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Abstract

Tracking several objects from video recordings is a complicated image
processing task but essential in many academic fields. We compiled a
database of two-dimensional movies from very different biological and
physical systems, spanning a wide range of scales and dynamics, and de-
veloped a general-purpose tracking software called FastTrack. It can han-
dle a changing number of deformable objects. Furthermore, we introduce
the probability of incursion, a new measure of a movie’s trackability that
does not require the ground truth trajectories. We demonstrated that Fast-
Track is orders of magnitudes faster than state-of-the-art tracking algo-
rithms with a comparable tracking accuracy. A user and developer docu-
mentation is available, and the software is distributed under a GNU GPLv3
license. Chemical perception mediates several essential behaviors in fish,
like mating and feeding. However, there is much to understand on how
the fish process chemical stimuli. We build two experimental setups: Dual,
a high-throughput setup capable of assessing young zebrafish chemical
preference, and The Tropical River to simulate realistic flows that fish are
susceptible to encounter in nature. Dual is scalable, open-source, and can
be built for less than 2 000 euros. Using it, we showed a clear repulsion to
citric acid from fish up to 2 weeks old and showed that ATP’s presentation
to 2 weeks old fish was first repulsive and then attractive.



Résumé

Le suivi d’objets à partir d’enregistrements vidéo est une tâche de traite-
ment d’image compliquée mais essentielle dans de nombreux domaines
universitaires. Nous avons compilé une base de données de films bidimen-
sionnels provenant de systèmes biologiques et physiques très différents,
couvrant une large gamme d’échelles et de dynamiques, et avons déve-
loppé un logiciel de suivi polyvalent appelé FastTrack. Il peut traiter un
nombre variable d’objets déformables. En outre, nous introduisons la pro-
babilité d’incursion, une nouvelle mesure de la difficulté d’analyse d’un
film qui ne nécessite pas les trajectoires. Nous avons démontré que Fast-
Track est plus rapide de plusieurs ordres de grandeur que ce qu’il se fait
de mieux dans le domaine. Une documentation utilisateur et développeur
est disponible, et le logiciel est distribué sous une licence GNU GPLv3. La
perception chimique intervient dans plusieurs comportements essentiels
des poissons, comme l’accouplement et l’alimentation. Cependant, il en
reste beaucoup à comprendre sur la façon dont les poissons traitent les
stimuli chimiques. Nous avons mis en place deux dispositifs expérimen-
taux : Dual, un dispositif à haut débit capable d’évaluer la préférence chi-
mique des jeunes poissons-zèbres, et The Tropical River pour simuler les
flux réalistes que les poissons sont susceptibles de rencontrer dans la na-
ture. Dual est évolutif, open-source, et peut être construit pour moins de 2
000 euros. En l’utilisant, nous avons montré une nette répulsion à l’acide
citrique des poissons jusqu’à l’âge de 2 semaines et avons montré que la
présentation de l’ATP aux poissons de 2 semaines était d’abord répulsive
puis attractive.



Résumé long

FastTrack un logiciel de suivi généraliste

Introduction

Le suivi d’objets depuis des enregistrements vidéos est un problème
qui a gagné en popularité, tant dans l’industrie que dans dans le milieu
académique. Citons par exemple le projet ATTOL d’Airbus qui permet le
roulage, le décollage et l’atterrissage d’un avion en se basant uniquement
sur de l’analyse d’images. Dans le milieu académique, le suivi sur vidéos
est très utilisé en biologie et en écologie. Il permet de suivre les animaux
dans leur environnement sans avoir besoin de les marquer invasivement.

On se concentrera dans cette thèse sur le suivi d’objetsmultiples (MOT)
qui regroupe la majorité des applications scientifiques. Le suivi d’objets
multiples est un problème qui consiste à détecter et à garder l’identité des
objets tout au long d’un enregistrement vidéo. C’est un problème com-
plexe sous plusieurs aspects : la détection des objets peut être compli-
quée si par exemple ceux-ci disparaissent derrière des objets du décor,
de plus la qualité des images influence grandement la détection. Les ob-
jets peuvent sortir et rentrer dans le champ de vue où se superposer ce
qui complique le maintien de l’identité de chaque objet.

On distingue deux grandes classes d’algorithmes permettant de ré-
soudre ces problèmes. Le premier utilise les paramètres cinématiques
de l’objet ce qui permet ainsi de prédire et retrouver l’identité des ob-
jets d’une image sur l’autre. Très rapide, cette classe d’algorithmes souffre
d’un problème majeur, la propagation des erreurs. Si une erreur est com-
mise sur une image, elle se propagera jusqu’à la fin du film. La deuxième
classe d’algorithmes utilise une "carte d’identité" extraite pour chaque ob-
jet. Cela permet de contourner le problème de propagation des erreurs au
prix d’un temps de calcul très élevé.

Plusieurs logiciels de suivi existent. On peut citer Ethovision XT, Any-
maze et ToxTrack pour les logiciels propriétaires. Les deux premiers sont
livrés clef-en-mains mais coûtent cher ce qui peut être un frein pour cer-
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tains laboratoires. Ces logiciels sont closed-source, c’est-à-dire qu’on ne
peut ni les modifier, ni savoir exactement comment ils fonctionnent, ils
ne pourront donc pas être adaptés pour un projet particulier. Dans les lo-
giciels open-sources, on peut citer DeepLabCut, idTrackerai et idtracker.
Les deux premiers utilisent le machine learning pour effectuer le suivi.
Dans les trois cas, ces logiciels nécessitent des ordinateurs puissants et
l’analyse est en général longue, l’installation est complexe et nécessite de
bonnes connaissances en informatique.

Dataset

Nous avons en premier lieu regroupé divers films pouvant servir de
test pour les algorithmes de suivi. Ce dataset nommé The Two Dimentio-
nal Tracking Dataset TD2 regroupe 41 films de plus de 7 espèces animales
allant du poisson à la drosophile, des particules actives, des gouttes mi-
crofluidiques et des objets macroscopiques comme des voitures et des
joueurs d’ultimate.

FastTrack

Pour répondre au problème du suivi d’objets multiples, nous avons
développés un logiciel nommé FastTrack. Ce logiciel est basé sur une ap-
proche inédite du suivi : au lieu de développer un système très spécifique
qui ne sera utilisable que sur un très petit nombre de systèmes, FastTrack
implémente un algorithme de suivi généraliste utilisable sur une grande
variété de systèmes, un outil ergonomique de gestions des erreurs est en-
suite proposé pour que l’utilisateur puisse corriger les trajectoires après
le suivi.

Le flux de traitement de FastTrack peut être divisé en 3 étapes. La pre-
mière consiste à détecter les objets. Ceci est fait en calculant et sous-
trayant le fond aux images puis en appliquant un seuil. FastTrack intègre
les opérations d’analyses d’images usuelles pour faciliter la détection. Les
objets sont ensuite triés par taille ce qui permet d’écarter les artefacts.
Dans une deuxième étape, les objets sont assignés d’une image sur l’autre
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ce qui permet de garder leurs identités. Ceci est fait en calculant une fonc-
tion de coût et en la minimisant pour trouver l’assignation optimale. La
fonction de coût comprend le déplacement, le changement d’orientation,
de taille et de périmètre des objets entre deux images successives et peut
être réglée par l’utilisateur au moyen d’un ensemble de paramètres de
normalisation. Deux autres paramètres de seuil permettent de définir une
mémoire et une taille maximale d’assignation. La troisième et dernière
étape est la correction manuelle des erreurs qui se fait dans un environ-
nement interactif et ergonomique.

FastTrack permet grâce à cette technique d’être applicable sur un grand
nombre de systèmes. Les paramètres de normalisation permettent de l’adap-
ter à n’importe quelle dynamique d’objets. Un jeu de paramètres neutres
peut être automatiquement trouvé par le logiciel pour aider l’utilisateur à
obtenir un suivi le plus optimal possible. Contrairement aux logiciels exis-
tants, FastTrack peut tracker des films à nombre d’objets variables, c’est-à-
dire dont les objets peuvent disparaitre puis réapparaitre ou de nouveaux
objets entrer dans le champ de vision. Nous avons montré que les perfor-
mances de FastTrack sont aussi bonnes que les logiciels existants. De plus,
notre approche permet à l’utilisateur de gagner du temps sur la plupart
des projets, le temps de correction manuel étant en général plus faible
que celui nécessaire pour faire un suivi directement sans erreur avec un
algorithme plus couteux en temps de calculs.

Nous avons montré comment nous pouvions classer le dataset en uti-
lisant la probabilité d’incursion. Une incursion survenant lorsque l’objet à
tracker sort de sa cellule de Voronoï. La probabilité d’incursion peut être
définie en utilisant uniquement les propriétés géométriques de l’objet et
la distribution des déplacements. Les films peuvent alors être classés sui-
vant leur difficulté de suivi grâce à cette probabilité et ainsi estimer le
nombre de corrections manuelles qu’il faudra effectuer. Nous définissons
grâce à cette probabilité un critère permettant de calculer la fréquence
d’acquisition optimale qui est une question fréquente lors de la concep-
tion d’expériences.

La conception de FastTrack repose sur des bibliothèques et langages
ouverts ce qui permet à n’importe qui de voir le code source et de le mo-
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Figure 1 – FastTrack flux de traitement Le flux de traitement se divise en 3
étapes : la détection, l’association, et la correction. Les gindiquent les étapes
nécessitant l’utilisateur (film : ZFJ_001.)

difier. FastTrack est entièrement documenté et peut être intégré dans un
projet déjà existant. FastTrack dispose d’un système d’intégration et de
déploiement continu (CI/CD) grâce au système GitHub Actions. Il est dispo-
nible pour Linux (AppImage), MacOs et Windows et facilement installable.
Un manuel d’utilisation et des tutoriels vidéos sont disponibles.
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Caractérisation de la perception chimique chez le jeune poisson-
zèbre

Introduction

La perception chimique est l’une des plus anciennes modalités sen-
sorielles. Présente dans une grande variété de taxons, des unicellulaires
jusqu’aux mammifères, elle est associée à des comportements nécessaire
à la survie de l’espèce tels que trouver de la nourriture, se reproduire ou
éviter des prédateurs. Les poissons sont baignés dans leur environnement
chimique à chaque instant et sont pourvus d’organes pour percevoir et in-
terpréter ces stimuli chimiques. Pour les poissons, la perception chimique
passe par l’odorat, le goût et un sens chimique commun. Les mécanismes
de perceptions ont été largement étudiés chez diverses espèces de pois-
sons, mais peu est connu sur certains comportements complexes tels que
par exemple les migrations.

Le poisson-zèbre est un modèle en pleine expansion dans le cadre des
neurosciences. La larve est transparente ce qui permet d’observer l’inté-
gralité du cerveau à l’échelle cellulaire grâce à l’image calcique à nappe
de lumière. L’apparition de systèmes de réalité virtuelle pour observer le
cerveau de larves effectuant des tâches a permis de mieux comprendre
des comportements tels que la phototaxie, la capture de proies et la rhéo-
taxie. L’application de cette technique à la perception chimique nécessite
quelques étapes préalables, par exemple une bonne caractérisation des
produits et de la réponse comportementale qu’ils entraînent en fonction
de la concentration. Pour cela, il est nécessaire d’avoir un dispositif ex-
périmental permettant de faire varier les produits, leurs concentrations
ainsi que l’âge du poisson tout en caractérisant leurs préférences. Dans
un deuxième temps, un montage permettant de reproduire des écoule-
ments réalistes sera nécessaire pour étudier la navigation par perception
chimique.
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Montages expérimentaux

Pour caractériser la perception chimique chez le jeune poisson-zèbre,
nous avons construit deux montages expérimentaux, l’un permettant de
faire un criblage des préférences des poissons à divers stimuli chimiques,
l’autre permettant de recréer des écoulements réalistes pour étudier la
réponse comportementale du poisson.

Dual Dual est un montage expérimental permettant de quantifier la pré-
férence des poissons vis-à-vis d’un produit chimique de concentration par-
faitement contrôlée. Il permet de séparer un compartiment où est placé
le poisson en deux zones distinctes, l’un avec un produit de concentration
parfaitement connue, l’autre avec de l’eau. Ceci est réalisé grâce à un flux
créé par un double pousse-seringue permettant de maintenir un écoule-
ment à volume constant dans le compartiment : quand deux seringues in-
jectent d’un côté, deux seringues aspirent de l’autre. Un système de valves
permet de remplir les seringues avec le produit choisi puis d’injecter en-
suite. L’aquarium est coupé de l’environnement par une boîte et l’expé-
rience filmée en lumière infrarouge pour éviter toutes implications d’une
autre modalité sensorielle, principalement la vision. L’écoulement est vi-
sualisé par un colorant infrarouge. Ce montage expérimental est open-
source, flexible, et peut être reproduit pour moins de 2 000 euros avec
peu de matériel (imprimante 3D et découpe laser). Un logiciel de contrôle
open-source est disponible et permet de contrôler le dispositif.

The Tropical River The Tropical River est un montage expérimental qui
permet de recréer des écoulements plus réalistes auxquels sont soumis
les poissons dans leur environnement naturel. Il est constitué d’un canal
de 60×10×10 cm dans lequel est placé le poisson. Un écoulement lami-
naire contrôlé en température et en débit alimente ce canal. Un système
de valves et d’injecteurs permet de créer des jets laminaires et turbulents
de manière à étudier la perception chimique du poisson dans un environ-
nement plus proche de la réalité où la perception est fragmentée.
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Figure 2 – A Schéma du compartiment où nage le poisson. B Image d’un écou-
lement typique avec en bas le produit visible à l’aide du colorant infrarouge. C
Schéma du protocol expérimental permettant de déterminer la préférence des
poissons avec un cycle contrôle B1, 2 cycles de test P1, P2 et un cycle de rinçage
B2. D Le disposif expérimental Dual. E Préférence index (temps passé dans le
produit moins temps passé dans l’eau divisé par le temps total) pour l’ATP en
fonction de la concentrentation. On remarque une répulsion au premier cycle P1
(préférence index négatif) et une attraction au cycle P2 (préférence index positif).

Résultats

Nous avons étudié la préférence de poisson-zèbre âgés de 14 jours et
de 7 jours en utilisant Dual. L’expérience dure une heure durant laquelle
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le poisson est soumis à un cycle avec de l’eau des deux côtés (B1) servant
de contrôle, un cycle avec un produit d’un côté et de l’eau de l’autre (P1),
un cycle de rinçage similaire à B1, enfin le même cycle que P1 mais en
inversant les côtés (P2).

Nous nous sommes concentrés sur 5 produits : l’acide citrique et la
quinine connus pour être répulsifs, l’ATP et l’adénosine connus pour être
attractifs chez les poissons-zèbres adultes.

En premier lieu nous avons contrôlé que l’expérience ne contenait au-
cun biais et que le colorant servant à visualiser l’écoulement était bien
neutre pour le poisson. Nous avons ensuitemontré que les poissons-zèbres
étaient repoussés par l’acide citrique, l’intensité variant en fonction de la
concentration.

Nous avons trouvé un effet de répulsion à la première présentation
d’ATP, puis d’attraction à la seconde présentation chez la majorité des
poissons-zèbres âgés de 14 jours. Cette étude effectuée aussi chez les
larves de 7 jours manque de statistique mais cet effet ne semble pas être
présent. Cela indiquerait une évolution temporelle de ce phénomène ab-
sent chez les larves (7 jours), présent chez les adultes (2mois) et une partie
des juvéniles (2 semaines).
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Chapter 1

Introduction

Talk is cheap. Show me the
code.

Linux Torvald

1.1 Video based tracking

The tracking of objects from video recordings is a problem that has
gained much popularity in recent years. It is mostly due to its great poten-
tial, both in academia and for commercial and security applications. Ex-
amples include autonomous cars that can drive themselves, or the Airbus
ATTOL project [1] that allows fully automated take-off, landing, and taxiing
of planes based solely on image analysis. A large part of the research ef-
fort is focused on creating pedestrian recognition and tracking algorithms
to automate the analysis of video surveillance data. Tracking is also widely
used in movie creation with special effects (VFX, CGI), whether to stabilize
shots or to realize special effects (e.g., motion capture), and for industrial
process [2]. In this case, automated tracking on images reduces costs, pro-
duction time, and human operators’ use.

In academia, the use of automated tracking, especially in biology and
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ecology [3,4], is a rapidly growing field because it avoids disturbing the an-
imals with invasive markings. Cellular motions tracking is also widely stud-
iedwith very specialized algorithms developed solely for this purpose [5,6].
Other fields of science are interested in automated tracking, to name a few:
microfluidic [7], active matter [8], social science [9] and robotic [10]. Auto-
mated tracking generally produces large amounts of reliable data, reduces
biases and avoids long and tedious manual analyses. The latter are some-
times impossible to perform due to excessively large image collections.

Object tracking can be separated into two categories: the Single Ob-
ject Tracking (SOT), where the goal is to detect a single object in a more
or less complicated scene, and the Multiple Object Tracking (MOT), where
the goal is to detect and track several objects. In this dissertation, we will
place ourselves within the MOT framework since it is more representative
of the applications usually encountered in academia. For many scientific
experimental setups, the inherent difficulty of tracking can be greatly miti-
gated with a well-designed system. In general, the setups are designed to
optimize the imaging conditions, with a fixed camera and a lighting that
facilitates object detection. On the other hand, the tolerance to errors is
low if one wants to produce reliable data and robust scientific conclusions.
A decisive point is the algorithm’s performance, which must analyze the
data in a reasonable time compared to their production rate and meet the
user’s material and technical constraints. The ease of installation and use
of the software that integrates the algorithm should not be neglected. The
users brought to use these software are generally not experts in computer
science and image analysis, and the software must be readily installable
and usable by all.

We will first see why the tracking is still a complex problem and how we
can reduce or bypass this complexity. Wewill then present a non-exhaustive
list of existing tracking software applied to diverse scientific fields. Finally,
we will present how the software we have developed for general-purpose
tracking follows a different approach, and in which cases it can be useful.
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1.2 The tracking, a not so simple problem

The image-based tracking of objects usually involves three key steps:
the acquisition of the images, which, depending on the acquisition param-
eters, will condition the difficulty of the tracking and the type of algorithm
that can be used; the detection of objects, which consists in separating the
objects from the background; and finally the assignment of objects from
one image to another allowing to keep track of the objects’ identities. Ob-
ject tracking is generally a complex image processing task [3]. Depending
on the objects studied, each step can be difficult. For example, animals are
highly deformable objects interacting with each other, making the detec-
tion step complex. The scene can be complicated, with objects disappear-
ing behind the decor elements, superimposing each other (the so-called
occlusion phenomenon), or entering and leaving the field of view, compli-
cating the detection and the association step.

Object detection problems can usually be circumvented by the design
of the experimental setup whenever it is possible. A fixed point of view and
lighting optimization usually allows for simple detection by subtracting a
background image (without object) and applying a threshold. For more
complicated cases, a wide variety of algorithms are available [11] and ap-
plicable depending on the images’ quality. The most common is to detect
points of interest in the object. This technique is invariant to the point
of view and illumination but requires a sufficient image quality. Segmenta-
tion allows to separate the image by area of similarities and thus to detect
objects of interest, many algorithms and approaches exist to segment an
image. Machine learning can also be applied for object detection [12].

Two main classes of algorithms can be distinguished to mitigate asso-
ciation problems. The first class of algorithms uses the object’s kinematic
quantities, such as direction or position [13], to predict or find the position
of the object on the next image and thus keep its identity. This method’s
error rate remains constant when we increase the number of individuals
(keeping the density of objects fixed). It is generally fast, and this makes it
a good candidate for real-time tracking applications. The major disadvan-
tage of this approach comes from the error propagation phenomenon. If
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the algorithm makes an error in the assignment, it has no way to correct
the error at the next step, and it propagates to the end of the analysis. The
second class of algorithms is based on recognizing the object’s points of
interest, allowing the creation of a "fingerprint" unique to each object. That
can be done using either a classical method [14,15], or usingmachine learn-
ing [16, 17]. This technique solves the propagation of errors problem and
allows objects to be tracked over time, i.e., across several unpaired videos.
For example, an animal can be recognized from one day of experiments to
the next, which can be very useful, especially for behavioral studies. This
method requires images of sufficient quality to extract markers represen-
tative of the object. It also requires more computational resources, thus
an analysis that cannot be done in real-time. However, the main limita-
tion is the number of objects it can track. It is currently limited to about
ten objects per image with classical methods before the algorithms’ per-
formance degrades significantly. The machine learning approach makes it
possible to increase the number of objects at the cost of long computation
time and the need to use high-performance computers.

1.3 Existing software

Many tracking software already exist. We will make a non-exhaustive
list of the most popular ones, separating them into two categories: propri-
etary software and open-source software.

1.3.1 Proprietary software

The proprietary software presented here are closed-source. The user
cannot modify the code to adapt the software to his project or check pre-
cisely how the tracking is performed. On the other hand, they do not re-
quire any computer knowledge and benefit from a support service conve-
nient for users that do not have a lot of computer knowledge. They are
an excellent alternative to other options that are sometimes difficult to
implement, but their high price can be a hindrance for some users.
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EthoVision XT EthoVision XT is a software developed by the company
Noldus. It accompanies the user from the acquisition of images, thanks
to a system of experiment templates, to the data analysis with a module
allowing to visualize standard behavioral parameters. The software is com-
plete and widely used. It is somewhat specialized in the field of behavioral
neurosciences. It includes modules for classical behavioral experiments
(e.g., water-maze, rats social interaction). It also allows performing live
tracking so that users do not have to save images for long experiments.

EthoVision XT is a mature software. A large number of modules are
available as well as a system that allows the user to create its own experi-
ment template. The most significant disadvantage is that the user cannot
modify the software or control how the tracking is done. Price can be a bar-
rier for some users, as the software costs a minimum of 5,850 USD without
modules, and it is compatible only with Windows. Focused on tracking an-
imals, it will not be suitable for other systems.

Any-maze Any-maze is a software developed by Stoelting Co. It is spe-
cialized in the analysis of behavioral neuroscience experiments. It directly
integrates tools for standardized tests (e.g., forced swim test, fear condi-
tioning test), allowing fully automated analysis of these experiments. It
can track in real-time or from recorded videos.

Any-maze is a complete solution for creating and analyzing typical be-
havioral experiments. It can be purchased with the experimental setup al-
ready optimized and calibrated for the software. The Any-maze suite con-
sists of three software packages. The tracking part is available for USD
6,495 or USD 1,500 per year. The software is available for Windows only.

ToxTrack ToxTrack [18] is a software that implements in a graphical in-
terface the ToxId algorithm [19]. In short, the algorithm extracts objects
from the background by applying a threshold. The pieces of trajectories
between occlusions are divided into short and long trajectories based on a
user-defined threshold time. A group of long trajectories where all individ-
uals are observed simultaneously is then extracted. In this case, the assign-
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ment is made using the Hungarian algorithm. The remaining trajectories
are then assigned to the corresponding object selecting the best correla-
tion value in a trajectory identification matrix, see Figure 1.1. This matrix
contains the similarity between every two trajectory fragments based on
objects’ features. The authors report that ToxId is as powerful as other ex-
isting software, fast, and can track objects in real-time. A disadvantage that
can be seen in this algorithm is that it only works for a constant number
of animals. The algorithm’s initialization requires to have at one moment t
all the objects to be tracked simultaneously detectable for a user-defined
time t + dt. The user-interface (UI) is sometimes difficult to use: the in-
tegrated tracking reviewer does not permit to correct the tracking or to
replay the tracking frame by frame.

The UI includes tools to define areas of interest as well as statistical
analysis of the collected data. The software is only available for Windows.
The project initially open-source change to a closed-sourcemodel, but the
software is still under development.

Figure 1.1 – ToxId workflow chart.
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1.3.2 Open-source software

Open-source software allows the user to read, modify, and distribute
the software. It is the preferred alternative to commercial software. From a
scientific perspective, using open-source software increase transparency
and lead to easier reproducibility of scientific results. From a development
standpoint, it leads to better code quality and fewer bugs. In general, no
individual assistance service is provided. The collaborative development
of most of these software allows the user to report bugs and participate
in their development to help the community.

idTracker IdTracker [14] is a MATLAB library that allows to track multiple
objects in video recordings. It is based on the extraction of a "fingerprint"
for each object, allowing a tracking without errors propagation. The ad-
vantage of idTracker is that it can recognize an object over several videos
and after a relatively long time, which can be useful to track individuals’
behavior over several series of experiments.

IdTracker is solving amazingly well the error-propagation problem dur-
ing the association phase. However, it is limited by the number of objects
it can track, currently about twenty, due to the movie’s length necessary
for extracting each object’s "fingerprint". This task can go up to 30 min-
utes minimum for a high object density. The required image quality is an
essential factor and must be at least 150 pixels per animal. The compu-
tation time is relatively long, in the order of 0.5 to 2 seconds per image,
and requires a large amount of RAM. The installation of idTracker can be
done without the need to install MATLAB thanks to the Matlab Run Time
Compiler but only under Windows. Therefore, it is necessary to purchase
a MATLAB license for other platforms and have minimal knowledge of the
language to set up idTracker.

DeepLabCut DeepLabCut [16] is a framework that solves the so-called
"pose estimation" problem, which consists of finding an object and its po-
sition, or part of an object, in an image. It can be directly related to the
SOT problem if the objects to be tracked are different, for example, a right
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mouse ear and a mouse nose, which can then be found on each image and
then associated in the case where there is only one mouse. In the case of
several similar objects to be found and associated from one image to an-
other (MOT), this detection will have to be combined with an association
step to obtain the tracking. Even if DeepLabCut answers a slightly differ-
ent problem, it can, by its design, be coupled with an external association
algorithm to make a tracking software.

DeepLabCut is directly based on the feature detection algorithm of the
DeeperCut framework [20], specialized in the detection of human body
movements. The authors of DeepLabCut have studied this algorithm’s per-
formance applied to the field of behavioral neuroscience, such as the de-
tection of mice snouts or drosophila legs. They have added tools to train
the algorithm easily and test its robustness.

DeeplabCut takes advantage of deep learning, a machine-learning al-
gorithm that consists of training a neural network containing several lay-
ers [21]. In DeepLabCut, the network consists of several residual neural
networks (ResNets) pre-trained on the ImageNet database. The network
is then fine-tuned by training on images where the parts to be detected
are annotated. In the end, the algorithm gives the probability of presence
of the object in the image. The authors have shown that the performance
is at least as good as human detection and can be obtained with very little
training data (200 annotated images).

DeepLabCut, as previously mentioned, is a framework, and despite an
excellent documentation [22], it can be challenging to use for a user with
little computer skills. The installation process lasts from 10 to 60 minutes
and requires a GPU installation to get the most out of the software. Be-
sides, the algorithm requires a lot of computing power. To give an idea,
images of 682x540 pixels, analyzed with a last-generation GPU, lead to an
analysis speed of 30 frames per second. Without GPU, this time can be
multiplied by a factor of 10 or 100 [23].

We see that DeepLabCut is of great interest to precisely find objects
in an image. It is particularly aimed at behavioral neuroscience, allowing
complex movement tracking (e.g., hand fingers of a mouse). It will not be
suitable for users with little computer knowledge interested in more ex-
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tensive problems and with little data to process.

Figure 1.2 – DeepLabCut workflow chart.

idTracker.ai IdTracker.ai [17] is a framework that allows tracking animals
with almost perfect accuracy. IdTracker.ai takes advantage of deep learn-
ing to carry out the association. In the first step, each object is segmented
by applying a threshold. A convolutional network classifies each detected
blob as containing a single object or several objects. Another convolu-
tional network finds the identity of each individual throughout the movie.

This system requires enough data to train the network that will recog-
nize each individual. The authors found that robust tracking can be ob-
tained with only thirty isolated images of each individual. Therefore, it is
necessary to plan for a minimum of five hundred images for a dozen indi-
viduals with a minimum of twenty-five frames per second. A resolution of
three hundred pixels per animal is recommended for good tracking accu-
racy. A limiting factor of idTracker.ai is that it requires a lot of computing
time and a lot of RAM. The authors report about twenty minutes for pro-
cessing a video with eight zebrafish and about six hours for a hundred
zebrafish on about two thousand high definition images. Even if a UI is
available to help the user, basic computer and programming knowledge
is required, and suitable hardware. The use of a GPU is strongly recom-
mended.

This software is suitable for users who want perfect and fully auto-
mated tracking from high-quality videos having a powerful computer. A
tool is integrated to review and correct the tracking, but the lack of ergon-
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omy makes it sometimes difficult to use.

Figure 1.3 – IdTracker.ai workflow chart.

1.4 FastTrack: an original approach

We have previously listed the most used tracking software in different
fields of science. We can see that a fast software requiring little computing
power, versatile (i.e., that can be applied to any systems with a variable
number of objects), easy to install, and open-source is missing. To fill this
void, we designed a software called FastTrack [24]. This software contains
two distinct parts:

• An interface where standard image analysis procedures are imple-
mented to detect objects, and a tracking algorithm that allows keep-
ing the identity of objects from one image to another, fast and with
a low error rate.

• An ergonomic interface where the tracking can be checked and man-
ually corrected if necessary.

FastTrack has a different approach than the software previouslymentioned.
Instead of exploiting a high computational power to achieve a reliable
result without any human intervention, FastTrack implements a simple,
very general method. The few resulting tracking errors are left to manual
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corrections. In terms of result accuracy, both approaches lead to a quasi-
perfect tracking. In terms of speed, human interventions during the post-
processing are costly. However, the automatic tracking part is performed
much faster, and we noticed that using FastTrack is usually faster. From the
images to the trajectories, the duration of the whole process is notably re-
duced for small projects due to the fast installation and ease of use of
FastTrack. Besides, many researchers want to double-check the resulting
trajectories to ensure the reliability of the trajectories or get some sense
of their objects’ dynamics to orient the subsequent analyses, which is per-
formed natively in the FastTrack workflow. This solution has several advan-
tages, the first one being that it does not require any programming knowl-
edge. Any user can perform a perfect analysis in a very short time. More-
over, we will see in the following that the post-processing work can be es-
timated by an analysis of the geometrical and dynamic parameters of the
studied system, which allows the user to know if the software is adapted
to his needs. For many of the systems studied, the post-processing is only
a quick check. If the number of occlusions is too high, and a perfect track-
ing accuracy is necessary without having to resort to manual correction,
another solution must be considered.

FastTrack is distributed under a free software license and implemented
in a modular and fully documented manner. Each user can thus modify the
software at his convenience or contribute to it. The tracking algorithm is
decoupled from the detection and correction interface, which makes it ex-
tremely easy to integrate FastTrack into an existing project. The software
is easily installed in less than 5 minutes and is compatible with Linux, ma-
cOS, and Windows. It can run on modest configurations and Single Board
Computer (SBC) such as the Raspberry Pi.
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Chapter 2

Movies dataset

To demonstrate that FastTrack can analyze movies from various sys-
tems, we have compiled a collection ofmovies named the Two-Dimentional
Tracking Dataset (TD2). This dataset can be downloaded at https://data.
ljp.upmc.fr/datasets/TD2/. The films either come fromdata already pub-
lished in the literature or provided by the authors themselves. All the
movies are under a CC-BY-NC-SA license. Each movie is identified by a
3-letter code defining the system (e.g., ACT: active matter, ZFA: zebrafish
adult...) and three digits to index films from an identical system. TD2 cur-
rently regroups 41 films, including different types of objects of very differ-
ent nature and size

• 7 species of animals from fish to flies,

• cells,

• active particles,

• microfluidic drops,

• macroscopic objects such as ultimate players or cars.

A video giving a quick overview of all the systems used is available at http:
//www.fasttrack.sh/images/illustrations/mockups/trackingExample.webm.
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Another essential aspect to consider is the number of objects per film
and their possible appearances, disappearances, and overlaps. In 22 films
out of 41, the number of objects is variable, and objects come and go out of
the camera field during recording. In 19 films out of 41, objects may overlap,
creating an occlusion phenomenon that the software has to manage to
preserve the identity of the objects.

Figure 2.1 – TD2 dataset Thumbnail of the TD2 dataset.
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S1 Table. Two-Dimensional Tracking Dataset.

Description and credentials of the data that have been used for testing the FastTrack software. All movies in the dataset can be downloaded at http://data.ljp.upmc.fr/datasets/TD2.

Identifier Color
Number 

of images
Image size

Number 
of objects

Object type Short description Authors Reference Overlaps Preprocess

ACT_001 No 1,001 2040x2040 1141 Active particles Vibrated polar monodisperse discs in a liquid-like configuration. Olivier Dauchot 17 No No

ACT_002 No 1,001 1121x996 1085 Active particles Vibrated polar monodisperse discs in a cristalline-like configuration. Olivier Dauchot 18 No Yes

ACT_003 No 1,000 1728x1728 853 Active liquid Vibrated polar monodisperse discs. Olivier Dauchot 19 No Yes

ACT_004 No 998 4096x3072 Variable Active droplets Motion of water droplets in an oil-surfactant medium of squalane and monoolein. Olivier Dauchot 20 No No

ART_001 No 2,000 1280x1024 Variable Brine schrimps Brine shrimps (Artemia Salina nauplii) swimming. Raphaël Candelier 15 Yes No

BAC_001 No 74 907x866 Variable Bacillus Subtilis Growing colony of Bacillus Subtilis. Lydia Robert Unpublished Yes Yes

BLS_001 No 2,213 1024x1024 7 Black Scavengers Black scavengers walking in an arena. Juan Pablo Busso Unpublished No No

DRO_001 Yes 1,803 640x360 3 Adult fruit flies Blow-up of three fruit flies (D. Melanogaster) in an Y-maze assay. Benjamin de Bivort Unpublished No No

DRO_002 No 1,589 640x480 91 Adult fruit flies Fruit flies (D. Melanogaster) walking in an Y-maze assay. Very low resolution. Benjamin de Bivort 21 No Yes

DRO_003 Yes 927 1280x720 12 Adult fruit flies Fruit flies (D. Melanogaster) in a multi-chamber assay. Benjamin de Bivort Unpublished No No

DRO_004 No 3,490 602x228 15 Adult fruit flies Fruit flies (D. Melanogaster) in a multi-tubes odor assay. Benjamin de Bivort 22 No No

DRP_001 No 700 1224x476 Variable Droplets Round droplets evolving in a narrowing microfluidic channel. Lea-laetitia Pontani 16 No No

DRP_002 No 600 1224x477 Variable Droplets Polyhedral droplets evolving in a narrowing microfluidic channel. Lea-laetitia Pontani Unpublished No No

DRP_003 No 835 1223x434 Variable Droplets Polyhedral droplets evolving in a narrowing microfluidic channel. Lea-laetitia Pontani Unpublished Yes No

DRP_004 No 299 640x360 Variable Droplets Six-layers pattern of droplets in a diverging/converging microfluidic channel. Bibin M. Jose, Thomas Cubaud 23 No Yes

DRP_005 No 660 960x730 Variable Droplets Edge-fluorescent droplets evolving in a narrowing microfluidic channel. Lea-laetitia Pontani Unpublished No Yes

GRA_001 No 1,001 2040x2040 2043 Hard disks Vibrated isotropic bidisperse discs. Olivier Dauchot Unpublished No Yes

GRA_002 No 1,009 900x900 Variable Hard disks Motion of dense bidisperse hard particles close to jamming. Raphaël Candelier, Olivier Dauchot 24 No Yes

GRA_003 No 165 1470x1469 Variable Vibrated grains Motion of a pulled intruder in a dense set of bidisperse particles. Raphaël Candelier, Olivier Dauchot 24 No Yes

HXB_001 No 1,001 2040x2048 10 Hexbugs Tiny robots vibrated in a parabolic arena. Olivier Dauchot 25 Yes N/A

IND_001 No 2,255 512x512 Variable Plastic parts Plastic connectors for microfluidics moving on a conveyor belt. Some are isolated, some are overlapping. Raphaël Candelier Unpublished Yes No

IND_002 No 2,463 512x512 Variable PCB Small printed circuit boards (PCB) moving on a conveyor belt. Some are isolated, some are overlapping. Raphaël Candelier Unpublished Yes Yes

MED_001 No 2,134 640x480 2 Adult Medakas Two fish (Oryzias latipes) following a moving visual pattern. Hideaki Takeuchi 26 Yes No

MIC_001 No 693 854x480 2 Adult mice Two white mice interacting in a dark arena. Noldus Information Technology Unpublished Yes No

PAR_001 No 1,000 1024x1024 Variable Paramecia Paramecia swimming in an open field. Alexis prevost Unpublished Yes No

ROT_001 No 1,311 800x800 Variable Rotifers Rotifers (Rotifera) swimming in an open field. Raphaël Candelier 15 Yes No

SOC_001 No 600 1920x1080 23 Humans Aerial view of a soccer game. Raphaël Candelier Unpublished Yes Yes

TIS_001 No 241 301x301 Variable Neurons Developing neurons in the hindbrain of a GCaMP3 3dpf zebrafish larva. Total acquisition time: 30 min. Raphaël Candelier Unpublished No Yes

TIS_002 No 241 301x300 Variable Neurons Developing neurons in the optic tectum of a GCaMP3 3dpf zebrafish larva. Total acquisition time: 30 min. Raphaël Candelier Unpublished No Yes

TRA_001 Yes 1,171 1280x720 Variable Vehicles Aerial view of traffic. No Copyright Footage Unpublished No Yes

ULT_001 Yes 383 1280x720 Variable Humans Aerial oblique view of a sequence of Ultimate (flying disk) game. Paulin Huger Unpublished Yes Yes

ULT_002 Yes 953 1280x720 Variable Humans and disk Aerial top view of a half-field Ultimate (flying disk) game. Paulin Huger Unpublished Yes Yes

ZFA_001 No 15,000 1920x1080 5 Adult zebrafish Five adult zebrafish interacting. Gonzalo G. de Polavieja 13 Yes No

ZFA_002 No 2,000 1218x482 2 Adult zebrafish Two long-fin (TL) and normal fin (AB) zebrafish interacting. Benjamin Gallois Unpublished Yes No

ZFA_003 No 2,000 1217x471 3 Adult zebrafish Three Tupfel long-fin (TL) zebrafish interacting. Benjamin Gallois Unpublished Yes No

ZFA_004 No 2,000 1212x472 4 Adult zebrafish Four zebrafish (TL, AB) interacting. Benjamin Gallois Unpublished Yes No

ZFJ_001 No 200 524x338 14 Juvenile zebrafish Three weeks-old zebrafish swimming in a flow. Benjamin Gallois Unpublished Yes No

ZFL_001 No 72,000 736x736 39 Larval zebrafish Two hours of 6 d.p.f. larvae freely swimming in an enclosed arena, recorded at 10Hz. Raphaël Candelier Unpublished Yes N/A

ZFL_002 No 1,130 721x696 5 Larval zebrafish High-speed imaging of the response of confined zebrafish larvae to an acoustic pulse. Framerate: 1kHz. Raphaël Candelier Unpublished Yes No

ZFL_003 No 1,870 1000x500 3 Larval zebrafish Three larval zebrafish attracted by a flow with a dye. Raphaël Candelier Unpublished Yes No

ZFL_004 No 14,830 1024x768 24 Larval zebrafish Larval zebrafish in a 24-multiwell plate. Elim Hong, Margherita Zaupa Unpublished No Yes



Chapter 3

Design and implementation

Testing can only prove the
presence of bugs, not their
absence.

Edsger W. Dijkstra

3.1 Tools used

The choice of tools and libraries used in designing software is paramount,
and several selection factors must be taken into account.

The first criterion to consider is the license. We chose to put FastTrack
under a free license (GPL3), which implies that the language used and the
libraries must also be under compatible licenses. The choice of an open-
source license is preferable in the case of scientific software [25]. Poor
code quality naturally leads to what is called a technical debt. Choosing
the "quick and dirty" implementation instead of a time-costly but main-
tainable solution can hurt the project in the long goal by costing time
and effort to run and maintain the code. Open-source can help to solve
this problem. First, it is a strong incentive to produce clean code, knowing
that it can be read, checked, and used by other people. Moreover, coop-
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erative work can help solve bugs faster than a closed-source model. Fi-
nally, open-source projects, well documented, can make accessible tools
for non-technical scientists that would otherwise have been impossible.

The second criterion is to carefully choose the libraries used, consider-
ing the future of the software so that the developers do not have to change
libraries if their capabilities prove insufficient as the software evolves. Ma-
ture libraries offering long-term support are thus preferred.

In this perspective, FastTrack has been implemented in C++ using the
Qt [26] and OpenCV [27] libraries for the graphical interface and image anal-
ysis, respectively. Unit tests are performed using the Google Test library.

C++ is a computer language created by Bjarne Stroustrup in 1985 [28].
Offering high performance, it is standardized by the International Organi-
zation for Standardization (ISO). It is the language of choice for image anal-
ysis applications and the creation of complex graphical user interfaces.

Qt is an open-source GUI library created by Haavard Nord and Eirik
Chambe-Eng, two physicists, in 1991 when developing ultrasonic image
analysis software. With extensive documentation and a large community,
it is very mature. It allows creating graphical user interfaces for Linux, Mac,
and Windows from the same source code.

OpenCV is an open-source image analysis library created by Intel in
1999. Very complete and efficient, it has become the reference in image
analysis for both academic and commercial applications.

Google test is a suite for automating unit tests in C++. OpenCV notably
uses it. The purpose of unit tests is to verify that each part of the program
works as expected. This practice has several advantages: detecting more
easily possible errors during the implementation of new features and fa-
cilitating software development when it grows in size to avoid any error
inclusions. This series of tests are automatically performed on each new
commit, see Section 3.3.1 for more information.
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3.2 Implementation

FastTrack’s operation can be divided into three parts: the objects’ de-
tection (detection), the objects association from one image to another
(matching), and finally, a manual correction step (post-processing).

Each analysis begins with the opening of an image sequence or a video
file. The user can choose between two types of interfaces, an interactive in-
terface where he can only open one film at a time. It allows the user to see,
in real-time, the impact of parameters on the images, which facilitates the
determination of optimal analysis parameters. A second interface allows
many movies to be opened simultaneously, either by giving a parameter
file or selecting the parameters in the interface. It is useful when the user
wants to analyze many movies for which he already knows the optimal
analysis parameters.

Both interfaces can be used in a complementary way. The user can find
the optimal parameters with the interactive interface and then automate
the analysis of many movies by tracking them in batches in the software.

3.2.1 Detection

The purpose of the detection step is to extract each object’s kinematic
parameters, which will be used later during the association step. FastTrack
includes a collection of image analysis filters that allow the user to opti-
mize object detection without external software.

BackgroundCalculation Each analysis starts by calculating a background
image. If the user already has a previously saved background image, he can
directly open it in the software. Otherwise, three calculation methods are
possible:

• Projection of maximum intensity.

• Projection of minimum intensity.
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Figure 3.1 – FastTrackworkflowchart. The workflow divides into threemains parts:
detection, matching, and post-processing. Agindicates the few steps that require
user input. Sample dataset: ZFJ_001.

• Projection of the average intensity.

All three methods are based on the same principle. The user chooses n

images in the sequence. The software will make a projection of the stack
along the time component, either the maximum, minimum or average of
each pixel. In practice, the maximum (resp. minimum) will be projected
if the objects are darker (resp. lighter) than the background so that the
objects disappear and thus obtain the background. The user can make
the registration of each image before the projection in order to correct for
possible minute camera movements.
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Registration The user can choose to register the images. Three methods
are proposed in the software. Each method is implemented in a pyramidal
way, i.e., the registration is first carried out on a degraded image to roughly
correct the displacement. The correction is then refined by increasing the
image quality until the original quality is reached. This speeds up the pro-
cess, as registration is often a relatively time-consuming process.

The first method proposed is phase correlation [29]. It corrects the
translational movements between two images using the Fourier theorem
in the frequency domain. This method is swift but remains limited to small
translational movements only.

The second proposed method is the Enhanced Correlation Coefficient
(ECC) [30] method. In FastTrack, it is restricted to correcting translational
and rotational movements only. It consists of using the correlation coef-
ficient as a measure to find the best transformation between two images.
This method’s advantage is that it is relatively fast since this non-linear op-
timization problem can be solved linearly. It is efficient for noisy images
and having photometric distortions.

The third method is a method based on the identification of key points.
It allows for correcting movements and deformations (homography). The
key points (about 500) are automatically determined on two images thanks
to the ORB algorithm [31]. These points are then associated two by two us-
ing the hamming distance. The RANSAC algorithm [32] is used to find the
best transformation between the two images. This method, more precise,
requires a sufficient image quality to be able to discern key points.

Figure 3.2 provides a rough comparison of the performance of the three
methods. Using two recordings of the TD2 dataset, we benchmarked both
the accuracy – with the root mean squared difference (RMSD) of pixel in-
tensities between the reference and the corrected image – and the relative
computation time. Choosing the right method to obtain the best accuracy
depends on each movie’s characteristics. However, one can use the rule of
thumb that if the objects to track occupy a large fraction of the total area,
the best accuracy is more likely to be obtained by using ECC and using the
features-based method otherwise. However, as shown in Figure 3.2-C, the
ECC method is generally slower by an order of magnitude. Hence, we rec-
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Figure 3.2 – Image registration. Two recordings with severe drift are used for the
benchmarking (top:DRO_001, bottom:ULT_001). (A) Comparison of a frame (ma-
genta) with the first frame (green) and magnification of details in the scene. (B)
The root mean square deviation (RMSD) of pixel intensities after registration onto
the first image, averaged over all time frames and normalized by the RMSD with-
out registration, for the three registrationmethods. Error bars: standard deviation
across time frames. (C) The relative average computation time of the three regis-
tration methods, normalized by the total number of pixels in the movie (arbitrary
units). Error bars: standard deviation across time frames.

ommend using the features-based method in the general case and long
movies.

Binarization Each image is then binarized by subtracting the background
image and defining a threshold value. In the interactivemode, the user can
see the impact of the parameters on the image, which makes it easier to
adjust the binarization threshold. The software also detects if the back-
ground is darker (resp. lighter) than the objects allowing to have at the
end of this operation a binary image where the pixels belonging to the ob-
ject are equal to 1, and the pixels belonging to the background are equal
to 0.
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Morphological operation A set ofmorphological operations (dilation, ero-
sion, opening, etc.) can be performed on the binary image to improve de-
tection and eliminate possible artifacts. Different shapes and sizes of ker-
nels are available.

ROI The user can select a region of interest and exclude the rest of the
image from the analysis. This speeds up the analysis process and avoids
the detection of interfering objects. In interactive mode, this ROI can be
drawn directly on the image.

Sorting To exclude objects that are too small (e.g., noise) or too large (
e.g., two objects overlapping each other), the user must select two charac-
teristic sizes. The objects are colored either red or green in the interactive
mode depending on whether their size belongs to the selected range.

Extracting kinematic parameters Based on the binary images, the soft-
ware will detect the contour of each object. An essential step in any track-
ing procedure is the extraction of the parameters used in the matching
step. It is generally with the choice of these quantities that the tracking
algorithms can differ to be more specialized for a given type of object.
In FastTrack, the parameters extracted are the center of mass, the orien-
tation, the area, and the object’s perimeter. These quantities are quickly
calculated and general enough to adapt to a wide variety of objects.

To do this, FastTrack calculates the object’s equivalent ellipse from the
second-order moments of the binary image [33]. This procedure is acceler-
ated by directly using the contour thanks to Green’s formula [34]. The ob-
ject’s orientation is given by the ellipse’s major axis and is defined in the
interval [0;π[. The direction in the interval [0; 2π[ is determined by project-
ing each object’s pixel on the major axis of the equivalent ellipse, and cal-
culating the skewness of the distribution of distances of these projected
points to the center of mass. The sign of the skewness is a robust indicator
of the object’s asymmetry along its principal axis. For deformable objects,
the previously calculated direction may be different from the direction of
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motion. For example, in the case of zebrafish, it bends its body periodically
to move. Only the head is directed at the motion. This is why the object is
decomposed into two equivalent ellipses. The user can then choose which
ellipse best represents the direction of the movement.

Figure 3.3 – Detection Details of the detection phase for one object of the movie
ZFJ_001. (A) raw image. (B) binarized image obtained by subtraction the back-
ground image and applied a threshold. (C) equivalent ellipse of the object. (D)
two equivalent ellipses, useful for a deformable object.

3.2.2 Matching

The purpose of the association step is to keep the objects’ identity from
one image to another. To do so, FastTrack uses a method derived from
[13], which takes advantage of the fact that each object’s position, area,
perimeter, and direction changes very little from one image to another.

For each pair of objects (i, j) belonging to two successive images, two
costs are calculated: a hard cost that is a threshold set to 1 or +∞, and
a soft cost that is a normalization parameter. This terminology is brought
from statistical physics, where particles can have soft, long-ranged inter-
actions or hard, binary contacts. The hard cost is defined as follows:

{

hi,j = 1 if ri,j < hd

hi,j = inf else
(3.1)

with ri,j the distance between objects i and j, hd a threshold representing
themaximum travel distance allowed between two successive images. The
hard cost allows discarding obvious impossible assignments to speed up
the computation. It is essential with a non-constant number of objects
because it allows new objects entering the field of view to be assigned
with new identities.
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The soft cost is then defined as follows:

ci,j =
δri,j
sr

+
δαi,j

sα
+

δAi,j

sA
+

δPi,j

sP
(3.2)

where δαi,j is the angular difference, δAi,j the area difference and δPi,j the
perimeter difference between objects i and j. To compare these quantities
expressed in different dimensions and magnitudes, one need to normal-
ize them. We define the soft normalization coefficients: sr, sA, sP and sα.
These coefficients represent the typical value of the parameter that they
normalize. We can construct the cost matrix:

Ci,j =

{

ci,j if ri,j < hd

∞ else
(3.3)

This cost matrix is, in general, rectangular because the number of objects
can vary from one image to the following. A memory parameter can be
selected to assign a new identity to an object that disappears on more
than the selected number of images. In this case, the row corresponding
to this object is removed from the cost matrix and the object cannot be
assigned in the subsequent images. We want then to find the best possible
matching. This problem is called the rectangular assignment problem and
can be solved exactly by using the Hungarian algorithm, see Annexe C.
FastTrack uses the Kuhn-Munkres implementation in C++ to solve it.

3.2.3 Automatic tracking parameters

Finding the optimal tracking parameters is necessary to have a track-
ing accuracy as good as possible. FastTrack can automatically determine
a neutral set of soft normalization factors sr, sα, sA, and sP to help the
user. These factors allow comparing terms of very different nature and
amplitude into a single cost function. The set of parameters automatically
found by FastTrack will give each term the same weight inside the cost
function. Therefore, the user must perform parameters’ fine-tuning, with
some system insight, to get the best set of parameters possible.

It is intuitive to use the standard deviation of the increments of each
kinematic parameter. However, some trajectories are needed to estimate
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the standard deviations. We set up an iterative, rapidly-converging algo-
rithm to perform this talk.

Let us use ZFJ_001, a movie with many occlusions and objects of dif-
ferent sizes to illustrate the algorithm’s details. For simplicity, let us use
only the position, angle, and area as kinematic parameters. There is no
gain to expect by adding the perimeter parameter because objects’ shapes
are very similar. The Figure 3.4-A. shows a snapshot of this movie.

To evaluate the distributions of dr, dα, and dA, we start by tracking
the movie setting the hard parameters and random soft parameters. The
resulting distributions are shown in Figure 3.4-C to E. For kinematic param-
eters whose differential values can be positive or negative, the distribution
is fitted by a Gaussian function, and the soft parameter is set to the stan-
dard deviation. For instance, with the angular difference dα the fit reads:

f(dα) =
1

sα
√
2π

e
− dα2

2s2α (3.4)

and sα (orange bar in Figure 3.4-D) is stored as the soft parameter to use
during the next iteration. The computation of the soft parameter for the
displacement sr is different since distances can only be positive. Assuming
that the displacements along the x and y axes follow two independent
Gaussian processes, the resulting displacement follows a χ distribution
with 2 degrees of freedom, and the fit reads (see Annexe D for the detailed
derivation):

f(x) =
x

( sr
σ0
)2
e
− 1

2
( x

sr
σ0

)2

(3.5)

where sr (orange bar in Figure 3.4-C) is stored as the soft parameter to use
for the next iteration and σ2

0 = 2− µ2
0 =

4−π
2 .

Once all soft tracking parameters have been derived from the distri-
butions, the software recomputes new trajectories with these updated pa-
rameters. This iterative process, depicted in Figure 3.4-B, is run until the
tracking parameters converge. In practice, the convergence is very fast, re-
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gardless of the initial position in the parameters space. We drew 100 sets of
seed parameters from uniform distributions spanning large intervals, and
convergence has been attained in very few iterations for all parameters
Figure 3.4-F.

FastTrack’s implements this algorithm by taking the kinematic quanti-
ties’ sample standard deviation for a subset of 200 images in the movie
to increase speed and efficiency. The convergence criterion implemented
is that soft parameters should vary less than 10−3 of the corresponding
parameter.

To characterize the resulting tracking, we computed the number of
swaps with respect to the ground-truth:

Pswap =
Nswap

Nobj − nap
(3.6)

with Nswap being the total number of swaps, Nobj the total number of ob-
jects on all frames and nap the number of times a new object appears. If the
number of objects is constant and noted n, then nap = n and Nobj = nT ,
with T the number of frames in the recording, such that Pswap can be sim-
plified:

Pswap =
Nswap

n(T − 1)
(3.7)

Pswap converges very fast to a value that is nearly-optimal. For 77%
of the parameter sets Pswap is decreased or remain equal, with an aver-
age drop of 0.0119 (155% of the converged value), while for 23% of the
parameter sets Pswap is increased with an average rise of 0.0011 (14% of
the converged value). Thus, the expected difference is −0.0090 (116% of
the converged value) for this movie. Therefore, the automatic parameters
are an excellent starting point in the general case. The user can fine-tune
the weights given to the kinetic parameters to consider the specificities of
each movie.

We computed the converged soft parameters ŝr, ŝα and ŝA for several
sampling rates of τ > 1 (Figure 3.4-H to J). We used these parameters to
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track the ZFJ_001 movie at different timescale τ (see Section 4.2) and
compute Pswap. A comparison between Pswap and Pinc (see Section 4.2) as
a function of τ is shown in Figure 3.4-K. This comparison illustrates that
Pswap is a noisier measurement of a movie’s trackability than Pinc and con-
firms that the iterative algorithm produces trajectories with a number of
errors that is close to the statistical limit.

Figure 3.4 – Automatic tracking parameters. (A) Snapshot and blow-up of
ZFJ_001 movie, with definition of ~dr and dα (B) Scheme of the algorithm deter-
mining the tracking parameters automatically. (C-E) Distribution of displacements
dr (in pixels), angular differences dα (in radians) and area differences dA (in pix-
els) when the default parameters of the software are used on ZFJ_001, for τ = 1

(black). The corresponding χ and Gaussian fits are displayed in red. Orange bars:
resulting soft parameters. (F) Evolution of sr , sα and sA with algorithm iterations
for ZFJ_001. Left: iterations 1 and 2; right: iterations 2 and 3. A hundred runs with
random initial values are shown. The run with the software default parameters
is highlighted in red. (G) Evolution of Pswap with algorithm iterations, same runs.
(H-J) Evolution of the converged parameters ŝr , ŝα and ŝA as a function of the
timescale τ for ZFJ_001. (K) Comparison between Pswap (blue crosses) obtained
with the converged parameters and Pinc (red dots) for ZFJ_001. The solid black
line is the logistic fit of Pinc.
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3.2.4 Manual correction

FastTrack integrates a manual tracking correction tool. Once the anal-
ysis is completed, the result can be displayed in an ergonomic interface
created solely for this purpose. The user can replay the film by superim-
posing the results of the analysis on the original movie. The user can inter-
actively see each object’s parameters. More importantly, the user can also
correct tracking errors by deleting objects or exchanging objects’ identity.
This interface is designed with ergonomics and performance in mind. Key-
board shortcuts and an on-the-fly selection of objects by clicking on the
video allow the user to check and correct the trajectories quickly. It is also
possible to record a film with the tracking results overlay superimposed.

This manual correction interface makes it possible to shift the work-
load from the traditional pre-processing of data to the tracking result’s
post-processing. In the following chapter, we will see how this method
can save the user time, the correction time being in general lower than
the conception and computational time of system-specific tracking algo-
rithms.

3.2.5 Output

After the tracking, the software generates several files containing the
results and the tracking parameters. The result file is named tracking.txt,
and it contains the raw data of the analysis with one image and one object
per line. This format is compatible with the most used analysis software
(R, Python, Julia, spreadsheet). Examples in Python and Julia are available
in the documentation to get started.
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Figure 3.5 – FastTrack CI/CD workflow. The CI/CD workflow is divided into two
parts: the CI tasks (blue rectangle) and the CD tasks (red rectangle). The CI must
be performed successfully in order to integrate the changes into the project.

3.3 Deployment

3.3.1 Continuous integration delivery

The deployment is one part that should not be overlooked in software
design, and two aspects are crucial to consider. From the user’s point of
view, the software must be easy to install on supported platforms and
with fewer bugs as possible. From themaintainer’s perspective, the deploy-
ment part must be easily achievable and reproducible so that patches and
new functionalities can be quickly integrated. From the developer’s per-
spective, the source code’s consistency and correctness have to be tested
at each change to avoid introducing bugs and facilitate collaboration be-
tween developers. With this in mind, FastTrack follows the CI/CD philos-
ophy [35] [36] taking advantage of the recent GitHub Actions system, see
Figure 3.5.

Continuous Integration (CI) is a set of practices designed to integrate
changes quickly into the project in an automated manner. It is coupled
with the automation of unit testing. FastTrack takes advantage of GitHub’s
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CI/CD system called Actions. With each new (commit1) or new (pull-request
2), a series of tests is automatically triggered. These tests will check the
proper functioning of the tracking algorithm and the formatting of the
source code. Only the changes that pass the tests can be integrated into
the project, which guarantees the reproducibility of the analyses and the
source code and documentation consistency.

Continuous Delivery (CD) automates the delivery of the software in its
final form. It allows changes to be quickly integrated into the software with-
outmanually doing it for each supported platform. In the case of FastTrack,
the CD is implemented using GitHub Actions, and a new version of the soft-
ware is compiled for Linux, macOS, and Windows with each new commit
that is integrated into the main branch. Stable versions of the software are
compiled at regular intervals of the development. This system is a signif-
icant time-saver for multi-platforms software like FastTrack. It allows the
user to always have the latest patches and features available. The develop-
ers can collaborate easily on the project, and the maintainer can quickly
produce binaries for the supported platforms.

FastTrack natively supports the three most commonly used platforms:
Linux systems with an AppImage that supports all distributions, Windows
with an installer, MacOSwith an App. The latest stable version can be down-
loaded from the website http://www.fasttrack.sh, the nightly build ver-
sion from https://github.com/FastTrackOrg/FastTrack/releases. The
procedure to compile the software itself is available in the developer’s
documentation.

3.3.2 Documentation

FastTrack offers extensive documentation that covers the installation
and use of the software. Developer documentation with a documented API
and a compilation guide is also available for users wanting to integrate
FastTrack in their software or workflow.

1Action to send the list of changes made in the version management system
2Action to request the addition of changes to the project
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User User documentation is available at https://www.fasttrack.sh/UserManual/
docs/intro.html. This documentation is generated from the project, and
users can contribute to it at https://github.com/FastTrackOrg/FastTrack.
It contains all the information needed to use the software and instruc-
tional videos to help the user get started with the software.

Developer Developer documentation is available at https://www.fasttrack.
sh/API/index.html. It is automatically generated by the Doxygen software
from the documentation in the FastTrack source code. It contains all the
information necessary for developers who want to modify or contribute to
FastTrack.
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Chapter 4

Results

4.1 Performance

To assess FastTrack’s performance, we ran a benchmark comparing
FastTrack, Idtracker.ai, and ToxTrac. These software have substantial intrin-
sic limitations compared to FastTrack. Both require an acceptable framer-
ate and image quality, with sufficient contrast and number of pixels per
object and a constant number of objects in the movie that must be de-
fined before the tracking. The benchmark was performed on a dataset
consisting of a selection of videos provided with each software, and some
movies from the TD2 dataset that meet the three software requirements.
idtrackeraivideoexample and 100Zebra are available on the idtracker.ai
website https://idtrackerai.readthedocs.io/en/latest/data.html. Guppy2,
Waterlouse5, andWingedant on the ToxTrac SourceForgehttps://sourceforge.
net/projects/toxtrac/files/ScientificReports/. Movies provided in im-
age sequence format were converted losslessly to a video format using
FFmpeg since idtracker.ai and ToxTrac could not directly process image se-
quences.DRO_002 andACT_002 were preprocessed with a custom script
to detect the objects before performing the tracking. Also, only the first
100 images of DRO_002 were used to reduce the computing time.

The benchmark between idtracker.ai and FastTrack was performed on
a workstation with an Intel i7-6900K (16 cores), 4.0 GHz CPU, an NVIDIA
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GeForce GTX 1060 with 6GB of RAM GPU, 32GB of RAM, and an NVMe SSD of
250GB running Arch Linux. The parameters were set by trials and errors in-
side the graphical user interface of the two software. The tracking duration
was recorded using a script calling the software command-line interface.
The average tracking duration and the standard deviation were computed
over five runs except for DRO_002 (2 runs) and ACT_002 (1 run) due to
the very long processing time. Idtracker.ai was evaluated with and without
GPU capability except for 100Zebra, DRO_002, and ACT_002 due to the
very long processing time.

The benchmark between ToxTrac and FastTrack was performed on a
computer with an Intel i7-8565U (4 Cores), 1.99 GHz CPU, 16 GB of RAM, and
an NVMe SSD of 1 TB running Windows 10. The parameters were set by
trials and errors in the graphical user interface. The average tracking dura-
tion and the standard deviation were computed over five runs using each
software’s built-in timer feature. The accuracy was evaluated manually us-
ing the built-in review feature implemented in each software. The number
of swaps and the number of non-detected objects were counted in each
movie, and occlusion events were ignored in this counting.

The accuracy was computed as follows:

A =
nobjnimg − (2Nswap +Nundetected)

nobjnimg
(4.1)

with Nswap the number of swaps, Nundetected the number of non-detected
objects, nobj the number of objects, and nimg the number of images. For
100Zebra, the accuracy was computed only over the 200 first images. All
the results are presented in Figure 4.1. As expected, FastTrack is several
orders of magnitude faster than idtracker.ai and significantly faster than
ToxTrac on all tested videos. That is mainly due to the method used, id-
tracker.ai using deep learning and ToxTrac cost optimization and the iden-
tity preservation algorithm. All software performed exceptionally well in
terms of accuracy, except idtracker.ai on ZFJ_001 probably because the
resolution is not good enough. FastTrack’s ergonomic post-processing in-
terface can be used to reach a perfect tracking accuracy within a few more
minutes. This built-in manual correction is not possible in ToxTrac and
lacking ergonomy in Idtracker.ai.

46



Figure 4.1 – Benchmark of FastTrack, idtracker.ai, and ToxTrac. (A-B) Comparison
of the computation time for the tracking of variousmovies with the same worksta-
tion. Whenever possible, CPU and GPU variants of idtracker.ai have been run. Only
the first 100 images of DRO_002 have been used. (C-D) Accuracies of the result-
ing trackings. "perfect" means an accuracy of exactly 1. The trajectories computed
by the CPU and GPU variants of idtracker.ai being rigorously similar, we only show
the GPU results. For 100Zebra, the accuracy was computed by taking into account
only the first 200 images.

Altogether, FastTrack offers many assets compared to idtracker.ai and
ToxTrac. The software is more versatile than its concurrents andmore com-
fortable to use. The total time spent to track a movie is globally lower, in
some cases by orders of magnitude, without sacrificing tracking accuracy.

4.2 Dataset classification

Analyzing movies from systems as different as those compiled in TD2

is a real challenge. That is partly due to the recording conditions that can
be very diverse and make object detection more complex. Two recurring
difficulties can be discerned: variations in illumination (e.g., reflection in
GRA_001, shadows in SOC_001) and overlapping objects (e.g., HXB_001).

Inmovies from the academic world, systems are often designed to limit
or circumvent these two difficulties. It is common to find movies with a
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uniform and constant illumination. Also, quasi-2D confinement and a re-
stricted number of objects in the camera field reduce the number of oc-
clusions.

In TD2, 23 movies have an illumination good enough to be analyzed
directly with FastTrack. The others had to undergo a specific individual
pre-processing before being analyzed. Two movies with too many occlu-
sions were discarded (HXB_001 and ZFL_001) because they could not be
analyzed with FastTrack nor by any other software. The remaining 39 films
could be analyzed with FastTrack without difficulty. The Kuhn-Munkres al-
gorithm being of complexity O(n3) the calculation time is generally quite
fast. Each film was then manually corrected using the built-in tool to get
the ground-truth tracking.

FastTrack is designed to keep the post-processing phase as light as
possible. However, this phase workload varies greatly depending on the
movie being analyzed. This workload can be quickly estimated for a given
film by computing what we call the probability of incursion.

First, we define the incursion as the exit of an object from its Voronoi
cell (see Annexe B), defined at a time t, after a travel time τ . The number
of incursions depends on

• the distribution of the displacements,

• the density of objects,

• the geometry of the Voronoï cell

• the degree of motion alignment of the displacements.

To consider the objects’ density, we defined the reduced length ρ = r
√
d

where r is the length and d the density. We remark that typically ρ = 1 is
corresponding to the length between two objects, and ρ = 0.5 is the length
between an object and its Voronoï cell boundary.

Assuming that the dynamic is uncorrelated with the geometric proper-
ties of the Voronoï cells, we can write the incursion probability as follows:
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Pinc =

∫ ∞

0
R(ρ)pinc(ρ) dρ (4.2)

where R(ρ) the distribution of the reduced displacement at the timescale
τ , and pinc(ρ) the geometrical probability of incursion.

pinc(ρ) depends only on the geometrical properties of the objects’ ar-
rangement. We can calculate pinc by taking a Voronoï cell and determining
the proportion of the angles for which a displacement of ρ implies an incur-
sion in a neighboring Voronoi cell. In other words, see Figure 4.2, we take a
circle of radius ρ centered on the object and count Σ the proportion of the
circle that lies outside the Voronoï cell. That will give us p(ρ) = Σ(ρ)

2π the
geometric probability of incursion for one cell. Then, to take into account
the diversity of size and shape of Voronoï cells, we average over all the
cells of the movies pinc(ρ) = 〈p(ρ)〉cells.

Intuitively, we see that pinc goes from 0 when ρ → ∞, to 1 when ρ ≫ 1.
The precise shape of the geometric probability is sensitive to the density of
objects, compact (e.g., ACT_002), sparse (e.g., PAR_001), and to the overall
size of the system when walls restrict it (e.g., ZFA_001).

Figure 4.2 – Geometric probability of incursion: Voronoï cells in black and objects
black dots with typical ρ length. Circle of radius ρwith portions inside the Voronoï
cell in blue and outside in red. The geometric probability for one cell is computed
as p(ρ) = Σout(ρ)

Σout(ρ)+Σin(ρ)
= Σout(ρ)

2π

The distribution R(ρ) is shown in Figure 4.3.B for three timescales τ .
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A graphical way of calculating Pinc is to take the intersection of the ar-
eas under R(ρ) and pinc(ρ). In the regime where R(ρ) and pinc(ρ) are well-
separated, the resulting value of Pinc are low but highly sensitive to the
number of swaps in the tracking. Indeed, the swaps create a bump in R

at values of ρ close to one that can artificially increase Pinc of several or-
ders of magnitude. Unless the ground-truth trajectories are accessible, the
single value of Pinc at τ = 1 can not be used as a measure for a movie’s
trackability.

A timescale-varying analysis will allow us to extract more robust quan-
tifiers. As pinc(ρ) does not depend on τ and R(ρ) is shifted to the high
values of ρ when τ increases, we can expect that Pinc(τ) has a sigmoid-
like shape. We thus computed Pinc for various τ . If τ > 1 we take integer
values (i.e. keep one frame every τ ), and if τ < 1 we linearly interpolated
the displacements (i.e. multiplied ρ by τ ). We represented the results in
Figure 4.3.C for the 39 movies that could be tracked in the dataset.

Strikingly, all Pinc followed a logistic curve when τ is log-scaled. There-
fore we used a fit of the form:

Pinc =
L

1 + e−k(log(τ)−x0)
(4.3)

and, noting τ0 = ex0 , the fitting function can be rewritten as:

Pinc =
L

1 + τ0
τ
k

(4.4)

The fits are shown in Figure 4.3, and are valid for all the movies in the
dataset. We can make all fitting curves collapse on a single master curve.
We show in Figure 4.3.D that Pinc

L
plotted as a function of klog( τ

τ0
) follows

the standard logistic sigmoid function:

f(x) =
1

1 + e−x
(4.5)

An exciting outcome of this approach is the ability to determine the
optimal framerate at which experiments should be recorded. It is indeed
a recurrent experimental question: a high temporal resolution is prefer-
able to reduce the number of incursions and ease the tracking. , however,
it may not always be accessible (e.g., limited sensor rate, intense illumina-
tion required as the exposure time drops) and generates large amounts
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of images to store and process. A low temporal resolution can make the
tracking difficult by increasing the number of incursions. We define τ1, the
timescale at which Pinc reaches the inverse of the total number of objects
on all frames Nobj , i.e., the probability of a single incursion in the whole
movie. As τ1 defines the onset of incursions and the possibility of swaps
in the tracking procedure, it can be used to indicate each movie’s sam-
pling quality. Movies with τ1 < 1 already have incursions at the current
framerate and are thus undersampled. Whereas for movies with τ1 > 1,
the current framerate can be degraded without triggering incursions and
are thus oversampled. Besides, τ1 is directly the resampling factor that
one should use to have minimal movie size without generating incursions.
Using Equation 4.4, it reads:

τ1 = τ0(LNobj − 1)
1

k (4.6)

We computed and ordered the values of τ1 in Figure 4.3.E for the whole
dataset. It appears that three quarters (30) of the movies are oversam-
pled. Any difficulty in the tracking should not be expected concerning in-
cursions. On the other hand, nine movies are undersampled. These record-
ings were already known to be difficult to track, three of them (ACT_003,
ACT_004, and GRA_003) have required specific algorithms for analysis,
and two (BAC_001, ZFA_001) required dedicated software.

Then, we tested to what extent this characterization is robust to swaps
in the trajectories. Starting from the ground truth trajectories ofACT_002,
we degraded the tracking quality by introducing random swaps between
neighboring objects. This process is controlled by a degradation rate δ,
define as the number of artificial swaps divided by the total number of ob-
jects on all frames. Such a degradation affects the small timescales more
severely, and the multi-scale approach takes on its full interest. As de-
picted in 4.3.F, the fits of Pinc(τ) are insensitive to degradation up to a
remarkably high-level of δ ≈ 10−3. Therefore, even poor-quality tracking
can be used as an input for this method. As long as the distribution of
displacements is only marginally affected, the output remains unchanged.
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Figure 4.3 – Characterization of the TD2 dataset. (A) Illustration of the dynam-
ics at various timescales inACT_002. The Voronoï cells (dashed white) and the
displacements of a particle at τ = 1, 10 and 100 are overlaid. (B) Geometric prob-
ability of incursion pinc (red) and distribution of the reduced displacement ρ at
three different timescales τ (black) in ACT_002. The probability of incursion Pinc

is the intersection of the areas under the two curves. (C) Pinc as a function of τ
for the whole dataset (symbols). The solid lines are fits with a logistic function
(see text). (D) Scaling of the reduced quantities Pinc/L as a function of k.log( τ

τ0
)

on the standard logistic sigmoid function (solid black). (E) Classification of the
movies in the dataset by increasing values of τ1 as defined by eq. (4.6), with fit-
ting parameters determined over a logarithmic scale for Pinc. Movies with τ1 < 1

are undersampled while movies with τ1 > 1 are oversampled. (F) Comparison of
Pinc(τ) for different levels of degradation δ (symbols) and corresponding logistic
fits (solid curves) in ACT_002. (G-I) Evolutions of the fitting parameters L, k and
τ0 as a function of the degration δ in ACT_002

4.3 Parameters optimization

One may also want to determine the optimal tracking parameters, i.e.,
with a Pswap as close to 0 as possible. Provided that the ground-truth
is known for at least one movie, for example, by a careful manual post-
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processing. It is possible to leverage FastTrack’s speed to explore the pa-
rameters space and minimize Pswap. The optimized parameters found that
way can be used to track other similar movies with a minimal error rate.
The workflow of the method is depicted in Figure 4.4-A. As the exploration
of the whole parameters space requires to perform at least thousands of
trackings, such an approach is only made possible by the command-line
interface (CLI) and the speed of execution of FastTrack.

Let us first apply this approach to gain insight into the influence of hr,
i.e., the maximal distance allowed for an object to travel before consid-
ered lost. The Figure 4.4-B displays how Pswap evolves as a function of hr
for three recordings in the dataset. For low values of hr, Pswap is essen-
tially imposed by the distribution of the objects’ displacements since a
high number of errors are generated when the objects are not allowed to
move sufficiently. For higher values of hr, the distribution of the distances
to the neighbors (as defined by the Voronoï tesselation) starts to influ-
ence Pswap as the algorithm becomes sensitive to incursions. It can also
be more easily fooled by entries and exits at the boundaries of the region
of interest when the number of objects in the scene varies. In between, for
most recordings, there is a gap yielding the minimal probability of error.
That is particularly true when the objects are densely packed, since the
distribution of distances to neighbors is sharper, like for DRP_001 where
Pswap drops to zero on a range of hr. The acquisition framerate also has an
essential role in this effect. With highly time-resolved movies, the distribu-
tion of displacements is shifted to the left (i.e., short distances), leading
to a clear separation between the distribution of displacements and the
distribution of the distances to the neighbors, resulting in low values of
Pswap. In contrast, for poorly time-resolved movies like ZFJ_001 the two
distributions overlap, and Pswap is always bound to high values.

Similar analysis can be performed on the other tracking parameters.
The Figure 4.4-C represents Pswap as a function of both hard parameters
hr and ht for PAR_001, and a thin optimal segment appears. The Figure 4.4-
D represents Pswap as a function of the two soft parameters sr and sα, and
an optimal ratio lies at sr

sα
≃ 0.63. Altogether, a set of optimal parameters

can be derived and used for the processing of similar recordings.
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Figure 4.4 – Optimization of tracking parameters based on Pswap. (A) Scheme of
the optimization workflow: on top of the detection/matching/post-process flow
chart, the ground truth is used to compute Pswap and create a feedback loop on
the tracking parameters. (B) Pswap (black) as a function of the maximal distance
parameter hr (in pixels) for three typical recordings. Vertical lines for DRP_001
indicate that Pswap drops to 0. The distributions of displacements between suc-
cessive frames (blue) and of distances to the neighbors (orange) are also shown
for comparison. (C) Pswap as a function of the maximal distance parameter hr

(in pixels) and the maximal disappearance time ht (in frames) for PAR_001. Soft
parameters are set to sr = 95 and sα = 60. (D) Pswap as a function of the nor-
malization distance parameter sr (in pixels) and the normalization angle sα (in
degrees) for PAR_001. Hard parameters are set to hr = 210 and ht = 90.
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Chapter 5

Conclusion and perspective

In these chapters, we saw how we implemented a versatile and easy
to use tracking software using open-source tools. Taking advantage of the
GitHub Actions system, we automated the testing and the deployment of
the software, increasing confidence, and promoting collaboration. We have
shown that FastTrack can compete with state-of-the-art tracking software
for many use cases. At the same time, we compiled a dataset of movies,
allowing us to benchmark tracking software over a wide variety of systems.
We classified the dataset based on the probability of incursion and, doing
so, defined a criterion to determine the optimal framerate of acquisition.
We have finally shown how to determine the best set of tracking parame-
ters by leveraging FastTrack’s full capabilities.

FastTrack’s original approach, shifting theworkload on the post-processing
phase while keeping the pre-processing as light as possible, allows the
use of FastTrack on a wide variety of systems. The post-processing phase,
mainly a swift checking of the tracking and small corrections, can be done
directly inside the software in an interactive and ergonomic environment.
FastTrack allows users to trackmovies quickly without any computer knowl-
edge.

FastTrack’s approach does not prevent human inputs, mainly in the
post-processing phase, to obtain a perfect tracking accuracy. It will be with-
out inconvenience for many users who will need a human checking in any
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case. However, users who want a perfect tracking accuracy without human
input will have to turn onto other tracking software.

It is important to note that the source code of FastTrack is available
with a fully documented API. Power users can specialize the software with
a custom detection phase or a custom cost function tailored to their sys-
tem to circumvent any encountered limitation. The FastTrack command-
line interface allows to embed the software in a high-level programming
language like Python or Julia and integrate it inside an existing workflow.

Overall, FastTrack gives any user the power to quickly analyze their
movies on a relativelymodest computer and power-user to build a custom-
tailored software. The feedback we have encountered more frequently is
how to analyze the tracking results. The standardized output leaves the
user free to choose the analysis tool. An answer to this request will be
to develop analysis add-ons integrated into FastTrack if needed. These
add-ons could be thematic (e.g., rats behavior, soft matter, etc.), and each
one will have a specific set of functions to compute meaningful quanti-
ties specific to this domain and system. Another perspective that can be
envisioned is to include the possibility of live tracking inside the software.
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Appendix A

FastTrack user interface
preview

Figure A.1 – FastTrack’s user interface FastTrack’s main window with ZFJ_001
movie opened.
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Figure A.2 – FastTrack’s user interface FastTrack’s main window with ZFJ_001
movie opened and parameters setup for the tracking.

Figure A.3 – FastTrack’s user interface FastTrack’s tracking review with ZFJ_001
opened after the tracking. The user can check and correct tracking errors.
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Appendix B

Voronoï diagram

B.1 Definition

The Voronoï diagram is a partition of a spatial plan containing points
into convex polygons, such as each polygon contains exactly one point.

Figure B.1 – Exemple of a Voronoï diagram computed with one image of ZFJ_001.
Voronoï vertices represented with orange points, seed points with blue points,
finite Voronoï ridges with black lines, and infinite Voronoï ridges with dashed-
black lines.
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B.2 Construction

In general position 1, the dual graph of the Voronoï diagram is the De-
launay triangulation. The Delaunay triangulation is a triangulation where
every circumcircle is an empty circle. The circumcenters of Delaunay trian-
gles are the vertices of the Voronoï diagram.

Figure B.2 – Delaunay triangulation and Voronoï diagram. Delaunay triangulation
in black, circumcircles in grey and Voronoï diagram in red.

1An arrangement of points with no three collinear.
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Appendix C

Hungarian algorithm

C.1 Definition

The Hungarian algorithm is a combinatorial optimization problem that
solves the so-called assignment problem in polynomial time [37]. Since
1957, it has been known as the Kuhn–Munkres algorithm [38] after that
James Munkres reviewed it as strongly polynomial. First O(n4), several im-
plementations exist with a complexity of O(n3) [39–41].

C.2 Description

Problem: We consider four jobs J1, J2, and J3 that need to be executed
by four workers W1, W2, and W3, one job per worker. The objective is to
minimize the total cost 1. In this example, we choose the simplest form of
the problem with a square matrix.

1http://www.hungarianalgorithm.com
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J1 J2 J3 J4

W1 14 27 92 59

W2 38 43 50 17

W3 10 42 64 67

W4 88 32 83 89

Step 1: subtract the row minimum from each row:

0 13 78 45 (−14)

21 26 33 0 (−17)

0 32 54 57 (−10)

56 0 51 57 (−32)

Step 2: subtract the column minimum from each row:

0 13 45 45

21 26 0 0

0 32 21 57

56 0 18 57

(−0) (−0) (−33) (−0)

Step 2: Covers all 0 with a minimum number of lines:

0 13 45 45

21 26 0 0 x

0 32 21 57

56 0 18 57 x

x

Step 4: Find the smallest element k not covered, substract k to all un-
covered elements and add k to all elements that are covered twice:

0 0 32 32

34 26 0 0

0 19 8 44

69 0 18 57

Repeat step 3 and 4 until there is exactly the same number of lines
to covers all the 0 than the number of lines in the matrix. The optimal
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assignment is given by taking the set of 0 with one zero by line and by
column, the cost by taking the value of these O in the initial matrix:

0 0 24 24

42 34 0 0
0 19 0 36

69 0 10 49

In this case the total cost is 127 with the assignment {J1;W1}, {J2;W4},
{J3;W3} and {J4;W2}.
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Appendix D

Fitting of the distribution of
displacement

The displacement is the square root of a sum of squares of two in-
dependent gaussian variables (∆l =

√

(∆x)2 + (∆y)2), thus the displace-
ment follows a χ distribution with 2 degree of freedom. The standardized
χ distribution with 2 degree of freedom reads:

f0(x) = xe−
x2

2 (D.1)

with the mean µ0 =
√
2π
2 and the variance σ2

0 = 2− µ2
0 =

4−π
2

The generalized χ distribution with 2 degree of freedom, A a shift and
B a scaling reads:

f(x) =
x−A

B2
e−

1

2
(x−A

B
)2

with the mean µ = µ0B + A and the standard deviation σ = σ0B with µ0

and σ0 the mean and standard deviation from the standardized χ distribu-
tion. Substituting by A = µ− µ0

σ
σ0
and B = σ

σ0
we obtain:

f(x) =
x− µ+ µ0

σ
σ0

( σ
σ0
)2

e
− 1

2
(
x−µ+µ0

σ
σ0

σ
σ0

)2

(D.2)

We can approximate that A = µ − µ0
σ
σ0

= 0 in the large majority of
cases leading to:

f(x) =
x

( σ
σ0
)2
e
− 1

2
( x

σ
σ0

)2

(D.3)
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Part II

Assaying chemical preference
of the young zebrafish
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Chapter 6

Introduction

6.1 The chemical perception

The chemical senses are one the oldest sensory system [42]. They are
themost used sensorymodality and observed in a wide range of taxa, from
unicellular [43] to mammalian. Some features and basics principles are
highly conservated across phyla [44,45], andmediate several behaviors like
predator avoidance, food-finding, and mating necessary to the survival of
any species.

Fish are immersed in a complex chemical environment at any time and
have evolved a refined sensory system to perceived and interpret these
chemical stimuli. For fish, chemical perception ismediated by three senses:
olfaction (smell), gustation (taste), and a common chemical sense. Unlike
terrestrial species, where substances perceived by smell and taste differ
by the medium of transport of the molecules, fish taste and smell through
the samemedium: water. The solubility of compounds in water determines
the type of compounds that can be transported and perceived. Therefore,
chemical perception is non-directional and persistent. The distance trav-
eled and the perceived concentration depend on the diffusion and convec-
tion of the medium, determining the perception threshold and the com-
pound’s residence time in the environment. The chemical perception is
extremely specific, being contained in the molecular structures and the
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complex mixture of chemicals.

Mechanisms of perception have beenwell studied for diverse fish species
[46], but highly complex directed behaviors like homing migration or food-
finding are still poorly understood [47]. For example, fish can find food in
complex environments like turbid and turbulent waters, where the percep-
tion is fragmented. Deciphering these mechanisms and their associated
neural mechanisms will significantly advance the comprehension of the
animal kingdom’s most used sensory modality.

One fish species, the zebrafish, is an emerging model for studying goal-
driven behaviors. At the larval stage (6 days post-fertilization), the animal
is transparent, and it is possible to observe the brain activity with cellular
resolution using light-sheet microscopy [48]. The development of virtual
reality assays makes it technically possible to associate some neuronal
networks’ activity to the observed behavior. Using this technique; it was
possible to gain insights into several behaviors, such as prey capture [49],
optomotor response [50], phototaxis [51], rheotaxis [52], and thermotaxis
[53].

The development and functioning of the fish sensory organs, partic-
ularly in the zebrafish, have been well characterized. However, there are
few behavioral studies on chemical perception and chemically-oriented
navigation. Several milestones have to be achieved before using virtual
reality assays to study chemically-driven navigation. One needs to find
and characterize products that elicit robust and attractive behaviors. The
space of possibilities is vast, and completing this task will necessitate
a high-throughput setup to explore combinations of products, concen-
trations, and fish ages. In a second time, when a product that elicits a
robust and attractive response will be characterized, studying realistic
chemically-driven navigation will require a setup capable of reproducing
turbulent flows where the fish is immersed and submitted to a complex
chemical environment with fragmented perception.

In the next sections, we will present the fish’s sensory organs and re-
view experimental setups used in the literature to characterize the ze-
brafish’s chemical perception at the larval and adult stage. Then we will
present two experimental setups that we built to study the chemical per-
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ception of zebrafish. Finally, we will present and discuss some results that
we obtain using these setups.

6.1.1 Olfaction

The olfactory organ of the fish, see Figure 6.1, consists of two struc-
tures located in the animal’s snout [46]. Each structure consists of a cav-
ity called the olfactory chamber connected to the outside by an entrance
and an exit nostril. The inside of the olfactory chamber is lined with the
olfactory rosette consisting of two rows of olfactory lamellae. The olfac-
tory epithelium, where the olfactory receptors are located, is placed on
these lamellae. The olfactory organ’s exact organization and position can
vary depending on the fish species, for example, with the addition of a
ventilation cavity as an extension of the olfactory cavity.

Figure 6.1 – Olfactory system, reproduced from [46]. The olfactory organ of Labeo
bata reproduced from [54], (I) is the inlet and (O) the outled channel, (OR) olfac-
tory epithelium, (OT) olfactory tract and (OB) olfactory bulb.

The olfactory epithelium has a 100µm thick pseudostratified columnar
structure [46]. It can be separated into a sensory and a non-sensory ep-
ithelium. The sensory epithelium consists of three types of cells: receptor,
supporting, and basal cells; the non-sensory epitheliumof goblet cells and
non-sensory ciliated cells. There are five receptor cells implicated in the
olfactory perception: ciliated cells, microvillous cells, crypt cells [55, 56],
kappe cells [57], and pear-shaped cells [58]. They express olfactory recep-
tors of the OR, V1R, V2R, and TAAR families. Receptor cells have various
sizes, shapes, and distribution inside the epithelium, see Figure 6.2.
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Figure 6.2 – Schematic representation of the olfactory epithelium. Ciliated neu-
ron in yellow with round somata, slender dendrite, and cilia. Microvillous neuron
in dark blue with microvilli at the surface. Crypt neuron in red with ovoid shape,
microvilli, and cilia. Kappe neuron in green with microvilli. Pear-shaped neuron
in light blue with cilia.

Receptor cells project directly into the olfactory bulb located in the
brain, in turn sending signals to the telencephalon and diencephalon [59].
The olfactory bulb in the teleost is a structure of four concentric layers:
olfactory nerve layer (ONL), glomerular layer (GL), mitral cell layer (MCL),
and internal cell layer (ICL). The olfactory information is transmitted by
the receptor cells to the olfactory bulb [60] then in the forebrain [61] as a
topographical odor map. The olfactory bulb’s neuronal connections have
been particularly studied in the zebrafish [62, 63], the olfactory bulb com-
prised approximately 20 000 neurons [64] and 140 glomeruli [65]. Each
receptor cell expresses only one type of olfactory receptor [66–69] ex-
cept in a subpopulation of olfactory sensory neurons [69]. Cells expressing
the same receptor are projecting into the same olfactory bulb glomeruli
[70]. Glomeruli responding to similar odorants are grouped into domains
within the olfactory bulb, forming chemotopic maps. Odorants can acti-
vate glomeruli outside their domain, leading to a fragmented map inside
the olfactory bulb [71]. Moreover, the odor encoding is hierarchized with
first-order features encoded by large domains and second-order features
by local activity patterns within the domain [72, 73].

The olfactory bulb projects into two higher brain structures, the telen-
cephalon (Dp and Vv) and the diencephalon (habenula, posterior tuber-
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cle, and hypothalamus). The neuronal activity evoked by olfactory cues in
these areas is currently poorly understood [63].

In the zebrafish [74,75], the olfactory organ develops from the olfactory
placodes at the 6-10 somites stage (about 15 hours post-fertilization) of
the embryonic development. The olfactory cavity begins to appear at the
28-30 somites stage (31 hours post-fertilization). Approximately 50 hours
post-fertilization, the olfactory epithelium and the receptor cells appear.
When the embryo exits from the chorion at 4 days post-fertilization, the
olfactory organ continues its morphological development, but the cytolog-
ical organization remains largely unchanged. At 40 days post-fertilization,
the bridge between the entrance nostril and the exit nostril is completely
formed, separating the currents going out and coming in from the olfactory
cavity. The addition of lamellae to the olfactory rosette continues through-
out the life of the zebrafish.

6.1.2 Gustation

The gustatory organ of fish is composed of taste buds that are not
localized in a single location but rather spread all over the body surface
and directly contacting chemical substances. Taste bud histology has been
studied for different fish [76–80], and they usually have an elongated and
ovoid shape, see Figure 6.3. They sit on a small dermal papilla and extend
throughout the epidermis’ thickness protruding from the surface. The taste
bud is constituted of a sensory (dark cells with microvilli and light cells
with one large microvillus) and a non-sensory (Merkel-like basal cells) ep-
ithelium. The apical ending of the sensory cells that protrude from the
epithelium is called the receptor field and is covered with a mucous cap.
The number of sensory cells in a taste bud varies considerably depend-
ing on the fish species, 2 200 on the zebrafish up to 1 000 000 in large
Ictalurus nebulosus [81].

Taste buds are distributed all over the fish’s body, especially in the
mouth, on the lips, and the skin. Their distribution and concentration vary
according to the species. Three different cranial nerves innervate them: fa-
cial (VII), glossopharyngeal (IX), and vagal (X). The facial nerve transmits
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information from the extra-oral taste buds; the glossopharyngeal nerve
transmits information from inside the oral cavity; the vagal nerve trans-
mits information from inside the oropharyngeal cavity. The taste system
is anatomically divided into two distinct parts: nerves IX and X projecting
into the brain’s vagal lobe and nerve IV into the facial lobe. Connections
to higher areas of the brain differ slightly from one species to another. It
has been shown in Ictalurus nebulosus [82] that these two systems have
distinct roles in fish feeding behavior.

Figure 6.3 – Schematic drawing of a typical taste bud of teleosts from [83]. Dark
cells (Cd), light cells (Cl) and Merkel-like basal cells (Cb). Marginal cells (Cm). Ce
epithelial cells. Dermal papilla (DP). (TBN) taste bud nerve. (BL) basal lamina. (RA)
receptor area. (VC) capillary vessel.

In zebrafish [84], the taste buds (approximately 2 200) are located on
the lips, in the oropharyngeal cavity on the barbels, and on the head’s
ventral and dorsal side. Each taste bud contains 20 to 23 cells. Projections
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of the zebrafish gustatory system have been studied in detail [85] and form
a complex network that can be summarized graphically see Figure 6.4.

Figure 6.4 – Gustatory system of the zebrafish. Neuronal connections of the fish
taste system reproduced from [85].

The development of the gustatory organ has been studied in the ze-
brafish [83]. The first taste buds appear at 3 or 4 days post-fertilization
and are located on the lips and the gill arches. The taste buds in themouth
and oropharyngeal cavity appear 4 to 5 days post-fertilization. The taste
buds on the head do not appear until 12 days post-fertilization, and it is
not until the juvenile stage (30 to 40 days post-fertilization) that the bar-
bels appear. Note that the appearance of the taste buds coincides with the
appearance of feeding in the larvae.

6.1.3 Common chemical sense

Fish also have a third chemical sense called the common chemical
sense. It consists of bipolar neurons called solitary chemosensory cells
(SCCs) embedded in the epidermis. Their distribution and number vary
greatly depending on the species. Therefore their study is difficult, and
their function and neuronal connections are poorly understood.

In the zebrafish [86], SCCs have been described as a set of 2-7 villi of
0.5 to 1 µm length emerging from the cell body at embryo and larval stage.
In adults, SCCs possess a single villus of 3µm length.

The first SCCs appear at 3 days post-fertilization. Their density increases
until 25 days, where their number stabilizes at 1.106 per mm2 with 2 to 5
times more SCCs on the zebrafish’s head than on its body.
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6.2 Behavioral studies

6.2.1 Behavior

The olfaction and gustation have been shown to mediate several fish
behaviors. It is not easy to distinguish the contribution of each sense in the
observed behavior. Moreover, this contribution seems to be dependent on
fish species.

A well known and impressive behavior encountered inmany fish species
is the homing migration. A typical example is salmons that perform three
migratory phases throughout their life. One of them, the upstream migra-
tion from the ocean to their home stream, has been shown to rely on an ol-
faction imprinting [87,88]. Little is known about the imprinting mechanism,
but experiments suggest that it relies on a mixture of odors perceived dur-
ing the juvenile stage in the fish’s home stream.

Feeding is one of the most important behaviors. It relies on several
senses for food detection and selection [89]. A stereotyped behavioral se-
quence was shown to exist in many species [90] consisting in a step of
arousal mainly mediated by olfaction [91], then a step of localization of
the food mediated by chemical and visual cues. The last step of inges-
tion is triggered primarily by the gustation [90]. The impact of each sen-
sory modality varies significantly with the species. For example, the yellow
bullhead has the entire feeding sequence mediated by taste, whereas ic-
talurid catfish prey detection was abolished when olfaction was blocked.
The chemical substances that attract fish depend on the species [90], and
response to a mixture is higher than isolated compounds in general.

Olfaction [92] as well as the gustatory system [93] has been shown to
play an essential role in reproduction. Non-anosmic males exposed to wa-
ter taken from a tank with a gravid female developed courtship behaviors,
except for some species like the three-spined stickleback where the gusta-
tion can replace the olfaction. Complete courtship repertoire necessitated
the presence of other sensory cues.

Fright reaction occurred when a fish perceived an alarm substance se-
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creted by a conspecific. This reaction differs between species and involves
seeking cover, rapid swimming, or freezing. It is accepted to be mediated
by olfaction [94–96], but other sensory cues are not ruled out.

Most of the works done on the zebrafish chemically induced behaviors
focus on developing the model for pharmacological safety screening [97],
drugs addiction [98], and ecology [99], enabling a low cost and genetically
manipulable model. Behavioral studies of the chemical perception of ze-
brafish, adults, or at the larval stage have been done through various ex-
perimental assays that will be presented in the following sections.

6.2.2 Conditioned place preference

The conditional place preference (CPP) experiment is a type of Pavlo-
vian conditioning. Pavlovian conditioning consists of associating a condi-
tioned stimulus (generally neutral) with an unconditioned stimulus. After
learning, the animal exhibits a conditioned response to the conditioned
stimulus when presented alone. The most classic example is associating
a bell’s sound (conditioned stimulus) to the release of a food smell (un-
conditioned stimulus). After learning, the animal can respond to the bell’s
sound alone, as demonstrated by Ivan Pavlov on dogs [100].

This approach was applied to test the response to various chemical
stimuli in adult zebrafish [101]. The experiment follows a classical 3-step
design. The first step is to evaluate the fish’s base-line preference. The
animal is placed in an aquarium with two or three distinct areas differenti-
ate by walls’ pattern and color, see Figure 6.5. The fish is tested to find out
which side it naturally prefers. In this experiment, the distinctive walls’ pat-
tern and color play the role of the conditioned stimulus. The second step
is the conditioning phase. The fish is restrained to its least preferred area,
and the substance to be tested injected into the water (unconditioned
stimuli). The last step consists of repeating the first step to assess the
change in preference of the animal.

Several chemical substances have been tested using this method [102–
104]. Notably, a strong and robust cocaine-induced CPP response in WT ze-
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brafish was shown [105], with 85% of the fish changing preference to a
cocaine concentration of 10mg.L−1 and lower and higher concentrations
resulting in a lower response. A positive response of adult zebrafish to a
single ethanol exposurewas shown [106] in a similar experimental setup. It
should be noted that this is also the first study to use an automated track-
ing system to calculate animal preference. Zebrafish showed a positive
response for D-amphetamine [107, 108], salvinorin A [109], cocaine [109],
spiradoline [109], nicotine [110] and ethanol [110].

We see that CPP has been used extensively to study the response to
chemical stimuli in zebrafish. There is a strong emphasis on products that
cause addictive pathologies in humans. Nevertheless, this protocol has
several limitations, the most important being that it involves several sys-
tems of perception as well as memory. During the conditioning phase, the
learning is based on the visual perception of the environment (pattern on
the aquarium walls), the chemical perception of the tested compound, the
association of the two stimuli coming from different sensory organs, and
the memorization of these perceptions. Secondly, the time window to per-
form the experiment (minimum two days) and the difficulty to automate
it is a hindrance to use the CPP to study the effect of many chemicals in a
high-throughput manner. Furthermore, this protocol is too complex to be
used with larval zebrafish and coupled with neuronal imaging.

6.2.3 Multi well-plate

A widely used experimental apparatus to assess chemical compounds’
effect on zebrafish larvae and embryos is the well-plate device [111]. One
or more larvae is placed in each well in a bath of a chemical. Larvae are
then recorded swimming in the chemical compound, and the kinematic
parameters of the animal are extracted. In the case of embryos, devel-
opment is monitored after exposure. The advantage of this technique is
that it requires only a single experimental apparatus. It quickly produces a
large amount of data with up to 48 wells per plate. Software already exist
to extract automatically relevant behavior parameters from video record-
ings [112].

76



Figure 6.5 – Conditioned place preference apparatus. CPP setup for zebrafish re-
produced from Brennan Caroline, Queen Mary University of London. The middle
wall is removed for the first and third step of the CPP.

With this kind of assay, many chemical compounds have been tested
[113–115], as well as seizure liability [116], and several behaviors [117–120].

Thewell-plate device allows for an easy and automatic high-throughput
screening of chemicals. Turnkey commercial solutions like the Zebrabox
from ViewPoint exist, and custom setups are relatively easy to build. How-
ever, this system suffers limitations like the fact that one can not assess
the fish preference. Precisely controlled exposure, or repeated exposure
through cycles of exposition/flushing, are not available. Therefore this sys-
tem is not adapted to investigate fish’s chemical preference and chemical-
driven navigation.

6.2.4 Direct introduction

Some authors have tried to quantify chemically induced behavior by
introducing a chemical compound directly into the tank and looking at
the percentage of time spent close to the source. Notably, an attraction
concentration-dependent to adenosine and ATP for adult zebrafish [58]
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Figure 6.6 – A Zebrabox from Viewpoint. Zebrabox, the most used solution for
well-plates experiments.

and to GCDA and nicotine for zebrafish larval [121] was shown. A strong
aversion to cadaverine, an odor associated with decomposing bodies, was
shown using a tank with a single compartment or a tank with two com-
partments and an intermediate zone where the fish can changes compart-
ment [122], see Figure 6.7.

Very easy to implement, these types of experimental devices lack con-
trol in the concentration perceived by the animal. Diffusion and advection
are neglected in the experiment, and the concentration is poorly known
and not reproducible. Moreover, these setups exclude the realization of
long experiments due to the homogenization of the product.

Figure 6.7 – Diffusion setups from [122]. A.One channel diffusion setup, blue cross:
chemical introduction point.
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6.2.5 Flow

Another type of device that allows the product’s concentration inside
the tank to be quickly changed was used on adult zebrafish [123], see Fig-
ure 6.8. Like in the multi-well experiment, chemically induced behavior
changes were monitored by the animal’s kinematic parameters.

Several food odors were shown to produce a significant increase in
speed and number of bursts; social odors from conspecific produced a sim-
ilar response; alert odors result in a dive to the bottom of the tank and an
increase in frozen time; decomposition odors result in more turns. The crit-
ical points noted with this device is the inter-and intra-experimental vari-
ability. The authors showed that less than a third of the odors used in the
study produce reproducible results between trials of the same individual.
Some odors such as cadaverine, blood, skin, and food odors resulted in in-
consistent responses for the same individual. Most odors produce poorly
reproducible results for different fish.

Figure 6.8 – Flow setup from [123].

This setup novelty is to allow adult animals to evolve realistically in a
3D environment and to have a better knowledge of the concentration per-
ceived by the animal than in a diffusion setup. Therefore, direct preference
assessment is not accessible, and comparisons with existing quasi-2D se-
tups like the well-plate are difficult.
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A more controlled setup to study chemical preference in fish is the
underflow device. The first mention of this type of device dates back to
2013 [124]. In this setup, the tank is separated into two distinct compart-
ments using a laminar flow, see Figure 6.9. The animal can then choose
between the two compartments during the experiment without any con-
straint, and the experimenter can put a chemical to test on one side. The
interface between the two compartments self-heal with a characteristic
time depending on the flow velocity. The time spent on each side, the
number of interface crosses, and the animal’s kinematic parameters are
extracted from video recordings to assess the fish’s preference.

Several psychoactive substances have been tested on adult zebrafish
[125,126] and showed attraction by diazepam, fluoxetine, risperidone, and
buspirone; neutral response to ethanol and clonazepam; an aversion to
acid pH, two food odor extracts, and conditioned water took from a tank
with chemically and physically stressed fish.

This setup has several advantages. The product’s concentration is per-
fectly known because the diffusion and advection are mitigated and con-
trolled by the flow. The fish’s preference can be directly measured as the
fish can choose freely to go inside or outside the product. Long exper-
iments can be performed with this setup, and product delivery precisely
controlled in time. However, some disadvantages remain, like the absence
of a standardized or turnkey setup and the volume of water and chemicals
required that can be high.

Figure 6.9 – Flow setups from [126] The flow is separating the tank in two lines
(left-right).

From this overview of the scientific literature, we see that the study of
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chemical perception and behavioral response to chemical stimuli is not
standardized. Direct comparisons between studies carried out in various
independent laboratories are not easily possible. In this context, we have
developed Dual, an open-source, easy to replicate, low cost, do it yourself,
and scalable experimental setup. Using the underflow principle, Dual al-
lows studying chemical preferences in larvae and juvenile zebrafish in a
standardized, high-throughput, and comparable way.
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Chapter 7

Experimental setups

To study the young zebrafish chemical perception, we build two com-
plementary setups: one to screen products, the other to recreate more
natural flows, and studies the chemically-driven navigation.

7.1 Dual

The design and implementation of experimental setups that are high-
throughput, bias-free, and scalable are essential to behavior characteriza-
tion. We present Dual, a high-throughput experimental setup that is easy
to build, scalable, and costs less than 2 000 euros.

7.1.1 Overview

Dual is an underflow system built on the same principle as [124]. It
consists of creating two compartments in a tank through a laminar flow
without any physical separation. As we have seen previously, this system
allows a rigorous knowledge of the compound’s concentration to which
the animal is subjected. Diffusion and advection due to the water move-
ments caused by the fish are avoided. The interface between the two com-
partments is well defined and self-healing when disturbed, with a charac-
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teristic time depending on the flow rate.

To create the laminar flow, Dual uses a system of four syringes, coupled
two by two: when two syringes push, two syringes pull, see Figure 7.2. The
syringes are connected to the inputs and outputs of a millifluidic chip and
generate a laminar flow with constant volume by having two syringes in-
jecting at one side and two aspirating at the other side. The fish is placed
inside the millifluidic chip, see Figure 7.6. Thanks to a computer-controlled
manifold composed of six microvalves, each syringe can be filled indepen-
dently. One can then build an experimental protocol by stacking several
filling and injection cycles and choosing what to fill the syringes with.

To assess fish preference, one can first create a cycle with water on the
two sides as habituation and control. Then add a cycle with a chemical
on one side and water on the other side to study the fish preference. An-
other example is to fill the two sides with a chemical for a given amount of
time and then clean the system with water on the two sides, reproducing
the type of experiment performed with the multi well-plate device. A large
variety of experiments can be designed with none or few setup modifica-
tions.

Dual is a custom-built system using several components stemming
from the makers’ community (Openbuilds, Markerbeam, Arduino), which
allows great flexibility in the conception and fast iteration to adapt the
project if necessary. All the components, blueprints, and other CAD files
needed to build and assemble Dual are freely available. Dual can be built
at a low-cost (see the bill of materials Appendix E) without prior knowl-
edge of mechanics or electronics. The tools necessary for realizing Dual
can be found in a FabLab and necessitate little formation.

7.1.2 Construction

For the construction, Dual can be separated into five main parts. The
mechanical system comprised the static structures, the motor, and mov-
ing parts. The millifluidic system is constituted of the millifluidic chip, the
microvalves, the syringes, and connecting tubes. A camera, lens, infrared
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Figure 7.1 – Four Dual setups in parallel.

filters, and LEDs form the imaging system. The electronic system is a cus-
tom PCB controlling themotor and themicrovalves. Finally, a software that
controls all the setup automatically.

Mechanical

Dual’s central mechanical part is a motorized syringe pump that cre-
ates the laminar flow. It is built around the V-Slot Linear Actuator from
OpenBuilds fixed on a structure build using OpenBuilds linear rails and 3D
printed fixations. A stepper motor with a gearbox (85:1) drives the actuator,
and two microswitches limit the range of motion, see Figure 7.2.

It is crucial to isolate the animal from the exterior environment and of
any light sources. A box that contains the millifluidic chip and lighting sys-
tem is constructed using MakerBeam rails andmedium-density fibreboard
sheets. A PMMA infrared transparent sheet is placed on the removable top
panel to record the experiment while blocking visible light. The box con-
tains, see Figure 7.3, two LEDs for visible and infrared light, a diffuser for
homogeneous lighting, and a support to fix the millifluidic chip.
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Figure 7.2 – Dual mechanical structure Dual custom pull-push syringe.

A structure to maintain the camera on top of the box and secure the
Raspberry and the power alimentation is built using OpenBuilds rails. It is
better to build Dual on top of an optical breadboard to facilitate fixation
and enhanced stability. All these elements need to be fixed firmly and lev-
eled to avoid any bias that could disturb the animal during the experiment.

Figure 7.3 – Box The box isolates the animal from the exterior.

Millifluidic

The millifluidic chip that serves as a tank for the fish, see Figure 7.6, is
laser cut in PMMA plastic that is transparent and presents excellent optic
properties. The different parts are bonded using acetic acid [127]. The fish
is restrained in the center by 3D printed and micro-machined nets, and
profiled inputs and outputs allow a laminar flow.

Sixty-milliliters syringes are fixed with 3D printed fixations on the ac-
tuator and connected with 2.2 mm diameters tubing to the microvalves
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Figure 7.4 – Valves manifold Top: Valves system schematic. Bottom: Truth table of
the system.

circuit. Six three-ports microvalves are connected and form a circuit that
allows performing cycles of filling and injection, see Figure 7.4.

Imaging

The setup is lightened by transmission using an infrared LED placed
at the bottom of the box. Homogenous lighting is obtained by placing a
diffusor (tracing papers or white plastic sheet) at the box’s mid-height. Ex-
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Figure 7.5 – Millifluidic chip schematic.

Figure 7.6 – Millifluidic chip exploded view.

periments are recorded with a Chameleon 3 camera mounted with a 23-25
mm EFL lens connected directly to the computer via USB3. A PMMA infrared
transparent sheet is placed between the camera and the lens to block vis-
ible light and only retrieve Dual’s infrared lightening.

Electronic

The electronic system links the analogic mechanical and millifluidic
system to the software. A custom printed circuit board (PCB) has been
designed for Dual. It contains an Arduino Nano microcontroller, six half
H-bridges controlling the microvalves based on the logic signals of the
Arduino; a Big EasyDriver stepper motor controller to control the motor
speed from a logic output of the Arduino; a potentiometer to control the
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intensity of the LED lighting. All the electronics and the syringe pump mo-
tor are powered by a 550W ATX computer power supply connected to the
PCB.

Software

A software has been specifically developed to control the setup. The
graphical user interface is developed using Qt, and the camera is inter-
faced to the software using the FLIR Systems SDK providedwith the camera.
The electronic system is controlled through the Arduino Nano flashed with
a custom sketch and communicating to the software via USB serial. The
software allows manual control of each system element, such as the mi-
crovalves, the camera, and the motor. It is possible (and advisable) to cre-
ate custom experimental protocols, a simple text file, containing the nec-
essary instructions to automate the filling and aspiration cycles to build
experiments.

Two versions of the software are available, one running on a modern
desktop computer that can drive four Dual, another running on a Rasp-
berry Pi4 that drives only one Dual. The latest solution offers better scala-
bility since each Dual is independent. A custom version of Ubuntu 20.04 is
preinstalled with the camera’s SDK and the software. It can be downloaded
at https://github.com/LJPZebra/dual_control/releases and flashed on
an SD card or USB device. It is designed to work with a 7-inch touchscreen
display allowing a compact and easy-to-use control.

7.1.3 Construction and usage

For our needs, we have built four Duals that we ran in parallel, see
Figure 7.1. The construction requires a laser cutting machine, a 3D printer,
and workshop tools. It took about two weeks to build the four devices.
The construction does not require any specific knowledge, and access to
a FabLab is sufficient to carry out this project and find the required tools
and help in the event of difficulties.
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In practice, using Dual is effortless. Once the experiment template is
created, the only manual task remaining is to place the fish in the milliflu-
idic chip, close the device, and play the experiment template. It is also
necessary to check that the suction containers neither run out of water
or chemical. It is then possible to do experiments with minimal manual
interventions.

A recurring problem we have encountered is the fouling of the milliflu-
idic system. The dye used to visualize the flow ends up clogging the valves
and tubes and can stop the system in the middle of an experiment. This
problem can be solved by taking preventive habits. After each day of exper-
iments, the millifluidic system has to be flushed with water. It can be per-
formed automatically using an experimental template designed to wash
all the microvalves thoughtfully. Microvalves can regularly be passed in an
ultrasonic bath to clean them. The tubes have to be changed when worn
out, which can append after several weeks of intensive usage. Another en-
countered problem was the syringe plunger wear. After several months of
usage, the plunger’s latex cap loses water-tightness, and the plunger has
to be replaced, which can be done very quickly in less than 2 minutes.

In this project, we did not use all the Dual’s potential. This setup can
be adapted to other animals like adult Danionella a promising new model
for neuroscience. It can assess other preferences, notably the preference
to light (phototaxis) with the integrated visible LED.

7.2 The Tropical River

Studying chemical perception and chemically-driven navigation in a
turbulent aquatic environment like the one fish encounters naturally re-
quires an experimental device capable of creating controlled flows and
chemical jets. We have created an experimental device capable of deliver-
ing a temperature-controlled laminar flow while recording the fish in both
visible and infrared light. An injection nozzle is used to create turbulent or
laminar jets within this laminar flow.
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Figure 7.7 – The Tropical River Schematic of the experimental setup.

7.2.1 Description

Structure

The device’s structure consists of a channel assembled from transpar-
ent polycarbonate sheetsmachined precisely by themechanical workshop
and fixed with Norcan and Makerbeam rails to form a channel (60x10x10
cm), see Figure 7.7. A LED panel is placed under the channel to illuminate
the setup by transmission in visible light. The setup can be illuminated
from above by a ring of infrared LEDs or by transmission by covering the
LED panel with a PMMA infrared transparent sheet. A Chameleon 3 camera
is placed above the channel to record the experiments and connected to
the computer via USB3. A mirror is placed at 45 degrees of inclination from
the horizontal on the channel’s side to control the fish’s vertical position.
The whole channel is set inside a box constructed with Norcan rails and
plywood sheets to isolate the fish from the surrounding environment.

Hydrodynamic

The canal is supplied at one end with water from the building’s water
system. Before entering the canal, tap water is filtered by an activated
carbon filter and heated by a water bath. A network of straws is placed
in the channel to obtain a laminar flow, and a solenoid valve can adjust
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the flow rate. The other end of the channel is left free. The outgoing water
is redirected to the building’s wastewater network because the products
tested do not require any special treatment before being disposed of. The
water height inside the channel can be controlled by modulating the dyke
height placed at the end of the channel.

It is possible to dilute a product inside the channel by using an injec-
tion nozzle located directly at the water supply outlet. A magnetic stirrer
is placed inside the channel, before the straws network, to facilitate dilu-
tion. Another injection nozzle can be placed inside the channel, after the
straws network, to create a turbulent or laminar jet. It is supplied by an
external tank, and the flow rate can be adjusted by gravity and delivery
automatically controlled by a valve system.

Figure 7.8 – The Tropical River Example of a turbulent jet visualized using blue
visible colorant.

Software

The control software allows to retrieve and control all the variables
of the experiment. By default, it allows selecting the flow rate, tempera-
ture, injection valves, and camera settings. A vital function of the software
is the ability to build experimental protocols. Easy to build, the protocol
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template is a simple text file specifying for a given device a variable’s
desired value at a given time point. Any Arduino sensor or control de-
vice that follows a convention detailed in https://github.com/LJPZebra/
the_tropical_river_control can be called in these protocols without the
need to modify the software.

Camera

The camera’s options are directly accessible inside the software using
the Spinnaker SDK. Metadata like temperature, relative times to the exper-
iment, flow rate, or user-specified value can be saved inside the image.

Temperature

The temperature regulation ismade using a coiled heat exchanger tube
added to the water inlet and immersed into a Neslab RTE water bath ca-
pable of cooling and warming. A temperature sensor is placed inside the
channel and sends the instantaneous temperature to the control software.
The software can control the water bath via an RS232 serial connector se-
lecting the temperature using a PID feedback system. Despite large varia-
tions of the building’s water temperature, this system allows a precise and
rapid temperature regulation.

7.2.2 Usage and limitation

This experimental device is, in practice, very versatile. The ability to
control the velocity and the temperature of the laminar flow, as well as
the injection of products in an automated and quantified manner while
recording the fish, allows the study of a wide variety of behaviors like rheo-
taxy, chemotaxis, and thermotaxis. The height of water in the channel can
be modulated, making it possible to use adult and larval fish in the same
setup.

The insertion of chemical in the flow does not allow us to reuse the
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water. This is why the water supply is done using the water network of the
building. Although filtered, the water quality depends on the building’s wa-
ter quality, which is usually not a problem for juvenile and adult fish that
are reared in filtered tap water from 2 weeks onwards. However, this can
be more problematic for larvae, which are more fragile and require cal-
ibrated water. Although the experiment’s duration is limited only by the
computer’s storage, small air bubbles appear in the channel after a few
hours. This phenomenon is due to the dissolved gases present in the tap
water and is detrimental to the fish. The activated carbon filter reduces
this phenomenon, but it remains present and limits the maximum experi-
mental time to a few hours.
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Chapter 8

Results

8.1 Methods

In the next sections, we will present the experimental protocol that we
used and the analysis methods we developed to assess zebrafish chemical
preference.

8.1.1 Experiment

Protocol Fish chemical preference was assessed using Dual setup in a
one-hour long experimental in a protocol detailed in Figure 8.1. This pro-
tocol is subdivided into four cycles of 15 minutes each:

• B1: a cycle where buffer is injected on the two sides serving as a
control.

• P1: a cycle where a product is injected on one side and buffer on the
other.

• B2: same cycle as B1 in order to flush the system of any residual
product.

• P2: same as P1 but with sides inverted.
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Figure 8.1 – Protocol Experimental protocol used to assess zebrafish chemical
preference. Product cycles P1 and P2 were regularly inverted to avoid any side
bias.

Fish In the following experiments, we use larval (6-8 days post-fertilization)
and early juveniles (14 to 21 days post-fertilization) zebrafish. Preferences
were assessedwithout changes in rearing condition before the experiment,
except for ATP and adenosine, where fish were starved 24 hours before the
experiment, a protocol inspired from [58]. Chemicals were dissolved in a
buffer the day of the experiment: E3 1 for larvae and degassed tap water
for juveniles.

Flow visualization All experiments were performed in the dark to iso-
late the fish from non-chemical perceptions, especially visual perception.
The flow was visualized using an infrared dye: an emulsion of silicone oil,
sodium dodecyl sulfate, and alginate prepared by Lea-Laetitia Pontani.
This emulsion contains droplets with a diameter of 5µm with a polydis-
persity of ≈ 15% and is biocompatible [128] at the concentration that we
used (≈ 500µL/L).

1https://www.sc.niigata-u.ac.jp/biologyindex/natsuka/img/file26.pdf

95

https://www.sc.niigata-u.ac.jp/biologyindex/natsuka/img/file26.pdf


8.1.2 Analysis

The project’s original idea was to use FastTrack (see Part 1) and an auto-
matic custom-developed image analysis pipeline to monitor the fish pref-
erence using its position and recording the time spent in the product, see
Appendix G.3.

Time-base preference index The preference index is a measure of the
attraction or repulsion of a product. It is defined from the times spent
inside and outside the product as follows:

Πtime =
tproduct − tbuffer
tproduct + tbuffer

(8.1)

When Πtime = 1, the fish spend all its time on the product side; thus, the
product is attractive. When Πtime = −1, it is the complete opposite, and
the product is repulsive. Πtime = 0 means that the fish spent the same
amount of time on each side; thus, the product is neutral.

The critical point of this analysis method is to define when the fish is in
the product. A coarse-grained analysis would be to assimilate the interface
with itsmedian position. Most of the time, it is accurate and robust to small
inaccuracies. On the other hand, it will provide no insight at the crucial
moment where the fish takes a decision, i.e., when the fish crosses the
interface.

To precisely understand the fish’s behavior, we needed to record these
decision events with low fault tolerance. Counting the contact events au-
tomatically between the interface and the fish proved to be very challeng-
ing due to the fish’s complex behavior, see Figure 8.2, and the complexity
of extracting the interface position based solely on the dye’s contrast. A
large amount of data and time constraints pushed us to develop a manual
analysis method to count these events. The time spent manually counting
these events was shorter than developing an automatic algorithm, then
checking the result.
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Figure 8.2 – Complexe behavior Example of a complex behavior where the fish
swim inside the interface. We see the product on the left side colored by the
dye and the buffer on the right side. The fish is creating advection, and automat-
ically extract the interface position is challenging. Pre-processed images where
the background was substracted to enhance the contrast between the product
and the buffer.

Event analysis To develop the manual analysis method, we choose four
characteristics and meaningful events to quantify the behavior, see Fig-
ure 8.3. When the fish cross the interface to change side (PB: product to
buffer and BP: buffer to product) and when the fish sense the interface and
return to the side where it was (BB: buffer to buffer, PP: product to product).
By recording these four events, we can quantify themoment where the fish
make a decision, which was not possible with the time-based analysis.

To count these events, we performed a blind manual analysis where
movies were anonymized and scrambled. The events counting was per-
formed by two independents individuals and deanonymized then pooled
together to get the average.

We looked first at the correlation between the two independents analy-
ses, see Figure 8.4, to check for human bias. The correlation between each
fish’s events count was equal to 0.96, indicating that there is no significant
bias or disagreement between the analysis.

We can define an event-based preference index computed as the sum
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Figure 8.3 – Events The event-based method of quantification distinguish 4 types
of events that can occurs during P1 and P2 product cycles.

of the events finishing in the product minus the sum of events finishing in
the buffer, divided by the total number of events:

Πevent =
nBP + nPP − nBB − nPB

nBP + nPP + nBB + nPB
(8.2)

This preference index is slightly different from the time-based one. It only
reflects fish decisions and is not impacted by the fish inactivity and freez-
ing.

Ratio exploration-exploitation Besides the preference of the fish, an in-
teresting quantity that we can look at is the type of behavior. We can distin-
guish two modes of behavior: an exploration mode where the fish crosses
the interface to explore the environment and an exploitation mode where
the fish stays on the same side and make touch-and-turn at the interface
(see Appendix F for more details). Note that this quantity is not by any
means a preference indicator.

The ratio exploration-exploitation can be computed based on the event
recording as the number of events where the fish change side divided by
the number of events where the fish stays on the same side:

ρevent =
nBP + nPB

nBB + nPP
(8.3)
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Figure 8.4 – Analysis correlation Correlation between the two independent event-
based analysis. One point is the count for one event type for one fish. Red line
is the identity line. The point color intensity is encoding the number of points at
the same coordinate.

When ρevent = 1 there is as much exploration as exploitation, ρevent < 1

there is more exploitation and ρevent > 1 more exploration. In the case
where nBB + nPP = 0 we take ρevent = 0 (pure exploration), and nBP +

nPB = 0 we take ρevent = ∞ (pure exploitation).

Markov model Based on the event recordings, we can build a two-state
Markov chain model, see Figure 8.5. We can define the transfer probabili-
ties as follows:

p =
nBP

nBP + nBB
; b =

nPB

nPB + nPP
(8.4)

With p the probability of going from the buffer to the product and b the
probability of going from the product to the buffer.

This model offers yet another definition of the preference index de-
fined directly by

ΠMarkov = p− b (8.5)

the proportion of states product minus the proportion of states buffer. If
p (resp. b) cannot be defined, we take ΠMarkov = 1 − 2b (resp. ΠMarkov =
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Figure 8.5 – Two states Markov chain model P indicates the product state and B
the buffer state.

−1 + 2p).

An indicator of the fish exploration-exploitation behavior can be de-
rived as follows:

ρMarkov = 2Min(p, b)− 1 (8.6)

When ρMarkov = 1, the behavior is purely exploratory, when ρMarkov = 0

there is as many exploration than exploration and when ρMarkov = −1 the
behavior is dominated by exploitation.

We can build a numerical simulation of a two states Markov chain to ex-
plore the relationship between p and b probabilities, ΠMarkov , and ρMarkov .
The numerical simulation produces sequences generated from a Markov
chain defined with probabilities p, and b. The length of the chain is drawn
from the experimental chain length distribution that follows a discrete
negative binomial distribution, see Figure 8.6:

f(k) =

(

k + n− 1

n− 1

)

an(1− a)k (8.7)

With n = 2.527 et a = 0.084.

We see in Figure 8.7 that there are forbidden couples of (p, b) due to the
definition of the probabilities p and b as rational numbers and the limited
chain lengths. The preference indexes are distributed on either side of the
identity line p = b where ΠMarkov = 0 with an upper triangle repulsive and
a lower triangle attractive. Looking at the map of ρMarkov , we see a right
upper corner at high p and b dominated by exploration, and a bottom left
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Figure 8.6 – Chain length Experimental chain length distribution.

corner by exploitation. As expected, the fish can have a neutral preference
with either exploration or exploitation, but a strong preference can only
happen in a regime dominated by exploitation.

Figure 8.7 – Numerical simulation Preference index ΠMarkov (left) and ρMarkov

(right) for 10 000 realisations with a chain size following the experimental distri-
bution.
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8.2 Results

8.2.1 Setup caracterisation

Left-right bias We started by checking the preference index Πtime in the
B1 buffer cycle to capture an eventual left-right bias of setup. There is
buffer on the two sides in this control cycle, and fish were never exposed to
any product. We computed the time-based preference index choosing the
middle of the tank as left-right separation (in B1, there is no dye, thus no
other means to define separation). Figure 8.8 presents the distribution of
time-based preference index for B1 cycles for larvae and juveniles. The first
thing we can notice is the significant variability among fish. The median
value (Πtime = 0.08 for N = 125 for larvae and Πtime = 0.05 for N = 178

juveniles) is close to zero which allows us to exclude any systematic left-
right bias of the setup.

Figure 8.8 – Left-right bias Distribution of the time-based preference index Πtime

computed for the first buffer cycle (B1) with buffer on the two sides. Each point is
a value of preference index for one fish. Black line is the distribution median.

Dye neutrality In the product cycles P1 and P2, the dye is diluted with
the product to visualize the flow. To study the dye’s impact on the fish, we
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performed control experiments with juvenile fish assessing only the dye
with the protocol presented above.

Figure 8.9A presents the event-based preference index Πevent for the
dye only. Each point is a fish analyzed by one person, and the point’s size
encodes the number of events during the cycle. We see that the dye seems
neutral to the fish with no clear attraction or repulsion. As expected, there
is large inter-fish variability. The preference index distributions for P1 and
P2 are not statistically significant, but cycle P2 includes more outliers fish
with strong preferences.

Figure 8.9B presents the time-based preference indexΠtime, each point
is representing one fish. We see a slight repulsion in the P1 cycle and a
slight attraction in the P2 cycle towards the dye, but there is no clear, ro-
bust preference. These slight preferences are not visible with the event-
based analysis. They are probably due to the time-based analysis’s low
precision with low statistics (N = 13) because it is more sensible to peri-
ods where the fish do not make any decision.

Figure 8.9C presents the p and b probabilities from the Markov chain
model by fish. In each cycle, we see that p ≈ b ≈ 0.65 differs from 1,
meaning that the fish can presumably perceive the dye or at least the side
change by another unknown mean like a variation in flow velocity at the
interface. This effect is also visible on the ratio exploration-exploitation
ρevent, see Figure 8.9D that is close to 1.

Altogether, these results indicate that the fish can sense the dye but
without manifesting any preference. With enough statistics to mitigate the
fish inter-variability, we will be able to assess the fish preference while
visualizing precisely the flow.
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Figure 8.9 – Dye bias A. Event-based preference index Πevent, one point is one
fish analysed by one person (2N fish). B. Time-based preference index Πtime, one
point is one fish. C. p and b probabilities from the Markov chain model, one point
is one fish analysed by one person (2N fish). D. Ratio exploration-exploitation
ρevent, one point is one fish analysed by one person (2N fish).

8.2.2 Products screening

We have screened several products reputed to elicit an aversion or
attraction with zebrafish. Our study focuses mainly on early juvenile (14
days) zebrafish with preliminary results for larvae (7 days).
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Juvenile zebrafish in citric acid Citric acid is known to be repulsive in
many fish species. It was shown that adult zebrafish could sense their en-
vironment pH [125,126] and display a strong aversion for acidic pH (pH ≈ 3).
As a positive control, early juveniles and larval zebrafish preference were
assessed using citric acid solutions ranging from 5× 10−3M to 1× 10−6M ,
ie pH from 2.8 to 4.2 (Figure 8.10).

Figure 8.10 – Citric acid: time-based preference index for juveniles Time-based
preference index (mean ± SEM, equation G.1), calculated pH in green.

The mean ratios exploration-exploitation presented in Figures 8.11 bot-
tom and Figure I.1 bottom, showed an apparent decrease when the citric
acid concentration increase. Fish can sense citric acid and reduce their ex-
ploration to the benefit of a stereotyped exploitation behavior where they
often go to the interface and return in the buffer.

The time-basedΠtime (Figure 8.10 top), event-basedΠevent (Figure 8.11 top),
and Markov-based ΠMarkov (Figure I.1 top) mean preference indexes de-
crease in a concentration-dependent manner. The distributions of prefer-
ence indexes by fish (Figure J.1) show a decrease in variability as the con-
centration increase and no significant difference between P1 and P2 cycles,
which tends to suggest that fish adopt the same characteristic behavior
with less variability as a preference emerged.

We tried to see if the bulk-behavior (i.e., modulation of the kinematic
parameters inside the product) was able to explain the time-based prefer-
ence index. We extract the parts of trajectory inside the product and the
buffer during the P1 and P2 cycle and inside buffer in the B1 cycle as a
control. Larvae and juveniles swim in units called bouts separated by rest
periods called interbouts. We discretized the trajectory by swim-bouts and
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Figure8.11 – Citric acid: event-basedanalysis for juveniles Top: Mean event-based
preference index (equation G.2). Bottom: Mean ratio exploration-exploitation
(equation G.3).

extracted three kinematic parameters: the time δt, the distance δr, and the
angle δθ, between the onset of successive bouts.

It was shown by [129] that themean escape time of a domain with amix
of reflective and absorbing walls by a randomwalkermoving with constant
velocity and changing directions at random times writes :

〈t〉 = α
V

vS
(8.8)

with V the volume and S the surface of the domain, α a numerical coeffi-
cient, and v the velocity of the random walker.

In our case, Dual can be seen as a domain of characteristic size a with
reflective walls (Dual edge) and an absorbing wall (the interface between
product and buffer), see Figure 8.12 left. The fish trajectory can be seen
as a random walk with a reorientation at each swim-bout. We see on Fig-
ure 8.12 right that δt and δr are uncorrelated and that there is a timescale
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τ and a lengthscale λ such as:

〈v〉 = λ

τ
(8.9)

and with Equation 8.8, 8.9 and V
S
= a in Dual we have:

〈t〉 ≈ α
aτ

λ
(8.10)

.

Figure 8.12 – Bulk-behavior characterization Left Fish trajectory inside Dual, one
side is a square of size a with 3 reflective walls and one absorbing wall the inter-
face. Right: Correlation between δt and δr.

The preference index can be computed as the mean time spent in the
product minus the mean time spent in the buffer divided by the total time.
Therefore, from Equation 8.10 we expect no influence of the distribution
of δθ in the generation of a preference index.

In Figure H.1, we see no difference between the distributions when we
increase the concentration in citric acid. We built a numerical simulation
by generating random trajectories using the experimental distributions
and computed the time-based preference index, see Figure 8.13. We see
that the bulk-behavior cannot explain the preference index and that deci-
sion events at the interface are crucial in generating preference.
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Figure 8.13 – Preference index numerical simulation

Zebrafish larvae in citric acid Preliminary experiments were done to as-
sess the effect of citric acid on zebrafish larvae (Figure 8.14). Despite low
statistics (see Section 9) and substantial variability, we see that citric acid
seems to be repulsive as expected from results with juveniles. More exper-
iments need to be done to confirm this effect and account for the larvae
variability.

Using Dual, we were able to assess the repulsion to citric acid by ze-
brafish. Our analysis and model were able to capture the fish behavior
changes and quantify the repulsion magnitude. As expected, the inter-fish
variability is large but seems to be reduced by aversion where fish adopt
a stereotyped exploitation behavior.

Juvenile zebrafish in quinine Quinine is a natural alkaloid that tastes bit-
ter, and that is a highly deterrent substance for many fish species [130].
Unexpectedly, we see with the time-based preference index (Figure 8.15)
that the preference seems to be mostly neutral. A slight attraction can be
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Figure 8.14 – Citric acid: preference index for larvae Time-based preference index,
one point is one fish.

constated on the P1 cycle, and a neutral a slightly repulsive preference on
the P2 cycle.

Despite relatively good statistics (≈ 7 fish by concentration), no robust
preference emerged as we see with large variability in responses.

Figure 8.15 –Quinine: preference index for juveniles Time-based preference index.
One point is one fish.
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ATP and adenosine Zebrafish have pear-shaped olfactory sensory neu-
rons expressing olfactory receptors specific to adenosine [58]. ATP, ADP,
and AMP are dephosphorylated in the zebrafish olfactory epithelium [58]
and behavioral responses to adenosine and ATP were shown to exist in
adults with arousal and food-seeking behavior. We assessed preference
for ATP and adenosine for larval and early juvenile zebrafish. Fish were
starved 24 hours before the experiment, and preference was assessed us-
ing the protocol presented above.

Juvenile zebrafish in adenosine Fish can perceive adenosine as indicated
by the ratios exploration-exploitation presented in Figures 8.17 bottom and
I.2 bottom that decrease with the concentration.

The event-based andMarkov-based preference indexes (Figures 8.17 top
and I.2 top) show a slight repulsion for the P1 cycle and a slight attrac-
tion for the P2 cycle at the two lower concentrations. The time-based
preference index (Figures 8.16) displays a slight repulsive preference for
the P1 cycle. There is no clear preference, and analysis from event-based
and time-based preferences disagree, meaning that there is probably not
enough statistic to conclude. Besides, the preference index distributions
(Figure J.2) show great variability.

Figure 8.16 – Adenosine: time-based preference index for juveniles Time-based
preference index (mean ± SEM, equation G.1).

As no clear preference emerged from the early experiments, we fo-
cused on the concentration 50µM and increased the statistics up to N =

28. We then saw a slight repulsion on the P1 cycle at the same level as
the other concentrations. However, the P2 cycle showed a clear repulsion
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with a median preference index equal to −0.6 and 2 clusters of fish, one
attracted and one repulsed.

Figure 8.17 – Adenosine: event-based analysis for juveniles Top: Mean event-
based preference index (equation G.2). Bottom: Mean ratio exploration-
exploitation (equation G.3).

Unexpectedly, adenosine does not seem to attract early juvenile ze-
brafish. On the contrary, at high concentration, it is clearly repulsive. How-
ever, one part of the fish (≈ 30%) seems to be either attracted or neutral
at the second presentation of the product.

Zebrafish larvae in adenosine Zebrafish larvae were exposed to adeno-
sine with the same protocol as juveniles. Preliminary results presented in
Figure 8.18 and based on the time-based preference index seem to indicate
a lack of preference at all concentrations.
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Figure8.18 –Adenosine: preference index for larvae Time-based preference index.
One point is one fish, black line is the distribution median.

Juvenile zebrafish in ATP Interestingly, we found that ATP, a product that
was shown to be attractive on adults, produces a two phases behavior
on early juvenile zebrafish (Figures 8.19 top, 8.20 top, and I.3 top). At low
concentration, the fish do not manifest a preference, but at the highest
concentration (125µM and 200µM ), the P1 cycle is repulsive and the P2
cycle attractive.

Figure 8.19 – ATP: time-based preference index for juveniles Time-based prefer-
ence index (mean ± SEM, equation G.1).

Comparing the distribution of event-based, Markov-based, and time-
based preference index by fish, we see that this effect is significant at
125µM and 200µM , see Figure J.3.
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Figure 8.20 – ATP: event-based analysis for juveniles Top: Mean event-based pref-
erence index (equation G.2). Bottom: Mean ratio exploration-exploitation (equa-
tion G.3).

A fish-by-fish analysis, see Figure 8.21A, revealed that the fish propor-
tion that changes its preference towards attraction increase with the con-
centration. Figure 8.21B represents the p and b probability from the Markov
chain model in function of the cycle P1 and P2. We see that many fish cross
the identity line between the P1 and P2 cycle to invert their preferences.

Zebrafish larvae in ATP Zebrafish larvae were exposed to ATP with the
same protocol as juveniles. Preliminary results presented in Figure 8.22
and based on the time preference index indicate a repulsion at all con-
centrations. High concentrations seem to produce more robust repulsive
behavior with low variability.
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Figure 8.21 – Cycle effect A. Fish proportion changing preference between the P1
and P2 cycles. B. Probabilities p and b for 125 and 200µM , one point is one fish
analyzed by one person (2N fish). Cycle are represented by the point’s altitude.

Figure 8.22 – ATP: preference index for larvae Time-based preference index.
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Chapter 9

Discussion

In these chapters, we saw how we built two experimental setups to as-
sess and understand the chemical preference of larval and early-juveniles
zebrafish.

The Tropical River is a setup capable of producing controlled flows. The
flow temperature and velocity can be precisely controlled. Turbulent and
laminar jets can be created inside the flow to mimic more realistic frag-
mented chemical perception. This setup was initially developed to study
the chemically-driven navigation after finding a robust, attractive com-
pound with Dual. Finding such a product was challenging because it re-
quires many statistics, thus many experiments. We have concentrated our
efforts on this task with Dual; therefore, we could not use The Tropical
River in this project’s context. Nonetheless, several preliminary experi-
ments were performed to check the setup. It was used in another project
by Bill François to study fish swimming taking advantage of the flow veloc-
ity control and high framerate imaging.

Dual is a high-throughput chemical screening setup with a high level
of versatility that allows testing several combinations of products, concen-
trations, and fish ages easily and rapidly. The setup is scalable and can be
built at the laboratory for less than 2 000 euros. In the first part of the
thesis, we built the setup and controlled that it did not have any bias. We
also checked that the infrared dye used to visualize the flow was neutral
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to the fish.

Then we developed several analysis methods to capture the fish prefer-
ence and behavior. These methods are fragmented according to fish ages
and products. We first implemented a coarse-grained approach where we
recorded the fish’s position and computed the time-based preference in-
dex taking the median interface position. Then we tried to refine this ap-
proach to better characterize the fish behavior at the interface by extract-
ing the interface position. This was not practically achievable due to sev-
eral constraints: time, fish complex behavior, and challenging image pro-
cessing problems on a large amount of data (8 To of data). Finally, we chose
to perform a manual analysis that focuses on events happening at the in-
terface, moments where the fish had to make a decision. It was possible
to confirm the time-based analysis results with this approach and char-
acterize the fish behavior more precisely. This method was only applied
to products with enough statistics and already interesting effects to delve
into.

We successfully used Dual to assess the chemical preference of several
products. We show a strong aversion to citric acid and an exciting effect
with ATP where fish inverts their preferences at the second product pre-
sentation.

Adults were shown to be attracted by ATP without mention of prior
exposures. Our results tend to suggest that larvae are repulsed and juve-
niles repulsed then attracted in a second exposition to ATP. This behavior
is probably more complicated because we see variability among fish, with
fish changing preference and others not. Work remains to be done to pre-
cisely characterize this effect. It would be interesting to study the propor-
tion of fish switching preference by, for example, forcing ATP on both sides
for a given duration and then check preference as a function of the first
presentation time or the first presentation concentration. An interesting
question would be to check what happened at the third presentation of
ATP. All these experiments can be done easily by modifying the protocol
in Dual. If this attractive preference persists in time, ATP could be used in
The Tropical River to study chemically-driven navigation. A temporal char-
acterization would also be of great interest. Studying the effect at a fixed
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concentration, like 125µM , and varying the fish age. It would help under-
stand the development of ATP’s perception from larval to adult stage.

Preliminary results shown with larvae need more statistics. Studying
larvae poses several challenges. First, larvae tend to explore less than ju-
veniles, and combined with their small sizes, they do not frequently cross
the interface. We circumvented this problem by putting up to 4 larvae by
experiment, thus increasing the statistics, but this adds work in the anal-
ysis phase. Secondly, larvae are more susceptible to fatigue and freezing
than juveniles. It frequently happens that larvae stop swimming and do
not recover until the end of the experiment. For this reason, assessing the
ATP effect on larvae is very challenging: reducing cycle length to reduce fa-
tigue would lead to fewer crossing events, but longer cycles would lead to
more fish dropouts before the second cycle. Another solution would be to
reduce the chamber size to increase crossing events with the same cycle
length. For all these reasons, studying larvae would need many statistics,
which we had not the time to do in this thesis.

Studying the chemical perception of zebrafish proved to be challenging.
The fish inter-variability is high, as we have seen by screening products. In
these experiments, we use four Duals to record up to 350 hours of usable
experiments, but we see that more statistics are needed. We hope that
Dual as a low-cost, easily replicable setup will encourage people to build
and use the setup to better characterize zebrafish chemo-preference.

117



Appendices

118



Appendix E

Dual bill of materials
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Category Manufacturer Description Link Qty U.P.

Computer

Raspberry Pi 1 44.84 €

Raspberry Pi 1 6.52 €

Raspberry Pi 1 48.92 €

Corsair 1 45.57 €

Optics

FLIR 1 285.00 €

FLIR 1 8.00 €

Thor Labs 1 192.80 €

GoodFellow 1 12.62 €

Mouser 1 17.69 €

Coolbox 1 20.35 €

PCBWay Custom PCB 1 3.93 €

Arduino 1 16.52 €

Sparkfun Big easy driver 1 16.90 €

Sparkfun 1 1.65 €

NJM2670D2 6 2.76 €

Lite-on 7 0.09 €

Lite-on 4 0.09 €

Bourns 2 0.68 €

8 1.29 €

RASPBERRY 
PI 4B/4GB https://www.digikey.fr/product-detail/en/raspberry-pi/

RPI USB-C 
POWER 
SUPPLY 
BLACK EU https://www.digikey.fr/product-detail/en/raspberry-pi/

RASPBERRY 
PI 7" TOUCH 
SCREEN LCD https://www.digikey.fr/product-detail/en/raspberry-pi/

Flash Voyager 
GTX USB 3.1 
128 Go https://www.amazon.com/gp/product/B079NVJPKV/r

Chameleon3 
Camera (CM3-
U3-13Y3M-
CS) https://www.flir.eu/products/chameleon3-usb3/?mode

USB 3.1 
Locking Cable https://www.flir.eu/products/usb-3.1-locking-cable/

MVL25M23 - 
25 mm EFL, 
f/1.4, for 2/3" 
C-Mount https://www.thorlabs.com/thorproduct.cfm?partnumbe

ME303007 
PMMA 0,5mm 
- IR 
transparent 
(80x60cm 
rectangle + 
Ø20mm disk) http://www.goodfellow.com/catalogue/GFCat4I.php?e

LED 
infrarouge 
897-
LZ440R608 https://www.mouser.fr/ProductDetail/LED-Engin/LZ4-

ATX Power 
supply 500W 
Basic https://www.amazon.fr/CoolBox-Basic-500GR-dalime

https://www.pcbway.com/

Arduino nano 
3.1 https://www.mouser.fr/ProductDetail/DFRobot/DFR0010/

https://www.mouser.fr/ProductDetail/SparkFun/ROB-

ATX Power 
Supply 
Connector - 
Right Angle https://www.mouser.fr/ProductDetail/SparkFun/PRT-09498/

New Japan 
Radio https://www.mouser.fr/ProductDetail/NJR/NJM2670D

LED through-
hole green https://www.mouser.fr/ProductDetail/Lite-On/LTL2R

LED through-
hole yellow https://www.mouser.fr/ProductDetail/Lite-On/LTL2R

Potentiometer 
1 kohms https://www.mouser.fr/ProductDetail/Bourns/PTV09A

Phoenix 
contact

2-wires 
connector https://www.mouser.fr/ProductDetail/Phoenix-Contac



Electronics

1 2.68 €

Knitter 3-way switch 1 0.94 €

Yageo 10 0.09 €

Yageo 2 0.09 €

Yageo 1 0.09 €

Sparkfun Female header 2 1.27 €

Openbuilds 1 5.49 €

Syringe pump

OpenBuilds 1 111.88 €

Phidgets 1 42.78 €

Sparkfun 2 1.06 €

Syringes

Manifold

6 65.16 €

Tubing

Box Makerbeam 1 162.50 €

Custom parts Lasercut parts

TOTAL 1,473.60 €

Phoenix 
contact

4-wires 
connector https://www.mouser.fr/ProductDetail/Phoenix-Contac

https://fr.rs-online.com/web/p/interrupteurs-a-glissiere

Resistance 
through-hole 
560Ohms https://www.mouser.fr/ProductDetail/Yageo/CFR-25JT-

Resistance 
through-hole 
220Ohms https://www.mouser.fr/ProductDetail/Yageo/CFR-25G

Resistance 
through-hole 
1kOhms https://www.mouser.fr/ProductDetail/Yageo/CFR-12JR

https://www.mouser.fr/ProductDetail/SparkFun/PRT-00115?

V-Slot Linear 
Actuator https://openbuildspartstore.com/v-slot-nema-23-linear

42STH38 
NEMA-17 
Bipolar 
Stepper with 
26.85:1 
Gearbox https://www.robotshop.com/be/fr/moteur-bipolaire-engr

Microswitch - 
SPDT (Roller 
Lever) https://www.mouser.fr/ProductDetail/SparkFun/COM-

Syringe 
connectors

The Lee 
Company

Electrovalve 
LHDA053111
5H https://www.theleeco.com/products/electro-fluidic-syst

3D printed 
parts



Appendix F

Touch-and-turn behavior

Strong preferences are always found in a regime where exploitation
dominate. It can be easily observed by a behavior that we call touch-and-
turn, see Figure F.1. The fish goes to the interface to sense it, then abruptly
turns to return to its preferred side.
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Figure F.1 – Touch-and-turn behavior Left: Fish trajectory in 200µM of ATP (red
box).
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Appendix G

Calculation

G.1 Mean quantities

Mean quantities were calculated from events count following these def-
inition:

Πtime =

∑

fish(Πtime)

Nfish

(G.1)

Πevent =

∑

fish(nBP + nPP − nBB − nPB)
∑

fish(nBP + nPP + nBB + nPB)
(G.2)

ρevent =

∑

fish(nBP + nPB)
∑

fish(nBB + nPP )
(G.3)

p =

∑

fish nBP
∑

fish(nBP + nBB)
(G.4)

b =

∑

fish nPB
∑

fish(nPB + nPP )
(G.5)

ΠMarkov = p̄− b̄ (G.6)

ρMarkov = 2Min(p̄, b̄)− 1 (G.7)
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G.2 Statistical tests

Statistical significance was evaluated using the Wilcoxon signed-rank
test, one-sided when knowing the effect’s direction, or two-sided other-
wise. In the case of the event-based analysis, the test was carried out sep-
arately on the two independent manual counting then averaged to avoid
a size effect bias.

G.3 Image analysis

Fish head position was extracted using FastTrack. Each recording was
manually checked to remove low-qualitymovies either with imperfect flows
or non-responsive fish. Swim-bouts were extracted using the velocity sig-
nal and a threshold.

A custom image processing procedure was developed to extract the
interface using the contrast difference due to the dye 1. First, the maximal
and minimal z-projection of the movie was calculated. For the minimal
projection, the fish is masked with a white mask on each image before the
projection, only keeping the flow and not projection the fish. Each image of
themovie is then normalized withminimal andmaximal projection. Finally,
the interface was detected using an Otsu threshold.

A python command-line interface 2 was created to export the relevant
data in a synthetic toml file easy exportable, one experiment by file. Sta-
tistical analysis and numerical simulations were performed using Python
and Julia programming language.

1https://github.com/LJPZebra/dual_analysis/tree/master/dual_cli
2https://github.com/LJPZebra/dual_analysis
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Appendix H

Kinematic parameter
distributions
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Figure H.1 – Distributions of kinematic parameters for juveniles in citric acid. Top:
δt time between on the onset of successive bouts. Middle: δr distance between
on the onset of successive bouts. Bottom: δθ angle between on the onset of suc-
cessive bouts. Control means kinematic parameters extracted from the B1 cycle,
buffer (resp. product) are extracted from P1 and P2 cycles when the fish is in the
buffer (resp. product).

:
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Appendix I

Markov model results

Figure I.1 – Citric acid: Markov chain analysis for juveniles Top: Mean Markov-
based preference index (equation G.6). Bottom: Mean Markov ratio exploration-
exploitation (equation G.7).
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Figure I.2 – Adenosine: Markov chain analysis for juveniles Top: Mean Markov-
based preference index (equation G.6). Bottom: Mean Markov ratio exploration-
exploitation (equation G.7).

Figure I.3 – ATP:Markov chain analysis for juveniles Top: MeanMarkov-based pref-
erence index (equation G.6). Bottom: Mean Markov ratio exploration-exploitation
(equation G.7).

129



Appendix J

Preference index distributions
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Figure J.1 – Citric acid: preference index for juveniles Event-based preference in-
dex Πtime, one point is one fish (top). Event-based preference index Πevent, one
point is one fish analyzed by one person (middle). Event-based preference index
ΠMarkov , one point is one fish analyzed by one person (bottom).
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Figure J.2 – Adenosine: preference index for juveniles Event-based preference in-
dex Πtime, one point is one fish (top). Event-based preference index Πevent, one
point is one fish analyzed by one person (middle). Event-based preference index
ΠMarkov , one point is one fish analyzed by one person (bottom).
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Figure J.3 – ATP: preference index for juveniles Event-based preference index
Πtime, one point is one fish (top). Event-based preference index Πevent, one
point is one fish analyzed by one person (middle). Event-based preference in-
dex ΠMarkov , one point is one fish analyzed by one person (bottom). * P < 0.05,
** P < 0.01
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