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Introduction

The aim of this document is to summarize the scientific work I have been doing over the
last years since my PhD defense in 2007. The topic of my PhD was the modeling and
approximation of multiphase compressible flows with or without phase transition [2, 112, 113].
I also had the opportunity to briefly work on stochastic homogenization [10].

I was hired at Inria in 2008 in order to develop high order numerical methods, with a
focus on discontinuous Galerkin methods for the approximation of compressible flows. This is
a very active research topic and instead of focusing on the development of general high order
schemes for hyperbolic systems, I focused on some specific types of flows which are known
to combine several difficulties: multiphase flows, following my PhD thesis, and low Mach
number flows, which was driven by applications in effusion cooling, one of the target flows of
the team Cagire, the Inria team I have been working in. Over the last years, I have also been
a main contributor of the AeroSol library, a high order finite element library developed at
INRIA since 2010. Based on the development of this library, I was invited at NIA in 2017
for doing research on first order formulation for dissipative systems and for the development
of compact WENO limiters for discontinuous Galerkin methods. The organization of this
document follows these different research directions

Multiphase flows is dealt with in chapter 1. This chapter deals with diffuse interface
models for compressible multiphase flows, a topic I have been interested since my
Master thesis, published in [2]. During my PhD, I had also worked on stochastic
homogenization[10]. I had remarked in my PhD[111, p.58] the following: when lin-
earizing Kapila’s model for mixture of two phase flows, the sound velocity is equal to
the harmonic average of the sound velocities of the two fluids. This is exactly what is
found when performing a linearization of the Euler system, and then the stochastic ho-
mogenization of the linearized system in two heterogeneous media [48]. This convinced
me that multiphase flows could be addressed with stochastic models.
Using stochastic modeling for deriving models and numerical schemes for multiphase
compressible flows is a a guiding principle of chapter 1. The numerical methods de-
veloped in this chapter are extensions of [3], a numerical scheme for multiphase flows
derived with probabilistic ideas but without clear stochastic modeling. It is worth to
remark that the continuous limit of [3] was left unknown, but was required for the cell
integral of the discontinuous Galerkin formulation. In [51], a clear stochastic model was
derived, which enables both to define a closure for a diffuse interface model, and to
recover the finite volume numerical scheme of [3]. From this, a discontinuous Galerkin
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Introduction

was deduced. Some limiters have been tested with this numerical method, both for en-
suring stability for flows with shocks, and for ensuring positivity of the volume fraction
[50]. Also, the numerical method was tested with reactive Riemann solvers for modeling
permeable fronts [52], as an extension of [113] and [21]. All this work was conducted
in collaboration with Erwin Franquet, assistant professor at Pau University. In 2017, a
project funded by Région Nouvelle Aquitaine, Seigle1 gathering Inria, Poitiers Univer-
sity (PPrime) and CEA-CESTA was funded. The aim of the project is to study flows
involving shock-droplets interactions from a numerical and experimental point of view.
At the beginning of this project, the stochastic modeling was improved, allowing to
find again some previously proposed closures for diffuse interface models, and allowing
also to propose new closures [117]. This work was done in collaboration with Enrique
Gutiérrez, whose postdoc was funded by the Seigle project.

Low Mach number flows. In 2011, the Inria Cagire team-project was created. This
project initially aimed at exploring numerically and experimentally a special type of
flow that is encountered in effusion cooling: the jets in cross flow. The Mach number of
these flows is low, and acoustic waves induced by combustion instabilities may interact
with the jets. Last, the simulations are intrinsically unstationary, justifying to resort
to high order methods. The first contribution on low Mach number flows was the
development of a discontinuous Galerkin method accurate a low Mach number, and able
to deal with acoustics. This was done in collaboration with Simon Delmas, who was
preparing his PhD under my co-supervision, and Jonathan Jung, assistant professor at
Pau University[16]. Then jointly with Jonathan, we have developed a filtering method,
which allows to recover accuracy for low Mach number steady flow by doing a simple
postprocessing, see [74]. Last, and still in collaboration with Jonathan, a result known
for finite volume methods [59], namely the accuracy of some numerical fluxes on triangles
and tetrahedra was extended to the discontinuous Galerkin method. The work on low
Mach number flows is summarized in chapter 2.

The AeroSol library. As already stated, the Inria Cagire team aimed initially at explor-
ing numerically and experimentally jets in cross flow. We did not have any numerical
tool, and this led to the development of AeroSol, a new high order finite element
library on hybrid and possibly curvilinear meshes. This development began in collab-
oration with the team Cardamom (formerly Bacchus), which was rather interested
in continuous finite element approximations. One FP7 European project, Impact-ae2,
which I managed for Pau University, was accepted in 2011. This project gathered all ma-
jor aero-engine manufactures in Europe, seven universities and three research establish-
ments. Pau University was in charge of generating some Direct Numerical Simulations
databases of jets in cross flow. This required to address large scale computations. The
development of the parallel aspects of AeroSol was done in collaboration with mainly
Damien Genet (PhD student in the Bacchus team), Benjamin Lux and Maxime Mogé,
two young engineers funded by Inria I advised. The architecture, features, and results
obtained with the AeroSol library are summarized in chapter 3. Also, a prospective
work on task based programming is summarized in this chapter.

1Simulation et Expérimentation de l’Interaction de Gouttes Liquides avec un Écoulement fortement com-
pressible

2https://cordis.europa.eu/project/id/265586
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Work done during my leave at NIA. In 2017, I was invited to work at National Institute
of Aerospace (Hampton, VA), by Alireza Mazaheri (NASA Langley). I was hired there
for working on two topics: the use of compact, positivity preserving WENO limiters for
stabilizing discontinuous Galerkin methods and the hyperbolic formulation of Navier-
Stokes equations. These are published in [93] and submitted in [118], and summarized
in chapter 4.

All the chapters have their own introduction and conclusion, and can be read nearly
independently. Each chapter ends with some research directions for the topic dealt with in.
This document finishes with a conclusion, in which some broader and more transverse possible
research directions are mentioned.
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Chapter 1
Compressible multiphase flows

1.1 Introduction

When compressible single-phase inviscid flows are considered, the system to solve is the Euler
system, except in some extreme cases, for example in rarefied gas dynamics. When it comes
to deal with multiphase flows, the problem becomes astonishingly much more complicated.
This is due to at least two reasons: first, the dynamic of interfaces is driven by the coupling
of the two phases, which may be very stiff, due to strong disparities in the thermodynamic
properties of the two phases. Second, multiphase flows quickly becomes a multiscale problem:
a flow with well defined interfaces may quickly becomes a flow with very small inclusions of
one phase in the other one. These small scales can hardly be neglected: for example, in a
liquid water/gaseous air flow, a small droplet of water may still be important for the flow
description, because of strong disparities in the densities of the two phases.

A direct consequence of the multiscale nature of multiphase flows is the lack of consensus
on which model should be used. Depending on assumptions on the flow, several models have
been proposed. For example, if one of the phase is dispersed, the Lagrangian/Eulerian ap-
proach can be used [140, 49]. If interfaces are well defined, then numerical methods including
Level-set methods [106, 45], Volume-Of-Fluid methods [58], Lagrangian [144] or Arbitrary-
Lagrangian-Eulerian method [68] can be considered. All these models or numerical methods
rely more or less on the coupling of the Euler systems describing each phase. These methods,
however, require to have a discretization resolution smaller than the smallest inclusions and
interface wavelength. Depending on the methods, conservation may be hard to ensure: this
is a well known weakness of level-set methods. Last, some models, are in theory able to
blend not only with interface flows, but also with averaged flows. These models are usually
reductions or extensions of the Baer-and-Nunziato model [9]. An example of reduction of this
model is Kapila’s model [76, 98]. Another question that may arise with reduced models is
hyperbolicity; when the model is not hyperbolic, it may be approximated by an augmented
model with stiff relaxation terms, see e.g. [54]. In these models, the presence of each fluid is
described by their volume fraction. We will be interested in this latter type of model, often
referred as diffuse interface models, see [132] for a review on this type of model.

5



Compressible multiphase flows

Up to our knowledge, the most general diphasic model was proposed in [130], and reads

Btαk ` uI ¨∇αk “ µpPk ´ Pk̄q

Bt

`

αkρk

˘

` divx
`

αkρkuk

˘

“ 0
Bt

`

αkρkuk

˘

` divx
`

αkρk puk b uk ` Pkq
˘

“ PI∇αk ` λpuk̄ ´ ukq

Bt

`

αkρkEk

˘

` divx

´

αk pρkEk ` Pkquk

¯

“ PIuI ¨∇αk ´ µPIpPk ´ Pk̄q ` λuI ¨ puk̄ ´ ukq

(1.1)

where k is the index of the phase (k “ 1 or 2). In (1.1), k̄ denotes the conjugate index of k,
i.e. k̄ “ 2 if k “ 1, and k̄ “ 1 if k “ 2. αk denotes the volume fraction of the phase k, ρk its
density, Pk its pressure, uk its velocity, and Ek its total energy, which is defined as

Ek “ εk `
|uk|2

2 ,

where εk is the internal specific energy. It is linked with the other thermodynamic parameters
by an equation of state

εk “ εkpPk, ρkq.

System (1.1) depends on interfacial terms: the interfacial velocity uI and the interfacial
pressure PI , which must be defined. Last, system (1.1) depends on relaxation parameters λ
and µ, which shall be defined too.

This whole chapter will be driven by giving a stochastic background in the derivation of
(1.1), and by explaining how a numerical scheme can be derived from these ideas. Even if the
work I did was first focused on developing a numerical scheme, and then in the development
of models, I have chosen to expose it in a more usual order, namely by exposing first the
derivation of the model, and then, the associated numerical scheme. In section 1.2, the
stochastic modeling and its physical meaning will be explained. Depending on some modeling
parameters, several models will then be proposed in section 1.3. Properties of these models will
be also discussed. These sections are submitted in [117]. Then in section 1.4, the derivation
of the numerical scheme, based on the same ideas, will be exposed. In section 1.5, some of the
numerical results will be shown. The numerical scheme and numerical results were published
in [50, 51, 52]. The work on numerical scheme was done in collaboration with Erwin Franquet,
and the work on modeling was done in collaboration with Enrique Gutiérrez.

1.2 Stochastic modeling of multiphase flows
In this section, we aim at exploring the stochastic modeling of two non miscible media. Even
if the two media are not miscible, the modeling scale is supposed to be larger than the possible
inclusions of one medium inside the other. As a consequence, on a point x, it may be not
certainly known whether the medium k or k̄ lies in x. The distribution of the medium k or
k̄ is modeled by a probabilistic approach. The probability of having the medium k or k̄ in
x is characterized by the volume fractions αkpxq and αk̄pxq, with αkpxq ` αk̄pxq “ 1. For
one realization, the presence of the fluid k is determined by an indicator function χk, where
χkpxq “ 1 if the fluid k is in x, and χkpxq “ 0 otherwise. Of course, we have

χk ` χk̄ “ 1.

Given an averaging operator E r¨s, the consistency between the macroscopic model and the
stochastic modeling is ensured if

E rχkpxqs “ αkpxq. (1.2)

6



1.2 Stochastic modeling of multiphase flows

Given a stochastic process gx with mean mpxq and variance 1, χk is supposed to be the image
of gx by the Heaviside function

χkpxq “
1` sgnpgxq

2 ,

in which case we have
χk̄pxq “

1´ sgnpgxq

2 “
1` sgnp´gxq

2 .

1.2.1 Consistency with the volume fraction

We denote by mk the mean of gx. For consistency with (1.2), we must have

αkpxq “
ż 8

´8

1` sgnpuq
2 e´pu´mkpxqq2{2 du,

which can be rewritten

αkpxq “
1
?

2π

ż 8

´mkpxq
expp´u2{2q du “ 1

2

ˆ

1` erf
ˆ

mkpxq
?

2

˙˙

. (1.3)

We thus see that in general the stochastic process gx is not stationary. Also, mk has the same
regularity as αk, and we have mk̄ “ ´mk.

1.2.2 Measurability of ∇χk
In the derivation of the multiphase model, integrations involving ∇χk will be needed. For
studying the measurability of this process, another parameter of the Gaussian process is
introduced: the autocorrelation function. We denote it by R, and it is defined as

R : px,yq P Rd ˆ Rd ÞÝÑ E rpgx ´mkpxqqpgy ´mkpyqqs .

We then can prove that

Proposition 1 (Prop. 4.2 p. 13 of [117]). ∇χk is measurable if and only if ByRpx,xq “
BxRpx,xq “ 0 and B2

xyRpx,xq is non-negative.

Note that under hypothesis of Proposition 1, we have E r∇χkpxqs “ ∇αkpxq.

1.2.3 Link between the flow topology and the autocorrelation function

Roughly speaking, the autocorrelation function can be understood as follows for our multi-
phase model: if the correlation of two close points x and y is high, then the values on x
and y are strongly correlated, and so very likely to be in the same phase, so that rx,ys is
likely to be fully in the same phase. If the correlation of the same x and y is low, then it is
likely that the two phases in x and y are different, so that the inclusions are smaller that the
length of rx,ys. The aim of this section is to quantify the link between the autocorrelation
function and the flow topology. The study is performed with a stationary process, in order
to separate the effect of the autocorrelation function from the effect of the gradient of the
volume fraction.
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y “ mkpxq

L
p1q
k L

p2q
k L

p3q
k L

p4q
k

Figure 1.1: Example of one realization of the Gaussian process (in red). The values of x
such that the Gaussian process is above mkpxq belong to the phase k, and the values of x for
which gx ď mkpxq belong to the phase k̄. The double arrows in blue link an upcrossing of the
value mkpxq with the first next downcrossing of mkpxq. The length Lpiqk can be understood
as the length of bubbles (or droplets) of the phase k inside the phase k̄.

In section 1.3 we will see that an important parameter of the models is the second order
derivative of the autocorrelation function B2

xyRpx,xq. Given a normalized direction n, we
can consider pgx`tnqtPR, which is a one dimensional Gaussian process, for which the auto-
correlation function is

Rnptx, tyq “ Rpx` txn,x` tynq,

so that
B2
txtyRnp0, 0q “ nT B2

xyRpx,xqn. (1.4)

Thus this study is performed in one dimension. What we want to simulate is depicted in
Figure 1.1. We aim at characterizing how the bubbles/droplets size Lk in one phase k depend
on the volume fraction and the autocorrelation function. A numerical simulation is performed
with a squared exponential auto-correlation function as in [124]:

RSE px,yq “ exp
˜

´
py´ xq2

2ζ2

¸

, (1.5)

where ζ is a free parameter, set to 3.5. Results shown in Figure 1.2 highlight the typical
behavior of the size distribution fL1 when using the model presented above: a single maximum
value is obtained for a particular bubble length, with a constant decrease to the right and left
of that value. Note therefore that the model is not suitable for flows involving more than one
typical bubble size.

We would like to obtain an approximation of the average length of the bubble E rL1s.
Following [4], the number of upcrossings Nu of the value u of a one dimensional stationary
Gaussian stochastic process in r0, 1s follows the Rice formula [126]

E rNus “
λ

2π exp
ˆ

´
u2

2

˙

,

where λ is the square root of the second spectral moment, matching with the square root of
the second order derivative of the auto-correlation function. In our case, we are interested in

8
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0.00
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f L
1

Figure 1.2: Typical bubble size distribution obtained by using the sign of a Gaussian process
with a squared exponential auto-correlation (1.5) with a parameter ζ equal to 3.5. fL1 is the
normalized probability density function, and L1 is the bubble characteristic length.

the upcrossings with the value mkpxq. Referring to Figure 1.1, the total length of fluid k is

Nmkpxq
ÿ

i“1
L
piq
k ,

and we expect the mean of this to be αkpxq. If we suppose that the number of upcrossings
and the length are independent, then

E rLksE
“

Nmkpxq
‰

“ E

»

–

Nmkpxq
ÿ

i“1
L
piq
k

fi

fl “ αkpxq,

which gives the following heuristic formula for E rLks

E rLks « L̂k :“ αkpxq
E
“

Nmpxq
‰ “

2π

exp
ˆ

´
mkpxq2

2

˙ αkpxq
1
λ
. (1.6)

Numerical simulations have been conducted in order evaluate the deviations of L̂k defined in
(1.6) with respect to the experimental values E rLks. By using (1.5), several realizations of
the Gaussian stochastic process have been computed, resulting in different sets of E rL1s.

Figure 1.3 shows a comparison between the average bubble lengths obtained numerically
and those obtained by using (1.6), with respect to the volume fraction α. Several ζ parameters
have been considered, ranging from 2.6 to 4.6 with increments of 0.4. Correspondingly,
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E [L1], ζ = 4.6
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Figure 1.3: Results comparison of the average characteristic size of the bubble E rL1s with
respect to the volume fraction α. Numerical results are represented by points and those
obtained by using (1.6) by lines. Several ζ parameters in (1.5) have been considered, ranging
from 2.6 to 4.6 in 0.4 increments.

Figure 1.4 presents the relative error among results, showing the suitability of (1.6) around
α “ 0.4 for the chosen conditions. The deviation of (1.6) with respect to the numerical value
is less than 20% for the volume fraction ranging from 0.1 to 0.9.

Dependency of E rL1s on λ In any case, it seems that the average bubble size remains
proportional to λ´1 for any value of α, as suggests (1.6). For example, using the same auto-
correlation function as above for a volume fraction ranging from 0.1 to 0.9, the mean bubble
sizes E rL1s obtained for different λ values have been computed. Figure 1.5 shows the behavior
of the computed E rL1s with respect to λ, in log scale, showing a well defined slope of ´1.

This behavior of E rL1s with respect to λ is very interesting in multiple dimensions. Indeed,
following (1.4),

λR,n “
b

nT B2
xyRpx,xqn.

As a consequence, in multiple dimensions, even if it is not possible to get the average radius of
the bubbles, B2

xyRpx,xq fully defines the anisotropy of the average bubbles: its eigendirections
define the directions of anisotropy, whereas the ratio of the square roots of its eigenvalues give
the anisotropy intensity.
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Figure 1.4: Error plot of the results comparison presented in Figure 1.4. The relative error
E1 has been computed as E1 “

ˇ

ˇ

ˇ
E rL1s ´ L̂1

ˇ

ˇ

ˇ
{E rL1s, where E rL1s denotes the average bubble

length computed numerically, and L̂1 given by (1.6).
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Figure 1.5: Average bubble length E rL1s varying with respect to the square of the second
order derivative of the auto-correlation function λ, for several values of the volume fraction
α. A well-defined slope of ´1 can be observed, for all values of α.
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1.3 Models obtained for some multiphase topologies

1.3 Models obtained for some multiphase topologies
In this section, continuous models for multiphase flows are derived from the stochastic distri-
bution of the phases exposed in the previous section.

1.3.1 Derivation of the deterministic model

For the moment, we suppose that a sufficiently regular level set function f exists such that
the fluid k is in x, if and only if fpxq ě 0. The indicator function of the fluid k is therefore
defined as

χkpxq “
1` sgn pfpxqq

2 .

The dynamic of the system is driven by two phenomena: what happens inside each phase,
and what happens at interfaces. Inside each phase, the Euler system of equation, abbreviated
as

BtUk ` divxFkpUkq “ 0 (1.7)

holds. Moreover, The indicator function χk ensures the following equation weakly

Btχk ` vi ¨∇χk “ 0. (1.8)

Indeed, equation (1.8) is clearly ensured when χk “ 0 or χk “ 1 because both gradient and
time derivative vanish, and holds also on a jump of χk in a weak sense provided vi is the local
interface velocity. Following [37], the following equation holds for each phase in a weak sense

χk pBtUk ` divxFkpUkqq “ 0. (1.9)

Indeed, (1.9) holds when the fluid k is not present, because χk “ 0, but also when the fluid
is present, because then the Euler system holds.

Based on equations (1.8) and (1.9), the following system can be formally derived

Bt pχkUkq ` divxpχkFkpUkqq “ pFkpUkq ´ viUkq∇χk. (1.10)

Note that by defining F̂ “ p0,Fq and Û “ p1,Uq, equations (1.8) and (1.10) can be rewritten
as

Bt

´

χkÛk

¯

` divx

´

χkF̂kpÛkq

¯

“

´

F̂kpÛkq ´ viÛk

¯

∇χk. (1.11)

One idea developed in [3, 51] is that provided the local topology is known and sufficiently
regular, vi can be computed by solving a one dimensional Riemann problem. Indeed, at one
interface (so, one point in which fpxq “ 0), and if we suppose that ∇fpxq does not vanish,
the unit normal to the interface can be defined as

n “ ∇fpxq
‖∇fpxq‖ ,

and n is inward with respect to the set
 

x P Rd fpxq ě 0
(

. The Riemann problem in the
direction n with phase k̄ on the left and phase k on the right can be solved, and denoting
by u‹

k̄k
pnq and P ‹

k̄k
pnq the velocity and pressure of the contact discontinuity, the interface

velocity is vi “ u‹
k̄k
pnq “ u‹

k̄k
pnqn, and the right hand side of (1.11) can be computed as

´

F̂kpÛkq ´ viÛk

¯

∇χk “ F̂lag

k̄k

ˆ

∇fpxq
‖∇fpxq‖

˙

‖∇fpxq‖ ,
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where the Lagrangian flux F̂lag

k̄k
pnq is defined as

F̂lag

k̄k
pnq :“

¨

˚

˚

˝

´u‹
k̄k
pnq

0
P ‹
k̄k
pnqn

P ‹
k̄k
pnqu‹

k̄k
pnq

˛

‹

‹

‚

.

This gives the final expression for (1.11)

Bt

´

χkÛk

¯

` divx

´

χkF̂kpÛkq

¯

“ F̂lag

k̄k

ˆ

∇fpxq
‖∇fpxq‖

˙

‖∇fpxq‖ . (1.12)

1.3.2 Averaging

For obtaining the set of equations at the macroscopic scale, it remains to average (1.12). We
suppose that f is stochastic, and we consider an averaging operator E r¨s. This operator is
supposed to commute with the spatial and time derivation (referred as Gauss and Leibniz
rules in [37, p.102]). Then

Bt

´

E
”

χkÛk

ı¯

` divx

´

E
”

χkF̂kpÛkq

ı¯

“ E
„

F̂lag

k̄k

ˆ

∇fpxq
‖∇fpxq‖

˙

‖∇fpxq‖


. (1.13)

Provided Û is supposed to not depend on the flow topology, the left hand side of (1.13) is
equal to the time derivative and the conservative part of (1.1)

Bt

´

αkÛ
¯

` divx

´

αkF̂kpÛkq

¯

“ E
„

F̂lag

k̄k

ˆ

∇fpxq
‖∇fpxq‖

˙

‖∇fpxq‖


, (1.14)

whereas the right hand side

E
„

F̂lag

k̄k

ˆ

∇fpxq
‖∇fpxq‖

˙

‖∇fpxq‖


(1.15)

includes the non-conservative and relaxation terms of (1.13), and cannot be further made
explicit without defining an averaging operator. This averaging is defined through the defi-
nition of an explicit stochastic model for χk as the image of a Gaussian process as described
in section 1.2. With this averaging operator, (1.15) appears explicitly as an integral, which,
denoting by Σ̌ “ B2

xyRpx,xq´1 is

E
„

F̂lag

k̄k

ˆ

∇fpxq
‖∇fpxq‖

˙

‖∇fpxq‖


“
expp´mkpxq2{2q
pp2πqd`1 det Σ̌q1{2

ˆ

ż

xdPRd
e
pxd´∇mkpxqq

T Σ̌´1pxd´∇mkpxqq
2 F̂lag

k̄k

ˆ

xd
‖xd‖

˙

‖xd‖ dxd.
(1.16)

This integral cannot be made further explicit in general. However, the argument of the
exponential in the integral makes clearly appear a competition between two length scales:
on one hand, the square root of the eigenvalues of Σ̌, and on the other hand, the invert of
∇mkpxq.
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1.3.3 Models obtained

In this section, (1.16) is made explicit or approximated in the following cases: the one dimen-
sional case, the "low memory" case and the "large memory case". In general, the system is an
extension of (1.1) and reads

Btαk ` uI ¨∇αk “ Rpαq
k

Bt
`

αkρk
˘

` divx
`

αkρkuk
˘

“ 0
Bt
`

αkρkuk
˘

` divx
`

αkρk puk b uk ` Pkq
˘

“ PI∇αk `Rpρuq
k

Bt
`

αkρkEk
˘

` divx

´

αk pρkEk ` Pkquk
¯

“ pPuqI ¨∇αk `RpρEq
k

, (1.17)

where PI is a tensor, pPuqI is not directly linked with PI and uI , and the R‹
k are nonlinear

relaxation terms.

1.3.3.1 One dimensional case

In the one dimensional case, the integral of (1.16) can be split into two integrals that can be
computed explicitly, for giving the following model.

Proposition 2 (Proposition 5.3 of [117]). In one dimension, setting

w :“ erf
ˆ

|Bxmkpxq|

λ1
?

2

˙

and λ1 the square root of the single coefficient of Σ̌´1, the system is closed by the following
interfacial velocities

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

uI “ sgnpBxαkpxqq
ˆ

1` w
2 u‹

k̄k
pBxαkpxqq `

w ´ 1
2 u‹

k̄k
p´Bxαkpxqq

˙

PI “ sgnpBxαkpxqq
ˆ

1` w
2 P ‹

k̄k
pBxαkpxqq `

w ´ 1
2 P ‹

k̄k
p´Bxαkpxqq

˙

pPuqI “ sgnpBxαkpxqq
ˆ

1` w
2 P ‹

k̄k
pBxαkpxqqu

‹

k̄k
pBxαkpxqq

`
w ´ 1

2 P ‹
k̄k
p´Bxαkpxqqu

‹

k̄k
p´Bxαkpxqq

˙

and includes the following nonlinear relaxation term

λ1e
´
Bxmkpxq

2

2λ2
1

e´
mkpxq

2

2

2π

¨

˚

˚

˝

u‹
k̄k
p´Bxαpxqq ´ u

‹

k̄k
pBxαpxqq

0
P ‹
k̄k
pBxαpxqq ´ P

‹

k̄k
p´Bxαpxqq

P ‹
k̄k
pBxαpxqqu

‹

k̄k
pBxαpxqq ´ P

‹

k̄k
p´Bxαpxqqu

‹

k̄k
p´Bxαpxqq

˛

‹

‹

‚

.

1.3.3.2 Long memory case

The long memory case matches with the case in which the auto-correlation function R is flat,
more precisely, when B2

xyRpx,xq “ 0. In this case,

Proposition 3 (Long memory case). When B2
xyRpx,xq Ñ 0, (1.16) gives the system (1.1)

with λ “ µ “ 0, and the following interfacial velocity and pressure

uI “ u‹
ˆ

∇αpxq
‖∇αpxq‖

˙

∇αpxq
‖∇αpxq‖ and PI “ P ‹

ˆ

∇αpxq
‖∇αpxq‖

˙

.
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Note that this case was previously derived in [51]. It also matches with the limit model of
the numerical method described in [3], and matches in one dimension with the closure derived
in [22].

1.3.3.3 Short memory case

Σ̌ being symmetric, it can be factorized as Σ̌ “ QTΛ2Q where Q is orthogonal and Λ is diag-
onal, then the argument of the exponential of (1.16) is

wwΛ´1Qpxd ´∇mkq
ww2. As xd takes all

the values of Rd, the following variable change may be performed yd “ Λ´1Qxd. The integral
still depends on Λ´1Q∇mk, and may be asymptotically developed when

wwΛ´1Q∇mk

ww ! 1.
From a physical point of view, this matches with the case in which the size of the bubbles or
droplets is much smaller than the lengthscale of ∇mk.

Proposition 4 (Proposition 5.4 of [117]). We denote by Λ2 a diagonalization of Σ̌ and Q
an orthogonal matrix such that Σ̌ “ QTΛ2Q. Also, we denote by |Vd| the volume of the
d-dimensional unit ball, and by

ˇ

ˇSd´1ˇ
ˇ the surface of the unit sphere in dimension d.

If we suppose that
wwΛ´1∇mkpxq

ww ! 1 then the system (1.17) is found with the following
closure of the interfacial terms

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

uI “
Σ̌´1

|Vd|
ˇ

ˇ

ˇ
det Σ̌

ˇ

ˇ

ˇ

1{2

ż

xdPQTΛpSd´1q
u‹
k̄k

ˆ

xd
‖xd‖

˙

‖xd‖ xddxd

PI “
1

|Vd|
ˇ

ˇ

ˇ
det Σ̌

ˇ

ˇ

ˇ

1{2

˜

ż

xdPQTΛpSd´1q
P ‹
k̄k

ˆ

xd
‖xd‖

˙

xdxTd dxd

¸

Σ̌´1

pPuqI “
Σ̌´1

|Vd|
ˇ

ˇ

ˇ
det Σ̌

ˇ

ˇ

ˇ

1{2

ż

xdPQTΛpSd´1q
pPuq‹

k̄k

ˆ

xd
‖xd‖

˙

‖xd‖ xddxd

and with the following nonlinear relaxation terms
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Rpαq
k “

expp´mkpxq2{2q

2π |Vd´1|
ˇ

ˇ

ˇ
det Σ̌

ˇ

ˇ

ˇ

1{2

ż

xdPQTΛpSd´1q
p´u‹

k̄k
q

ˆ

xd
‖xd‖

˙

‖xd‖ dxd

Rpρuq
k “

expp´mkpxq2{2q

2π |Vd´1|
ˇ

ˇ

ˇ
det Σ̌

ˇ

ˇ

ˇ

1{2

ż

xdPQTΛpSd´1q
P ‹
k̄k

ˆ

xd
‖xd‖

˙

xddxd

RpρEq
k “

expp´mkpxq2{2q

2π |Vd´1|
ˇ

ˇ

ˇ
det Σ̌

ˇ

ˇ

ˇ

1{2

ż

xdPQTΛpSd´1q
pPuq‹

k̄k

ˆ

xd
‖xd‖

˙

‖xd‖ dxd.

Note that the relaxation terms look rather as relaxation terms if the integral on the sphere
Sd´1 is done on a semi-sphere, by assembling the terms of opposite direction. Proposition 4
is obtained by doing hypothesis on the quality of the mixture of the phases. It can be further
developed if we make hypothesis on the relative state of the two phases. As we are in the
short memory case, the relaxation terms are dominant with respect to the nonconservative
terms. It is therefore reasonable to consider that, even if the pressures and velocities of the
two phases are not equal, they are likely to be close. In this case, the solution of the Riemann
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problem can be linearized with the acoustic approximation:
$

’

’

&

’

’

%

u‹
k̄k
pxdq“

Zkuk ` Zk̄uk̄
Zk ` Zk̄

¨
xd

‖xd‖
`
Pk̄ ´ Pk
Zk ` Zk̄

P ‹
k̄k
pxdq“

Zk̄Pk ` ZkPk̄
Zk ` Zk̄

`
ZkZk̄puk̄ ´ ukq

Zk ` Zk̄
¨

xd
‖xd‖

(1.18)

where Zk “ ρkck is the acoustic impedance.
Proposition 5 (Proposition 5.4 of [117]). Suppose that hypothesis of Proposition 4 hold, and
that (1.18) holds also. Then, defining the interfacial linearized expressions

uLI “
Zkuk ` Zk̄uk̄
Zk ` Zk̄

PLI “
Zk̄Pk ` ZkPk̄
Zk ` Zk̄

,

the relaxation coefficient
L pΛq “ 1

|Sd´1|

ż

xdPSd´1
‖Λxd‖ dxd

and the relaxation matrix

Λ̃ “ QTΛ2
ˆ

1
|Sd´1|

ż

ydPSd´1

ydyTd
‖Λyd‖

dyd
˙

Q

then system (1.17) is found with the following closure of the interfacial terms
$

’

’

&

’

’

%

PI “P
L
I Id

uI “uLI
pPuqI “

pZk̄Pk ` ZkPk̄q pZkuk ` Zk̄uk̄q ` ZkZk̄pPk̄ ´ Pkqpuk̄ ´ ukq
pZk ` Zk̄q

2

and the following linear, anisotropic relaxation terms
$

’

’

’

’

’

&

’

’

’

’

’

%

Rpαq
k “

expp´mkpxq2{2q
ˇ

ˇSd´1ˇ
ˇL pΛq

2π |Vd´1|

Pk ´ Pk̄
Zk ` Zk̄

Rpρuq
k “

expp´mkpxq2{2q
ˇ

ˇSd´1ˇ
ˇ

2π |Vd´1|

ZkZk̄
Zk ` Zk̄

Λ̃ puk̄ ´ ukq

RpρEq
k “uLI ¨R

pρuq
k ´ PLI Rpαq

k

Note that if pPk̄´Pkqpuk̄´ukq of pPuqI is neglected (which makes sense as it is a second
order fluctuation), this leads to the interfacial terms of [131, 133].

Last, adding hypothesis on the isotropy of Σ̌, which is equivalent to considering isotropic
spherical inclusions, the relaxation coefficients are isotropic
Proposition 6 (Proposition 5.5 of [117]). In the same conditions as in Proposition 4, and if
we suppose moreover that the auto-correlation function is isotropic: Σ̌ “ ν2Id, then the same
closure for the interfacial terms as Proposition 4 is found, and the relaxation terms can be
further simplified for giving a form similar as (1.1) with

$

’

’

&

’

’

%

µ“
expp´mkpxq2{2q

ˇ

ˇSd´1ˇ
ˇ ν

2π |Vd´1|

1
Zk ` Zk̄

λ“
expp´mkpxq2{2q

ˇ

ˇSd´1ˇ
ˇ ν

2π |Vd´1|

ZkZk̄
Zk ` Zk̄

With the isotropic hypothesis, the expression of [132], for which the λ and µ relaxation
coefficients of (1.1) are such that λ “ ZkZk̄µ, is recovered.
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1.3.4 Properties of the models obtained

In this section, the properties of the new system (1.17) are discussed.
A first concern is the hyperbolicity of the model. Actually, the system (1.17) is so close of

(1.1) that the same property holds: the system has a full set of eigenvectors in the direction
ξ provided the system is not resonant, i.e. uI ¨ ξ is different from ui ¨ ξ ˘ ci.

Another concern for the new system is the phasic entropy dissipation. In general, for
(1.17), the following phasic entropy equation holds

Bt pαkSkpUkqq ` divx pαkSkpUkqq

`
1
Tk
ppPuqI ` Pkuk ´ PkuI ´ ukPIq∇αk

“
1
Tk

´

´PkR
pαq
k ` uk ¨R

pρuq
k ´RpρEq

k

¯

(1.19)

Two types of terms may contribute to the phasic entropy production (1.19): the noncon-
servative contribution (in front of ∇αk, in the left hand side of (1.19)), and the relaxation
contribution (right hand side of (1.19)). It can then be proven that
‚ for the relaxation terms defined in Proposition 2, Proposition 4, Proposition 5, the
relaxation contribution of the entropy equation is dissipative

1
Tk

´

´PkR
pαq
k ` uk ¨R

pρuq
k ´RpρEq

k

¯

ď 0,

whereas for the model of Proposition 3, the relaxation terms are 0.

‚ for the case of Proposition 3, the non-conservative contribution of the entropy equation
can be proven to be dissipative

1
Tk
ppPuqI ` Pkuk ´ PkuI ´ ukPIq ¨∇αk ě 0,

whereas for the closures that were proposed in Proposition 5 and Proposition 6, the
non-conservative contribution is 0.

Note that for the closure of [22], which matches with the closure of Proposition 5 where the
second order terms are neglected, or for the closure of Proposition 4, the nonconservative
contribution of entropy has no sign. However, these closures match with a flow for which the
relaxation terms are dominants, and the relaxation terms are entropy dissipative. It can then
be expected that the global phasic entropy contribution is dissipative.

1.4 Development of numerical schemes
The models derived (1.1),(1.17) raise several problems as far as their numerical approximation
is concerned: beyond the definition of the modeling parameters, which was addressed in the
previous sections, the diffuse interface models include nonconservative products, for which
no satisfactory general method for their numerical approximation has ever been proposed.
The numerical approximation relies on the method of [3], which circumvent the discretization
of the nonconservative products by performing the numerical approximation on (1.9) and
then averaging it, instead of approximating directly (1.1). The derivation is first exposed
for finite volume schemes; this derivation leads to the numerical scheme of [3], but with a
clearer stochastic model. Then its discontinuous Galerkin version is shown. Last, numerical
limitation of the discontinuous Galerkin scheme is discussed.
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nS

L

R

x

0 x

0 x

0 x

0 x

Figure 1.6: Decomposition of the side integral into four Riemann problems. The side S has
a normal nS and two adjacent cells, which we denote by L (where nS is outward) and R
(where nS is inward). At the point x, there might be four possible Riemann problems, which
initial conditions are shown on the right of the figure. The first phase is in white whereas the
second phase is shaded.

1.4.1 Finite volume scheme derivation

The aim of this section is the derivation of a numerical scheme for (1.1). Given a mesh Th,
the solution is supposed to be piecewise constant; For the cell Ki, the numerical solution for
the phase k is denoted by αpiqk Ûpiq

k . Also, we will denote by U piq the full vector of unknowns
in the cell Ki. Based on the idea of [3], the numerical scheme relies on the approximation of
(1.9), which is then averaged. We denote by Vpiq the set of the neighbors of the cell Ki, by
Γij the side between the cells Ki and Kj , and by nij the normal to Γij going from Ki to Kj .
Then the evolution of the data on cell Ki reads

|Ki| Bt

´

α
piq
k Upiq

k

¯

`
ÿ

jPVpiq
|Γij |Fk

´

U piq,U pjq,nij
¯

“ 0.

It remains to compute the flux F on the side Γij .

1.4.1.1 Integration of (1.9)

Starting from (1.9), four situations may happen on a side, as depicted in Figure 1.6. We
denote by F rmnsk the flux that will be added for the fluid k on the cell Ki from the integration
of the Riemann problem between the phases m and n.

χLk pxq “ 1 and χRk pxq “ 1 In this case, an example of the solution of the Riemann problem
is shown on Figure 1.7. The integration is led as for a classical finite volume method [141]:
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0 x

tu´ c u‹ u` c

Figure 1.7: Example of solution of a Riemann problem involving a pure phase. In the case
shown on the picture, the left wave is a rarefaction wave and the right wave is a shock. The
integration is led classically by computing the flux at x “ 0, and by adding this flux on the
left and withdrawing it on the right.

the intermediate state U int at x “ 0 is computed, and then the flux FkpU
intq is added on the

cell Ki. We denote this flux by Feul
k pUL

k ,UR
k ,nijq, and find

F rkksk “ Feul
k pUL

k ,UR
k ,nijq

χLk pxq “ 0 and χRk pxq “ 1 This case is more difficult than the previous one, because the
discontinuity of χk has to be taken into account in the integration. The position of this
discontinuity leads to two cases which are shown in Figure 1.8, depending on the sign of the
contact surface u‹

k̄k
.

1. If u‹
k̄k

is negative then the fluid k is entering inside cell Ki. Integration is performed
by adding the flux FkpU

int
k̄k
q, where U int is the state at x “ 0 in the left picture of

Figure 1.8. We denote this flux by Feul
k pUL

k̄
,UR

k ,nijq. Also, the discontinuity of χk
inside the cell Ki has to be taken into account. As for the derivation of the continuous
system, this leads to a Lagrangian flux. Then the integration on the left leads to a flux

FlagpUL
k̄
,UR

k ,nijq “

¨

˝

0
P ‹
k̄k

nij
P ‹
k̄k
u‹
k̄k

˛

‚

Note that an index k is useless for the Lagrangian flux Flag, because this flux does not
depend on the equation of state. From now on, we denote this flux by FlagpUL

k̄
,UR

k ,nijq.
Finally, the integration of this Riemann problem gives, on the phase k

F rk̄ksk “ Feul
k pUL

k̄
,UR

k ,nijq ´ FlagpUL
k̄
,UR

k ,nijq

2. If u‹
k̄k

is positive the integration on the cell Ki for the fluid k is straightforward: it is
0, as no fluid k is entering in the cell Ki.

To summarize the paragraph, the total flux added on the cell i, on the phase k, that comes
from the integration of the Riemann problem with phase k̄ on the left and phase k on the
right is

F rk̄ksk “H pu‹
k̄k
pnijqq

´

Feul
k pUL

k̄
,UR

k ,nijq ´ FlagpUL
k̄
,UR

k ,nijq
¯
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0 x

tuk̄ ´ ck̄ u‹
k̄k uk ` ck

0 x

tu´ c u‹ u` c

Figure 1.8: Example of solution of a Riemann problem involving two different phases. The
phase k is in white whereas the phase k̄ is shaded. The flux integration strongly depends on
whether the velocity of the surface contact u‹

k̄k
is positive or negative. This contact surface

matches with a jump of ∇χk, which integration raises a Lagrangian flux.

where H denotes the Heaviside function, i.e. H pxq “ 1 if x ą 0, and H pxq “ 0 otherwise.

χLk pxq “ 1 and χRk pxq “ 0 Reasoning as for the case χLk pxq “ 0 and χRk pxq “ 1, we find
that the total flux added on the cell i on the phase k, that comes from the integration of the
Riemann problem with phase k on the left and phase k̄ on the right is

F rkk̄sk “H pu‹
kk̄
pnijqqFeul

k pUL
k ,UR

k̄
,nijq `H p´u‹

kk̄
pnijqqFlagpUL

k ,UR
k̄
,nijq

χL1 pxq “ 0 and χR1 pxq “ 0 In this case, the flux added on the phase k is 0

F rk̄k̄sk “ 0.

1.4.1.2 Averaging

The flux Fk at the side Γij is the sum of the contributions of the four Riemann problems:

Fk “

2
ÿ

i“1

2
ÿ

j“1
Ppi, jqF rijsk .

It remains to compute the weights Ppi, jq.

1.4.1.3 Computation of the weights as in [51]

In this section, we aim at computing the weights between the Riemann problems on the
sides. In [3], the weights were only assumed (see [3, p.376]). In [51], we proved that these
weights could actually be computed by defining an appropriate stochastic modeling based on
the volume fraction.

Proposition 7 (Proposition 1 of [51]). If gx is a stochastic Gaussian process such that for
all x where αk is continuous,

E
„

1` sgnpgxq

2



“ αkpxq
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with variance 1. α is continuous inside the cells of a mesh, and might be discontinuous on a
side. Then on a point of discontinuity of αkpxq,

lim
tÑ0

E
“

χLk px´ tnqχRk px` nq
‰

“ minpαLk pxq, αRk pxqq. (1.20)

Proof. For computing (1.20), we are interested in the joint behavior of gx´tn and gx`tn.
As gx is a Gaussian process, the vector rgx´tn, gx`tns is a Gaussian vector. Its mean is
rmpx´ tnq,mpx` tnqs. Its covariance matrix is

C “

ˆ

1 Rpx´ tn,x` tnq
Rpx´ tn,x` tnq 1

˙

,

where R is the autocorrelation function. For the sake of simplicity, Rpx´ tn,x` tnq will be
shortly noted as R also. Actually, the only property we will use is limtÑ0Rpx´tn,x`tnq “ 1.
We have

detC “ 1´R2 and C´1 “
1

1´R2

ˆ

1 ´R
´R 1

˙

.

Then we aim at evaluating the integral

I “
1

2π |detC|1{2

ż ż

R2

1` sgnpu1q

2
1` sgnpu2q

2 exp
ˆ

´
XTC´1X

2

˙

du1du2

with X “ pu1 ´mpx´ tnq, u2 ´mpx` tnqqT . Note that C´1 can be factorized as

C´1 “ ATA with A “
1
?

2

¨

˚

˝

1
?

1`R
1

?
1`R

1
?

1´R
´

1
?

1´R

˛

‹

‚

.

Note also that
A´1 “

1
?

2

ˆ ?
1`R

?
1´R

?
1`R ´

?
1´R

˙

.

The variable change V “ AX is performed. Then

I “
1

2π

ż ż

Dt

exp
ˆ

´
V TV

2

˙

dv1dv2,

where the domain Dt is obtained as the image of R2
` by the variable change. The domain Dt

is defined by the following inequalities
1
?

2
`

v1
?

1`R` v2
?

1´R
˘

`mpx´ tnqě 0,
1
?

2
`

v1
?

1`R´ v2
?

1´R
˘

`mpx` tnqě 0.

When tÑ 0, RÑ 1, and the domain Dt converges to the domain D0 defined as

D0 “
 

V P R2 v1 ě maxp´mpx´q,´mpx`qq
(

.

This leads to

lim
tÑ0

E
“

χLk px´ tnqχRk px` nq
‰

“
1

2π

ˆ
ż 8

´8

e´v2
2{2 dv2

˙
ż 8

maxp´mpx`q,´mpx´qq
e´v2

1{2 dv1.
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1.4 Development of numerical schemes

It can be simplified as
1
?

2π

ż 8

maxp´mpx`q,mpx´qq
e´v2

1{2 dv1.

By considering (1.3), it can be further simplified as

lim
tÑ0

E
“

χLk px´ tnqχRk px` nq
‰

“ minpαLk pxq, αRk pxqq.

1.4.1.4 Some remarks on the weights

By doing a finite differences consistency study on the weights found in Proposition 7, we can
prove that these weights are consistent with the long memory continuous model of Proposi-
tion 3. It may be surprising to find only a single continuous model whereas a large variety
of models was found in section 1.3, depending on the relative behavior of B2

xyRpx,xq and
∇xαk; this is even more surprising because no assumption on the autocorrelation function
R is needed for the proof of Proposition 7, except for continuity. Actually, this is a direct
consequence of the hypothesis of Proposition 7: indeed, α (and so m) is supposed to be dis-
continuous, whereas R is supposed to be continuous. This is then equivalent to have a infinite
derivative of α across the sides, so that we recover the hypothesis ‖∇xm‖ "

wwwB2
xyRpx,xq

www,
matching with the long memory case of Proposition 3.

The derivation of weights consistent with Proposition 4 and its simplifications of Propo-
sition 5 and Proposition 6 is still an open question, however, it is clear that it should rely
on the numerical approximation of the lifting of a normal gradient of the volume fraction on
the sides, in order to recover a fair estimate of the ratio between ‖∇xm‖ and

wwwB2
xyRpx,xq

www.
As the process on the sides should be one dimensional, and as the one dimensional model of
Proposition 2 is fully explicit, it may even be possible to derive weights consistent with the
most general case (1.16).

1.4.2 Discontinuous Galerkin formulation

The aim of this section is to derive a discontinuous Galerkin scheme for the system (1.1). We
first introduce some notations. The open set Ω is supposed to be meshed by a conforming
mesh Th. We denote by Si the set of the interior sides, and for simplifying, we suppose
that we have only interior sides (which holds for example when periodic boundary conditions
are used). All sides of Si are supposed to be oriented, and its associated normal is denoted
by nS . The approximation space is composed of functions that are piecewise polynomials:
polynomials inside the cells of the mesh Th, and maybe discontinuous across the sides of Th.
The approximation space is denoted by Vh. For all functions ϕ of Vh, and all sides S of Si,
we denote:

@x P S

$

&

%

ϕRpxq“ lim
εÑ0,εą0

ϕpx` εnSq

ϕLpxq“ lim
εÑ0,εą0

ϕpx´ εnSq ,

and for all x in an interior side S, we denote by:

rrϕ sspxq “ ϕLpxq ´ ϕRpxq and ttϕ uu pxq “ ϕRpxq ` ϕLpxq
2 .
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Then the space discretization of a general conservative hyperbolic system

BtU` divxFpUq “ 0,

consists in finding Uh P Vh such that

@ϕ P Vh
ÿ

KPTh

ż

K
ϕBtUh ´

ÿ

KPTh

ż

K
FpUhq ¨∇ϕ`

ÿ

SPSi

ż

S
rrϕ ss ttFpUhq uu ¨ nS “ 0. (1.21)

Note that formulation (1.21) is not L2 stable, as centered numerical fluxes are used on the
interior sides.

One particularity of the system (1.1) is that it includes nonconservative products. Because
of the nonconservative products, the formulation (1.21) cannot be applied, and we propose
to follow the formulation of [125]. This requires to define the jumps, thanks to the DalMaso-
LeFloch-Murat [28] theory, which we briefly recall. The definition of nonconservative products
developed in [28] consists in first defining a family of path Φ that connect two states UL and
UR that are on both side of a discontinuity. For a nonconservative product

ÿ

i

AiBxiU, a

family of path is defined as having the following properties:

‚ Jump property

@UL,UR P Rp Φp0; UL,UR,nq “ UL and Φp1; UL,UR,nq “ UR

‚ Consistency
@U P Rp @s P s 0 ; 1 r Φps; U,U,nq “ U

‚ Lipschitz regularity For any bounded set U of Rp, there exists a constant k ą 0 such
that:

ˇ

ˇ

ˇ

ˇ

BΦ
Bs

`

s; UL,UR,n
˘

´
BΦ
Bs

`

s; VL,VR,n
˘

ˇ

ˇ

ˇ

ˇ

ď k
ˇ

ˇpUL ´ULq ´ pVR ´VRq
ˇ

ˇ

with all these hypothesis, it is proved in [28] that the nonconservative product can be defined
as a Borel measure µ. When U is smooth, this measure corresponds to a classical integration.
When U is discontinuous at a point tx0u in the direction n, it is equal to:

µptx0,nuq “
ż 1

0

ÿ

i

AipΦps,ULpx0q,URpx0q,nqqni
BΦ
Bs
ps,ULpx0q,URpx0q,nq ds

This definition allows to define the following discontinuous Galerkin formulation with centered
fluxes: find Uh P Vh such that

@ϕ P Vh
ÿ

KPTh

ż

K
ϕBtUh ´

ÿ

KPTh

ż

K
FpUhq∇ϕ

`
ÿ

KPTh

ż

K
ϕ

3
ÿ

i“1
AipUhq

BUh

Bxi
`

ÿ

SPSi

ż

S
rrϕ ss ttFpUhq uu ¨ nS

`
ÿ

SPSi

ż

S
ttϕ uu

ż 1

0

ÿ

i

AipUhqnSi
BΦ
Bs
ps, uL, uR,nSq.

(1.22)
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1.4 Development of numerical schemes

For obtaining L2 stability, integration on the interior sides are replaced by numerical fluxes.
By considering the numerical fluxes derived for the finite volume scheme of subsection 1.4.1,
we directly see that the Eulerian fluxes match with the conservative flux (last term of second
line of (1.22)), whereas the Lagrangian fluxes match with the nonconservative fluxes (third
line of (1.22)); the fluxes F rijs are split into

‚ Their Eulerian part F rijs,eul

‚ The Lagrangian part added on the left F rijs,lag,L

‚ The Lagrangian part added on the right F rijs,lag,R

Then we define
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

FEul
k “

2
ÿ

i“1

2
ÿ

j“1
Ppi, jqF rijs,Eul

k

F lag,L
k “

2
ÿ

i“1

2
ÿ

j“1
Ppi, jqF rijs,Lag,L

k

F lag,R
k “

2
ÿ

i“1

2
ÿ

j“1
Ppi, jqF rijs,Lag,R

k

.

and use the following upwinding version for the numerical fluxes
$

’

’

&

’

’

%

ż

S
rrϕ ss ttFpUhq uu ¨ nS «

ż

S
rrϕ ssFEul

k
ż

S
ttϕ uu

ż 1

0

ÿ

i

AipUhqnSi
BΦ
Bs
ps, uL, uR,nSq«

ż

S
ϕLF lag,L

k `

ż

S
ϕRF lag,R

k

,

which is the natural extension of the finite volume scheme of subsection 1.4.1.

1.4.3 Limiters

1.4.3.1 Stabilization for shocks

As explained in subsection 1.4.1, the weights found in [51] are matching with the model of
Proposition 4, suitable only for interface flows. This justifies to perform the limitation as
follows

‚ If the volume fraction is either equal to 1 or equal to 0, then the conservative variables
of the phase that exists are limited with classical limiters for the Euler system.

‚ If the volume fraction is neither equal to 0 nor to 1, then in each cell, the following
steps are followed

1. Compute the average of each of the conservative variables αkρk, αkρkuk and
αkρkEk. We denote the average by xαkρky, xαkρkuky and xαkρkEky

2. Limit the volume fraction. This is done as for example in [24]. The new volume
fraction is denoted by α̃kpxq.
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3. Rebuild the conservative variables as

pαkρkq pxq“ α̃kpxq
xαkρky

xαky

pαkρkukq pxq“ α̃kpxq
xαkρkuky
xαky

pαkρkEkq pxq“ α̃kpxq
xαkρkEky

xαky

In the practical applications, the minmod limiter is used.

1.4.3.2 Maximum preserving limiter

This limiter is designed for interface flows in which no shock may occur. In this case, the only
concern is to preserve the volume fraction between 0 and 1. The limiter is based on the ideas
of [148, 149], which consists in first proving a maximum preserving property on the average
on each cell, and then on using a scaling limiter for ensuring the maximum property on a set
of points of the cell.

We give here some more details on this method. Given a cellKi and the set of its neighbors
Vpiq, a finite volume methods with explicit time stepping reads

un`1
i “ uni ´ δt

ÿ

jPVpiq

|Γij |
|Ki|

f̃puni , u
n
j ,nijq. (1.23)

For a linear problem with velocity c, a CFL estimate for ensuring positivity is

δt ď
|Ki|

|c|
ÿ

jPVpiq
|Γij |

.

For nonlinear problems, provided f̃ is monotone, we denote by λpui, uj ,nijq the scalar such
that the numerical scheme

un`1
i “ uni ´

δt

L
f̃puni , u

n
j ,nijq

ensures the maximum preservation property for δt ď Lλpui, uj ,nijq. Then rewriting the
multidimensional finite volume scheme (1.23) as

un`1
i “

ÿ

jPVpiq

1
|Vpiq|

ˆ

uni ´
δt |Vpiq| |Γij |

|Ki|
f̃puni , u

n
j ,nijq

˙

ensures the maximum preservation property under the CFL condition

δt ď min
jPVpiq

|Ki|λpui, uj ,nijq
|Vpiq| |Γij |

.

We consider now the discontinuous Galerkin method with the explicit Euler method for time
integration; we denote by uKi the polynomial approximation in the cell Ki

@ϕ

ż

Ki

ϕun`1
Ki

“

ż

Ki

ϕunKi ` δt

ż

Ki

fpuKiq ¨∇ϕ´ δt
ÿ

jPVpiq

ż

Γij
f̃putKi;Γiju, utKj ;Γiju,nijq
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where utKl;Γiju stands for the value of the cell l on the side Γij . Taking ϕ “ 1 gives the
evolution equation on the average on the cell ūKi .

|Ki| ū
n`1
Ki

“ |Ki| ū
n
Ki ´ δt

ÿ

jPVpiq

ż

Γij
f̃putKi;Γiju, utKj ;Γiju,nijq

Denoting by
!

ωjk,x
j
k

)

the quadrature formula on the reference element matching with the
face Γij , the fully discrete scheme is

ūn`1
Ki

“ ūnKi ´ δt
ÿ

jPVpiq

|Γij |
|Ki|

ÿ

k

ωjkf̃puKipx
j
kq, uKj px

j
kq,nijq.

Supposing that a k–exact quadrature formula exists for the cell Ki, including all the side
quadrature points, and with strictly nonnegative weights. We denote by ω̄l the weights of
this quadrature formula, and by x̄l the interior points of the quadrature formula. Then

ūnKi “
ÿ

l

ω̄luKipx̄lq `
ÿ

jPVpiq

ÿ

k

ω̄jkuKipx̄
j
kq,

and the numerical scheme can be written

ūn`1
Ki

“
ÿ

l

ω̄luKipx̄lq `
ÿ

jPVpiq

ÿ

k

ω̄jk

˜

uKipx̄
j
kq ´

δt |Γij |ωjk
|Ki| ω̄

j
k

f̃puKipx
j
kq, uKj px

j
kq,nijq

¸

.

and the maximum preserving property for the average in the cell is ensured under the CFL
condition

δt ď min
jPVpiq

|Ki|λpui, uj ,nijqωjk
|Γij | ω̄jk

.

The existence of such a cell quadrature formula is ensured for triangles [149], and quads or
hexas (Gauss-Lobatto points match all the required properties), but is still an open question in
general up to our knowledge. Last, by denoting by P the set of points on which the maximum
property is required, which should include not only the points of the k-exact formula, but also
the Gauss points used for integrating the cell terms of the discontinuous Galerkin method,
then the following scaling limiter is used for ensuring the bound ďM

ũKi “ ūKi ` α puKi ´ ūKiq

with
Mi “ max

xPP
uKipxq α “ min

ˆ

M ´ ūKi
Mi ´ ūKi

, 1
˙

.

This limiter is applied with M “ 1 on the volume fraction, and a similar fix is used for
ensuring that the volume fraction is positive.

1.5 Numerical results

1.5.1 Consistency test

This first test case is done for ensuring that the weights of subsection 1.4.1 match with the
closure of Proposition 4 in one dimension. For this, a self similar solution based on the wave
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uI is used. The volume fraction is set to an analytical function, and the other variables are
set by using the Riemann invariants associated with the wave uI . The analytical solution at
time t is computed by the characteristics method. For ensuring that the characteristics never
cross, uI is set to a strictly increasing function. All the parameters are detailed in [51]. The
computation is led until t “ 0.15s, with a mesh with 100, 200, 400 and 800 cells. The results
on each of the variables is shown in Figure 1.9, whereas the convergence order is shown in
Figure 1.10. Both prove the convergence of the numerical scheme of subsection 1.4.1 with the
analytical solution computed with the model of Proposition 4.

1.5.2 Multiphase vortex advection

When it comes to test the convergence order of a numerical method for a nonlinear hyperbolic
model, a usual test consists in the advection of a vortex. This test is interesting because it
is smooth, but is more complicated than an entropic wave. In this case, the two phases have
the same pressure and velocity, so that the multiphase test case of [39] (which deals with the
original Baer-and-Nunziato model) is suitable. Results obtained for the convergence order
are shown in Figure 1.11. The optimal order k ` 1 is observed for DGk.

1.5.3 Shock/Bubble interaction

Our aim here is to compute the test proposed by Quirk & Karni [123], based on the exper-
iments of Haas & Sturtevant [62]. This test is a classical benchmark for diffuse interface
methods [66, 65]. As described in Figure 1.12 a shock wave moving to the left from the right
part of the domain will interact with an Helium bubble. The Mach number of the shock
is 1.22, which implies that behind the shock wave, air has a density of 1.92691 kg ¨ m´3, a
velocity of ´0.33361 m ¨ s´1, and a pressure of 1.5698 Pa. The fluids involved are such that
the Atwood number is negative, which is referred as the divergent case in the previous pub-
lications. It is then known that it will lead to a reversal of the bubble that is penetrated by
a jet of surrounding fluid and then gives two vortex downstream of the flow.

In this test, an unstructured triangular conforming mesh is used, and contains 14086
triangles, generated with Gmsh.
Numerical results are shown in Figure 1.13. Mixture density evolution is shown, with the

corresponding isovalues, for the DG0 and the DG1 schemes. Here again, this test is well
described by both schemes which give qualitatively good results. The reversal of the bubble
and the interface is better described with the DG1 scheme. Finally, a zoom on the isovalues
of the volume fraction is presented in Figure 1.14 at time t “ 230 ms. The interface is clearly
more sharpen in the DG1 case.

1.5.4 Accuracy of the maximum preserving limiter

For testing the accuracy of the maximum preserving limiter, two tests are proposed. The
first one consists in checking the effect of the limiter on the accuracy of the advection of a
discontinuity. A uniform velocity of 1 is imposed. The computation is led until time 1. The
solution obtained for a mesh of 64 cells is depicted on the left of Figure 1.15. The convergence
order is shown on the right of Figure 1.15. Of course, we do not find an order accuracy of 2
and 3 for the degree 1 and 2 approximation, because the solution is not regular. Nevertheless,
we can observe that the convergence order is not destroyed by the slope limiter.
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paq pbq

pcq pdq

peq pfq

peq pfq

Figure 1.9: Results for the consistency test for all the variables. Exact solutions are compared
with the solutions computed with 100, 200, 400 800 cells. Convergence to the exact solution
is observed for all the variables of fluid 1 (paq,pbq,pcq,pdq), and of fluid 2 (peq,pfq,pgq,phq).
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Figure 1.10: The convergence order of the consistency test is drawn for all the conservative
variables computed: the L2 error is computed for the mesh with 100, 200, 400 and 800 cells.
For all the variables, the convergence is proved to be close to 1.
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Figure 1.11: Convergence order for the test case of the multiphase vortex.
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Figure 1.12: Computational domain for the shock bubble interaction.

A second test is performed with the maximum preserving limiter: the Zalesak test [147].
This test is usually used for showing the ability of level-set methods to sharply resolve in-
terfaces. Level-set methods often rely on high order non compact schemes for the advection
of the level-set function (typically WENO-5), which is best suited with structured meshes.
We show the results obtained with one rotation of the shape on an unstructured mesh with
10 points on each side of the square domain. Numerical results are shown in Figure 1.16.
This Figure proves the much stronger accuracy of the third order computation, which is the
only one able to conserve the initial shape. This test proves also that provided high order
methods are used, methods based on diffuse interface methods are competitive with respect
to Level-set methods. We recall that diffuse interface methods are conservative, contrarily to
Level-Set methods, and so are better suited for the approximation of flows with shocks.

1.5.5 Detonation test case

This test case was proposed in [52]. The numerical method developed in this chapter was
extended to the simulation of permeable fronts by using the method of [83]. The Figure 1.7 and
Figure 1.8 with classical Riemann problems are replaced by the reactive Riemann problems
depicted in Figure 1.17. In such case, if a non-monotone limiter is used, the scheme fails
to determine the correct state (velocity of the detonation front, CJ state. . . ), as shown in
Figure 1.18, and that is why our computations were made with a monotone limiter. This
behavior is of particular importance to be mentioned. The need for a monotone limiter
can be understood as follows. In the numerical scheme, the weights depend on the sign of
∇αk ¨n where n is the normal to the side. In the consistent continuous limit of Proposition 3,
expressions of uI and PI , which are uI “ u‹p∇α1qnp∇α1q and PI “ P ‹p∇α1q, depend
singularly on the sign of ∇α1. For example, in one dimension, PI and uI switch from the
interfacial pressure and velocity of the Riemann problem 1´ 2 to 2´ 1 when the sign of Bxα1
changes. Consequently, it is important that Bxα1 remains monotone at the discrete level. We
point out that as the singularity depends only on ∇α1, the requirement of a monotone limiter
lies only on the volume fractions. In the reactive case, the problem has essentially the same
origin.
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(a) t “ 0 ms.

(b) t “ 43.954 ms.

(c) t “ 82.923 ms.

(d) t “ 121.507 ms.

(e) t “ 158.71 ms.

(f) t “ 195.029 ms.

Figure 1.13: Interaction of a shock wave with an helium bubble in air. Contours of the mixture
density for the DG0 (top) and the DG1 (bottom) schemes. Isovalues are also represented in
black lines.
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Figure 1.14: Interaction of a shock wave with an helium bubble in air. Isovalues of the volume
fraction for the DG0 (top) and the DG1 (bottom) solutions.

0,001 0,01 0,1

0,1

Dg0

Dg1

Dg2

Figure 1.15: Left: solution obtained for the advection of a one dimensional discontinuity on
a mesh of 64 cells with approximation degree of 0, 1 and 2. Right: Convergence error for
the advection of a one dimensional discontinuity, represented on a log-log scale.
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Figure 1.16: Results for Zalesak test. On the left figure, we represented the isovalues
0.2,0.4,0.6 and 0.8 for the Dg0 (black), Dg1 (red) and Dg2 (green) computations. Note that
some of these isovalues are not in the Figure because they are too far from the initial shape.
On the right side, the isovalue 0.5 of α1 is drawn, and compared with the initial shape.

Ci Ci`1

pρ2, u2, P2qi

pρ1, u1, P1qi

pρ2, u2, P2qi`1

pρ1, u1, P1qi`1

Figure 1.17: Configuration of the reactive Riemann problem on a side between two adjacent
cells. A reactive front (materialized by orange arrows) is responsible for the disappearance of
fluid 2 which reacts to form a new state composed of fluid 1 (green).
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(c) Configuration of the Rie-
mann problem on a frontier.

Figure 1.18: 1D detonation. Incorrect solutions obtained with a non-monotone limiter. As
shown on Fig. 1.18(a) and 1.18(b), the numerical scheme might converge to a wrong solution
if a non-monotone limiter is used. Origin of the problem is shown on Fig. 1.18(c): the
non-monotone behavior of the limiter induces a blue-red Riemann problem (represented by a
strong line in red), which does not match with the physical reaction which is normally driven
by reactive red-blue Riemann problems.
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Figure 1.19: 1D detonation. dG0 (circle), dG1 (square) and exact (line) solutions.
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1.6 Conclusion and prospects on compressible multiphase flows

In section 1.2, a simple way of modeling a random mixture of two non miscible media from
a stochastic process was exposed. Depending on the parameters of the stochastic process
(and more precisely on the Hessian of its auto-correlation function) the modeling is able to
deal both with well defined interfaces and with well mixed media. From this modeling, and
by relying only on the solution of the Riemann problem, several diffuse interface models
were obtained in section 1.3. This derivation method allowed to propose modifications of
previous closure for taking into account anisotropy of subscales, and gave clear hypothesis
for the range of validity of the models. All the models obtained include nonconservative
products, which are ambiguous to discretize. The finite volume method of [3] was revisited
by using the same stochastic modeling as for the derivation of the continuous model. This
allowed to give explicitly the continuous model consistent with [3], which was mandatory for
defining a discontinuous Galerkin numerical scheme. The numerical scheme was implemented
and validated. Two types of stabilization have been tried: classical minmod limiters and
positivity preserving limiters of [149].

Starting from the methods developed in this chapter, the following research directions will
be considered in the coming years

Address the modeling for more than two phases. The modeling of two phase flows
relies on the Heaviside function applied to a Gaussian process depending on a single
random variable. Addressing more than two phases flows by keeping a symmetry be-
tween the phases is for the moment an open question. A major difference with respect
to the two phase flow model is that most of the models proposed [63, 64, 67, 96] do not
link the closure parameters with the subscale topology of the flow. Therefore, finding
such a stochastic model for several phases, and deriving the associated multiphase flow
would be a decisive step forward in the modeling of multiphase flows. Having already
tried to design a stochastic model able to simulate three phase flow (and having failed
until now) makes me think that the gap between two and three phases flows is very
challenging.

Address the modeling of a broader range of physical phenomena. A quite simple
problem to address with the same type of modeling is the surface tension between the
phases. Some models have already been proposed for this topic [131, 132, 134]. This
problem could be addressed by directly applying the Young-Laplace equation inside the
Riemann problem that is then averaged.

Also, a natural extension of the models presented here consists in considering diffusive
terms, namely using Navier-Stokes equations instead of Euler equations for including
viscous effects in the closure and relaxation terms. In this case, relaxation terms similar
as the ones proposed in [15] should be found, at least in some regimes.

Address the problem of the modeling of the subscales. All the models but the one
of Proposition 3 depend on subscale parameters, namely B2

xyRpx,xq. For closing the
model, an equation for the evolution of these subscale parameters is required. This
problem was addressed in [53] for an isotropic subscale behavior, but the general case
is an open question. If experimental data were available, this problem could be a good
candidate for being addressed with machine learning techniques.
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Develop numerical schemes for a broader range of models. The finite volume scheme
and the discontinuous Galerkin scheme proposed in this chapter are all consistent with
the system of Proposition 3. As discussed in subsubsection 1.4.1.4, a larger diversity
of models was found in section 1.3. By changing the numerical scheme, but keeping
the ideas that drove its derivation, it should be possible to derive finite volume and
discontinuous Galerkin schemes consistent with the other models of section 1.3. Also,
the numerical scheme should be adapted to a number of phase greater than two, and
to other physical phenomena such as capillarity or diffusion, once the derivation of the
continuous models will be clarified.

Analyze the numerical schemes obtained. Up to our knowledge, few work has been
driven on the theoretical analysis of schemes for Baer-and-Nunziato models. Some prop-
erties are easy to address for first order schemes, like the positivity of volume fraction
or positivity of the densities. Some other aspects, like fully discrete entropy inequalities
or temperature positivity have hardly been addressed. As the numerical schemes we
should obtain by a similar method as in section 1.4 rely on averaging Godunov methods
with positive weights, it should makes easier the derivation of such inequalities.

Develop more sophisticated stabilizations. The stabilization of high order methods
is a difficult task in general, and we saw that addressing multiphase flows makes the
problem harder.
From a general point of view, the limiters we developed are well suited with interface
flows. Once our numerical scheme will be able to deal with a broader range of multiphase
flows, the limiter should be also adapted. A first direction could consist in using classical
stabilizations [24, 153, 57, 23] on the continuous models derived. This would mean that
the stabilization would be performed after averaging. Still in the spirit of the numerical
scheme, which consists in averaging the equations after having discretized it, we could
consider stabilizing the scheme before averaging.
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Chapter 2
Low Mach number flows

2.1 Introduction
The starting point of my interest in the low Mach number flows was driven by the stability
of jets in cross flow under acoustic forcing, see [47] and also section 3.4 for the configuration
without acoustic forcing. In this chapter, we will be interested in inviscid flows, described by
the Euler system

$

&

%

Btρ` divxpρuq “ 0
Btpρuq ` divxpρub u` pIdq “ 0
BtpρEq ` divxppρE ` pquq “ 0

, (2.1)

where ρ is the density, u the velocity, E the total specific energy, and p the pressure. The
total specific energy E is

E “ ε`
|u|2

2 ,

where ε is the specific internal energy. ε, ρ and p are linked by an equation of state ε “ εpp, ρq.
The wave velocities of the (2.1) in a unitary direction n are given by u ¨ n (with multiplicity
d in dimension d) and u ¨n˘ c (with multiplicity 1), where c is the sound velocity. When the
Mach number M “ |u| {c goes to 0, the material velocity wave u ¨n becomes small compared
with the acoustic waves u ¨n˘ c. For studying (2.1) in this limit, we denote by ρ0 a reference
density, x0 a length scale, t0 a time scale, and p0 a reference pressure. Then, denoting by
c0 “ cpρ0, p0q and u0 “ x0{t0, and adimensioning the density by ρ0, the pressure and total
energy by p0, and the velocity by u0, and denoting by ã the adimensioned version of the
variable a, we find

$

’

’

&

’

’

%

Bt̃ρ̃` divx̃pρ̃ũq “ 0
Bt̃pρ̃ũq ` divx̃pρ̃ũb ũq ` 1

γM2 ∇x̃p̃ “ 0

Bt̃pρ̃Ẽq ` divx̃ppρ̃Ẽ ` p̃qũq “ 0
(2.2)

with M “ u0{c0 and γ “ ρ0c
2
0{p0. In (2.2), the adimensioned momentum equation includes

the invert of the Mach number M , and so a singular limit. For the sake of simplicity, we will
rather consider the barotropic Euler system

#

Btρ`∇ ¨ pρuq “ 0,

Btpρuq `∇ ¨ pρub uq `∇p “ 0
(2.3)
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where the pressure law p “ ppρq is supposed to be monotone and convex, and we denote by
c2 “ p1pρq. System (2.3) has the same wave velocities as (2.1) (with one order of multiplicity
less for u ¨ n though). Given one time scale t0, one length scale x0 and one density scale ρ0,
the following dimensionless variables may be defined

t̃ “
t

t0
, x̃ “ x

x0
, ρ̃ “

ρ

ρ0
. (2.4)

It is natural to scale the velocity by u0 “ x0{t0, and the pressure by p0 “ ppρ0q. If the
corresponding dimensionless variables are used instead of the original ones, the following
system is obtained

$

&

%

Bt̃ρ̃` divx̃pρ̃ũq “ 0
Bt̃pρ̃ũq ` divx̃pρ̃ũb ũq ` 1

γM2 ∇x̃p̃ “ 0 (2.5)

with ũ “ u{u0, p̃ “ p{p0, M “ u0{c0 and γ “ ρ0c
2
0{p0. Note that (2.5) includes the same

type of singular limit as (2.2) when M Ñ 0.
If acoustic phenomena are neglected, (2.5) can be replaced by an incompressible system.

However, dealing with the incompressible system removes any acoustic effect, whereas we
are interested in interactions between a turbulent flow and acoustic waves, so that we are
interested in the behavior of (2.5) when M Ñ 0 rather than the model obtained in this limit.

From a theoretical point of view, the singular limit was studied in [78, 135]. From a
numerical point of view, the approximation of (2.5) raises several problems. In the literature,
the following problems have been extensively discussed

‚ Accuracy problems. It is known that in the low Mach number limit, the pressure
perturbations scales as O

`

M2˘, whereas most of the schemes give a spurious mode in
O pMq [61, 127]. Several fixes have been proposed, see [61, 86, 87, 31, 128, 30, 32, 107,
19, 71]. Higher order aspects, based on the discontinuous Galerkin method, have been
discussed in [12, 99, 100]. See also [109] for an example in the shallow water context,
and [60] for a review on the accuracy problem of compressible solvers in the low Mach
number limit.

‚ Time integration strategy. As already explained, when the Mach number is low, the
ratio between the acoustic and convective wave velocities is high, which gives a CFL
number for explicit schemes much lower than the CFL number based on the convection
velocity. In this case, implicit-explicit strategies have been proposed [79, 105, 110, 35,
70]. Implicit integration can be simplified by considering compressible equations as
perturbations of the incompressible system [97], see also [56] where the implicit time
stepping is replaced by a modification of the model.

In this chapter, we propose to summarize the work published or submitted in [16, 75]. All
the work will rely on the formal asymptotic development of (2.5). The different asymptotic
developments will be considered in section 2.2. Then in section 2.3, we will test the classical
low Mach number fixes in the case of an acoustic wave propagation, and will prove that no
previously proposed low Mach number fixes is able to solve correctly acoustic waves. A new fix,
able to both preserve a good accuracy at low Mach number and able also to propagate acoustic
waves will be proposed and tested. Then in section 2.4, we will propose a totally different
approach for computing low Mach number problems: instead of trying to fix the Riemann
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solver, we will thoroughly study the nature of the spurious mode that is observed with classical
Riemann solvers, and remove it from the obtained solution for recovering accuracy.

In the special case of triangular meshes, the accuracy with the Roe scheme is recovered
[129, 59, 33] for finite volume schemes. We will show in section 2.5 that this result can be
extended to high order discontinuous Galerkin schemes.

2.2 Asymptotic expansion of the Euler system at low Mach
number

In this section, two different types of asymptotic developments of the system (2.5) are exposed.
These developments made on the continuous system are important, because manipulations
performed on the numerical scheme will be based on these developments.

2.2.1 One scale asymptotic expansion

In this section, the results proven theoretically in [78] are formally recalled. We are interested
in the solutions of (2.5) whenM Ñ 0. All the variables of the system, ϕ P tρ,uu are developed
as expansions in power of the Mach number M :

ϕ̃px̃, t̃,Mq “
N
ÿ

n“0
Mnϕ̃pnqpx̃, t̃q `O

`

MN`1˘ . (2.6)

By injecting these quantities in (2.5), the momentum equation at order M´2 and M´1 gives

∇x̃p̃
p0q “ ∇x̃p̃

p1q “ 0, (2.7)

and then, since p is a regular function of ρ,

∇x̃ρ̃
p0q “ ∇x̃ρ̃

p1q “ 0.

This leads to
ρ̃p0qpx̃, t̃q “ ρ̃p0qpt̃q and ρ̃p1qpx̃, t̃q “ ρ̃p1qpt̃q. (2.8)

At order M0, we get

Bt̃ρ̃
p0q `∇x̃ ¨ pρ̃

p0qũp0qq “ 0, (2.9a)
Bt̃pρ̃

p0qũp0qq `∇x̃ ¨ pρ̃
p0qũp0q b ũp0qq `∇x̃p̃

p2q “ 0. (2.9b)

If the initial and boundary conditions are well prepared [78], which means that the initial and
boundary conditions on ρp1q are equal to 0, then ρp1q is uniformly and constantly equal to 0.
This can be expressed as

ρ̃px̃, t̃,Mq “ ρ̃p0qpt̃q `M2ρ̃p2qpx̃, t̃q `O
`

M3˘ . (2.10)
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2.2.2 Two scales asymptotic expansion

In this section, we are interested in deriving a system which allows to separate the material
time scale information (moving at velocity u0) from the acoustic time scale which matches
with phenomena that move approximately at the sound velocity c0 when the Mach number
is sufficiently low. It means that we have now two reference time scales Tmat “ x0{u0 “ t0
and Tac “ x0{c0 yielding two dimensionless time scales, namely

t̃ “
t

Tmat
and τ “

t

Tac
“

t

x0{c0
“

t

u0 ˆ Tmat{c0
“

t

M ˆ Tmat
“

t̃

M
. (2.11)

The material time t̃ and the acoustic time τ have a ratio of orderM . This justifies to split the
time dependency of the variables into two times: t̃ but also τ . Details on this development
can be found in [95]. Then ϕ P tρ,uu can be written as an expansion in exponent of the Mach
number M :

ϕ̃px̃, t̃;Mq “
N
ÿ

n“0
Mnϕ̃pnqpx̃, t̃, τq `O

`

MN`1˘ , (2.12)

with τ “ t̃{M . Then the derivative with respect to the time is

Bt̃ϕ̃ px̃, t̃;Mq “
N
ÿ

n“0
Mn

ˆ

Bt̃ϕ̃
pnqpx̃, t̃, τq ` 1

M
Bτ ϕ̃

pnqpx̃, t̃, τq
˙

`O
`

MN`1˘ . (2.13)

By injecting the development (2.13) in (2.5), the momentum equation at order M´2 gives
∇x̃p̃

p0q “ 0 and then, since p is a regular function of ρ,

∇x̃ρ̃
p0q “ 0. (2.14)

At order M´1, we obtain

Bτ ρ̃
p0q “ 0, (2.15a)

Bτ pρ̃
p0qũp0qq ` 1

γ
∇x̃p̃

p1q “ 0 (2.15b)

and then, using (2.14) and (2.15a), leads to

ρ̃p0qpx̃, t̃, τq “ ρ̃p0qpt̃q. (2.16)

At order M0, we get

dt̃ρ̃p0q ` Bτ ρ̃p1q `∇x̃ ¨ pρ̃
p0qũp0qq “ 0, (2.17a)

Bt̃ pρ̃
p0qũp0qq ` Bτ pρ̃ũqp1q `∇x̃ ¨ pρ̃

p0qũp0q b ũp0qq ` 1
γ

∇x̃p̃
p2q “ 0. (2.17b)

With (2.15b) and (2.17a), we obtain that pρ̃p1q, ρ̃p0qũp0qq satisfies

Bτ ρ̃
p1q `∇x̃ ¨ pρ̃

p0qũp0qq “ ´dt̃ρ̃p0q, (2.18a)

Bτ pρ̃ũqp0q ` 1
γ

∇x̃p̃
p1q “ 0. (2.18b)
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By multiplying (2.18a) by dρ̃p̃pρ̃p0qq where ρ̃p0q “ ρ̃p0qpt̃q, we obtain the first order wave
equation on pp̃p1q, pρ̃ũqp0qq with a source term

$

&

%

Bτ p̃
p1q ` dρ̃p̃pρ̃p0qq∇x̃ ¨ pρ̃ũqp0q “ ´dt̃p̃p0q,

Bτ pρ̃ũqp0q ` 1
γ

∇x̃p̃
p1q “ 0.

(2.19)

Instead of replacing ρ̃p1q by p̃p1q in (2.18), p̃p1q can be replaced by ρ̃p1q, to get a wave system
in

`

ρ̃p1q, pρ̃ũqp0q
˘

#

Bτ ρ̃
p1q `∇x̃ ¨ pρ̃ũqp0q “ ´dt̃ρ̃p0q,

Bτ pρ̃ũqp0q `
`

ãp0q
˘2 ∇x̃ρ̃

p1q “ 0.
(2.20)

2.3 Development of Accurate schemes for low Mach acoustic

2.3.1 A stationary test case

In this section, we are interested in the results obtained with the Roe scheme in the case of a
scattering of a low Mach flow by a cylinder of radius r0. This test is useful since the analytical
solution for the incompressible system can be used as a reference solution. The domain Ω
is an annulus rr0, r1s ˆ r0, 2πr. Here, we used r0 “ 0.5 and r1 “ 5.5. The initial data are
uniform and set equal to

ρ0 “ 1, u0 “ pu0, 0qT , (2.21)

with u0 “ c0M8 where c0 “
a

p1pρ0q and M8 is the Mach number at infinity. The solution
at infinity is uniform, equal to (2.21). We consider wall boundary condition on the internal
cylinder of radius r0 and inlet or outlet boundary condition on the external cylinder on radius
r1. On an infinite domain, the reference solution is given by

$

’

’

’

’

’

&

’

’

’

’

’

%

prefpr, θq “ p8 `
p8
2

ˆ

2r
2
0
r2 cosp2θq ´ r4

0
r4

˙

M2 `OpM3q

puxqrefpr, θq “ u8 ´ u8
r2

0
r2 cosp2θq `OpMq,

puyqrefpr, θq “ ´u8
r2

0
r2 sinp2θq `OpMq.

The numerical solution obtained on a quadrangular mesh and the reference solution are shown
in Figure 2.1. The numerical solution shows higher fluctuations (one order of magnitude
higher) than the reference solution. In Figure 2.2, the behavior of ρ̃h ´ ρ̃8 with respect to
the Mach number is drawn. The slope obtained is O pMq whereas (2.10) suggests a O

`

M2˘

behavior.
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Figure 2.1: Left: Isolines of the reference pressure fluctuations pref ´ p8 obtained at M8 “

10´3. Right :Isolines of the pressure fluctuations p ´ p8 obtained at M8 “ 10´3 with a
quadrangular mesh for the Roe scheme.

Figure 2.2: L2 norm of the difference ρ̃h ´ ρ̃8 obtained for Mach number at infinity M8

varying from 10´1 to 10´4.
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2.3 Accurate schemes for low Mach acoustic

2.3.2 Fixes for the stationary test case

For recovering ac accurate solution, fixes have been proposed, and we review them. The Roe
solver in the subsonic case can be expressed as

d

dt
ρi `

1
|Ki|

ÿ

ΓijĂBKi

|Γij |
„

ρiui ` ρjuj
2 ¨ nij `

ρij
2aij

puij ¨ nijqpui ´ ujq ¨ nij

`
aij
2 pρi ´ ρjq



“ 0, (2.22a)

d

dt
pρiuiq `

1
|Ki|

ÿ

ΓijĂBKi

|Γij |
«

ρipui ¨ nijqui ` ρjpuj ¨ nijquj
2

`
aij
2 pρi ´ ρjq ruij ` puij ¨ nijqnijs

`
ρij
2 |uij ¨ nij |pu

K
i pnijq ´ uKj pnijqq

`
ρijpuij ¨ nijq

2aij
rpui ´ ujq ¨ nijsuij

`

„

pi ` pj
2 `

ρijaij
2 pui ´ ujq ¨ nij



nij

ff

“ 0 (2.22b)

where pk “ ppρkq and the states p¨qij are defined by

ρij “
?
ρiρj , uij “

?
ρiui `

?
ρjuj

?
ρi `

?
ρj

and a2
ij “

$

&

%

∆p
∆ρ, if ∆ρ ‰ 0,

p1pρiq, otherwise
(2.23)

2.3.2.1 Analysis of the problem for the Roe scheme

Performing at the discrete case the adimensioning and the same asymptotic analysis as done
in subsection 2.2.1 leads to uniformity of p̃p0q and ρ̃p0q, and to the following system coupling
p̃p1q and ũp0q

$

’

’

&

’

’

%

ř

ΓijĂBKi
|Γ̃ij |

”

´ρ̃p0qãp0q
´

ũp0qi ´ ũp0qj
¯

¨ nij `
´

p̃
p1q
i ´ p̃

p1q
j

¯ı

“ 0
ř

ΓijĂBKi
|Γ̃ij |

”

´ρ̃p0qãp0qpũp0qi ´ ũp0qj q ¨ nij ` pp̃
p1q
i ´ p̃

p1q
j q

ı

nij “ 0
(2.24)

Then in the general case, as explained in [61, 60], the system (2.24) admits non-zero solutions
implying that the discrete solution can contain a non constant pressure fluctuation pp1q,
which is the spurious mode observed in Figure 2.1 and leading to the wrong order in O pMq
in Figure 2.2.

2.3.2.2 Fixes for the Roe scheme

Several fixes have been proposed over the last two decades. We recall three of these

‚ The all-Mach correction of Dellacherie and al. [32] consists in replacing the term

∆ pu ¨ nq
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in the momentum equation (2.22b) of the Roe scheme by the term

minpMij , 1q∆ pu ¨ nq

whereMij is a term of the order of the Mach number computed at each edge of the mesh.
In the future numerical tests, we will takeMij “ maxpMi,Mjq “ maxp}ui}{ci, }uj}{cj}q.

‚ The low Mach correction of [128] consists in replacing every occurrence of the term

∆ pu ¨ nq

in the Roe scheme by
minpMij , 1q∆ pu ¨ nq ,

where Mij is of the order of the Mach number computed at each edge of the mesh.

‚ The Roe flux, which can be shortly expressed as a centered part and a diffusive part as

ΦRoe
ij “

fpUiq ` fpUjq
2 ¨ nij ´

|Anij pUi,Ujq|
2 ¨ pUj ´ Uiq. (2.25)

is modified by preconditioning the diffusion matrix as follows

ΦRoe-Turkel
ij “

fpUiq ` fpUjq
2 ¨ nij ´ P pUijq´1 |P pUijqAnij pUijq|

2 ¨ pUj ´ Uiq (2.26)

where P is a preconditioning matrix proposed by Turkel [142, 61]. In primitive variables
V, it is given by

P pVq “
ˆ

β2 0
0 I3

˙

where β is a parameter of the order of the Mach number. For the conservative variables
U , the corresponding form is

P pUq “ BU
BV

P pVqBV
BU

.

Results with these fixes are shown in Figure 2.3 for the isovalues, and in Figure 2.4 for the
convergence of the density fluctuations when M Ñ 0. A good approximation with the three
corrected Roe schemes is obtained, and the behavior of the density in O

`

M2˘ is recovered
with the fixes.

2.3.3 An acoustic test case

In this section, we address the problem of acoustic waves propagation in a low Mach number
flow. We consider the following profile for the density

ρ0pxq “ ρ8 p1`M8 sinp2πfxqq (2.27)

and since u ´ 2c
γ´1 is a Riemann invariant of the wave associated to x{t “ u ` c, the initial

velocity is taken as
u0pxq “ u8 `

2
γ ´ 1 pc pρ0pxqq ´ c8q (2.28)
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2.3 Accurate schemes for low Mach acoustic

Roe Roe-Turkel

Roe with Dellacherie and al. fix Roe with Rieper fix

Figure 2.3: Isolines of the pressure fluctuations p ´ p8 obtained at M8 “ 10´3 with a
quadrangular mesh for the Roe scheme and different classical low Mach fixes. 20 isolines were
drawn, between ´2.4ˆ 10´5 and 2.4ˆ 10´5 for the original Roe scheme, and 20 isolines were
drawn, between ´1.5ˆ 10´6 and 10´6 for the other results.
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Figure 2.4: L2 norm of the difference ρ̃h ´ ρ̃8 obtained for Mach number at infinity M8

varying from 10´1 to 10´4 for the Roe scheme and different classical low Mach fixes. With
all low Mach fixes, a convergence rate of 2 is obtained as the reference solution.

Figure 2.5: Density ρ (left) and momentum m (right) obtained at time t “ 0.003 s on the
acoustic wave test case with N “ 400 regular cells and with a first order Roe-Turkel scheme.

where u8 “ M8 ˆ c8. We choose ρ8 “ 1, M8 “ 10´3 and f “ 5. An exact solution at a
given time can be computed with the method of characteristics.

The different numerical schemes are tested with a regular mesh ∆x “ 1{N and with a
time explicit solver where the time step p∆tqn satisfies

p∆tqn “ CFLˆ ∆x
max
i
p|uni | ` c

n
i q
.

The CFL number will be specified in each case. Results obtained with the Roe-Turkel fix are
shown in Figure 2.5. For a time of the order of the Mach number, the density obtained with
the Roe-Turkel scheme is strongly damped. For studying the damping of the acoustic waves,
the dimensionless amplitude is drawn for a Mach number equal to 1, 10´1, 10´2, 10´3 for the
Roe and Roe-Turkel schemes, for t P r0, 0.003s in Figure 2.6. With the Roe-Turkel scheme,
for both the explicit and implicit time stepping, the lower the Mach number is, the faster the
amplitude is going to 0. With the Roe scheme, the dimensionless amplitude stays close to 1,
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2.3 Accurate schemes for low Mach acoustic

and is nearly Mach independent.
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Figure 2.6: Damping of the density component on the acoustic test case with implicit time
stepping (top) and explicit time stepping (bottom), for the Roe-Turkel scheme (left) and the
Roe scheme (right), for the Mach number M8 equal to 1, 10´1, 10´2, 10´3.

Results obtained with the Dellacherie and al. and Rieper fixes are shown in Figure 2.7,
and compared with the results obtained with the Roe scheme. Numerical results show that
the numerical scheme with the different fixes is stable only with a degraded CFL number,
approximately half of the CFL number for the original Roe scheme. Last, the numerical
error is computed on the density and on the momentum, still with these numerical fluxes, for
a first order finite volume computation, and also with a second order approximation. The
second order is achieved with a discontinuous Galerkin with piecewise linear approximation in
space, and a SSP integration in time [25]. Results are shown in Figure 2.8. As expected, the
Roe-Turkel finite volume approximation does not converge. Convergence is observed with the
finite volume approximation for the other fixes. But only a first order of accuracy is observed
for the momentum with the second order scheme.

To summarize this section, none of the fixes tested gives satisfactory results on the acoustic
wave test case: the Roe-Turkel fix induces a strong damping of one of the component of the
wave, whereas with the other fixes, the acoustic wave is propagated, but with a degraded CFL
number, and with a suboptimal convergence order for the discontinuous Galerkin method. It
is important to note that the original Roe scheme propagates correctly acoustic waves, and
with the right order of accuracy, and so that low Mach fixes destroy this property.
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Low Mach number flows

Figure 2.7: Density ρ (left) and momentum m (right) obtained at time t “ 0.3408 s on the
acoustic wave test case with N “ 400 regular cells and with a first order scheme. The Roe
scheme corrected with Dellacherie and al. and Rieper fixes is not stable if we consider a
CFL number of 0.9 (bottom figures). Indeed, it seems to be stable for a CFL condition twice
smaller than the Roe scheme (top figures).
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2.3 Accurate schemes for low Mach acoustic

Figure 2.8: Order obtained on the acoustic wave test case at time t “ 0.3408 s with the Roe
scheme, and different fixes. The coarser and finer meshes contain N “ 200 and N “ 6400
regular cells respectively, and ∆x “ 1{N . On the two top figures, the error obtained on the
density (left) and on the momentum (right) are shown with a first order finite volume scheme.
On the bottom figures, the error obtained on the density (left) and on the momentum (right)
are shown with a second order discontinuous Galerkin method.

51



Low Mach number flows

2.3.4 Fixes for the acoustic waves propagation

2.3.4.1 Analysis of the problem raised by acoustic propagation

For explaining the results of the previous section, a double time scale asymptotic expansion
is performed on the numerical schemes as in subsection 2.2.2.

In the case of the Roe-Turkel case, it is possible to prove

Proposition 8 (Proposition 2.1 of [16]). If the scales in O
`

Mk
˘

are supposed to be separated,
and if we suppose that the boundary conditions are either wall or periodic, then the Roe-Turkel
solver is such that

@i, ρ̃
p0q
i “ ρ̃p0q and @i, ρ̃

p1q
i “ ρ̃p1q.

which explains the damping of the acoustic waves with this fix. As far as the Roe scheme
and its other fixes are concerned, it is possible to prove that ρ̃p0q is uniform and depends
neither on t̃ nor on τ . This is similar to what is found in the continuous case in (2.16). We
can then prove that

Proposition 9 (Proposition 2.3 of [16]). pp̃p1q{γ, pρ̃ũqp0qq satisfies the semi-discrete (discrete
in space and continuous in time) wave equation
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bτ
p̃
p1q
i

γ
`

1
|K̃i|

ř

ΓijĂBKi
|Γ̃ij |

«

pãp0qq2
pρ̃ũqp0qi ` pρ̃ũqp0qj

2 ¨ nij `
ãp0q

2

˜

p̃
p1q
i

γ
´
p̃
p1q
j

γ

¸ff

“ ´
1
γ

dt̃p̃p0q,

Bτ pρ̃ũqp0qi `
1
|K̃i|

ř

ΓijĂBKi
|Γ̃ij |

«

p̃
p1q
i ` p̃

p1q
j

2γ nij

`
δãp0q

2

”´

pρ̃ũqp0qi ´ pρ̃ũqp0qj
¯

¨ nij
ı

nij

ff

“ 0

(2.29)

where δ “ 1 for the Roe scheme, δ “ 0 for the Dellacherie et al. and Rieper fixes and
ãp0q “

b

dρ̃p̃pρ̃p0qq{γ.

This last proposition explains why a lower order of accuracy is found with the low Mach
number fixes: in the case of the Roe flux (δ “ 1), the diffusion is not degenerated, whereas
with a fix (δ “ 0) the numerical diffusion for the momentum equation is degenerated.

2.3.4.2 Proposition of a fix for the acoustic propagation

In [16], a general stabilization was searched in the following form
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%

Bτ
p̃
p1q
i

γ
`

1
|K̃i|

ř

ΓijĂBKi
|Γ̃ij |

«

pãp0qq2
pρ̃ũqp0qi ` pρ̃ũqp0qj

2 ¨ nij ` C11

˜

p̃
p1q
i

γ
´
p̃
p1q
j

γ

¸

`C12,d ¨
”´

pρ̃ũqp0qi ´ pρ̃ũqp0qj
¯ı

ff

“ ´
1
γ

dt̃p̃p0q,

Bτ pρ̃ũqp0qi `
1
|K̃i|

ř

ΓijĂBKi
|Γ̃ij |

«

p̃
p1q
i ` p̃

p1q
j

2γ nij `C21,d

˜

p̃
p1q
i

γ
´
p̃
p1q
j

γ

¸

`C22

”´

pρ̃ũqp0qi ´ pρ̃ũqp0qj
¯

¨ nij
ı

nij

ff

“ 0

(2.30)
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2.4 A filtering method for low Mach number flows

The general stabilization of (2.30) was studied in [16], which shows that for ensuring the
dissipation of the acoustic energy, we must have

C11 ě 0,
C12,d `

`

ãp0q
˘2 C21,d “ 0,

C22 ě 0.

All the previous schemes which are accurate at low Mach number in the steady case match
with C22 “ 0, and so we decide to set C22 “ 0. The last coefficients are obtained by optimizing
the CFL number, and lead to, in one dimension,

C11 “
´

ãp0q
¯2

and C21,d “ ˘
1
2 .

Note that the stabilization is not Galilean invariant; the two possible orientations in one
dimension give two different stabilizations, which are obtained by changing the sign of C21,d.
In dimension d, the following coefficients can be used

C11 “ a‹, C22 “ 0, C12,d “ ˘

`

ãp0q
˘2

2
?
d

1d and C21,d “ ¯
1

2
?
d

1d where 1d “

¨

˚

˝

1
...
1

˛

‹

‚

.

(2.31)
This leads to the following fix for the Roe scheme

ΦNew
ij “ ΦRoe

ij ´ p1´ θijq
ρijaij

2

ˆ

0
rpui ´ ujq ¨ nijsnij

˙

` p1´ θijq

¨

˚

˚

˝

1
2aijpρi ´ ρjq ˘

1
2
?
d

1d ¨ pρiui ´ ρjujq

¯
a2
ij

2
?
d
pρi ´ ρjq1d

˛

‹

‹

‚

(2.32)

with θij “ minpMij , 1q and Mij “ max pMi,Mjq “ max p}ui}{ai, }uj}{ajq.

2.3.4.3 Numerical results

Convergence order obtained on the acoustic wave test case are shown in Figure 2.9, and prove
that the optimal order is recovered with respect to the other low Mach fixes. Results obtained
on the stationary test case are shown in Figure 2.10 and show a similar behavior as the Roe
scheme with low Mach number fixes. We thus achieved to build a fix that is able to accurately
solve not only stationary low Mach number flows, but also propagation of acoustic waves in
low Mach number flows.

2.4 A filtering method for low Mach number flows

2.4.1 Link between the ω-limit of the wave system and the spurious mode
at low Mach number

In this section, a link between the ω-limit of the wave system and the spurious mode observed
in Figure 2.1 is made. It relies on how the computation for the steady state test case is
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Figure 2.9: Order obtained on the density (left) and on the momentum (right) on acoustic
wave test case at time t “ 0.3408 s with the Roe scheme and different fixes with a first (top)
and a second order (bottom) approximations.

Figure 2.10: Left: Isolines of the pressure fluctuations p ´ p8 obtained at M8 “ 10´3 on
the stationary test case with the new solver. 20 isolines were drawn, between ´1.5 ˆ 10´6

and 10´6 for the other results. Results should be compared with the ones of Figure 2.3 and
Figure 2.1. Right: L2 norm of the difference ρ̃h ´ ρ̃8 obtained for Mach number at infinity
M8 varying from 10´1 to 10´4 with the new scheme, compared with the results obtained
with the Roe scheme and different fixes.
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2.4 A filtering method for low Mach number flows

led: as Euler equations are nonlinear, a time marching method is used until the residuals
are sufficiently small for ensuring that a steady state is reached. When the solution is not
accurate at low Mach number, the density is O pMq instead of O

`

M2˘. If we consider the
steady state of the two time scales asymptotic expansion of subsection 2.2.2, this means that
the long time behavior (also called the ω-limit problem) of the wave system (2.20) is such that
the density ρ̃p1q is not uniform. This means that, based on the consistency of the asymptotic
numerical scheme with the wave system of Proposition 9, we are naturally interested in the
discrete ω-limit set of (2.29). We make the following two remarks on this problem

‚ The ω-limit problem may be strongly different from the stationary problem. For exam-
ple, if the ω-limit problem of (2.20) is considered, and if the solution is independent of
time, then we find a uniform density, and a divergence free momentum. But by taking
the curl of the momentum equation, we find additionally that the momentum is har-
monic provided the curl of the momentum is initially zero. If the stationary solutions
of (2.20) are considered, we find a uniform density, and a divergence free momentum,
which is a much larger space of solutions than the solutions of the ω-limit set.

‚ When a continuous hyperbolic system is considered, the ω-limit set may be something
very complicated. For example, considering the wave system in 1d with wall boundary
conditions, the initial condition will travel and reflect inside the domain forever, leading
to a large ω-limit set.

2.4.2 ω-limit of the finite volume discretization of a hyperbolic system

In [75], the ω-limit set of a diffusive discretization of a general hyperbolic system was consid-
ered: the general system is

BτU`

d
ÿ

k“1
AkBxkU “ 0, (2.33)

and is supposed to be symmetrizable. It is discretized by

BtUi `
1
|Ki|

ÿ

jPVintpiq

|Γij |F pUi,Uj ,nijq

`
1
|Ki|

ÿ

jPVwallpiq

|Γij |FwallpUi,nijq

`
1
|Ki|

ÿ

jPVSWpiq

|Γij |F SWpUi,Ub,nijq “ 0

(2.34)

where Vwall is the set of boundary sides on which a wall boundary condition is imposed,
whereas VSW is the set of boundary sides on which inlet/outlet boundary conditions are
imposed with a Steger-Warming approach. On interior sides, the following numerical flux is
used

F pUi,Uj ,nijq “ Apnijq ttU uuij ´Dpnijq pUj ´Uiq .

Given a boundary state Ub, and n the outgoing normal, the Steger-Warming boundary flux
is defined as

F SWpUi,Ub,nq “ A`pnqUi `A
´pnqUb.
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Last, the wall boundary conditions are defined as

FwallpUi,nq “ ApnqUi ` qUi

2 ´
1
2 pA

`pnq ´A´pnqq
´

qUi ´Ui

¯

where qUi is obtained from a transformation of Ui: qUi “ pIn ´ PwallpnqqUi where Pwallpnq is
nonnegative.

Due to the inlet/outlet boundary conditions, the existence and structure of the ω-limit set
cannot be studied with an energy method, because the energy has no defined monotony across
time. Instead of this, the ω-limit set is studied by a purely algebraic method, by proving that
(2.34), seen as a coupled system of ODE

U 1 “ B ´AU (2.35)

follows some necessary conditions on A, summarized in

Hypothesis 1. Suppose that A follows the following conditions

1 rank AX ker A “ t0u

2 All the eigenvalues λ of A are such that Repλq ě 0.

3 0 is the only eigenvalue of A such that Repλq “ 0

We can then prove that

Proposition 10 (Proposition 4 of [75]). Suppose that Hypothesis 1 hold. Then

‚ A given solution of (2.35) is bounded in positive time, if and only if B P rank A

‚ Denoting by U8 the unique vector of rank A such that B “ AU8, (2.35) with initial
data U0 converges towards U8 ` PpU0q, where P is the projection on ker A.

‚ The ω-limit set is an affine space, equal to U8 ` ker A.

Then it can be proven that under mild hypothesis, 1 , 2 and 3 hold for (2.34) (see
propositions 5 and 6 of [75]).

2.4.3 Filtering method for low Mach number flows

The classical numerical schemes for the stabilization of the wave system, like the Roe scheme
or the Lax-Friedrich scheme, follow the hypothesis developed in [75] for ensuring a structure
of the ω-limit set as in Proposition 10 for the wave system. The stabilizations of the wave
system obtained with the low Mach fixes (except for the Roe-Turkel one) follow also these
hypothesis. This is depicted in Figure 2.11 on a test case of the scattering of the linear wave
system by a cylinder.

We can now check the pressure of the ω-limit. The stabilizations of the wave system can
be divided into two families (see Figures 2,3,4,5,6 of [75])

‚ The ones that match with an accurate scheme at low Mach number. For these schemes,
the pressure of the ω-limit observed is uniform and equal to 0. Moreover, the velocity
is close of the exact solution.
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Figure 2.11: Residual obtained with quadrangular and triangular mesh on the pressure p and
the velocities ux and uy as a function of the time. The LMAAP stabilization matches with
the scheme exposed in section 2.3.
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Figure 2.12: L2 norm of density fluctuation ρ ´ ρb with respect to the Mach number (for
Mb “ 10´1 to Mb “ 10´10). Rusanov and Roe scheme are used on quadrangular mesh. A
log-log plot is used. Results with and without filtering are shown.

‚ The ones that match with a scheme not accurate at low Mach number. For these
schemes, the pressure of the ω-limit found is not 0, and the velocity is far from the
exact solution.

This numerically confirms the link between the accuracy at low Mach number and the pressure
and velocity of the ω-limit of the wave system.

Moreover, from the ω-limit of the wave system and a low accurate solution at low Mach
number, it is possible to build an accurate solution at low Mach number. We take the example
of the scattering of a flow by a cylinder. The boundary conditions are as in subsection 2.3.1,
and we suppose that a stationary solution ρEuler and pρuqEuler was obtained. The ω-limit
solution of the wave system is denoted by ppρ8, pu8q. The Hodge-Helmoltz decomposition can
then be applied to pu8

pu8 “ pu8H ` pu8Ψ ` pu8ϕ . (2.36)

The spurious mode at low Mach number can then be identified as pρ8 for the density part, and
as the non harmonic component of pu8, pu8Ψ`pu8ϕ (or equivalently pu8´puH) for the momentum
part. This gives the following expression for the filtered solution

"

ρFiltered“ ρEuler ´Mbρbpρ
8

pρuqFiltered“pρuqEuler ´ ρb}ub} ppu8 ´ pu8Hq

Numerical results obtained with and without filtering for the density fluctuations are
shown with the Roe scheme and the Rusanov scheme in Figure 2.12. These results confirm
that filtering allows to recover the O

`

M2˘ scaling of the density fluctuations when the Mach
number goes to 0. Isovalues of the norm of the velocity with and without filtering are shown
with the same numerical fluxes in Figure 2.13, and show that the filtered solution looks
similar as the incompressible solution when the filtering is used. Finally, the error between
the velocity obtained and the incompressible velocity is depicted in Figure 2.14 for a Mach
number of 10´4. Results confirm that the filtered solutions converge, whereas non filtered
solutions do not.
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Exact incompressible

Rusanov unfiltered Rusanov filtered

Roe unfiltered Roe filtered

Figure 2.13: Iso-contours of the norm of the velocity obtained at Mach number Mb “ 10´4

on quadrangular mesh. Results with and without filtering are shown for the Rusanov and the
Godunov scheme. Twenty equally distributed contours between 8 ˆ 10´6 and 3 ˆ 10´4 are
plotted.

59



Low Mach number flows

1002× 10−1 3× 10−1 4× 10−1 6× 10−1

h

10−5

10−4

‖u
x
−
u

(0
)

x
,e

x
‖ 2

slope=-1

Quads, Rusanov, filtered

Quads, Roe, filtered

Quads, Rusanov, unfiltered

Quads, Roe, unfiltered

1002× 10−1 3× 10−14× 10−1 6× 10−1

h

10−5

10−4

‖u
y
−
u

(0
)

y
,e

x
‖ 2

slope=-1

Quads, Rusanov, filtered

Quads, Roe, filtered

Quads, Rusanov, unfiltered

Quads, Roe, unfiltered

Figure 2.14: L2 norm of the velocity error between the exact incompressible solution and the
long time limit state obtained with the Rusanov and the Godunov scheme. Results with and
without filtering are shown for a Mach number of Mb “ 10´4.

2.5 Behavior of the discontinuous Galerkin method on trian-
gular meshes

It was remarked around ten years ago that the Roe scheme with finite volumes methods has
a good accuracy at low Mach number on triangular meshes [59, 129, 32]. The aim of this
section is to show that the same property holds with the discontinuous Galerkin method.

2.5.1 Notations for the discretization

We denote by Vh a a finite element basis that is composed of piecewise polynomial functions.
For each ϕ P Vh, and along any interior side, we denote by

rrϕ ss “ ϕLeft ´ ϕRight,

and
ttϕ uu “

ϕRight ` ϕLeft

2 .

Last, we denote by Vh “ pVhqd the finite element space of velocities, and by Vh “ pVhqd`1

the finite element space in which the numerical solutions of (2.5) will be searched. Then the
discontinuous Galerkin formulation for (2.3) is

Find Uh P Vh @ϕ P Vh
ÿ

KPTh

ż

K
pϕ ¨ BtUh ´ fpUhq ¨∇ϕq

`
ÿ

SPSi

ż

S
rrϕ ss ¨ f̃pUh,nSq `

ÿ

SPSb

ż

S
ϕLeft ¨ f bpUhq ¨ nS “ 0.

(2.37)

where f b matches with the weak imposition of the boundary conditions, and f̃pUh,nSq is the
numerical flux.

The numerical flux f̃pUh,nSq may be any of known numerical flux: Roe, Lax-Friedrich,
HLL, HLLC, Godunov... For the purpose of notation, we will also denote by f̃pUL,UR,nSq
the numerical flux acting on Rd`1 ˆ Rd`1 ˆ Rd.
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2.5 Discontinuous Galerkin method on triangles

2.5.2 Asymptotic expansion of the numerical scheme

As for the finite volume scheme, it is possible to prove uniformity of ρ̃p0qh and p̃
p0q
h . This is

mandatory before considering the higher order moments of the expansion of the numerical
scheme in power of the Mach number.

Proposition 11 (Proposition 1 of [74]). If the numerical flux follows

f̃pUL,UR,nSq “
1
2

¨

˝

0
1

γM2

´

p̃
p0q
L ` p̃

p0q
R

¯

nS

˛

‚`

¨

˚

˝

1
M

ã0

´

ρ̃
p0q
L , ρ̃

p0q
R

¯´

ρ̃
p0q
L ´ ρ̃

p0q
R

¯

`O p1q

O
ˆ

1
M

˙

˛

‹

‚

with ã0

´

ρ̃
p0q
L , ρ̃

p0q
R

¯

ą 0 for all ρ̃p0qL ,ρ̃p0qR , and if the boundary conditions follow

‚ either (Steger-Warming boundary condition)

fbpUL,nSq “
1
2

¨

˝

0
1

γM2

´

p̃
p0q
L ` p̃

p0q
b

¯

nS

˛

‚`

¨

˚

˝

1
M

b̃0

´

ρ̃
p0q
L , ρ̃

p0q
b

¯´

ρ̃
p0q
L ´ ρ̃

p0q
b

¯

`O p1q

O
ˆ

1
M

˙

˛

‹

‚

with b̃0
´

ρ̃
p0q
L , ρ̃

p0q
b

¯

ą 0,

‚ or (wall boundary condition)

fbpUL,nSq “

¨

˝

0
1

γM2 p̃
p0q
L nS `O

ˆ

1
M

˙

˛

‚

then ρ̃p0qh is uniform, equal to ρ̃p0qb .

It is then possible to prove the following proposition, which ensures the accuracy on
triangles and tetrahedra provided the expansion of the numerical flux in Mach number has a
special form.

Proposition 12 (Proposition 1 of [74]). If hypothesis of Proposition 11 hold with ρ̃p0qb “ ρ0
(independent of time), if we denote by c0 “ c̃ pρ0q, and if the numerical flux follows, for
ρ̃
p0q
L “ ρ̃

p0q
R “ ρ0

f̃pUL,UR,nq “

$

’

’

’

’

’

&

’

’

’

’

’

%

ρ0

´

ũp0q

L ` ũp0q

R

¯

¨ n

2 `
c0
2

´

ρ̃
p1q

L ´ ρ̃
p1q

R

¯

` o p1q

1
M

¨

˝c20

´

ρ̃
p1q

L ` ρ̃
p1q

R

¯

n

2 `
ρ0c0

2

´

ũp0q

L ¨ n´ ũp0q

R ¨ n
¯

n

˛

‚` o
ˆ

1
M

˙

(2.38)

then ρ̃p1qh is uniform, equal to 0, and ũp0qh ensures the following side equality

@S P Si rr ũp0qh ¨ n ss “ 0,

61



Low Mach number flows

and the following cell equality

@K P Th @ϕ P PkpKq
ż

K
ũp0qh ¨∇ϕ “ 0.

As a consequence, it is solution of the following discrete divergence equation

@Ki P Th @ϕ P PkpKiq

ż

Ki

ũp0qh ¨∇ϕ`
ÿ

jPN piq

ż

Γij
ϕ
!!

ũp0qh ¨ nij
))

“ 0.

Note that the asymptotic development (2.38) encloses a lot of Riemann solvers. If we
consider the classical Galilean invariant stabilizations of the wave system, there are basically
two types of stabilizations that ensure optimal convergence order: the one of (2.38), matching
with the Godunov scheme for the wave system, and the one matching with the Lax-Friedrich
scheme for the wave system which reads

f̃pUL,UR,nq “

$

’

’

’

’

’

&

’

’

’

’

’

%

ρ0

´

ũp0q

L ` ũp0q

R

¯

¨ n

2 `
c0
2

´

ρ̃
p1q

L ´ ρ̃
p1q

R

¯

` o p1q

1
M

¨

˝c20

´

ρ̃
p1q

L ` ρ̃
p1q

R

¯

n

2 `
ρ0c0

2

´

ũp0q

L ´ ũp0q

R

¯

˛

‚` o
ˆ

1
M

˙

(2.39)

An exhaustive study for knowing which solver is of the family (2.39) and which is of the
family (2.38) has not been conducted yet, but basically, usual Riemann solver that preserve
the contacts (Godunov, HLLC, HLLE, Osher) have an asymptotic expansion matching with
(2.38), whereas the ones that do not preserve contacts (HLL, Rusanov), are matching with
(2.39).

2.5.3 Sketch of the proof

Once the asymptotic expansion has been performed, the system coupling ũp0qh and ρ̃
p1q
h can

be rewritten

@ϕ P PkpKiq

ż

Ki

ρ0ϕdivx̃ũp0qh `
ÿ

jPN piq

ż

Γij
ϕ
´

´
ρ0
2 rr ũ

p0q
h ¨ nij ss `

c0
2 rr ρ̃

p1q
h ss

¯

“ 0. (2.40)

@ψ P BDMkpKiq

ż

Ki

c2
0
ρ0
ψ ¨∇x̃ρ̃

p1q
h ´

c0
ρ0

ÿ

jPN piq

ż

Γij
ψ ¨ nij

´

´
ρ0
2 rr ũ

p0q
h ¨ nij ss `

c0
2 rr ρ̃

p1q
h ss

¯

“ 0.

(2.41)
When ∇x̃ρ̃

p1q
h “ 0 and divx̃ũp0qh , the equations (2.40) and (2.41) include the boundary integral

of the same term multiplied either by ψ ¨ nij , or by ϕ. Then in [74], the following is proven

Proposition 13 (Proposition 3 of [74]). If we denote by

RkpBKiq “

!

φ φ P L2pBKiq and @j P N piq φ|Γij P PkpΓijq
)

,

and by
Tr : p P PkpKq ÞÝÑ p|BK P RkpBKq

T : u P BDMkpKq ÞÝÑ u|BK ¨ nij P RkpBKq
then, if K is a simplex

RkpBKq “ TrpdivKx q ‘T p∇K
x q.
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2.6 Conclusion on low Mach number flows

Using Proposition 13 on (2.40) and (2.41) leads to

´
ρ0
2 rr ũ

p0q
h ¨ nij ss `

c0
2 rr ρ̃

p1q
h ss “ 0

on each side. Using the same arguments as in [59] leads to rr ρ̃p1qh ss “ 0 and rr ũp0qh ¨ nij ss. The
remaining part of the proof is straightforward.

2.5.4 Numerical results

In this section, we test the results claimed in Proposition 12 on the test case of the scattering
of a flow by a cylinder. This test case is performed with the Roe and HLLC schemes (which
are of family (2.38)), and with the HLL and Rusanov schemes (which are of family (2.39)).
In Figure 2.16, isocontours of the norm of the velocity have been drawn for the stationary
solution obtained at Mach 10´6. These isocontours confirm that when the HLLC and Roe
scheme are used, the discontinuous Galerkin method is accurate, whereas it is not when the
HLL and Rusanov numerical flux are used.

In Figure 2.15, the density fluctuations ρ´ρb are plotted as a function of the Mach number
Mb. As expected, a rate of 2 is obtained for the HLLC and the Roe schemes. A rate of 1 is
obtained with the Rusanov and the HLL schemes. Note that the gap between accurate and
inaccurate schemes when the Mach number goes to 0 appears obviously only for a very low
Mach number when the order of accuracy increases.

2.6 Conclusion and prospects on low Mach number flows
In this chapter, several aspects of low Mach number flows have been addressed. First, the
problem of the propagation of an acoustic wave in a low Mach number flow, on which few
work has been done until now was addressed. It was shown that usual low Mach number fixes
are unable to correctly solve acoustic wave propagation in low Mach number flows: either
acoustic waves are quickly damped, or the order of accuracy is suboptimal. A solution was
proposed, which allows to recover an accurate solution, both for stationary low Mach number
flows, and for acoustic wave propagation.

Then another solution was proposed for the low Mach stationary case: instead of trying
to fix the Riemann solver, the spurious mode that jeopardizes the convergence at low Mach
number was thoroughly studied: it appears as being the long time limit of a discretization of
a wave system. Based on this knowledge, a low accurate solution at low Mach number can
be filtered with this long time limit for recovering accuracy.

Last, an extension of the good accuracy of some Riemann solvers on triangles and tetra-
hedra for the finite volume method was proven for the discontinuous Galerkin method.

The results obtained within this chapter will be extended in the following directions over
the next years

Extend the work on acoustic wave propagation in a low Mach number flow to
the full Euler system. In this chapter, the low Mach number problem was addressed
only with the barotropic Euler model. The full Euler model raises some challenges,
especially concerning the two time scales asymptotic expansion which we addressed in
this chapter. Indeed the same type of wave system coupling is found between the first
order pressure and the zeroth order momentum. However, the additional equation on
density (or entropy) is not straightforward to deal with.
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Figure 2.15: L2 norm of the density fluctuation ρ´ ρb with respect to the Mach number (for
Mb “ 10´1 to Mb “ 10´10).
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Exact incompressible

DG0, Rusanov DG1, Rusanov DG2, Rusanov

DG0, HLL DG1, HLL DG2, HLL
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DG0, Roe DG1, Roe DG2, Roe

Figure 2.16: Iso-contours of the norm of the velocity obtained at Mach number Mb “ 10´6

on triangular mesh. Twenty equally distributed contours between 8ˆ 10´8 and 3ˆ 10´6 are
plotted.
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Develop a well balanced approach for low Mach number flows. Well balanced
discretization have been developed over the three last decades for ensuring a good
resolution of hyperbolic systems with source terms, for example, shallow water system
with topography or Euler system with gravity. This well-balanced approach can be
recast as searching a solution as the deviation from an equilibrium state. As we have
been able to identify the spurious mode when a scheme is not low Mach number accurate,
it may be interesting to consider a new problem, formulated as the deviation with respect
to this spurious mode.

Disseminate to other type of hyperbolic systems with similar problems. In sec-
tion 2.3, we saw that the spurious mode obtained at low Mach number is characterized
by a nonzero first order density, and a momentum that is not divergence free. Other
types of system suffer from the same problem. For example, the Magnetohydrodynam-
ics system includes a divxB “ 0 constraint which is hard to ensure from a numerical
point of view [29]. The work proposed in the previous item could be another way to
address this problem.
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Chapter 3
Development of the AeroSol library and
applications

3.1 Introduction

The INRIA Cagire project began in 2011. The initial project consisted in performing cross
comparisons between numerical computations and experiments on a special flow configura-
tion, relevant for effusion cooling of wall of combustion chambers: the jet in cross flow. The
experimental part was already developed within the experimental bench Maveric. For per-
forming the numerical part, a new library began to be developed. We wanted the library
to be scalable and high order based on discontinuous Galerkin methods. Moreover, in order
to mesh the boundary layers with a mesh structured in the orthogonal direction of the wall,
which requires to use hexahedron or prisms near walls, we wanted to work with hybrid meshes.
Last, the cells had to be curvilinear for reaching the optimal approximation order on curved
geometries.

In the meanwhile, the INRIA team Bacchus had similar plans, but wanted to work
with continuous finite elements. Moreover, this team used to include researchers on high
performance computing and wanted to explore NUMA aspects and accelerators for finite
elements computations. Two PhD students, Damien Genet and Cédric Lachat had begun
their work around this: Cédric had begun to develop the library PaMPA, a library dedicated
to the distributed management of mesh based methods and to the parallel mesh adaptation,
and Damien had began to work on the link between PaMPA and a new C++ high order finite
element library which would become AeroSol. The PaMPA library was supposed to handle
the distributed parallelism, whereas the node or node+accelerator level was supposed to be
done with the runtime scheduler StarPU. The library relies on external libraries for solving
linear systems. The global design of the library is shown in Figure 3.1.

This chapter is organized as follows: in section 3.2, the general design of the code is
explained; the library was jointly designed with Damien Genet during his PhD thesis [55].
In section 3.3, some validations and performance results are shown. In section 3.4, some
of the results obtained within the Impact-ae European project are shown; these results
were obtained jointly with Simon Delmas during his PhD thesis [34]. In section 3.5 some
preliminary results obtained with StarPU are shown; these results were obtained jointly
with the authors of [44]. The chapter ends with the prospects on this library in section 3.6.
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AeroSol library

Scotch

AeroSol

PaMPA

StarPUSolver

Figure 3.1: Global initial design of the AeroSol library. For the memory management,
it relies on the PaMPA library, a superlayer of the parallel graph manager scotch/pt-
scotch. It relies on external linear solvers for system resolutions, and on StarPU for
addressing NUMA architectures and host/accelerators architectures.

3.2 Code design

3.2.1 Memory management

The AeroSol library is designed for being able to deal with continuous and discontinuous
high order finite elements methods. For a discontinuous discretization, the unknowns are
distributed on the cells. Their number depends on the shape and the approximation degree.
The number of unknowns for discontinuous discretizations is recalled in Table 3.1. When
dealing with continuous discretization, the continuity constraint leads to a smaller number
of unknowns, but with a larger spreading on all the entities of the mesh. The number of
unknowns for continuous discretizations is recalled in Table 3.2.

For handling memory, an undirected graph based on the mesh is defined. The vertices
of this graph are all the entities of the mesh, namely all the parts of the mesh that may
bear data: points, lines, triangles, quads, tetrahedra, hexaedra, prisms and pyramids. An
edge links two vertices of the graph if one of the two entities may need the other one for
completing its unknown. For example, with a continuous discretization, a line bears only
pk ´ 1q unknowns, and the two missing unknowns are located on the points linked with this
line. Therefore an edge links the vertex of the line and each of the vertex of its points. The
resulting graph includes all the cells, faces, sides and points of the mesh, and the edges of the
graph are all the links between each cell and its faces, sides and points. This graph containing
all the entities is called the enriched graph. A mesh example and its associated enriched graph
are shown in Figure 3.2.

Once the graph is built, we would like to keep the original informations of the mesh,
namely with which type of entity it matches (face, cell, side), and which shape it is (triangle,
quadrangle, tetrahedron, etc...). Moreover, additional informations are needed on the ver-
tices of the graph: the approximation degree, additional informations on faces (whether it is
boundary, interior or periodic), and the curvature degree of the entity. All these informations
are compactly stored in a 32-bit integer called an entity type. Each of this information has a
reserved number of bits within this integer. The approximation degree is coded on five bits,
the face information on two bits, the shape on three bits, and the curvature on four bits. For
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3.2 Code design

1d 2d 3d

Points 0 0 0

Lines k ` 1 0 0

Triangles 0
pk ` 1qpk ` 2q

2
0

Quads 0 pk ` 1q2 0

Tetrahedron 0 0
pk ` 1qpk ` 2qpk ` 3q

6

Hexahedron 0 0 pk ` 1q3

Prisms 0 0
pk ` 1q2pk ` 2q

2

Pyramids 0 0
pk ` 1qpk ` 2qp2k ` 3q

6

Table 3.1: Localization and number of unknowns for discontinuous discretizations with
approximation degree k ě 0.

Figure 3.2: The initial mesh (left), and its graph representation (right). In the graph repre-
sentation, vertices matching with cells are represented with a star shaped, vertices matching
with sides are represented with square shape, and vertices matching with points are repre-
sented with circles.
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Points 1

Lines k ´ 1

Triangles max
ˆ

pk ´ 1qpk ´ 2q
2

, 0
˙

Quads max
`

pk ´ 1q2, 0
˘

Tetrahedron max
ˆ

pk ´ 1qpk ´ 2qpk ´ 3q
6

, 0
˙

Hexahedron max
`

pk ´ 1q3, 0
˘

Prisms max
ˆ

pk ´ 1q2pk ´ 2q
2

, 0
˙

Pyramids max
ˆ

pk ´ 1qpk ´ 2qp2k ´ 3q
6

, 0
˙

Table 3.2: Localization and number of unknowns for continuous discretizations with degree
k ě 1. On the contrary to the discontinuous case (see Table 3.1), the number of unknowns
does not depend on the dimension.
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example, the bitwise definition of a tetrahedron with approximation degree 4, of curvature 2
is the following integer

00100
loomoon

degree

00
loomoon

face information

110
loomoon

shape

0100
loomoon

curvature

“ 2148.

We are now concerned with the memory allocation. For the same mesh as in Figure 3.2, the
localization of the degrees of freedom are shown in Figure 3.3 for discontinuous discretization,
and on Figure 3.4 for continuous discretization for different approximation degrees. The
memory allocation is based on the fact that for a given approximation type and approximation
degree, all vertices of the enriched graph with the same entity type bears the same number of
degrees of freedom. Therefore a pointer is allocated for each entity type of the mesh. The size
of the pointer for the entity type e is obtained by multiplying the number of vertices of the
enriched graph of entity type e by the number of degrees of freedom borne by each entity of
this type given in Table 3.1 and Table 3.2 depending on whether continuous or discontinuous
discretizations are addressed.

The memory allocation for continuous and discontinuous discretizations of degree 4 is
shown in Figure 3.5

‚ In the continuous case, each point bears 1 degree of freedom, each side bears 3 degrees
of freedom, and each triangle bears 3 degrees of freedom. A pointer is allocated for
each of the entity bearing data. The mesh contains 11 points, 22 sides, and 12 cells.
Therefore, 3 pointers are allocated: one of size 11 for point data, one of size 66 for side
data, and one of size 36 for triangle data.

‚ In the discontinuous case, only the triangles bear data, and each triangle bears 15
degrees of freedom. As the mesh contains 12 cells, 1 pointer of size 180 is allocated for
triangle data.

The resulting vector of unknowns is a collection of pointers, which are gathered in a std::map

indexed by the entity type.
Note that this way of managing the data is very generic for finite elements methods. It can

be extended easily to other types of high order discretization. For example, we are currently
extending it to cubature based continuous finite elements, in which we should only change
the values given in Table 3.2. This could also be extended for example to edge based finite
elements, and to hybridizable discontinuous Galerkin methods.

From an implementation point of view, the mesh is read in the AeroSol library, and the
parallel enriched graph is built from the parallel mesh reading. The enriched graph is given to
the PaMPA library. Then the PaMPA library is able to redistribute the enriched graph and
to compute the appropriate overlap. From the graph, the PaMPA library provides iterators
for looping on cells, sides, cells of sides,. . .PaMPA is also able to perform point-to-point
communications.

3.2.2 Basic classes and their unit test

All the computations in the AeroSol library are based on the reference element. Suppose
that we want to integrate the cell term of the discontinuous Galerkin approximation of a
hyperbolic system

BtU` divxFpUq “ 0,

71



AeroSol library

‚

‚‚

‚

‚

‚

‚‚

‚

‚

‚

‚

‚

‚

‚
‚

‚‚‚‚

‚
‚

‚

‚

‚ ‚

‚

‚

‚

‚
‚

‚

‚‚

‚

‚
‚

‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚ ‚

‚

‚

‚
‚

‚

‚

‚

‚‚

‚

‚

‚

‚‚

‚

‚

‚ ‚

‚

‚

‚

‚
‚

‚

‚ ‚

‚

‚

‚‚

‚

‚

‚

‚

‚
‚

‚

‚

‚

‚

‚

‚

‚

‚

‚‚

‚

‚
‚

‚

‚ ‚

‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚

‚ ‚

‚
‚

‚

‚
‚

‚‚

‚‚

‚

‚

‚‚

‚

‚

‚

‚‚

‚

‚‚

‚

‚ ‚

‚‚

‚

‚

‚

‚

‚
‚

‚

‚
‚

‚

‚ ‚

‚

‚ ‚

‚

‚‚

‚ ‚

‚

‚

‚

‚
‚

‚

‚
‚
‚

‚

‚

‚

‚

‚

‚
‚

‚

‚
‚

‚

‚

‚

‚
‚

‚
‚

‚

‚
‚

‚
‚

‚

‚

‚

‚
‚

‚

‚
‚

‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚

‚

‚

‚ ‚

‚

‚‚

‚

‚

‚ ‚

‚

‚

‚ ‚

‚

‚

‚

‚

‚

‚
‚

‚

‚
‚

‚
‚

‚
‚
‚

‚

‚
‚‚

‚‚

‚
‚
‚
‚‚‚

‚
‚
‚
‚
‚‚

‚‚

‚

‚‚‚
‚
‚
‚ ‚
‚
‚‚‚

‚

‚

‚

‚

‚
‚

‚
‚

‚

‚
‚
‚
‚

‚
‚

‚

‚ ‚

‚

‚ ‚ ‚
‚

‚
‚‚

‚
‚ ‚ ‚

‚

‚

‚

‚

‚
‚

‚
‚

‚

‚
‚
‚
‚

‚
‚

‚

‚

‚

‚

‚
‚
‚
‚

‚

‚
‚

‚
‚
‚
‚

‚

‚

‚

‚

‚

‚

‚
‚
‚
‚

‚
‚

‚

‚

‚
‚

‚

‚

‚

‚

‚

‚
‚

‚
‚

‚
‚
‚

‚

‚
‚

‚

‚ ‚

‚
‚

‚
‚ ‚ ‚

‚
‚
‚

‚
‚ ‚

‚

‚

‚
‚
‚
‚ ‚
‚
‚
‚‚‚

‚
‚
‚

‚

‚ ‚

‚

‚

‚

‚ ‚ ‚

‚

‚

‚

‚

‚ ‚

Figure 3.3: Distribution of the unknowns for discontinuous discretization on a triangular
mesh with approximation degree 0,1,2,3 and 4.
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Figure 3.4: Distribution of the unknowns for continuous discretization on a triangular mesh
with approximation degree 1,2,3 and 4.
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Figure 3.5: Memory allocation for a triangular mesh with discontinuous and continuous
discretization with an approximation degree 4. The number of squares does not depict the
pointer size.

on the cell K which is
@k

ż

K
FpUpxqq ¨∇ϕkpxqdx (3.1)

where ϕk are the finite element basis. We denote by TK the transformation that maps the
reference element K̂ onto the physical element K, and by tϕ̂ku the finite element basis on the
reference element. Then the finite element basis tϕku on the cell K is defined as

@k ϕkpxq “ ϕ̂k
`

T´1
K pxq

˘

We denote by x̂ the variables in the reference element, and we apply the variable change
x “ TKpx̂q in (3.1), which gives

ż

K
FpUpxqq ¨∇ϕkpxqdx“

ż

K̂
FpUpTKpx̂qqq ¨∇ϕk pTK px̂qq |detDTKpx̂q|dx̂

“

ż

K̂
FpUpTKpx̂qqq ¨DTKpx̂q´1∇ϕ̂kpx̂q |detDTKpx̂q|dx̂.

Last, this integral is approximated with a quadrature formula of size nqf with points x̂i and
weights ωi
ż

K
FpUpxqq ¨∇ϕkpxqdx «

nqf
ÿ

i“1
ωiFpUpTKpx̂iqqq ¨DTKpx̂iq´1∇ϕ̂kpx̂iq |detDTKpx̂iq| . (3.2)

For computing this last expression, we therefore need

‚ a finite element basis defined on the reference element ϕ̂, and the expression of the
gradient of the finite element basis.

‚ a quadrature formula defined on the reference element pωi, x̂iq,
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‚ a geometrical transformation between the reference element K̂ and the physical ele-
ment K, including the interpolation operator TK , invert of its Jacobian and the deter-
minant of the Jacobian,

‚ the definition of the physical flux F.

In AeroSol, these classes are considered as basic, in the sense that unit tests can be developed
independently from any other class within the library. For example, each quadrature formula
is implemented in one class, and all the quadrature formulae inherits from a virtual class

class QuadratureFormula::Interface {

//Get the degree of the quadrature formula
virtual unsigned int getDegree() const=0;

//Return the ith weight
virtual double omega(const unsigned int& i) const=0;

//Return the ith point
virtual Coord3 point(const unsigned int& i) const=0;

};

The virtual functions are implemented in the bottom classes. A unit test is then developed for
checking that the implemented quadrature formula is of the degree returned by the function
getDegree(), i.e. that the quadrature formula is exact for all the polynoms of degree lower or
equal to getDegree(). This unit test also checks that for triangles and tetrahedra, the formula
is symmetric with respect to the element.

In the same manner, a unit test is developed for checking that the finite element basis,
that inherits from the class

class FiniteElement::Interface {

//Fill the pointer values of the finite element basis evaluated in c
virtual void fillBasisFunction( const Coord3& c, Real* const values) const =0;

//Fill the matrix derivatives of the gradient of the finite element basis
//evaluated in c
virtual void fillBasisFunctionDerivative( const Coord3& c, Matrix& derivative) const =0;

};

is consistent. Unisolvance is checked by checking either that the basis is a Lagrange basis,
or by checking that it is an orthogonal basis for spectral basis. The function returning the
gradient of the basis functions, fillBasisFunctionDerivative is validated by checking that the
numerical derivative of fillBasisFunction matches with the result of fillBasisFunctionDerivative

on a significant number of different points of the reference element.
The validation of the classes computing the geometry are based on similar ideas as for

the finite element classes: the consistency between the function defining the interpolation
operator TK and DTK , DT´1

K and detDTK are checked by computing numerical derivatives
of TK .

Last, The validation of the model class is led with the same ideas. For example, for
a hyperbolic model, functions are defined for computing the d components of the flux, the
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normal flux, the Jacobian of the flux, the Jacobian in the normal direction, and the eigenvalues
of the Jacobian in the normal direction. Then consistency between the flux and the Jacobian
is checked by numerical derivative, and the consistency between the normal Jacobian and the
eigenvalues is checked by resorting to Lapack for computing a numerical approximation of
eigenvalues.

3.2.3 Unit tests for data management

The aim of the AeroSol library is to deal with high order continuous and discontinuous
finite element discretization. This requires to manage correctly data, including in a parallel
environment.

For continuous finite elements, the challenge consists in gathering data that may be spread
on different pointers associated to its points, edges, faces. The data management test in this
case consists in performing a loop on the cells. On each cell, the degrees of freedom are filled
with the Lagrange points of the cell, and scattered in the different pointers associated with
points, edges, faces. These pointers may be visited several times, because data of points,
faces and edges are shared between several cells. In a second loop, Lagrange points of the cell
are recomputed, and checked to match with the data of the cells. This test can also checks
the parallel memory management, by performing a synchronization of data after the first cell
loop.

For discontinuous approximations, the challenge is to perform the matching between the
right and left values of the faces of the mesh. For this, the data on the cells are initialized by
using a continuous polynomial function which degree is lower than the approximation degree,
therefore ensuring the continuity of the projection of the polynomial function. Then, a loop
on the faces is performed. Data of neighbouring cells are gathered, and interpolated on the
common face. The test consists then in checking that data on the left and right cells are
matching on the common face. This test can also be performed in parallel by performing a
synchronization of data after the initialization.

For continuous and discontinuous discretizations, another unit test consists in checking
that the interpolation or finite elements projection of any polynomial function of degree lower
or equal to the approximation degree is exact.

3.2.4 Loop nesting and choice of abstraction

AeroSol is developed in C++. This language offers two ways of doing abstraction

‚ Polymorphism. Polymorphism consists in defining a hierarchy of classes inheriting
from a virtual Interface class. The code is written using a pointer towards this Interface.
The pointer is then allocated at runtime. This implementation may allow a fast devel-
opment of a library, but the polymorphism is known to be costly at runtime because of
the overheads induced by the calls to the virtual table.

‚ Template. When using templates, the different implementations are explicitly com-
piled. The compilation time maybe large, but a faster execution is expected.

The tradeoff between these two types of abstractions is not always easy to do; our choice was
based on the nesting of the loops within a typical time loop in which (3.1) is computed at
each time step, for which the algorithm is written in algorithm 1.
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Initialize U to U0;
for iTime =0 to NTime do

for iCell =0 to NCell do
Gather data of cell iCell;
Set cell residual to 0;
for iqp =0 to NQuadraturePoints do

Compute the finite elements basis at the quadrature point iqp ;
Compute U at the quadrature point;
Compute FpUq at the quadrature point;
Compute the geometrical transformations DT´1

K and detDTK ;
Add the increment at the quadrature point iqp to the residual ;

end
Scatter data of the residual of cell iCell;

end
Add the residual to U;

end
Algorithm 1: Time loop for a spatial numerical scheme including the integral (3.1)

Polymorphism induces a small time overhead each time a pointer towards an abstract
class is used. This type of abstraction is therefore very costly when used in the most nested
loops. In algorithm 1, it is clear that polymorphism should not be used for finite elements
basis, quadrature formula, and geometrical transformations. For low order, the quadrature
points loop maybe quickly executed, so that we choose to use polymorphism only at the level
of the time loop, and not below.

Last, we clarify how the three nested loops are implemented in AeroSol: the top one
(the time loop) is implemented with polymorphism. All the time iteration classes inherits
from an abstract class TimeIterator::Interface, and is allocated at runtime. Time schemes
implemented are explicit Runge-Kutta, implicit BDF schemes, stationary linear solvers, and
stationary nonlinear solvers based on Newton method. Time iterator classes contain a pointer
towards an abstract class SpatialScheme::Interface, in which the spatial discretization (residual
and Jacobian) are computed. The memory management, and so the link with the PaMPA
library is done at this level. The cell and face loops are also performed at this level, therefore
matching with the second nested loop of algorithm 1. The third nested loop (the loop on the
quadrature points) is performed in a different type of class, called Integrator, which we detail
in the next section. The collaboration scheme between these classes and the dependencies is
summarized in Figure 3.6.
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Time iteration

Connectivity
Assembling of matrix
System inversion
Matrix-free
External library

Spatial discretization

MUMPS
UMFPACK
PaStiX
PETSc

Linear SolverGeometry
Quadrature formula
Finite element basis
Model
Numerical flux

Integrator

Redistribution
Memory allocation
Communications

PaMPA

Residual
Matrix
Matrix Inversion

Residual/Jacobian
local

Elements/Face loop

Assembling

Resolution

Figure 3.6: Main classes of the libary AeroSol and their collaboration with the PaMPA
library and with external solver libraries.

3.2.5 Integrator classes

The most general model that is supported in AeroSol reads

BtU` divxFpUq `
d
ÿ

i“1
BipUqBxiU “ divx pApUq∇Uq ` SpUq.

The discontinuous Galerkin discretization with the BR2 stabilization of the parabolic terms
reads

ÿ

KPTh

ż

K
ϕBtU´

ÿ

KPTh

ż

K

˜

FpUq∇ϕ´
d
ÿ

i“1
ϕBipUqBxiU

¸

`
ÿ

SPSi

ż

S
F̃pU,nqrrϕ ss

`
ÿ

SPSb

ż

S
F̃bpU,nqrrϕ ss “ ´

ÿ

KPTh

ż

K
ApUq∇Uq∇ϕ`

ÿ

SPSi

ż

S

  

AT pUq∇ϕ
((

rrU ss

`
ÿ

SPSi

ż

S
ttApUq∇U uu rrϕ ss `

ÿ

SPSi

ż

S
ttApUqrhprrU ss uu rrϕ ss

`
ÿ

SPSb

ż

S

  

AT pUq∇ϕ
((

rrU ssb `
ÿ

SPSb

ż

S

  

ApUq∇Ub
((

rrϕ ss

`
ÿ

SPSb

ż

S

  

ApUqrhprrU ssb
((

`
ÿ

KPTh

ż

K
ϕSpUqrrϕ ss

(3.3)

In the AeroSol library, each of the integral of the above numerical scheme has a dedicated
integrator. These integrators may depend on the model (all but the mass one) through F,
A or S, and some may depend on the numerical flux F̃. As said before, the abstraction
at this level is obtained by template. Each needed integrator is initialized on the matching
entity type (see subsection 3.2.1). During initialization, memory is allocated for storing finite
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element basis, quadrature formula, and geometrical functions. Considering (3.2), we see that
the finite element basis functions are not needed, as the functions or their gradients are
always evaluated on the quadrature points of the reference element, no matter the geometry
of the physical element is. Therefore the finite element basis informations are stored as a
pointer of size nqf ˆ ndof ˆ pdim ` 1q. Still considering (3.2), the geometrical functions are
needed because they differ from one physical element to another one, even if they are of the
same entity type (i.e. are the image of the same reference element, with same approximation
degree and curvature degree). We could have resorted to template abstraction, however if
we consider the number of possible shapes, 8, and the number of possible curvature degrees,
which we fixed to 4, this makes 32 possibilities and would have considerably slowed down the
compilation. Instead, we used another feature of C++, the function pointers: this avoids both
template and polymorphism, but lose the class features (e.g. private members of a class) of
C++, which fortunately were useless for geometrical functions. All the needed data on one
entity type (quadrature formula, finite element basis evaluated on the reference quadrature
points, and function pointers for geometrical functions) are stored in a std::map indexed by
the entity type.

3.2.6 Optimization

In the implementation presented in the previous section, the geometrical data involved in (3.2)
(detTkpxiq, DTkpxiq and its invert) are computed on each cell, and at each time step. How-
ever, if the mesh does not move, all these data are constant and can be computed once for
all. Still taking the example of (3.2), the expression to be evaluated is

nqf
ÿ

iq“1
ωiFpUpTKpx̂iqqq ¨DTKpx̂iq´1∇ϕ̂kpx̂iq |detDTKpx̂iq| .

This evaluation can be led into three steps

1. Interpolation of U on the quadrature points. This is the result of the following matrix-
matrix product

¨

˚

˝

ϕ1px̂1q . . . ϕndof px̂1q
...

...
ϕ1px̂nqf q . . . ϕndof px̂nqf q

˛

‹

‚

ˆU,

provided U is ordered such as having nvar columns and ndof lines.

2. A nonlinear step, in which FpUq is computed on all the quadrature points.

3. Projection of FpUq on the degrees of freedom. If FpUq is ordered such that having nvar
columns and nqf ˆ dim rows, then this step can also be computed as a matrix-matrix
product

P ˆ rFpUqs ,

with

Pidof ,iqfˆdim`idim “ ωiqf
“

DTKpx̂iqf q
´1∇ϕ̂idof px̂iqf q

‰

idim

ˇ

ˇdetDTKpx̂iqf q
ˇ

ˇ ,

and where rFpUqs was ordered such that its index of row is iqf ˆ dim ` idim and its
index of column is ivar.
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From an implementation point of view, the first and third step may be implemented by
resorting to BLAS library. In the second step, the evaluation of the flux shall be called nqf
times, which can be accelerated using vectorization.

These three steps can actually be encountered in all the integrals of (3.3) with

‚ A linear step in which U, ∇U or rh prrU ssq is computed at the quadrature points of the
cell or the face.

‚ A nonlinear step, in which the physical hyperbolic flux, the numerical flux or the diffusive
flux is computed at each quadrature point on what was computed in the first step.

‚ A linear step in which the flux on the quadrature points is projected on the degrees of
freedom.

An implementation can therefore be proposed in which all the geometrical data are precom-
puted. Note that this implementation is even more attractive when considering discontinuous
Galerkin methods because the unknowns are already stored contiguously by cell, so that the
first and third step can be computed by using pointer references, thus avoiding memory copies.

3.3 Some results

3.3.1 Validation results

3.3.1.1 A scalar result

The aim of this test is to quickly test the convergence order on the following one dimensional
scalar advection-diffusion problem

Btu` βBxu “ µBxxu,

on r0, 1s with β “ 3.2, µ “ 241. Dirichlet boundary conditions are imposed on the left and
on the right with up0q “ u0 “ 2 and up1q “ u1 “ 1. If β ‰ 0, the analytical solution is

pu1 ´ u0q exp pβx{µq ` u0 exp pβ{µq ´ u1
exp pβ{µq ´ 1 .

Convergence results are shown in Figure 3.7, and prove that for an approximation degree p,
the convergence order is p` 1.

3.3.1.2 Laplace equation on a ring

This case aims at assessing the usage of curved meshes with the Laplace equation. The
Laplace equation is solved on a ring delimited by the circles of radius Rint and Rext, with the
following Dirichlet boundary conditions imposed: uext on the circle r “ Rext and uint on the
circle r “ Rint. The analytical solution in polar coordinates is

puext ´ uintq logprq ` uint logpRextq ´ uext logpRintq

log
ˆ

Rext
Rint

˙ .

Convergence curves for approximation degree 0, 1 and 2 in Figure 3.8. The convergence order
obtained is respectively 1, 2 and 2 on a Q1 mesh, and 1, 2 and 3 on a Q2 mesh. This enlightens
the necessity to have a mesh curved with degree p for an approximation degree p.
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Figure 3.7: Convergence order for the one dimensional scalar advection-diffusion test case.

3.3.1.3 Poiseuille flow

In order to assess the high order for the stationary compressible Navier-Stokes system, a
compressible Poiseuille-Haagen flow is tested. The domain is r0, 1s2. Periodic boundary con-
ditions are imposed in the x direction, and isothermal wall boundary conditions are imposed
at y “ 0 and y “ 1, where the imposed temperature is uniform, equal to Tw. The aim is to
have a parabolic profile for the velocity

upx, yq “ 4ucyp1´ yqex

For achieving this, the following force is imposed

Fv “ 8µucex

as a right hand side of the momentum equation. The work of the volumic force is imposed as
the right hand side of the energy equation

Fv ¨ u “ 32u2
cµyp1´ yq.

The stationarity for the energy equation leads to a second order equation for the temperature,
which can be integrated. The flow is characterized by its Prandtl number Pr and its Mach
number Ma, and the temperature is then

T px, yq “ Tw

ˆ

1` 16PrMa2 pγ ´ 1q
3 yp1´ yq

ˆ

y2 ´ y `
1
2

˙˙
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Figure 3.8: Convergence curves for the solution of the Laplace equation on a ring. The test
is launched with approximation degrees 0, 1 and 2, on Q1 (straight) and Q2 (curved) meshes.
For approximation degree 2, the optimal order of convergence is obtained only on Q2 meshes.
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Figure 3.9: Convergence curve for the Poiseuille flow in a channel, on the velocity (left) and
temperature (right).

If we denote by ρref a reference density, then the pressure is uniform, equal to pγ´1qcvρrefTw,
and the density is equal to ρrefTw{T . The test is launched on a set of meshes of size 4 ˆ 4,
8ˆ 8, 16ˆ 16 and 32ˆ 32, with approximation degree of 0,1,2,3 and 4. Convergence curves
on the velocity and temperature are shown in Figure 3.9. The optimal order is obtained for
all the approximation degrees.

3.3.1.4 Taylor-Green vortex

This test case is classical for the assessment of turbulence decay in a tri-periodic box. Here,
we consider the version of [20], with uniform density.

The geometry is the r´πL0, πL0s
3 box, where L0 is a given length scale, with periodic

boundary conditions in all the directions. The initial flow is characterized by its Reynolds,
Mach and Prandtl number. Moreover, three adimensioning parameters are chosen, a density
ρ0, a velocity V0 and a temperature T0. In the computations, the following data are used:
V0 “ 1{π, L0 “ 1{π, ρ0 “ 1 and T0 “ 1. The viscosity is obtained from the Reynolds number

µ “
ρ0V0L0
Re

,

the reference pressure P0 is obtained from the Mach number

P0 “
ρ0V

2
0

γMa2 ,

the heat capacity is obtained by the Mach number and the reference temperature

cv “
V 2

0
Ma2γpγ ´ 1qT0

,

and the thermal diffusion coefficient is defined from the Prandtl number

κ “
µγcv
Pr

.
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Figure 3.10: Volume rendering of the z–component of the vorticity at time t “ 0 (left) and
t “ 4 (right) for the Taylor-Green vortex at Reynolds Re “ 500.

The initial density is uniform, equal to ρ0, the initial velocity is

upx, y, zq “

$

’

’

’

’

&

’

’

’

’

%

V0 sin
ˆ

x

L0

˙

cos
ˆ

y

L0

˙

cos
ˆ

z

L0

˙

´V0 cos
ˆ

x

L0

˙

sin
ˆ

y

L0

˙

cos
ˆ

z

L0

˙

0

,

and the initial pressure is

P “ P0 `
ρ0V

2
0

16

ˆ

cos
ˆ

2x
L0

˙

` cos
ˆ

2y
L0

˙˙ˆ

cos
ˆ

2z
L0

˙

` 2
˙

.

The test is launched with Re “ 500, Pr “ 0.71 and Ma “ 0.1. The volume rendering of
the isovalues of the z–component of the vorticity are shown in Figure 3.10 at time t “ 0 and
t “ 4. They show that large structures are transmitted to small scales and last, dissipated.
The time evolution of the volumic average of the kinetic energy and enstrophy are shown in
Figure 3.11, and compared with the reference solution of [20]. The DG2 solution is not able
to render the peak of enstrophy, whereas the DG3 solution matches well with the reference
solution. These results are in agreement with the discontinuous Galerkin results of [20].

3.3.2 Performances

We are now interested in the performances of the library. We compare the performances with
and without storing the geometry, then do some scalability tests.

3.3.2.1 Optimized and non-optimized comparisons

In subsection 3.2.6, two algorithmic versions were proposed for the discontinuous Galerkin
method: one where the geometrical data are recomputed, and the other one in which inter-
polation and projection operators are stored. In this section, the two versions are compared
in dimension 2 and 3, and with different approximation degree.

In two dimensions, the test case is a two dimensional version of the Taylor-Green vortex,
with periodic boundary conditions in all the directions, and with a 20 ˆ 20 quadrangular
mesh. In three dimensions, the test case is the Taylor-Green vortex with a 3 ˆ 3 ˆ 3 mesh.
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Figure 3.11: Results obtained with the Taylor-Green Vortex at Reynolds 500. Time evolu-
tion of the volumic average kinetic energy (left) and time evolution of the volumic average
enstrophy (right). Results obtained with a DG3 approximation on a 243 mesh and with a
DG2 approximation on a 323 mesh are compared with a reference solution obtained with a
pseudo-spectral code (PS) obtained in [20].

For the two dimensional and three dimensional test case, and for a given approximation
degree, the optimized and non optimized versions of the code are used with the same number
of iterations. The code is instrumented so as to compute the time spent in the residual
computation. For each dimension and approximation degree, the test is launched 100 times
and the residual computation time is averaged. The ratio between the optimized version and
the non optimized version is shown in Figure 3.12. The version with geometry storing is
between 4 and 25 times faster than the version without storing the geometry. Note however
that the version with geometry storing implies more data movement, and a thorough study
including a cache memory usage should be done for obtaining a fair comparison.

3.3.2.2 Parallel performances

In this section, some performance results obtained in parallel are reported
The first test is a scalability test done within the CEMRACS project Colargol [6],

which aimed at comparing performances of AeroSol with the discontinuous Galerkin code
developed at Onera. The test is a two dimensional vortex advection, but performed with a
three dimensional mesh (one layer of hexaedra). This is a weak scalability test, in which each
MPI process has a piece of 10ˆ10 cells. Results are shown in Figure 3.13. A good scalability
is observed in general (over 60%). For lower orders, the scalability is weaker, showing that
when the number of process increases, the computational intensity is not high enough for
overlapping the overhead of the communications (induced by the latency of the network, for
example). The scalability is nearly perfect at order 5 (DG4).

The second test is a load balancing test done for one computation of the Impact-ae
project (see next section for details about this project). The geometry is typical of what
can be challenging in aerodynamics: the computation includes boundary layers and channel-
like geometries which can be meshed with hexaedra, but also some parts that can hardly be
meshed with hexaedra. In this case, tetrahedral meshes can be used, and pyramids and prisms
are also needed as transitional elements between hexaedra and tetrahedra. This induces some
strong disparities in the computational cost which is hard to estimate: for example, hexaedra
have much more degrees of freedom, but the number of quadrature points grows faster for
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Figure 3.12: Ratio of the time spent in the residual computation between the non optimized
and optimized version, on a quadrangular mesh in 2d and on an hexaedral mesh in 3d.
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Figure 3.13: Results for the weak scalability test. Each MPI process owns 10ˆ 10 cells, and
the test is performed with 1 to 1024 processors. Note that the Y axis begins at 60% efficiency.
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Figure 3.14: Computational cost without (green) and with (red) load balancing on 1024
process. Without load balancing, the computational cost of each process is between 4 and
25, whereas with load balancing, the computational cost is between 10 and 12.

tetrahedra. As a consequence, if the cells are distributed regardless their shape, a MPI process
which includes a lot of hexaedra will have a higher workload than a process which has a lot
of tetrahedra. This heterogeneity problem is addressed in two steps. First, a computation
is done, in which the work distribution is made uniformly. The time for the cell loop t is
registered. Then a linear model is guessed on the computational cost:

t “ NTettTet `NHextHex `NPyrtPyr `NPritPri,

where NTet, NHex, NPyr and NPri is the local number of tetrahedra, hexaedra, pyramids, and
prisms, and t‹ is the computational time on one shape of type ‹. A linear regression is done,
which allows to compute the t‹. The following computing time for each shape were found

tTet tPyr tPri tHex
3.08 8.87 9.99 29.31

These times were then used as weight on the cells during a second mesh partitioning step.
In Figure 3.14, the computational cost by MPI processor is shown, with, and without the
weighted mesh partitioning. The weighted partitioning shows a much better load balance
than the one without weight.

3.4 Results within the IMPACT-AE project

3.4.1 Presentation of the project

The library was used within the Impact-AE project1, a European project I was managing
for Pau University, which was funded at the 2010 call of the 7th framework program. The
name of the project is an acronym meaning Intelligent design Methodologies for low PollutAnt
CombusTors for Aero-Engines.

1https://cordis.europa.eu/project/id/265586
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Figure 3.15: Left: jet in cross flow configuration without skidding. A cylindrical hole links
the lower and upper channel. Each of the channel includes a flow (mean and secondary flow)
aligned with the hole direction. Right: the most right hole has a skidding: the mean and
secondary flows are still aligned, but the hole direction is no more aligned with these flows
with an angle β.

Within this project, Pau University was in charge of generating a DNS database of a jet
in cross flow, a flow configuration typical of effusion cooling of combustion chamber walls.
For ensuring the least deterioration of the walls of a combustion chamber, their temperature
should be kept under a given threshold. Isolation of the walls from the heat of the combustion
is achieved by effusion cooling. Effusion cooling consists in piercing small holes in combustion
chamber walls; the pressure difference between inside and outside the combustion chamber
induces a suction inside the combustion chamber, leading to a jet of cool air isolating the
wall. Flaring and pattern of the holes have a major role in the efficiency of effusion cooling.
The configuration retained within the Impact-ae project was a single jet in cross flow with
a moderate Reynolds number; the first geometry was with a hole aligned with the mean
flow, and the second with a 90˝ skidding between the hole direction and the mean flow.
These configurations are illustrated in Figure 3.15. Two flow conditions were considered: the
first with the same temperature in the upper and lower channel, and the second one more
representative of the effusion cooling, with a temperature of 300K in the lower channel and
a temperature of 1200K in the upper channel.

3.4.2 Inlet boundary conditions

In the flow we want to compute, the upper and lower channel are turbulent. Reaching a fully
developed turbulent flow may require a large upstream flow, which would strongly increase
the computational cost. For avoiding this, one can resort to a precursor computation [94] or
a recycling strategy [88]. Still, a precursor computation is costly from a computational and
storage point of view, and recycling strategies are better adapted to simpler geometries.

We finally choose the Synthetic Eddy Method (SEM) of [108], an extension of the method
proposed by [72]. This method consists in injecting shape function that are close to Navier-
Stokes solutions, and which statistics match with the statistics that should be imposed. De-
tails on the generation of a turbulent signal were the aim of one deliverable of the project
[114], and can be found in the PhD thesis of Simon Delmas [34, Chapter 4.2.2].

We focus now on how the imposed Reynolds stress to be imposed as inlet boundary
condition was determined. The inlet Reynolds stress is generated as follows. First, the axial
velocity and the Rxx component of the Reynolds stress are measured by using the LDV
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Figure 3.16: Comparison of the axial velocity and the first component of the Reynolds
number in the channel obtained with the Saturn code and the LDV measurements done
with the Maveric experimental bench.

method on the Maveric experimental bench on several distances from the wall. Then a
RANS computation is led with the Saturn code. The computational parameters (e.g. the
turbulent kinetic energy k) are iteratively changed by targeting the axial velocity shape, the
turbulent kinetic energy on the axis and the position of the peak of energy with respect
to the wall. After convergence of this iterative procedure, the results shown in Figure 3.16
are obtained. The other components of the Reynolds stress are then given by the Saturn
computations. With this method, a complete inlet Reynolds stress was obtained, which is
such that the axial velocity and the Rxx component of the Reynolds stress are matching with
the experimental data.

3.4.3 Computational strategy

The mesh is chosen so as to ensure that the typical mesh size is around 5y` (lower than
in the turbulent channel computations [77, 26]). This results in a mesh with around 30000
cells. With a DG2 approximation, this gives 800 000 approximation points, and so 4 millions
unknowns. For the computation of the different cases, a grant of 8 millions of computing
hours was obtained on the BlueGene /Q cluster Turing. Due to the particular structure of
this machine (slow cores with low consumption, and topology of the nodes), the computation
had to be performed on at least 1024 cores, which was the upper limit in our case, for having
enough cells per process for ensuring overlap of communication by computation. Then the
computation is led with the following steps

1. Mesh partitioning. This stage consists in reading the mesh and partitioning it for
balancing the load between the different cores. This step is costly in memory, so that it
must be done on 2048 cores (but still with 1024 MPI process) for increasing the available
memory on each core. An example of mesh partitioned is shown in Figure 3.17.
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Figure 3.17: Partitioning of the mesh used for the case without giration on 1024 nodes.

2. Initialization of the computation. The domain is initialized as follows: in the
whole domain, the density is set to the reference density. In the upper channel, a
velocity uniform in x and y, and following the measured profile in z is set. The same
kind of initialization is done in the bottom channel. The velocity is set to 0 in the hole.
The pressure is set uniform, equal to the reference pressure in each channel. It follows
a linear law in the hole.

3. One convective time with a DG1 discretization. A first convective time tc is
made, for eliminating the transitory phenomena induced by initial conditions. It is
made with a DG1 discretization, for dissipating quickly the spurious phenomena, and
also for lowering the computational cost of this step. A jet is observed at the end of
this computation, but as the numerical method is very dissipative, the jet follows a
trajectory close of the wall, which does not match with experiments, as can be observed
in Figure 3.18 (left).

4. One high order convective time step. Once the transitory effects have been evacu-
ated, the simulation is restarted from the solution obtained in the previous step, and a
simulation is led with a third order scheme. As the numerical scheme is less dissipative,
the jet is expanding in the whole upper channel, see Figure 3.18 (right).

5. One convective time with the SEM. The aim of this step is to leave the turbulence
develop in both of the channels.

6. Statistics collection. In the whole domain, probes are positioned in order to register
all the instantaneous variables. As for the LDV measures, a spectrum and the proba-
bility density function can be computed. The positions of the probes are detailed in the
Figure 3.22.

The numerical strategy explained was used for the isothermal configuration. For the
non-isothermal configuration, the solution is restarted after step 3. Then the top channel is
progressively heated up for reaching 1200K, see Figure 3.19 (left). This step is performed
with a DG1 numerical scheme. Then the steps 4, 5 and 6 are done. One high order result
after heating is shown in Figure 3.19 (right).
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Figure 3.18: Results obtained with the jet in cross flow configuration. Left: isovelocities
obtained for DG1 computations. Right: result obtained with the DG2 numerical scheme.

Figure 3.19: Jet in cross flow with a hot upper channel. Left: heating of the upper channel
with a DG1 scheme. Right: flow obtained after switching to high order (DG2).
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Figure 3.20: Jet trajectory in the case without skidding. The obtained position of the jet is
compared with experimental results and with the model of [90].

3.4.4 Results

We give here just some results, all the other results can be found in [115, 116]. In Figure 3.20,
the trajectory of the isothermal jet without skidding is compared with experimental results
and with a model developed in [90]. A good matching with the model and with the experi-
mental result is observed. In Figure 3.22, the position of the probes in the case without jet
skidding is shown, and the high order statistics are shown for enlightning that the flow is
statistically converged. In Figure 3.21, a visualization of a non isothermal jet in cross flow
with skidding is shown.

3.5 Preliminary results on tasked based algorithms with a run-
time scheduler

As explained in Figure 3.1, the aim of the AeroSol library is to address heterogeneous
architectures (NUMA effects, host/accelerators configurations) with the runtime scheduler
StarPU. For the moment, the library is parallelized with distributed memory with MPI. The
library PaMPA is in charge of the memory distribution, overlaps computing, and point-to-
point communications. Using a runtime scheduler may be very intrusive in a code. Moreover
addressing parallelism (even with distributed memory or with coarse grain OpenMP) requires
to partition the mesh and to manage overlaps. This may be time consuming as far as the
development cycles are concerned, even more when addressing unstructured hybrid meshes.
This is why we decided to begin to test the runtime StarPU on a structured mock-up code
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Figure 3.21: Non isothermal jet in cross flow with a jet skidding. The jet is identified as an
isovelocity in grey, surrounded with a red isotemperature at 1100K.

called Hodins. This work was done in collaboration with the authors of [44].

3.5.1 Task based programming

As far as computational methods based on meshes are concerned, an usual way to consider
parallelisation consists in working on a partitioned mesh. The computation of the residual on
the interior of each part of the mesh can then be performed in parallel. The remaining part
of the computation consists in communicating or copying the data on borders of the parts,
and computing the residual there. The execution order can be optimized for ensuring that
with a sufficient computational intensity, the communications or copies can be overlapped by
computation. Also, the code defines explicitly in which order the different parts of the code
are executed (this is called "static scheduling"), and the parts of the mesh are mapped on a
given core of a node.

However imbalances may be observed at execution. This may come from the computation
itself, which may be heterogeneous (see Figure 3.14 of subsubsection 3.3.2.2), but also on the
mapping: for example, a MPI communication is faster between two cores of the same socket
than between two computational nodes if these nodes are far in the topology of the cluster
network. In the same manner, a computation is usually faster on an accelerator, but the
memory transfer overhead between the master node and its accelerator should also be taken
into account. All of this can be optimized if the memory movements pattern of the code
is known, and the exact characteristics of the machine are known. However, this problem
becomes more and more complex because of the higher complexity of the computational
nodes (NUMA effects, accelerators). Moreover, this optimization should be performed on
each specific architecture. Last, oversubscription or undersubscription of computational cores
may occur for example in postprocessing or I/O phases.

An alternative of this static scheduling is given by task based programming: instead of
mapping work explicitly on computational cores and explicitly give the execution order and
mapping, the program is expressed in term of tasks. For keeping a consistent execution, and
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Figure 3.22: Top Left: position of the probes in the computational domain, depicted with
blue bullets and red stars. Other figures: The red stars depict the probes which statistics
are shown in the remaining part of this figure. On these pictures, the skewness and flatness
of the time distribution of the velocity are shown. These statistics are nearly flat at time 2,
which prove that the flow is statistically converged.
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avoiding concurrent memory access, dependencies on the tasks must be expressed. Tasks and
tasks dependencies give a direct acyclic graph that is given to a scheduler. The scheduler
is then in charge of mapping the work on the available resources. Depending on the sched-
ulers, and on the a priori knowledge of the programmer, the scheduling may be optimized.
Resorting to a scheduler automatically reduces the oversubscribing or undersubscribing of
resources. Over the last ten years, task programming has gained a strong popularity in the
high performance community: it is for example the basic concept of Intel TBB, and is also
a more and more important concept in OpenMP.

3.5.2 The runtime scheduler StarPU

The runtime StarPU has been developed for about ten years in the Runtime and then
Storm Inria teams. In StarPU, a task is defined from a codelet which includes computing
kernels. These codelets are applied to a set of data handles. More specifically:

‚ data handles are the memory managers.

‚ kernels are the functions that will be executed on a dedicated architecture. This is
where the classical code, with loops, conditions, flux computation are written.

‚ codelets are a set kernels which may be applied to a set of data handles with explicit
Read, Write or Read and Write properties. Several kernels may be defined: for example
if the codelet is to be executed on both a CPU and a GPU, then the codelet should at
least include one kernel written in C, and another written in CUDA or OpenCL.

Data dependencies can be given explicitly. It can also be given implicitly by defining Read
Only, Write Only or Read-and-Write properties on data handles. From this, StarPU is able
to build the graph of tasks, and to schedule it on available computational resources. Also,
StarPU is able to execute some work on accelerators provided the appropriate kernel was
defined. Data transfers between a node and its accelerator are done by StarPU.

3.5.3 Implementation

In this section, we give an overview on what are the codelets, tasks and pointers defined for
a finite volume code. A classical way of parallelizing the computation of the residual of a one
dimensional finite volume scheme is shown in Figure 3.23.

For expressing the algorithm with StarPU, the mesh is partitioned into N parts. We
define the data handles as

‚ ui (1 ď i ď N), the data of the vector u on the part i,

‚ fi (1 ď i ď N), the data of the residual vector f on the part i,

‚ uOvp,ji , the data needed for computing the residual at the border of the part i which
comes from the data of the jth part.

Then the following codelets are defined

‚ CopyOverlaps. This codelet takes a local uj as a read only data handle and copies
the needed values in a write only uOvp,j‹ ,
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Sequential algorithm Partitioned algorithm with overlaps

Figure 3.23: Sequential and partitioned algorithm with overlaps on a one dimensional 10
cells mesh. The curved solid arrows represent a flux computation, and dashed lines represent
a copy. Partitions are represented with colors (blue for one partition and red for the other
one). Additional overlaps buffers are represented with light colors.

‚ InternalResidual. This codelet takes a local ui as a read only data handle and com-
putes the internal residual in fi,

‚ BorderResidual. This codelet takes a local ui as a read only data handle, and all the
uOvp,‹i and computes the border residual in the write only fi,

‚ update. This codelet takes a local ui as a read and write data handle and computes
the new ui by using the read only fi.

From the above codelet and data handles definitions, the tasks for computing the residual
on a one dimensional mesh with 10 cells is shown in Figure 3.24. Beyond the fact that the
blue and red InternalResidual and BorderResidual can be executed in parallel, we can easily
deduce the following (even if this is automatically taken in charge by StarPU):

‚ copyOverlaps and InternalResidual can be executed in parallel, because they do not
write into the same data handles.

‚ InternalResidual and BorderResidual cannot be executed in parallel because they write
in the same data handles.

Note that the choice of data handles is of paramount importance for ensuring a good potential
of parallel execution. If we suppose that in Figure 3.23, ui and uOvp,ji are a single data handle,
this jeopardizes the parallel execution of copyOverlaps and InternalResidual, because ui would
then be R for InternalResidual, and W for copyOverlaps. Once implemented, the execution
graph output by StarPU for a finite volume code with a mesh partitioned into two pieces is
depicted in Figure 3.25.

Last, we remark that using a runtime scheduler is not free. Before launching a task, some
data management and task scheduling is performed, leading to a time overhead each time a
task is launched. Scalability can therefore be jeopardized by this overhead if the launching
task time overhead is not enough smaller than the average duration of a task, see Figure 3.26.
From this figure, we can state for example that for ensuring good scalability on a 2 dodeca-core
Haswell Intel Xeon E5-2680, tasks should be larger than 64µs if only 12 cores are used, and
larger than 256µs if the full node is used. It is therefore necessary to find a balance between
having a lot of tasks, which gives more flexibility to the scheduler for parallel executions, and
not having too small tasks, for ensuring scalability.
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Figure 3.24: Tasks during the computation of one time step of the finite volume method with
a one dimensional mesh with 10 cells and partitioned into two parts. Each picture illustrates
a codelet applied to two sets of data handles, and so two tasks. Data handles with only R
are Read-Only, with W are Write-Only, and with R and W are Read-and-Write.
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Figure 3.25: Task diagram ouput for one time step of a finite volume scheme with a mesh
partitioned into two pieces.
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Figure 3.26: Task size overhead with the eager scheduler: scalability results obtained with
duration of tasks varying between 4 and 4096µs on two different types of nodes. Left: 2
dodeca-core Haswell Intel Xeon E5-2680. Right: Xeon Phi KNL.

Figure 3.27: Strong scaling with the eager scheduler: scalability results obtained on two
different architectures with a number of subdomain NPart varying from 4 to 1282.

3.5.4 Results

We put here only two results, the others (including automatic offloading to accelerators) can
be found in [44].

The first result we show is a strong scalability result obtained with a two dimensional test
case. We consider a mesh of 1024 ˆ 1024 cells, which is divided into 1, 22, . . . 1282 parts. In
Figure 3.27, results obtained on a 2 dodeca-core Haswell Intel Xeon E5-2680 and a Xeon Phi
KNL are shown. The previous remark on task size overhead is very clear here, because an
optimal sclability is obtained on the Haswell node with 64 parts: with 16 parts, there is too
few parallelism, and with 256, the tasks are too short compared with the task size overhead.
A result we did not expect but that can be considered as a strong benefit induced by task
based programming is the ability to scale on 5 cores with a mesh partitioned into 4 parts
on the Haswell node, and to scale on 20 cores on the KNL node with a mesh partitioned
into 16 parts. This kind of surprising result could of course also be obtained with classical
programming, but we consider the code development time much cheaper with task based
programming.
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Output 1

Output 2

Output 3

Output 4

Figure 3.28: Gantt chart for 60 time iterations of the finite volume scheme on two cores with
an output every 20 iterations.

The second result we show is an example of implementation of a two phase I/O algorithm:
in order to avoid interaction between too many cores and the filesystem, which may burden
the whole computation, it may be faster to reduce data on a smaller set of cores which are
then in charge of performing I/O. Task based implementation on a single node with only one
core in charge of output is detailed in [44], and an example of Gantt-chart obtained on two
cores is shown in Figure 3.28. At the beginning of the computation, the two cores are involved
in the computation. The Gantt-chart shows that when an output is done, a core is allocated
to it. The computation keeps on on a single core until the two cores are available again.

3.6 Conclusion and prospects concerning the AeroSol library

In this chapter, the AeroSol library was presented. Its design and performances were
exposed, and it was proven to be able to address challenging flows at large scale such as the
ones that were computed within the Impact-AE project. Some preliminary results obtained
with the runtime scheduler StarPU on a mock-up code were also exposed.

The generic features of AeroSol are:

‚ It is high order: It can be theoretically any order of accuracy, but the finite element
basis, and quadrature formula are implemented for having up to a fifth order of accuracy.

‚ It can work with hybrid and curvilinear meshes: AeroSol can deal with up to fifth
order conformal meshes composed of lines, triangles, quadrangles, tetrahedra, hexaedra,
prism, and pyramids.

‚ It can deal with continuous and discontinuous discretization.

Strong emphasis have been put on:

Its development environment. For allowing a good collaborative work and a functional
library, modern collaborative tools are used for developing our software. This includes
the active use of a repository, the use of CMake for the compilation, the constant devel-
opment of unitary and functional tests for all the parts of the library (using CTest), and
the use of the continuous integration tool Jenkins for testing the different configurations
of AeroSol and its dependencies.

Its genericity. A lot of classes are common to all the discretization types, for example
classes concerning I/O, finite element functions, quadrature, geometry, time integration,
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linear solver, models and data management with PaMPA. Adding simple features (e.g.
models, numerical flux, finite element basis or quadrature formula) can be done easily
by writing the class, testing it with the dedicated unitary test, and declaring its use
in a single method of a single class of the code. The library is able to deal with
generic nonlinear advection-diffusion-reaction problems, with possibly non conservative
hyperbolic flux. The implemented models currently include Euler and Navier-Stokes
systems, diphasic Euler system, linear Wave system, barotropic Euler system, Burgers
equation, and linear advection-diffusion equation.

Its efficiency. Modularity is achieved by means of template abstraction for keeping good
performances. Dedicated efficient implementation, based on the data locality of the
discontinuous Galerkin method have been developed. As far as parallelism is concerned,
point-to-point communications are used, external parallel linear solvers are used, and
the HDF5 library allows for parallel I/O. The library was tested and ported on several
clusters, and a good scalability was obtained above 1 000 cores.

The main challenges we want to address in the next years are:

Computing efficiently at large scale on heterogeneous architectures. If some of the
current supercomputer technologies can be addressed with MPI, the trend of the HPC
machines is to include accelerators; for example, two of the three main supercomputer
in France include accelerators: the Irene cluster at CEA includes KNL, whereas one
partition of the the Jean Zay cluster at IDRIS includes NVidia TESLA. Even if no
accelerator is considered, the memory hierarchy on the computing nodes is more and
more complex, making the optimal static scheduling a nearly intractable problem. In
this case, the MPI technology should be supplemented with another one (MPI+X), but
there is no agreement on who should be X: it may be OpenMP, OpenACC or any
other runtime scheduler. Due to different boundary conditions, different cell shapes
used in the mesh, the computations we are doing are essentially heterogeneous. We
believe that runtime schedulers are an attractive solution for addressing these heteroge-
neous computations on heterogeneous machines [8, 27, 14]. The encouraging results we
obtained in shared memory with finite volume schemes are currently being extended to
high order discontinuous Galerkin methods by Sangeeth Simon, who began his postdoc
on the 1st of July in our team. This work is also done in collaboration with Jonathan
Jung and Matthieu Haefele.

Mitigating I/O cost at large scale. Beyond computing, what we expect from a CFD
code is to produce usable (and useful) data: statistics if turbulent computations are
performed, lift and drag coefficients, etc... For low scale computations, it is possible to
store the full solution in time and to postpone the postprocessing, but the huge size
of the full solution on large scale computations jeopardizes this strategy. Moreover,
the ratio between computational capabilities and I/O bandwidth has been constantly
increasing over the last years. This naturally leads to consider in situ or in transit
postprocessing for minimizing I/O size. Several libraries have been developed over the
last years: pdwfs2, pdi3, including its plugin for flowvr4. For the moment, we are

2https://github.com/cea-hpc/pdwfs
3https://pdi.julien-bigot.fr/master/index.html
4http://flowvr.sourceforge.net/

100

https://github.com/cea-hpc/pdwfs
https://pdi.julien-bigot.fr/master/index.html
http://flowvr.sourceforge.net/


3.6 Conclusion and prospects concerning the AeroSol library

testing these tools, for choosing the best match with our problems, by also considering
intrusiveness in our library. This work is done in collaboration with Matthieu Haefele.

Implementing scalable and efficient implicit methods at large scale. If the paral-
lelization algorithm for explicit methods is easy, addressing implicit methods is much
more complicated. As the compressible Navier-Stokes system is fully nonlinear, in-
tegrating this system implicitly requires to linearize it (with the Newton method for
example), and then to solve a serie of linear systems. For the moment, the strategy in
the AeroSol library consists in assembling the Jacobian, and solving the linear systems
with an external library. Beyond the computational cost of the system resolution, the
memory footprint of the matrix for high order methods becomes very large when deal-
ing with three dimensional computations. A large memory bandwidth is also required
when assembling the matrix. This naturally leads to considering Jacobian free methods.
This kind of method was successfully used with Krylov methods[80]. However, Krylov
methods are known for converging slowly if the system is ill–conditioned, which is the
case for example when low Mach number flows are considered. For accelerating the
convergence, preconditioning can be used. For this, multigrid preconditioning has the
following benefits: if geometrically aggregated multigrid method is used, the method
can still be Jacobian free, and moreover, multigrid preconditioning theoretically scales
linearly with respect to the number of unknowns. Aggregation efficiency, based on the
damping of the Fourier modes, was studied in [143] for discontinuous Galerkin methods.
This kind of study could be extended to nonlinear system, in order to build an efficient
nonlinear solver that would be both scalable and Jacobian free. This solver would then
benefit from the optimization of the residual computation proposed in the beginning of
this list of challenges. This work was already addressed during the Marsu project, by
implementing a method based on [11], but has been stucked since the mesh aggregation
feature disappeared in the last versions of PaMPA.

Disseminate the library towards coastal engineering community. For four years,
the Uhaina project has been developed in order to built an operational open source
code gathering the last development in term of modeling and high order numerical
approximation of Green-Naghdi system [46]. The Uhaina code can be seen as a plugin
of AeroSol: some models and numerical methods are specifically developed for this
application, but the code relies on AeroSol for parallel memory management, high
order aspects, and I/O.

Extend the library to other high order numerical methods. The AeroSol library
is able to manage both continuous and discontinuous finite elements methods. The
memory is managed in such a flexible way that it can be easily extended to other
high order numerical methods. For example, cubature-based continuous finite element
methods are currently being implemented, and we will also consider using hybridizable
discontinuous Galerkin methods for solving the elliptic step of the Green-Naghdi system
within the Uhaina project.
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Chapter 4
Work done during my leave at NIA

In the beginning of 2017, I was invited by Alireza Mazaheri (NASA Langley) for working with
him on numerical problems related with reentry problems in a broad sense. Reentry problem
happens either on military applications, or in the return to earth phase of a manned flight.
During this phase in which the object is basically falling at high velocity, the spacecraft is
inside a flow with a large Mach number. A detached shock is in front of the object, and the
object is submitted to a large heat flux. The following problems were addressed: for reaching
a high accuracy in the fluxes, a first order formulation of the Navier-Stokes system was
searched, in which the fluxes are considered as additional unknowns. This work is detailed
in section 4.1, and submitted in [118]. Another aspect of flows in reentry problems was
addressed: the stabilization of high order methods with strong shocks. This was addressed
by considering compact WENO limiters, which are also able to ensure the positivity of the
density and pressure. This is detailed in section 4.2, and was published in [93]. In this chapter,
each section has its own conclusion, the two topics tackled being strongly independent.

4.1 First order hyperbolic formulation for Navier-Stokes equa-
tions

4.1.1 Introduction

This topic was driven by previous work of Alireza [91], in which a numerical scheme for a
scalar advection-diffusion problem was derived by using a first order hyperbolic formulation
of the equation. The basic ideas can be understood in the following one dimensional scalar
advection–diffusion equation

Btu` cBxu “ νBxxu (4.1)

with ν P R‹` and c P R. In [18, 101], it was remarked that the regular stationary solutions of
(4.1) are formally equal to the regular stationary solutions of the following system

Bτ

ˆ

u
v

˙

`

¨

˝

c ´ν

´
1
Tu

0

˛

‚Bx

ˆ

u
v

˙

“

˜

0
´
v

Tu

¸

(4.2)

where Tu is a relaxation parameter. It is straightforward to check that the first-order part of
(4.2) is a hyperbolic system.
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Considering the approximation of (4.2) instead of (4.1) may appear as attractive for the
following reasons

‚ Ensuring consistency between diffusion and advection. Often, discretizations
of (4.2) are performed by considering on one hand the advection discretization and on
the other hand, the diffusion approximation. This may lead to a nonuniform accuracy
of approximations, see for example [104], in which a nonuniform accuracy with fluctu-
ating/Galerkin scheme is shown. Using (4.2) may allow to have a unified view of the
discretization of advection and diffusion terms, see for example [1] for an application to
diffusive equations of residual distribution schemes originally designed for advection.

‚ Get an accurate representation of gradients. In some applications the interesting
predictive quantities are based on gradients (for example, the heat flux for the reen-
try problem). An accurate discretization for (4.1) is not necessarily accurate for the
gradients, whereas a scheme based on (4.2), where the gradients are part of the un-
knowns, should be accurate also for gradients, see e.g., [92] for a discontinuous Galerkin
approximation that is also accurate for gradients.

‚ Relax the stiffness of the system. By tuning the relaxation parameter Tu of (4.2),
it is possible to get a well-conditioned system [101], where the conditioning is Op1{hq
instead of Op1{h2q, therefore leading to a Op1{hq instead of Op1{h2q number of time
step for reaching convergence with classical iterative approach (Jacobi, Gauss-Seidel)
for solving the linear system.

‚ Derive boundary conditions. In [43], a first-order formulation of the isothermal
Navier-Stokes equations was used for deriving boundary conditions.

However, extending the formulation (4.2) for a scalar equation to a nonlinear system is not
straightforward. For example, if the Navier-Stokes system is considered, the aim is to sub-
stitute the terms of the diffusive tensor by additional unknowns. But even if any choice of
combination of the tensor variables can lead to a system that includes only first order deriva-
tives, it is not sure that the system is hyperbolic. We indeed proved in [118] that some of the
so-called hyperbolic formulations of the Navier-Stokes system [103, 102] are not hyperbolic.

In the meanwhile, Ilya Peshkov and collaborators had successfully proposed some hy-
perbolic formulations for Navier-Stokes systems [119, 41, 40]. This work is rather physically
inspired; for example, the relaxation times that naturally appear in the first order formulation
(as in (4.2))are calibrated for ensuring that the time dependent equations are still consistent
with a fluid behavior. Our objective is slightly different: we just aim at getting a hyperbolic
formulation whose stationary solutions are consistent with the stationary solutions of the sta-
tionary system. Also, in the spirit of the work of Nishikawa [101, 103, 102], we aim at using
the relaxation times for relaxing the numerical stiffness of the system, and this is why we will
look for formulations including several relaxation times in order to maximize the number of
degrees of freedom which may be used for relaxing the stiffness of the system. Last, we aim
at having a minimal number of additional variables and equations.
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4.1.2 The scalar case

This case is presented just in order to understand the main issues and the strategy we will
use. We are interested in the following nonlinear advection-diffusion equation

Btu` divxfpuq “ divxpApuq∇uq (4.3)

where u P R ÞÑ fpuq P Rd and u P R ÞÑ Apuq PMd,dpRq are regular, and Apuq is a symmetric
nonnegative matrix for all u. Then the regular stationary solutions of (4.3) are also stationary
solutions of the following system

$

&

%

Bτu` divxfpuq ´ divxv “ 0
Bτv´

1
Tu

Apuq∇u “ ´ v
Tu

(4.4)

We aim at proving that (4.4) is hyperbolic. We can then gradually deal with the following
cases

A is strictly nonnegative. In this case, the matrix
¨

˝

1
Tu

0
0 A´1puq

˛

‚

is a symmetrizer of (4.4), so that (4.4) is hyperbolic. However, this does not hold if A
is only nonnegative.

A is nonnegative. In this case, only a part of the matrix A must be chosen as additional
variables. Existence of a matrix P , independent of u can be proven, such that

Apuq “ P T
ˆ

0d´r,d´r 0d´r,r
0r,d´r Āpuq

˙

P

where Āpuq is the rˆ r symmetric, strictly nonnegative matrix of the endomorphism of
Apuq induced on the image of Apuq. We denote by P̄ the r last rows of P . Then the
following system

$

&

%

Bτu` divxfpuq ´ divxpP̄
Tvq “ 0

Bτv´
1
Tu

ĀpuqP̄∇u “ ´ v
Tu

can be proven to be symmetrizable.

Multiple relaxation times. A formulation involving several relaxation times can be ob-
tained if we additionally suppose that the image of Apuq can be decomposed into k
spaces Vi, stable by Apuq, which do not depend on u

ImpApuqq “
k
à

j“1
Vj .

Then, an orthonormal matrix P exists such that

A “ P T

¨

˚

˚

˚

˚

˝

0 0 . . . 0

0 Ā1puq
. . . ...

... . . . . . . 0
0 . . . 0 Ākpuq

˛

‹

‹

‹

‹

‚

P (4.5)
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where all the Āi are symmetric. Denoting by P̄i the rows of P which indices are matching
with the indices of the block Āi in (4.5). Then the following system

$

’

’

&

’

’

%

Bτu` divxfpuq ´
k
ÿ

i“1
divx

`

P̄ Ti vi
˘

“ 0

Bτvi ´
1
Ti
ĀipuqP̄i∇u “ ´

vi
Ti

@i “ 1 . . . k

can be proven to be symmetrizable.

4.1.3 System case

We are now interested in the following system

BtU` divxFpUq “ divx pApUq∇Uq (4.6)

We aim at finding a hyperbolic formulation, and for proving hyperbolicity, we would like to
prove symmetrizability. In the system case, the diffusive tensor is not symmetric in general:
for example, the diffusive tensor of the Navier-Stokes system expressed in temperature and
velocity is not symmetric. We also must be careful with the advection part, which is an
additional difficulty with respect to the scalar case.

Relying on results of [136, 137], and supposing that the system is equipped with an entropy,
the following set of variables was chosen

‚ for the non dissipative equations (e.g. mass equation for the Navier-Stokes system),
keep the conservative variable,

‚ replace all the other variables by entropic variables.

This change of variables allows to make appear several symmetric matrices in the system:
in front of the time derivative, the matrix of the variable change is symmetric; the matrices
that appear in the advection part are also symmetric according to [136, 137]. Moreover, in
the applications we are addressing, the diffusive tensor is also symmetric. The general case is
detailed in [118], and basically follows the steps of the scalar case: full rank diffusive tensor,
degenerate diffusive tensor, and multiple relaxation times. We give here only the formulations
found in two important cases

The isothermal Navier-Stokes system .
"

Btρ` divxpρuq “ 0
Btpρuq ` divx pρub u` P Idq “ divxτ

(4.7)

where ρ is the density, u is the velocity. The pressure P is a function of the density,
such that P 1pρq ą 0, and the diffusive tensor is

τ i,j “ µ
`

Bxjui ` Bxiuj
˘

` λδi,j divxu

where µ is a function of ρ, and λ “ ´2µ{3.
Then we denote by vi, 1 ď i ď d ´ 1 an orthonormal basis of the kernel of the d
dimensional matrix

¨

˚

˝

1 . . . 1
...

...
1 . . . 1

˛

‹

‚
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and by P̂ the (orthonormal) matrix

¨

˚

˚

˚

˚

˝

vT1
...

vTd´1
1
?
d

. . .
1
?
d

˛

‹

‹

‹

‹

‚

.

the following first-order formulation of the isothermal Navier-Stokes equations is hyper-
bolic:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Bτρ` divxpρuq “ 0
Bτ pρuq ` divxpρub u` P Idq “ ∇

´

P̂ T τ̂
¯

` divxτ̌

Bτ τ̌ i,j ´
µ

T2µ

`

Bxiuj ` Bxjui
˘

“ ´
τ̌ i,j
T2µ

@1 ď i ă j ď d

Bτ τ̂ i ´
1
T2µ

vi ¨

¨

˚

˝

Bx1u1
...

Bxdud

˛

‹

‚

“ ´
τ̂ i
T2µ

@1 ď i ď d´ 1

Bτ τ̂ d ´
2µ` dλ
T2µ`dλ

?
d

˜

d
ÿ

i“1
Bxiui

¸

“ ´
τ̂ d

T2µ`dλ

with τ̌ ii “ 0 and τ̌ i,j “ τ̌ j,i. Note that the proposed formulation includes two relaxation
times, T2µ and T2µ`dλ.

The full Navier-Stokes system. Based on the same method, the following first order
formulation of the Navier-Stokes, including one relaxation time T can be proven to be
hyperbolic
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Bτρ` divxpρuq “ 0
Bτ pρuq ` divxpρub u` P Idq “ divxτ
Bτ pρEq ` divxppρE ` P quq “ divxq

Bττ i,j ´
1
T

˜

µ
`

Bxiuj ` Bxjui
˘

` δi,jλ

˜

ÿ

k

Bxkuk

¸¸

“ ´
τ i,j
T

@1 ď i ď j ď d

Bτqi ´
1
T

˜

ÿ

k,l

µ pBxkul ` Bxlukqui ` λui

˜

ÿ

k

Bxkuk

¸

` κBxiθ

¸

“ ´
qi
T

@1 ď i ď d

Note that in this formulation, the auxiliary variables coming from the energy equation
are the components of the full energy diffusion (including the work of the stress strain
tensor), and not the Fourier terms.

4.1.4 Numerical results

Based on the different first order formulation, a discontinuous Galerkin discretization was
proposed. One of the difficulties is that in general, the hyperbolic system is not conservative.
The formulation we used was derived from [125], and stabilized with Lax-Friedrich type
diffusion on sides.
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Figure 4.1: Solution u (left) and the diffusive flux vx (right) obtained with the one dimen-
sional test case with the first-order scheme with 100 to 25600 cells.
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Figure 4.2: Error obtained for u (left) and for vx (right) in log-log coordinates for DGp with
p “ 0, 1, 2, 3.

4.1.4.1 Scalar case

We are considering a one dimensional linear problem on r0; 1s. Dirichlet boundary conditions
are enforced on both sides of the domain: upx “ 0q “ u0 and upx “ 1q “ u1. The analytical
solution is

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

upxq“

pu1 ´ u0q exp
ˆ

cx

µ

˙

` u0 exp
ˆ

c

µ

˙

´ u1

exp
ˆ

c

µ

˙

´ 1

vx“µ
pu1 ´ u0q

c

µ
exp

ˆ

cx

µ

˙

exp
ˆ

c

µ

˙

´ 1

.

In the applications, c is fixed to 18, µ to 1.5, u0 “ 0 and u1 “ 40. The relaxation time is
fixed to 1. In Figure 4.1, the numerical solution obtained with one-dimensional meshes with
100 to 25600 cells with the first-order scheme are shown, showing convergence towards the
analytical solution. Then, in Figure 4.2, the order obtained on the two variables are shown.
For each variable and each degree, the order obtained is the optimal one (i.e. p` 1).
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Figure 4.3: Results obtained for the horizontal velocity (top left), the temperature (top
right), τ xy and qy for the Poiseuille flow, with the first-order scheme, with meshes composed
of 42, 82 . . . 1282 cells.

4.1.4.2 Navier-Stokes system

We test the hyperbolic formulation with a discontinuous Galerkin formulation. The test
case is the Poiseuille flow, which was already described in subsubsection 3.3.1.3 (Note that
in subsubsection 3.3.1.3, T was used for the temperature, whereas we are using θ here).
Additionally, the exact solution on the auxiliary variables is

τ xx“ τ yy “ qx “ 0
τ xy “ 4

?
2µucp1´ 2yq

qy “ 16µu2
cyp1´ yqp1´ 2yq ` κ16θwPrM2pγ ´ 1q

3 p1´ 2yq
ˆ

2y2 ´ 2y ` 1
2

˙

In Figure 4.3, the numerical solution obtained with the first order scheme for the different
meshes is shown, in which convergence towards the exact solution is observed. Then, in
Figure 4.4, the order obtained on the velocity, temperature, and also τ xy and qy are shown.
The observed order matches with the optimal order, namely p` 1 for a DGp method.

4.1.5 Conclusion

In this section, a framework for deriving first-order hyperbolic formulation of nonlinear
advection-diffusion dissipative systems was derived. This allowed to propose hyperbolic first
order formulation for the isothermal and non isothermal Navier-Stokes system. Then a dis-
continuous Galerkin discretization for the hyperbolic formulation was proposed. Numerical
results proved that this formulation is accurate for discretizing nonlinear dissipative systems,

109



Work done during my leave at NIA

10-3 10-2 10-1 100

h

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr

o
r

1

2

3

4

DG 0

DG 1

DG 2

DG 3

10-3 10-2 10-1 100

h

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
rr

o
r

1

2

3

4

DG 0

DG 1

DG 2

DG 3

10-3 10-2 10-1 100

h

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
rr

o
r

1

2

3

4

DG 0

DG 1

DG 2

DG 3

10-3 10-2 10-1 100

h

10-9

10-8

10-7

10-6

10-5

10-4

10-3

E
rr

o
r

1

2

3

4

DG 0

DG 1

DG 2

DG 3

Figure 4.4: Order obtained on the velocity (top left), temperature (top right), on τ xy (bottom
left) and on qy (bottom right).

by ensuring a good representation of the gradients. The following directions will be explored
in the coming years

Study the dependency of the numerical scheme obtained on the relaxation
time(s). The relaxation time(s) are free parameter that can be adjusted, depending on
what is needed; a first study could be the dependency of the accuracy of the numerical
scheme with respect to the relaxation time. As announced in the introduction, the relax-
ation time may be optimized for relaxing the stiffness of the system. Another objective
could be to study the error obtained with respect to the Reynolds number, for ensuring
a uniform convergence behavior with respect to the Reynolds number. Note that this
whole point should be first studied in the scalar case, possibly with an anisotropy in the
diffusion.

Reduce the number of unknowns. If the previous point is convincing, it does not
seem rational to consider industrial applications with such an increase in the number of
variables and unknowns. Following [92], it should be possible to eliminate the auxiliary
variables for obtaining a rational number of unknowns. This would then be interesting
to compare the schemes with the classical theory of discretization of elliptic systems
with the discontinuous Galerkin method [7].

Test the formulation for the implementation of boundary conditions. As described
in the introduction, such a formulation can be useful for the implementation of boundary
conditions, and was used in the context of isothermal Navier-Stokes system [43]. We
would like to explore the extension to the full Navier-Stokes system.
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4.2 Compact and bounded WENO limiters for discontinuous
Galerkin methods for the Euler system

4.2.1 Introduction

In this section, we address the limiting of polynomials approximations with compact WENO
methods developed in [93]. The advantage of WENO type limiters is that they can be applied
to arbitrary high order methods, without affecting the expected order of accuracy of the
underlying DG scheme if applied to smooth regions. Available WENO schemes are either
non-compact [73, 69, 120, 138, 122, 121, 153, 150], which is undesirable for discontinuous
Galerkin methods, or have difficulties in reducing the residuals [73, 69, 150]. The proposed
WENO-FV and WENO-FD schemes of Zhu and Shu [154, 155] address the convergence
difficulties that are observed in the earlier WENO procedures [85, 151].

Here, two classes of compact WENO polynomial limiters are presented for DG methods on
simplex elements that may be considered extensions of the WENO-FV [154] and WENO-FD
[152] schemes. Although the original compact WENO limiters for finite volume and finite
difference schemes rely on an extended stencil for polynomial reconstruction, the main idea
behind the compact WENO for DG schemes is to construct a limited polynomial directly
from the underlying DG scheme. The compact WENO-DG limiters presented here, therefore,
require a stencil only as large as nfaces ` 1 number of elements, where nfaces corresponds to
the number of faces of the elements in which the limiter is being applied. In the first proposed
approach, the compact stencil is considered, and a series of linear polynomials is constructed
by solving a ndofˆndof linear system, where ndof denotes the number of degrees of freedom for
linear approximation. In the second approach, a linear polynomial is constructed by solving a
series of constrained least-squares (LSQ) minimization problems within the compact stencil.
In both approaches, a WENO polynomial limiter is obtained with a convex combination of
the original polynomial and the constructed linear polynomials that are added using nonlinear
weights. The numerical fluxes are evaluated with the Local Lax-Friedrichs flux, and a compact
positivity preserving limiter [149], already detailed in subsubsection 1.4.3.2, is also applied to
the solutions to ensure pressure and density remain bounded and physical at all time.

4.2.2 Limitation proposed

On each cell, the solution is approximated by a polynomial. The WENO limitation consists
in building other polynomial approximations on the cell p̃piq with i ą 0, and in building a new
polynomial representation p̃p0q based on the averaging between the original approximation
and the new polynomial representations:

p̃p0q “ γ0

˜

1
γ0
pp0q ´

ÿ

i

γi
γ0
p̃piq

¸

`
ÿ

i

γi p̃
piq, (4.8)

which holds for arbitrary positive coefficients γj satisfying
ÿ

j

γj “ 1, where, γj , are the linear

weights defined as

γj “ 0.001 pj ‰ 0q, γ0 “ 1´
ÿ

j‰0
γj ,
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and the p̃piq are the to-be-reconstructed polynomials. The linear weights are then replaced
with the nonlinear weights, ωi, and the following reconstructed candidate polynomial is sought
for the target element

pp0qnew “ ω0

˜

1
γ0
pp0q ´

ÿ

ją0

γj
γ0
p̃pjq

¸

`
ÿ

ją0
ωj p̃

pjq, (4.9)

where the nonlinear weights are computed by adopting the high-order WENO-FD [154] and
WENO-FV [155] techniques of Zhu and Shu for the present WENO-DG schemes. These
techniques are based on the WENO-Z strategy given in [13, 17, 36]. The nonlinear weights
are then defined as

ωi “
ωi

ř

j ωj
, ωj “ γj

ˆ

1` τ

pε` βjq2

˙

, τ “

ˆř

i |β0 ´ βi|

n

˙2
, (4.10)

where n is the total number of reconstructed polynomials used in constructing the WENO
polynomial pp0qnew as given in Eq. (4.9) (i.e., maximum integer value of i) plus the polynomial
of the target element K0. Here ε “ 10´12 is a small number to avoid zero denominator, and
β is the classical smoothness indicator defined as (see e.g., Jiang and Shu [73] and Kolb [81])

βi “
k
ÿ

|l|“1
|K0|

p|l|´1q
ż

K0

˜

B|l|

Bxl1 Byl2
p̃piq

¸2

, l “ pl1, l2q, (4.11)

where k denotes the polynomial order, and |K0| is the volume of the target element.
The above procedure is complete with reconstruction of the polynomials p̃piq. In [93], two

p̃piq reconstruction procedures are proposed. In the two procedures, the polynomials p̃piq are
linear, and one of the challenge is to ensure conservation in the formula (4.9), which is ensured
provided

@j ą 0 1
|K0|

ż

K0

p̃pjq “ up0q.

In the following, we denote by K0 the target cell, and by Kj , j ě 1 the direct neighboring
cells. The two following procedures are proposed

‚ The first procedure is adapted to simplices; the number of polynomials is equal to the
number of neighbors. For each neighbor j, a first order polynomial p̃pjq is computed
such that

@k ‰ j
1
|Kk|

ż

Kk

p̃pjq “ upjq. (4.12)

Such a polynomial exists because we are dealing with a simplex, which, in dimension
d, has d ` 1 degrees of freedom for linear polynomials, and (4.12) is imposing d ` 1
constraints. The total number of polynomials reconstructed is equal to d` 1.

‚ The second procedure is suitable on any type of mesh. In this case, a single polynomial
is rebuilt, such that

argmin
ũ

ÿ

lPS

ˆ

1
|Kl|

ż

Kl

p̃lsqpũ, xq dx´ uplq
˙2

, (4.13)
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where S is the set of the neighbors of the target cell. The minimization is made under
the constraint that the mean of the constructed polynomial remain the same as the
mean of the original polynomial

1
|K0|

ż

K0

p̃lsq dx “ up0q. (4.14)

The two procedures have been presented for the scalar case. When a system is considered,
the procedure is applied characteristic wise in all the directions defined by the faces of the
target element K0. The final limited polynomial is obtained as the arithmetic average of the
limited polynomial in all the directions.

4.2.3 Numerical results

In practical computations, classical trouble cell indicators are not employed. The proposed
WENO is applied to all the computational elements, which is beneficial in ensuring that the
proposed WENO does not affect the desired order of accuracy of the DG scheme even if it is
applied to smooth region.

4.2.3.1 Order verification

Consider the two-dimensional Euler equations

wt `∇ ¨ fpwq “ S, wpx, t “ 0q “ w0pxq, (4.15)

with the vector of conservative variables w and the source S,

S “

¨

˚

˚

˝

0.4 cospx` yq
0.6 cospx` yq
0.6 cospx` yq
1.8 cospx` yq

˛

‹

‹

‚

, (4.16)

in domain px, yq P r0, 2πs. This system has the following exact steady state solution

ρ “ 1` 0.2 sinpx` yq, u “ 1, v “ 1, p “ 1` 0.2 sinpx` yq, (4.17)

which is imposed on the domain boundaries. A series of randomly generated irregular tri-
angular grids is considered and steady state solutions of the DG (Pk), k “ 1, 2, 3, 4, scheme
with and without the presented WENO and positivity preserving limiters are obtained. The
predicted high-order DG (Pk) solutions are compared with the exact solution on the given
grids by computing the L2 error. The resulting L2 errors are shown in Figure 4.5. The L2

errors for both WENO limiters are identical to the decimal point shown and therefore only
one set of values are given. The WENO and positivity preserving limiters are both applied
to all the elements within the domain. The pk ` 1qth order of accuracy for both DG and
the WENO-DG schemes are verified, confirming that the proposed WENO maintains the
expected order of accuracy of the underlying DG (Pk) scheme. It is also interesting to note
that the presented error magnitudes are order of magnitude smaller than the corresponding
results reported with the third-, fourth-, and fifth-order WENO-FV schemes in [152].
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Figure 4.5: Verification – Order of accuracy plots for the conserved density, x and y momen-
tums, and energy for DG and the proposed WENO-DG on irregular triangular elements.

4.2.3.2 The Shu-Osher test

The one-dimensional idealization of the shock-turbulence interaction suggested by Shu-Osher
[139] is considered in a two-dimensional framework. The goal of this test is to assess the
proposed limiters in capturing the shock wave and its interactions with the unsteady low
frequency density fluctuations and its waves propagation downstream of the shock. The
computational domain px, yq P r´5.0,´0.1sˆ r5.0, 0.1s is discretized with triangular elements
and a characteristic mesh size of h{40. The domain is initialized as

pρ, u, v, pq|t“0 “

#

p3.857143, 2.629369, 0., 10.33333q, x ă 4.0,
p1.` 0.2 sinp5xq, 0., 0., 1.q, x ě 4.0.

(4.18)

This corresponds to a Mach 3 shock (γ “ 1.4) interacting with the sine waves density field.
The results at t “ 1.8 are presented in Figure 4.6, Figure 4.7 and Figure 4.8. The fine
structured of the shock-density wave interactions are clearly captured by the proposed limiter.

4.2.3.3 Double Mach reflection

The double Mach reflection problem is originally proposed in [146] as a benchmark test for
Euler solvers. The problem consists of a Mach 10 shock front that meets a 30˝ inclined ramp.
As it is a customary, this problem is solved in a computational domain px, yq P r0, 4s ˆ r0, 1s
with a coordinate system that is aligned with the ramp. The domain is discretized with
irregular triangular elements and a mesh size of h “ 1{200.

The density contours for a truncated domain px, yq “ r0, 3.2s ˆ r0, 1s (the computational
domain extends to x “ 4) with 41 equally spaced isolines from 1.5 to 22.5 at t “ 0.2 are shown
in Figure 4.9 for the second-, third-, fourth-, and fifth-order WENO-DG. The closeup views
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Second order Third order

Fourth order Fifth order

Figure 4.6: Predicted density profile for the Shu-Osher problem with h{40 irregular triangular
elements at t “ 1.8.
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Second order Third order

Fourth order Fifth order

Figure 4.7: Predicted velocity profile for the Shu-Osher problem with h{40 irregular trian-
gular elements at t “ 1.8.
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Second order Third order

Fourth order Fifth order

Figure 4.8: Predicted entropy profile, lnpp{ργq, for the Shu-Osher problem with h{40 irregular
triangular elements at t “ 1.8.

Second order Third order

Fourth order Fifth order

Figure 4.9: High-order DG with proposed WENO and positivity preserving with irregular
triangular elements (h “ 1{200) in px, yq P r0, 4s ˆ r0, 1s. Shown are 41 equidistance density
contour lines at t “ 0.2 from 1.5 to 22.5.
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Second order Third order

Fourth order Fifth order

Figure 4.10: High-order DG with proposed WENO and positivity preserving with irregular
triangular elements (h “ 1{200) in px, yq P r0, 4s ˆ r0, 1s. Shown are zoom-in views around
the Mach stems at t “ 0.2 with 41 equidistance density contour lines from 1.5 to 22.5.

of the triple Mach points region, px, yq P r2, 2.9s ˆ r0, 0.6s, are shown in Figure 4.10. Clearly,
the complexity of the triple Mach points is captured by the proposed limiters on the irregular
triangular mesh. The quality of the solution improves with increasing the polynomial order
on the same identical irregular triangular mesh. The resolution of the curled flow structures
along the primary slip line, which is caused by its interactions with the secondary reflected
shock emanating from the secondary triple point, is often used for judging the quality of
the numerical scheme. The presented results provide a remarkable curled flow structures
compared to the solutions reported by Hu and Shu [69], Zhu et al. [156], and Dumbser et
al [38]. Further improvement in the WENO could reduce the noise in the predicted contour
lines. Grid adaptation could also enhance the results further.

4.2.3.4 Scramjet

Consider a two-strut scramjet (see Figure 4.11 and Table 4.1) with a Mach 3 inflow imposed
on the left surface boundary. The corresponding density contours in the range of 1.5 and
8.0 are shown in Figure 4.12. These results are in agreement with the previously published
results [82, 42, 5] on a similar configuration.

118



4.2 Compact WENO limiters

Table 4.1: The coordinates of the lower half portion of the two-strut scramjet geometry
shown in Figure 4.11.
Points 1 2 3 7 8 9 10 11
px, yq (0,-3.5) (0.4,-3.5) (16.9,-1.74) (4.9,-1.4) (12.6,-1.4) (14.25,-1.2) (9.4,-0.5) (8.9,-0.5)

Geometry (see Table 4.1) Mesh

Figure 4.11: The geometry of the two-strut scramjet test case with a sample irregular
grid with 10,000 vertices. Coordinates of the lower half portion of the geometry is given in
Table 4.1.

Second order Third order

Fourth order Fifth order

Figure 4.12: Hundred equally spaced density contours in the range of 1.5 and 8.0 using the
second presented WENO approach for the Mach 3 two-strut scramjet test case with 10,000
unadapted irregular triangular elements.

119



Work done during my leave at NIA

4.2.4 Conclusion

The compact WENO limiter combined with the positivity preserving limiter allowed to get
results on challenging tests until fifth order of accuracy. The limiter is easy to implement and
does not destroy the order of accuracy in the smooth zones. Also, its compactness is well
suited with parallel computing and with the original compact stencil of the discontinuous
Galerkin method. Last, it can be easily extended to hybrid meshes and to three dimensional
meshes, and this is what we plan to do in the future years.
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In this document, the results I obtained over the last decade on high order methods for
compressible flows have been summarized. They deal with flows in different regimes: low
Mach number flows, large Mach number flows with strong shocks, multiphase flows. I have
also been a major contributor to the AeroSol library, a scalable high order finite element
library able to deal with hybrid meshes and with continuous and discontinuous discretizations.
Possible research directions for the modeling and numerical approximation of multiphase
compressible flows have been exposed in section 1.6, in section 2.6 for low Mach number flows,
in section 3.6 for the AeroSol library, in subsection 4.1.5 for the hyperbolic formulation of
Navier-Stokes equations, and in subsection 4.2.4 for compact WENO limiters. Beyond these
research directions, we mention the following rather transversal research directions for the
future

Derive optimal k–exact quadrature formulas adapted to maximum preserving
limiters. In chapter 1 and chapter 4, the positivity preserving method of [149] was used
on triangles and quads. However, the number of quadrature points for the quadrature
formula proposed in [149] increases a lot when the degree increases. Also, the points
have been derived on line, quads, and triangles, but not on general three dimensional
shapes. Last, the theoretical CFL number depends on a ratio between the weights of
the k–exact cell quadrature formula and the weights of the side quadrature formula. We
should then derive a quadrature formula that optimizes this CFL number, under the
constraint of being k–exact. From a technical point of view, some modern tools have
been developed for the derivation of quadrature formulas [145] and could be a starting
point for such a study.

Consider low Mach number flows in multiphase flows. chapter 1 deals with mul-
tiphase flows, and chapter 2 deals with low Mach number flows. In some usual con-
figurations, for example a multiphase flow involving liquid water and gaseous air, the
strong disparity between the sound velocities induces that the Mach number in the wa-
ter is low. This problem was addressed for example in [84], and it would be interesting
to study if the methods for single phase low Mach number flows we develop could be
applied to multiphase flows, especially to the numerical method discussed in chapter 1.

Address the discretization of turbulent models. The convergence between modern
high order methods and modern methods for turbulence modeling is one of the research
direction of the Cagire team. We aim first at discretizing RANS models. I advised
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one internship on this topic two years ago, and another one is currently working on the
implementation of Spalart-Almaras and k ´ ε models. Within the Asturies project,
second order RANS models will be considered such as EB-RSM models [89]. The high
order discretization of these systems raises challenges for the imposition of boundary
conditions. This research will be done in collaboration with Rémi Manceau.

Address the challenge of reproducibility in high order methods and possibly
large scale computing. The development of high order finite element methods has
introduced a strong technological gap with respect to traditional second order finite
volumes methods. Indeed, when dealing with high order finite element methods, it is
required to define finite element basis, quadrature formulas, and geometrical functions
for handling curved meshes, all of this being useless when second order methods are
implemented. Moreover, and especially with discontinuous Galerkin methods, a strong
variability may be observed in the technical implementation: for example, the basis
functions can be defined either on the reference element or on the physical element,
and also the basis can be of Lagrange or Modal type among others. This becomes even
more complicated when it comes to deal with stabilizations: often, several limiters are
piled up for ensuring positivity of physical variables, inequality of entropy, and stability
for the shocks. Often, these limiters depend on suitable parameters that may change
from one test case to another. Last, some of these limiters are based on the basis of the
reference element, while others use a polynomial approximation in the physical space.
Another problem is raised by the large scale computations: it is well known that classical
operations such as multiplication and addition that are associative and commutative are
actually no more when floating point arithmetic is considered. As a consequence, the
same series of operations executed on two different threads or two different MPI process
but in a different order may not give the same result. This behavior is error prone,
and often happens only with optimized version at large scale, which makes it nearly
impossible to track.
This strong complexity may jeopardize the maintainability of the code, but also question
the significance of published results if the exact implementation and execution conditions
cannot be reproduced. This is why a lot of unit tests have been developed in AeroSol.
Also, the dependencies are under a tight control thanks to the usage of the package
manager guix. In the future, we would like to go further, not only by extending
the number of operational test cases, but also by publishing systematically for each
numerical result the git hash of the code, the full parameter file used, the mesh used,
and the tools used for postprocessing. Reproducibility is one of the cornerstone of
science, and we have a room for improvement on this concern.
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