from that of the
overall graph.
Finally, subgroup discovery in sequential data is proposed in (Mathonat et al., 2019) and
has been extended in (Mathonat et al., 2021). The anytime sampling algorithm – called
SeqScout – exploits a multi-armed bandit model to mine interesting sequential patterns.
Given a budget, the algorithm discovers locally optimal subgroups. Furthermore, the method
possesses two main advantages (i) its configuration is relatively simple (ii) it is generic to
any quality measure. The relevance of the approach is verified through qualitative and
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quantitative results.

2.3 Subgroup Discovery with Numerical Attributes

2.3.1 Dataset, Pattern Language and Search Space

We assume that a numerical dataset pG,M, T q is a set of objects G, a set of numerical at-
tributes M , and a single target T . In a given dataset, the domain of any attribute m P M
is a finite ordered set denoted Dm, and the target T can contain real or nominal values.
Figure 2.1 (left) depicts an example of numerical dataset structure used in SD. It is made of
2 numerical descriptive attributes and a unique binary target.

To deal with numerical attributes natively, the pattern language usually involves conjunc-
tions or disjunctions of intervals over the domain of the considered attributes. An interval is
made of 2 components, called cut-points or bounds. The left bound is the lower bound, while
the right bound is the upper bound. Although closed intervals are much more common, open
and half-open intervals can also be used.
For example, given the toy dataset of Figure 2.1 (left), m1 P r2, 4s means that m1 ě 2
(lower bound) AND m1 ď 4 (upper bound). Furthermore, an example of a subgroup intent
given a pattern language that involves conjunctions of closed intervals is xm1 P r3, 4s AND
m2 P r3, 3sy, and the associated extent is tg5, g6u.

While pattern flooding – the exponential growth of the pattern search space as the number
of attributes and attribute values increase – is a well-known problem with nominal data, it is
even worse when it comes to numerical data. Indeed, given a set of M numerical attributes,
the size of the search space of intervals Σ is given by:

|Σ| “
ź

iPt1,...,|M |u

p|Dmi | ˆ p|Dmi | ` 1qq

2

For example, given the small toy dataset of Figure 2.1 (left), there are 10ˆ 6 “ 60 possibles
patterns. For larger datasets, it is easy to see how the number of patterns quickly becomes
intractable.
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Figure 2.1: (left) Example of a numerical dataset involving 2 numerical attributes and
a binary target. (right) Non-closed (c1 =
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D

, hatched) interval patterns.
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2.3.2 Numerical Attributes in Association Rule Mining

In Association Rule Mining (ARM), dealing with numerical attributes has seen numerous
contributions throughout the years. The first occurrence of rules involving optimized in-
tervals on numerical attributes dates back to 1996, with the introduction of Quantitative
Association Rules in (Srikant and Agrawal, 1996). In this paper, the authors define a new
type of rule where the antecedent can include intervals of discretized numerical attributes.
The rules take the following form: X P ra, bs ùñ Y , where X and Y are attributes and
ra, bs is an interval of values of X. The discretization, however, leads to loss of information
and possibly irrelevant rules.
(Miller and Yang, 1997) proposed an alternative quality measure that takes into account
the quantitative properties of intervals to define more relevant cut-points for numerical at-
tributes. They introduced a two-step approach. First, a clustering algorithm is applied to
discover the proper discretization of intervals, and then a standard ARM algorithm can be
applied. Using this method, the quality and relevance of rules are improved compared to
(Srikant and Agrawal, 1996). (Zhang et al., 1997) also proposed an approach that employs
clustering to improve interval-based ARM.
(Fukuda et al., 1996a) investigated the discovery of optimized association rules with numer-
ical attributes. In their work, they detail a method for finding the optimal interval in the
antecedent that leads to the highest rule quality (according to measures such as confidence
and support). However, only one interval can be used in the antecedent of the rules. An
extension of this method has been proposed in (Fukuda et al., 1996b) for rules with 2 intervals
in the antecedent. (Brin et al., 2003) proposed an improvement over (Fukuda et al., 1996a,b).
They propose to mine for optimized association rules using disjunctions of intervals. Inter-
estingly, their approach allows for more than 2 intervals in the antecedent of the rules.
An evolutionary approach that allows for the discovery of all frequent patterns involving
numerical attributes without a priori discretization was also investigated (Mata et al., 2002).
The detailed evolutionary algorithm enables the discovery of the intervals of each numerical
attribute that induce a frequent pattern. QUANTMINER (Salleb-Aouissi et al., 2007), a ge-
netic algorithm for quantitative association rule mining was also introduced. The algorithm
allows for the discovery of good intervals by finding optimized trade-offs between support
and confidence.
Finally, an innovative approach that considers not intervals, but a weighted sum of numerical
attributes as the antecedent of the rules was proposed in (Ruckert et al., 2004).

2.3.3 Numerical Attributes in Subgroup Discovery

Traditionally, subgroup discovery has been mainly concerned with nominal attributes and bi-
nary target labels. To handle numerical attributes, typical methods resort to the discretiza-
tion of the numerical variables into nominal ones (Fayyad and Irani, 1993, Garcia et al.,
2013), which inevitably leads to loss of information, suboptimal results, and even irrelevant
patterns. As pre-discretization – also called offline discretization – of attributes could not
offer satisfying results, online-discretization, which entails finding the best cut-points within
the SD algorithm, was more recently investigated.
To avoid the use of discretization techniques, (Kralj et al., 2005, Lavrač and Gamberger,
2006) explored the use of a binarization scheme where each distinct value of each numerical
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attribute is transformed into a boolean attribute. Doing this, it is then theoretically possible
to apply an exhaustive search algorithm for nominal data, such as SD-Map (Atzmueller and
Puppe, 2006a). Using such a technique, however, leads to a huge increase in the size of the
search space, making the exhaustive discovery process intractable.
In (Nguyen and Vreeken, 2016), the authors propose a method for mining better subgroups
in numerical data. They employ a binning strategy on each numerical attribute whose goal
is the optimization of the average quality of the subgroups generated by said binning. The
main advantages of the proposed model are that (i) by creating a discretization that seeks
to maximize the average quality of the patterns, they obtain better overall subgroups (ii)
the algorithm places no restriction on the target which can be univariate or multivariate,
and handles numerical, nominal and binary data. Although the proposed approach allows
for finding good numerical patterns for numerical targets, its non-exhaustive nature cannot
guarantee the discovery of optimal solutions.
The following investigated methods deal with numerical attributes natively, i.e., without us-
ing discretization. The BestInterval algorithm was proposed (Mampaey et al., 2012,
Mampaey et al., 2015) to compute the optimal direct specialization of a subgroup, given a
numerical attribute to optimize. It enables the discovery of the optimal interval that max-
imizes the quality of the pattern. This is done efficiently by only considering the subgroup
specializations that lie on the convex hull in ROC space. The procedure can be directly inte-
grated in a standard algorithm, be it a greedy approach such as beam search or an exhaustive
method. It is interesting to note that this only works for convex quality measures.
When it comes to exhaustive subgroup discovery in numerical domains, (Grosskreutz and
Rüping, 2009) introduced an efficient algorithm, MergeSD, which makes use of an advanced
new pruning scheme to optimize the search. No discretization is applied and overlapping
intervals are considered, such that no information is lost. The authors detail new bounds on
the quality of the specializations of a subgroup based on constraints proper to overlapping
intervals. Furthermore, the authors provide an in-depth comparison of the results obtained
using several commonly used discretization techniques, compared to the results obtained by
applying an exhaustive search with MergeSD. In their results, they conclude that using either
entropy discretization or frequency discretization with both overlapping and non-overlapping
intervals leads to suboptimal results in most scenarios.
MinIntChange (Kaytoue et al., 2011) was proposed as a new framework for the comprehen-
sive mining of numerical patterns with Formal Concept Analysis (FCA, (Ganter and Wille,
1998)). In FCA, an interval pattern represents a vector of intervals where each interval corre-
sponds to the space of values taken by an attribute. The goal is then to compute the complete
set of interval patterns efficiently. In their work, the authors exploit equivalence classes and
closure operators to efficiently and exhaustively traverse the pattern search space.

Let us provide several definitions from (Kaytoue et al., 2011).

Definition 6. Given a numerical dataset pG,M, T q, an interval pattern p is a vector of
intervals p “

@

rbi, cis
D

iPt1,...,|M |u
where bi, ci P Dmi, each interval is a restriction on an

attribute of M , and |M | is the number of attributes.

Next, we can consider the extent of an interval pattern.

Definition 7. An object g P G is in the extent of an interval pattern p “
@

rbi, cis
D

iPt1,...,|M |u

iff @i P t1, ..., |M |u,mipgq P rbi, cis.
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A specialization of an interval pattern is defined as follows.

Definition 8. Let p1 and p2 be two interval patterns. p1 Ď p2 means that p2 encloses p1,
i.e., the hyper-rectangle of p1 is included in that of p2. It is said that p1 is a specialization of
p2.

Finally, we can introduce the concept of closed interval pattern.

Definition 9. Given an interval pattern p and its extent extppq, p is defined as closed if
and only if it represents the most restrictive pattern (i.e., the smallest hyper-rectangle) that
contains extppq.

For example, in the toy dataset of Fig. 2.1 (left), the domain of m1 is t1, 2, 3, 4u and
xr2, 4s, r1, 3s

D

is the interval pattern that denotes a subgroup whose extent is tg3, g4, g5, g6u.
Fig. 2.1 (right) depicts the same dataset in a cartesian plane as well as a comparison between
a non-closed (c1) and a closed (c2) interval pattern.

Extending the work of both (Kaytoue et al., 2011) and (Garriga et al., 2008), (Guyet
et al., 2017) introduced an algorithm that enables the extraction of closed-on-the-positives
and relevant interval patterns for binary labeled data.
In (Bosc et al., 2018), a generic anytime algorithm based on Monte Carlo Tree Search (MCTS)
for SD is introduced. It exploits a closure system, it can find diverse subgroups, and it is
agnostic of the pattern language, enabling its use for SD in numerical domains without the
need for prior discretization. However, the use of MCTS leads quickly to high memory usage,
and no guarantee is provided on the optimality of the search on empirical data. Based on
the interval pattern framework, (Belfodil et al., 2018) also proposed an anytime algorithm
with guarantees to mine patterns in numerical domains with binary target variables. The use
of an advanced closure scheme on interval patterns removes the need for discretization, such
that the algorithm can run an exhaustive search if given enough time. However, no pruning
strategy based on optimistic estimates is employed. It limits the efficiency of the search and
its application to real problems.
In (Meeng et al., 2014), a heuristic ROC-guided algorithm for SD with numerical attributes
without prior discretization is introduced. A main advantage of this method is the fact that
contrary to typical beam search approaches, no parameter needs to be set. This is due to the
fact that at each level of the search, the algorithm defines an ideal size for the width of the
beam of the next level. When compared to typical beam search, it provides better results
faster. This, combined with the fact the numerical attributes are treated natively makes it
an attractive approach when exhaustiveness is not needed.
For a more exhaustive overview of numerical data in SD, the reader is invited to consult the
recent survey (Meeng and Knobbe, 2021), which explains in detail the problems surrounding
numerical SD, and provides a thorough comparison of existing methods.

2.4 Subgroup Discovery with Numerical Targets

Historically, SD has mostly been investigated for binary labeled data. For numerical tar-
gets, researchers made use of discretization techniques, that again inevitably lead to loss of
information and suboptimal results. More than that, numerous real-life applications of SD
involve numerical targets, and it would be useful that proper methods can treat the problem
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natively. Fortunately, the interest for numerical data in SD seems to have picked up in the
last few years, and several new contributions have been made. In this section, we propose an
overview of SD with numerical targets.

2.4.1 Numerical Targets in Association Rule Mining

To understand numerical targets in ARM, we have to go back to its inception, with the intro-
duction of Quantitative Association Rules in (Srikant and Agrawal, 1996). In their proposal,
the authors define a new type of rule that can take the form X P ra, bs ùñ Y P rc, ds,
where X and Y are attributes and ra, bs and rc, ds are intervals of values of these attributes.
While this type of rule does allow for the discovery of patterns with numerical intervals as
consequent, said intervals are based on discretization, which is well-known for not only being
suboptimal but can also lead to irrelevant rules. Furthermore, intervals make poor represen-
tatives of the distribution of numerical targets.
With the understanding that numerous problems cannot be solved using discretization, (Au-
mann and Lindell, 1999) extended the concept of Quantitative Association Rules by intro-
ducing a new rule concept where a rule consequent is the mean or the variance of a numerical
attribute. A rule is then defined as interesting if its mean or variance significantly deviates
from that of its complement. Two types of rules are defined: (i) categorical to quantita-
tive association rules that involve a nominal antecedent and a statistical distribution over
a numerical consequent, and (ii) quantitative to quantitative association rules where the an-
tecedent corresponds to an interval of a numerical attribute, and the consequent is a statistical
distribution over a numerical attribute. Furthermore, constraints on the support and confi-
dence on the rule are used, such that said rules are in essence very close to what we consider
nowadays as subgroup discovery.
Later on, (Webb, 2001) proposed an extension of such quantitative rules called Impact Rules.
In this work, the author argues that measures based on statistical distribution might lack
interest when one is looking to identify a group of objects with a large contribution with
regard to the total of a given target. New aggregate measures are therefore designed, such
as the sum of the values of the target in the subgroup.
Tight optimistic estimates for association rule mining with numerical targets were intro-
duced in (Morishita and Sese, 2000). Several common convex interestingness measures, such
as correlation and chi-squared are studied.

2.4.2 Subgroup Discovery Approaches

We now consider SD contributions that involve numerical targets. For a more exhaustive
view of the subject, the reader is referred to both (Lemmerich, 2014) and (Pieters et al.,
2010). Most typical SD methods employ standard discretization techniques when numerical
targets are involved. In (Moreland and Truemper, 2009) the TargetCluster algorithm
was introduced. It allows to find adequate cut-points for numerical target concepts using
a clustering approach. The method is compared to a discretization technique that com-
bines equal-width-intervals and equal-frequency-intervals, called EWF. The authors show
that TargetCluster supports the discovery of better subgroups than using standard tech-
niques. However, it still involves discretization, and therefore does not give a proper answer
to SD with numerical targets.
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The Explora system (Klösgen, 1996) introduced the first SD algorithm that enables the dis-
covery of subgroups with numerical targets without prior discretization. Explora allows for
the discovery of subgroups with a mean that significantly deviates from the overall dataset.
(Grosskreutz, 2008) introduced an iterative method for diverse subgroup set discovery with a
numerical target. They make use of a framework that combines standard SD and rule-based
regression to build a prediction model for the target value of the subgroups. In each iteration,
they look for the best subgroup in the subset of the overall data where the prediction cur-
rently deviates the most from the real target value. They show that the resulting subgroup
set possesses better diversity than using an exhaustive search, with or without the use of
condensed representations.
Later on, the SD-MAP* algorithm (Atzmueller and Lemmerich, 2009) was introduced as an
exhaustive subgroup discovery method for numerical targets. The algorithm takes advantage
of optimistic estimate pruning, using new tight optimistic estimates for well-known measures
such as Continuous Piatetsky-Shapiro, Continuous LIFT, and Continuous Weighted Relative
Accuracy. This work has been significantly extended in both (Lemmerich et al., 2016a) and
(Lemmerich, 2014). (Lemmerich, 2014) introduces a new algorithm for exhaustive SD with
numerical targets, called NumBSD, an adaptation of the BSD algorithm (Lemmerich et al.,
2010) used for SD with binary targets. It employs a special bitset-based data structure
that allows for the fast discovery of subgroups. Numerous new quality measures and cor-
responding optimistic estimates are also introduced, including mean-based, variance-based,
median-based, rank-based, and distribution-based measures. It however only works with
nominal attributes, and numerical attributes have to be pre-discretized which limits its us-
ability in real-life settings.
A new quality measure and corresponding tight optimistic estimate to improve existing qual-
ity measures was introduced in (Boley et al., 2017). In their work, the authors argue that
current measures lead to unreliable results since the variance is not optimized when look-
ing for high-quality subgroups. A branch-and-bound algorithm that exploits the proposed
tight estimator is developed and shown to be very efficient. However, it is only applicable
to median-based metrics, while most use cases involve other types of quality measures, e.g.,
based on the mean and/or the variance.
A more generic approach to SD with numerical targets is proposed in (Lijffijt et al., 2018). The
authors develop a method for SD whose goal is to discover subjectively interesting patterns,
i.e., that are interesting according to the knowledge of an expert. To do this, a background
distribution of the numerical target is generated using expert knowledge. The goal is then to
look for subgroups that maximize the information gained compared to this subjective distri-
bution. Two types of subgroups are mined using this method: location patterns, which look
for subgroups of objects whose statistical distributions significantly deviate from the back-
ground distribution, and spread patterns, which exploit each discovered significant location
pattern to look for exceptional dispersion around its statistical distribution. For example,
given a location pattern whose mean significantly deviates from expert knowledge, it could
also be defined as a spread pattern if its variance is somehow exceptional. The proposed
algorithms have been shown to be both effective and efficient for SD. It is interesting to note
that this framework is also extended to the case where multiple numerical targets exist, i.e.,
Exceptional Model Mining.
A Minimum Description Length (MDL) approach to SD with numerical targets has also been
proposed in (Proença et al., 2021). Their goal is to discover a set of diverse patterns, called
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subgroup list that when combined, offer a good overall representation of the distribution of
the numerical target over the whole dataset. A new quality measure that maximizes the
Sum of Weighted Kullback-Leibler divergences is introduced. It allows for the discovery of
subgroups whose mean significantly deviate from the norm while keeping the dispersion of
the objects low. Finally, a new greedy algorithm based on beam search, called SSD++, is
presented and shown to achieve better performance than existing methods.
Recently, (Meeng et al., 2020) introduced a new type of interestingness measure for numerical
targets. The authors explain that using simple statistical measures such as the mean or the
variance is inadequate, and that interesting subgroups can be missed. They argue for the
use of probability density models – using techniques such as kernel density estimation and
histograms – to discover more diverse types of deviations in the distribution of the targets.

2.5 Optimal Subgroup Discovery

Although most subgroup discovery methods support the discovery of a set of high-quality
patterns, algorithms that can discover the optimal subgroup with respect to a quality measure
or the proper set of top-K optimal subgroups are rare. Optimal SD necessarily implies the
use of exhaustive enumeration strategies, since other strategies, i.e., heuristic ones including
sampling-based and anytime ones provide no guarantee on the quality of the results.
Mining optimal patterns has been investigated in the past for association rule mining with
numeric attributes. The proper term in the domain is optimized association rules, and it
consists in finding a rule that contains one or a set of numerical attributes as antecedent, and
which optimizes a target quality measure, such as confidence, support, or gain.
Mining optimal subgroups has also been investigated, although unevenly depending on the
type of data considered. We first formally define the concept of optimal subgroup.

Definition 10. Let pG,M, T q be a dataset, q a quality measure and P the set of all subgroups
of pG,M, T q. A subgroup p is said to be optimal iff @p1 P P : qpp1q ď qppq.

Notice that several subgroups can have the same optimal quality. In such situations, it
is up to the user to find a way to determine which subgroup(s) is (are) more suited to his
needs.

Nominal attributes with binary targets. We first review contributions that find op-
timal subgroups in nominal data, i.e., data made of nominal attributes and a binary target
concept. This is the area that has seen the most work done for Optimal Subgroup Discov-
ery, probably due to the fact that nominal data has by far been the most studied setting
for SD. (Garriga et al., 2008) was the first to introduce the concept of close-on-the-positives
and the theory of relevance for subgroup discovery in labeled data. Using this closure sys-
tem, an exhaustive search can be applied to return the optimal subgroup. Cluster-grouping
(Zimmermann and De Raedt, 2009) exploits pruning techniques through optimistic estimates
in a branch-and-bound algorithm that allows for the discovery of the optimal subgroup in
nominal data. The popular SD-Map algorithm (Atzmueller and Puppe, 2006a) employs an
exhaustive enumeration strategy, made possible by the use of an optimized data structure
(FP-trees), with a guarantee to discover the optimal subgroup. (Li et al., 2014) can provide
a guarantee on the discovery of the statistically non-redundant optimal subgroup, although
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only in nominal data. The optimality of the search is ensured by the use of a pruning scheme
based on the interestingness measure considered. Finally, the concept of relevance, as in
(Grosskreutz and Paurat, 2011, Guyet et al., 2017, Lemmerich et al., 2010) can also allow for
the guaranteed discovery of the optimal subgroup.

Nominal attributes with numerical targets. We now review proposals made for Opti-
mal Subgroup Discovery in data made of nominal attributes, and a numerical target. Contri-
butions in this setting have been relatively rare. The SD-Map* algorithm (Lemmerich et al.,
2016a), an improved version of SD-Map is perhaps the most well-known that can handle
numerical targets with an exhaustive strategy. Using the same data structure as SD-Map,
the authors also employ advanced pruning techniques based on tight optimistic estimates to
make the search tractable. However, only nominal attributes can be handled, meaning that
numerical attributes have to be discretized. Building on the work from (Lemmerich et al.,
2016a), (Boley et al., 2017) develop a new class of quality measures and corresponding tight
optimistic estimates for numerical targets. The authors argue that current quality measures
are insufficient since they do not optimize for the error or dispersion of the subgroups. Using
this new scheme within a branch-and-bound algorithm, the authors guarantee the discovery
of the optimal subgroup with regard to the proposed quality measure.

Numerical attributes with binary targets. Although several contributions have been
made for subgroup discovery with numerical attributes, very few provide a guarantee on
the optimality of the search. (Meeng et al., 2014) introduced a ROC-guided algorithm for
subgroup discovery with numerical attributes. However, the optimality guaranteed by their
method is not based on the quality of the subgroups, but on a minimized cost regarding a
cost assignment for false positive and false negative objects. Therefore, we can not consider
their contribution as being able to provide the optimal subgroup. MergeSD (Grosskreutz
and Rüping, 2009) allows for an exhaustive search in numerical data. Overlapping intervals
are considered without pre-discretization, such that exhaustiveness can be guaranteed. This
is made possible by introducing and exploiting new advanced pruning techniques. Finally,
the Refine&Mine algorithm (Belfodil et al., 2018), although based on an anytime strategy,
can return the optimal subgroup, provided that enough time is given to the algorithm to
converge. However, as it was not created with the specific goal of discovering an optimal
subgroup, pruning strategies are not exploited.

Numerical attributes with numerical targets. The investigation of purely numerical
data in SD has been close to non-existent. The few contributions that consider numerical
targets either ignore the case of numerical attributes or employ discretization technique to
make the search tractable. MCTS4DM (Bosc et al., 2018) is, to our knowledge, the only
known algorithm that theoretically enables the discovery of optimal subgroups in purely
numerical data without prior discretization, due to its agnosticism toward both the used
pattern language and quality measure. This is also only possible if a large enough time
budget is given so that it produces an exhaustive search. However, there is no guarantee
that the search will be complete in a finished amount of time, even for small datasets, as the
algorithm was not built for exhaustive search and lacks advanced pruning and compression
strategies. Furthermore, MCTS4DM is limited by its high memory usage, which is problematic
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for exhaustive exploration. To the best of our knowledge, there is therefore a research gap
that needs to be filled regarding Optimal Subgroup Discovery in purely numerical data when
no discretization techniques are allowed.

2.6 Overview of Exceptional Model Mining

2.6.1 A Generalization of Subgroup Discovery

Exceptional Model Mining (EMM) was introduced over 10 years ago in (Leman et al., 2008) as
a generalization of subgroup discovery for problems involving multiple targets. In subgroup
discovery, we have only one target. The quality of a subgroup is usually defined as the
discrepancy between the distribution of the target variable in the subgroup and its distribution
over the entire dataset. Exceptional Model Mining enables for two or more target variables
depending on the chosen model class. A model class can be any mathematical model that
involves and measures complex interactions between a set of targets. In EMM, a dataset
pG,M, T q is a set of objects G, a set of attributes M and a set of targets T . In a given dataset,
the set of attributes M and the set of targets T contain real and nominal values. Table 2.2
depicts an example of dataset used in EMM made of 5 descriptive attributes (nominal or
real) and 2 numerical targets.

Table 2.2: Example of a dataset with 5 attributes (nominal and real) and 2 numerical targets.

m1 m2 m3 m4 m5 t1 t2

g1 1.4 A F 3 0 0.5 1200
g2 5.6 B G 6 1 0.3 400
g3 10.2 A H 8 0 0.75 2560
g4 7.3 C H 7 1 0.97 1812
g5 9.4 D H 2 1 0.15 727

Most definitions that hold for SD also hold for EMM, i.e., pattern language, intent, extent,
and specialization. It is important to note that since a given model class only involves the
target variables, pattern languages that can be used for EMM are the same as those used
for SD. In the standard EMM setting, the interestingness of a subgroup is measured by a
numerical value that quantifies the deviation between the model fitted on the subgroup and
the model fitted on another subset of the data. There are usually two options about the
subset that is chosen for comparison: we can compare the model of the subgroup either to
the model of its complement or to the model of the whole dataset. Choosing one or the other
can lead to very different results and may depend on the considered application setting. In
(Duivesteijn et al., 2016), the authors show that there is not always a clear-cut best solution
for which subsets to compare, and that several parameters should be taken into account by
the Exceptional Model Miner before making a choice.
From an algorithmic perspective, the search space of subgroups for most EMM algorithms
is traversed in a general to specific way. At each stage, a specialization operator is applied
to create more complex subgroups by addition of a restriction on an attribute. Since EMM
is still a fairly recent addition to the pattern mining field of study, relatively few works have
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been introduced so far, although its popularity seems to have picked up in the last couple of
years.

2.6.2 Enumeration Strategies

While EMM is still in its infancy, several heuristic and exhaustive, methods have been devel-
oped. We investigate the several enumeration strategies which have been introduced to make
EMM efficient. We first explore heuristic proposals.
In the introduction of EMM (Leman et al., 2008), the researchers proposed the use of a
standard beam search strategy, an algorithm that performs a level-wise exploration of search
space. A standard beam search possesses two main parameters: a maximum depth of ex-
ploration d (i.e., the maximal number of restrictions in the description of a subgroup), and
a beam-width w (i.e., the number of subgroups specialized at each level). In their strategy,
the authors run the search starting from the most general pattern and apply a specialization
operator to generate the candidates of the lower levels. At each level, the best w subgroups
according to the chosen quality measure are stored to be specialized in the next level. During
the whole search, the overall top-K best subgroups are also stored and updated when better
subgroups are discovered. The search stops once the level d of exploration is reached, and
the best subgroups are returned. In (Duivesteijn et al., 2016), the authors provide a more
detailed version of this strategy, that they name Beam Search for Top-q Exceptional Model
Mining. Since then, beam search has become the most common strategy for EMM. It is in-
teresting to note that although beam search for EMM is an interesting heuristic, it provides
no guarantee on the discovery of the optimal subgroup.
The use of a new heuristic strategy called Tree-Constrained Gradient Ascent (TCGA) to
mine for exceptional models is developed in (Krak and Feelders, 2015). A goal of TCGA
is to find relevant and exploitable information about the influence of a single object on the
quality of a subgroup. To do that, they rewrite the quality measure as an objective function
to be optimized. They transform the notion of subgroup into fuzzy subgroup by creating a
concept of inclusion weight for each object of a given extent. Then, using a numerical op-
timization technique – gradient ascent – they find the locally optimal extent that optimizes
the objective. The weights of each object of the extent are then rounded to obtain a crisp
extent. The next step is to discover the subgroup description from the extent. To ensure
that concise descriptions can be extracted from extents, the numerical optimization step is
modified, leading to the introduction of a constrained gradient ascent method. The relevance
of TCGA is studied in-depth on synthetic and real-life data for linear regression EMM as
well as for typical SD. On synthetic data, TCGA is found to be superior to beam search.
However, on real-life data, TCGA performs as well as beam search for EMM, and way worse
than beam search for SD.
In (Lemmerich et al., 2012), the authors introduce the first method for fast exhaustive EMM,
titled Generic Pattern Growth (GP-growth). In this work, the well-known concept of FP-tree
(Han et al., 2000) is extended to mine for exceptional models. To do this, a new concept
called valuation basis is presented, which replaces the original frequency data used in typi-
cal FP-trees. A valuation basis consists of the minimal amount of information about a set
of objects needed to compute the model corresponding to the considered model class. For
example, given the simplistic mean model with one target variable, a valuation basis could
involve (i) the number of objects, (ii) the sum of the values of the target variable of the
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objects considered. Using only this information, the mean target value of the objects can be
reconstructed, and a metric that measures the discrepancy between this mean and that of the
entire dataset can be computed. The same goes for more complex model classes. In order for
GP-growth to be efficient, valuation bases have to be as small a possible. It is interesting to
note that GP-growth for EMM is a generalization of both FP-growth and SD-Map, as these
algorithms can be implemented with GP-growth by simply using the corresponding valuation
basis. Among the contributions, several valuation bases for well-known EMM model classes –
such as variance, correlation, and linear regression – are also detailed. In the empirical study,
the superiority of GP-growth compared to a naive exhaustive search algorithm is confirmed.
Finally, we investigate the use of weighted controlled pattern sampling for instant EMM pro-
posed by (Moens and Boley, 2014). In their work, the authors argue that interactive discovery
is necessary to make pattern discovery more relevant and actionable to users. For interactive
discovery, heuristic and exhaustive approaches are usually too slow, justifying the need for
algorithms that can discover high-quality patterns instantly. In this paper, Controlled Direct
Pattern Sampling (CDPS) (Boley et al., 2012) is extended by applying a utility weight to each
object of the dataset. Using these weights, the notion of weighted frequency – the relative
total weight of a pattern compared to the total weight of the dataset – can be computed.
Then, using a predefined distribution that gives high generation probability to patterns with
high weighted frequency in their positives objects (or to other subsets of the data depending
on the model class and the definition of interestingness considered), random patterns can
be sampled from the search space. By exploiting this method, subgroups with high gener-
alization and whose models deviate significantly from the global model can be discovered
almost instantly. In their experiments, the authors confirm the relevance of their approach
for instant discovery of subgroups whose quality is close to that of a beam search strategy.

2.6.3 Model Classes

In EMM, each problem to be solved relates to a particular model class. Indeed, if we consider
the two following problems: mining for exceptional correlations and mining for exceptional
Bayesian networks, each problem needs its own approach and quality measures to be solved.
The notion of model class has been introduced in (Leman et al., 2008).
In this paper, 3 classes of models are presented as a basis to justify the relevance of EMM.
First, the correlation model class is introduced, for which the authors consider 2 numerical
variables and their linear association according to their correlation coefficient. We now detail
the correlation model and 2 of its quality measures for a better understanding of the EMM
framework. The objective is to estimate the deviation between the correlation of a given
subgroup p, and the correlation of its complement. Given the two numerical targets t1 and
t2, the correlation coefficient is estimated by the sample correlation coefficient r as follows:

r “

ř

pti1 ´ t̄1qpt
i
2 ´ t̄2q

b

ř

pti1 ´ t̄1q
2
ř

pti2 ´ t̄2q
2

with ti the ith object of t and t̄ the mean of t.
A first simple quality measure that can be defined is the absolute difference between the
correlation of the subgroup, denoted G, and its complement, denoted Ḡ. Therefore, we have:

qabsppq “ |rG ´ rḠ|
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This measure however does not take into account the generalization of the subgroup. Conse-
quently, small subgroups whose correlation can easily deviate from the norm would be given
a high quality. To resolve this issue, a measure that involves the entropy of the split between
the subgroup and its complement can be used (Leman et al., 2008).

Definition 11. The entropy of a subgroup p is:

Entropyppq “

ˆ

´
n

N
lg
´ n

N

¯

´
N ´ n

N
lg

ˆ

N ´ n

N

˙˙

where lg denotes the binary logarithm, n the number of objects of p, and N the number of
objects of its complement.

The entropy favors balanced splits over unbalanced ones. It returns 0 when the subgroup
or its complement is empty. It returns 1 when a perfect 50{50 split is achieved. Notice
however that it introduces a bias against subgroups with a large cover. The improved quality
measure is therefore as follows:

qentppq “ Entropyppq ˆ |rG ´ rḠ|

Using any of these 2 quality measures and the model class defined, a standard EMM algorithm
can then easily be used to mine for exceptional correlation models.
Next, a model class for regression problems is investigated. In their work, the authors consider
the simple linear regression model described by yi “ a` bxi` ci and introduce a metric that
measures the significance of the slope difference between the model fitted on the subgroup,
and the model fitted on its complement.
A model class for classification models is also explored. Although EMM allows for any
complex method, only 2 simple classifiers are considered: Logistic Regression and Decision
Table Majority (DTM) Classifier. For both classification methods, an appropriate quality
measure is detailed.

For a recent and up-to-date introduction to Exceptional Model Mining, the reader is re-
ferred to (Duivesteijn et al., 2016).
After the introduction of the EMM framework, researchers started working on more complex
problems than what had been done until then, when subgroup discovery involving a single
target was the only tool available. In (Duivesteijn et al., 2010), the discovery of exceptional
Bayesian networks is investigated. The authors argue that when dealing with datasets with
several discrete targets, studying their interdependencies is an interesting task. To do this,
the interdependency relationship is modeled by Bayesian networks. They look for subgroups
whose network structure is significantly different from the structure of the model over the
entire dataset. A quality measure based on edit distance is designed to discover those ex-
ceptional models. The relevance of their approach is verified statistically on several datasets
from different domains.
In (Duivesteijn et al., 2012a), the authors take on what they call the “workhorse” of data anal-
ysis problems, namely Linear Regression. They introduce a new model class for exceptional
regression model mining thanks to a quality measure based on Cook’s distance. They also
exploit interesting bounds to avoid computing the model on unfit subgroups. Model classes
for classification problems have also been explored in (Duivesteijn and Thaele, 2014) and
(Duivesteijn et al., 2012b). In the first approach, the authors look for subspaces of the search
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space where a given classifier performs particularly well or badly, giving the user insights
on which parts of their classifier they must focus on. In the second approach, the authors
propose a method for identifying and exploiting exceptional interdependencies between labels
in a multi-label classification setting, allowing them to improve the classifier overall quality.
In 2016, (Lemmerich et al., 2016b) introduced a new EMM class exploiting first-order Markov
chains to mine for exceptional transition behavior in sequential data. Discovering deviating
models can be useful, for example on mobility and internet user data. A proper quality mea-
sure adapted to the model class is detailed, and the applicability of the approach is studied
on synthetic and empirical data. Exceptional Preferences Mining (EPM) (de Sá et al., 2016)
was introduced as a cross-fertilization between EMM and preference learning. In EPM, they
look for subgroups whose preference relations significantly deviate from the norm, using a
specialized quality measure. (Luna et al., 2016) formalizes the concept of Exceptional Re-
lationship Mining (ERM) and details a grammar-guided genetic programming algorithm to
discover such models. The goal of ERM is to discover any kind of exceptional relationship
between a set of variables. In their empirical study, they look for exceptional relationships
between several quality measures used in association rule mining. Interestingly, they find
that under some constraints, the support and leverage measures are negatively correlated,
which goes against expert knowledge.
The discovery of exceptional correlations has also been investigated more in-depth in (Dow-
nar and Duivesteijn, 2017), (Hammal et al., 2019) and (Luna et al., 2020). In (Downar
and Duivesteijn, 2017), the authors mine for exceptional monotone relations between two
predefined targets in terms of rank correlation. The work of (Hammal et al., 2019) can be
seen as an extension of (Downar and Duivesteijn, 2017), which generalizes the discovery of
exceptional rank correlations to any number of targets. In (Luna et al., 2020), the authors
observe that current EMM proposals only consider the discovery of one exceptional behavior
for a given subgroup. This leads to the question of whether finding subgroups with multiple
occurrences of exceptional behavior is possible. In this work, a first answer is given with
the introduction of the Subsets of Pairwise Exceptional Correlations (SPEC) model class. In
SPEC, a subgroup is deemed exceptional if multiple pairs of target concepts show exceptional
rank correlation behavior. Since typical EMM algorithms can not be exploited for SPEC,
the authors also introduce several heuristic and exhaustive search strategies.
In (Belfodil et al., 2017), the discovery of exceptional pairwise behavior in voting and rating
data is investigated. For example, there is usually a clear difference of position between
far-left and far-right political parties on most issues. However, for some issues, these po-
litical parties might present the same behavior, which can be reflected in voting data. In
their approach, the authors look for such exceptional behavior. To that end, the Discovering
Similarities Changes method and its corresponding quality measure are introduced and val-
idated on European parliament votes and collaborative movie reviews. Following this work,
(Belfodil et al., 2019b) detailed a new method for the discovery of statistically significant
exceptional agreements or disagreements within groups. The DEvIANT branch-and-bound
algorithm is introduced, which leverages several techniques for efficiency optimization, such
as closure operators, optimistic estimates, and confidence intervals.
Recently, we also find proposals about the discovery of exceptional models with real-valued
targets (Lijffijt et al., 2018), exceptional descriptions of people (Hendrickson et al., 2018),
exceptional mediation models (Lemmerich et al., 2020), and exceptional spatio-temporal be-
havior (Du et al., 2020).
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2.7 Conclusion

In this chapter, we investigated the literature of SD, a pattern discovery task that was first
introduced 25 years ago. We first gave a full overview of SD, including its relationship to
other mining tasks, its formalization, and the many contributions w.r.t. its different compo-
nents.
As part of this thesis is focused on SD in purely numerical data, we investigated in detail both
SD with numerical attributes and SD with numerical targets. SD with numerical attributes
has historically been of relatively low interest for researchers, with few contributions existing
in the literature. Fortunately, the study of numerical attributes has been receiving more at-
tention for a few years now. When considering numerical attributes, relatively few approaches
propose proper strategies that do not rely on discretization techniques. Therefore, methods
for treating numerical attributes natively will likely be of interest to researchers in the near
future. SD with numerical targets has also seen sparse contributions. This is problematic
since many real-life scenarios involve numerical objectives, further demonstrating the need
for proper techniques that avoid loss of information.
As we are interested in discovering optimal parameter values for optimization problems, al-
gorithms that allow for the discovery of an optimal subgroup are highly relevant to us. For
this reason, we reviewed Optimal SD in different types of data. While exhaustive approaches
are relatively numerous for nominal data, numerical domains once again fall short of what
would be expected, given the pervasiveness of numerical data nowadays. Indeed for SD in
data with numerical attributes and a binary label, we found only 2 methods that allow for
an exhaustive search, and both employ suboptimal techniques for search space compression
and pruning. For SD in purely numerical data (i.e., numerical attributes and numerical tar-
get), there is currently no approach that has proved empirically its ability to discover an
optimal subgroup. The only existing method, MCTS4DM, can only find an optimal subgroup
in principle. Indeed, the drawbacks of the method (i.e., high memory usage, lack of pruning,
and optimized compression scheme) would likely render the search intractable even for small
datasets.
We also investigated EMM, a generalized framework for SD with an undefined number of
targets. Few contributions have been made to the field, especially in the first few years of
the previous decade. Fortunately, more and more approaches are being introduced and its
interest seems to have increased recently.

Let us now imagine a setting where we have at hand a purely numerical dataset – i.e.,
made of a set of numerical attributes, and one or several numerical targets – and we want
to find the attribute values that optimize the target(s). In this setting, using SD or EMM –
depending on the number of targets – is extremely relevant. Indeed, the description of the
best subgroups could provide interesting and actionable information regarding the attribute
values that lead to optimized targets.
For SD (i.e., a unique target to optimize), discovering an optimal subgroup would be even
more relevant than discovering the top-K subgroups with no optimality guarantee. There is
currently no efficient algorithm that support the discovery of the optimal subgroup for this
kind of problem. For EMM (i.e., a set of targets to optimize simultaneously), discovering
subgroups that provide actionable information on the attribute values that lead to optimal
trade-offs between several targets is a problem that has not been investigated yet. These
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observations motivate our contributions in Chapter 4 and Chapter 5.



Chapter 3

Overview of Multi-Objective
Optimization

In this chapter, we propose an overview of Multi-objective Optimization (MOO). We aim
to show the limits of existing methods in our context and to motivate why a combination
of Pattern Discovery and Multi-objective Optimization concepts could be appealing. We
first review classical approaches, which involve an a priori definition of the importance
of each objective. Pareto-based Multi-objective Optimization – a framework that does
not require knowledge about the importance of the objectives – is then discussed. The
literature of quality evaluation methods is studied, and existing benchmarks, tools, and
application cases are detailed. Finally, cross-fertilization between Pattern Discovery and
Multi-objective optimization is considered.

37
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3.1 Introduction

Multi-objective optimization (Deb, 2014) is a sub-field of Multi-criteria Decision Making
(Chankong and Haimes, 2008, Tzeng and Huang, 2011, Zeleny, 2012) that is focused on find-
ing globally optimal solutions for real-life problems that involve a set of usually conflicting
objectives. For simple problems, applying methods that transform the multi-objective op-
timization problem into a single-objective one is often enough, and yields a single globally
optimal solution according to the applied scalarization method. When dealing with less triv-
ial scenarios, scalarization techniques lead to sub-optimal results, and the use of proper MOO
methods that yield not one, but a set of Pareto optimal solutions is needed.
Inspired by nature and based on concepts from the theory of evolution (Eiben and Smith,
2015), evolutionary algorithms, and more precisely genetic algorithms represent the most
widely used methods in MOO. As global optimization techniques (Törn and Zilinskas, 1989),
genetic algorithms are driven to converge toward global solutions, rather than local ones.
Therefore, in the MOO setting, genetic algorithms aim at discovering the set of globally op-
timal solutions, i.e., the globally optimal trade-offs between the considered objectives.
Reinforcement Learning (Sutton and Barto, 2018, Szepesvári, 2010) is a closely related field
that aims at optimizing a long-term objective through sequential decision making. In cases
where multiple long-term objectives have to be optimized simultaneously, Multiobjective
Reinforcement Learning (Liu et al., 2014, Wang and Sebag, 2012) that often exploits Pareto-
based concepts is used.
Another related area of research is optimal design (Pukelsheim, 2006, Silvey, 2013), which is
concerned with finding the set of optimal parameter values for designing a given experiment,
process, or product. In optimal design, several possibly conflicting parameters have to be
considered and optimized at the same time to obtain the optimal output.
Finally, active learning (Ienco et al., 2013, Settles, 2012) is another close field of research. In
active learning, a learning algorithm involves the user in an interactive way to label data to
optimize the quality and reduce the number of experiments needed to attain good results.
This relates to interactive MOO methods, where user preference is taken into account after
each iteration to converge faster toward optimal solutions.
In this thesis, we consider an MOO setting where there is a need to discover relevant informa-
tion about a set of descriptive attributes when several numerical targets have to be optimized
at the same time. The corresponding application scenario that motivates this research is the
design of better plant growth recipes.
Plant growth optimization is an intrinsic MOO problem. Indeed, when trying to optimize
the yield, the size, or the taste of plants, other parameters like the energy cost have to be
considered, especially in controlled environments. Therefore, optimizing plant growth means
finding the best trade-offs between several competing objectives. This is a difficult task: when
optimizing recipes, the underlying model is unknown and experiments are limited due to time
and cost constraints, making it impossible to exploit typical MOO approaches. There is a
need for methods that would support the discovery of relevant and exploitable information
in such MOO problems.
A first intuition is to cross-fertilize Pattern Discovery methods and MOO-related concepts.
Indeed, Pattern Discovery could be exploited to discover interesting insights about the de-
scriptive attributes, while MOO could be leveraged to optimize the numerical targets simul-
taneously.
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We now propose an overview of MOO, that provides important information regarding the
relevance and actionability of existing methods to solve our problem. The remaining of this
chapter is organized as follows. In Section 3.2, we review classical approaches to MOO.
Pareto-based MOO is formalized and numerous approaches are reviewed in Section 3.3. The
literature of quality evaluation for MOO is detailed in Section 3.4. In Section 3.5, we discuss
benchmarks, tools and applications for MOO. Cross-fertilization between Pattern Discovery
and MOO is studied in Section 3.6. Finally, Section 3.7 concludes.

3.2 Classical Approaches

Early approaches to solving multi-objective optimization problems involved a priori definition
of user preferences with regard to the importance of each objective function. Due to a lack
of proper optimization methodology (Deb, 2014), these methods rely on transforming multi-
objective problems into single-objective ones. They are therefore only able to find a single
globally optimal solution according to the a priori preferences.
The Weighted global criterion method (Yu, 1974) is the most common generic scalarization
technique that is used to solve MOO problems. In this approach, the set of objectives
functions is combined into a single objective to optimize using a scalarizing function. A
popular method is the Weighted sum method (Zadeh, 1963), which creates a single aggregate
objective function by assigning a weight to each objective according to user preferences and
then computing the sum of these weighted objectives. Formally, we have:

WS “
n
ÿ

i“1

wiFipxq

with n the number of objectives.
Among other approaches with an a priori definition of preferences, we also find the Expo-
nential weighted criterion (Athan and Papalambros, 1996) – introduced to solve some of
the Weighted sum method shortcomings – the Weighted product (Bridgman, 1922), and the
Bounded objective function method (Ching-Lai and Abu, 1979, Haimes, 1971).
The Lexicographic method (Stadler, 1988) requires for an order of importance to be defined
a priori on the set of objective functions. Contrary to scalarizing methods, assigning a pre-
cise weight for each objective is not needed here. Goal programming was also introduced in
(Charnes et al., 1955) where a target value to be reached is assigned to each objective func-
tion. The algorithm then looks to minimize the total deviation from these goals. In 1996,
(Messac, 1996) introduced Physical programming where each objective function is divided
into a set of degrees of desirability according to user preferences. For example, for a given
objective, a user would define which ranges of values are unacceptable, undesirable, tolerable,
and desirable. This approach has several advantages over scalarizing methods: (i) it removes
the need to define proper weights for each objective, (ii) the quantity of a priori knowledge
required is greatly reduced, (iii) setting degrees of desirability is more natural to the user
than choosing often improper weights.
There are however several major issues with these classical approaches: (i) the preferences
have to be known a priori, which requires a deep knowledge of the problem at hand, (ii) if
a diverse set of optimal solutions is required, multiple iterations of an algorithm with differ-
ent sets of parameters are needed, (iii) for more than one solution, these methods provide
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no guarantee on the discovery of any globally optimal solution, (iv) the optimal solutions
discovered are biased by a priori preferences, which can lead to sub-optimal, or even bad
solutions.

3.3 Pareto-based Multi-Objective Optimization

3.3.1 Concepts

Many real-world optimization problems are intrinsically multi-objective.

Definition 12. A multi-objective optimization problem can be defined as follows:

Minimize F pxq “ pf1pxq, ..., fnpxqq
T , x PM

where M is the attribute space and x is an attribute vector. F pxq consists of n objective
functions fi : M Ñ R, i P t1, . . . , nu, where Rn is the objective space. In terms of an available
dataset pG,M, T q, the objective functions correspond to the targets in T .

The objectives usually conflict with each other and the improvement of one objective
might lead to a degradation for others. For this reason, we lack a single solution that enables
the optimization of all objectives at the same time. When no order or relevance can be de-
fined a priori on the different objectives, a Pareto-based optimization method is required. It
is based on the dominance between solutions of the objective space.

The weak dominance relation can be defined as follows.

Definition 13. A vector a “ pa1, . . . , anq
T weakly dominates a vector b “ pb1, . . . , bnq

T ,
denoted a ĺ b if and only if @i P t1, . . . , nu, ai ď bi and a ‰ b.

The dominance relation, which is most commonly used in the literature, can be defined
in the following way.

Definition 14. A vector a “ pa1, . . . , anq
T dominates a vector b “ pb1, . . . , bnq

T , denoted
a ă b if and only if @i P t1, . . . , nu, ai ď bi and Di P t1, . . . , nu, ai ă bi.

Finally, the strict dominance relation is as follows.

Definition 15. A vector a “ pa1, . . . , anq
T strictly dominates a vector b “ pb1, . . . , bnq

T ,
denoted a ăă b if and only if @i P t1, . . . , nu, ai ă bi.

A non-dominated solution is called Pareto optimal (Pareto, 1906).

Definition 16. A solution x is called Pareto optimal if and only if Ey PM such that F pyq ă

F pxq.

Definition 17. The set of all Pareto optimal solutions is called the (true) Pareto Front:

PF “ tF pxq|x PM |Ey PM,F pyq ă F pxqu
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Numerous test functions for multi-objective algorithms have been proposed in the litera-
ture. The true Pareto front of these functions is usually known and they are designed such
that Pareto front approximation by algorithms is difficult. To illustrate our work and its re-
lated concepts, we consider the Fonseca-Fleming function (Fonseca and Fleming, 1995) that
implies 3 descriptive variables from tx1, x2, x3u and 2 objectives. It is described by functions
f1 and f2 that both need to be minimized:

f1ppq “ 1´ exp

˜

´

3
ÿ

i“1

ˆ

xi ´
1
?

3

˙

¸

, xi P r´4, 4s

f2ppq “ 1´ exp

˜

´

3
ÿ

i“1

ˆ

xi `
1
?

3

˙

¸

, xi P r´4, 4s

We generate 5000 random objects using the Fonseca-Fleming function – that we name
Fonseca – and we retrieve the true Pareto front of the function – which is composed of
434 objects – from jMetal1 (Durillo and Nebro, 2011). Table 3.1 provides a toy dataset that
is a subset of Fonseca.

Table 3.1: Toy dataset related to the Fonseca-Fleming function.

x1 x2 x3 f1 f2

g1 -3.48 2.57 -0.12 0.99 0.99
g2 -1.94 -0.24 -1.05 0.99 0.89
g3 0.38 -2.09 0.99 0.99 0.99
g4 0.39 0.54 0.34 0.09 0.95
g5 -0.28 -0.09 -1.35 0.99 0.60

Figure 3.1 depicts the Pareto front (i.e., the non-dominated solutions) of the Fonseca-
Fleming function. The dominance relation can be illustrated using Figure 3.1. Indeed, in the
figure we can see that A ă B (i.e., object A strictly dominates object B) since f1pAq ă f1pBq
and f2pAq ă f2pBq.
It is interesting to note that very few points lie close to the true Pareto front in Figure 3.1.
This is due to (i) the Pareto front of the Fonseca-Fleming function being hard to approximate,
(ii) the random sampling method used to generate the data points, which is sub-optimal to
discover optimal points for MOO problems.

3.3.2 Evolutionary Approaches

While some MOO problems can be solved by transforming them into single-objective, most
non-trivial problems need to be handled by making use of methods based on Pareto opti-
mization. The goal is then to design algorithms that approximate as well as possible the true
Pareto front of a given problem. Most algorithms introduced for multi-objective optimization
are Multi-objective Optimization Evolutionary Algorithms (MOEAs) (Branke et al., 2008,
Zhou et al., 2011, Zitzler et al., 2000). Evolutionary Algorithms are population-based meth-
ods that reproduce natural and biological processes, such as evolution, bird migration, and

1http://jmetal.sourceforge.net/problems.html

http://jmetal.sourceforge.net/problems.html
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Figure 3.1: Pareto front of the Fonseca-Fleming function.

ant colonies. Among them, Genetic Algorithms (GA) (Koza, 1992) are the most popular.
Genetic Algorithms are metaheuristics inspired by the concept of natural selection. In GAs,
a population (i.e., a set of solutions) evolves generation after generation toward optimal solu-
tions. For each generation, predefined proportions of fittest and less fit solutions (according
to their objective values) are chosen to reproduce – using crossover and mutation operators
– and create the population of the next generation. Using this procedure, the average fitness
of the population improves generation after generation. GAs have long been an area of inter-
est for researchers looking to solve optimization problems, making them a fitting choice for
multi-objective optimization.
We find the first iteration of GAs starting with (Schaffer, 1985), which introduces the Vector
Evaluated Genetic Algorithm. In (Ishibuchi and Murata, 1996), the authors introduce an
elitist strategy for GAs. In a classical GA, only the population of the current generation is
stored. With an elitist strategy, a second set of currently non-dominated solutions is also
stored. After each iteration, all the solutions from the general population which are not
dominated by any points in the non-dominated set are added to the set. In the next genera-
tion, a number of randomly select points from the non-dominated set – called elite points –
are reintroduced into the general population. This ensures that good solutions are not lost
from one generation to another, and it improves the convergence toward the globally optimal
Pareto front. Surveys of the first generations of genetic and evolutionary algorithms have
been compiled in (Fonseca et al., 1993, Van Veldhuizen and Lamont, 1998). In 1994, (Horn
et al., 1994) introduced the tournament selection technique, which consists in randomly se-
lecting points from the current population, to make them compete for their survival in the
next generation. The competition is held using a tournament setting, where the points need
to be fitter (i.e., non-dominated) than a given subset of the general population in order to
survive.
We now discuss NSGA-II (Non-dominated Sorting Genetic Algorithm), the most popular
MOEA, which was introduced almost 20 years ago in (Deb et al., 2002a). The NSGA-II
algorithm possess several important features (i) it considers an elitist strategy, (ii) it employs
a tournament selection technique, (iii) it uses a diversity preserving operator. At the start
of the process, a random parent population is generated. Using standard genetic operators
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(crossover and mutation) as well as tournament selection, a first offspring population is then
produced. A new procedure is then introduced and repeated for each generation. These
two populations – parents and offspring – are then combined, and a non-dominated sorting
procedure is applied to generate an ordered set of non-dominated fronts according to their
fitness level. To create the parent population of the next generation, the solutions of the best
non-dominated fronts are then added one by one, until the currently considered front is too
large to add all its solutions to the next parent population. When such a front is reached, the
remaining parents of the current population are then chosen according to a diversity operator,
instead of being chosen randomly. Then the offspring population of the next generation is
created using the same techniques as for the first offspring generation.
Even though NSGA-II is by far the most popular GA, other highly competitive algorithms
exist. Among them, we find the Pareto Envelope-based Selection Algorithm (Corne et al.,
2000), the Pareto Archived Evolution Strategy (PAES) (Knowles and Corne, 2000) and the
Strength Pareto Evolutionary Algorithm (SPEA2) (Zitzler et al., 2001). ε-MOEA (Deb and
Jain, 2003) has also proved to be able to provide high-quality solution sets and the use
of the ε-dominance (Laumanns et al., 2002) can be useful to solve high dimensional MOO
problems. In (Drugan and Thierens, 2012), a Stochastic Pareto Local Search algorithm that
exploits genetic operators was also introduced. While GAs are definitely an important part
of Evolutionary Multi-objective Optimization (EMO), numerous other competing evolution-
based methods have been introduced. We first find Particle Swarm Optimization (PSO), a
metaheuristic whose original goal was to reproduce the behavior of animal packs, such as
wolves, birds, or fish. In PSO, a population (the swarm) of individuals (the particles) is first
generated. The particles are then driven to explore the search space following both their
best-known position and the best-known position of the swarm. To solve MOO problems,
several methods, called Multi-objective Particle Swarm Optimization algorithms have been
introduced (Coello and Lechuga, 2002, Coello et al., 2004, Mostaghim and Teich, 2003) and
have shown to be competitive with the best EMO methods, such as NSGA-II or PAES. Next,
approaches based on ant-colony behavior (Alaya et al., 2007, Gravel et al., 2002, McMullen,
2001) have been investigated, and have also shown promising results compared to the state
of the art on the studied application cases. Other evolutionary methods, like the Dragonfly
algorithm (Mirjalili, 2016) and adaptations of differential evolution to MOO, have also been
explored (Xue et al., 2003). Interactive evolutionary methods have also been investigated
(Branke et al., 2009, Deb et al., 2010). Interactive MOO algorithms are iterative methods
where user input is expected after each iteration of the algorithm. Consequently, the user
has to possess the expert knowledge needed to express his preferences with regard to the
direction that the search for optimal solutions is going to take at each step of the process.
While GAs have proved useful in many application scenarios, they still suffer from several
drawbacks. As generic methods, choosing proper values for the numerous parameters is dif-
ficult (Boyabatli and Sabuncuoglu, 2004, Eiben et al., 1999, Srinivas and Patnaik, 1994).
Indeed, tuning parameters such as population size, mutation rate, and crossover rate, but
also formulating a proper fitness function or choosing the genetic encoding and elitism ratio
is often made through trial and error. Furthermore, premature convergence is an issue that
has also been widely studied (Pandey et al., 2014).
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3.3.3 Non-Evolutionary Approaches

Although evolutionary approaches represent the bulk of the methods investigated for Pareto-
based multi-objective optimization, other methods have been explored. Simulated Annealing
(Suman and Kumar, 2006) is a global optimization metaheuristic that has shown good re-
sults in multi-objective optimization settings. In particular, the Archived Multi-objective
Simulated Annealing algorithm introduced in (Bandyopadhyay et al., 2008) has proved to be
superior to state-of-the-art MOEAs for many-objective optimization problems. Mathematical
programming-based approaches propose a different approach to multi-objective optimization.
In these methods, the algorithm is executed iteratively, and each iteration produces a different
Pareto optimal solution. Examples of such approaches are the Normal Boundary Intersection
method (NBI) (Das and Dennis, 1998), and the Normal Constraint method (NC) (Messac
et al., 2003), an improvement over NBI. Indeed, while NBI provides no guarantee on the
discovery of Pareto optimal solutions, NC always produces Pareto optimal solutions.

3.4 Quality Evaluation of Solution Sets

3.4.1 Types of Quality Measures

While algorithms can create sets of solutions, quality indicators that allow for the comparison
and assessment of the quality of these solutions are needed. In the case of single-objective op-
timization, comparing the quality of the solutions provided by different algorithms is straight-
forward; we need only look at the value of the best solution found by each algorithm. In
multi-objective optimization, a solution set is made of multiple optimal solutions, which
makes the comparison of different algorithms harder. While visualization methods can be a
simple and in some cases efficient way of comparing solutions, they become harder to exploit
as the number of objectives goes up, and they lack the ability to provide an accurate measure-
ment of the difference between sets of solutions. There is therefore a need for performance
measures that can summarize the different qualities of a set of solutions into a unique value.
Such performance indicators exist, and they can be summed up into 4 categories: convergence,
spread, uniformity, and cardinality (Li and Yao, 2019). In the literature, we find quality mea-
sures that specialize in one category, but also measures that take into account several or all
of the categories when assessing the quality of a solution set. For the convergence criteria,
we find dominance-based and distance-based indicators. The most famous dominance-based
measure is the C indicator (Zitzler and Thiele, 1998) and its variations (Datta and Figueira,
2012). They use the dominance relationship between two sets of solutions to measure their
quality. Given two sets X and Y , CpX,Y q measures the proportion of solutions of Y which
are dominated by at least one solution of X. Formally, we have:

CpX,Y q “
|y P Y |Dx P X : x ă y|

|Y |

The indicator takes values between 0 and 1, with 0 meaning that no solution of Y is dominated
by any solution of X, and 1 meaning that all solutions of Y are dominated by at least one
solution of X. It is important to note that to compare the performance of X and Y , both
CpX,Y q and CpY,Xq need to be computed. Next, we look into the most used distance-based
convergence indicator, the Generational Distance (GD) (Ishibuchi et al., 2015, Schutze et al.,
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2012, Van Veldhuizen and Lamont, 1998) and its variations (Ishibuchi et al., 2015, Schutze
et al., 2012). It measures the mean of the Euclidean distances between each point in the
considered solution set and its closest point on the true Pareto front. Formally, given a
solution set X “ tx1, ..., xNu, it is defined as:

GDpXq “
1

N

˜

N
ÿ

i“1

mindpxi, PF q

¸

where mind computes the minimal Euclidean distance from point i of the solution set to the
true Pareto front.
For the Generational Distance, lower values are better and a GD of 0 means that the solution
set lies entirely on the true Pareto front. While in the first iteration of the measure the
quadratic mean was used, it has now become common to use the arithmetic mean instead
since it is more resilient to outliers.
Let us now look at the spread criterion. To have a high-quality spread, a solution set should
contain solutions close to every part of the true Pareto front. The most common spread
measure is the Maximum Spread (MS) (Wu and Azarm, 2001, Zitzler et al., 2000). It computes
the reach of a solution set by examining the range of each objective. Formally, we have:

MSpXq “

g

f

f

e

M
ÿ

i“1

max
x,x1PX

pxj ´ x1jq
2

with m the number of objectives. The Maximum Spread needs to be maximized. However,
since the MS measure only considers extreme solutions, its measuring can often wrongly
represent the actual spread of the solution set, especially when extreme solutions are outliers.

Let us now consider performance measures that compute the uniformity of a solution set. A
set with good uniformity should have close or equal space between its solutions. The Spacing
(SP) (Schott, 1995) indicator is the most commonly used uniformity measure. Informally, SP
measures the variation of the space between solutions in a solution set using the Manhattan
distance and needs to be minimized.
Finally, we also find indicators that measure the cardinality of solution sets. The idea behind
this criterion is to count the number of non-dominated solutions. When the true Pareto
front is involved, the idea is to count the number of points of the solution set that lie on
the true Pareto front. In this setting, a common quality measure is the Error Ratio (ER)
(Van Veldhuizen, 1999) which computes the proportion of points of a solution set that are
not part of the true Pareto front. For ER, lower values are better since they represent sets
with large proportions of Pareto optimal solutions.
While considering one or two of the four defining criteria is a good start, building perfor-
mance indicators this way often falls short of providing a complete and accurate picture of
the quality of solution sets. Consequently, researchers introduced indicators that involve all
four criteria for obtaining good solutions. Since then, these measures have become widely
used in the literature. Let us first consider a well-known distance-based measure, the Inverted
Generational Distance (IGD) (Coello and Sierra, 2004). As per the name, IGD is the inverse
of the GD indicator and measures the distance from the true Pareto front to the considered
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solution set. Formally, given the true Pareto front PF “ tpf1, ..., pfN , u and a solution set
X, it can be defined as:

IGDpX,PF q “
1

M

˜

M
ÿ

i“1

mindppfi, Xq

¸

where M is the number of Pareto optimal solutions in the true Pareto front, and mind
computes the minimal Euclidean distance from point i of the true Pareto front to the solution
set X.
For IGD, lower values are better and reflect good values for all four criteria for a given
solution set. In the absence of the true Pareto front, a reference set has to be used, and its
ability to accurately represent the true Pareto front is crucial for the relevance of IGD. Since
IGD is among the most used performance assessors in MOO, numerous variations have been
introduced to improve upon it (Ibrahim et al., 2018, Ishibuchi et al., 2015, Schutze et al.,
2012, Tian et al., 2016).
We can also look at volume-based measures which tick all four criteria needed for accurate
performance assessments. The Hypervolume (HV) (Zitzler and Thiele, 1998) is the most
widely used metric in MOO. It measures the volume of the area enclosed by the Pareto front
and a specified reference point. The HV between a given solution set X and its reference
point r is:

HV pX, rq “ λ

˜

ď

aPX

tx|a ă x ă ru

¸

where λ is the Lebesgue measure.
However, the HV measure suffers from several drawbacks: (i) it needs a reference point,
which can be hard to define precisely, and different reference points will favor different sets
of solutions, (ii) its runtime increases exponentially with regard to the number of objectives,
(iii) it favors convex regions over concave ones. Despite its limitations, HV has long been the
preferred performance assessor in the MOO field, and can accurately represent the quality
of solution sets in most scenarios. It is interesting to note that several approaches have been
introduced to solve the problem of choosing a single solution or a reduced set of solutions
from a set of Pareto optimal points (Ferreira et al., 2007, Fuente et al., 2018, Venkat et al.,
2004).

3.4.2 Background Knowledge

Generally speaking, we find quality indicators that need a reference set of solutions (e.g.
IGD) to compare new solution sets against, and quality indicators that need a reference
point (e.g., HV ) – such as the Nadir point or the ideal point – to be evaluated. Defining a
proper reference set can be difficult in most application scenarios. Indeed, the reference set
needs to be as close as possible to the true Pareto front, and must represent a front with high
qualities for convergence, spread, uniformity, and cardinality. A good alternative is to exploit
an empirical method by building the reference set out of all the globally non-dominated
solutions found so far across all generated solution sets.
Reference points are needed for several widely used performance metrics. The most common
are the ideal point (Vincent and Grantham, 1981, Zeleny, 1973) and the Nadir point (Deb
et al., 2006). The ideal point consists of the optimal values of each objective in the entire
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search space. While the ideal point or a close approximation of it (i.e., using the best-known
values instead of the unknown optimal ones) can easily be defined using the available solution
sets, determining a proper value for the Nadir point can be very difficult. The Nadir point is
defined as the vector of the worst possible value of each objective in the optimal true Pareto
front. One issue with the Nadir point is its impossibility to be precisely estimated in most
situations. Indeed, it requires an optimal or near-optimal Pareto front to get a good estimate
of the worst value of each objective, which is rarely computable in real-life scenarios. While
some studies have been done to introduce methodologies for defining proper Nadir points,
researchers have discovered solutions to the problem only in few cases (Cao et al., 2015).
For a lot of existing quality measures, objectives need to be scaled, so that objectives with
larger range of values have the same effect on the metric as other objectives. A common
method for scaling is to normalize each objective with values in [0,1] by using the following
formula: x

1

j “ pxj ´ minjq{pmaxj ´ minjq, where minj and maxj are respectively the
minimum and maximum of Objective j. Scaling is not needed for some measures that are
called scaling independent (Zitzler et al., 2008).

3.5 Benchmark Functions, Applications and Tools

To provide a performance assessment of any MOEA, test functions must be used. These
benchmarks were created so that all algorithms could be compared on the same problems.
For these problems, the Pareto optimal solutions and the shape of the true Pareto front are
known, such that quality measures can be used to evaluate how close to the ideal front the
solutions generated by the algorithms are. Early test problems suffered from several limita-
tions: they were either too simple to solve, not scalable, or impossible to visualize. Among
the first proposed benchmark functions, we find the (Kursawe, 1990) and (Fonseca and Flem-
ing, 1995) unconstrained problems which both involve 2 objectives and an unlimited number
of attributes. A constrained test problem was introduced in (Binh, 1999, Binh and Korn,
1997). It involves 2 objectives, 2 attributes, and 2 constraints. The benchmark Fonseca
has been introduced in Section 3.3.1 and it will be used in Chapter 5.
While these functions allowed for the quality assessment of early evolutionary algorithms,
more complex benchmark problems were needed. Indeed, to mimic real-life applications
where large amount of competing objectives and constraints are common-place, the scalabil-
ity and complexity of new and existing approaches had to be empirically investigated. In
(Zitzler et al., 2000), the authors introduced the ZDT test toolkit, followed by the well-known
DTLZ (Deb et al., 2002b, 2005) and WFG (Huband et al., 2006) problem suites. Thanks
to these benchmark suites, the quality of state-of-the-art multi-objective algorithms can be
assessed on synthetic data.
The main issue with synthetic data is that it can sometimes be far removed from real-life
scenarios. For this reason, most performance studies of new algorithms also involve some type
of investigation on a few real-life problems. However, until recently, there was no toolkit that
involved a set of real-life diverse multi-objective optimization problems on which algorithms
could be tested and compared. Consequently, the REal world problem suite RE (Tanabe and
Ishibuchi, 2020) was introduced to fill this gap. It involves 16 real-world problems with low
computational cost, so that algorithms can be tested efficiently on a more diverse and lifelike
set of problems.
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Potential applications for multi-objective optimization algorithms are numerous. While op-
timization problems involving more than 1 objective used to be essentially treated as single-
objective, the advent of computing and the introduction of more complex approaches enabled
the use of MOO methods in a large number of domains.
In (Surekha et al., 2012), the authors exploit genetic and particle swarm algorithms to opti-
mize the green sand mould system. In this scenario, several parameters such as grain fineness
or percentage of clay lead to different mould properties, like green compression strength,
permeability, or hardness. These properties are the defining factors driving the quality of the
end products, i.e., the casts. The authors therefore apply MOO algorithms on the 4 objective
optimization problem to obtain the best compromise leading to high-quality casts.
In the literature, we find numerous use cases of MOO involving ecological issues, such as
building retrofit strategies (Asadi et al., 2012), nearly-zero-energy-building design (Hamdy
et al., 2016), and environmental protection (Cui et al., 2017). Multi-objective optimization
methods are also widely used in chemical engineering (Rangaiah, 2016), but also to solve
efficiency-cost optimization problems in engineering fields (Shirazi et al., 2014), and for sen-
sor placement optimization in indoor systems (Domingo-Perez et al., 2016).
For several machine learning optimization problems, multiple metrics need to be optimized
at the same time. While in most cases optimizing one metric is still considered as being good
enough, it has been shown that one metric can often not be enough to assess the quality of a
model. In Shi et al. (2012), the authors argue that in many real applications, optimizing only
one quality measure is sub-optimal for multi-label classification tasks. Consequently, they
propose a new method called Multi-Objective Multi-Label algorithm and show its relevance
compared to the state of the art to solve multi-label classification optimization problems.
Finally, Caballero et al. (2010) introduce a multiclass classification algorithm based on multi-
objective optimization to treat the problem of maximizing two conflicting objectives of mul-
ticlassifiers, (i) the correct classification rate level, and (ii) the classification rate for each class.

Solutions have been designed to support the visualization of MOO solutions easier. In the
2D and 3D cases, scatter plots can be used and are usually sufficient to extract the needed
information. However, when MOO problems involve high-dimensional data, visualizing and
extracting relevant information is a hard task. (Tušar and Filipič, 2014) proposes a compre-
hensive review of existing methods to visualize Pareto front approximations.
Typical high-dimensional visualization methods involve heatmaps (Pryke et al., 2007) and
parallel coordinates (Inselberg and Dimsdale, 1990), where each solution is represented on
a parallel coordinate system. A common problem of heatmap visualization is the random
ordering of rows and columns. In (Walker et al., 2012), the authors first introduce a solution
to this issue by means of spectral seriation and also propose a representation of mutually
non-dominated sets based on Radviz (Hoffman et al., 1997). In (He and Yen, 2015), a new
method is proposed to map high-dimensional solutions into a 2D polar coordinate plot that
preserves the Pareto dominance relationship. The approach possesses several advantages: (i)
it is scalable to any number of objectives, (ii) it can handle Pareto fronts with large number
of solutions, (iii) multiple solution sets can be visualized at the same time, which enables the
easy comparison of several fronts.
Several tools to work on multi-objective optimization problems are available. The first tool
introduced is JMetal (Durillo and Nebro, 2011), a Java-based framework for multi-objective
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optimization. It contains numerous implementations of well-known MOO algorithms – such
as NSGA-II, SPEA2 and MOEA/D – and it provides most common performance metrics, like
the hypervolume or the generational distance. Moreover, single-objective versions of MOO
algorithms and parallel algorithms are also made available. Finally, it is interesting to note
that most benchmark functions – constrained and unconstrained – and test toolkits – ZDT,
DTLZ, WFG – are also available. We also find the PlatEMO (Tian et al., 2017) platform,
a MATLAB tool specialized in evolutionary multi-objective optimization. It proposes over
50 MOEAs and makes it easy to compare several algorithms at the same time. Numerous
performance metrics and test problems are also made available to the user. Furthermore, it
enables the community to develop new algorithms, metrics, and test problems by being open
source. Finally, with the Python language becoming prevalent in data science and other re-
lated fields over the last few years, a new Python framework for MOO named Pymoo (Blank
and Deb, 2020) was recently introduced. Once again, a large variety of single and multi-
objective algorithms, performance metrics, and test problems are proposed. It is interesting
to note that Pymoo also contains methods for high-dimensional visualization of solutions,
and provides tools for multi-criteria decision making.

3.6 Cross-Fertilization of Pattern Discovery and
Multi-Objective Optimization

3.6.1 Pattern Discovery and Multi-Objective Optimization

While both MOO and pattern discovery have been seriously investigated, contributions in-
volving the coupling and/or interactions of both approaches have been relatively few and
far between (Srinivasan and Ramakrishnan, 2011). Among these contributions, the authors
of (Kaya and Alhajj, 2004) propose a new genetic algorithm based method to mine opti-
mized fuzzy association rules. Regarding the objectives, they consider the optimization of
the support, the confidence, and the number of fuzzy sets. They use the common concept
of dominance and a genetic algorithm to mine for Pareto optimal fuzzy rules. In their ex-
periments, they show the superiority of fuzzy rule mining over crisp rules when it comes
to optimizing both the support and confidence of the rules. For fuzzy rule mining, we also
find the work introduced in (Gacto et al., 2009), where the authors describe and compare
the application of 6 evolutionary algorithms to mine for rules with high accuracy and inter-
pretability.

In (Dehuri and Mall, 2006), the authors propose a multi-objective genetic algorithm to mine
for predictive classification rules. Their goal is to optimize both the predictive accuracy
and the comprehensibility of the rules at the same time, two objectives that usually have
an antagonistic relationship. Their method, called INPGA for Improved Niched Pareto Ge-
netic Algorithm, allows for finding better rules than other benchmark genetic algorithms.
A multi-objective metaheuristic is introduced in (Reynolds and de la Iglesia, 2006) for rule
induction in a context of partial classification. The authors consider the optimization of the
coverage and confidence of the rules, and a modified version of the dominance relation to
discover a more diverse set of classification rules. In experiments, they show that this meta-
heuristic using a modified dominance relation allows for the discovery of rules that provide
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new information. An extension of the famous NSGA-II evolutionary algorithm to mine for
quantitative association rules was introduced in (Mart́ın et al., 2011). Although mining for
quantitative association rules has been studied extensively, the focus was on optimizing only
one objective. In this approach, the authors propose and show how to discover quantitative
rules with the best trade-offs between interestingness, comprehensibility, and performance
(i.e., the product of confidence and support).

(Soulet et al., 2011) has exploited the notion of skyline queries, allowing the introduction
of the notion of skyline patterns. In their work, they focus on mining useful patterns, accord-
ing to a set of user preferences. Since skyline queries involve multiple constraints of equal
importance, a trade-off has to be found between these constraints, which is exactly the sub-
ject of MOO. They use the notion of dominance between patterns to look for those that are
non-dominated according to the set of constraints. These non-dominated patterns are called
skyline patterns, and in MOO terms, they correspond to Pareto optimal patterns, i.e., the
set of patterns that lie on the Pareto front. Their approach presents several advantages (i)
it finds patterns that are non-dominated by any other pattern, (ii) it is generic to any kind
of pattern which can be queried through a skyline query, (iii) the study of the relationships
between condensed representations of patterns and skyline pattern mining enables to com-
pute the set of skyline patterns efficiently. In (Ugarte et al., 2017), the authors extend the
work in (Soulet et al., 2011) by investigating further the relationships between the so-called
condensed representations of patterns (Calders et al., 2006) and skyline pattern mining. As
a result, they can build an interesting skypattern mining algorithm based on a dynamic con-
straint satisfaction problem.
The exploitation of skyline patterns for Skyline EMM is studied on the plant growth recipe
optimization scenario of Chapter 6 to improve the diversity of the computed patterns.

3.6.2 Subgroup Discovery and Multi-Objective Optimization

If cross-fertilization between pattern discovery and multi-objective optimization is rare, the
coupling of SD/EMM and MOO is almost non-existent. Indeed, only a handful of approaches
have investigated the topic. In (Del Jesus et al., 2007a), the authors propose the use of a
multi-objective genetic algorithm to discover interesting subgroups based on fuzzy rules.
They introduce the MESDIF (Multiobjective Evolutionary Subgroup DIscovery Fuzzy rules)
algorithm, based on the well-known SPEA2 genetic algorithm. The end goal is to discover
subgroups with optimized trade-offs between confidence, support and a new measure of di-
versity called original support that defines the originality of the rule compared to other rules
of the population. In (Del Jesus et al., 2007b), the Subgroup Discovery Iterative Genetic
Algorithm (SDIGA) is proposed. The authors want to optimize the confidence and support
of the subgroups. However, SDIGA is a single-objective optimization algorithm, meaning
that to discover interesting subgroups, it has to transform the set of objectives into a single-
objective using a predefined method. In this scenario, the authors transform the objectives
by applying the weighted sum method. Both MESDIF and SDIGA were used in a real-life ap-
plication case for subgroup discovery in a psychiatric emergency department (Carmona et al.,
2011). The goal was to find subgroups that provided relevant information with regard to the
relationship between the arrival time of patients at the emergency department, and the types
of pathologies they are affected by. Three objectives – support, confidence, and unusualness
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– needed to be optimized. In this study, the authors compared the subgroups discovered by
both MESDIF and SDIGA, and showed that MESDIF can find higher quality subgroups. They
also showed that MESDIF allowed for the discovery of interesting information, such as the
fact that suicide attempts are more frequent during nighttime. SDIGA has also been used in
(Romero et al., 2009) for subgroup discovery in e-learning.
In (Carmona et al., 2010), the authors introduced an evolutionary fuzzy system named
NMEEF-SD, based on NSGA-II to discover interpretable and high quality subgroups. In
this work, the author consider the discovery of subgroups with the best trade-offs between
support, fuzzy confidence and unusualness. In an empirical study, they show the superiority
of their approach compared to the state of the art, i.e., MESDIF and SDIGA. While their ap-
proach is interesting in their targeted context, it lacks genericity: it allows for the discovery
of subgroups with a good trade-off between a few pre-defined objectives and it focuses on
computing the Pareto front at the subgroup level.
The concept of skyline was exploited in (Van Leeuwen and Ukkonen, 2013) to mine for sky-
lines of subgroup sets. Indeed, the authors argue that the best way to mine for sets of
subgroups that are both diverse and of high quality, there is a need to consider the set of
Pareto optimal subgroups with regard to those objectives. To do this, the authors detail an
exhaustive and a heuristic algorithm for the discovery of top-K subgroup sets that offer the
best trade-offs between quality and diversity.
A common thread between all these approaches is the computation of Pareto optimal patterns
at the subgroup – and rule/pattern – level (i.e., they consider the Pareto front of subgroups
and not the Pareto front of objects of the dataset). While this is a relevant way of combining
multi-objective optimization and subgroup discovery, it is however interesting to note that,
to the best of our knowledge, no method which cross-fertilizes MOO and SD/EMM at the
object level has been proposed so far.

3.7 Conclusion

Multi-objective optimization is a sub-field of multi-criteria decision making whose goal is to
discover optimal trade-offs between a number of objective functions. Numerous approaches
have been proposed in the past 40 years, including classical methods that treat the problem
as single-objective, and Pareto-based methods that look for the ideal set of Pareto optimal
solutions. Nowadays, Pareto-based methods are largely prevalent in the literature and are
widely used for most application cases. Among them, Evolutionary Multi-objective Algo-
rithms such as NSGA-II and SPEA2 have become standard tools that perform well in most
scenarios. However, their genericity can also be their downfall: finding proper values for the
numerous parameters is difficult and mostly involves trial and error, which restricts their
usage to settings where numerous experiments can be carried out. Pareto-based algorithms
need for performance indicators that assess the quality of solution sets. Ideally, a solution
set should perform well in four distinct and complementary criteria: convergence, spread,
uniformity, and cardinality. To evaluate the performance of MOO algorithms, numerous test
functions have been introduced, including a number of benchmarks that reflect real-life appli-
cation cases. When working on MOO problems with high dimensional data (i.e., more than
3 objectives), visualizing and interpreting the results can be difficult. For this reason, sev-
eral visualization approaches have been introduced to simplify the process and easily extract
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actionable information from solution sets. It is interesting to note that tools for performing
MOO have been developed and are accessible to all in some widely used programming lan-
guages in data-related fields, such as Python, Java, and Matlab.
Cross-fertilization between MOO and Pattern Discovery is a domain that has seen relatively
few works being introduced, and even more so when the focus is being put on SD and EMM.
The few approaches that exist focus on finding good trade-offs between several common met-
rics that define high-quality patterns.
There is however no work in the literature that has investigated the coupling of MOO and
SD/EMM at the object level, i.e., working with Pareto-based concepts on the objects of the
datasets. Furthermore, current existing MOO methods have several limitations (i) when the
underlying model of the objective functions is unknown, existing approaches can not be used,
since new points can not easily be generated, and (ii) typical MOO algorithms require a
large number of points to be generated at each iteration, which is antinomic to many real-life
scenarios where experiments are limited due to time and cost constraints. There is therefore
a need for MOO-based methods that would not suffer from such limitations.



Chapter 4

Optimal Subgroup Discovery in
Purely Numerical Data

Subgroup discovery in labeled data is the task of discovering patterns in the description
space of objects to find subsets of objects whose labels show an interesting distribution,
for example the disproportionate representation of a label value. Discovering interesting
subgroups in purely numerical data – attributes and target label – has received little
attention so far. Existing methods make use of discretization techniques that lead to
loss of information and suboptimal results. This is the case for the reference algorithm
SD-Map* (Atzmueller and Lemmerich, 2009). In this chapter, we consider the discovery
of optimal subgroups according to an interestingness measure in purely numerical data.
We leverage the concepts of closed interval patterns, advanced enumeration and pruning
techniques. The performances of our algorithm are studied empirically and its added-
value w.r.t. SD-Map* is illustrated.
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4.1 Exploiting Labeled Numerical Data

Mining purely numerical data is quite popular. It concerns data made of objects described by
numerical attributes, and one of these attributes can be considered as a target label. We can
then choose to learn models to predict the value of the label for new objects, or we can apply
subgroup discovery methods, which is the focus of our work. A large panel of exhaustive
and heuristic subgroup discovery algorithms has been proposed so far. Regarding numerical
attributes, a few approaches that avoid the use of basic discretization techniques have been
introduced. However, to the best of our knowledge, we lack a method that would support an
exhaustive search and thus the possibility to guarantee the computation of a global optimum
for a selected quality measure without the use of discretization in some form or other. When
considering numerical target labels, SD-Map* is the reference algorithm. Notice however
that SD-Map* requires the prior discretization of the numerical attributes.

The guaranteed discovery of an optimal subgroup in purely numerical data is a useful task
and we now motivate it for optimizing processes in urban farms. In that setting, plant growth
recipes involve many numerical attributes (temperature, hydrometry, CO2 concentration, etc)
and a numerical target label (the yield, the energy consumption, etc). Our goal is to mine
the recipe execution records (i.e., the collected measures) to discover the characteristics of
an optimized growth. In expert hands, such characteristics can be exploited to define better
recipes. In such a context, the guaranteed discovery of the optimal subset of recipes with
respect to the target label is more relevant than the heuristic discovery of the k best subgroups
with no optimality guarantee. The exploitation of these contributions for plant growth recipe
optimization is studied in-depth on synthetic and real-life data in Chapter 6.

To achieve the search for optimality, we decided to search the space of interval patterns
as defined in (Kaytoue et al., 2011). Our main contribution consists of an algorithm that
exhaustively enumerates all the interval patterns. Our approach (i) exploits the concept of
closure on the positives adapted to a numerical setting to operate in a subspace (ii) uses
a new faster tight optimistic estimate that can be applied for several quality measures (iii)
uses advanced pruning techniques (forward checking, branch reordering). The result is the
efficient algorithm OSMIND for optimal subgroup discovery in purely numerical data without
prior discretization of the attributes.

Definition 18. A purely numerical dataset pG,M, T q is given by a set of objects G, a set
of numerical attributes M and a numerical target label T . In a given dataset, the domain of
any attribute m P M is a finite ordered set denoted Dm. In this context, mpgq “ d means
that d is the value of attribute m for object g. The domain of label T is also a finite ordered
set denoted DT . T pgq “ v means that v is the value of label T for object g.

Fig. 4.1 (left) is an example of a purely numerical dataset made of two attributes (M “

tm1,m2u) and a target label T .
We want to leverage several concepts of both interval pattern mining and SD introduced

in Chapter 2. Most notably, we consider a closure operator on interval patterns, as well as
the qamean quality measure and corresponding optimistic estimates to compress and prune
the search space. We also make use of the enumeration strategy of MinIntChange for
an optimal subgroup discovery – using the optimality definition of Chapter 2 – in purely
numerical data. Fig. 4.1 (right) depicts the dataset of Fig. 4.1 (left) in a cartesian plane as
well as a comparison between a non-closed (c1) and a closed (c2) interval pattern.
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The material in this chapter has been published in the Proceedings of the 2020 Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (Millot et al., 2020a),
as well as in the Proceedings of the 2020 conference Extraction et Gestion des Connaissances
(EGC) (Millot et al., 2020b). For reproducibility purposes, described datasets and source
code are made available in https://bit.ly/3ilhir5.

The remaining of this chapter is organized as follows. We detail our contributions in
Section 4.2 before an empirical evaluation in Section 4.3. Section 4.4 briefly concludes.

4.2 Optimal Subgroup Discovery

4.2.1 Closure On The Positives

The closure operator on interval patterns introduced in (Kaytoue et al., 2011) has been
extended to closure on the positives for binary labels in (Belfodil et al., 2018, Guyet et al.,
2017).

Definition 19. Let p P P be an interval pattern, p1 Ď p a second interval pattern, and T a
binary target label. An object is said to be positive if its label value is that of the class we
want to discriminate, and negative in the opposite case. Let extppq` be the subset of objects
of extppq whose label T is positive. p1 is said to be closed on the positives if it is the most
restrictive pattern enclosing extppq`. If q is the quality measure, we have qppq ď qpp1q.

For all subgroups p P P , if all negative objects which are not in the extent of p1 are
removed from the extent of p, then the subgroup quality cannot decrease. Note that closed
on the positives are a subset of closed patterns.

The concept of closed on the positives for binary target labels can be extended to numerical
target labels for a set of quality measures, including qamean. We transform the numerical label
into a binary label: objects whose label value is strictly higher (resp. lower or equal) than the
mean of the dataset are defined as positive (resp. negative). Note that the quality measure is
computed on the raw numerical label. The binarization is only used to improve search space
pruning and it does not lead to loss of information concerning the resulting patterns (i.e.,
the optimal subgroup discovery without discretization is guaranteed). Fig. 4.2 (left) is the
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dataset of Fig. 4.1 with label T (mean = 50) transformed into the binary label Tb. Fig. 4.2
(right) depicts the dataset of Fig. 4.2 (left) in a cartesian plane and a comparison between a
closed (c1) and a closed on the positives (c2) interval pattern. We separate the case where the
subgroup quality is positive from the case where it is negative. Given a subgroup of positive
quality, we can prove that its quality is always higher or equal if all negative objects not in
the closure on the positives are removed.

Theorem 1. Let p be an interval pattern, qamean a set of quality measures, p` the closure on
the positives of p such that p` Ď p, and qameanppq ě 0, then qameanpp

`q ě qameanppq, a P r0, 1s.

Proof. Let extppq be the extent of p, extppq` the extent of p`, extppq´ “ extppqzextppq` the
set of negative objects of extppq not in extppq`, and T piq the target label value for Object i.
For shorter notation, we define e “ extppq and θ “ extpHq. We prove that:

|e`|a ˆ pµe` ´ µθq ě |e|
a ˆ pµe ´ µθq(4.1)

Which can be transformed into:

|e`|a ˆ

ř

iPe`pT piq ´ µθq

|e`|
ě |e|a ˆ

ř

iPepT piq ´ µθq

|e|
(4.2)

|e`|a ˆ

ř

iPe`pT piq ´ µθq

|e`|
ě p|e`| ` |e´|qa ˆ

ř

iPe`pT piq ´ µθq `
ř

iPe´pT piq ´ µθq

|e`| ` |e´|
(4.3)

By construction, we know that
ř

iPe`pT piq´µθq ě 0 ě
ř

iPe´pT piq´µθq. The rest of the proof
follows the same as (Lemmerich et al., 2016a). We deduce that for any subgroup verifying
qameanppq ě 0, the closure on the positives always leads to a subgroup of equal or higher
quality.

The case of a negative quality subgroup is more complex since the closure on the positives
can lead to a decrease in the subgroup quality. We prove that objects which are not in the
closure on the positives can never be part of the best subgroup specialization.

Theorem 2. Let p be an interval pattern, p` the closure on the positives of p such that
p` Ď p and extppq` its extent with |extppq`| ą 0. Let extppq´ “ extppqzextppq` be the
set of negative objects of extppq not in extppq`, and qamean a set of quality measures with
qameanppq ă 0: No object in extppq´ can be part of the best specialization of p.
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Proof. Let us assume that there exists an object in extppq´, denoted i´, which belongs to the
best specialization of p, denoted ptop. By construction, qameanpptopq ą 0 (since |extppq`| ą 0).
Let p`top be the closure on on the positives of ptop. By construction, we know that i´ is not

part of the extent of p`top (since i´ doesn’t belong to p`). Yet, according to Theorem 1, we

have qameanpp
`
topq ě qameanpptopq. We deduce that i´ doesn’t belong to the best specialization

of p.

4.2.2 Tight Optimistic Estimate

We now introduce a new tight optimistic estimate for the family of quality measures qamean. An
optimistic estimate is said to be tight, if, for any subgroup of the dataset, there is a subset
of objects of the subgroup whose quality is equal to the value of the subgroup optimistic
estimate. Note that the subset does not need to be a subgroup. It is possible to derive
a tight optimistic estimate for the quality measures qamean by considering each object of a
subgroup only once.

Definition 20. Let p be an interval pattern, and Si Ď extppq the subset of objects of extppq
containing the i objects with the highest label value. Then, as defined in (Lemmerich et al.,
2016a), a tight optimistic estimate for qamean is given by:

bssameanppq “ maxpqameanpS1q, ..., q
a
meanpS|extppq|qq, a P r0, 1s

We can derive a better optimistic estimate by focusing on positive objects only.

Theorem 3. Let p be an interval pattern and extppq` the set of objects from the extent of
p whose label value is higher than the mean of the dataset. Let Si Ď extppq` be the subset of
objects containing the i objects with the highest label value. A new tight optimistic estimate
for qamean is given by:

bss
a
meanppq “ maxpqameanpS1q, ..., q

a
meanpS|extppq`|qq, a P r0, 1s

Proof. We need to prove that:

bss
a
meanppq ě bssameanppq, a P r0, 1s

In other words, we need to show that: @Si Ď extppq, qameanpS
`
i q ě qameanpSiq with S`i the

subset of positive objects of Si. In (Lemmerich et al., 2016a), it is proven that no negative
object belongs to the best subgroup’s subset of objects for the quality measures qamean. It
follows logically that for any subset Si, removing the negative objects can not lower its quality.
Thus, we have

@Si Ď extppq, qameanpS
`
i q ě qameanpSiq

We deduce that:

maxpqameanpS1q, ..., q
a
meanpS|extppq`|qq ě maxpqameanpS1q, ..., q

a
meanpS|extppq|qq, a P r0, 1s

Thus, bss
a
meanppq is a tight optimistic estimate for qamean.
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Figure 4.3: Depth-first traversal of Dm2 (from Fig. 4.2 (left)) using minimal changes.

4.2.3 Algorithm

We introduce OSMIND, a depth first search algorithm for an optimal subgroup discovery. It
computes closed on the positives interval patterns coupled with the use of tight optimistic
estimates and advanced search space pruning techniques. The pseudocode is available in
Algorithm 1.

To guarantee an optimal subgroup discovery, we adopt the concept of minimal change
from MinIntChange that ensures an exhaustive enumeration of all interval patterns (see
Fig. 4.3 for an example with one attribute). A right minimal change consists in replacing
the right bound of an interval by the current value closest lower value in the domain of
the corresponding attribute. Following the same logic, a left minimal change consists in
replacing the left bound by the closest higher value. The search starts with the minimal
interval pattern that covers all the objects of the dataset. The main idea in procedure
RECURSION is to apply consecutive left or right minimal changes until obtaining an interval
whose left and right bounds have the same value for each interval of the minimal interval
pattern. If so, the algorithm backtracks until finding a pattern on which a minimal change
can be applied. We leverage the concept of closure on the positives adapted to numerical
labels to significantly reduce the number of candidate interval patterns. After each minimal
change (Line 4), instead of evaluating the resulting interval pattern, we compute and evaluate
the corresponding closed on the positives interval pattern (Line 5). When carrying out an
exhaustive search of all closed on the positives interval patterns, a given interval pattern
can be generated multiple times. To avoid this redundancy and to ensure the unicity of the
pattern generation, a popular solution is the use of a canonicity test. In the case of interval
patterns, the canonicity test verifies that the closure operation did not lead to a change on
an interval preceding the interval on which the minimal change has been applied (Line 6).
However, the successive application of left or right minimal changes on an interval can also
lead to multiple generations of the same interval pattern. A solution is to use a constraint
on the minimal changes. After a right minimal change, a right or left minimal change can be
applied. However, a left minimal change must always be followed by a left minimal change.
We also exploit advanced pruning techniques to reduce the size of the search space. This
can be done through the use of a tight optimistic estimate of the quality of a closed on the
positives interval pattern specializations. For each subgroup, an optimistic estimate is derived
(Line 7), and, if it is lower than the best subgroup quality, the search space is pruned by
discarding every specialization of this interval pattern. Our second implemented technique is
the coupling of forward checking and branch reordering. Given an interval pattern, the set of
all its direct specializations (application of a right or left minimal change on each interval)
are computed – forward checking – and those whose optimistic estimate is higher than the
best subgroup are stored (Line 8). Branch reordering by descending order of the optimistic
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estimate value is then carried out (Line 14). Branch reordering enables the exploration of
the most promising parts of the search space first. It also enables a more efficient pruning by
raising the minimal quality earlier. While our algorithm provides the guarantee of discovering
an optimal subgroup, it is important to note that there can be multiple optimal subgroups
with the same quality for a given dataset. Indeed, we can discover subgroups of equal quality,
but with differing trade-offs between size of the subgroup (i.e., number of objects), deviation
from the global model, and length of the subgroup description. In this situation, it is up to
the user to define an order of importance on the criteria and to choose which subgroup will
serve him best.

4.3 Empirical Validation

We consider 5 purely numerical datasets described in Table 4.1. Source code of implemented
algorithms and used datasets are available at https://bit.ly/3ilhir5. SD-Map* imple-
mentation is available within the VIKAMINE system1. The 5 datasets (Bolt, Basketball,
Airport, Body Temp and Pollution) originate from the Bilkent2 repository. An ex-
tended version of these experiments is available in our paper (Millot et al., 2020a). For the

1http://www.vikamine.org/
2http://funapp.cs.bilkent.edu.tr/DataSets/

Algorithm 1 OSMIND algorithm

1: function OSMIND( )
2: Initializepminimal interval pattern, optimal patternq
3: recursion(minimal interval pattern, 0)
4: return optimal pattern
5: end function

1: procedure recursion(pattern, attribute)
2: for pi “ attribute to nb attributes´ 1q do
3: for pelem in tright, leftuq do
4: patternÐ minimalChangeppattern, i, elemq
5: closed patternÐ computeClosureOnThePositivesppatternq
6: if pisCanonicalpclosed patternqq then
7: if ptightOptEstpclosed patternq ą qualitypoptimal patternqq then
8: storepclosed pattern, iq end if
9: if pqualitypclosed patternq ą qualitypoptimal patternqq then

10: optimal patternÐ closed pattern end if
11: end if
12: end for
13: end for
14: for peach element stored ordered by optimistic estimate valueq do
15: if ptightOptEstpelement.patternq ą qualitypoptimal patternqq then
16: recursion(element.pattern, element.attribute) end if
17: end for
18: end procedure

https://bit.ly/3ilhir5
http://www.vikamine.org/
http://funapp.cs.bilkent.edu.tr/DataSets/
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purpose of our experiments, we also need to be able to generate datasets of different sizes.
Fortunately, benchmark functions for single-objective optimization have been introduced to
evaluate the quality of optimization methods. We consider the Sphere function – whose im-
plementation is available at https://bit.ly/3gYnt3Y – that implies n descriptive variables
and 1 objective to minimize:

fpxq “
n
ÿ

i“1

x2
i , xi P r´5.12, 5.12s,@i P t1, ..., nu

The global minimum of the function is found in fp0, ..., 0q “ 0. Thanks to this function, we
can easily generate synthetic purely numerical datasets to experiment on. Table 4.2 provides
a toy dataset made of Sphere objects with n “ 4 attributes and the function to minimize.

Table 4.1: Datasets and their characteris-
tics: number of attributes, number of ob-
jects and size of the search space.

Dataset Attr Obj |P|

Bolt 8 40 8.7 ˆ 109

Basketball 4 96 2.3 ˆ 1011

Airport 4 135 7.1 ˆ 1015

Body Temp 2 130 1.8 ˆ 103

Pollution 15 60 1.7 ˆ 1042

Table 4.2: Example of Sphere dataset
made of objects with 4 descriptive variables
and 1 target to minimize.

G x1 x2 x3 x4 f1

g1 -2.84 -1.71 0.57 -3.98 27.2
g2 -5.12 3.98 -5.12 1.71 71.2
g3 -1.71 -2.84 -2.84 -3.98 34.9
g4 5.12 3.98 -1.71 -1.71 47.9
g5 -3.98 3.98 -2.84 3.98 55.7

Performance improvements provided by our contributions are summarized in Table 4.3.
Performances of the closure on the positives operator are compared to those of a simple
closure operator. For each dataset, we compare the number of evaluated subgroups before
finding the optimal one for the quality measure qamean with a = 0.5 and a = 1. In all the cases,
the closure on the positives is significantly more efficient. In fact, our method enables us to
divide the number of considered subgroups by an average of more than 20. Let us now study
the potential performance improvement – in terms of execution time in seconds – provided
by our new tight optimistic estimate. We compare it to the tight optimistic estimate from
(Lemmerich et al., 2016a) on all the datasets with the same quality measures. Our optimistic
estimate is more efficient in all cases and it provides an execution time decrease of up to 30%.

Next, we want to study the scalability of our algorithm when the size of the search space
and the size of the dataset increase. To do this, we randomly generate multiple synthetic
datasets – using the Sphere function – with different number of objects (i.e., 100, 1000,
10000, 100000) and different number of attributes (i.e., 1, 2, 4, 6, 8, 10). In each dataset,
each attributes can take 10 different values. We run OSMIND on each dataset with an allotted
time of 24 hours, using the quality measure qamean with both a = 0.5 and a = 1 and report
the results – in seconds – in Table 4.4.

It seems like the running time of the algorithm caps – or barely increases anymore –
once a certain dataset size has been reached. Furthermore, we can see that computing the
optimal subgroup with a = 1 is much faster than with a = 0.5, especially as the number
of attributes increases. This is due to the fact that as the value of a increases, so does the
size of the interesting subgroups. Therefore, when we increase the value of a, we find very

https://bit.ly/3gYnt3Y
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Table 4.3: Comparison: Closure on the positives (COTP) vs Normal closure (NC) and Tight
improved (TI) vs Tight base (TB). “-” means execution time ą72h.

Dataset a COTP NC Gain p˜q TI TB Gain (%)

Bolt
0.5 25 118 4.7 0.0062 0.0078 20.5
1 16 299 19 0.0042 0.0055 23.6

Basketball
0.5 143037 3014506 21 80.5 104 22.6
1 42548 1121798 26 30.5 39.3 22.4

Airport
0.5 387 12042 35 0.17 0.19 10.5
1 57 10055 176 0.033 0.037 10.8

Body Temp
0.5 795 1199 1.5 0.53 0.73 27.4
1 570 865 1.5 0.47 0.53 11.3

Pollution
0.5 100776 - - 23.9 25 4.4
1 1289 41662411 32321 0.376 0.408 7.8

Table 4.4: Study of the scalability of OSMIND with regard to the size of the dataset and the
number of attributes on synthetic datasets generated with the Sphere function. “-” means
execution time ą24h.

Dataset
Features

1 2 4 6 8 10

Sphere100
0.5 0.02 0.03 3.2 50 276 1077
1 0.01 0.02 1.1 18 40 118

Sphere1000
0.5 0.16 0.41 183 5462 - -
1 0.04 0.35 33 904 - -

Sphere10000
0.5 0.07 0.4 182 5469 - -
1 0.04 0.33 33 903 - -

Sphere100000
0.5 0.06 0.36 182 5471 - -
1 0.03 0.31 33 904 - -

good subgroups in higher levels of the search space. On the contrary, when a is set to lower
values, we need to explore the search space more in-depth to find good patterns. We can
also see that the number of attributes is by far the parameter with the strongest influence
on the running time of OSMIND. Indeed, once we reach 8 attributes, the size of the search
space becomes so large that the algorithm is unable to discover an optimal subgroup in the
allotted amount of time for datasets with more than 1000 objects. For 10 attributes, it is even
worse since we can not find an optimal subgroup for datasets with more than 100 objects.
Finally, we want to illustrate the well-known problem of “pattern flooding” in data mining,
which is even worse for numerical data. To do this, we retain the smallest dataset on which
the algorithm returned an optimal subgroup in the allotted amount of time, i.e., Sphere100.
We then generate a second dataset made of 100 objects too, but this time with a domain
size of 20 for each attribute. Our goal is to show the influence of the domain size on the
running time of the algorithm with both a = 0.5 and a = 1. Results – in seconds – are
available in Table 4.5. Doubling the domain size leads to multiplying the running time by
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over 20 when 10 attributes are considered, even though we are only working with a dataset
made of 100 objects. If larger datasets, higher number of attributes, or large domains were
considered, the results would get even worse. Indeed, when considering Sphere100 with a
domain size of 10, there are 2.5 ˆ 1017 possible subgroups with 10 attributes. However, when
considering Sphere100 with a domain size of 20, there are 1.7 ˆ 1023 possible subgroups with
10 attributes. By simply doubling the domain size of the attributes, the size of the search
space is multiplied by close to 1 million. Even though our algorithm exploits state-of-the-art
techniques to compress and prune the search space, Optimal Subgroup Discovery on datasets
with numerous attributes – or with fewer attributes but with large domains of values – is
simply not in the realm of possibilities with current knowledge and technology. Notice that
in that case, we can go for methods like SD-Map* or the heuristic approach MCTS4DM (Bosc
et al., 2018).

Table 4.5: Study of the effects on running time of the attributes domain size as the number
of features increases.

1 2 4 6 8 10

Domain size = 10
0.5 0.02 0.03 3.2 50 276 1077
1 0.01 0.02 1.1 18 40 118

Domain size = 20
0.5 0.04 0.21 11 598 4533 23920
1 0.01 0.04 0.59 133 246 895

Let us discuss the added-value of OSMIND w.r.t. SD-Map*, i.e., the reference algorithm for
an exhaustive strategy with numerical target labels. We compare the quality of the best found
subgroup with each method on the 5 datasets of Table 4.1 when using the quality measure
qamean with a = 0.5. Regarding SD-Map*, a prior discretization of numerical attributes is
needed. To obtain fair results, we evaluate several discretization techniques with different
numbers of cut-points (2, 3, 5, 10, 15 and 20) for SD-Map* and we retain only the best solution
that is compared to the OSMIND results. Selected discretization techniques are Equal-Width,
Equal-Frequency and K-Means. The comparison is in Fig. 4.4. Our algorithm provides
subgroups of higher quality for all datasets, and this no matter the applied discretization
for SD-Map*. We infer that the information loss inherent to the attribute discretization is
responsible for the poorer results obtained with SD-Map*.
In the following experiments, we consider Sphere datasets made of 10 numerical attributes
tx1, ...x10u and 1 objective function f1 to minimize. Since the goal of our algorithm is to
mine for subgroups with a maximized mean label value, we transform the objective function
of Sphere datasets into a function to be maximized by multiplying it by -1 and normalizing
the resulting values. Next, we compare the run times of OSMIND and SD-Map* to quantify
the cost of optimality. We generate datasets – made of Sphere objects – with sizes ranging
from 10 to 500 objects. While SD-Map* and OSMIND both find the optimal subgroup in the
same amount of time for small datasets, the execution time of OSMIND grows exponentially
with the number of objects contrary to that of SD-Map* (ą86400 seconds for OSMIND vs ă1
second for SD-Map* with 500 objects).

Let us now use the Sphere function to successively generate datasets made of 10, 50, 100,
200 objects and we observe the quality of the best subgroup returned for the quality measure
qamean when a = 1. Regarding SD-Map*, we use again the discretization that produces the
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Figure 4.4: Comparison of the best subgroup quality.

best subgroup. Fig. 4.5 depicts the relative quality of the best subgroup returned by each
algorithm for different dataset sizes. With a very small dataset, SD-Map* finds a close to
optimal subgroup despite the use of discretization. However, as datasets get larger, SD-Map*
returns consistently 50% to 70% worse results. We can conclude that OSMIND and SD-Map*
provide different trade-offs between execution time and quality of the results. With OSMIND,
we find subgroups of optimal quality, at the expense of running time, while SD-Map* provides
subgroups of decent quality almost instantly.

Another important qualitative aspect concerns the descriptions of the optimal subgroups
found by OSMIND and SD-Map* with qamean when a = 1. Table 4.6 depicts these descriptions
for our previous dataset made of 100 Sphere objects. Besides the higher quality of the

Figure 4.5: Comparison of the best subgroup quality w.r.t. number of objects.
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subgroup returned by OSMIND, its description also enables the extraction of much more
information than the description obtained with SD-Map*. In fact, where SD-Map* only
offers a strong restriction on attribute x6, OSMIND provides actionable information on 7 of
the 10 considered attributes.

Table 4.6: Comparison between descriptions of: the overall dataset (DS), the optimal sub-
group returned by OSMIND, the optimal subgroup returned by SD-Map*. “-” means no
restriction on the attribute compared to DS, Q and S denote respectively the quality and size
of the subgroup.

Subgroup x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Q S

DS [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] 0 100

OSMIND - [-5.12,3.98] [-5.12,3.98] - - [-3.98,5.12] [-3.98,3.98] [-2.84,5.12] [-3.98,5.12] [-3.98,5.12] 7.15 41

SD-Map* - - - - - [-1.7,1.7] - - - - 3.06 31

Let us finally study the relevance of the optimal subgroup found by OSMIND on the
Sphere dataset made of 200 objects. We can first check that OSMIND enables the discovery
of a subgroup maximizing f1. Next, we validate the interpretability and actionability of the
returned results. Table 4.7 features a comparison between the interval pattern of the overall
dataset and that of the optimal subgroup returned by OSMIND. These results illustrate the
capacity of OSMIND to discover a subgroup which optimizes f1 (0.61 vs 0.49). Finally, we
can exploit the description of the optimal subgroup to easily generate new objects with more
optimized values of f1.

Table 4.7: OSMIND results: Interval patterns of the overall dataset (DS), the optimal subgroup
returned (OS), and average value of f1 for each subgroup.

Subgroup x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 f1

DS [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] [-5.12,5.12] 0.49

OSMIND [-5.12,3.98] [-3.98,5.12] [-5.12,5.12] [-3.98,3.98] [-5.12,5.12] [-3.98,3.98] [-5.12,5.12] [-5.12,5.12] [-5.12,3.98] [-5.12,5.12] 0.61

Other examples are discussed in Chapter 6.

4.4 Conclusion

We investigate the optimal subgroup discovery with respect to a quality measure in purely
numerical data. We motivated the reasons why existing methods achieve suboptimal results
by requiring a discretization of numerical attributes. The OSMIND algorithm enables Optimal
Subgroup Discovery without such loss of information. The empirical evaluation has illustrated
the added-value and the exploitability of the OSMIND algorithm when compared with the
reference algorithm SD-Map*. From an applicative perspective, this method has already been
exploited for plant recipe optimization in controlled environments on synthetic and real-life
data in Chapter 6. From an algorithmic perspective, future work concerns the enhancement
of OSMIND scalability for high-dimensional datasets. Moreover, it would be interesting to
investigate how to exploit some sequential covering techniques for computing not only an
optimal subgroup but a collection of non-redundant optimal subgroups.



Chapter 5

Exceptional Model Mining to
support Multi-Objective
Optimization

Exceptional Model Mining (EMM) is a framework that generalizes subgroup discovery
from labeled data. In EMM, we look for subsets of objects – subgroups – whose models
deviate significantly from the same models fitted on the whole dataset. Quite different
types of models and thus quality measures can be considered. In many MOO application
settings, we have at hand numerical and categorical data for descriptive attributes and
a number of targets, i.e., the functions to be optimized. In this chapter, we investigate
methods that exploit Exceptional Pareto Front Mining (EPFM) in such data. A first
method, called Exceptional Pareto Front Deviation Mining (EPFDM) exploits the devi-
ation between the shape of the Pareto front left by the absence of a subgroup of objects
compared with the Pareto front on the whole dataset. We also develop an approach
called Exceptional Pareto Front Approximation Mining (EPFAM), whose goal is the dis-
covery of models that approximate exceptionally well the true Pareto front. We discuss
in detail the design of a generic quality measure for EPFM. Finally, we propose in-depth
empirical studies of both EPFDM and EPFAM, and we discuss an application scenario
to hyperparameter optimization in Machine Learning.

65
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5.1 Introduction

In EMM, we look for subgroups whose models deviate significantly from the same models
fitted on the entire dataset. Where subgroup discovery is inherently limited to a unique
target concept, EMM is able to handle data where two or more targets exist, enabling the
discovery of more complex interactions between variables.
Examples of complex interactions between variables can be found in multi-objective optimiza-
tion. Our MOO setting concerns knowledge discovery about the sets of descriptive attributes
when we want to optimize simultaneously all the numerical targets. We consider here Pareto
optimization, which involves not one, but a set of equal solutions.
An interesting use case for multi-objective optimization concerns the design of better plant
growth recipes in controlled environments. Growth optimization is intrinsically an MOO
problem. Indeed, in such controlled environments, when trying to optimize the yield, the
size, or the taste of plants, other variables like the energy cost have to be taken into account.
Therefore, optimizing recipes means finding the best trade-offs between several concurrent
objectives. This is difficult: in growth recipe optimization, the underlying model is unknown
and experiments are limited due to time and cost constraints, making it impossible to exploit
typical MOO approaches. There is a need for methods that would support the discovery of
relevant and exploitable information in such MOO problems.
We therefore investigate the cross-fertilization between EMM and MOO by designing a generic
model class for Exceptional Pareto Front Mining (EPFM). We discuss the added value of
distance-based and volume-based measures for Exceptional Pareto Front Deviation Mining
(EPFDM) that enables the discovery of interesting deviation models. We introduce a generic
quality measure and investigate different ways to make it as robust as possible. While EPFDM
can be used as an exploratory analysis tool to discover interesting nuggets of knowledge, it is
not easily usable to generate new and improved solutions. Therefore, we design an original
method called Exceptional Pareto Front Approximation Mining (EPFAM). It supports the
discovery of subgroups whose Pareto front approximates exceptionally well the true Pareto
front, and whose descriptions can be exploited to generate Pareto optimal solutions with
higher probability. Although some important changes have to be made to move from ex-
ceptional deviation mining towards exceptional approximation mining, most of the results
related to pattern relevancy for EPFDM can be easily reused or adapted for EPFAM. The
added value of both EPFDM and EPFAM is investigated thanks to in-depth quantitative and
qualitative empirical studies. Among others, we discuss a use case about hyperparameter op-
timization in Machine Learning and show the relevance of our methods in this setting. The
actionability of both EPFDM and EPFAM has also been validated for plant growth recipe
optimization in Chapter 6.
Part of this chapter (EPFDM) has been published in the Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM) (Millot et al., 2021). Most of this chapter
is also under review for publication in the Data Mining and Knowledge Discovery (DAMI)
journal (submitted in March 2021). For reproducibility purposes, all datasets and source
code are made available in https://bit.ly/3ilhir5.
The remaining of this chapter is organized as follows. Section 5.2 details our contributions to
EPFDM. We then introduce our contributions to EPFAM in Section 5.3. A generic and ro-
bust quality measure is introduced in Section 5.4. In Section 5.5, we detail in-depth empirical
studies of EPFDM and EPFAM. Finally, Section 5.6 concludes.

https://bit.ly/3ilhir5
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5.2 Mining Exceptional Pareto Front Deviations

5.2.1 Approach

We consider here typical datasets for EMM that are composed of a set of attributes, and
several numerical targets, akin to the one presented in Section 2.6. To illustrate our work
and its related concepts, we consider the Fonseca dataset introduced in Chapter 2.
We want to build a model class for EMM in a MOO setting: we propose to look for excep-
tional Pareto front deviations. In a given dataset, we define the true Pareto front – denoted
PFdataset – as the set of all non-dominated objects over the whole data. In typical EMM
approaches, an exceptional model is computed directly on the objects of the subgroup. Then
a quality measure is used to measure the deviation between the model built on the subgroup
and the same model built on the whole dataset. We assume that we have to work with
objective minimization only. When a maximization problem occurs, it is transformed into a
minimization one by multiplying the function by -1.

Our goal hereafter is to capture subgroups representing local phenomena with the highest
influence on the shape of PFdataset, meaning that we need to measure the effects on PFdataset
of removing these objects from the data. Therefore, when a subgroup is generated, we remove
all its objects from the dataset. Then, we compute the new Pareto front PFmodel on the
remaining data, i.e., the complement of the subgroup. Finally, we can compute the deviation
between PFdataset, the Pareto front for the dataset, and PFmodel. This first approach to
EPFM, based on the discovery of subgroups creating large deviations in the shape of the true
Pareto front, is called Exceptional Pareto Front Deviation Mining (EPFDM).

Let us first define which objects of each Pareto front are taken into account when com-
puting distances between Pareto fronts.

Definition 21. Given two Pareto fronts PFtarget and PFreference, the Partial Pareto Front
PPF pPFtarget, PFreferenceq is equal to:

tx P PFtarget|Ey P PFreference, x “ yu

The PPF is defined as the subset of objects of a Pareto front that are not in the set of
objects of the other Pareto front. A PPF can be computed either for PFdataset by keeping
its objects which are not in PFmodel or for PFmodel by keeping its objects which are not in
PFdataset. Figure 5.1 depicts the PPFs of PFmodel (left) and PFdataset (right). In Figure 5.1
(left), the PPF of the model – denoted by PPF model – is the set of objects of PF model
(i.e., the Pareto front of the data that is left once the subgroup has been removed) which
do not belong to the Pareto front of the dataset – denoted by PF dataset. Conversely, in
Figure 5.1 (right), the PPF of the dataset – denoted by PPF dataset – is the set of objects of
PF dataset which do not belong to the Pareto front of the model – denoted by PF model. In
our figures, ND stands for normal data point, SG denotes a subgroup, PF dataset represents
the best known Pareto front and PF model represents the Pareto front of a subgroup.
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5.2.2 Designing Quality Measures for EPFDM

Measuring Deviations between Pareto fronts

Multi-objective optimization requires algorithms that approximate as well as possible the true
Pareto front for any given problem. Many quality measures have been introduced to estimate
the quality of the computed Pareto front compared to the true Pareto front or to an ideal
point (Li and Yao, 2019). Thanks to some of these measures, the distance between two Pareto
fronts can be computed. In traditional multi-objective optimization measures, only the non-
symmetrical distance from either the true Pareto front to the approximate Pareto front (e.g.,
Inverted Generational Distance (Li and Yao, 2019)) or from the approximate Pareto front to
the true Pareto front (e.g., Generational Distance (Li and Yao, 2019)) is computed. However,
(Schutze et al., 2012) shows that taking into account both distances provides measures that
are more resilient to outliers and uncommonly shaped Pareto fronts. Therefore, we consider
measures that consider both the distance between the partial Pareto front of the subgroup
PPFmodel and the Pareto front of the overall dataset PFdataset, and the distance between the
partial Pareto front of the overall dataset PPFdataset and the Pareto front of the subgroup
PFmodel. Then, the largest one is kept as the true distance. It is important to normalize each
of the objectives such that they contribute equally to the measure. We normalize each of them
to get a value between 0 and 1 using the standard scaling x

1

j “ pxj ´minjq{pmaxj ´minjq,
where minj and maxj are respectively the minimum and maximum of Objective j.

Our measures are based on the popular Hausdorff Distance that estimates how far two
subsets of a metric space are from each other using Euclidean distances: informally, it is
defined as the largest of all the distances from a point in one subset to its closest point in the
other subset.

Definition 22. The Hausdorff Distance (HD) between PFmodel and PFdataset is defined as:

HDpPFmodel, PFdatasetq “ maxpmaxpmindpPPFmodel, PFdatasetqq,

maxpmindpPPFdataset, PFmodelqqq

Figure 5.1: Partial Pareto fronts of PFmodel (left) and PFdataset (right) in Fonseca.
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The Median Hausdorff Distance (MHD) between PFmodel and PFdataset is defined as:

MHDpPFmodel, PFdatasetq “ maxpmedpmindpPPFmodel, PFdatasetqq,

medpmindpPPFdataset, PFmodelqqq

where mind computes the minimal Euclidean distance from each point of the partial Pareto
front to the other Pareto front, max returns the largest value in a set of distances and med
returns the median value in a set of distances.

Let us now consider a modified version of the Averaged Hausdorff Distance (AHD) from
(Schutze et al., 2012).

Definition 23. The Averaged Hausdorff Distance AHDpPFmodel, PFdatasetq between PFmodel
and PFdataset is:

max

˜

1

N

N
ÿ

i“1

pmindpPPF imodel, PFdatasetqq,

1

M

M
ÿ

i“1

pmindpPPF idataset, PFmodelqq

¸

where N is the number of objects of PPFmodel and M is the number of objects of PPFdataset.
mind computes the minimal Euclidean distance from object i of the partial Pareto front to
the other Pareto front. The average of all minimal distances is then computed. Finally, max
takes the largest distance of the two.

Although our work has lead us to investigate measures that consider the distance between
solution sets, MOO literature contains numerous ways of estimating the quality of a solution
set, including dominance-based, region-division based, and volume-based quality indicators
(Li and Yao, 2019).
We propose to exploit a new volume-based measure taken from the MOO literature, the so-
called Hypervolume (HV ). Contrary to previously introduced distance-based measures, HV
does not need a reference set, but a reference point to compute the quality of a given Pareto
front. In other terms, the concept of Partial Pareto Front is only relevant for distance-based
measures, and will not be used with HV . Its formal definition can be found in Section 3.4.
Informally, the Hypervolume value of a Pareto front can be seen as the volume of the area
enclosed by the Pareto front and the specified reference point. HV usually takes values
between 0 and 1. Typically, the reference point corresponds to the Nadir point – i.e., the
vector of the worst possible value of each objective in the optimal true Pareto front – which
is impossible to precisely estimate in most scenarios. Figure 5.2 (left) depicts an example of
the Nadir point defined according to the Pareto front in Fonseca. The figure also depicts an
example of HV computed between the Pareto front of the dataset and the previously defined
Nadir point. One issue arises from estimating the reference point this way: numerous objects
of the dataset lie outside the area enclosed by the Pareto front and the Nadir point. This is
problematic for us since when we mine for subgroups, any object could be part of the Pareto
front of a model, even those that lie outside the enclosed area in Figure 5.2. For this reason,
we define our own version of a reference point, that ensures that no object lies outside the
enclosed area.
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Definition 24. The reference point rppG,M, T qq of a given dataset is defined by:

rppG,M, T qq “
@

maxpTiq
D

iPt1,...,|T |u

Informally, the reference point of a dataset is the vector composed of the worst value for
each objective in the overall dataset. Figure 5.2 (right) depicts a comparison between our
reference point and the Nadir point. This novel reference point ensures that the HV can
be properly computed for any subset of a given dataset. Next, we detail how the HV of
a given subgroup is computed in EPFDM. We look for subgroups whose removal produces
exceptional deviations of the Pareto front. Therefore, we need to look for subgroups that
create the largest differences between the HV of the dataset, and the HV of the complement
of the subgroups.

Definition 25. The HV of a given subgroup, denoted by HVdev, is defined as:

HVdevpPFmodel, PFdatasetq “ 1´
HV pPFmodelq

HV pPFdatasetq

This way, higher values of HVdev mean larger deviations of the Pareto front, and the
measure is normalized with values between 0 and 1.

Figure 5.2: Hypervolume of Fonseca with the Nadir point (left) and our reference point
(right).

5.2.3 Algorithm

Our enumeration algorithm is based on a top-K beam search (Duivesteijn et al., 2016). The
pseudocode is available in Algorithm 2. In a simple implementation of beam search, subgroups
can be evaluated multiple times due to its candidate generation process. In our beam search,
candidates in the beam can only be evaluated once, leading to a small gain in efficiency. The
evaluation part of the process is by far the most costly here. To compute the Pareto front of
a subgroup, we employ a greedy approach where each object not in the subgroup is compared
to all the objects not in the subgroup to check whether it is dominated by at least one other
object. If it is not dominated by any other object, we add it to the Pareto front. Finally,
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we implement a simple pruning technique that leads to a large reduction in the number of
subgroups that need to be evaluated. For a subgroup to be interesting, its removal has to
create a deviation in the shape of the true Pareto front. Due to the nature of the dominance
relation, the removal of any object not on the true Pareto front cannot lead to a change in the
Pareto front. It means that only subgroups that contain at least one object that belongs to
the true Pareto front are of interest. As a result, during our search, we ignore any subgroup
and their specializations if it does not contain an object that belongs to the true Pareto front.

Algorithm 2 Beam search for Top-K EPFDM

Input: Dataset D, quality measure q, beam width w, search depth dp, result set size k,
global pareto front pf
Output: Priority queue Q

1: current depthÐ 0
2: candidate queueÐ new queuepq
3: candidate queueÐ candidate queue.insertptuq
4: QÐ new priority queuepkq
5: while pcurrent depth ă dpq do
6: beamÐ new priority queuepwq
7: while pcandidate queue ‰ Hq do
8: lst candidates lvlÐ specializepcandidate queue.dequeuepqq
9: for ppattern P lst candidates lvlq do

10: extentÐ computeExtentppatternq
11: if pextent.isNotDuplicatepq and extent.hasObjppfqq then
12: complement extentÐ computeComplementpextentq
13: pareto front extentÐ computeParetoFrontpcomplement extentq
14: quality extentÐ qppareto front extentq
15: if pquality extent ą worstPatternpbeamqq then
16: beam.insertpextent, quality extent, pareto front extentq
17: end if
18: if pquality extent ą worstPatternpQqq then
19: Q.insertpextent, quality extent, pareto front extentq
20: end if
21: end if
22: end for
23: end while
24: while pbeam ‰ Hq do
25: candidate queue.insertpbeam.dequeuepqq
26: end while
27: current depth “ current depth` 1
28: end while
29: return Q
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5.3 Mining Exceptional Pareto Front Approximations

5.3.1 Approach

Although EPFDM can be used as an exploratory data analysis tool to discover interesting
pieces of knowledge, such as (i) subspaces of the current Pareto front where data could be
missing, (ii) subsets of better or worse solutions of the Pareto front, (iii) anomalous parts
of the Pareto front, it lacks the capability of providing information that directly enables
the design of better solutions. Therefore, we would like a method that can better support
the discovery of actionable insights to generate higher-quality solutions for MOO problems.
Therefore, we investigate the discovery of exceptionally good approximations of the true
Pareto front, called Exceptional Pareto Front Approximation Mining (EPFAM). It provides
a nice solution to our problem: with exceptional approximations supported by subgroups and
their understandable descriptions, we can generate new, close to Pareto optimal, solutions
for a given MOO problem. When we lack expertise, instead of exploring new solutions more
or less randomly, hoping for them to offer good trade-offs, we can exploit a given subgroup
description to generate high-quality solutions with a higher probability.
Our goal hereafter is to discover subgroups whose Pareto front shape is as similar as possible
to that of PFdataset. To do this, when a subgroup is generated, we compute its Pareto
front PFmodel. Then, we can assess how good an approximation PFmodel is with regard to
PFdataset. Now that we have defined how models are computed in EPFAM, we need measures
to assess their quality.

5.3.2 Designing Quality Measures for EPFAM

Comparing the Shape of Pareto Fronts

While the use of distance-based measures makes sense in the case of EPFDM, it is not always
relevant for EPFAM. Indeed, in critical cases where the Pareto front of the subgroup lies
entirely on the true Pareto front, the computed distance between the two would either be
0 (e.g., if we do not use the concept of Partial Pareto Front) or it would be an irrelevant
value (e.g., in the case where we use Partial Pareto Fronts) non-representative of the actual
distance between the fronts. Therefore, we forget distance-based measures and we focus on
volume-based measures like HV , which can better represent how similar two Pareto fronts
are. The HV of the true Pareto front and its reference point are calculated as detailed in
Section 5.2.2. Let us detail how the HV of a given subgroup is computed in EPFAM. We now
look for subgroups whose Pareto front is an exceptional approximation of the true Pareto
front. Therefore, we need to look for subgroups whose HV is as close as possible to that of
the dataset.

Definition 26. The HV of a given subgroup, denoted HVapprox, is defined as:

HVapproxpPFmodel, PFdatasetq “
HV pPFmodelq

HV pPFdatasetq

This way, higher values of HVapprox mean better approximations of the Pareto front, and
the measure is normalized with values between 0 and 1.
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5.3.3 Algorithm

For the computation of top-K EPFAM, a slightly modified strategy from the one introduced
in Section 5.2 for EPFDM can be used. The pseudocode is available in Algorithm 3. First,
instead of computing the Pareto front of the complement for each subgroup, we compute the
Pareto front of the subgroups themselves. Second, in EPFAM, the pruning of the subgroups
which do not contain any object that belongs to the true Pareto front is only applied if a
minimum support constraint is used.

Algorithm 3 Beam search for Top-K EPFAM

Input: Dataset D, quality measure q, beam width w, search depth dp, result set size k,
global pareto front pf
Output: Priority queue Q

1: current depthÐ 0
2: candidate queueÐ new queuepq
3: candidate queueÐ candidate queue.insertptuq
4: QÐ new priority queuepkq
5: while pcurrent depth ă dpq do
6: beamÐ new priority queuepwq
7: while pcandidate queue ‰ Hq do
8: lst candidates lvlÐ specializepcandidate queue.dequeuepqq
9: for ppattern P lst candidates lvlq do

10: extentÐ computeExtentppatternq
11: if pextent.isNotDuplicatepqq then
12: if pextent.hasObjppfq or p!extent.hasObjppfq and !useMinSuppqqq then
13: pareto front extentÐ computeParetoFrontpextentq
14: quality extentÐ qppareto front extentq
15: if pquality extent ą worstPatternpbeamqq then
16: beam.insertpextent, quality extent, pareto front extentq
17: end if
18: if pquality extent ą worstPatternpQqq then
19: Q.insertpextent, quality extent, pareto front extentq
20: end if
21: end if
22: end if
23: end for
24: end while
25: while pbeam ‰ Hq do
26: candidate queue.insertpbeam.dequeuepqq
27: end while
28: current depth “ current depth` 1
29: end while
30: return Q
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5.4 A Generic Quality Measure

Being able to measure the deviation from the true Pareto front may not be enough to mine in-
teresting subgroups. In the literature about EMM quality measures, we usually get measures
with the following form: the quality of the subgroup is multiplied by its generality. Indeed,
in typical EMM, discovering unusual distributions is easily achieved with small subgroups,
therefore there is a need to optimize the generality (i.e., cover) of the discovered subgroups.
In the context of EPFDM, we face the opposite problem: unusual distributions are easily
achieved with large subsets of the data (e.g., if we find a subgroup covering 80% of the data,
it is very likely that its removal will create a large deviation in the Pareto front). Despite
their high quality, such subgroups are not interesting. Figure 5.3 (left) depicts an example of
this phenomenon. Therefore, we need to optimize the locality of the subgroups. Furthermore,
small subgroups that modify only a small part of the true Pareto front when removed are also
not desirable. Indeed, an issue can arise when either outliers are a part of the true Pareto
front or when the density of objects is very low close to some part of the Pareto front. In such
cases, the removal of subgroups with very few objects on the true Pareto front can create
unwanted large deviations in the Pareto front of the model leading to overfitting and trivial
subgroups. Figure 5.3 (right) depicts an example of this phenomenon. Therefore, in EPFDM,
we might also be interested in the optimization of the generality of the subgroup with regard
to the true Pareto front, i.e., the generality of the model. To summarize, given the previously
defined deviation measures, we can get either very large or very small subgroups.

Figure 5.3: Low entropy (left) and large (right) subgroups.

To deal with the first issue (i.e., unwanted large subgroups), let us introduce a locality
constraint.

Definition 27. The locality constraint of a subgroup p is:

Localityppq “ 1´
´ n

N

¯

where N is the total number of objects of the dataset and n is the number of objects of p.

This locality constraint favors smaller subgroups over larger ones. It is especially useful
for cases where objects can be removed from a subgroup without modifying the Pareto fronts.
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However, this constraint might be too strict in some application cases where larger subgroups
might be more desirable. Therefore, we add a factor that tunes the importance of the locality
constraint.

Definition 28. The locality constraint of a subgroup p, with its importance factor, is:

Localityappq “

ˆ

1´
´ n

N

¯

˙a

, a P r0, 1s

where N is the total number of objects of the dataset, n is the number of objects of p, and a
an importance factor.

To deal with the second issue, we propose several solutions. First, let us use the entropy
of the split between the objects of the Pareto front which are not part of the subgroup,
and those who are. We also want control over the importance of the entropy, therefore we
introduce a factor that tunes its importance.

Definition 29. The entropy of a subgroup p is:

Entropybppq “

˜

´
n

N
lg
´ n

N

¯

´
N ´ n

N
lg

ˆ

N ´ n

N

˙

¸b

, b P r0, 1s

where lg denotes the binary logarithm, N is the total number of objects on the true Pareto
front, n is the number of objects of p that belong to the true Pareto front, and b an importance
factor.

The entropy favors balanced splits over unbalanced ones. It returns 0 when the subgroup
has no point on the true Pareto front or the subgroup covers the whole true Pareto front.
It returns 1 when a perfect 50{50 split is achieved. This way, our quality measure is driven
toward finding more relevant subgroups with enough objects on the true Pareto front. Notice
that it introduces a bias against subgroups that cover most of the true Pareto front (or the
whole Pareto front) although it can be controlled by tuning the importance factor b.
Next, as a second way, let us consider how to use the coverage of the subgroup with regard to
the global model. Informally, we compute the percentage of objects of the true Pareto front
which are covered by the subgroup. Again, an importance factor can be used to control the
weight of the generality.

Definition 30. The coverage of a subgroup p is:

Coveragecppq “
´ n

N

¯c
, c P r0, 1s

where N is the total number of objects on the true Pareto front, n is the number of objects
of p that belong to the true Pareto front, and c an importance factor.

Finally, we can suggest a third way to take into account the generality of the model. We
can exploit a minimum support for the percentage of objects of the true Pareto front which
are covered by the subgroup. If the minimal support constraint is not satisfied, the subgroup
should be discarded.
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Definition 31. A subgroup p is valid with regard to a minimum support minSupp if and
only if:

n

N
ě minSupp

where N is the total number of objects on the true Pareto front, n is the number of objects of
p that belong to the true Pareto front, and minSupp is the user-defined minimum support.

We can now define an aggregated measure to take into account the quality of the model,
the locality of the subgroup, and the generality of the model.

Definition 32. Our aggregated quality measure qEPFDM for a subgroup p is defined as:

qEPFDM ppq “ Deviationppq ˆ Localityappq ˆGeneralityppq

where Deviationppq can be any measure of the deviation quality of p with regard to the true
Pareto front, Localityappq denotes the locality constraint, and Generalityppq denotes the
chosen constraint for the generality of the model (i.e., Entropy, Coverage, or a minimal
support constraint). Note that if the minimum support is chosen, then Generalityppq “ 1.

The generic quality introduced for EPFDM applies to EPFAM, provided that we use an
approximation measure instead of a deviation measure in the aggregated measure.

Definition 33. Our aggregated quality measure qEPFAM for a subgroup p is defined as:

qEPFAM ppq “ Approximationppq ˆ Localityappq ˆGeneralityppq

where Approximationppq can be any measure of the approximation quality of p with regard to
the true Pareto front, Localityappq denotes the locality constraint, and Generalityppq denotes
the chosen constraint for the generality of the model (i.e., entropy, coverage, or minimal
support).

Although we chose to take an interest in distance-based and volume-based measures for
the exceptionality of the Pareto fronts in both EPFDM and EPFAM, other quality indicators
from the MOO literature, like the dominance-based C indicator (Zitzler and Thiele, 1999)
could be considered as well.

5.5 Experiments

Let us now consider experiments on both synthetic and real-life datasets. In the following
experiments and unless specified otherwise, the beam width was set to 10, the search depth to
5, the minimum support to 0.1, and the locality factor to 1. These parameters were chosen to
explore the search space as much as possible while favoring the small subgroups and keeping
the running times in an acceptable range. In the figures, both red and orange objects belong
to the best subgroup. When it comes to discretization of the numerical attributes, we apply
equal-width discretization using 2, 3, and 5 bins on each dataset and we retain only the one
that leads to the best models. Please note that in the application scenario to hyperparameter
optimization for Machine Learning, we used a different type of discretization technique which
is described in the corresponding section.
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5.5.1 Relevance of EPFDM

The goal of this experiment is to show the relevance of our approach to discover exceptional
Pareto front deviations. Here, it means finding subgroups whose descriptions in the attribute
space provide insights into interesting local parts of the Pareto Front. Let us first use the
synthetic dataset Fonseca introduced in Chapter 2. We compute the best subgroup found
by our algorithm with HVdev, HD, AHD, and MHD. Figure 5.4 depicts the best model for
each measure. The best deviation is almost the same for all measures, although the size of
the subgroup is quite different. HD finds a model with a large deviation supported by a small
subgroup whose description is xx1 P r´0.8, 0.8s, x2 P r´0.8, 0.8s, x3 P r´0.8, 0.8sy. Exploiting
this subgroup allows for the generation of new objects with a good trade-off between both
functions. Since HD, AHD, and MHD mine very similar models – likely due to the fact
that all 3 measures are based on the Hausdorff distance –, we only report the best models
found with HVdev and HD for the other experiments.

Figure 5.4: EPFDM best deviations on Fonseca with respectively HVdev, HD, AHD and
MHD.

Let us now consider use cases that are less familiar to the MOO community. Here, the
data is limited to the available one (i.e., it cannot be easily extended) and the underlying
model is unknown, making it impossible to run something else than a Pareto front computa-
tion.
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The first dataset – named Obesity – concerns data about eating habits and physical condi-
tions of people from Mexico, Peru and Colombia. It was extracted from the UCI repository1.
It is made of 2111 observations, 14 descriptive variables and 2 objective variables to be op-
timized: the height that needs to be minimized and the weight that needs to be maximized.
In doing so, we want to identify individuals with the worse height-weight trade-off. We com-
pute the best models found with HVdev and HD, and we report the results in Figure 5.5.
The deviations found by the two measures look relatively different, although the objects
from their subgroup are similar. It can be seen when looking at their respective subgroup
descriptions:

x Number main meals = 3, Frequency consumption vegetables = 3, Age P [13.953,23.4],
Family history with overweight = ‘yes’, Consumption alcohol = ‘Sometimes’ y

for HVdev, and

xNumber main meals = 3, Frequency consumption vegetables = 3, Transportation used
= ‘Public Transportation’, family history with overweight = ‘yes’, Consumption alcohol
= ‘Sometimes’ y

for HD.
Indeed, we notice that the two descriptions differ on only one attribute that can create a
large difference in the Pareto front deviation models. We can summarize this difference as
follows: the first subgroup represents young people with bad height/weight trade-offs, while
the second subgroup might represent poor people who use public transportation and have a
worse height/weight trade-off than the rest of the population.

Figure 5.5: EPFDM best deviations on Obesity with HVdev (left) and HD (right).

Let us now consider a third experiment about the trade-off between physical and chemi-
cal defense in plant seeds. The dataset named Plants is made of 163 observations. It was
extracted from the Datadryad website2. Each observation is described by the family and the

1https://archive.ics.uci.edu/ml/datasets.php
2https://datadryad.org/stash

https://archive.ics.uci.edu/ml/datasets.php
https://datadryad.org/stash
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mass of the plant seed. The objective variables are the fiber – physical defense – and the
tannin contents – chemical defense – that both need to be maximized. Again, we compute
the best subgroup found with the same measures as for Obesity. The results, reported in
Figure 5.6, show two significantly different deviation models, supported by subgroup descrip-
tions. For HVdev, the subgroup description is xfamily “ ‘Combretaceae1y, while for HD,
the description is xfamily “ ‘Melastomataceae1y. Both subgroups represent plant families
that seem to provide good local trade-offs between physical and chemical defenses.

Figure 5.6: EPFDM best deviations on Plants with HVdev (left) and HD (right).

The last dataset named RealEstate has been extracted from the UCI repository3.
It concerns over 400 sales of houses in Taiwan between 2012 and 2013. It is made of 4
descriptive variables (latitude, longitude, house age, and number of convenience stores in the
living circle on foot) and 2 objective variables: the price of the house and the distance to
the closest massive rapid transit station that both need to be minimized. We compute the
best subgroup found by our algorithm with HVdev and HD, and we report the results in
Figure 5.7. Both measures find the same deviation model, although supported by different
subgroups. The subgroup description for HVdev is xlatitude P r24.949, 24.965s, longitude P
r121.529, 121.548sy while the subgroup description for HD is xlatitude P r24.949, 24.965s,
number of convenience stores P r4, 6sy. The exploitation of these subgroups can lead to
finding houses (including their location and characteristics) that offer an interesting trade-off
between price and distance to the nearest transport station.

5.5.2 Quantitative Evaluation of EPFDM

As the quality measure introduced offers multiple degrees of freedom, it makes sense to
investigate the running time of our process. We first carry out a running time comparison
of EPFDM between the 4 proposed deviation measures. To do this, we run our algorithm
with standard parameters on the four previous datasets for each measure and we report the
results in Table 5.1. The difference in running time between quality measures is small to
non-existent on small datasets. However, on a larger dataset like Obesity, HVdev seems
to be faster than other measures, while MHD and AHD are closer in running time and

3https://archive.ics.uci.edu/ml/datasets.php

https://archive.ics.uci.edu/ml/datasets.php
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Figure 5.7: EPFDM best deviations on RealEstate with HVdev (left) and HD (right).

HD has the highest execution time by a decent margin. These results can be explained in
two ways. First, the subgroups returned using HD seem to be smaller than those returned
with other measures. Indeed, the most expensive part of the process is the Pareto front
computation of each subgroup. Since the Pareto front is computed on the complement of the
subgroup, smaller subgroups mean larger complements, leading to higher computation time.
Second, the running time differences between measures seem to be pretty small, might not be
statistically significant, and could simply be related to more or less efficient implementations.
To conclude, choosing one measure or another should not be made according to expected
running time efficiency.

Table 5.1: Running time comparison (in seconds) of EPFDM on 4 deviation measures.

Dataset HVdev HD AHD MHD

Fonseca 175 176 176 176
Obesity 15426 17866 16690 16215
Plants 2.4 2.4 2.4 2.4

RealEstate 40 42 42 42

Let us now discuss the running time efficiency when looking for the locality and the gen-
erality. Here, we carry out a comparison on our 4 datasets. For each dataset, we use different
configurations for the evaluation of both the locality and the generality. For the locality of
the subgroup, possible values for the importance of the factor are taken in {0.1,0.5,1}. It is
expected that lower (resp. higher) values for the locality factor favor large (resp. small) sub-
groups. Regarding the minimum support constraint for the generality of the model, possible
values are taken in {0.1,0.3,0.5}. When Coverage or Entropy is selected instead of a minimum
support, the values for the factor that controls the importance of the generality of the model
are taken in {0.1,0.5,1}. Results of the empirical study are in Table 5.2 where loc denotes
Locality. First, we can see that using Entropy or Coverage, regardless of their factor value,
seem to yield the worse results in terms of running time. Furthermore, for larger datasets
like Obesity, the execution could not finish within 24 hours when using either Entropy or
Coverage. Second, it seems that there is no running time difference between algorithm con-
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figurations that use either Entropy or Coverage. Configurations that use a minimum support
of 0.5 yield the fastest execution times: this is indeed expected because the number of po-
tential subgroups to explore gets lower when the minimum support value goes up. We find
no notable running time differences between configurations of the locality factor for small
datasets. However, with a larger dataset like Obesity, we can see that depending on the
chosen minimum support, different values for the locality factor yield significant running time
disparities.

Table 5.2: Running time comparison (in seconds) of quality measure parameters on 4 datasets
using HVdev. “-” means that the execution was not completed after 24 hours (86400 seconds).

Dataset
Gen. Minimum Support Entropy Coverage

0.1 0.3 0.5 0.1 0.5 1 0.1 0.5 1

Fonseca
loc0.1 179 128 128 178 177 177 177 177 177
loc0.5 177 127 127 177 177 177 177 177 177
loc1 182 128 128 178 178 177 177 179 178

Obesity
loc0.1 23189 11188 5213 - - - - - -
loc0.5 16595 11021 6350 - - - - - -
loc1 15426 13159 6443 - - - - - -

Plants
loc0.1 2.4 0.5 0.5 6.7 6.7 6.6 6.6 6.6 6.7
loc0.5 2.4 0.5 0.5 6.6 6.6 6.6 6.6 6.6 6.6
loc1 2.4 0.5 0.5 6.7 6.7 6.6 6.6 6.6 6.7

RealEstate
loc0.1 41 6 3 108 109 109 113 113 112
loc0.5 41 6 3 108 109 109 113 113 112
loc1 41 6 3 100 107 109 108 113 113

Next, we want to investigate the impact of discretization on the quality of the discovered
deviation models. To do this, we exploit the Fonseca dataset made of 5000 objects. We
generate several datasets by using discretization techniques on the main dataset. We used
equal-width and equal-frequency, two of the most well-known discretization techniques and
for each technique, we tried respectively 2, 3, 5, 10, 15, and 20 bins. It leaves us with 12
datasets on which we can experiment with our method to study the effect of discretization
on the quality of the discovered models. We run our algorithm with HVdev, HD, AHD,
and MHD and only retain the best subgroup found for each run. The results can be found
in Table 5.3. The overall best model found for each distance measure is highlighted in red.
Although the discretization technique seems to have a small impact on the quality of the
best exceptional models (equal-width best model for HVdev, and equal-frequency best model
for HD, AHD and MHD), the main driver w.r.t. quality seems to be the number of bins.
Indeed, in all cases, the quality of the best model peaks at 3 bins and then decreases as the
number of bins increases. Finding large enough subgroups to create significant deviations in
the Pareto front indeed becomes harder as the number of values that can be taken by each
attribute grows.
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Table 5.3: Impact of discretization on the quality of the best model for different measures.

Measure
Disc. tech. Equal-Width Equal-Frequency

2 3 5 10 15 20 2 3 5 10 15 20

HVdev 0.17 0.92 0.66 0.27 0.24 0.19 0.18 0.90 0.72 0.31 0.25 0.21

HD 0.31 0.43 0.31 0.29 0.25 0.25 0.31 0.45 0.33 0.29 0.25 0.25

AHD 0.28 0.31 0.21 0.21 0.19 0.19 0.28 0.32 0.25 0.23 0.19 0.19

MHD 0.298 0.297 0.20 0.21 0.19 0.19 0.29 0.30 0.28 0.24 0.19 0.19

5.5.3 Relevance of EPFAM

The goal here is to investigate the relevance of EPFAM on the same datasets as for Sec-
tion 5.5.1 using HVapprox. For each dataset, we report the best approximation of the true
Pareto front found according to the algorithm configuration. The best model found for each
dataset is depicted in Figure 5.8. On Fonseca, we can see that the approximation found
fits almost perfectly the true Pareto front and the subgroup is very small. Furthermore, the
subgroup description which is xx1 P r´0.8, 0.8s, x2 P r´0.8, 0.8s, x3 P r´0.8, 0.8sy supports
the easy generation of very high quality solutions close to the true Pareto front.

Regarding Obesity, we also find a very good approximation of the true Pareto front,
supported by the following description:

x Gender = ‘Female’, Frequency consumption vegetables = 3, Age P [13.953, 23.4], fam-
ily history with overweight = ‘yes’, Consumption alcohol = ‘Sometimes’ y.

This approximation corresponds to young women with a family history of obesity and alcohol
consumption despite their young age. It is however interesting to note that these women have
a high frequency of vegetable consumption.

When looking for the best approximation in Plants, we find a good approximation of
the Pareto front, supported by the description xfamily “ ‘Combretaceae1y. Therefore, the
family of plants known as ‘Combretaceae1 appears as representative of a high-quality trade-off
between physical and chemical defense in plant seeds.

Finally, we study the best model found in RealEstate. We again find a very good
approximation of the true Pareto front, supported by a small subgroup whose description is
xlatitude P r24.949, 24.965s, number of convenience stores P r4, 6sy.
Exploiting such a subgroup can allow for the easy discovery of houses that offer more interest-
ing trade-offs between price and distance to the nearest transport station. It is interesting to
note that both EPFDM and EPFAM can find the same exceptional model, but for different
reasons. Indeed, it sometimes happens that the subgroup which creates the largest deviation
of the true Pareto front is also the subgroup that best approximates it. Please note that
this could be due the use of the same locality and generality parameters for both EPFDM
and EPFAM. While this makes sense for fairness of comparison and working without a priori
knowledge, using configurations of EPFAM where the generality of the model needs to be
maximized could lead to much different results from those found with EPFDM.

Next, we want to investigate the impact of discretization on the quality of the discovered
approximation models. To do this, we use the same 12 datasets used to study the impact
of discretization on EPFDM in Section 5.5.2. We run our algorithm with HVapprox on each
dataset and only retain the best subgroup found for each run. The results can be found in
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Figure 5.8: EPFAM best approximations with HVapprox on Fonseca, Obesity, Plants
and RealEstate respectively.

Table 5.4: Impact of the discretization on the quality of the best model for EPFAM.

Measure
Disc. tech. Equal-Width Equal-Frequency

2 3 5 10 15 20 2 3 5 10 15 20

HVapprox 0.48 0.96 0.986 0.77 0.87 0.78 0.58 0.96 0.983 0.80 0.87 0.77

Table 5.4. The overall best model found is highlighted in red. Once again, the discretization
technique seems to have little impact on the quality of the best exceptional models. Further-
more, the number of bins seems to be the main factor influencing the quality of the returned
subgroups. Indeed, the quality of the best model peaks at 5 bins and then decreases for larger
numbers of bins. While both EPFDM and EPFAM seem to be affected the same way by the
used discretization techniques, their respective qualities peak at different numbers of bins.

5.5.4 Quantitative Comparison of EPFDM and EPFAM

Since different configurations of the algorithm have already been studied in Section 5.5.1 for
several datasets, the same study is not needed for EPFAM. However, studying the running
time of HVapprox on different datasets and comparing it to EPFAM using HVdev is highly
relevant. The results of these evaluations are available in Table 5.5. EPFAM is 2 to 7 times
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faster than EPFDM on all datasets. It makes sense as the most expensive part of the process
is the Pareto front computation of each subgroup, and the Pareto fronts in EPFAM are
typically way easier to compute than in EPFDM. Indeed, in EPFDM, the Pareto front is
computed on the complement of the dataset once the subgroup has been removed, while for
EPFAM the Pareto front is computed on the subgroup itself. Since we generally favor small
subgroups, the complement is way larger than the subgroup, hence the computation is faster
for EPFDM than for EPFAM.

Table 5.5: Running time comparison (in seconds) of EPFDM and EPFAM.

Dataset HVdev HVapprox

Fonseca 175 23.5
Obesity 15426 2320
Plants 2.4 0.9

RealEstate 40 7.7

5.5.5 A Use Case: Hyperparameter Optimization for Machine Learning.

Plant growth recipe optimization in urban farms is the application scenario that motivated
this work, and the actionability of both EPFDM and EPFAM for this setting is studied on
synthetic and real-life data in Chapter 6. We now propose to apply our algorithm when one
needs to optimize multiple metrics at the same time for a machine learning task (e.g., precision
and recall, bias and variance, quality and runtime, accuracy and interpretability). A metric
can be any measure that needs to be optimized (e.g., a quality measure or the complexity of
a model). Since multiple metrics need to be optimized at the same time, a trade-off has to be
found. It has already been shown in the literature that one metric can often not be enough
to assess the quality of a model (Caballero et al., 2010, Shi et al., 2012). We want to show
how we can discover exceptional deviation and approximation models which can be exploited
to both discover interesting nuggets of information and to generate new models that offer
better trade-offs between the different objectives.

Multi-Label Classification.

We first consider the optimization of hyperparameters for a multi-label classification task
using a random forest classifier. We use the popular Yeast dataset from the OpenML4

repository. It is made of 2416 observations, 103 descriptive variables, and 14 binary labels to
classify. We use 5 hyperparameters that are discretized into a list of values to sample from.
For each run of the classifier, we select random values from the list of each hyperparameter.
We run the classifier 200 times with different sets of hyperparameter values for each run
and we assess the quality of the model by computing the recall and the precision of each
model. Indeed, it is known that both precision and recall are important in classification tasks
and that a trade-off between the two measures has to be found. Indeed, to do this, the F1
measure has been proposed. However, simplifying the problem of optimizing both measures
into optimizing only one is a well-known trope in multi-objective optimization and it has

4https://www.openml.org/

https://www.openml.org/


5.5. Experiments 85

been shown that it can lead to suboptimal results and loss of information. In other terms,
we argue that optimizing both precision and recall at the same time is better than trying
to optimize the F1 measure only. We finally build a dataset made of the 200 runs of the
classifier with 5 descriptive variables – the hyperparameter values – and 2 objectives – the
precision and recall – that need to be maximized. We then first use our algorithm to mine
for the most exceptional deviation models in the data using HVdev and HD, and we get the
results reported in Figure 5.9.

Figure 5.9: Best EPFDM models in Yeast with HVdev (left) and HD (right).

The best discovered subgroup, described by min samples leaf “ 0.01 is the same for
both HVdev and HD. Its removal creates a deviation of the whole true Pareto front. The
objects of PF true that belong to the subgroup not only have a common description, but also
offer an overall excellent trade-off between recall and precision. Therefore, the description
of the subgroup can be used not only to prune the hyperparameter search space for further
optimization of the classifiers, but also to build good multi-label classifiers with an interesting
trade-off between recall and precision.
Next, we want to exploit EPFAM to find a good approximation of the global Pareto front.
We run our method and report the results in Figure 5.10. The subgroup description is clear
and concise: n estimators “ 900.0 and min samples leaf “ 0.01. As can be seen in the
figure, it seems like an excellent approximation of the true Pareto front, which is confirmed
by its high quality of 0.96. Therefore, we can easily exploit its description to generate new
models of higher quality.

So far, we have considered two objectives only. Our approach can however be generalized
to more objectives. For instance, let us consider the same settings as with the previous
example though adding the running time of each classifier as a third objective. Our goal is
to look for models that maximize both precision and recall and at the same time minimize
the running time. Since we have now a larger objective space, we increase the number of
multi-label classifier executions to 400 to make sure that the dataset provides a good enough
coverage of the objective space. After building our new dataset made of 400 observations,
5 descriptive variables, and 3 objectives to be optimized. We first run our EPFDM method
with HVdev and HD and return the best computed model for each measure.
We first report the results obtained with HVdev in Figure 5.11. When dealing with Pareto
fronts which are more than two-dimensional, one way to study their characteristics is to use
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Figure 5.10: Best EPFAM model in Yeast.

scatter plots and visualize the pair-wise relationship of objectives. As it can be seen on each
of the 3 scatter plots, the removal of the subgroup leads to a large deviation in all 3 pair-wise
relationships that compose the overall Pareto front. The corresponding subgroup – which is
relatively large – is described by min samples split “ 0.02. From Figure 5.11, we can infer
that the objects which compose the subgroup highly optimize the recall and correspond to
overall good precision values, but show poorer results on execution time. This information
as well as the subgroup description can be used to investigate the reasons why optimizing
the recall leads to overall higher execution times, while the same relationship is not as clear
between precision and execution time. Next, if concessions can be made on the degree of
optimization of the execution time (i.e., we still want solutions on the Pareto front but other
objectives can be prioritized when a conflict occurs), the subgroup can be exploited to further
optimize the classifiers by looking for solutions which both optimize the recall and precision
while keeping the execution time as low as possible.

Figure 5.11: Scatter plots of the best computed EPFDM model with HVdev showing the
pair-wise relationship between objectives.

Next, we study the best subgroup returned with the HD measure. The 3 corresponding
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scatter plots can be found in Figure 5.12. As can be seen in the plots, the HD measure offers
a slightly different variation of the model found with HVdev, composed of very few objects. In
this case, the objects which compose the subgroup optimize even more the recall, at the cost
of slightly worse trade-offs with both precision and time compared to the previous subgroup.
The description of the subgroup, min samples leaf “ 0.01 and min samples split “ 0.02,
confirms the relationship with the subgroup found with HVdev, although it contains one
different restriction from it. This subgroup could be exploited to generate models with highly
optimized recall, decent precision, and relatively bad running times.

Figure 5.12: Scatter plots of the best computed EPFDM model with HD showing the pair-
wise relationship between objectives.

Finally, we want to exploit EPFAM to find a model representing a very good approxima-
tion of the global Pareto front. We run our method and report the results in Figure 5.13.
As can be seen in all 3 figures, we find a very good representative of the global model, even
though we are now working on a problem with 3 objectives for which good approximations
described by a subgroup would be expected to be hard to find – if they even exist. Further-
more, the subgroup is made of few points (less than 10% of the dataset), has a high quality
(0.89), and possesses a clear description – min samples split “ 0.02 – which can be exploited
to generate new models with good overall trade-offs between the 3 objectives. It is interesting
to note that we find the same subgroup that we found using EPFDM with HVdev. In this
particular case, the subgroup whose absence creates the largest deviation of the Pareto front
is also the one that best approximates it.

Figure 5.13: Scatter plots of the best computed EPFAM model showing the pair-wise rela-
tionship between objectives.
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Regression.

Let us now consider the optimization of the hyperparameters of a neural network, and more
precisely of a multi-layer perceptron regressor. We use the California Housing dataset
from the scikit-learn library5. It is made of 20640 observations, 9 variables and the goal is to
predict the sale price of each house. We retain 9 hyperparameters and discretize each of them
into a list of values to sample from. For every run of the neural network, we sample random
values from the list of each hyperparameter. To evaluate the quality of the neural network
depending on the hyperparameter values, we run the model 200 times and, for each run, we
compute the maximum residual error and the explained variance of the model. Finally, we
build a dataset made of 200 observations with 9 descriptive variables – the hyperparameter
values of each run – and 2 objective variables – the maximum residual error and the explained
variance – which both need to be minimized.
We first want to use EPFDM to discover exceptional deviation models. To do this, we run
our method with the HVdev measure and return the top-3 models found. The results are
reported in Figure 5.14. The best subgroup seems to create a large deviation of most of the
true Pareto front. Its description is learning rate init “ 0.01 and applying this restriction
seems to lead to good overall trade-offs between explained variance and maximum residual
error for the neural network (i.e., removing those objects leaves neural networks with poorer
trade-offs). This is interesting: we now know that running our neural network with a learning
rate of 0.01 will lead to good overall quality models. It can also be used as a basis for further
hyperparameter optimization. The second best subgroup found creates a deviation in the
left part of the Pareto front. This part of the Pareto front corresponds to very good values
of explained variance and less optimized values of residual error. Its description is different
from that of the previous subgroup: learning rate init “ 0.01 and max iter “ 100. This
is also an interesting subgroup, it is made of very few objects (ă5% of the dataset) and it
represents a very specific part of the Pareto front. It can be exploited to generate models
with good explained variance (at the cost of a worse residual error), or it can be used to
prune these same solutions from the search space. Furthermore, we can observe that there
are very few points around that part of the Pareto front in the objective space. It could
be interpreted as a problem of missing data. Indeed, since most models generated seem to
optimize the residual error at the cost of the explained variance, we have access to few models
with optimized variance, which leads us to find this subgroup. Therefore, the user can see
this as an indication that more data is needed in that part of the objective space to make
informed decisions. Finally, as can be seen in the figure, the third best subgroup produces
the same deviation of the true Pareto front than the second subgroup, although it is made of
many more objects («20% of the dataset). The subgroup is therefore less interesting since
creating an equivalent deviation with a much larger subset of the dataset is easier.

So far, we have shown that EPFDM can be used as an exploratory data analysis tool to
find interesting parts of the true Pareto front. Next, we want to show how our second method,
EPFAM, can be exploited to iteratively optimize the trade-offs of the generated models.
To achieve this, we first run our method on the original California Housing dataset
and retrieve the best approximation of the overall Pareto front. The results are illustrated
in Figure 5.15 (left). As can be seen, we find a subgroup whose Pareto front fits almost
perfectly the true Pareto front, although it is relatively large («20% of the dataset). It is

5https://bit.ly/38UGJe9

https://bit.ly/38UGJe9
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Figure 5.14: Top-3 best EPFDM models in California Housing with HVdev.

described by learning rate init “ 0.01. This is clear and concise and it can be exploited
to produce new, better models. To do that, we generate 200 new neural network models
with random hyperparameter values, with the important difference that for these models,
the domain of values of the learning rate hyperparameter is restricted to 0.01, i.e., following
the description of the subgroup. By doing this, we increase our chances of generating models
with good trade-offs between maximum residual error and explained variance. We then build
a new dataset out of these 200 models. The new models can be observed in Figure 5.15
(right), where we can clearly see that the Pareto front of the new data – PF it 2 – is better
than that of the original data, i.e., PF it 1. This is confirmed by the numbers available in
Table 5.6. The new dataset of models optimizes significantly better the explained variance,
at a small cost for the residual error. The hypervolume of the new set of models is also
significantly better than that of the original models (0.61 vs 0.49). Please note that for a
fair comparison, the hypervolume of each dataset has to be recalculated after each iteration,
since the reference point (built out of the worst values found for each objective out of all the
objects encountered) can change at each generation of a new dataset.

Figure 5.15: Best EPFAM model in California Housing (left) and comparison of the
datasets generated for the 3 iterations of our process exploiting (right).

Next, we run EPFAM on the set of models of the second iteration to find the best
approximation of the new Pareto front. We find a small subgroup (ă4% of the dataset)
whose description is alpha “ 0.0005 and epsilon “ 0.000001. Once again, we can exploit the
description of the subgroup to apply restrictions on the alpha and epsilon hyperparameters
before generating new, better models. We generate 200 new models – using all the restrictions
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encountered until now – and build a dataset out of them. The new dataset can be observed
in Figure 5.15 (right), where we can see that the Pareto front of the new data – PF it 3 –
is as good if now better than that of the second iteration, i.e., PF it 2. This is confirmed
by the numbers available in Table 5.6. The dataset of this third iteration is composed of
models with a much better average variance, at some cost on the average residual error. The
hypervolume, however, stays the same, signaling that it might not be possible to optimize
the trade-offs between quality measures further in this case. In this scenario, we showed that
EPFAM can be used as a relevant and actionable tool to iteratively improve machine learning
models through hyperparameter optimization.

Table 5.6: Comparison of the average, median, standard deviation values of both the ex-
plained variance and the maximum residual error, and comparison of the hypervolume be-
tween the original models and the new sets of models generated during the different iterations
of our process.

V arianceavg Erroravg V ariancemed Errormed V ariancestd Errorstd Hypervolume

Original models 0.97 0.22 1 0.16 0.12 0.17 0.49

Iteration 2 0.91 0.25 1 0.16 0.20 0.20 0.61

Iteration 3 0.83 0.28 0.98 0.17 0.26 0.22 0.61

5.6 Conclusion

To investigate the cross-fertilization between Exceptional Model Mining and Multi-objective
Optimization, we built a new model class called Exceptional Pareto Front Mining. While
other approaches that link pattern mining to MOO work at the pattern level, EPFM is able
to find relevant patterns at the object level. Our first approach EPFDM looks for deviations
in the shape of the Pareto front created by the absence of a subgroup of objects, compared to
the same Pareto front computed on the whole dataset. Our second approach EPFAM looks
for subgroups whose Pareto front approximates exceptionally well the true Pareto front.
Thanks to experiments on both synthetic and real-life data, we discussed the relevance of our
methods on different use cases. On typical multi-objective optimization scenarios, EPFDM
can be used as an exploratory analysis tool to identify key features in the description space
leading to better or worse trade-offs between objectives. EPFAM can be exploited to find
exceptionally good approximations of the true Pareto front. In other terms, EPFAM enables
the generation of Pareto optimal solutions with a higher probability.
In scenarios with limited data and unknown underlying models, the methods can be used
(i) to identify a subspace of the current Pareto front where data might be missing, (ii) to
select a subset of better or worse solutions of the Pareto front with an explicit and concise
description in the attribute description space, (iii) to identify anomalous parts of the Pareto
front, (iv) and to find exceptionally good approximations of the Pareto front, that can be
exploited to generate higher quality solutions.
Furthermore, the relevance of the integration of EPFAM in an iterative optimization frame-
work has been validated on a use case for hyperparameter optimization in Machine Learning.
It is worth noting that this method has also been exploited for plant recipe optimization in
controlled environments (see Chapter 6). The integration of our method in a proper EMM-
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based iterative optimization process seems like a logical next step to fully exploit its potential
in multi-objective optimization.





Chapter 6

Plant Growth Recipe Optimization
in Controlled Environments

In this chapter, we investigate the actionability of our contributions to SD and EMM for
plant growth recipe optimization in controlled environments, the real-life setting that has
motivated our research. We first introduce important concepts, such as urban farms and
plant growth recipes. We detail how an existing crop growth simulator can be exploited
to generate synthetic recipes that replicate a controlled environment and support the
empirical validation of our work. The relevance of our methods to improve plant growth
in both single and multi-objective optimization settings is validated thanks to these
synthetic yet realistic recipes. Finally, thanks to temporary access to an urban farm, we
detail preliminary results of the application of our methods to basil growth optimization.

93
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6.1 Introduction

Nowadays, conventional farming methods have to face many tough challenges like, for in-
stance, deforestation, soil erosion, and groundwater depletion. Furthermore, crucial problems
related to the climate crisis also stimulate the need for new production systems. The concept
of vertical urban farms (see, e.g., AeroFarms, Infarm, Bowery Farming1) can be part of a
solution. Urban farming enables the growth of plants in fully controlled environments close to
the place where consumers are (Harper and Siller, 2015). These farms allow for the removal
of pesticides and a significant reduction in water consumption, while being able to optimize
both the quantity and quality of plants (e.g., improving the flavor (Johnson et al., 2019) or
their chemical proportions (Wojciechowska et al., 2015)). For most new technologies and
innovations, the barrier for entry into the mainstream lies in proving their cost-effectiveness
compared to existing methods. Vertical urban farms are no stranger to this problem, with
most of their critics arguing that operating and infrastructure costs will always keep them
from being profitable at large scale. In this context, the development of computer-based
methods allowing the optimization of urban farming processes is a big step toward urban
farms becoming successful. Figure 6.1 depicts an example of a real urban farm where plants
grow in vertically stacked layers.

Figure 6.1: Inside image of the FUL vertical urban farm

Urban farms can generate large amounts of data that can be pushed towards a cloud
environment such that various machine learning and data mining methods can be used. We
may then provide new insights about the plant growth process itself (discovering knowledge
about not yet identified/understood phenomena) but also offer new services to farm owners.
The number of parameters influencing plant growth can be relatively important (e.g., tem-
perature, hygrometry, water pH level, nutrient concentration, LED lighting intensity, CO2

concentration). In urban farm environments, these parameters can all be controlled from the
moment the plants are planted up to the day of harvesting. Not only experts can specify

1https://aerofarms.com/, https://infarm.com/,https://boweryfarming.com/.

https://aerofarms.com/
https://infarm.com/
https://boweryfarming.com/


6.2. Plant Growth Recipes 95

a priori the expected values for these descriptive attributes but also sensors can collect the
true values during the whole plant growth process. There are numerous ways of measuring
the relevance of the crop end-product (e.g., cost, yield, size, flavor, or chemical properties).
In other terms, we can retrieve several targets that can be used to evaluate the value of a
given crop, though we consider only numerical ones for the moment.
In general, for a given type of plants, expert knowledge exists that concerns the available
sub-systems (e.g., to model the impact of nutrient on growth, the effect of LED lighting on
photosynthesis, the energy consumption w.r.t. the temperature instruction) but we are far
from a global understanding of the interaction between the various underlying phenomena.
In other terms, setting the optimal instructions for the diverse set of parameters given an
optimization task remains an open problem.
We want to address such an issue by means of data mining techniques. Can we learn from
available recipe records to suggest new ones that should provide better results w.r.t. the se-
lected target attributes? It is worth noting that in the context of plant growth optimization
in urban farms, the underlying model is unknown, preventing the use of traditional genetic
or evolutionary methods. Moreover, experiments have to be executed in batch and in very
limited occurrences due to time and cost constraints.
Please note that for reproducibility purposes, all datasets and source code are made available
in https://bit.ly/3ilhir5.
The remaining of this chapter is organized as follows. In Section 6.2, we explain the concept
of plant growth recipe. We then introduce our synthetic recipe generator in Section 6.3.
A generic framework for actionable SD is introduced and applied to recipe optimization in
Section 6.4. In Section 6.5, multi-objective plant growth recipe optimization is studied on
synthetic data. Then, a real-life application to plant growth optimization is considered in
Section 6.6. Finally, Section 6.7 concludes.

6.2 Plant Growth Recipes

In urban farms, plants grow in an environment where the growth conditions can be controlled
and collected throughout their development. From agronomic knowledge, we also know that
plants go through different stages during their growth, from the time they are planted to
their harvesting. Figure 6.2 illustrates the growth process of plants.

Figure 6.2: Growth process

Given the different growth stages of a plant, the concept of growth recipe consists in
the aggregation of the growing conditions set at each stage, and it can be evaluated by one

https://bit.ly/3ilhir5
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or several numerical objectives. A growing condition can be defined as any variable which
affects the way plants grow. We now formalize the notion of growth recipes.

Definition 34. A plant growth recipe (M, P, T) is given by a set of numerical parameters M
specifying the growing conditions thanks to intervals on numerical values, a numerical value
P representing the number of stages of the growth cycle, and a numerical target label T to
quantify the recipe quality. In a given recipe, each parameter of M is repeated P times s.t.
we have |M | ˆ P numerical attributes.

Examples of such recipes can be found in Table 6.1.

Table 6.1: Examples of generic plant growth recipes.

LightP1 TemperatureP1 LightP2 TemperatureP2 LightP3 TemperatureP3 T

50 25 50 21 20 23 0.3
70 18 80 24 30 12 0.45
60 30 70 18 80 17 0.95
30 32 60 26 50 31 0.75
90 27 30 16 70 18 0.6

Our goal is to discover the characteristics (i.e., the growing conditions) of an optimized
growth. In expert hands, such characteristics can be exploited to define better recipes. The
design of recipes can be done according to (i) statistical and mathematical methods (ii)
empirical studies (iii) expert knowledge (iv) a combination of all of those. Thanks to expert
knowledge and the state of the art, we can design recipes that take into account already
studied complex interactions between variables, such as the connection between air circulation
and humidity. Furthermore, statistical methods support the creation of experimental recipes
that cover as much as possible the search space, which can help in the discovery of previously
unknown information, and also helps in avoiding the creation of multiple redundant recipes.

6.3 A Synthetic Data Generator

This research is partially funded by a project on urban farm recipe optimization. Even though
we do not have access to real farming data yet, we found a way to support an empirical
study on multi-objective recipe optimization using EMM thanks to inexpensive experiments
enabled by the PCSE2 simulator. Originally, the PCSE environment was designed to build
crop simulation models for conventional farming (i.e., crops growing outside in fields, in
non-controlled environments). The PCSE process is depicted in Figure 6.3.

To simulate the growth of a given crop, the model needs several files as input. First,
the soil file which contains information on the physical properties of the soil, such as water
retention, hydraulic conductivity, and soil workability. Second, it needs a crop file that de-
fines which crop is simulated: it describes the crop growth process according to numerous
parameters. Notice that we selected the sugar beet as reference crop for all our experiments
hereafter. Next, it needs an agromanagement file, that contains the schedule for agroman-
agement processes such as irrigation, weeding, nutrient application, and pest control. Finally
and most importantly for us, it requires a weather file that provides daily values for several

2https://pcse.readthedocs.io/en/stable/index.html

https://pcse.readthedocs.io/en/stable/index.html
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Figure 6.3: The PCSE simulation process

weather variables. This file defines important growing conditions of the plants day by day.
Normally, it would contain real weather data extracted from one of the sources supported by
PCSE. Since we have full control on the weather file that is used as input of the simulator, we
can set our own values for each variable and each day, making it possible to simulate plant
growth in controlled conditions. The complete list of variables that can be used to control
the environment can be found in Table 6.2.

Table 6.2: Weather file variable description.

Name Description Unit

RAIN Precipitation (rainfall or water equivalent in case of snow or hail) cmday´1

IRRAD Daily global radiation Jm´2day´1

WIND Mean daily wind speed at 2 m above ground level msec´1

VAP Mean daily vapour pressure hPa
TMIN Daily minimum temperature °C
TMAX Daily maximum temperature °C

We can control some of the most important variables that drive the plant growth process.
We need to be able to set values for each variable and each day of the plant development.
After in-depth investigation of each variable according to the PCSE documentation and
taking into account basic agronomic knowledge, we choose values for each variable as follows:
IRRAD takes values in [10000,30000], RAIN takes values in [5,30], WIND is taken in [0,20],
VAP takes values in [1.1,1.6], TMIN is taken in [15,22] and finally, TMAX takes values in
[23,30]. Please note that we only use these domains of values for application cases where the
6 variables can be exploited at the same time. For example, when using exhaustive methods
like OSMIND where the number of attributes has to be limited, we restrict the number of
variables to 3 and the previously defined domain of values are not relevant anymore. It is
also worth noting that when sampling new values for each of the variables that will compose
a given recipe, we do not carry out a completely random sampling in the domains of values,
but instead we draw random values from a list of 15 evenly spaced numbers over each domain
of values. For example, given variable IRRAD with value domain [10000,30000], we split the
domain into 15 evenly spaced numbers and randomly draw values from these numbers. This
way, we avoid having to use any kind of discretization in some important use cases where the
search space would be too much to handle if we did not use this technique, e.g., when using
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OSMIND. Table 6.3 depicts an example of recipe with as many growing stages as there are
days between the planting of the crop and its harvest.

Table 6.3: Example of Weather file: growing conditions for a given plant day by day.

Day RAIN IRRAD WIND VAP TMIN TMAX

d1 10 23250 15 1.2 15 27
d2 12 18250 12 1.4 16.5 23.4
d3 14 24560 7 1.35 17.8 21.5
... ... ... ... ... ... ...
dn 8 14950 22 1.1 21.1 29.9

Having that many growing stages does not make sense since (i) the growth process for
most plants takes weeks to months, (ii) we know from expert knowledge that the growth
process of many plants can be split into 3 stages only. For this reason, we have been splitting
the Weather file to consider 3 stages using the following method: (1) we define the number
of days of the growth process until harvesting, (2) we divide this number by 3 (i.e., 3 stages)
which defines the length of a stage, (3) for each stage, we define a unique value for each
variable, that will be repeated for as many days as needed in the weather file. An example
of the end result of this process for a crop whose growth process takes 300 days is available
in Table 6.4.

Table 6.4: Example of Weather file: growing conditions for a given plant stage by stage.

Stage RAIN IRRAD WIND VAP TMIN TMAX

P1 (d1 - d100) 11 13250 19 1.39 18 26
P2 (d101 - d200) 14 15976 9 1.26 15 21
P3 (d201 - d300) 24 28390 18 1.42 19 29

The PCSE process outputs as result the state of the plant day by day from the time of
planting (d1,y1), up to its harvest (dn,yn) – see Figure 6.3. However, while the simulator
provides us with the yield, it was not built to output the cost of a given crop. We decide
to consider the cost as being an energy cost for each recipe. Thanks to expertise from our
partner FUL, we have studied the detailed energy consumption of their pilot urban farm for
each environment variable. From this data, we were able to find the percentage of total energy
consumption of each environment variable. This is however a piece of confidential information
that cannot be detailed here. It was then possible to define an approximate percentage of
total energy consumption for each variable of the PCSE model. The results are as follows:
RAIN represents 24.61% of the energy cost of a recipe, IRRAD 49.22%, WIND 5.15%, VAP
10.74%, TMIN 5.14%, and TMAX 5.14% too. The cost of a recipe is then computed the
following way: (i) we normalize variables so that their values fall between 0 and 1, (ii) each
variable of the recipe is multiplied by its share of the total energy consumption, (iii) we add
the values obtained for each variable and divide the total by the number of stages, such that
the final cost of the recipe falls between 0 and 1.
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6.4 Subgroup Discovery for Urban Farm Optimization

6.4.1 Context of Recipe Optimization

Designing, selling, and/or exploiting connected vertical urban farms is now receiving a lot
of attention. Looking for innovative ideas to optimize recipes, we investigate the use of an
optimal subgroup discovery method from purely numerical data. It concerns here the com-
putation of subsets of recipes whose labels (e.g., the yield) show an interesting distribution
according to a quality measure. When considering optimization, e.g., maximizing the yield,
our virtuous circle optimization framework iteratively improves recipes by sampling the dis-
covered optimal subgroup description subspace. We provide our preliminary results about the
added value of this framework thanks to the plant growth simulator introduced in Section 6.3
that enables inexpensive experiments.

The material of this section has been published in the Proceedings of the 2020 Interna-
tional Symposium on Intelligent Data Analysis (IDA) (Millot et al., 2020c). For reproducibil-
ity purposes, all datasets and source code are made available in https://bit.ly/3ilhir5.

Our goal is to optimize recipes and we want to discover actionable patterns in the sense
that delivering such patterns will support the design of new growing conditions and thus
recipes. An optimization measure f quantifies the quality of an iteration. We are interested
in the mean of the target label of the objects of the optimal subgroup after each iteration. The

measure is given by fmean “
ř

iPextppq T piq

|extppq| where T piq is the value of the target label for object i.

Designing recipes that optimize a given target attribute (e.g., the mass, the energy cost)
is often tackled by domain experts who exploit the scientific literature. However, in our
setting, it has two major drawbacks. First, most of the literature remains oriented towards
conventional growing conditions and farming methods. In urban farms, more parameters can
be controlled. Secondly, the amount of knowledge about plants is unbalanced from one plant
to another. Therefore, relying only on expert knowledge for plant recipe optimization is not
sufficient. We have an optimization problem and the need for a limited number of iterations.
Indeed, experimenting with plant growth recipes is time-consuming (i.e., asking for weeks
or months). Therefore, we have to minimize the number of experiments that are needed to
optimize a given recipe.
There are two main families of methods addressing the problem of optimizing a function over
numerical variables: direct and model-based (Rios and Sahinidis, 2013). For direct methods,
the common idea is to apply various strategies to sequentially evaluate solutions in the search
space of recipes. However such methods do not address the problem of minimizing the number
of experiments. For model-based methods, the idea is to build a model simulating the ground
truth using available data and then to use it to guide the search process. For instance,
(Johnson et al., 2019) introduced a solution for recipe optimization using this type of method
with the goal of optimizing the flavor of plants. Their framework is based on using a surrogate
model, in this case, a Symbolic Regression (Koza, 1992). It considers recipe optimization by
means of a promising virtuous circle. However, it suffers from several shortcomings: there
is no guarantee on the quality of the generated models (i.e., they may not be able to model
correctly the ground truth), the number of tested parameters is small (only 3), and the ratio
between the number of objects and the number of parameters in the data needs to be at least
ten for Symbolic Regression (Jones et al., 1998). Clearly, it would restrict the search to only

https://bit.ly/3ilhir5
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a few parameters.

6.4.2 Leveraging Subgroups to Optimize Recipes

A virtuous circle. Our optimization framework can be seen as a virtuous circle, where
each new iteration uses information previously gathered to iteratively improve the targeted
process. First, a set of recipe experiments – which can be created with or without the use
of expert knowledge – is created. With the use of expert knowledge, values or domain of
values are defined for each attribute and then recipes are produced using these values. When
generating recipes without prior knowledge, we create recipes by randomly sampling the
values of each attribute. Secondly, we use subgroup discovery to find the best subgroup of
recipes according to the chosen quality measure (e.g., the subgroup of recipes with the best
average yield). Then, we exploit the subgroup description – i.e., we apply new restrictions
on the range of each parameter according to the description – to generate new, better, recipe
experiments. Finally, these recipes are in turn processed to find the best subgroup for the new
recipes, and so on until recipes cannot be improved anymore. This way, we sample recipes
in a space that gets smaller after each iteration and where the ratio between good and bad
solutions gets larger and larger. Fig. 6.4 depicts a step-by-step example of the process behind
the framework. Our framework makes use of several hyperparameters that affect runtime
efficiency, the number of iterations, and the quality of the results.

Convergence. The first hyperparameter is the parameter a used in the qamean quality mea-
sure. In standard subgroup discovery, it controls the number of objects in the returned
subgroups. A higher value of a means larger subgroups. For us, a larger subgroup means a
larger search space to sample. By extension, a higher value of a means more iterations to be
able to reach smaller subspaces of the search space. For that reason, we rename the param-
eter as the convergence rate. The second hyperparameter is called the minimal improvement
(minImp). It defines the minimal improvement of the Optimization measure – fmean in our
setting – needed from one iteration to another for the framework to keep running. After each
iteration, we check whether the following statement is true or false.

fmeanit ´ fmeanit´1

fmeanit´1

ě minImp

If it is true, then the optimization framework keeps running, else we consider that the recipes
cannot be improved any further. This parameter has a direct effect on the number of iterations
needed for the algorithm to converge. A higher value for minImp means a lower number of
iterations and vice versa. We can also forget minImp and set the number of iterations by
means of another parameter that would denote a budget.

Sampling the subspace. After each iteration, to generate new recipes to experiment with,
we need to sample the subspace corresponding to the description of the best subgroup. Three
sampling methods are currently available and this defines again a new hyperparameter. The
first method consists in sampling recipes using the original set of values of each attribute
(i.e., in the first iteration) minus the excluded values due to the new restrictions applied on
the subspace. Let D1

m be the domain of values of attribute m at Iteration 1 and raim, b
i
ms be
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Figure 6.4: Example of execution of the optimization framework in 3 iterations. We consider
a two-dimensional space (i.e., 2 attributes m1 and m2) where 4 recipes are generated during
each iteration using our first sampling method. The best subgroup (optimizing the yield) of
each iteration (hatched) serves as the next iteration sampling space.

the interval of attribute m at Iteration i according to the description of the best subgroup of
Iteration i´ 1. Then, @v P D1

m, v P D
i
m ô bim ě v ě aim. Using this method, the number of

values available for sampling for each attribute gets smaller after each iteration, meaning that
each iteration is faster than the previous one. The second consists in discretizing the search
space through the discretization of each attribute in k intervals of equal length. Parameter
k is set before launching the framework. Recipes are then sampled using the discretized
domain of values for each attribute. Finally, we can use Latin Hypercube Sampling (McKay
et al., 1979) as a third method. In Latin Hypercube Sampling, each attribute is divided
into S equally probable intervals, with S the number of samples (i.e., recipes). Using this
method, recipes are sampled such that each recipe is the only one in each hyperspace that
contains it. The number of samples generated for each iteration is also a hyperparameter of
the framework.

An explainable generic framework. Our optimization framework is explainable con-
trary to black-box optimization algorithms. Each step of the process is easily understandable
due to the descriptive nature of subgroup discovery. Although we have been referring to our
algorithm OSMIND when introducing the optimization framework, other subgroup discovery
algorithms can be used, including (Lemmerich et al., 2016a). Notice however that the bet-
ter the quality of the provided subgroup, the better the results returned by our framework
will be. Finally, our method can be applied to quite many application domains where we
want to optimize a numerical target given collections of numerical features (e.g., hyperpa-
rameter optimization in machine learning). The pseudocode of the framework is available in
Algorithm 4.

6.4.3 Experiments

The FUL partner in the FUI DUF 4.0 project (2018-2021) is designing new types of ur-
ban farms. It was however impossible to experiment with their prototype before late 2020.
Therefore, we found a way to support the empirical study of our recipe optimizing framework
thanks to inexpensive experiments enabled by a simulator. In an urban farm, plants grow
in a controlled environment. In the absence of failure, recipe instructions are followed and
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Algorithm 4 Optimization framework

Input: Subgroup quality measure q, minimal improvement minImp, framework quality
measure fq, expert knowledge ek, sampling method sm, convergence rate cr
Output: List optimal objects

1: objects listÐ generateInitialObjectspek, smq
2: constraintsÐ computeConstraintspobjects listq
3: current improvementÐ minImp
4: avg objectsÐ computeAvgTargetpobjects listq
5: optimal objectsÐ new listpq
6: while pcurrent improvement ě minImpq do
7: current optimal sg Ð computeOptimalSGpobjects list, q, crq
8: current improvementÐ fqpcurrent optimal sg, avg objectsq
9: if pcurrent improvement ą 0q then

10: optimal objectsÐ getObjectspcurrent optimal sgq
11: end if
12: if pcurrent improvement ě minImpq then
13: avg objectsÐ computeAvgTargetpcurrent optimal sgq
14: constraintsÐ updateConstraintspcurrent optimal sgq
15: objects listÐ generateNewObjectspconstraints, smq
16: end if
17: end while
18: return optimal objects

we can investigate the optimization of the plant yield at the end of the growth cycle. We
simulate recipe experiments thanks to PCSE by setting the characteristics (e.g., the climate)
of the different growing stages. Let us here focus on 3 variables that set the amount of solar
irradiation Irrad (range [0,25000]), Wind (range [0,30]) and Rain (range [0,40]). The plant
growth is split into 3 stages of equal length such that we finally get 9 attributes. In real life,
we can control most of the parameters of an urban farm (e.g., providing more or less light)
and a recipe optimization iteration needs for new insights about the promising parameter
values. This is what we can emulate using the crop simulator: given the description of the
optimal subgroup, we get insights to support the design of the next simulations, say experi-
ments, as if we were controlling the growth environment. At the end of the growth cycle, we
retrieve the total mass of plants harvested using a given recipe. Note that in the following
experiments, unless stated otherwise, no assumption is made on the values of parameters
(i.e., no restriction is applied on the range of values defined above and expert knowledge is
not taken into account). Table 6.5 features examples of plant growth recipes. The source
code and datasets used in our evaluation are available at https://bit.ly/3ilhir5.

OSMIND vs SD-MAP*.

We study the description of the best subgroup returned by OSMIND and SD-MAP*, the state-
of-the art algorithm for subgroup discovery in numerical data. Table 6.6 depicts the descrip-
tions for a dataset comprised of 30 recipes generated randomly with the simulator. Besides
the higher quality of the subgroup returned by OSMIND, the optimal subgroup description also

https://bit.ly/3ilhir5
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Table 6.5: Examples of growth recipes split in 3 stages (P1, P2, P3), 3 attributes, and a
target label (Yield).

R RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Yield

r1 10 23250 5 10 23250 5 15 21000 10 22000
r2 35 10000 14 5 25000 10 16 19500 30 20500
r3 15 17500 26 22 15000 18 30 4000 3 8600
r4 18 22800 17 38 17000 25 38 12000 19 14200

Table 6.6: Comparison between descriptions of the overall dataset (DS), the optimal subgroup
returned by OSMIND, the optimal subgroup returned by SD-MAP*. “-” means no restriction
on the attribute compared to DS, Q and S respectively the quality and size of the subgroup.

Subgroup RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Q S

DS [0,39] [1170,23471] [2,29] [0,37] [111,24111] [0,29] [2,40] [964,24197] [1,30] 0 30

OSMIND [16,37] [1170,22085] [2,24] [7,37] [18309,23584] [2,24] [15,37] [12626,24197] [1,25] 33874 7

SD-MAP* [21,39] - - - [14455,24111] - - [12760,24197] - 30662 5

enables to extract information that is missing from the description obtained with SD-MAP*.
In fact, where SD-MAP* only offers a strong restriction on 3 attributes, OSMIND provides
actionable information on all the considered attributes, i.e., the 9 attributes. It confirms its
qualitative superiority over SD-MAP* which has to proceed to attribute discretizations.

Empirical Evaluation of the Model Hyperparameters.

Our optimization framework involves several hyperparameters whose values need to be stud-
ied to define proper ranges or values that will lead to optimized results with a minimized
number of recipe experiments. We choose to apply a random search on discretized hyperpa-
rameters. Note that in this setting, grid search is a bad solution due to the combinatorial
number of hyperparameter values and the high time cost of the optimization process itself.
We discretize each hyperparameter in several values (the convergence rate is split into 10 val-
ues ranging from 0.1 to 1, the minimal improvement parameter is split into 12 values between
0 and 0.05, the sampling parameter is split between the 3 available methods, and the number
of recipes for each iteration is either 20 or 30). We run 100 iterations of random search, with
each iteration – read set of parameter values – being tested 10 times and averaged to account
for the randomness of the recipes generated. After each iteration of random search, we store
the set of hyperparameter values and the corresponding best recipe found. Fig. 6.5 depicts
the results of the experiments. Optimal values for convergence rate seem to be around 0.5,
between 0.001 and 0.01 for minimal improvement, and the best sampling method is tied be-
tween the first and second one. Generating 30 recipes for each iteration yields better results
than 20 (average yield of 23857 for 30 recipes against 22829 for 20 recipes). To compare
our method against other methods, we run our framework with the following parameters: 30
recipes times 5 iterations (for a total of 150 recipes), 0.5 convergence rate, using the second
sampling method with k “ 15. To address the variance in the yield due to randomness in
the recipe generation process, we run the framework 10 times, store the best recipe found at
each iteration and then compute the average of the stored recipes. We report the results in
Table 6.7.
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Figure 6.5: Yield of the best recipe depending on the value of different hyperparameters using
100 sample recipes for each hyperparameter.

Table 6.7: Comparison of the description and the yield of the best recipe returned by each
method. EK = Expert Knowledge, RS = Random Search, SM = Surrogate Modeling, VC =
Virtuous Circle (our framework).

Method RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Yield

EK 10 0 5 10 25000 5 10 25000 5 23472

RS 17 23447 8 31 22222 23 39 22385 7 23561

SM 20 44 0 20 24981 0 40 31 30 10170

VC 19 16121 18 25 24052 28 14 21126 7 24336

Comparison with Alternative Methods.

Good hyperparameter values have been defined for our optimization framework and we can
now compare our method with other ones. Let us consider the use of expert knowledge and
random search. First, we want to create a model using expert knowledge. With the help
of an agricultural engineer, we defined a priori good values for each parameter using expert
knowledge and we generated a recipe that can serve as a baseline for our experiments. We
then choose to compare our method against a random search model without expert knowl-
edge. We set the number of recipes to 150 for all methods to provide a fair comparison with
our own model where the number of recipes is set to 150. To account for randomness in the
recipe generation, we run 10 iterations of the random search model, we store the value of
the best recipe found in each iteration, and we compute their average yield. Results of the
experiments and a description of the best recipe for each method are available in Table 6.7.
Random search and expert knowledge find recipes with almost equal yields, while our frame-
work finds a recipe with a higher yield. Note that in industrial settings, an improved yield
of 3% to 4% has a significant impact on revenues.

Let us now compare our framework to the Surrogate Modeling method presented in (John-
son et al., 2019). To be fair, we give the same number of data points to build the Symbolic
Regression surrogate model as we used in previous experiments, i.e., 150 for training the
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model (we evaluated the RMSE of the model on a test set of 38 other samples). We use
gplearn(Stephens, 2013), with default parameters, except for the number of generations and
the number of models evaluated for each generation, which are respectively of 1000 and 2000,
as in (Johnson et al., 2019). Note that the model obtained has a RMSE of 2112, and it is
composed of more than 2000 terms (including mathematical operators), therefore the argu-
ment of interpretability is questionable. A grid search is finally done on this model and we
select the best recipe and obtain their true yield using the PCSE simulation environment.
The number of steps for each attribute for the grid search has to be defined. We set it to 5.
As we have 9 parameters, it means that the model needs to be evaluated on nearly 9 million
potential recipes. Also, the model is composed of hundreds of terms such that experiments
are computationally expensive. The best recipe found is given in Table 6.7. The surrogate
model predicts a yield value of 21137. Compared to the ground truth of 10170, the model has
a strong bias. It illustrates that using a surrogate model for this kind of problem will give
good recipes only if it is reliable enough. Interestingly, the RMSE seems to be quite good at
first glance, but this does not guarantee that the model will behave correctly on all elements
of the search space: on the best recipe found, it largely overestimates the yield, leading to
a non-interesting recipe. It seems that this method performs poorly on recipes with more
attributes than in (Johnson et al., 2019). Further studies are here needed.
We investigated the optimization of plant growth recipes in controlled environments when a
single objective needs to be maximized. We motivated the reasons why existing methods fall
short of real-life constraints, including the necessity to minimize the number of experiments
needed to provide good results. We detailed a new optimization framework that leverages
subgroup discovery to iteratively find better growth recipes through the use of a virtuous
circle. Let us now deal with multiple target labels at the same time (e.g., optimizing the
yield while keeping the energy cost as low as possible.)

6.5 Multi-Objective Plant Growth Recipe Optimization

Although single-objective optimization of growth recipes is interesting and has proven to be
effective in optimizing the yield of plants on synthetic data, it ignores the fact that plant
growth optimization is an intrinsically multi-objective problem. We are now interested in
plant recipe optimization in a multi-objective context. We want to exploit our EPFM meth-
ods to show their relevance and actionability on plant growth optimization. We randomly
generated 300 recipes of sugar beet using the simulator. Recipes are described by 6 variables
(RAIN, IRRAD, WIND, VAP, TMIN, TMAX) and are split into 3 stages (P1, P2, P3), for
a total of 18 descriptive variables for each recipe. We then extract the yield and compute
the cost of each recipe according to the detailed method in Section 6.3. The value domain of
each variable is available in Table 6.8. At the start of our experiments, the domain of a given
variable is the same for all 3 stages. As can be seen, the domains are different from those
chosen in Section 6.4 of the chapter. This is due to complex interactions between the different
weather variables in the synthetic data generator PCSE which forces us to use certain value
domains to generate proper growth recipes. Moreover, we used basic agronomic knowledge
to choose value domains that will lead to the generation of domain-relevant plant recipes
from the start. This is an important part of simulating a real-life plant recipe optimization
scenario. Indeed, in real urban farms where recipes need to be optimized, at least basic
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agronomic knowledge would be used to generate a first set of recipes, instead of generating
completely random and obviously irrelevant solutions.

Table 6.8: Value domain of each environment variable.

RAIN IRRAD WIND VAP TMIN TMAX

[5,30] [10000,30000] [0,20] [1.1,1.6] [15,22] [23,30]

Randomly generated examples of such recipes can be found in Table 6.9. We kept the
number of recipes relatively low on purpose to simulate a real-life urban farm where the
number of experiments is limited by numerous constraints. When it comes to discretization
of the numerical attributes, we once again apply equal-width discretization using 2, 3 and 5
bins and we retain only the one that leads to the best models.

Table 6.9: Examples of growth recipes split in 3 stages (P1, P2, P3), 6 attributes, and 2
objectives (Yield and Cost).

R RAINP1 IRRADP1 ... RAINP2 IRRADP2 ... RAINP3 IRRADP3 ... Yield Cost

r1 10 23250 ... 10 23250 ... 15 21000 ... 22000 0.56
r2 35 10000 ... 5 25000 ... 16 19500 ... 20500 0.60
r3 15 17500 ... 22 15000 ... 30 4000 ... 8600 0.65
r4 18 22800 ... 38 17000 ... 38 12000 ... 14200 0.7

In the following experiments, we compute the best models returned by our algorithm for
EPFDM with HD and HVdev. Figure 6.6 depicts the best model found for each measure.
The model found with HD is composed of recipes that highly optimize the yield, but show
poor performance cost-wise. The subgroup is described by: xIRRADP3 P r20000, 30000s,
TPMAXP2 P r23, 26.5s, IRRADP2 P r20000, 30000s, TPMAXP3 P r23, 26.5sy. It supports
what can be observed in the figure: with high values of solar irradiation and maximal tem-
perature during most of the growth process, the yield will be optimized, at the price of a
very high cost for the recipes. This exceptional model is interesting since it represents a
local interesting part of the Pareto front that can be exploited. Indeed, it seems that this
part of the Pareto front contains recipes whose trade-off between yield and cost might not
be optimal compared to other parts of the fronts. This is confirmed by the severe deviation
in the Pareto front shape once the subgroup is removed. This information can be exploited:
when generating new recipes, we can make sure that they do not fall in the description space
of the subgroup, lowering the chances of generating recipes with sub-optimal trade-offs. With
HVdev, we find a model that creates a large deviation that affects most of the Pareto front.
This subgroup is interesting as well. Its description can be exploited to generate new recipes
that will provide good trade-offs between yield and cost. The models found with HD and
HVdev are complementary when generating new recipes: the first one can be used to ex-
clude parts of the search space where bad recipes exist while the second helps to focus on
promising parts. EPFDM is useful as an exploratory tool that enables the discovery of inter-
esting knowledge for MOO problems, however, it cannot be relied upon to design new, more
optimized growth recipes.

Let us now consider the exploitation of EPFAM to iteratively optimize the yield-cost
trade-off of recipes. It was already shown in Chapter 5 that EPFAM can be used in an iterative
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Figure 6.6: EPFDM best models using HD (left) and HVdev (right).

optimization framework to improve trade-offs iteration after iteration. We will use the same
method here to optimize recipes: (i) we first run EPFAM to find a good approximation of
the overall Pareto front of the original set of recipes (ii) we retrieve the description of the
corresponding subgroup (iii) we use the description to apply new restrictions on the domain
of values of the corresponding variables (iv) we generate a new set of recipes, and back to
(i) if the quality has improved sufficiently. This simple iterative process exploiting EPFAM
can be applied successively until no further optimization can be made. It can be seen as
a generic virtuous circle, where each new iteration uses information previously gathered to
iteratively improve the targeted process, much like the framework introduced in Section 6.4.
In this application scenario, we decided to apply this process until we either found two
iterations in a row with no improvement in the hypervolume of the dataset or until we
reached 10 iterations. Please note that for fair comparison, the hypervolume of each dataset
of recipes has to be recalculated after each iteration, since the reference point (built out of
the worst values found for each objective out of all the recipes encountered) can change at
each generation of a new set of recipes. The best approximation found on the original set of
recipes can be observed in Figure 6.7. We find a subgroup whose Pareto front covers a large
part of the Pareto front of the dataset. Furthermore, the subgroup covers very few recipes.
Its description is xIRRADP1 P r10000, 20000s, TPMAXP1 P r23, 26.5s, WINDP2 P r0, 10s,
TPMAXP2 P r23, 26.5s, WINDP3 P r0, 10sy.
It is concise and understandable, making it easy to exploit to design the set of recipes of the

next iteration. We use the description of the best subgroup previously found with EPFAM to
apply restrictions on the generation of new recipes. For each environment variable that occurs
in the subgroup description, the corresponding restrictions are applied to the values of the
newly designed recipes. Then, we generate 300 random new recipes using these restrictions
and compute their corresponding yield and cost. The hypervolume of the new dataset is
then computed and we check whether it has improved from the previous iteration, which
is the case. Following the process, we once again apply EPFAM on the dataset of the
second iteration, and so on until we reach 10 iterations or 2 consecutive iterations with no
improvement. In this case, the process reached 10 iterations, and let us have an in-depth
discussion about its results. Figure 6.8 depicts a comparison between the Pareto front of
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Figure 6.7: Best approximation found using EPFAM.

each of the 10 iterations. First, we can see that the Pareto front improves iteration after
iteration, and seems to converge after the ninth or tenth iteration. The improvement during
the first iterations is substantial, and then, as we get closer to the hidden true Pareto front,
the improvement slows down but continues until the last iteration. The only iteration where
no improvement was observed is the fourth iteration, which could be due to the inherent
randomness of the recipe generation.

These observations are confirmed by the numbers available in Table 6.10. When studying
the hypervolume of the different iterations, we can clearly see a large improvement iteration
after iteration, putting aside Iteration 4 where a slight decrease was observed. In the end,
the improvement from the first to the last iteration is substantial: the first iteration had a
hypervolume of 0.57, while the last iteration of recipes features a hypervolume of 0.88, which
represents an improvement of 54% of the quality of the Pareto front. We also observe that
the final set of recipes features much better trade-offs than the original set, with the average
yield going from 0.62 to 0.35, and the average cost going from 0.60 to 0.19. It is interesting
to note that while the standard deviation of the cost improves throughout the process, the
standard deviation of the yield remains unchanged.

Let us now discuss the improvement of the yield and cost between the start and the end
of our optimization process. Table 6.11 depicts the results. We transformed the normalized
values back into their original form, i.e., the yield needs to be maximized and the cost needs
to be minimized. As can be seen, the average yield between the original recipes and the
final recipes has improved by over 70%. Furthermore, the average cost of each recipe has
been lowered by over 30%, allowing us to easily generate recipes with substantially better
yield-cost trade-offs than originally. Finally, the standard deviation of both variables has
decreased, allowing us to generate very good recipes at a higher rate (i.e., less randomness).
It confirms the relevance and actionability of our iterative process to solve MOO problems.
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Figure 6.8: Comparison of the Pareto fronts of the 10 iterations of our EPFAM process.

Table 6.10: Comparison of the average, median and standard deviation values of both the
yield and the cost, and comparison of the hypervolume between the original set of recipes
and the sets of recipes generated at each iteration.

Y ieldavg Costavg Y ieldmed Costmed Y ieldstd Coststd Hypervolume

Original recipes 0.62 0.60 0.60 0.59 0.26 0.15 0.57

Iteration 2 0.55 0.54 0.49 0.51 0.24 0.13 0.61

Iteration 3 0.61 0.35 0.60 0.35 0.23 0.1 0.73

Iteration 4 0.54 0.32 0.49 0.33 0.25 0.1 0.70

Iteration 5 0.48 0.26 0.42 0.26 0.25 0.09 0.76

Iteration 6 0.44 0.24 0.37 0.24 0.27 0.09 0.80

Iteration 7 0.41 0.23 0.32 0.22 0.27 0.09 0.84

Iteration 8 0.36 0.22 0.30 0.22 0.25 0.08 0.86

Iteration 9 0.38 0.19 0.29 0.19 0.26 0.08 0.87

Iteration 10 0.35 0.19 0.26 0.19 0.26 0.08 0.88

Table 6.11: Comparison of the average, median and standard deviation non-normalized values
of both the yield and the cost between the original and the last set of recipes.

Y ieldavg Costavg Y ieldmed Costmed Y ieldstd Coststd
Original recipes 10055 0.54 10640 0.54 7074 0.07

Iteration 10 17338 0.36 19727 0.36 6849 0.04

Although we have demonstrated that our contributions can be exploited to substantially
improve the growth of recipes in a multi-objective optimization context, we now want to
compare it to a random search method to prove its relevance compared to a well-known
search model. Indeed, random search is widely used in numerous optimization applications,
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such as hyperparameter optimization, and is known for being very simple to understand
and providing good results with a relatively limited amount of objects. To compare those
methods, we generate 3000 random recipes, using for each variable the domain of values that
were used for the first iteration of our own process. We choose the number 3000 since, in
our own process, we ended up generating 3000 recipes (i.e., 300 recipes ˆ 10 iterations). The
goal is then to compare the quality of the 3000 randomly generated recipes with that of the
last set of recipes of our process. Figure 6.9 depicts the comparison between those 2 sets of
recipes. As can be seen, the set of recipes created through our method offers significantly
better results than those generated through random search. Moreover, every single recipe
generated through our method is better than the Pareto front of the random search (i.e., our
300 recipes are non-dominated by the 3000 random search recipes).

Figure 6.9: Comparison of the yield-cost trade-offs of the recipes generated through the
exploitation of EPFAM with the recipes generated through random search.

These observations are confirmed by the numbers available in Table 6.12. Indeed, as can
be seen, both the average yield (0.37 vs 0.65) and the average cost (0.18 vs 0.55) of our
recipes are much more optimized than those of the random search. Finally, the superiority
of our approach is also confirmed by the much better hypervolume of our Pareto front (0.86
vs 0.68). Through this in-depth application scenario to plant growth recipe optimization,
we have shown (i) the relevance of our method to solve such problems (ii) the actionability
of EPFAM (iii) the superiority of our EMM-based approach compared to a random search
model.

Let us go further on recipe optimization by considering now more than two objectives.
We generate 300 new recipes using the same process as described before, but this time we
also exploit a third objective provided by the PCSE model for each recipe: the total weight
of unusable plants (TWP). Indeed, for each recipe, the model computes the amount of usable
(that we call the yield, but it actually corresponds to the total weight of storage organs)
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Table 6.12: Comparison of the average, median and standard deviation values of both the
yield and the cost between our optimized set of recipes and the set of recipes generated
through random search.

Y ieldavg Costavg Y ieldmed Costmed Y ieldstd Coststd Hypervolume

Iteration 10 0.37 0.18 0.28 0.18 0.25 0.08 0.86

Random recipes 0.65 0.55 0.64 0.55 0.25 0.14 0.68

and unusable produced plants (that we call TWP, and it actually corresponds to the sum of
the weights of leaves and stems). Once our new recipes are generated, we run our EPFDM
algorithm with HVdev and we report the best computed model. When dealing with Pareto
fronts that are more than two-dimensional, one way to study their characteristics is to use
scatter plots and visualize the pair-wise relationship of objectives (see Figure 6.10). As it can
be seen on each of the 3 scatter plots, the removal of the subgroup leads to large deviations
in all 3 pair-wise relationships that compose the overall Pareto front. It is particularly clear
in the yield/cost scatter plot where the removal of the subgroup leads to a worse trade-off
between yield and cost. The subgroup can be exploited to generate new recipes that not only
offer good trade-offs between yield, cost, and TWP, but also offer a better trade-off between
yield and cost.

Figure 6.10: Scatter plots of the EPFDM best model with HVdev showing the pair-wise
relationship between objectives.

Let us use the EPFAM method also. It is used with HVapprox and we report the best
computed model in Figure 6.11. We are able to find a small subgroup that approximates
very well the overall Pareto front of the problem. It can be used to support the design of new
recipes whose trade-off between yield, cost, and TWP will be close to or even on the optimal
Pareto front.

Although we have been using an aggregated quality measure (qEPFDM or qEPFAM ) up
to this point, it can be argued that when a quality measure consists in the multiplication of
several objectives (deviation or approximation, locality, generality), loss of information and
sub-optimal subgroups may be discovered. Furthermore, when using top-K EMM, the value
of K can be difficult to choose, and the top subgroups usually lack diversity. To remedy this
problem, we can exploit the concept of skyline patterns from (Soulet et al., 2011) to mine
for subgroups that offer the best trade-off between the different objectives of our quality
measure. Using this method, the optimal number of subgroups returned does not have to
be pre-defined, but will instead be a learned parameter of the model. We want to find the
skyline of subgroups for EPFDM using HVdev. We choose HVdev since it has shown the best
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Figure 6.11: Scatter plots of the EPFAM best model with HVapprox showing the pair-wise
relationship between objectives.

ability to find interesting and actionable subgroups. Furthermore, we choose EPFDM since
looking for multiple subgroups in EPFAM makes little sense. Indeed, EPFAM exploits the
aggregated measure to support the discovery of very good approximations of the Pareto front:
mining a skyline of approximations seems of low interest in that case.
The skyline of subgroups cannot be computed using the algorithms discussed in Chapter 5.
Indeed, since no order can be defined on the quality of subgroups that belong to a skyline, a
typical beam search strategy where the best q patterns of each level need to be retrieved would
not work. Instead, like in (Van Leeuwen and Ukkonen, 2013), we explore the specializations
of the best q patterns at each search level, we compute the skyline of patterns of each level,
and only the specializations of the skyline patterns of the current level are to be explored in
the next level. Throughout the exploration, we add only the overall non-dominated patterns
to the global skyline that should not be confused with the local skyline of each level. The
pseudocode of the algorithm is available in Algorithm 5.

We use this modified version of beam search with a “dynamic beam-width” to mine for
the skyline of exceptional models. The locality factor is set to 1 and the minimum support to
0.1, such that we have 2 objectives to maximize: the quality and the locality of the subgroup.
Since we expect functions that need to be minimized, we transform each maximization into
a minimization one. Figure 6.12 (left) depicts the skyline of patterns found using this con-
figuration. Most of the discovered skyline patterns have a high locality and a relatively low
quality, while some patterns possess a higher quality at the cost of a poorer locality. Next, we
want to compare the quality and the locality of the skyline patterns with the quality and the
locality of the top-K subgroups that are found according to our aggregated measure qEPFDM .
To do this, we compute the top-K subgroups using the aggregated measure, and we record
the subgroup quality and locality values before multiplying them. To make the comparison
as fair as possible, we choose K to be the same as the number of previously found skyline
patterns, 18 in this case. As it can be seen in Figure 6.12 (right), the found subgroups with
the aggregated measure lack diversity between quality and locality and are mostly grouped
in the same subspace of the objective space. Furthermore, only one subgroup found by using
the aggregated measure dominates the skyline of patterns: it confirms the relevance of skyline
pattern mining to find diverse subgroups of high quality.

Finally, we want to estimate the cost of the diversity of patterns mined using Skyline
EMM compared to typical top-k EMM in terms of running time. To do this, we record the
running time of several configurations of top-K EMM using different values of beam-width.
The results are available in Table 6.13. We see that the running times of Skyline EMM and
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Algorithm 5 Beam search for Skyline EPFDM

Input: Dataset D, quality measure q, search depth dp, global pareto front pf
Output: List global skyline

1: current depthÐ 0
2: candidate listÐ new listpq
3: candidate listÐ candidate list.insertptuq
4: global skylineÐ new listpq
5: while pcurrent depth ă dpq do
6: beam skylineÐ new listpq
7: while pcandidate list ‰ Hq do
8: lst candidates lvlÐ specializepcandidate listq
9: for ppattern P lst candidates lvlq do

10: extentÐ computeExtentppatternq
11: if pextent.isNotDuplicatepq and extent.hasObjppfqq then
12: complement extentÐ computeComplementpextentq
13: pareto front extentÐ computeParetoFrontpcomplement extentq
14: quality extentÐ qppareto front extentq
15: beam skyline.insertpextent, quality extent, pareto front extentq
16: end if
17: end for
18: end while
19: skyline lvlÐ computeSkylinepbeam skylineq
20: candidate listÐ skyline lvlq
21: for pskyline pattern P skyline lvlq do
22: if pskyline pattern.isNotDominatedBypglobal skylineq then
23: global skyline.insertpextent, quality extent, pareto front extentq
24: end if
25: end for
26: current depth “ current depth` 1
27: end while
28: return global skyline

top-K EMM cross each other when the beam-width is set to 10, which is the most common
configuration used in our experiments throughout this paper. It shows that the diversity of
Skyline EMM is obtained without a negative impact on running time.

Table 6.13: Running time comparison (in seconds) of EPFDM between qEPFDM denoted q
and Skyline. bw is the chosen beam width when using qEPFDM .

Skyline q, bw “ 1 q, bw “ 3 q, bw “ 5 q, bw “ 10 q, bw “ 20 q, bw “ 50

878 121 308 485 917 1713 3631
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Figure 6.12: Skyline of EPFDM (left) and comparison between Skyline and qEPFDM (right).

6.6 A Real-Life Application Scenario to Plant Growth
Recipe Optimization

6.6.1 Experimental Design

Following our previous contributions on synthetic data, we set out to design an experimental
plan that would allow us to create and collect data on real-life recipes of basil. These ex-
periments were done in collaboration with our partner FUL, who agreed to lend us a large
part of their urban farm for the purpose of testing our different methods of growth recipe
optimization late 2020.
The first thing that we needed to define was which environment variables could be controlled
to create the growth recipes. Due to constraints specific to the farm, we were able to work
with 4 environment variables. The variables were the LED light intensity (in %) which could
take values in 20, 36, 52, 68, 84, 100, the photoperiod with discrete values taken in [7,24], the
number of seeds by pot with discrete values taken in [1,50], and the number of pots by 1/8th

square meter with discrete values taken in [3,15]. We had access to 41 plant trays, that could
each contain up to 60 pots. Each tray was divided into 4 equal parts, such that we could
grow 4 different recipes by tray (one recipe for each sub-part of the tray). This allowed us to
run 41 ˆ 4 “ 164 growth recipes at the same time. Figure 6.13 depicts an example of plant
tray used in our experiments. The division of each tray into 4 equal parts was decided for
several reasons: (i) it was necessary to be able to grow a sufficient number of recipes at the
same time, and collect enough data (ii) we could not divide the trays into more than 4 zones,
or else it would have introduced a strong bias between the different recipes of each tray. This
is because in real-life conditions the amount of LED light received is different for each part
of the tray. For example, outer zones receive less light than central zones. The recipes were
also kept simple, we worked with a unique growing stage (i.e., the environment stayed the
same throughout the plant development). Next, the recipes were generated through random
sampling for each variable. Finally, the total yield, leaf yield – both in grams of leaves per
pot – and height (in centimeters) of each of the 164 recipes would be measured after harvest.
Initially, 3 iterations of plant growth were planned such that we could apply our optimization
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Figure 6.13: Example of a FUL plant tray used in our experiments.

frameworks and observe their relevance over multiple cycles, but due to circumstances outside
of our control, the experiments had to be stopped after the first iteration, leaving us with
only one set of growth recipes on which we could test our methods.

In order to compare our methods with state-of-the-art growth recipes, several expert
recipes were designed by FUL and grown at the same time than our statistically generated
recipes. Six plant trays divided into two zones were used to design 12 expert recipes. Each
tray had its own level of light intensity, and all the trays had the same photoperiod (18 hours
per day) and number of pots by zone (14). Finally, on each tray, 2 recipes with a different
number of seeds by pot were grown (3 seeds and 44 seeds every time). These recipes would
be used as a baseline that our optimization frameworks should try to beat.
Once the first cycle of growth was done, we were able to retrieve and analyze the resulting data
provided by FUL. Due to several issues during the harvesting and measuring of the recipes,
we only had access to complete data on 135 recipes out of the original 164. Furthermore,
only 4 expert recipes could be retrieved (those with light intensities of 68% and 84%), which
limits the relevance of a comparison with our methods (since the best expert recipes might
be missing from the data).

6.6.2 Single-Objective Optimization of Recipes

We first want to investigate the exploitation of our single-objective optimization methods on
the resulting basil recipes. Since we have access to several objective attributes (lead yield,
total yield, height), we create separated datasets containing each one of the objectives, so
that we can run OSMIND on them. this way, we can compare the different optimal subgroups
of recipes found depending on which objective we work with. This is also interesting because
if we find the same subgroup for 2 different objectives, it would mean that optimizing one
objective also optimizes the other.
We start by studying the dataset using the height objective. Table 6.14 depicts the descrip-
tions and average height of the dataset comprised of the 135 recipes generated and the optimal
subgroup of recipes found using OSMIND. As can be seen, we find a subgroup that optimizes
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well the height of the plants. Furthermore, the subgroup possesses a clear description, from
which we can infer that recipes that optimize the height need relatively high light intensity
and photoperiod. The description of the subgroup could also be exploited to generate new
recipes with a more optimized height.

Table 6.14: Comparison between descriptions of the overall dataset (DS) and the optimal
subgroup of recipes returned by OSMIND when optimizing the height of the plants.

Subgroup Light Intensity Photoperiod Nb seeds by pot Nb pots by zone Height

DS [20,100] [7,24] [1,50] [3,15] 14.2

OSMIND [68,100] [13,24] [1,50] [3,15] 20.6

We now study recipes and their total yield. Table 6.15 depicts the descriptions and average
total yield of the dataset and the optimal subgroup of recipes found using the OSMIND. We
find a subgroup that optimizes very well the total yield of the plants compared to the average
yield of the dataset (33.6 vs 16). From its description, we can infer that recipes that optimize
the total yield need relatively high light intensity and photoperiod, but also a larger quantity
of seeds by pot and a lower number of pots by zone. Although the first 3 restrictions seem
easy to explain (i.e., more light and seeds lead to higher yield), the restriction on the upper
bound for the number of pots by zone might seem odd at first. Expert knowledge actually
explains this phenomenon: when too many plants grow close to each other, they have to fight
for light, such that only a few recipes end up receiving most of the light, while the rest of
the recipes do not develop well. For this reason, recipes that achieve the best average yield
are the ones with a lower density of pots by zone. We could also once again exploit the
description to easily generate new recipes with an optimized total yield.

Table 6.15: Comparison between descriptions of the overall dataset (DS) and the optimal
subgroup of recipes returned by OSMIND when optimizing the total yield of the plants.

Subgroup Light Intensity Photoperiod Nb seeds by pot Nb pots by zone Total Yield

DS [20,100] [7,24] [1,50] [3,15] 16

OSMIND [68,100] [13,24] [10,50] [3,11] 33.6

We now set out to find a subgroup of recipes that optimizes the leaf yield. Indeed, where
the total yield contains the whole plant, the leaf yield contains only the part of the plant
which is exploitable (i.e., which can be sold). Table 6.16 depicts the descriptions and average
leaf yields of the dataset and the optimal subgroup of recipes found. We find a subgroup
of recipes that highly optimizes the average leaf yield of basil. Indeed, the average yield by
pot in the overall dataset is 11.7 grams, while the average yield of the optimal subgroup of
recipes is 22.5 grams. Interestingly, the subgroup is supported by a subgroup with almost
exactly the same description as the subgroup optimizing the total yield. This is interesting
since it means that optimizing the total yield leads to also optimizing the leaf yield. While
at first this might seem like an obvious conclusion, the results could have been completely
different if, for example, recipes with a high total yield were mostly made of unexploitable
matter. It is also interesting to note that the subgroup is different from the one found when
optimizing the height. This means that growing recipes with an optimized height does not
lead to optimizing the yield, contrary to what could have been expected.
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Table 6.16: Comparison between descriptions of the overall dataset (DS) and the optimal
subgroup of recipes returned by OSMIND when optimizing the leaf yield of the plants.

Subgroup Light Intensity Photoperiod Nb seeds by pot Nb pots by zone Leaf Yield

DS [20,100] [7,24] [1,50] [3,15] 11.7

OSMIND [68,100] [14,24] [10,50] [3,11] 22.5

Finally, while we have been studying the average leaf yield by pot, it ignores the fact that
when optimizing the yield, an urban farm operator would likely be interested in the yield
by square meter, and not the yield by pot. We therefore compute the leaf yield by square
meter from the leaf yield for each of the 135 recipes. To do this, for each recipe, the leaf
yield is multiplied by the number of pots, and this resulting number is multiplied by 8 (i.e.,
because a recipe occupies 1{8th of a square meter). For example, for a recipe with a leaf
yield of 10 grams and 5 pots by zone, we compute the leaf yield by square meter this way:
10ˆ 5ˆ 8 “ 400 grams by square meter. Next, we look for the optimal subgroup of recipes
optimizing the leaf yield by square meter. Table 6.17 depicts the descriptions and average leaf
yields by square meter of the dataset and the optimal subgroup of recipes found. Once again,
we find a subgroup of recipes that highly optimizes our objective. What is interesting is that
the description of the subgroup is completely different from the descriptions encountered up
until now. To optimize the yield per square meter, we need a lower photoperiod, a lower
number of seeds, and a higher density of pots by zone. This means that despite the plants
having to fight for light, having a higher density of pots still leads to a higher overall yield
per square meter, contrary to the conclusion that had been made when optimizing the leaf
yield by pot.

Table 6.17: Comparison between descriptions of the overall dataset (DS) and the optimal
subgroup of recipes returned by OSMIND when optimizing the leaf yield per square meter of
the plants.

Subgroup Light Intensity Photoperiod Nb seeds by pot Nb pots by zone Leaf Yield (M2)

DS [20,100] [7,24] [1,50] [3,15] 779

OSMIND [68,100] [10,24] [6,48] [8,15] 1495

To conclude, we want to compare the results of our algorithm with the 4 expert recipes
that were retrieved from the experiments. To do this, we compute for each expert recipe
its leaf yield per square meter, and we retain only the recipe with the best yield, which we
compare to the yield of our optimal subgroup. The best expert recipe has a leaf yield of 12
grams per pot, and a density of 14 pots by zone. We compute its leaf yield by square meter,
and we find 12ˆ14ˆ8 “ 1344 grams per square meter. Interestingly, the average yield of our
optimal subgroup of recipes is 1495, which is already better than the best expert recipe that
was provided to us. There is however an important caveat to these conclusions: we were not
provided with most of the experts recipes – 8 were missing out of 12 – meaning that other
expert recipes could have potentially contained better recipes than the 4 we have at hands.
Finally, although the scope of our experiments on real-life recipes is definitely limited due
to circumstances, we have shown on preliminary data the relevance and actionability of our
contributions to help solve single-objective optimization problems akin to that of plant growth
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recipe optimization in controlled environments.

6.6.3 Multi-Objective Optimization of Recipes

We now want to investigate the exploitation of our EPFM methods on the basil growth
recipes. Although we can compute the leaf yield (in grams per square meter) of each recipe,
we were not provided with the cost of the recipes. We therefore need to find a way to compute
a cost for each recipe, which will allow us to apply our EPFDM and EPFAM methods to try
to extract relevant information. Since we have little information to work with, we decide to
define the cost as the multiplication of the light intensity (divided by 100) by the photoperiod
(in hours/day). For example, for a recipe with 20% light intensity and a photoperiod of 18
hours, we compute the cost the following way: 20

100 ˆ 18 “ 3.6. We then compute the cost of
each recipe using this technique. When it comes to discretization of the numerical attributes,
we apply equal-width using 3 bins for EPFDM and equal-width using 5 bins for EPFAM,
since it was shown to provide the best theoretical results on synthetic data in Chapter 5.

In the following experiments, we compute the best models returned by our algorithm for
EPFDM with HD and HVdev. Figure 6.14 depicts the best model found for each measure.
The model found with HD is composed of recipes with low energy cost and low leaf yield.
The description of the subgroup is the following: light intensity P r19.92, 46.67s. It supports
our previous observations; when the light intensity is set to a low value, we produce recipes
of low yield and energy cost. This subgroup can be exploited to easily generate new recipes
of low cost and low yield if it is of interest to the expert. Next, we study the best model
found with HVdev. As can be seen in the figure, we find a large subgroup that creates an
important deviation of the true Pareto front. The subgroup represents recipes with good
trade-offs between cost and yield. Its description is photoperiod P r6.98, 12.67s. We can infer
that recipes with a relatively low photoperiod create plants with a good trade-off between
yield and cost. The description of the subgroup can easily be exploited to generate new
recipes of good quality.

Figure 6.14: EPFDM best models using HD (left) and HVdev (right).

Next, we want to exploit EPFAM to find a good approximation of the true Pareto front
of recipes. Figure 6.15 (left) depicts the best model found. As can be observed, we find a
small subgroup (ă10% of the dataset) which is a good approximation of the global Pareto
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front. This is confirmed by its high quality of 0.82. Through its description – photoperiod P
r6.98, 10.4s and nb pots by zone P r12.6, 15s – we can infer that recipes with a high density of
pots and a low photoperiod lead to plants with good trade-offs between leaf yield and cost.
Information could be exploited to generate new, better recipes in an iterative optimization
framework, as was done in Section 6.5. Unfortunately, we were not able to test such an
EPFAM-based framework further due to circumstances outside of our control.

Figure 6.15: EPFAM best model (left) and comparison of the generated recipes with the
expert recipes (right).

Finally, we want to compare the expert recipes with the generated recipes and the best
model found with EPFAM. While in the previous section we found that the best expert had a
leaf yield close to that of our optimal subgroup, we now compute the cost of the expert recipes
to have a better idea of their quality in a multi-objective optimization setting. Figure 6.15
(right) depicts the expert recipes compared to the other recipes in the objective space. We
can observe that expert recipes provide bad trade-offs between energy cost and leaf yield
compared to the recipes of the subgroup found with EPFAM. It confirms that by exploiting
the best approximation, we could generate new recipes which already provide better trade-offs
than those created by the experts.

While these experiments are a good start to confirm the relevance of our work, it suffers
from several limitations: (i) the number of environment variables that could be modified were
limited (ii) we were only able to generate one iteration of recipes, which severely limits our
capacity to assess the quality of our iterative frameworks (iii) we did not have a clean and
precise way to compute the cost of the recipes (iv) the recipes only had one stage, compared
to 3 stages in our synthetic scenarios (v) some expert recipes were missing, which made the
comparison with our method less relevant.

6.7 Conclusion

In this chapter, our focus was to demonstrate how the contributions introduced in the previ-
ous chapters can be exploited in a real-life application scenario, namely plant growth recipe
optimization in controlled environments. We first started by introducing all the necessary
concepts, including the concept of plant growth recipe. We then introduced a synthetic data
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generator which allows for the simulation and generation of growth recipes in a controlled
environment.
We investigated the optimization of plant growth recipes in controlled environments when
only one objective is considered. We motivated the reasons why existing methods fall short
of real-life constraints and we detailed a new optimization framework that exploits subgroup
discovery to iteratively generate better growth recipes.
Next, we introduced a promising use case where EPFM can be used to support plant growth
recipe optimization in a multi-objective setting. Both EPFDM and EPFAM have been ap-
plied on an “in silico” approach to recipe optimization. Through this in-depth application
scenario, we have shown (i) the relevance of our methods to help solve such problems (ii) the
high actionability of EPFAM (iii) the superiority of our EPFM-based approach compared to
random search. When considering this use case, we have also considered Skyline Exceptional
Model Mining. It offers a better diversity of subgroups over top-K Exceptional Model Mining,
and it does not require for the number of returned subgroups to be known beforehand.
Thanks to temporary access to a real-life FUL urban farm, we were able to generate actual
growth recipes in a controlled environment. Preliminary results confirm the actionability of
our methods to optimize recipes, both in single-objective and multi-objective optimization
settings.
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Conclusion

7.1 Summary

In this thesis, we investigated the design of pattern discovery methods that allow for the
discovery of relevant parameter values driving the optimization of a process. Mining purely
numerical data is becoming ever more popular. It concerns data made of objects described
by numerical attributes, and one of these attributes can be considered as a target label.
We considered Subgroup Discovery, a task that aims at discovering subsets of objects in a
dataset – subgroups – whose target label distribution statistically deviates from that of the
overall dataset. While a large panel of SD algorithms has been proposed so far, most of these
approaches consider a set of nominal attributes with a binary label. SD with numerical data
has historically been of relatively low interest for researchers, with few contributions existing
in the literature.
We investigated the optimal SD with respect to a quality measure in purely numerical data
and motivated the reasons why existing methods achieve suboptimal results and lead to
critical loss of information by employing discretization techniques. To achieve the search
for optimality, we decided to search efficiently the space of interval patterns as defined in
(Kaytoue et al., 2011). Our first contribution (Chapter 4) consists in the OSMIND algorithm
that enables optimal subgroup discovery. Our approach (i) exploits the concept of closure on
the positives adapted to a numerical setting to operate in a subspace (ii) uses a new faster
tight optimistic estimate that can be applied for several quality measures (iii) uses advanced
pruning techniques (forward checking, branch reordering). The empirical evaluation has il-
lustrated the added-value and the exploitability of the OSMIND algorithm when compared to
the state of the art algorithm SD-Map*.
While OSMIND is certainly a good first approach for the discovery of good parameter val-
ues optimizing a single-objective process, the reality is that most processes involve several
objectives that need to be optimized concurrently. For this reason, we next put our focus
on Exceptional Model Mining, a generalization of SD that can deal with complex problems
where several objectives are involved. In EMM, we look for subgroups whose models devi-
ate significantly from the same models fitted on the entire dataset. Examples of complex
interactions between variables can be found such that they can support Multi-objective Op-
timization. While MOO possesses a large literature, typical approaches can not be exploited
when the underlying model is unknown and/or experiments are limited due to time and cost
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constraints. There was therefore a need for methods that would support the discovery of
relevant and exploitable information in such problems.
We investigated the cross-fertilization between EMM and Pareto-based MOO by designing a
generic model class for Exceptional Pareto Front Mining (EPFM) (Chapter 5). While other
approaches that link pattern discovery to MOO work at the pattern level, EPFM is able to
find relevant patterns at the object level. Our first approach, EPFDM, looks for deviations in
the shape of the Pareto front created by the absence of a subgroup of objects, compared to the
same Pareto front computed on the whole dataset. Our second approach, EPFAM, looks for
subgroups whose Pareto front approximates exceptionally well the true Pareto front. EPFDM
can be used as an exploratory analysis tool to discover interesting nuggets of knowledge for
MOO problems, and EPFAM can be exploited to find exceptionally good approximations
of the true Pareto front. In other words, EPFAM enables the generation of Pareto optimal
solutions with a higher probability. The relevance and actionability of EPFM was validated
on an application scenario to hyperparameter optimization in Machine Learning.
Next, we investigated the actionability of our contributions to SD and EMM for plant growth
recipe optimization in controlled environments like vertical urban farms (Chapter 6), the real-
life setting that has motivated our research. Plant growth optimization is an MOO problem
by essence. Indeed, in such controlled environments, when trying to optimize the quality
or quantity of plants, other variables like the energy cost have to be taken into account.
Therefore, optimizing recipes means finding the ideal set of environment parameter values
that lead to the best trade-offs between several concurrent objectives. This is a complex
task: in recipe optimization, the underlying model that governs the growth is unknown, and
experiments are severely limited due to time and cost constraints, rendering common MOO
approaches unusable.
We first detailed how an existing crop simulator can be exploited to generate synthetic recipes
that replicate a controlled environment and assist the empirical validation of our work. We
then investigated the optimization of plant growth recipes in controlled environments when
only one objective is considered. We motivated the reasons why existing methods fall short of
real-life constraints and we detailed a new optimization framework – based on a virtuous cir-
cle principle – that exploits subgroup discovery to iteratively generate better growth recipes.
Next, we introduced a promising use case where EPFM can be used to support plant growth
recipe optimization in a multi-objective setting. Both EPFDM and EPFAM have been ap-
plied on an “in silico” approach to recipe optimization. Through this in-depth application
scenario, we have shown (i) the relevance of our methods to help solving such problems (ii)
the high actionability of EPFAM (iii) the superiority of our EPFM-based approach compared
to random search. Finally, we were able to generate actual growth recipes in a controlled
environment thanks to short time access to a real urban farm, which allowed us to assess
the relevance of our contributions in a real-life urban farm setting. Our preliminary results
have confirmed the potential of our methods to optimize recipes, both in single-objective and
multi-objective optimization settings.
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7.2 Perspectives

7.2.1 Pattern Discovery Methods

Enhancing and diversifying OSMIND.

From an algorithmic perspective, the main research topic would concern either the en-
hancement of OSMIND scalability for high-dimensional datasets, or the development of a
new efficient algorithm for Optimal SD in high-dimensional numerical data. Indeed, it has
been shown that the current iteration of the algorithm struggles with even medium-sized
datasets, which severely limits its application potential. Furthermore, there is still no proper
algorithm in the literature for exhaustive SD in high-dimensional numerical data without
pre-discretization. Second, our algorithm is mostly built around the qamean family of quality
measures. Indeed, the closure system, as well as the pruning system that we developed di-
rectly use properties that are specific to these measures. Therefore it would be interesting to
explore other common quality measures (e.g., t-score, AUC, median), and see if equivalent
bounds and compressing techniques can be found.
Next, the closure scheme that we currently exploit computes the most restrictive closed-on-
the-positive patterns. This means that the descriptions of the subgroups contain as many
restrictions on attributes as possible. While this was relevant to our setting where having
more information to build better recipes is interesting, we also know that many scenarios in-
volve discovering the shortest subgroup descriptions. We could therefore rework our closure
scheme so that the algorithm returns the shortest descriptions available.
Finally, the techniques used for optimal SD in purely numerical data could be extended to
EMM, where no equivalent algorithm currently exists to perform this task. Indeed, techniques
for search space compression – such as closure systems and equivalence classes – and search
space pruning – i.e., optimistic estimates and advanced techniques like forward checking and
branch reordering – could be included in an efficient algorithm to render an exhaustive search
tractable.

Going further with Exceptional Pareto Front Mining.

While this first proposition for EPFM is a fairly good first step, it would be interesting
to investigate the design of new approaches to the model class. For example, we could com-
pare the Pareto front of a subgroup with its complement, which would involve discovering
larger subgroups whose models are exceptionally different from that of their complements.
In its current version, EPFM has been used with a greedy algorithm, namely beam search. It
could therefore be interesting to investigate exhaustive approaches. This would be especially
interesting for EPFAM, where finding the optimal subgroup that best approximates the true
Pareto front is crucial.
Next, we notice the lack of diversity in the subgroups that are returned by the current itera-
tion of our algorithm. Therefore, digging deeper into the Skyline EPFM concept to discover
a set of non-redundant models would be interesting, particularly for EPFDM, where finding
a set of different local deviations in the Pareto front is much more interesting. Finally, it
would also be of interest to create new quality measures for Pareto front comparison based on
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the MOO literature. Indeed, our current preferred method employs the hypervolume, whose
scalability limitations are well-known.

7.2.2 Optimization Frameworks

Revamping the virtuous-circle-based optimization framework.

The current version of our iterative optimization framework involves pure exploitation, which
compromises its ability to discover optimal solutions. Indeed, since our framework only ex-
ploits information about the best subgroup at each step, it most likely finds a local optimum.
However, expanding our method by adding an exploration step would improve the diversity
of the solutions explored during the search, maximizing our chances of discovering the global
optimum.
Next, the integration of expert knowledge is currently limited to inputting the bounds of each
variable for the first iteration of the process. Improving the interactiveness of our framework
by allowing the expert to apply a more diverse set of constraints throughout the process
could help in finding better solutions. To go even further, it would be interesting to allow the
inclusion of more advanced expert information into the framework, such as models describing
subsystems of complex processes. For example, in plant growth optimization, the relation-
ships between pairs of variables – such as hygrometry and temperature – and their effects
on plant development are well-known by experts. Being able to introduce such information
about complex interaction would therefore be extremely relevant. Finally, our framework is
agnostic with regard to the considered SD algorithm, which means that any other method
that can deal with numerical targets can be employed. However, we have not investigated
more complex optimization problems, that could involve nominal targets instead of numer-
ical ones, or even a combination of numerical and nominal targets to be optimized at the
same time. For example, in plant growth optimization, one objective could involve a label
regarding a qualitative aspect of the plants (e.g., the color of the leaves, the taste). In this
setting, being able to optimize qualitative and quantitative aspects simultaneously would be
crucial.

Formalizing and improving the multi-objective optimization framework.

The integration of our method in a properly formalized EMM-based iterative optimization
framework seems like a logical next step to fully exploit its potential in MOO. Indeed, the ba-
sic iterative framework which was introduced in this thesis has not been properly formalized.
Furthermore, it only considers leveraging the best approximation (i.e., the best subgroup)
found at each step. This is a method based on pure exploitation which certainly lacks diver-
sity and is only able to find locally optimal solutions. Introducing exploration techniques into
this process would increase the diversity of the explored solutions, and therefore maximize
the probability of discovering Pareto optimal solutions.

To conclude, while this thesis was a good first step toward exploiting and maximizing the
actionability of Pattern Discovery (i.e., SD and EMM here but other methods could be used)
to help solve complex optimization problems, further research that may involve more complex
methods, data, and optimization problems will be interesting to investigate in the future.



7.2. Perspectives 125

7.2.3 Plant Growth Recipe Optimization

In our work, we have considered large urban farms that can be exploited by economical
entities to mass-produce plants and vegetables. In this setting, optimizing the yield and min-
imizing the cost simultaneously is extremely relevant. However, plant growth in controlled
environments does not have to be limited to this setting. Tomorrow, we can imagine smaller
farms like phytotrons that can be used for medical research on high-value plants, or even
smaller-sized environments that could be used as private gardens to feed families. In these
settings, optimizing the yield could be less relevant, but designing plant growth recipes would
still be of interest. Indeed, medical researchers could be interested in optimizing the chemical
composition of the plants, while individuals could be interested in producing vegetables with
a particular taste, scent, or color that corresponds to their preference. It is also known that
some plants develop different properties depending on the harshness of their growing environ-
ment. For example, some plants that are put in environments with fewer nutrients or less light
(which is closer to real-life uncontrolled conditions), can develop much different tastes than
those that are grown in abundant environments (Oliveira et al., 2013). Optimized recipes
could therefore be designed such that plants develop in more or less harsh environments to
develop specific interesting properties.
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tura, Josep Maria Garrell, José Otero, Cristóbal Romero, Jaume Bacardit, Victor M Rivas,
et al. Keel: a software tool to assess evolutionary algorithms for data mining problems.
Soft Computing, 13(3):307–318, 2009. 20

Ehsan Asadi, Manuel Gameiro Da Silva, Carlos Henggeler Antunes, and Lúıs Dias. Multi-
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ysis based on iterative subgroup discovery: experiments in brain ischaemia data analysis.
Applied Intelligence, 27(3):205–217, 2007. 21

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1998. 24

Salvador Garcia, Julian Luengo, Jose A. Saez, Victoria Lopez, and Francisco Herrera. A sur-
vey of discretization techniques: Taxonomy and empirical analysis in supervised learning.
IEEE Transactions on Knowledge and Data Engineering, 25(4):734–750, 2013. 13, 23

Gemma C. Garriga, Petra Kralj, and Nada Lavrač. Closed sets for labeled data. Journal of
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Henrik Grosskreutz and Stefan Rüping. On subgroup discovery in numerical domains. Data
Mining and Knowledge Discovery, 19(2):210–226, 2009. 24, 29
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Branko Kavšek, Nada Lavrač, and Viktor Jovanoski. Apriori-sd: Adapting association rule
learning to subgroup discovery. In Proceedings IDA, pages 230–241. Springer, 2003. 14, 18
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