
HAL Id: tel-03180284
https://hal.science/tel-03180284

Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metric learning for structured data
Jiajun Pan

To cite this version:
Jiajun Pan. Metric learning for structured data. Artificial Intelligence [cs.AI]. Université de Nantes,
2019. English. �NNT : �. �tel-03180284�

https://hal.science/tel-03180284
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITE DE NANTES
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Jiajun PAN »
« Metric learning for structured data »

«»
Thèse présentée et soutenue à NANTES , le 20 décembre
Unité de recherche : LS2N, UMR CNRS 6004
Thèse N° :

Rapporteurs avant soutenance :
LESOT Marie-Jeanne,Maitre de Conférences, Univ. Paris 6, Paris
HABRARD Amaury,Professeur des universités, Université de Saint-Etienne, Saint Etienne
Composition du jury :

Président : DE LA HIGUERA Colin,Professeur des universités,Université de Nantes, Nantes
Examinateurs : CAPPONI Cécile,Maitre de Conférences, Université d’Aix-Marseille, Marseille

Dir. de thèse : Philippe Leray,Professeur des universités, Université de Nantes, Nantes

Co-dir. de thèse : Hoel Le Capitaine, Maitre de Conférences, Université de Nantes, Nantes

Invité(s)

lecapitaine-h
2019



ACKNOWLEDGEMENT

First of all, I want to thank my supervisor Hoel LA CAPITAINE and Philippe LERAY.
Thank them for contributing to this work and the cultivation of me over the years. And I
also want to thank Université de Nantes and MathSTIC. Thanks for the courses and help
provided by the school.

Secondly, I want to thank my colleagues, friends and family. Thanks to Vincent RAVE-
NEAU and other colleagues for helping me with problems from work to life. Thanks to Yao
MA and my friends in Nantes or Paris for spending the days with me in France. Thanks to
my mother and my family in my hometown for supporting and caring.

Finally, I would also like to thank those who have contributed to the establishment of
friendship between China and France. They gave me the opportunity to come to France to
study. Today, on China’s 70th birthday, I sincerely hope that the motherland will flourish
and develop harmoniously with France and will vow to contribute to China’s construction
and alternative friendship in the future.



TABLE OF CONTENTS

Introduction 10
0.1 Problems and Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Basic materials 19
1.1 Introduction of Machine Learning and The Algorithms Strongly Depends

on Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 K-nearest-neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Introduction of Relational Learning and the Relational Database We Follow 29

1.2.1 Statistical Relational Learning . . . . . . . . . . . . . . . . . . . . 29

1.2.2 Inductive Logic Programming . . . . . . . . . . . . . . . . . . . . 30

1.2.3 Graph Mining and Multi-Relational Mining . . . . . . . . . . . . . 30

1.3 Basis of Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Metric Learning Applications . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.1 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.2 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Metric Learning for Flat dataset 37
2.1 Metric Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 Mahalanobis Distance Learning Model . . . . . . . . . . . . . . . 40

2.1.2 Linear Similarity Learning . . . . . . . . . . . . . . . . . . . . . . 45

2.1.3 Nonlinear Metric Learning . . . . . . . . . . . . . . . . . . . . . . 47

2.1.4 Local Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Learning Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1 Constraints Selection . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



TABLE OF CONTENTS

2.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Learning Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 Classification and Clustering . . . . . . . . . . . . . . . . . . . . . 62

2.3.2 Transfer Learning, Multi-task learning and Domain Adaptation . . 62

2.3.3 Other Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Deep Metric Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.1 Deep Metric Learning based on Siamese Network . . . . . . . . . . 66

2.4.2 Deep Metric Learning based on Feature Embedding . . . . . . . . 67

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Metric Learning based on the Lovasz Extension of Submodular Set-Function 73
3.1 Submodular Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.1 Set-function and Submodular . . . . . . . . . . . . . . . . . . . . 74

3.1.2 Lovasz Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.3 Multi-linear Extension . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.4 Related Machine Learning Approaches based on Submodular Func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2 Definition and Proof of Submodular Extension Metric . . . . . . . . . . . . 79

3.2.1 Lovasz Extension Norm . . . . . . . . . . . . . . . . . . . . . . . 81

3.2.2 Multi-linear Extension Dissimilarity . . . . . . . . . . . . . . . . . 82

3.3 Proposed Submodular Metrics Learning Algorithm . . . . . . . . . . . . . 83

3.3.1 Set-function Vector and Constraints Matrix . . . . . . . . . . . . . 84

3.3.2 Submodular Constraints Matrix Reduction . . . . . . . . . . . . . 87

3.4 Experiments and Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.1 Datasets and Experiment Design . . . . . . . . . . . . . . . . . . . 89

3.4.2 Result for the Lovasz Extension Norm . . . . . . . . . . . . . . . . 91

3.4.3 Result for the K-additive Complexity Reduction . . . . . . . . . . 91

3.4.4 Result for Multi-linear Extension Dissimilarity . . . . . . . . . . . 94

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Metric Learning for Non-flat Dataset 99
4.1 Metric Learning method for String Sequence Dataset . . . . . . . . . . . . 100

4.1.1 Metric for String Sequence . . . . . . . . . . . . . . . . . . . . . . 100

4.1.2 String Metric Learning Algorithms . . . . . . . . . . . . . . . . . 101

4.2 Metric Learning method for Time Series Dataset . . . . . . . . . . . . . . 102

4



TABLE OF CONTENTS

4.2.1 Metric for Time Series . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.2 Metric Learning for Temporal Sequence Alignment . . . . . . . . . 105
4.2.3 Metric Learning for Dynamic Time Warping . . . . . . . . . . . . 107

4.3 Metric Learning method for Tree and Graph Dataset . . . . . . . . . . . . . 109
4.3.1 Metric Learning with Edit Distance Method . . . . . . . . . . . . . 110
4.3.2 Metric Learning with Embedding Structure Information Method . . 111

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Relational Metric Learning 117
5.1 Relational Learning and Metric Learning . . . . . . . . . . . . . . . . . . . 119
5.2 Relational Link-strength Constraints Selection . . . . . . . . . . . . . . . . 120

5.2.1 Link-strength Function . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.2 Link-strength Constraints Selection . . . . . . . . . . . . . . . . . 123

5.3 Metric Learning with RESCAL Factorization . . . . . . . . . . . . . . . . 124
5.3.1 Relational Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2 Metric learning on the RESCAL latent space . . . . . . . . . . . . 126

5.4 Metric Learning with Multi-Relation . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 Relational Constraints . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.2 Proposed Loss Function for Multi-Relation . . . . . . . . . . . . . 128
5.4.3 Stochastic Sub-gradient Descent Learning Processing . . . . . . . . 130

5.5 Experiments and Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5.1 Experiments on One Relation Dataset For LSCS . . . . . . . . . . 132
5.5.2 Experiments on Multi-relation Dataset . . . . . . . . . . . . . . . . 135

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Conclusion 145
5.7 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.7.1 Contributions for Flat Datasets . . . . . . . . . . . . . . . . . . . . 145
5.7.2 Contributions for Non-Flat Datasets . . . . . . . . . . . . . . . . . 146

5.8 Perspectives of Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.8.1 Possible Improvements to Proposed Algorithms . . . . . . . . . . . 147
5.8.2 Perspectives to Related Research . . . . . . . . . . . . . . . . . . . 148

Bibliography 148

5



TABLE DES FIGURES

1 Metric learning create the adaptive metric for dataset and target task. . . . . 12

1.1 Basic model of maching learning. . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Different branches of machine learning method. . . . . . . . . . . . . . . . 21

1.3 An example of K-Nearest Neighbor classification. . . . . . . . . . . . . . . 23

1.4 The maximum-margin hyperplane as the decision boundary with support
vectors.[CV95] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 A neuron in the neural network. . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 The forward multi-layer network. . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Different branches of metric learning approaches. . . . . . . . . . . . . . . 39

2.2 Schematic illustration of one input’s neighborhood before training (left)
versus after training (right). [WBS06] . . . . . . . . . . . . . . . . . . . . 43

2.3 Siamese Architecture of Convolutional Neural Networks. . . . . . . . . . . 49

2.4 Data visualization before and after metric learning. [JKD10] . . . . . . . . 65

2.5 Triplet network with Convolutional Neural Networks. . . . . . . . . . . . . 67

2.6 For a mini batch of training set with 3 samples : (a) constraints feature em-
bedding ; (b) triple fearture embedding ; (c) lifted structured feature embedding.[OSXJS16] 68

3.1 Hasse diagram using set-functions on a 3-dimensional problem. V = {1, 2, 3}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 The price of McDonald menus. [mcd] . . . . . . . . . . . . . . . . . . . . 75

3.3 f(Sa,b ∪ {i})− f(Sa,b) ≥ f(Sa,b,c,d ∪ {i})− f(Sa,b) . . . . . . . . . . . . 76

3.4 Unit balls (d2(x, 0) ≤ 1) for different metrics. The set-functions f1(), f2(),
f3() and f4() given in Table 3.1, respectively. . . . . . . . . . . . . . . . . 80

3.5 Different numbers of constraints . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Evolution of the classification performance using Lkf as a function of k-
additive constraints, where k is varying from 1 (single feature weighting)
to min(10, d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7 3-dimensional embedding of Seeds dataset using different metrics. . . . . . 96

6



TABLE DES FIGURES

3.8 3-dimensional embedding of Balance dataset using different metrics. . . . . 96

4.1 Example of dynamic time warping alignment. . . . . . . . . . . . . . . . . 105
4.2 The structure of graph convolution neural network.[KW16] . . . . . . . . . 113

5.1 Data structure of movie datasets. . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Bipartite relational graph for a many-to-many relationship table. The com-

mon parents of {x2
2,x2

3} is the set of entities Px2
2,x

2
3

= {x1
2,x1

3,x1
4} . . . . . 122

5.3 The common parents of movie "Spider man" and "Dead pool". . . . . . . . 123
5.4 Relational tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 RESCAL factorization decomposes relational tensor X to a matrixAwhich

represents the relational information and a core tensor R. [Nic13]Notice
that, in our work, we denoted the notation T as relational tensor X , Al as
factor matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Evolution of performance and complexity metrics of RESCAL for dimen-
sion space of varying size. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 Performance of MRML with respect to different values of λ′. . . . . . . . . 140

7



LISTE DES TABLEAUX

1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 The difference between different Regularization.(Where C is a chosen ma-
trix, for example an identity matrix for nuclear-norm regularizer) . . . . . . 56

2.2 Survey on Metric Learning Algorithms . . . . . . . . . . . . . . . . . . . . 70

3.1 Values of the set-functions used in Figure 3.4. . . . . . . . . . . . . . . . . 79

3.2 Submodular constraints, as a ternary matrix S, with linear inequalities on a
small subsample for which |V| = 3. . . . . . . . . . . . . . . . . . . . . . 84

3.3 UCI datasets used in the experiments. c indicates the number of classes. . . 90

3.4 Accuracy score of KNN with SML and different comparing metrics lear-
ning algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Accuracy of KNN with SML, SML-K and different comparing metrics lear-
ning algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Running time in seconds of SML, SML-K and different comparing metrics
learning algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7 Accuracy of KNN with multi-linear extension dissimilarity and different
metrics learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Survey on Non-flat Metric Learning Algorithms . . . . . . . . . . . . . . . 114

5.1 The accuracy score of KNN with ITML . . . . . . . . . . . . . . . . . . . 134

5.2 The accuracy score of KNN with LSML . . . . . . . . . . . . . . . . . . . 134

5.3 The accuracy score of KNN with MMC . . . . . . . . . . . . . . . . . . . 135

5.4 The accuracy score of KNN with ITML while the proportion of label constraints
and the link-strength constraints gradient change from full label constraints
to full link-strength constraints. . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 The accuracy score of KNN with LSML while the proportion of label
constraints and the link-strength constraints gradient change from full label
constraints to full link-strength constraints. . . . . . . . . . . . . . . . . . 136

5.6 Dataset characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8



LISTE DES TABLEAUX

5.7 Cross-validation accuracy of KNN with different metrics related on dif-
ferent combination of data information. . . . . . . . . . . . . . . . . . . . 138

5.8 Cross-validation f1 score of KNN with different metrics related on different
combination of data information. . . . . . . . . . . . . . . . . . . . . . . . 139

5.9 Cross-validation accuracy of KNN with different metric learning methods. . 140
5.10 Cross-validation F1 score of KNN with different metric learning methods. . 141
5.11 Running times, in seconds, of different metric learning methods. . . . . . . 141

9



INTRODUCTION

In contemporary life, machine learning, as part of the field of artificial intelligence,
has been integrated into all aspects of our lives. When you are a Chinese and travelling in
a foreign country, picking up your smart-phone and asking for voice assistants, where is
the nearest delicious restaurant, to meet your needs and solve your problems, much artifi-
cial intelligence and machine learning methods are applied. This process includes dialogue
recognition, natural language processing, machine translation, data mining, pattern recog-
nition, recommendation systems, and other related algorithms. Besides, machine learning
is difficult to enumerate complete theories and algorithms, but all related machine learning
algorithms have the same core, that is, machine learning learn new knowledge from the
data. This new knowledge arises from relevant databases, past related tasks and selected
learning models, and can meet future expectations, automatically resolve target tasks, and
in most cases improve itself from feedback from you and other users [M+97].

In most cases, machine learning [M+97] can be classified into three standard machine
learning task classifications, regressions, clustering according to the tasks solved ; or clas-
sified into supervised learning, unsupervised learning, and semi-supervised learning accor-
ding to the presence or absence of supervised information. Supervise learning. In supervi-
sed learning, the data analyzed is accompanied by label information. The label information
comes from data collection, expert experience or feedback from the last study. The label
information is generally a category (such as a nearby restaurant is a good, medium or lousy
rating) or a value (such as the average price of a nearby restaurant dish), depending on that
the problem from related sample database needs to solve. The goal of supervised learning is
generally to predict the label information for future new samples. In general, classification
tasks correspond to supervised learning of discrete categories, and regression tasks corres-
pond to supervised learning of continuous values. In unsupervised learning, the analyzed
data has no label information, so it is difficult to evaluate and present the results of learning
as supervised learning, but still learn meaningful patterns from the data. For example, the
last classic machine learning task clustering corresponds to unsupervised learning. The pur-
pose of clustering is to divide the data into several relatively similar internally clusters, and
these clusters can be treated as new categories to give labels. Finally, in semi-supervised
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Introduction

learning, some data have label information while other data has no label information. In
this case, it is common to use data with label information to help complete an unsupervi-
sed learning task, or to perform clustering and other processing on unlabeled information
before performing supervised learning algorithms.

Whatever machine learning method they use, what they have in common is to compare
and evaluate sample entities. When learning a model, the construction of the model depends
on the correlation between known samples, and the performance of the algorithm will be
reflected in the difference between prediction and reality when making predictions. There-
fore, we can easily see that the quality of machine learning algorithms strongly depends on
the quality of the metric distance, that is, the concept of describing the difference of entities.
The usual physical distance is one of the metrics. How do we know which restaurant is the
nearest one? You can find the answer by calculating the physical distance. However, when
applied to other machine learning samples, for example, how do we know that your pro-
nounce "can tin" are talking about "can ting" (means restaurant) rather than "chang ding"
(means spike) ? How do we know which restaurant is more delicious than other restau-
rants ? When dealing with these situations, metric distance is a broader concept, which is a
measure of the difference in the feature space of these entities, such as Euclidean distance.
When solving string recognition, for example, we calculate the metric distance between
"can ting" and "chang ding" according to the "can tin" identified by your pronunciation.
The metric distance between "can tin" and "can ting" in the language database is the smal-
lest, to determine what you are talking about is "restaurant". This process is the use of
metric distances in machine learning.

However, for different machine learning methods, no metric fits perfectly in all situa-
tions, just as we are unable to apply all the speech recognition tasks by calculating the
distance of the character storage location in the speech database. First, there are now a lot
of different metric distances. For example, to distinguish between "Can Ting" (Restaurant)
and "Chang Tu" (Far away). The Hamming distance [Ham50] only cares whether the cha-
racters in the corresponding position are the same, there is only the initial letter "C" is the
same at exact position, so the distance could be counted as "01111111" ; The Levenshtein
distance [Lev66] is concerned the least operational change of characters, there are because
the insertion of "h" and "g", the deletion of "ng", and the replacement of "i" to "u", the
distance is 5 operations. Choosing Hamming distance or Levenshtein distance is different
for dealing with character databases. Secondly, even if you choose the same metric dis-
tance, in the face of different databases, different results occur due to the relationship bet-
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FIGURE 1 – Metric learning create the adaptive metric for dataset and target task.
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Introduction

ween data structure and features. For example, when processing a database of commodity
classification information, each of the data is composed of independent indicators of the
commodity, and the selection of the standard metric Euclidean distance can achieve better
results. However, if the processed database is video evaluation information, and each piece
of information is compressed information of each frame picture of the sample video, then
the standard metric Euclidean distance is contrary to process the integrated information
of the picture or the relevant information of each dimension in the feature space. Finally,
in the face of different learning tasks, the use of adaptive metric distances can better face
different target outcomes. For example, for the same user information database, when the
target task is to classify the user’s social credit, it was evident that the user’s age, work,
credit history should be paid more attention to and give higher weight to these feature di-
mensions ; while if the target task is friend recommendations for users, they should treat
the feature dimensions such as geographic location and hobbies beyond the common. The-
refore, when solving machine learning tasks, if we can find or construct a better metric,
which can solve this task faster or more accurately, we can improve the effect of improving
machine learning. As the Figure 1 shows, the predefined metric distances are independent
of the database and learning tasks, while the quality of machine learning algorithms de-
pends on the choice of metric distances. So an algorithm that automatically learns a better
metric distance from the known database or experience is necessary, and it is called metric
distance learning [Kul12, BHS13].

Metric distance learning is a branch of machine learning—representation learning [Kul12].
Feature learning or representation learning [BCV13] is a collection of techniques for lear-
ning to convert raw data into features that can be used by machine learning algorithms or
that convert data into more efficiently learned features. It avoids the hassle of manually
extracting features, allowing the computer to learn to use features while also learning how
to extract features : learning how to learn. The output of metric distance learning is not a
model that is directly used for prediction but a new metric that adapts to the task. This me-
tric can be seen as a representation of the data in a new feature space or as a self-adaptive
feature space that is adaptively extracted. This new metric is then applied to other machine
learning algorithms, and improvements relative to the old metrics evaluate the performance
of the new metric.

13



Introduction

0.1 Problems and Propositions

In the past few years, there have been many branches and developments in metric dis-
tance learning, and there are various interactions and combinations with transfer learning,
deep learning, and so on [Kul12, BHS13]. In our work, we mainly focus on supervised
metric learning applied to classification and study the content of two aspects of the flat
database and non-flat database. We proposed new methods on two questions : using high-
latitude interactive information in the flat database ; metric particularly learning for the
relational non-flat database.

For flat databases, most of the metric distance learning base on a model of Mahala-
nobis distance. The Mahalanobis distance dM can also be called the covariance distance
because its principle is to multiply the Euclidean distance with the covariance matrix Mc of
the samples, which is denoted as dM(xi,xj)) =

(
(xi − xj)TM−1

c (xi − xj)
)1/2

. The Ma-
halanobis distance is equal to the linearity of each dimension of the sample to reflect the
association between each pair of dimensions, and the scale-independent (independent of
the unit of measurement scale) is achieved by regularization of the covariance matrix. For
example, for user health data, height is related to weight and the unit is different, and the
Markov distance can use for better classification. For the metric distance learning based on
Mahalanobis distance, the weight matrix M is used instead of the covariance matrix Mc,
and the samples are divided into similar sets and dissimilar sets by supervised information
or unsupervised information, and the loss function L is used to learn. The weight matrix M
is such that the loss function is small enough for the new metric, that is, for the samples in
the similar set, the distance between the two is smaller, and for the samples in the dissimi-
lar set, the distance between the two is larger. However, precisely because these algorithms
base on Mahalanobis distance, they only consider each dimension or the association within
each pair of dimensions, while ignoring the information contained in the intersection of
three or more dimensions.

To address this limitation, we propose a metric learning algorithm based on the submo-
dular function. Firstly, we propose and prove the metric of the Lovasz extension definition
based on the submodular function, and try to prove the metric of the multi-linear extension
definition based on the submodular function (although it fails, but given the difference, it
is given as a difference) The probability of the degree is defined). Secondly, we construct
a loss function learning algorithm for the modulo correlation metrics. Finally, we designed
and experimented with real-world datasets and compared them with other metric learning
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algorithms.

For non-flat databases, the current metric learning algorithms have evolved algorithms
for string databases, time-series databases, tree and graph-like databases. Most of the mo-
dels are based on the corresponding non-structural data type of metric distance (such as
the Hamming distance [Ham50] for the string, the dynamic time warping distance [Kru83]
for the time series, the edit tree distance [BHS06] for the tree), and then apply conven-
tional distance metric learning algorithms. The model of the algorithm selects similar sets
and dissimilar sets and constructs a loss function for learning. At present, there are not
many metric learning algorithms for the relational database, which is a particular non-flat
database.

For this blank, we propose a relational metric distance learning algorithm that extends
graph metric learning algorithms. We propose three algorithms, which are related to the
unsupervised information based on the relationship. The first algorithm is an algorithm that
selects the similarity set and the dissimilar set with the association strength. The second al-
gorithm combines with the tensor decomposition RESCAL [NTK11]. Moreover, the third
algorithm pays attention to both the supervision information and non-supervised informa-
tion. Then a multi-relational metric learning algorithm that aggregates various relationships
is proposed.

0.2 Outline

In the first chapter, some preliminary concepts and information are introduced. We brie-
fly introduce the related concepts of machine learning and summarize the classic classifica-
tion algorithm KNN, regression algorithm SVM, clustering algorithm K-means, and these
algorithms are commonly used to evaluate the effect of the distance learning algorithm.
We introduced the context of relational learning and the algorithms of regular relational
learning. Finally, we give the accurate definition and significance of the metrics, and some
concepts and symbols related to metric learning commonly used in our work. The appli-
cation and significance of the metric distance learning algorithm are introduced, and the
reason why we study the metric distance algorithm is expressed.

In the second chapter, the development and current status of the metric distance lear-
ning algorithm for the flat database are summarized. We follow the classic flat database
to measure the model structure of the distance learning algorithm to segment the entire
chapter. Firstly, different metrics and their related metric learning algorithms are introdu-
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ced. Secondly, we survey different settings of the selection and application of similar and
dissimilar sets, the selection of regular terms for loss function and the selection of optimi-
zation algorithms. Then, we introduced some metric distance learning algorithms based on
particular learning tasks in addition to the classic metric learning tasks. Finally, the recent
popular deep neural network algorithms are highlighted with their associated depth metric
learning algorithms. At the end of this chapter, we point out the limitations of a series of
algorithms based on Mahalanobis distance for flat databases and express our motivation for
studying the submodular metric for high dimension intersection.

In the third chapter, we present our first part of contribution : propose the submodu-
lar metric distance algorithm and design experiment for it. We first introduce set-function.
Then we introduce the submodular function, which is a particular case of set-function com-
monly used in many fields, with the property and extension of the submodular function.
Secondly, we have defined and proved the metric according to the Lovasz extension. We
also try it on the multi-linear extension of the submodular function. The former has proved
that the latter proves that it is not a metric without additional conditions, and can be consi-
dered as a similarity under the finite conditions we propose. Finally, we design a learning
algorithm for the submodular function, and design and compare the proposed algorithm,
the standard metric distance learning algorithm and the recent nonlinear metric learning
algorithm on the real data set, and compare the data in multiple data. The set shows good
results.

In the fourth chapter, the development and current status of metric distance learning al-
gorithms for non-flat databases are summarized. We introduce the metric distance learning
algorithm based on different non-flat databases. The first is the metric distance learning of
string data. It mainly introduces string editing distance and related algorithms. Secondly, it
is the metric distance learning of time series data. It mainly introduces the DTW(Dynamic
Time Warping) [Kru83] and the metrics generated by DTW. There are metric learning algo-
rithms for improving DTW and metric learning algorithms based on the metrics generated
by DTW. Finally, the metric distance learning algorithm for tree or graph data is introduced.
The tree editing distance and graph editing distance are mainly introduced. In the end, the
current GCN(graph convolution neural network [KW16]) metric learning algorithm com-
bined with deep learning GCN neural network is introduced. At the end of this chapter,
we point out the lack of metric distance learning algorithms particularly for the relational
databases and express our motivation to study metric distance learning.

In the fifth chapter, we present our second part of contribution : propose the relational
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metric learning algorithms and design experiment on them. We divided this chapter into
two parts. In the first part, we concern with the case of multiple relational tables between
multiple entity tables. In response to this situation, we consider starting with the selec-
tion of similar, dissimilar sets. The relationship side information is used to construct the
correlation strength function to evaluate the degree of similarity between entities and enti-
ties. Then, according to the evaluation results, the samples are selected as a similar set or
dissimilar set and finally used in the classical metric distance learning algorithm. In the se-
cond part, we focus on a large entity table with multiple relational tables between samples.
In view of this situation, we propose two schemes : one scheme is to combine multiple
relational adjacency matrices into relational tensors and then perform RESCAL tensor de-
composition [NTK11], and treat the decomposed matrix as a new feature space, apply the
metric distance learning on this new feature space ; the other scheme is to directly accumu-
late the loss functions of multiple relational adjacency metric, construct a comprehensive
loss function that considers both supervised information and unsupervised information, and
then optimize the function. It is worth mentioning that the proposed algorithm in the first
part can also be easily extended for the second case. Finally, we conducted an experimen-
tal evaluation of these three relational metric learning algorithms and compared them with
other metric distance learning algorithms on real data sets, and achieved excellent results
on some data sets.

At the end of this article, in the conclusion section, we re-synthesized and collated
the main contributions of this paper, and made some perspectives for related work in the
future. We also listed some of the problems encountered in the study, describing the studies
and experiments that we tried but did not go deep because of time, equipment or other
constraints. In the perspectives of the future, we have proposed some possible solutions to
the problems encountered, and some new ideas presented without in-depth study.

17



Introduction

x unknown variable x entity represented as vector
xi i-th value of vector x xi i-th entity

i, j, k, l index parameter y label
w weight parameter r relationship information
m number of dimension of x X entity set
n number of instance S similar constraints set
a, b user-given parameter D dissimilar constraints set
u, v threshold parameters C constraints set
t time parameter S index set
h depth parameter V vector set
p power parameter Pij common parents set
λ balance parameter f() defined function
γ margin d(xi,xj) distance function
α learning rate parameter L() loss function
κ number of constraints r() regularization function
M parameter matrix `(xi,xj) encoding loss of selected constraints
Mc co-variance matrix H(x) squared hinge function
L linearly mapping transfer matrix ds(xi,xj) similarity functions
I identity matrix N( ) normalization function
σ sequences of symbols φ() nonlinear function
χ time series LS(xi,xj|rk) link-strength function
$ tree varn numerical variables of reference link
T tensor numn number of numerical variable
R core tensor of RESCAL factorization varc categorical variables of reference link
Al latent space matrix of RESCAL factorization C sparse matrix
CL constraints set selected by label numc number of categorical variable
CR constraints set selected by relation nr number of relationship

TABLE 1 – Notations
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CHAPITRE 1

BASIC MATERIALS

In this chapter, we mainly introduce the background of the knowledge of machine lear-
ning and relational learning and define the concepts and symbols commonly used in metric
distance learning in the full text. We introduce machine learning not only because metric
distance learning still follows the macro framework of machine learning, but also because
the result of metric distance learning is an adaptive metric, which strongly reflecting the
measurement effect by a machine learning algorithm that relies on metric selection. In other
chapters of this paper, the test experiments for metric distance learning are mostly based on
the KNN algorithm, k-means algorithm or related algorithms. Relationship learning is the
main problem to be solved in the second part of this paper. Relationship learning involves
many different machine learning aspects. In this chapter, we briefly introduce commonly
related algorithms. In our work, we mainly focus on the learning of non-planar structu-
ral data with weighted networks. The key to measuring distance learning is metrics. We
denoted the mathematical definitions and properties of metrics and general concepts and
symbols in standard metric distance learning models in this part. Finally, we introduce the
application of metric distance learning and the reasons we pay attention to metric learning.

1.1 Introduction of Machine Learning and The Algorithms
Strongly Depends on Metric

Machine learning is a field of computer science related to the study of pattern recogni-
tion, probability theory, computational statistics theory, convex analysis and many theories
in the domain of artificial intelligence. Machine learning extract knowledge from data. Ge-
nerally, the knowledge is a model building by explored pattern or data-driven algorithm
from the input samples. Moreover, the model could be used to predict the target attribute or
making decisions.

Today, machine learning is not only widely used in many real-world areas such as finan-

19



Partie , Chapitre 1 – Basic materials

FIGURE 1.1 – Basic model of maching learning.

cial services, marketing forecasting, health-care, government analysis, but also in many re-
lated areas of artificial intelligence such as natural language understanding, non-monotonic
reasoning, machine vision, pattern recognition. Standard machine learning methods include
decision trees, random forests, k nearest neighbour algorithms, Bayesian learning, support
vector machines, artificial neural networks, and many methods that are difficult to enume-
rate. Machine learning can be generalized as computer algorithms that are automatically
improved through data or experience. [M+97] gives a formal definition of machine lear-
ning : A machine learning is said to learn from experience E for some class of tasks T and
performance measure P , if its performance at tasks in T , as measured by P , improves with
experience E.

As shown in 1.1, it is a basic model of machine learning. A sample space is a set of all
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FIGURE 1.2 – Different branches of machine learning method.

the possibilities for a problem. The training sample is a piece of data for training, including
some feature vectors for input and a label for output, where the feature vector is a collection
of feature attributes of a sample and the label is a target tag to be output by a model.

A training set is a collection of multiple training samples. A test set is a collection of
multiple test samples. Test samples are similar to training samples, but for testing. Training
is the process of learning through training data and models. Testing is the process used to
judge whether a model is good or bad. Prediction is the process of using a model to classify
or regression future data.

As shown in Figure 1.2, there are many branches of machine learning algorithms. Ac-
cording to the presence or absence of label information in the training set, machine learning
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can be classified into the following categories :

— Supervised learning : The sample data in the training set contains both the input
features and the desired output label. Such a training set is learned, and its learning
purpose is to correctly predict the label information of the sample data without
labels. Supervised learning is often used to predict regression of data, classification
of labels, and ordering of sequences.

— Unsupervised learning : Sample data in the training set of unsupervised learning
does not carry label information. The purpose of unsupervised learning is different
from supervised learning, not responding to feedback or predicting the labels, but
learning patterns in the data, identifying commonalities in the data, and predicting
whether such commonality exists in the new data. Unsupervised learning is often
used for clustering and anomaly detection.

— Semi-supervised learning : Some sample data parts in the training set have the label
information, and some have no label information. In this case, it may be the task of
supervised learning after unsupervised learning, or the use of supervised learning to
assist in unsupervised learning.

— Reinforcement learning : Reinforcement learning is rather special in that its feed-
back is not a sample label, but environmental feedback (Such as a reward and pu-
nishment signal). Reinforcement learning is to achieve the goal of the task, gra-
dually adjust its behaviour as the environment changes, and evaluate the feedback
that each action is positive or negative. The previously mentioned machine learning
general assumptions are consistent with the Markov decision process (MDP), while
the reinforcement learning algorithm does not have this requirement and can be
used when the exact model is not feasible. Reinforcement learning is often used for
automatic control of robots, the artificial intelligence of games, and optimization of
market strategies.

Today’s machine learning algorithms are endless. This article does not focus on the
various branches of machine learning algorithms. Therefore, only a few classic machine
learning algorithms related to metric distance learning algorithms are listed here. The ef-
fects of these algorithms are mostly dependent on the choice of metric distance, so they are
often used as an experimental test algorithm to measure the effect of the metric learning
algorithm. Notice that some models of metric distance algorithms are also associated with
these algorithms.
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FIGURE 1.3 – An example of K-Nearest Neighbor classification.

1.1.1 K-nearest-neighbor

The KNN(K-Nearest Neighbor) classification algorithm is one of the simplest methods
in machine learning classification technology[Alt92]. The so-called K Nearest Neighbor
means that each sample is represented by its nearestK neighbours. As shown in Figure 1.3,
the green circle is the new sample to be decided which class to give, is it a red triangle or a
blue square? If K = 3, since the proportion of the red triangle of all 3 nearest neighbours
is 2/3, the green circle will be given the class of the red triangle. If K = 5, the blue circle
is given the blue square class because the ratio of the blue square all 5 nearest neighbours
is 3/5.

The core idea of the kNN algorithm is that if the majority of the K most neighbouring
samples in a feature space belong to a specific category, the sample also belongs to this
category and has the characteristics of the samples on this category. The method determines
the category to which the sample to be classified belongs based on only the category of
the nearest one or several samples in determining the classification decision. In the KNN
algorithm, the selected neighbours are all label supervised samples. In the categorization
decision, the method determines the category to which the new sample to be classified
belongs according to only the category of the nearest one or several samples. Although the
KNN method also relies on the limit theorem in principle, it is only related to a tiny number
of adjacent samples.

The KNN algorithm can be used not only for classification but also for regression. By
identifying theK nearest neighbours of a sample and assigning the average of the properties
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of those neighbours to the new sample, the properties of the new sample can be obtained as
ρ(x) = 1/K∑K ρ(xknn),where the xknn is the K nearest neighbours of the target sample.
A more useful method is to give different weights to the influence of the neighbours on the
sample, such as the weight is inversely proportional to the distance.

The main advantage of KNN is that it is simple and easy to implement. Although the
KNN method also relies on the limit theorem in principle, it is only related to a minimal
number of adjacent samples. Since the KNN method mainly relies on the surrounding li-
mited samples, rather than relying on the discriminant domain method to determine the
category, the KNN method is more suitable than the other methods for the crossover or
overlapping sample set of the domain. KNN is suitable for classifying rare label entities
and multiple label entities. In these cases, KNN performs better than other machine lear-
ning algorithms such as Support Vector Machine.

The main disadvantage of KNN is that when the sample is unbalanced. Such as the
sample size of one class is large, and the sample size of other classes is tiny, when a new
sample is entered, it may cause the bulk class to account for the majority of the K neigh-
bours of the sample. Secondly, another disadvantage of KNN is that it is computationally
intensive because each of the samples to be classified must be calculated from the distance
of all known samples to obtain its K nearest neighbours. Finally, KNN is poorly understan-
dable and interpretable and cannot give rules like decision trees.

1.1.2 Support Vector Machine

SVM(Support Vector Machine)is a generalized linear supervised learning model for bi-
nary classification of data and regression analysis[CV95]. Given a set of training examples,
each of which is labelled as belonging to one or the other of the two categories, the SVM
determines a decision boundary by finding the hyperplane of the largest margin, constructs
a non-probabilistic binary linear classifier, and can assign a new example as one category
or another. The principle of segmentation is to maximize the margin and finally transform
it into a convex shape quadratic programming problem.

The SVM model can be divided into linear separable SVM, linear SVM and nonlinear
SVM according to whether the training samples are linearly separable. The linear separable
SVM maximizes the distance from the vector samples to the decision boundary, while the
linear SVM ignores some unique support vector samples for the approximately linearly
separable training set to find the decision boundary. Finally, the nonlinear SVM uses a non-
linear method such as kernel function to convert the low-dimensional nonlinear case into
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FIGURE 1.4 – The maximum-margin hyperplane as the decision boundary with support
vectors.[CV95]

a high-dimensional linear case and then performs linear segmentation in high-dimensional
space to find the hyperplane as the decision boundary. We will not discuss the complexity
of SVM here but introduce linear separable SVM.

As shown in Figure 1.4, for the training samples x ∈ X, where the X is the all training
samples set, the learning target label is represented as a binary variable y, with y = +1
as the positive class and y = −1 as the negative class. The hyperplane of the decision
boundary wx− b = 0 separates the learning objectives by positive and negative classes and
makes the point-to-plane distance of any sample greater than or equal to 1. The parameters
w is a normal vector to the hyperplane and b is the offset intercept of hyperplane from the
origin. All samples above the upper interval boundary wx− b = +1 belong to the positive
class, and samples below the lower interval boundary wx− b = −1 belong to the negative
class. The distance between two spaced boundaries 2

‖w‖ is defined as the margin, and the
positive and negative samples at the interval boundary are support vectors. For finding the
maximum-margin hyperplane, the problem is transfer to optimize the problem as follows :

max 2
‖w‖

(1.1)

subject to yi(wxi − b) ≤ 1 ∀xi ∈ X. This example is a simple 2-dimension situation but
could be easily extended to the general case.

When a classification problem does not have linear separability, using hyperplane as the
decision boundary bring classification loss, that is, part of the support vector is no longer
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located on the interval boundary, but enters the inside of the interval boundary or falls into
one side of the decision boundary.

It is worth mentioning that the kernel method should also pay special attention in sup-
port vector machines, because it corresponds to the use of support vector machines in
the case of non-linear separability. When it is difficult to find linear separable decision
boundary in the feature space of the database, the feature space is mapped to the higher-
dimensional Hilbert space through the kernel method, and then it is easier to find the se-
parable boundary in the new space. In the future section in this work, we will introduce
several metric learning algorithms based on the same idea and combing the kernel method.

The SVM quantifies the empirical risk of classification loss using a hinge loss function
and adds a regularization term to the solution system to optimize structural risk. It leads
SVM to a classifier with sparsity and robustness. Compared with KNN, SVM has better
performance on the two-class problem, and the decision boundary learned by SVM is more
understandable than KNN. Because SVM is more focused on support vectors with a smal-
ler total number of samples, it is less computationally intensive than KNN when learning
to train SVM, and SVM is more efficient than KNN when extended to online learning
algorithms.

1.1.3 Neural Network

Artificial Neural Network is a research hotspot in the field of artificial intelligence since
the 1980s. In the field of machine learning and cognitive science, the neural network is a
structure and function that imitates biological neural networks. It builds a simple model
similar to neurons and forms mathematical models or computational models of different
networks according to different connection methods. The network performs an estimate
or approximation. There are many nonlinear metric learning algorithms based on Neural
Networks.

A neural network is a nonlinear computational model consisting of a large number of
neurons connected. As shown in the Figure 1.5, for the j-th neuron, the input signal of
a plurality of other neurons are accepted. xi represents the signal from i-th neuron. The
connection between every two neurons represents a weighting value for the signal passing
through the connection. wij represents the weighting value of the i-th neuron on the j-th
neuron. The neuron combines the effects of the input signal with some operation lead to
the output of the neuron y. Each neuron represents a specific output function called an
activation function. The output varies depending on the connection method of the network,
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FIGURE 1.5 – A neuron in the neural network.

FIGURE 1.6 – The forward multi-layer network.

the weight value and the excitation function.

A neural network is a complex interconnected system, and the interconnection mode
between neurons have an important impact on the property and function of the network.
There are many types of interconnecting modes, including the two most basic connections
and their extensions, forward networks and feedback networks.

As shown in the Figure 1.6, the forward network can be divided into several layers. The
layers are arranged in the order of signal transmission. The neurons in the i-th layer only
receive the signals given by the (i−1)-layer neurons. There is no feedback between the neu-
rons. The first layer and the output layer are collectively referred to as the "visible layer",
while the other intermediate layers are referred to as the hidden layer, and these neurons are
called hidden neurons. The BP (Back-propagation) network[RHW+88] is a typical forward
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network. The BP neural network performs weight adjustment by propagating the sample
signal in the forward direction and calculates the backpropagation error after the error by
monitoring the information. BP neural networks have some limitations : for example, some
areas on the error surface are flat, and the error is not sensitive to changes in weights, and
the gradient changes are small. However, it is the basis of many neural network models and
has laid a foundation for the development of deep learning multi-layer neural networks.

Feedback neural network is structurally different from the forward network. Each neu-
ron of the feedback neural network represents a computing unit and accepts input signals
and feedback inputs from other neurons, and each neuron is also directly output to the out-
side. The Hopfield network [Hop82] is of this type. The neurons in the Hopfield network
are mutually constrained. Under the excitation of the external supervision information, the
dynamic evolution state is entered to learn the weight adjustment until the equilibrium state
is reached. Hopfield neural network is a nonlinear dynamic system with rich, dynamic cha-
racteristics, such as stability, finite-loop state and chaos state. It has various applications in
associative memory and optimization calculation.

In most cases, artificial neural networks can change weights through learning or training
processes based on external information. It is an adaptive system. The same network can
have different functions depending on the learning method and content. The neural network
as a whole can be seen as a simulation or approximation of an algorithm, function, or logic
rule.

Nowadays deep learning models are utilized for solving many machine learning tasks,
and particularly performance exciting results on the image processing, computer vision,
natural language processing, social network filtering, machine translation, game programs
and many related areas. Deep learning and multi-layer neural networks are often mentio-
ned side by side, but it is worth pointing out that the two are not precisely equivalent. Deep
learning, like metric distance learning, is a branch of representation learning which is ex-
tract features from the original sample data and learning to learn. Deep learning is called
"deep" because the core idea of deep learning is to learn from shallow to deep, learn local
features first to learn the full features or learn surface features first to learn depth features.
The multi-layer neural network is the framework to realize the deep learning idea. In the
multi-layer neural network, the pre-hidden layer is mainly to learn the preliminary local
features and provide the following hidden layer for further deeper learning. The result of
the last layer before the output layer is the final feature of learning. Therefore, the multi-
layer hidden layer structure in the multi-layer neural network represents the deep feature
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learning to learn the features, and the final output layer generally represents the normal
machine learning process.

Deep learning architectures include deep neural networks, deep belief networks, recur-
rent neural networks, convolutional neural networks and many different extension of them.
In our work, we will not introduce all of them, but recommend more details in [Den14] and
[LKB+17].

1.2 Introduction of Relational Learning and the Relatio-
nal Database We Follow

Relational learning is one of the branches of artificial intelligence and machine learning.
Its goal is to learn the relationship between target samples or internal associations in the
complex structure of samples, which are uncertain and statistical[SB17]. The relationship
can refer to an external association or internal association at the same time. More theories
can be distinguished according to these two settings, but in essence, there is no difference
between the two relationship learning. Relationship learning differs from other machine
learning in that, and in addition to processing the feature information of the sample itself,
the relationship should be treated as an additional source of information or the relation-
ship need be treated as an additional feature representation. Therefore, the learning tasks
of relational learning based on relationship information or predictive relationship informa-
tion, including collective classification, logical interpretations, link-based clustering, link
prediction.

Although when referring to relational learning, it generally refers to statistical relational
learning, but can not generalize all relational learning into a kind of statistical relational
learning. Next, we will introduce several kinds of relational learning theories from different
angles.

1.2.1 Statistical Relational Learning

Statistical Relational Learning (SRL or probabilistic logic learning) is the most funda-
mental theory in relational learning. SRL focuses on the uncertainty of relationships and
tries to learn the probability distribution of this uncertainty [KFD+07]. The most famous
and classic Probabilistic Relational Models (PRM) in SRL [FGKP99] is a kind of Bayesian-
based statistical relationship learning method. It is an extension of the standard Bayesian
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network model to relational expression. PRM uses the Entity-Relationship Model, which
represents the relationship between entities, as the primary representation framework. The
structure of the model describes the relational model and the dependencies between the
attributes. The parameters of the model describe the probability distribution of the depen-
dencies between the objects and the attributes. Another well-known classical probability
model is the Markov Logical Network (MLN) [RD06], which is defined as a collection
of weighted first-order logic formulas. A formula is a constraint on a logical interpreta-
tion, and weight is a contribution to a given formula. MLN upgrades Markov networks to
first-order logic and allows networks with cycles.

1.2.2 Inductive Logic Programming

Logic programming is a programming paradigm that sets the rules that the answers must
conform to solve the problem, rather than setting steps to solve the problem. The process
is fact + rule = result. The Inductive Logic Programming (ILP) is extended from the LP,
using the first-order predicate logic to describe the relationship [DR08]. ILP differs from
SRL in that it focuses more on the transformation and structure between relationships in
relational learning. ILP and MLN have some similarities. The ILP language Prolog [Bra01]
is a common method of representing objects and the relationships between them.

1.2.3 Graph Mining and Multi-Relational Mining

When it comes to graph-based relational learning or multi-relational data mining, it is
mainly for the type of relational database. Relational databases typically consist of entity
tables and relational tables. When we represent the entity as a node of the graph and the
relationship is represented by the edge of the graph, the relationship learning can be des-
cribed as learning the graph. The relational learning task can be described as the prediction
or regression of the node attribute or the edge attribute. This type of setup is common in
specific relational learning tasks and is often used to describe real-world databases, such
as web mining, social network analysis. Multi-relational data mining can be described as
a weighted graph or a set of different graphs of the same batch of nodes. This setting is
more common in the particular multi-relational database with only one entity table and
multiple relational tables. Unlike SRL and ILP, graph-based data mining tends to focus
more on the structure of graphs than on other relational learning methods, rather than the
properties of individual nodes or the expression of a single relational rule. For example,
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[HRW10] focuses on the data mining method of subgraph representation information or
[GF18] uses the graph embedding method to transform the structure of the partial graph
into the characteristics of the sample. Also, when faced with multi-relational data mining
with multiple relational tables or arguably multiple graphs representing different relation-
ships, a standard method is propositionalization. Propositionalization is a learning method
that automatically converts relational information into sample features. Graph embedding
methods can be classified as a kind of propositionalization, while metric distance learning
is a kind of representation learning, and it is naturally related to it. We will introduce more
details in the following chapters. Notice that, if multiple relationships can be represented
as multiple different predicates, most of the ILP relational learning algorithms can also be
directly applied to multi-relational mining[Dže10].

In addition, relational learning also includes related methods such as relational reinfor-
cement learning and deep-relationship learning, which will not be repeated in this article.
This paper mainly studies the application of metric distance learning to relational learning
for multi-relational mining. In the following chapters, we will introduce the metric distance
learning algorithm for non-planar relational databases, including relational databases and
our proposed relationship metrics learning algorithm.

1.3 Basis of Metric Learning

In this section, we introduce some of the basic concepts of metric distance learning
throughout the whole article.

As the basis and goal of metric distance learning, the definition of the metric itself is
crucial. Metric is a concept describing the similarity of entities in general. Moreover, in
mathematics metric is a function that defines a distance between each pair of elements of a
set.

A metric is a function d : V × V → R+ on a set V, ∀xi,xj,xk ∈ V satisfying the
following conditions :

1. non-negativity : d(xi,xj) ≥ 0

2. identity of indiscernibles : d(xi,xj) = 0⇔ xi = xj

3. symmetry : d(xi,xj) = d(xj,xi)

4. triangular inequality : d(xi,xj) + d(xj,xk) ≥ d(xi,xk)

The first two conditions define a positive definite function.
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There are many different metrics for different situations, such as Euclidean distances
for flat databases, Hamming distances for strings, edit distances for trees or graphs, all of
which meet the above definition. However, some "metric"s in the metric learning algorithm
only meet the above definitions under finite conditions, or do not meet the third triangular
inequality condition. These "metric"s can be called similarity, and the similarity is used
for special learning tasks. It can also achieve the desired learning objectives. While for the
metric learning algorithms which are not based on the current metric, they need to prove
the defined metric satisfying above conditions, such as the metric learning with neural
networks[CHL05].

One of our proposed algorithms is proved by a proposed norm to define a metric, be-
cause it is well known that if N is a norm, then d(xi,xj) = N(xi − xj) is a metric.

A norm is a function that assigns a strictly non-negative length or size to each vector in
a vector space, which has a direct link with a metric.

A norm is a function N : V → R+ on a vector space V satisfying the following
conditions :

1. separates points : N(x) = 0⇔ x = 0

2. absolute homogeneity : N(ax) = |a|N(x)∀x ∈ V ∀a ∈ R

3. triangular inequality : N(xi) +N(xj) ≥ N(xi + xj) ∀xi,xj ∈ V

In the linear case, all norms are exceptional cases of the Minkowski gauge with a boun-
ded convex set.

Another principal basis for metric distance learning is the selection constraints from
similar and dissimilar sets. Different from other machine learning methods which direct
input the sample training set as the learning model, the metric distance learning algorithm
also requires classification of the sample set according to the task’s target and the presence
or absence of supervised information, which are generally divided into similar sets S and
dissimilar setsD. This segmentation process is also the reprocessing of supervised informa-
tion such as labelling, sorting, or unsupervised information such as timing, structure. The
techniques for selecting constraints vary according to the metric learning algorithm, and
we will introduce more details in subsequent chapters.
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1.4 Metric Learning Applications

Because metric distance learning is a branch of learning, it has applications that apply
to any task that cares about metrics or similarities between entities. Metric distance learning
can help most machine learning algorithms to improve performance and has been applied
to image retrieval, face recognition, text retrieval, tracking recognition, music recommen-
dation, web indexing in the field of machine learning or data mining. Here, we won’t list
a lot of applications, only the applications that metric distance learning to show the best
results : computer vision, information retrieval. We will introduce more application details
when describing the unique metric distance learning algorithms designed for specific tasks
or specific database in subsequent chapters.

1.4.1 Computer Vision

Metric distance learning has achieved many successes in various fields of computer
vision, mainly in image retrieval, face recognition, tracking recognition.

Image retrieval and classification is a fundamental task in machine vision. Image retrie-
val is divided into two categories : text-based retrieval and content-based retrieval[DJLW08].
Here we are referring to content-based image retrieval. The task objective is to detect other
images with similar characteristics from the image database based on the content semantics
of the image. Therefore, it is a native application to use the metric distance learning algo-
rithm to find the nearest neighbour image. It is worth mentioning that most of the algorithms
demonstrate their ability in image retrieval more or less when visualizing the effects of the
learning algorithm. For example, [JKG08] and [CSSB10] both show good results on dif-
ferent image databases. [HLLM06] and [HLC10] are metric learning algorithms designed
for image retrieval, and produced the most superior results at that time, and guided the fur-
ther development of metric learning algorithms in the field of machine vision. Recently, an
article [WWY18] has attempted to improve and develop the metric learning algorithm for
image retrieval in terms of deep learning.

The task of face recognition is to identify whether two face images belong to the same
person. Similar to image retrieval, face recognition can be thought of as retrieving other
similar images of a person in the database. So the image retrieval algorithm mentioned
earlier can also be used for face recognition. [GVS09] is one of the most popular metric
learning articles specifically for face recognition. The author proposes two metric learning
algorithms for the databases in [HMBLM08] and compares it with other contemporary
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techniques in [HMBLM08], and has achieved better results. [CVS11] proposed an unsu-
pervised version of the first method in [GVS09] and applied it to TV video.[CHL05] is
the first article to use CNN(Convolutional Neural Network) algorithm combined with me-
tric distance learning theory for face recognition. Based on it, new CNN metric learning
algorithms are proposed and extended to the field of deep learning.

Recently, the newer deep metric learning methods for face recognition have algorithms
such as [WZLQ16] and [TWR+16]. Another more challenging task associated with face
recognition is kinship verification [FTSC10]. The purpose of the kinship verification task
is to identify whether the person in the two face images has a kinship or a macro similarity.
Based on the classical metric distance learning algorithm of LMNN(Large-Margin Nearest
Neighbors) [WBS06], both [HLYT14] and [LZT+13] propose metric distance algorithms
for finding the nearest neighbour of pairs of the face image. In the recent [LHT17], the
author Lu et al. extended the algorithm to a version of deep learning.

1.4.2 Information Retrieval

Information retrieval, or called information search, refer to the search process that uses
the precise algorithm and the retrieval model or tool to find the required information from
the information sample set according to the needs of the task[JR10]. Information retrieval
is a process of matching a search target with a sample of information. Corresponding to the
metric learning algorithm, it is the process of sorting the samples according to the nearest
neighbour principle after learning the metrics that meet the task requirements according to
the algorithm model. Image retrieval is one kind of information retrieval. Therefore, the
metric learning algorithm of image retrieval we mentioned earlier can also be classified as
an information retrieval algorithm. Besides, the metric learning algorithm has also achieved
remarkable results in the field of text retrieval.

Unlike other similar metrics learning algorithms, the metric learning algorithm that
handles text retrieval or text analysis faces a challenge : the curse of dimensionality. The
standard model for text document data is the TF-IDF model, which is usually represented
as a sparse vector of the keyword frequency. For most conventional metric learning algo-
rithms with O(m3), complexity with the m is the number of features of the sample, the
dimensions of this vector far exceed the range they can handle. [DD08] and other algo-
rithms use a nucleation method to process high-dimensional data. The nucleation model
of the classical metric learning algorithm ITML [DKJ+07] is also used. Another idea is to
use a similarity function without PSD constraints as a metric model for the metric learning
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algorithm. [QGCL08] and [QG09] are both text metric learning algorithms based on cosine
similarity. [YTPM11] combines the Siamese architecture of the neural network proposed
in [CHL05] to learn the projection matrix, which projects the conceptual space of the text
document to the term vector. Recently, an article [XHL+19] has improved and developed
the metric learning algorithm for cross-retrieving of images and texts from the aspect of
deep learning.

1.5 Conclusion

In this chapter, we give a brief introduction to machine learning and explain the impor-
tance of metrics for machine learning. We highlight the two algorithms, KNN and SVM,
which are applied later to most metric learning algorithms. The background related to deep
learning and multi-layer neural networks is also briefly introduced. It provides a back-
ground for the introduction of the depth metric learning algorithm. For the second part of
this article," Proposing relational metric learning algorithms", we introduce the similarities
and differences between several different relational learning algorithms in this chapter. We
emphasize that this paper focuses on relational learning and multi-relational data mining
algorithms for graph-based relational databases. Then, this chapter introduces the probabi-
lities and symbols that are common in metric learning algorithms. The mathematical defi-
nition of this metric is primarily explained. Finally, this chapter introduces the application
of metric learning algorithms and embodies the importance and necessity of developing
metric learning algorithms.
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CHAPITRE 2

METRIC LEARNING FOR FLAT

DATASET

Machine learning algorithms can handle a wide variety of tasks, but when researching
and discussing algorithms, they usually start with the most straightforward database with
only one table. For this table, each row of the table represents an entity, each column of the
table represents different features or attributes of the entity (sometimes including the target
feature as a label). For this situation or a database that can be easily converted into this
case, we call it a flat database. Algorithms developed on a flat database can be extended or
transformed to non-flat databases as needed. In this chapter, we will introduce the develop-
ment and evolution of metric distance learning algorithms on flat databases for many years.
The purpose is not only to summarize the common models of metric distance learning al-
gorithms, but also to find the worthy development and attention from the similarities and
differences of algorithms. After investigation, we found that the metric distance learning
algorithm based on Mahalanobis distance plays a major role, but it is limited to learning
the weights of a single-dimensional or two-dimensional union. This discovery prompted us
to propose a metric distance learning algorithm for learning the weights of the coalitions of
three or more dimensions in the next chapter.

There are many different types of metric distance learning algorithms, and we follow
the basic model of metric learning mentioned in several surveys[YJ06][K+13][BHS15]. We
mentioned the simple principle of metric distance learning in the Chapter and the general
model that extends from it can be divided into the following steps.

— Metric Construction : Depending on the idea or the peculiarity of of the dataset,
construct a new distance function d′(xi,xj). Normally, d′(xi,xj) = d(f(xi), f(xj))
and d(xi,xj) is a current distance (for example, Minkowski distance, Euclidean
distance or anything similar) and the f is a transfer function mapping the original
feature space to a latent feature space. There are several model for construct the new
metric, like the Mahalanobis distance or linear similarity ;
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— Constraints Selection :Depending on the learning task and the availability of the
target label or other feedback, metric learning algorithm require select constraints
from the information of samples to learning the new metric. The most popular
constraints selection forms are threshold constraints dM(xi,xj) ≥ u,∀(i, j) ∈
S for similarity set S and dM(xi,xk) ≤ l,∀(i, k) ∈ D for dissimilarity set D
and relative constraints dM(xi,xk) ≥ dM(xi,xj) + γ∀(i, j, k) ∈ C where C =
(i, j, k)|(i, j) ∈ S, (i, k) ∈ D ;

— Learning Processing : Generally for learning the new metric, a loss functionL(M) =∑
(i,j,k)∈C `M(i, j, k) + λr(M) is proposed to measure the performance of the new

metric with the parameter matrix M . The loss function contains two part, one is the
sum of the encoded loss based on the new metric from every triple (i, j, k) in the
selected constraints set C, the other one is the regularization r(M) with a balance
parameter λ ;

So in this chapter, we will follow the mode, as shown in Figure 2.1 and switch to
different branches to summarize the current metric learning algorithms for flat datasets.
In order to make the classification of the algorithms of different metrics more precise,
we mark the algorithms of different branches as different colours in the figure and the
title of the algorithms of the corresponding metric. The algorithms based on Mahalanobis
distance are marked as red, the algorithms based on linear similarity are marked as green,
the algorithms of the nonlinear metric are marked as blue, and the algorithms of the local
metric are marked as purple.

— First, in the 2.1 section, we will start with the construction of the metrics, revisit the
definition of the metrics and introduce various metrics for different situations. Most
metric learning algorithms are based on the Mahalanobis distance metric and try
to learn a Mahalanobis distance with weights. Also, linear similarity and nonlinear
metrics are metrics worth considering. We will also discuss the differences between
learning global metrics and local metrics in this section.

— Second, in the 2.2 section, we will focus on how to learn the parameters of the me-
tric. We will start with two parts of the loss function : loss coding from the selected
constraints and regularization factor, and then introduce the different methods of
optimizing the loss function. We will introduce how the metric learning algorithm
will select and combine constraint selection methods, regularization methods, and
optimization methods. Also, compare the advantages and disadvantages of these
different settings.
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FIGURE 2.1 – Different branches of metric learning approaches.
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— Metric learning can generate better metrics that can be used not only for traditio-
nal machine learning tasks but also for other special tasks. In the 2.3 section, we
will cover common tasks that are solved by metric learning and specific algorithms
related to specific tasks.

Nowadays, deep learning is one of the essential branches of machine learning. So in the
2.4 section, we will briefly introduce several metric learning combined with deep neural
networks.

At the end of this chapter, we will summarize the metric learning algorithms we listed
in the 2.5 section and briefly discuss the trends in metric learning algorithms. We illus-
trate the motivation again for improving the metric learning of flat datasets based on the
Mahalanobis distance learning model.

2.1 Metric Constructions

As we mention in Chapter 1, a metric is a function A metric is a function d : V× V→
R+ on a set V, ∀x ∈ V satisfying conditions : non-negativity, identity of indiscernibles,
symmetry and triangular inequality.

For metric learning algorithms, the metric construction step is to define the new metric
d′(xi,xj) = d(f(xi), f(xj)) with the transfer function f , which f need limit conditions
or established form for making sure the d′(xi,xj) is still a metric. There are already seve-
ral models on the method of metric constructions, for example, the Mahalanobis distance
model, the similarity learning model[YJ06][BHS15]. We will introduce some of them with
classical metric learning algorithms.

Besides these models, the metric form also could be separated as the linear metric and
nonlinear metric by the form of data, or be separated as the global metric and local metric
for the particular dataset(such as heterogeneous data) or large size of the dataset. We will
specially discuss the nonlinear metric and local metric learning the following sections.

2.1.1 Mahalanobis Distance Learning Model

The Mahalanobis distance [Mah36](also known as the generalized ellipsoid distance [ISF98]),
is initially defined as a measure of closeness between a point and a distribution. Currently,
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the Mahalanobis distance is denoted as following :

dM(xi,xj) =
√

(xi − xj)TM−1(xi − xj) (2.1)

where M has to be positive definite to obtain a proper distance. If the matrix is positive
semi-definite (PSD), then it is a pseudo distance, i.e., the constraint on the identity of in-
discernible is relaxed, and it is only required that ∀x, d(x, x) = 0. Notice that if M = I the
identity matrix, it corresponds to the Euclidean distance.

In its original definition [Mah36], M is the inverse variance, which is the covariance
matrix of the examples. In the metric learning algorithms, the M could be the parameters
to learn. The intuition behind the Mahalanobis distance is to re-weight every dimension of
the feature space of the samples or could be considering mapping the samples linearly to a
new latent feature space by the Cholesky decomposition that M = LTL.

d(xi,xj) =
√

(xi − xj)TM−1(xi − xj) (2.2)

=
√

(xi − xj)TLTL(xi − xj) (2.3)

=
√

(Lxi − Lxj)T (Lxi − Lxj) (2.4)

So the metric learning algorithms based on the Mahalanobis distance is learning a li-
nearly mapping transfer L matrix corresponds to a new latent space, which in this space the
Euclidean distance could be better than in the original space.

Most of the classical metric learning algorithms are based on the Mahalanobis distance
model. We will introduce several of them :

MMC(Mahalanobis Metric Learning) [XNJR02] [XNJR03]

In MMC [XNJR02] [XNJR03], the first Mahalanobis distance learning method is pro-
posed for clustering. This proposed metric learning algorithm aims to maximum the dis-
tance between the dissimilar pair of data nodes, while keep the distance between the similar
pair of data nodes low than the threshold( which is selected to be 1 ). The loss function is
denoted as,
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maxL(M) =
∑

(i,j)∈D
dM(xi,xj) + r(M) (2.5)

s.t.
∑

(i,j)∈S
d2
M(xi,xj) ≤ 1 (2.6)

As the first metric distance learning algorithm, MMC is quickly surpassed by sub-
sequent algorithms in terms of performance, but it clarifies the general model of metric
learning. For an extended period, the new metric distance learning algorithm only differs
in the choice of the algorithm’s constraints selection, regularization, and optimization al-
gorithms.

SJML(Schultz and Joachims Metric Learning) [SJ04]

In SJML [SJ04], they use the L2 loss regularization, but with the relative distance
constraints that`(XTMX) = dM(xi,xk) − dM(xi,xj) − γ, ∀(i, j, k) ∈ C. The additio-
nal assumption is they limit the matrix learned is a diagonal matrix M = M ′DM ′T , where
D is diagonal matrix and M ′ is user-given matrix. The final loss function is denoted as :

L(M) =
∑

`(XTMX) + λ|M |2 (2.7)

where `(XTMX) = [dM(xi,xk)−dM(xi,xj)−γ]+,∀(i, j, k) ∈ C andM = M ′DM ′T �
0, Ddiagonal.

The advantage of the method is the number of parameters will be limit to only grows
linearly with the number of dimensions, which more reduce the complexity of computing
than the general Mahalanobis matrix learning methods. This algorithm performs better than
the MMC algorithm, but it is still not as good as the most commonly used LMNN and ITML
that we will introduce later.

LMNN(Large-Margin Nearest Neighbors) [WBS06]

LMNN [WBS06] is one of the most popular methods for metric learning. The authors
choose the relative distance constraints and propose a regularization based on [XNJR03].
This special regularization is writed as tr(MC) , where C = ∑

(i,j)∈S(xi − xj)(xi − xj)T .
So tr(MC) = ∑

(i,j)∈S dM(xi,xj) and we can treat it as a minimizer to the new metric
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FIGURE 2.2 – Schematic illustration of one input’s neighborhood before training (left)
versus after training (right). [WBS06]

between the similar samples. The loss function is as follow :

L(M) =
∑

(i,j,k)∈C
[dM(xi,xk)− dM(xi,xj)− γ]+ + λ

∑
(i,j)∈S

dM(xi,xj) (2.8)

where normally the γ is chosen to 1.

Figure 2.2 shows the illustration of the two aims of LMNN : differently labeled in-
puts lie outside this smaller radius by some finite margin, which is related the part of loss
function

∑
(i,j,k)∈C[dM(xi,xk) − dM(xi,xj) − γ] ; while target point’s k=3 target neigh-

bors lie within a smaller radius after training, which is related the part of loss function∑
(i,j)∈S dM(xi,xj). The arrows in the figure indicate the gradients on distances arising

from different terms in the cost function.

LMNN is the most commonly used metric distance learning algorithm, which has an
excellent performance in most application scenarios, but it still has limitations as a linear
algorithm, and it does not apply to some special tasks. Therefore, there are many extensions
to the LMNN, such as for nonlinearization, localization, online learning. We will discuss
some of them for different sets for other more particular cases.
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ITML(Information-Theoretic Metric Learning) [DKJ+07]

Another most popular method for metric learning is ITML [DKJ+07]. They consider
similarity and dissimilarity constraints under an information-theoretic regularization. They
expect to minimize the Kullback–Leibler divergence of the PSD matrixM of learned metric
and given matrix M0 under the limit of the constraints.

Because KL(ρ(x;M0)||ρ(x;M)) = 1/2(tr(MM−1
0 )− logdet(AA0−1)− d) and they

chose M0 with identity matrix, so the final loss function based on logdet divergence and
shown as :

L(M) =
∑

`(XTMX) + λ(tr(M)− logdet(M)) (2.9)

where `(XTMX) = dM(xi,xj)− dI(xi,xj),∀(i, j) ∈ S
`(XTMX) = dI(xi,xk) + γ − dM(xi,xk),∀(i, k) ∈ D
In ITML paper, they not only propose the regularization based on KL divergence but

also propose the kernel metric learning, which will be discussed in the following section
as a nonlinear models metric learning method. It is worth mentioning that although the
computational complexity of ITML is higher than that of LMNN under many of the same
conditions, it takes longer. However, the ITML algorithm has more flexibility in selecting
constraints and input samples and has higher stability.

LSML(Least Squares Metric Learning) [LGZ+12]

LSML [LGZ+12] use the relative distance constraints like LMNN and the LogDet
divergence regularization like ITML. Beside the combination of idea of the two papers,
LSML propose a new way of encode the loss of constraints, they use squared hinge function
and optimize over the sum of squared residuals in satisfying constraints. The squared hinge
function H(x) is defines as :

H(x) =

 0 if x ≤ 0
x2 if x > 0

(2.10)

And the relative distance constraints is be formed like dM(xk,xl) ≥ dM(xi,xj),∀(i, j, k, l) ∈
C where the constraints set C is select by the pair (i,j) is more similar than the pair (k,l).

44



2.1. Metric Constructions

The final loss function is as following :

L(M) =
∑

l(i,j,k,l)∈C
H(dM(xi,xj)− dM(xk,xl)) + λ(tr(M)− logdet(M)) (2.11)

subject to M � 0
The advantage of the LSML algorithm comes from the fact that the loss coding is easier

to calculate. Although the author does not have LMNN and ITML in this paper, in the
experiments of our paper, it can be found that LSML takes less time than LMNN and
ITML under the same conditions, but the performance is relatively more mediocre.

2.1.2 Linear Similarity Learning

Although most of the linear metric learning algorithms are based on the Mahalanobis
distance model, there still are several other measures attracted recent interest to learn[K+13][BHS15].
These approaches are in the form of similarity functions also parametrized by a matrix M ,
but the M is often not required to be PSD. Most of the similarity functions are denoted as :

dsM(xi,xj) = xTi Mxj
fS(xi,xj)

(2.12)

where the fS(xi,xj) is a regularization term or other function depended on the method.

SiNo(Similarity learning for nearest neighbor classification) [QGCL08]

SiNo [QGCL08] is the simplest approach for learning similarity functions in this form.
Also denoted the similarity function as :

dsMxi,xj) = xTi Mxj
N(xi,xj)

(2.13)

where the N(xi,xj) is a normalization term which depends on xi and xj .

The authors learned such a similarity function like the same idea in LMNN, which is
that for the target point the dissimilar point should be farther than the similar one and the
similar neighbour should be as near as possible. However, to optimize the similarity, they
use an online learning algorithm based on voted perceptron.
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SiCos(Similarity learning with cosine similarity) [QG09]

SiCos [QG09] could be considering as an special case of SiNo with the cosine as the
normalization term, with the cosine similarity function as following :

dsMxi,xj) = xTi Mxj√
xTi Mxi

√
xTjMxj

(2.14)

Where the M is symmetric and PSD, which implies a projection space for the cosine
similarity. For learning such a similarity function, the authors also use an online learning
algorithm with two steps : firstly a projection to obtain zero hinge loss on the current posi-
tive pairs, secondly another projection on the cone of PSD matrices. This online algorithm
is almost the same as POLA(Pseudo-Metric Online Learning Algorithm) [SSSN04], which
will be introduced in the following sections.

OASIS(Online Algorithm for Scalable Image Similarity) [CSSB09]

OASIS [CSSB09] is a bilinear similarity learning algorithms particularly for large scale
datasets. It is an online learning for image retrieval based on k-nearest-neighbor and has the
simple form :

dsMxi,xj) = xTi Mxj (2.15)

where the M is neither required to be PSD nor symmetric. For learning, the authors
use online learning belongs to the closed-form update based on Passive-Aggressive algo-
rithms [CDK+06]. The initialization is M equal to the identity matrix, FM amounts to an
unnormalized cosine similarity. Then at each step t, with the hinge loss over the triplets
(xi, xj, xk) of relative constraints, the following convex problem is solved :

M t = arg min 1/2
∥∥∥∥M −M t−1

∥∥∥∥+ cξ (2.16)

s.t.1− dM(xi,xk) + dM(xi,xj) ≤ ξ, (2.17)

ξ ≥ 0 (2.18)

Where the c ≥ 0 is a trade-off parameter, and ξ is a slack variable. OASIS efficiently
handle sparse datasets and get better performance on medium-scale problems, allowing it
to scale to millions of examples.
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2.1.3 Nonlinear Metric Learning

We have introduced so many linear metric learning algorithms that we can say that
metric learning is more focused on linear metrics. The reason for this is that linear metrics
are easier to construct and optimize. However, in reality, many nonlinear structure databases
are arduous to learn linear metrics after simple processing directly, or can not be applied
by linear metric learning algorithms. Therefore, the metric learning algorithm has naturally
evolved into a nonlinear field. In recent years, some scholars have also studied nonlinear
metric learning methods to solve the problem in this case.

Kernel Metric Learning

In nonlinear case of metric learning algorithms, a general idea is using embedding or
mapping function before the linear projection, which define the new metric as dM,φ(x)(xi,xj) =(
(φ(xi)− φ(xj))TM(φ(xi)− φ(xj))

)1/2
. The φ() is the nonlinear transformations. So

kernelization can be a satisfactory proposition[YJ06][K+13][BHS15].

Kernel metric learning aims to learn a linear metric in the nonlinear feature space
induced by a kernel function φ. By the spirit from SVM, some linear metric learning
method we mentioned before have been extended with kernelization, for example, the
SJML [SJ04], [DKJ+07] and [SSSN04].

With the nonlinear transformations φ(), GB-LMNN(Gradient-boosted LMNN) [KTS+12,
KXW] is a nonlinear version of LMNN. The authors apply gradient-boosting to learn nonli-
near mappings directly in function space and takes advantage of this approach’s robustness,
speed, parallelizability and insensitivity towards the single additional hyperparameter.

To generalize the LMNN objective 2 to a nonlinear transformation φ(x), the Euclidean
distance with transformation is denoted as

dφ(xi,xj) = (φ(xi)− φ(xj))>(φ(xi)− φ(xj))

Extend the loss function of LMNN as follow :

L(φ()) =
∑

(i,j,k)∈C
[dφ(xi,xk)− dφ(xi,xj)− γ]+ + λ

∑
(i,j)∈S

dφ(xi,xj)

The transformation φ(x) is defined with gradient boosted method as an additive func-

47



Partie , Chapitre 2 – Metric Learning for Flat dataset

tion :
φt(x) = φt−1(x) + αht(x)

where ht(x) ≈ argminh∈thL(φt−1(x) + αht(x)) initialize with the linear transformation
φ0 learned by LMNN. The α is the learning rate and th denotes the set of all regression
trees of limited depth h.

Beside apply the kernel method with the existed linear metric learning, it is worth to
mention that several kernel metric learning is based on KPCA(Kernel Principal Component
Analysis [SSM98]) which is a nonlinear extension of PCA. KPCA can be considered as
using a kernel projecting the data into the nonlinear feature space induced and performs di-
mensionality reduction in this feature space. In [CKTK10], the authors using linear metric
learning algorithms based on Mahalanobis distance in the KPCA feature space.

Multiple Metric Learning

Another possible approach to learning metric for nonlinear datasets is to one metric per
region of the space or even one metric per examples. Learning multiple linear metrics has
the capacity to capture the heterogeneities of complex tasks[K+13].

LMNN has many different extensions, and Mul-LMNN(Multiple LMNN metric lear-
ning) [WS08a] is the multiple metrics learning version of LMNN. Mul-LMNN separated
the training datasets in several clusters with supervised ways(labels) or with unsupervised
ways(k-means). Then for each cluster, a metric is learned in a generalization from LMNN.
Notice that, this could be considered as local metric learning for each cluster, the local
distance is depended on the pair of data nodes are in which cluster and the global dis-
tance could be not symmetric if the pair of data nodes are in different clusters. Beside this
one, Mix-LMNN(Mixture of LMNN) [SA13] and Local-LMNN(Large Margin Local Me-
tric Learning) [BYGP14] are also multiple metrics learning version of LMNN with several
local metrics learned from the partition of feature space.

SCML(Sparse compositional metric learning) [SBS14] also learns Mahalanobis dis-
tance, but not for each cluster. The authors propose rank-one matrices by not only cluste-
ring but also Fisher’s linear discriminant analysis. Then the global distance is generated as
the form of a sparse linear combination of the set of rank-one matrices.
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FIGURE 2.3 – Siamese Architecture of Convolutional Neural Networks.

Nonlinear Form Metric

The nonlinear metric learning algorithms we mentioned before are still learning linear
metric with different nonlinear transformations. However, there are still several approaches
are based on learning the direct optimization of a nonlinear form metric[BHS15].

Neural networks is widely used in nonlinear machine learning algorithms, therefore it
is also a convenient choose for nonlinear metric learning. With the neural network model,
LSMD(Learning Similarity Metric Discriminatively) [CHL05] is the firstly nonlinear form
metric learning literature. The authors learn the nonlinear projection φW (x) parameterized
by a vector W, with the relative constraints that in the low-dimensional space ‖φW (xi) −
φW (xj)‖+γ ≤ ‖φW (xi)−φW (xj)‖,∀(xi,xj,xk) ∈ R which the distance for positive pairs
is smaller than negative pairs, the γ is a margin parameter. The parameter W corresponds
to the weights in a convolutional neural networks.
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As shown in the Figure 2.3, given two input data points pairs xi and xj , both of them
are passed through identical convolutional networks with common parameters W and the
output of convolutional neural networks is denoted as Ei,j = φW (xi)− φW (xj)‖.

These convolutional neural networks are trained by the loss function :

L =
∑

xi,xj ,xk

α1Ei,j + α2 exp(−α3

√
Ei,k) (2.19)

where the α1, α2, α3 are learning parameters chosen according to the networks.

The convolutional neural networks lead to a high price on computational complexity,
but the authors demonstrate the advantage of face verification tasks.

Non-NCA(Nonlinear Neighbourhood Components Analysis) [SH07] is also based on
neural networks and is a nonlinear extension of NCA(Neighbourhood Components Ana-
lysis) [GHRS04]. Instead of convolutional neural networks, Non-NCA learns a nonlinear,
low-dimensional representation of the data using a deep belief network. And for training,
the Non-NCA optimizing NCA objective for parameters of the last layer. Non-NCA also
has a high computational complexity limit but performs well when enough data is available.
The experiment on digit recognition dataset shows the Non-NCA performs significantly
better than compared algorithms.

2.1.4 Local Metric Learning

Most of the metric learning algorithms are learning a global metric which is suitable
for all data points. However, a single metric (especially a single linear metric) may not
well capture the complexity of the task for heterogeneous datasets. As several metric algo-
rithms we mentioned in nonlinear metric learning, for example, Mul-LMNN [WS08a] and
SCML [SBS14], they benefit from using multiple local metrics. Besides this, local metric
typically leads to better performance and less overfitting than global metric on some tasks.
Of course, they require a higher price on computation and time cost.

BMML(Bregman Distances Metric Learning) [WJH+09], [WHJ+10]

BMML [WJH+09], [WHJ+10] is learning the Bregman divergences which is a metric
but not satisfy the triangle inequality or symmetry. The Bregman divergences is defined as :

df (xi,xj) = f(xi)− f(xj)− (xi − xj)T 5 f(xj) (2.20)
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where the f could be f(x) = 1/2xTMx for Mahalanobis distance, f(x) = ∑m
i=1 xilogxi

with considering x as a discrete probability distribution for KL divergence, where m is the
number of dimension of x.

The authors consider a symmetrized version of the Bregman distance function and re-
write it as follows :

df (xi,xj) = (5f(xi)−5f(xj))T (xi − xj) (2.21)

= (xi − xj)T 52 f(xa)(xi − xj) (2.22)

where xa is a point on the line segment between xi and xj . This Bregman distance
function can be viewed as a general Mahalanobis distance that introduces a local distance
metric M = 5f(xa).

Following the maximum margin framework for classification,by setting the f(x) =∑m
i=1 αih(xTi xi)is a strictly convex function), they cast the problem of learning a Bregman

distance function from pairwise constraints set R into the following optimization problem :

min 1/2αTGα + λ
∑
i,j∈R

l(yi,j(df (xi,xj)− b)) (2.23)

where G is the Gram matrix, l(t) = max(0, 1 − t) is the hinge loss, yi,j = 1 if (i, j)
are similar pairs and yi,j = −1 if (i, j) are dissimilar pairs. The lambda is the trade-off
parameter.

As can be seen from the author’s experiments, BMML performs similarly to ITML on
low-dimensional databases, mostly from their similar core ideas. In the higher dimensional
database, BMML performs well, which is better than other algorithms in the same period
and can also be used for datasets that cannot be processed by ITML.

LFDA(Local Fisher Discriminant Analysis) [Sug06]

LFDA [Sug06] is not particularly proposed as a metric learning algorithm but a linear
supervised dimensionality reduction method. As a localized variant of Fisher discriminant
analysis, LFDA is particularly useful when dealing with multimodality, where one or more
classes consist of separate clusters in input space. LFDA takes the local structure of the
data into account so that the multimodal data can be embedded appropriately.
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The LFDA reduce the dimensions with the following transformation matrix Tlfda :

Tlfda = argmaxT∈Rd×m(T TB′T ) (2.24)

subject to T TW ′T

Where the B′ is the local between-class scatter matrix and W ′ is the local within-class
scatter matrix. The core optimization problem of LFDA is solved as a generalized eigenva-
lue problem. Because the original article used LFDA as a method of dimensionality reduc-
tion, it was not compared with other metric distance learning algorithms. However, in the
subsequent experiments in our work, it can be seen that although the accuracy and stability
of LFDA are not as good as classical algorithms such as LMNN and ITML, the computa-
tional efficiency is much higher than other metric distance learning algorithms of the same
period.

2.2 Learning Processing

In the previous section, we introduce different metric construction and the related algo-
rithms, also mention several approaches about how the metrics are learned. In this section,
we will summarize the method about the learning processing. Besides the different way to
define the metric, there are much different in constraints selection, loss function optimi-
zing and other details. We will introduce the differences between the three main branches :
constraint selection, regularization selection, and optimization methods.

2.2.1 Constraints Selection

The constraints form is selected by the task requirement and the training information.
The metric learning could be supervised or unsupervised algorithms, which is dependent
on the available information from datasets.

— Supervised Constraints : The metric learning algorithm has access to the dataset of
labelled samples, which in the training set, it has label y for every entity of x. In
this case, we selected the constraints based on the target label. For the similar set S,
∀(i, j) ∈ S, yi = yj or yi and yj are neighborhood in meaningful notion sets, while
the dissimilar set D is opposite.

— Semi-supervised Constraints : However, in most of the real dataset, there are few
labels easy to get. The access to all labels of the individual training set is not com-
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plete, and the side-information (for example, the order or rank of instances, citations
of the link of entities) is cheaper to get. In this case, a meaningful setting is requi-
red to select the constraints, for example, the similar set S could be ∀(i, j) ∈ S,
∃r(i, j) > 0 where r(i, j) is a link between two entities and the dissimilar set D is
∀(i, j) ∈ D,∀r(i, j) = 0 which means there is no link between the pairs.

— Unsupervised Constraints : Several metric learning algorithms have no access to su-
pervised information. In this case, they focus on dimension reduction or clustering,
which will select the constraints subject to the task requirement.

There are several ways to use the S and D as constraints as in the following subsections :

Threshold Constraints

The most popular form of metric learning constraints is threshold constraints : For all
the sample pairs in selected constraints set C, they will be separated in `(XTMX) =
dM(xi,xj)−u,∀(i, j) ∈ S for similarity set S and `(XTMX) = v− dM(xi,xk),∀(i, k) ∈
D for dissimilarity set D, where the parameters u and v are threshold parameters. The u
and v are user given or depended on the learning tasks.

Threshold constraints aim to limit the learned distance between similar pair of data
point near enough and to be sure the distance between dissimilar ones far enough.

In MMC [XNJR02] [XNJR03] we mentioned before, the algorithm is the first me-
tric learning using the threshold constraints. Notice that in the first version [XNJR02], the
optimization problem is as following :

arg min
∑

(i,j)∈S
d2
M(xi,xj) (2.25)

s.t.
∑

(i,k)∈D
d2
M(xi,xk) ≥ 1 (2.26)

Here the authors aim to minimize the margin between similar examples to 0 while the
margin between dissimilar examples is set to 1.

In IKML(Idealized Kernels Metric Learning) [KT03], the authors also use the threshold
constraints but in a special way : the threshold parameters u and v in threshold constraints
dM(xi,xj) ≤ u, (i, j) ∈ S and dM(xi,xk) ≥ v, (i, k) ∈ D are not user-chosen parameters,
while they use the original distance as the threshold. For the similarity constraints, they
want the learned metric will be smaller than the original one, dM(xi,xj) ≤ dI(xi,xj)
where the matrix I is an identity matrix. And for the dissimilarity constraints, they add
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a margin as dM(xi,xk) ≥ dI(xi,xk) + γ to protect the learned metric is bigger than the
original one. The final loss function is denoted as :

L(M) =
∑

`(XTMX) + λ|M |2 (2.27)

where `(XTMX) = dM(xi,xj)− dI(xi,xj),∀(i, j) ∈ S
`(XTMX) = dI(xi,xk) + γ − dM(xi,xk),∀(i, k) ∈ D
The ITML [DKJ+07] we mentioned before, and LDRML(Log-determinant regularized

Distance Metric Learning) [ZMW+09] are not only the metric algorithms with threshold
constraints but also with the information-theoretic forms. The ITML is based on the logdet
divergence and learns the metric close to a known prior metric which the trace of the learned
metric subject to the threshold constraints. The LDRML extent the ITML with using a set
of prior matrices with the same constraints.

Relative Constraints

Another popular form of metric learning constraints is relative constraints : For all the
sample pairs in selected constraints set C, they will be selected as triples (i, j, k) which
the (i, j) is from similarity set S and (i, k) is from dissimilarity set D. The relative distance
constraints is in the following form : `(XTMX) = dM(xi,xk)−dM(xi,xj)−γ∀(i, j, k) ∈
C, where the γ is a margin parameter.

Relative constraints aim to be sure the learned distance between similar pair of data
points nearer than the distance between the dissimilar ones. In this case, the relative constraints
could be denoted as dM(xi,xk) ≥ dM(xi,xj), which do not require one to specify any pa-
rameters(unlike the threshold constraints). However, typically relative constraints add the
desired margin to improve the performance. In many cases the γ is chosen equal to 1 for
normalized dataset but also could be other value or even related functions as the require-
ment of task and algorithms.

In most cases, it is typically easier to provide relative distance constraints than thre-
shold constraints. Firstly, for many subjects, it is possible for comparing which one is more
similar to target object while it may be challenging to determine an arbitrary pair of the
object should be considered similar, for example, the image, music or other entities with
sophisticated features or structures. Secondly, the margin γ is more comfortable to choose
than the threshold parameters of u and v, which are hard to define the boundaries of similar
and dissimilar. Thirdly, the threshold parameters u and v could lead to a problem when set-
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ting the similar threshold u is greater than the dissimilar threshold v (Not possible in most
algorithms but legal in rare cases).

On the other hand, the threshold constraints are more straightforward and standard to
create, when the fully supervised information (like target labels) are available, with setting
all pairs of objects of the same class are similar constraints and pairs of objects of different
classes are dissimilarity constraints.

LMNN(Large-Margin Nearest Neighbors) [WBS06] is the famous metric learning al-
gorithm which chooses the relative distance constraints and with a margin, γ = 1 for nor-
malized data. That is the reason this algorithm is called as large-margin. There are many
extended version of LMNN but most of keeping the relative distance constraints selection.

SCML(Sparse compositional metric learning) [SBS14] has a similar strategy as LMNN,
which is not only also learns Mahalanobis distance, but also using relative distance constraints.
Thought the algorithm is based on the idea of learning a sparse linear combination of the
set of rank-one matrices. The constraints selection is still the same. And the authors also
chose the margin equal to 1.

Other Constraints Approaches

Besides the two most popular constraints, there are several other constraints forms.

Some of the constraints are different because of the ways for using the available infor-
mation. For example, in CibML(Choquet-integral-based Metrics Learning)[BJL11] they
use the Shapley indices and interaction indices as additional threshold constraints. In ad-
dition, the algorithms for non-flat data sets in the next chapter also construct constraints
based on structure or side information.

Some of the constraints are different because the ways for manage the relation of si-
milar and dissimilar sample sets. For example the QWML(Quadruplet-wise Metric Lear-
ning) [LTC13] which propose quadruplet based constraints of the form `(XTMX) =
dM(xp, xq) − dM(xi,xj) − γ∀(i, j, p, q) ∈ C . The constraints set is denoted as C =
(i, j, p, q)|(i, j) ∈ S, (p, q) ∈ D, where the 4 samples ordered as p ≺ i ∼ j ≺ q, that the
pair (i,j) is more similar than the pair (p,q). The γ is also an added margin. This constraints
is in case that pair or triplet based constraints cannot completely capture the relations bet-
ween the examples since they are not fully determined.

Some of the constraints are different because of the ways to generate the constraint pairs
from the sample set. In CWSML(Constraint Weighted Selection Metric learning)[LC18],
instead of selecting constraints samples random form the similar and dissimilar set, an on-
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line constraints selection method is proposed for metric learning algorithms. The algorithm
assigns a weight to each sample, each time selecting a limit based on the weight wxi

. For
each selected constraints, the loss L(M) produced by the metric defined under the current
parameter matrix M is calculated according to the metric learning algorithm. Also, accor-
ding to the loss L, update the weight w of each sample. The more the loss, the higher the
contribution that the selected sample can provide to the metric learning, so the updated
weight will help the probability that the sample-related constraint is selected increases at
the next iteration.

The different constraints form depend on the availability of information and the deter-
ministic of the relationship between samples. It is necessary to choose different constraint
solutions according to the different learning tasks and data sets.

2.2.2 Regularization

Typically the metric learning loss function consists of two parts. One part is the en-
code loss from the selected constraints, and the other part is regularization. As most of the
machine learning algorithms, regularization limits the complexity of the model to avoid
over-fitting and obtain better generalization.

Most of the linear models metric learning algorithms are similar on the constraints
selection or could be adapted to multiple constraints form, however, they have particular
regularization lead to different performance for metric learning and suited to different da-
tasets.

Regularization Definition Properties
L1 norm r(M) = ∑ ‖Mi,j‖ Convex, sparsity, non-smooth

Frobenius Norm or L2 norm r(M) = ∑
M2

i,j Strongly convex, smooth
Linear (trace) norm r(M) = tr(MC) Convex, low rank, (non-smooth)

Information-Theoretic r(M) = tr(M)− logdet(M) Convex, low rank, LogDet divergence

TABLE 2.1 – The difference between different Regularization.(Where C is a chosen matrix,
for example an identity matrix for nuclear-norm regularizer)

In the general loss function L(M) = ∑
(i,j,k)∈C `M(i, j, k) + λr(M), the regularization

r(M) is also selected by the task requirement, while many methods improve the metric
learning performance by selecting better regularization. As shown in Table 2.1, the different
regularizers lead to different properties, and we will introduce the related algorithms in
following subsections.
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Norm Regularization

Frobenius Norm regularization is one of the most common forms of regularization. L2

Frobenius norm loss is also known as Tikhonov regularization or ridge regression. This
regularization is widely used and also apply for metric learning algorithms. It is easy to
optimize, and strong convexity, which provides control over the values of the data feature
vector and parameter learned matrix.

In paper IKML [KT03] and SJML [SJ04], they both use the Tikhonov regularization in
loss function. The difference is the chosen constraints form. In POLA(Pseudo-Metric On-
line Learning Algorithm) [SSSN04] the regularizer is the squared Frobenius norm, which
follows from the fact that the algorithm employs Euclidean projections to define the up-
dates.

Most of the metric learning algorithms with the norm regularization are easier on opti-
mization. The drawback of this regularization is that norm regularization is harder to avoid
the over-fitting and lead to more computation complexity on a higher dimension comparing
the other regularization.

Linear Regularization

Linear regularization means the regularizer is a linear function with respect to the Ma-
halanobis matrix M, r(M) = tr(MC), where the matrix C is a chosen matrix by the
requirement of the learning task.

When theC is the identity matrix, the resulting regularizer is the trace-norm regularizer,
which is known to prefer low-rank solutions. The trace-norm regularization or also called
nuclear-norm is used in IRML(Inductive Regularized Metric Learning) [JKD10] with gene-
ral linear threshold constraints. The authors of this algorithm also describe the trace-norm
formulation in conjunction with kernelization in order to describe a supervised nonlinear
dimensionality reduction scheme.

When the C is a generated matrix related the selected constraints, the resulting regu-
larizer is a single limit to the learned metric, which are more sensitive to over-fitting. For
example, in MMC [XNJR02] [XNJR03], the regularizer could be written as r(M) =
tr(MC) where the C = ∑

(i,j)∈S(xi − xj)(xi − xj)T . LMNN [WBS06] also use the
same regularization, but need to point out they use the different constraints and the aim
for C = ∑

(i,j)∈S(xi−xj)(xi−xj)T is related the nearest neighbors selection for the target
data point.
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Another metric learning algorithms related to nearest neighbours selection is NCA(Neighbour
Components Analysis) [GHRS04], which is special without regularizer or could be treated
like the C = 0. NCA has many extensions, some of which enforce different regularization.

Information-Theoretic Regularization

The authors proposed the information-theoretic regularization ITML(Information-Theoretic
Metric Learning) [DKJ+07], in the form as r(M) = tr(M)− logdet(M). This regularizer
can be treated as LogDet divergence, which be rewritten as :

Div(M,M0) = tr(MM−1
0 )− logdet(MM−1

0 )−m (2.28)

with the m dimension dataset.

The LogDet divergence brings various useful properties for metric learning contexts,
such as scale invariance, translation invariance, range space preservation and connections
to multivariate Gaussian. The authors of ITML discuss those above properties, prove that
the LogDet divergence is over PSD (positive semi-definite) space and make the LogDet
regularization as a natural choice for metric learning model.

The LogDet regularization is also applicable for several algorithms base on a similar
idea, like LDRML (Log-determinant regularized Distance Metric Learning) [ZMW+09]
and FSOL(Fast Similarity Online Metric Learning)[JKDG09].

2.2.3 Optimization

For all the machine learning algorithms, the optimization is not only one of the most im-
portant part but also one of the unique part of the methods. The authors always design their
own optimization techniques specific to the individual algorithms, improve or develop the
related baseline optimization method and extent or combine with optimization techniques
from other areas. Therefore we would not fully discuss all metric learning optimization.
Instead, we will summarize some of the main techniques which are most popular and suc-
cessfully utilized.

Gradient Descent

Standard gradient descent is the most popular and simplest optimization technique.
However, since it is designed for unconstrained optimization problems, it cannot be applied
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naively.

So a possible approach for metric learning algorithms with PSD (positive semi-definite)
matrices M is to factorize the matrix M = LTL, and then apply gradient descent on the
linear projection L directly. The PSD properties imply that we can always factorize in this
manner. Gradient descent then proceeds by iteratively computing the gradient of L and
moving in the direction of the gradient : Lt+1 = Lt − ηt5 L(Lt), where ηt is the step size
for t-th iteration. NCA(Neighbourhood Components Analysis) [GHRS04], CCML(Metric
learning by collapsing classes) [GR06], and similar algorithms utilize this approach. The
advantage is this method is simple and fast while the problem is it leads to non-convex on
L and could deal with the non-PSD matrix model or nonlinear model.

Another related gradient descent optimization is generalized gradient descent, or mostly
the special case of it called as projected gradient method. The idea of this approach is for
each step of gradient descent Lt+1/2 = Lt − ηt5 L(Lt), add a step that projection back to
the cone of PSD matrices L′t+1 = arg minL′∗ ‖L′∗ − L′t+1‖2. This method add the positive
constraints for each learn matrix and the advantage is stabler than the previous approach.
The MMC [XNJR02] [XNJR03], LMNN [WBS06] and similar algorithms utilize this
approach.

Bregman Projections

For the above gradient descent, there is a problem that when are a large number of
constraints this method lead to a high price to compute the entire gradient of the loss func-
tion. And Bregman projections is one of the possible situations in this case, which is based
on making simpler updates based on a single constraint at a time.

The method of Bregman projections is a simple first-order technique propose in [Bre67].
It originally solve optimization problems, which is to minimize a convex function with li-
near inequality constraints as following :

min
x
f(x) (2.29)

s.t. Cx ≤ b

where C is a parameter matrix and b, is a constant vector.

However, unlike the classical linear programming or quadratic programming computing
with all constraints, Bregman projections choose one constraint at each iteration. So unlike
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projected gradient descent, the Bregman projection is not an orthogonal projection after
each update, but perform a projection satisfied the chosen constraint that optimizes the
particular function.

The Bregman projections optimize technique is utilized in ITML(Information-Theoretic
Metric Learning) [DKJ+07] and similar algorithms based on minimizing the regularizer
term of the loss function.

Online Learning

Another way to learn metrics through a single constraint at a time is online learning.
Online learning is a natural choice when the examples arrive in a stream, or all the examples
are not available at the same time.

Stochastic gradient descent is one of online learning approach and able to update and
learn the metric when constraints are given one after the other. With the sequence of
constraints (C1,C2, · · · ,Cn),the aim of stochastic gradient descent is learning the distance
dMt with the parameter matrix Mt iteratively updated,

dMt = f(dMt−1 ,Ct) (2.30)

where f() is a function able to update Mt with the current metric and the new single
constraint.

There are many metric learning algorithms use the stochastic gradient descent and on-
line learning approach, because the computation complexity is not related to the size of the
constraints.

POLA(Pseudo-Metric Online Learning Algorithm) [SSSN04] is the first metric lear-
ning with stochastic gradient descent and online learning approach. It based on Mahalano-
bis distance model and use the threshold constraints with one parameter b to separate the si-
milar and dissimilar pair of samples, dM(xi,xj) ≤ b ≤ dM(xi,xk)∀(i, j) ∈ S,∀(i, k) ∈ D
where b ≥ 1. POLA optimize the problem with two orthogonal projections step for each
iteration. At iteration t with the constraint (xi,xj, yij), where yij = 1 if (xi,xj) ∈ S and
yij = −1 if (xi,xj) ∈ D,

— step 1 : Projecting of the current solution with the new constraint,

Mt+1/2, bt+1/2 = arg min ‖Mt −M‖2 + (bt − b)2 (2.31)

s.t. [yij(d2
M(xi,xj)− b) + 1]+ = 0
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This step search the solution for the (M,b) achieving a loss of 0 on the new constraint
while staying as close as possible to the current solution (Mt, bt).

— step 2 : Projecting the new solution onto the set of admissible solutions which the
M is PSD and b ≥ 1,

Mt+1, bt+1 = arg min ‖Mt+1/2 −M‖2 + (bt+1/2 − b)2 (2.32)

s.t. M ∈ S+, b ≥ 1

This step search the acceptable solution for the (M,b).

POLA solves the problem of being able to handle a large number of sample databases
in machine learning. It also shows the benefits of online multiple selection constraints set
C. However, it’s worth noting that the way to select constraints set still need improving.
In the subsequent online learning metric distance algorithm, several algorithms, such as
CWSML(Constraint Weighted Selection Metric learning)[LC18], have proposed new ideas
for this defect.

FSOL(Fast Similarity Online Metric Learning) [JKDG09] is a similar online metric
learning approach as POLA but it is an improved version based on LogDet divergence
regularization which is same as ITML. The regret bounds of FSOL is tighter than POLA.
Therefore the FSOL is more efficient and faster than POLA. MDML(Mirror Descent Metric
Learning) [KS12] is based on composite mirror descent [DSSST10], which allows online
optimization of many regularized problems. The authors proposed a general framework for
online learning with the Mahalanobis distance learning model.

2.3 Learning Tasks

Thought most of the metric learning algorithms only considering learning a metric for
classical machine learning tasks, like clustering or classification task, there are several ap-
proaches specifically designed for other kinds of tasks such as transfer learning or domain
adaptation. We already introduced many metric learning algorithms for machine learning
tasks, so more attention will be paid on particular tasks and applications.

Notice that in this chapter, we mainly focus on the metric learning for the flat dataset,
and there are several special learning tasks related to the complex structure of the non-
flat dataset. For these learning task related to the non-flat dataset, we will discuss them in
Chapter 4.
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2.3.1 Classification and Clustering

Almost all of the metric learning algorithms we mentioned earlier can be used for classi-
fication. Notice that while most metric learning algorithms measure their performance with
k-nearest neighbour, there is a group of metric learning methods specifically designed for a
nearest neighbour classifier, like NCA(Neighbourhood Components Analysis) [GHRS04],
SiNo(Similarity learning for nearest neighbour classification) [QGCL08], LMNN(Large-
Margin Nearest Neighbors) [WBS06] and many extension based on them. Another group
of metric learning methods pays more attention to learning low-rank matrices for other sub-
sequent classification like SVM, for example, SDML(Sparse Metric Learning via Smooth
Optimization) [YHC09] and SCML(Sparse compositional metric learning) [SBS14].

Those metric learning algorithms could be adopted for clustering, and many constraints
selection method of metric learning also could solve the clustering problem. For example,
the threshold constraints selection in MMC [XNJR02] [XNJR03] and LLMA(Locally Li-
near metric Adaptation) [CY04].

2.3.2 Transfer Learning, Multi-task learning and Domain Adaptation

Transfer learning is another important branch of machine learning. Unlike traditional
machine learning assuming the training and test data are drawn from the same feature
space and the same distribution, transfer learning transfer knowledge between the tasks and
domains. It researches the difference between the tasks and domains, transforms the feature
represents or parameters of the model to reduce the difference and applies the knowledge
from source task to the related target problem.

There are numbers of approaches or algorithms combine the transfer learning and me-
tric learning, particularly in the multi-task learning and domain adaptation.

For multi-task learning, there are two tasks, the source task TS we already solved and
the target task TT need to solve. We want to adapt the knowledge learned from the TS to
the TT .

mt-LMNN(multi-task Large margin metric learning) [PW10] is a multi-task learning
verison of LMNN, follows the idea of RMTL(Regularized Multi–Task Learning) [EP04].
RMTL borrowed the idea of hierarchical Bayesian framework to SVMs for multi-task lear-
ning. They assume the f(x) = Wx to be a hyper-plane for task T and set WS = W0 + wS

for TS and WT = W0 + wT for TT , then learn the parameters W0,wS and wT simulta-
neously by optimize SVM model, for details, we refer the reader to the original paper. The
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author in mt-LMNN instead the SVMs with the LMNN metric learning algorithms. They
define the metric for task t as dt(x, x,) = (x− x,)T (M +Mt)(x− x,) and like the RMTL,
the model will be denoted as follow :

min
M0,Mt,cti

Loss(M0,Mt, dt(xi,xj))

=
∑
t∈S,T

ni∑
i=1

dt(xi,xj) + λ1

2
∑
t∈S,T

‖Mt‖2 + λ2‖M0 − I‖2

s.t.dt(xi,xk)− dt(xi,xj) ≥ 1−m,∀(xi,xj,xk) ∈ Rlmnn
t

The mt-LMNN performs better than the LMNN and RMTL.

Similar to the multi-task learning, in domain adaptation, we have the source one and the
target one but not for the task but the data domains. The source domain DS and the target
domain DT . We want to adapt the knowledge learned from the DS to the DT .

An impotant method for domain adaptation is MMD (Maximum Mean Discrepancy) [BGR+06],
which is used to compare distributions based on RKHS(Reproducing Kernel Hilbert Space)
[Aro50]. The distance of two distribution PS andPT could be defined as :

Dist(PS, PT ) = sup( 1
n1

n1∑
i=1

f(xSi
)− 1

n2

n2∑
i=1

f(xTi
))

= ‖ 1
n1

n1∑
i=1

φ(xSi
)− 1

n2

n2∑
i=1

φ(xTi
)‖

Where φ(x) is function in a RKHS. This method proposes the distance between the
distribution of two domain is equal to the distance between the means of them mapped into
an RKHS.

DAML(Domain Adaptation Metric Learning) [GTX11] is a metric learning algorithm
based on the MMD method. In this paper, the authors use the MMD as follow :

Distφ(PS, PT ) = ‖ 1
m

m∑
i=1

φ(xi)−
1
n

m+n∑
i=1+m

φ(xi)‖ (2.33)

This will be a regularization in the metric learning loss function. It will take the mini-
mum to match the mean of DS and DT in RKHS. Therefore the authors learn the function
φ(x) to achieve the desired RKHS for learning the metric knowledge between DS and DT .

With the MMD regularization, DAML uses the threshold constraints to encode the cost
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and compose the loss function. They also propose a KPCA(kernel principal component
analysis) to improve the calculation.

MLHD(Metric Learning across Heterogeneous Domains)[QC12] is another similar al-
gorithm, but unlike the DAML focus on the different domain with same dimensions(after
KPCA), MLHD aims at achieving a common RKHS for a different domain with different
dimensions.

The mode of MLHD is combined with three-part : 1) The priors information part with
the MMD; 2)The posteriors information part with threshold constraints ; 3)The LogDet
regularization for a PSD (positive semi-definite) matrix which reparameterize the priors
and posteriors parts.

GDA(Graph-based Domain Adaptation)[DTC12] is totally different from the algorithm
mentioned before. It did not extend the metric learning with the transfer learning approach,
but use supervised metric learning to change or twist the feature space for semi-supervised
domain adaptation learning.

The main idea of this algorithm is an iteration of two-part : 1) use a graph construction
to link the data between all the data from the DS and DT to transfer the knowledge and use
the semi-supervised algorithm to inference the unlabeled data ; 2) use the labelled data, and
the new inferred labelled data for supervised metric learning, after learning the new feature
representations will reduce the difference between DS and DT .

In this paper, the authors use the ITML [DKJ+07] as a supervised metric learner and
GRF (Gaussian Random Fields [RH05]) as the semi-supervised learner, but these could be
replaced to any other learning algorithm. It offers a new way to combine the metric learning
and domain adaptation, and maybe improved by other algorithms.

2.3.3 Other Tasks

A group of metric learning algorithms could be considering as dimension reduction al-
gorithms, which are based on the Mahalanobis distance model and try to learn a lower rank
of the metric. The Mahalanobis distance learning dM(xi,xj) =

(
(xi − xj)TM(xi − xj)

)1/2

can be viewed as using the Euclidean distance on the linearly projected data with L, which
M = L × L>. So learning a lower rank M provides a possible way to perform a form of
supervised dimension reduction. NCA(Neighbourhood Components Analysis) [GHRS04]
and its extensions could be utilized in this task. Also, the metric learning algorithm LFDA
(Local Fisher Discriminant Analysis) [Sug06] is originally devised as a dimension reduc-
tion algorithm.
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FIGURE 2.4 – Data visualization before and after metric learning. [JKD10]

The problem of ranking is another extension task beyond the simple nearest-neighbour
applications of most metric learning approaches, which is presented in RML(Metric lear-
ning to rank)[ML10] with the Mahalanobis distance learning model.

Some metric learning algorithms also be used to improve the performance of other su-
pervised learning methods. The authors in KRML(Metric learning for Kernel Regression)[WT07]
replaces the squared Euclidean distance within the Gaussian kernel with a Mahalanobis dis-
tance utilizing for supporting the kernel regression problem.

Finally some metric learning algorithms preset performance of data visualization, which
shows the data point before and after training, for example, the Figure 2.4 from IRML [JKD10]

2.4 Deep Metric Learning

As we mentioned, deep learning is also a kind of representational learning, which is
similar to the core thinking of metric learning. Today, with the development of deep lear-
ning becoming more and more popular, deep learning and metric learning naturally have a
combination and intersection. Deep metric learning algorithms have emerged and applied
to big data mining, image processing, tracking recognition and many areas. Notice that be-
cause the tasks like the image classification, ranking or network relational learning are the
interaction of the deep learning and metric learning, most of the deep metric learning is ba-
sed on the CNN(convolutional neural networks). In this section, we will introduce several
deep metric learning based on CNN.
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2.4.1 Deep Metric Learning based on Siamese Network

As we mentioned before, in the nonlinear metric learning section, LSMD [CHL05] is
the first metric learning algorithm with the neural network model, and it always extends to
CNN. In this article, the authors propose the "Siamese network" system for metric learning.
That as shown in Figure 2.3, Siamese network is identical convolutional networks with
shared parameters W . The two input of the networks are the data points pairs xi and xj
from the selected constraints ; the output of convolutional neural networks is the similarity
between data points. The idea of this Siamese network is mapping the data (in this case are
the images) though CNN to a latent feature space where the similar pairs are near, and the
dissimilar pairs are far.

The Siamese network is the basis of many other deep learning metric algorithms. For
example, in the DIML(Deep Image-classification Metric Learning) [CYY+18], the authors
add an extra metric learning layer at the end of the CNN and could be considered the same
as the Siamese network.

Inspired by Siamese network, the authors in PRDML(Deep Metric Learning for Person
Re-identification) [YLLL14] and TNDML(Triplet Network Deep Metric Learning) [HA15]
propose the Triplet network as shown in Figure 2.5. As we introduced before the two most
popular constraints forms are threshold constraints and relative constraints, the Siamese
network is related to the threshold constraints while the Triplet network corresponds to the
relative constraints. The input of the Triplet network are the data points triple xi xj and xk
from the selected relative constraints which the (i, j) is from similarity set S and (i, k) is
from dissimilarity set D. The output of convolutional neural networks is the comparator of
the similarities between data points ; in words, this encodes the pair of distances between
the select constraints. The authors in TNDML [HA15] trained the Triplet network with
simple random gradient descent. The authors in TNDML [HA15] train the Triplet network
with simple stochastic gradient descent. The authors in [YLLL14] not only test the Triplet
network with extent stochastic gradient descent but also test the Siamese network with
additional cosine layer before the output layer.

The result of these algorithms shows that for person re-identification and image scene
classification task, the deep metric learning algorithms get the generalized favourable per-
formance.
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2.4. Deep Metric Learning

FIGURE 2.5 – Triplet network with Convolutional Neural Networks.

2.4.2 Deep Metric Learning based on Feature Embedding

Another group of deep metric learning methods are based on learning lifted structured
feature embedding.

Notice that the feature embedding methods are highly related to metric learning algo-
rithms and several of the proposed papers consider they are same. The authors in FEDML(Deep
metric learning via lifted structured feature embedding) [OSXJS16] get inspired from the
constraints feature embedding [HCL06]( which could be treated as threshold constraints
metric learning ) and triple features embedding [SKP15] ( which could be treated as re-
lative constraints metric learning ) and proposed the lifted structured feature embedding
which takes into account all pairwise edges within the mini-batches as shown in Figure 2.6

The authors in FEDML [OSXJS16] utilize the lifted structured feature embedding for
each mini-batch of the training set for CNN, instead of randomly sampling pairs or triplets
to construct the training batches. This app approach combines the metric learning with CNN
and takes full advantage of the training batches by lifting the vector of pairwise distances
(between samples O(m)) within the batch to the matrix of pairwise distances (with the
metric parameter O(m2)).
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FIGURE 2.6 – For a mini batch of training set with 3 samples : (a) constraints feature em-
bedding ; (b) triple fearture embedding ; (c) lifted structured feature embedding.[OSXJS16]
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2.5. Conclusion

In BIEDML(Boosting Independent Embeddings Robustly Deep Metric learning ) [OWPB18],
the authors of this paper follow the model in FEDML [OSXJS16], and extend it with boos-
ting based metric learning methods [BWL+11] [NLJ16] [KTS+12] for the feature embed-
ding part. According to the boosting for CNN, this approach gains more robust and better
performance.

2.5 Conclusion
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2.5. Conclusion

In the Table 2.2, we collated all the metric distance learning algorithms introduced
in this chapter and the metric models they learned, the regularization factors used, the
constraint selection and the uniqueness, then sorted by time. These algorithms are only
a small part of the many algorithms that measure distance learning algorithms from the
time they are proposed to the present. Even so, we can still find some context in the deve-
lopment of metric distances learning theory. The metric learning algorithm develops metric
distances from the linear distance(such as Mahalanobis distance, linear similarity) to non-
linear metric (such as nucleation metrics, neural networks), from global metrics to targeted
local metrics. For learning, according to the needs of the task, metrics distance algorithms
evolved from simple regularization factors to sophisticated regularization methods, from
classical threshold constraints or relative constraints to multiple comparisons or dynamic
constraint selection, from quadratic programming optimization to stochastic gradient des-
cent online learning. The metric distance learning algorithm also communicates and inte-
grates with many fields, such as transfer learning and deep learning. With these develop-
ments, the various learning tasks that metric distance learning can solve are becoming more
and more widespread.

After investigating the current metric learning of the metric learning algorithm, it shows
that the metric learning method based on Mahalanobis is the core and foundation of the
metric learning algorithm for the flat database. The use of the inverse of the covariance
matrix for M , i.e. the actual Mahalanobis distance, implies that the weight of a feature pair
is proportional to the co-factor of the features. Although the co-factor of a pair of features
depends on all other pairwise covariances, the actual distance definition only considers
the pairwise combination of features, whereas a-tuple-wise( where a ≥ 2 ) combinations
bring a lot more information. We are investigating the possibility of learning weights to
coalitions of features whose cardinality can be greater than two. In the following chapter 3,
we consider submodular set-functions and definition based on the extension of it. This
definition allows associating weights to subsets of features. We will show how to learn the
defined metric and shows the effectiveness of this approach on a real-world dataset.
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CHAPITRE 3

SUBMODULAR METRIC LEARNING

As introduced in Chapter 2, most of the linear model metric learning algorithms are
based on Mahalanobis metric and try to learn a matrix M as distance transformation. Ma-
halanobis metric with M gives each used feature dimensions and their pairs a weight to
map the entities with a new feature space which should be better to classify or cluster for
machine learning tasks.

However, this distance definition method implies that the weight of a feature pair is
proportional to the co-factor of the features, which leads to being limited to weight the
pairwise combination of features. For example, the Mahalanobis distance learning model
dM(xi,xj) =

(
(xi − xj)TM(xi − xj)

)1/2
, using the dM is equivalent to using the Eucli-

dean distance on the linearly projected data with L, which M = L × L>. The triangular
matrix L contains the weights for every single dimension and pairwise of dimensions, while
the combinations of a-tuple-wise where a ≥ 2 still could offer more information.

For mining the potentiality of more complex coalitions of features, we investigate the
possibility of giving (and learning) weights to coalitions of features whose cardinal can be
higher than two. To this aim, we propose to consider the set function. A set function is a
function with the input is a set, and the output is a value measuring the quality of the set.
In our case, set-functions maps a collection of subsets of features to values is considering
as associating weights to subsets.

This definition clearly allows high order interactions between features, at the price of
higher complexity than conventional Mahalanobis based approaches. In order to deal with
this complexity, we propose the use of the submodular function, which is a special kind
of set function with the submodular property. Therefore we propose the SML(Submodular
Metric Learning) algorithm, while submodular function is used to define the metric and
reduce the complexity of learning processing. Further, we decrease the complexity of com-
putation of SML, thanks to limit the order of interactions that are taken into account as
constraints by using the k-additive fuzzy measure.

In this Chapter 3, firstly, we will introduce the set function and the submodular function,
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V

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

FIGURE 3.1 – Hasse diagram using set-functions on a 3-dimensional problem. V =
{1, 2, 3}

the property and extension of it in Section 3.1. Secondly, in Section 3.2, we will recall the
definition of norm and metric, with discussion the performance of different norms, then we
will propose to define a norm, and therefore a distance metric. In Section 3.3, the learning
processing of this metric is presented. The experiment design and result of approaches will
be given in Section 3.4.

This proposed method was published on 27th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning[PLC19b].

3.1 Submodular Function

3.1.1 Set-function and Submodular

In mathematics, a set function is a function whose input is a set. The output is usually a
number which judges the quality (or value, or cost) of the set.

In this work, we probe the possibility of giving weights to coalitions of features whose
cardinal can be greater than two. For this aim, we consider a class of set-functions f(S) :
2(V )→ [0, 1], that maps subsets S of a ground set S to unit interval values. This definition
allows associating weights to subsets, in our case, subsets of all feature dimensions of
samples.

As shown in Figure 3.1, it is a Hasse diagram of 3-dimensional entity. If we learn a
Mahalanobis metric on this entity, for each single dimension {1},{2},{3} and the pairs of
dimension a,b,a,c,b,c, the transformation matrix will give weights while the more complex
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FIGURE 3.2 – The price of McDonald menus. [mcd]

coalition {1,2,3} get ignored. We consider a set-function f(S), in this case S ⊆ {1,2,3}, so
for another subsets of coalitions of dimensions could be given a weight.

For assuring the condition of metric or norm, we select a special set function, that is
submodular function. Such a set function f(S) is said to be submodular if ∀S1,S2 ⊆ V ,

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2) (3.1)

In terms of optimization, submodular functions can be seen as the discrete equiva-
lent of continuous convex functions. An alternative definition of submodularity is given
as f(S1 ∪ {j}) − f(S1) ≥ f(S2 ∪ {j}) − f(S2), where S1 ⊆ S2 ⊆ V and elements
j ∈ V , j /∈ S2. Defined this way, adding an element i to a larger set S2 does not in-
crease f(S) as much as adding the same element j to a smaller set S1. This property is
known as the diminishing return or diminishing marginal utility. It performs like the conca-
vity, and in other ways it resembles convexity. Consequently, problems which concern
optimizing a convex or concave function can also be described as the problem of maxi-
mizing or minimizing a submodular function subject to some constraints. Thanks to the
diminishing returns property, submodular functions have been the topic of research in eco-
nomics and operation research for quite a long time. Figure 3.2 shows diminishing re-
turns in the price of McDonald menus and Figure 3.3 shows example for submodularity as
f(Sa,b ∪ {i})− f(Sa,b) ≥ f(Sa,b,c,d ∪ {i})− f(Sa,b).

More recently, submodular functions have attracted interest in the machine learning
community (see, e.g., [Bac13]), because of their potential use (clustering, covering, fea-
ture selection, social networks) and their similarity to convex functions. In this work, we
propose to use set-functions, and in particular submodular set-functions, to weight coalition
of features.
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FIGURE 3.3 – f(Sa,b ∪ {i})− f(Sa,b) ≥ f(Sa,b,c,d ∪ {i})− f(Sa,b)

3.1.2 Lovasz Extension

For optimizing a submodular minimum or maximum problem, we generally apply for
the set-function extension. Note that, most of the extensions of set functions try to touch
the concave closure of the convex closure of the set function, while they did not require the
set function is submodular or not.

One of the most popular extensions of set function is the Lovasz extension. Lovasz
extension [Lov83] (also known as the Choquet integral), allows extending a set-function
defined on the vertices of the unit hypercube to the full unit hypercube [0, 1]|V|. Another
appealing property of the Lovasz extension is its ability to draw a link between set-functions
and convex functions.

The Lovasz extension Lf () of x ∈ [0, 1]m with respect to a set-function f() is defined
as :

Lf (x) =
∫ +∞

0
f({x ≥ z})dz +

∫ 0

−∞
[f({x ≥ z})− f(V )]dz (3.2)

or in the discrete case,

Lf (x) =
m∑
i=1

x(i)
[
f({j|xj ≥ x(i)})− f({j|xj ≥ x(i+1)})

]
(3.3)

where (·) denotes a nondecreasing permutation of the input vector x such that x(m) ≥
· · · ≥ x(1) and x(m+1) =∞ by convention where m is the number of dimension of x

Example : Let us consider a two-dimensional observation x = [0.87, 0.34], so
x1 = 0.87, x2 = 0.34,
x(1) = 0.34,x(2) = 0.87,x(3) =∞
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and the set-function f1 showed in Figure 3.4 with
f({∅}) = 0, f({1}) = 0.5,
f({2}) = 0.5, f({1, 2}) = 1.
The Lovasz extension of x with respect to f(S) is equal to

Lf (x) = x(1) ×
[
f({j|xj ≥ x(1)})− f({j|xj ≥ x(2)})

]
+ x(2) ×

[
f({j|xj ≥ x(2)})− f({j|xj ≥ x(3)})

]
= 0.34× (f({1, 2})− f({1}))

+ 0.87× (f({1} − f({∅}))

= 0.605

For a set function f : 2V → R, the convex closure f− : [0, 1]‖V ‖ → R is the point-wise
highest convex function from [0, 1]‖V‖ to R that always lowerbounds f(S). The minimum
values of f(S) and f− are equal.

If S is a minimizer of f(S), 1S is a minimizer of f−. Moreover, if x is a minimizer of
f−, then every set in the support of P−f (x) is a minimizer of f(S).

For a submodular set-function f(S), the Lovasz extension Lf (x) is non-decreasing,
and the convex closure are one and the same [Bac13]. So the minimizer of the submodular
function is equal to the minimizer of the Lovasz extension.

3.1.3 Multi-linear Extension

The Lovasz extension is related to the minimizer of submodular function, while the
maximizer of submodular function is mainly related to multi-linear extension [VCZ11] [CVZ14].

Given a set-function f(S), the multi-linear extensionMuf (x) for x ∈ [0, 1]m is defined
as :

Muf (x) =
2|V|∑
S⊆V

f(S)
∏
i∈S

xi
∏

j∈V\S
(1− xj) (3.4)

or in a expectation form as :

Muf (x) = ES∼x[f(x)] (3.5)

where the expectation E[] is over random draws of sets S ⊆ V , with each element
i ∈ V drawn in S with probability xi. The multilinear extension forms an upper bound on
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the Lovasz extension, which Muf (x) ≥ Lf (x)
Same as the lovasz extension, mullti-linear extension Muf is non-decreasing in all

direction if the set-function f(S) is submodular. And if the x is binary vector, multilinear
extension agrees with submodular function, Muf (1S) = f(S).

Unlike the Lovasz extension which is always convex if the set-function is submodular,
the multi-linear extension is concave on specific directions and cross-convex on 1i − 1j
directions.

3.1.4 Related Machine Learning Approaches based on Submodular
Function

Through the years, there have been several propositions for both submodular function
minimization [FHI06], and the generally NP-hard submodular maximization problem re-
quiring approximation [KG12]. In the machine learning area, there are already several
approaches using the submodular function [Bac13].

In [PC11], the authors present an algorithm optimizing the F-score to learn a multi-label
classifier. For the multi-label task, the submodular function is used for the intersection of
pairwise of all the labels. Then they minimum the submodular function via the graph-cuts.
This article focuses the multi-label classification and proves the submodular function can
process well with the intersection of pairwise information, which in our case is the feature
space dimensions and in the case is the labels.

With the help of Lovasz extension, the related optimization problem of the submodular
function becomes simpler. In [YB15], the authors developed the tractable convex surro-
gates submodular losses with Lovasz hinge. They analyzed the conventional methods of set
prediction, namely margin rescaling and slack rescaling. However, these two methods lead
to tight convex substitution and increase incorrect prediction. Instead of them, the Lovasz
extension is applied to the access loss function to calculate the gradient or cut plane. Expe-
riments with real image datasets demonstrate that Lovasz hinges perform better than other
algorithms.

Besides using the submodular function for a machine learning task, there are also seve-
ral algorithms are considering define a metric for learning with the Lovasz extension of a
submodular function.

In [IB13], they extend the recently Bregman divergences to a specific class Lovasz
Bregman divergences. The recently Bregman divergences is a measure of the distance bet-
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f({1}) f({2}) f({1, 2})
f1 0.5 0.5 1
f2 0.25 0.25 0.25
f3 0.2 0.5 0.7
f4 0.5 0.5 0.7

TABLE 3.1 – Values of the set-functions used in Figure 3.4.

ween two points, defined from convex function and extended to between functions or bet-
ween sets. The authors proposed the Lovasz Bregman divergences, which the parameters
are the Lovasz extension of a submodular function, and learning the proposed divergences
to rank based clustering. The authors use the Lovasz Bregman divergences as a measure and
give several properties(such as non-negativity and convexity, equivalence classes, linearity
and linear separation), however, they did not prove it is metric and try metric learning
method on it. Note that the properties of Lovasz Bregman divergences is interesting as a
measure and the authors use them for the "learning to rank" problem in web ranking.

The authors investigate the possibility of learning a distance for higher-order based on
a submodular function in [GIL+15], which is similar to our aim, but they restrict to bi-
nary vectors. In this paper, they learn a hamming distance due to the use of the symmetric
difference between binary sets. They proved the possibility to define a metric by the sub-
modular function and show the performance of the submodular Hamming metric on metric
minimization task (clustering) and metric maximization task (diverse k-best).

In [Bac13], they give another proof of the links between submodularity and convexity.
Unlike we use submodular constraints to find a metric, they use a support function of sub-
modular set function as a regularizer for optimize the loss and mostly focus the supervised
learning task like the form of variable or feature selection problems. We got inspirations
from the methods they used to optimize the submodular functions.

3.2 Definition and Proof of Submodular Extension Metric

For metric learning algorithms we mentioned in Chapter 2, most of the metric they learn
is a distance transformation with Mahalanobis metric, while several of them are not.

In Figure 3.4, the unit balls for various distances, including the one provided (Lf (x))
in this work are given. As can be seen, it allows obtaining a wide range of convex shapes,
generalizing both Euclidean distance and Mahalanobis distance.
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(a) Euclidean distance (b) Mahalanobis distance

(c) Lovasz distance with f1 (d) Lovasz distance with f2

(e) Lovasz distance with f3 (f) Lovasz distance with f4

FIGURE 3.4 – Unit balls (d2(x, 0) ≤ 1) for different metrics. The set-functions f1(), f2(),
f3() and f4() given in Table 3.1, respectively.

80



3.2. Definition and Proof of Submodular Extension Metric

In this work, we propose to define a norm and there-fore a distance metric which could
break the limit of the Mahalanobis metric. We introduce the submodular function and ex-
plain how we extend the Mahalanobis transformation matrix to a submodular function gi-
ving weight to subsets of features.

3.2.1 Lovasz Extension Norm

The Lovasz extension allows setting weights to subsets, and now turn to its use for
defining a norm, given some conditions on f(S). In particular, we mentioned that for a
submodular function f(S), its Lovasz extension and the convex closure are one and the
same, so we are able to define a norm with the Lovasz extension of a submodular function.
In the sequel, we consider the vector space V as R|V|.

Proposition 1. The function Lf (|x|) : R|V| → R+ is a norm if and only if f() is a submo-

dular set-function.

Démonstration. It is straightforward to show that Lf (|x|) satisfies the separate points and
absolute homogeneity conditions, whatever f(S). We now turn to the triangular inequality
condition. Let us assume that f(S) is a submodular set-function. By definition, the func-
tion is positively homogeneous. A set-function f(S) is submodular, if and only if Lf (x)
is convex (see [Bac13, Lov83]). The convexity of Lf (x) implies convexity of Lf (|x|)
(by composition of convex non-decreasing functions). By convexity of Lf (|x|), we have
1
2Lf (|xi|) + 1

2Lf (|xj|) ≥ Lf (|12xi|+ 1
2 |xj|) = 1

2Lf (|xi|+ |xj|), by homogeneity of Lf (x).
On the other hand, if Lf (|x| is a norm, then it is convex, implying convexity of Lf (x), and
therefore submodularity of f(S), concluding the proof.

Corollary 1. The function (Lf (|x|p))
1
p : Rd → R+ is a norm for any p ≥ 1.

Finally, we define the Lovasz extension metric df (xi,xj) using the squared Lovasz
extension norm as follow :

d2
f (xi,xj) = Lf

(
(xi − xj)2

)
(3.6)

Note that Equation 3.6 can be easily generalized on p-power Lovasz extension norms,
exactly the same way as Lp norms of Euclidean spaces.

The red path in Figure 3.1 corresponds to one possible use of learned weights for com-
puting one distance Lf (x). In practice, we will see that computing a distance between two
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objects using the proposed df (xi,xj) (see Eq. 3.6) reduces to a weighted path from ∅ to V
in the lattice. In Figure 3.4, the unit balls for various distances, including the one provided
(Lf (x)) in this work are given. As can be seen, it allows obtaining a wide range of convex
shapes, generalizing both Euclidean distance (first on row 1) and Mahalanobis distance
(second on row 1).

3.2.2 Multi-linear Extension Dissimilarity

Unfortunately we could not define a norm with the multi-linear extension, because of
two reasons :

— Reason one : Because the structure of the multi-linear basis function
∏
i∈S xi

∏
j∈V \S(1−

xj), it is hard to find a transform function for make the multi-linear extension sub-
jected the homogeneity which is the second condition to the norm.

— Reason two : When the f(S) is a submodular function, the multi-linear extension
Muf (x) will be a concave function on certain direction which is against to the
triangle inequality which is the third condition to the norm.

However, we still try to define the multi-linear extension as a dissimilarity. The metric
definition we mentioned before is a function satisfying non-negativity, identity of indiscer-
nibles, symmetry and triangular inequality. We try to define the multi-linear dissimilarity
with satisfying these condition with an absolute value of difference under some limits. The
multi-linear dissimilarity is denoted as :

dMf
(xi,xj) = Muf (v(xi,xj)) (3.7)

where v(xi,xj) = (‖xi,1−xj,1‖, ‖xi,2−xi,2‖, · · · , ‖xi,m−xj,m‖)T is the absolute value
of difference of two entities.

Proposition 2. The function Muf (v(xi,xj)) : R|V| → R+ is a metric if f(S) is a sub-

modular set-function, and under the limit that there is not only one positive dimension of

v(xi,xj).

A metric is a function d : V × V → R+ on a set V, ∀xi,xj,xk ∈ V satisfying the
following conditions :

1. non-negativity : We normalized every feature x ∈ [0, 1]m, so the absolute value of
difference v(xi,xj) will be non-negativity. If the f(S) is submodular, the multi-
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linear extension will be non-decreasing, so dMf
(xi,xj) = Muf (v(xi,xj)) is non-

negativity.

2. identity of indiscernibles : When xi = xj , the v(xi,xj) = (0, 0, · · · , 0)T , and
dMf

(xi,xj) = 0.

3. symmetry : The absolute value of difference v(xi,xj) is certainly symmetry, there-
fore the multi-linear dissimilarity dMf

(xi,xj) is symmetry.

4. triangular inequality : When f(S) is submodular, Muf is is concave on certain di-
rections and cross-convex on 1i − 1j directions. When there is only one dimension
i of the v(xi,xj) is positive and others are zero, the Muf is concave and against
triangular inequality. When there are two dimensions i and j of the v(xi,xj) is po-
sitive and others are zero, the δ2Muf (vi)

δviδvj
≤ 0, which means it is convex and satisfies

triangular inequality. So under the limit that there is not only one positive dimension
of v(xi,xj) and f(S) is submodular, dMf

(xi,xj) satisfies triangular inequality.

We could not be sure the select constraints from the sample only have difference un-
der the condition that there is not only one positive dimension of v(xi,xj), so the denoted
multi-linear dissimilarity is a pseudo metric. Thought that we still try to learn this dissimi-
larity and observe its performance through the experiments.

3.3 Proposed Submodular Metrics Learning Algorithm

In this section, we proposed SML(Submodular Metric Learning) algorithm, which lear-
ned the proposed Lovasz extension metric in the last section. Following usual metric lear-
ning formulation, we are now able to write the following optimization problem using rela-
tive constraints C where dM(xi,xk) ≥ dM(xi,xj) + γ∀(i, j, k) ∈ C, given a submodular
set-function f(S),

minf
∑

(i,j,k)∈C
`(i, j, k) + λr(f) (3.8)

where the r is the regularizer on f(S), and ` is the hinge loss defined as `(i, j, k) =
[γ + d2

f (xi, xj) − d2
f (xi, xk)]+. In the sequel, and following earlier works, the margin γ is

set to 1. Written as a constrained optimization problem, it gives
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submodular constraint f({1})f({2})f({3})f({1, 2})f({1, 3})f({2, 3})f({1, 2, 3})
f({1}) + f({2}) ≥ f({1, 2}) -1 -1 0 1 0 0 0
f({1, 2}) + f({2, 3}) ≥
f({2}) + f({1, 2, 3})

0 1 0 -1 0 -1 1

...
...

...
...

...
...

...
...

TABLE 3.2 – Submodular constraints, as a ternary matrix S, with linear inequalities on a
small subsample for which |V| = 3.

min r(f) (3.9)

s.t. `(i, j, k) ≤ 0,∀(i, j, k) ∈ C

f(S) is submodular

Although we are aware that one can consider sparse LP solutions [YZH+15] to tackle
this problem, we do not consider this family of approaches in this work. Naturally, it can
be used to improve our proposition further.

For the Multi-linear extension dissimilarity, we use the same solution and only need to
change the way to compute the distance for the selected relative constraints part.

3.3.1 Set-function Vector and Constraints Matrix

In order to adapt to compute the Lovasz extension metric Lf (x) and multi-linear dis-
similarity dMf

of the set-function f(S), we use the following vector notation for the set-
function :

f = (f({1}), f({2}), · · · , f({1, 2}), · · · , f({1, · · · , d}))T .

Therefore the submodularity of f(S) can be written as an inequality. In particular, by
using a matrix of {−1, 0, 1} values, one can write each of the 1

22|V|(2|V| + 1) submodular
constraints, see Table 3.2 for a simple illustration with |V| = 3. Let Cs be such a matrix.
Consequently, the submodularity constraint of Equation 3.10 can be written as Csf ≤ 0.

Same as the submodularity constraint, the relative constraints `(i, j, k) = d(i, k) −
d(i, j)−γ ≤ 0∀(i, j, k) ∈ C could also be rewritten as Crf ≤ b where the b is the constant
margin vector with all value are equal to the margin γ and the matrix Cr is computed from
the learned metric and selected samples in set C.
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For computing the Lovasz extension metric, we rewrite the metric d2
f (xi,xi) with m-

dimensions as following :

d2
f (xi,xj) =Lf

(
(xi − xi)2

)
(3.10)

=
m∑
k=1

(xi − xj)2
(k)[f({l|(xi − xj)2

l ≥ (xi − xj)2
(k)}) (3.11)

− f({l|(xi − xj)2
l ≥ (xi − xj)2

(k+1)})]

=f(�)
[
0− (xi − xj)2

(m)

]
+ f((xi − xj)2

(1))
[
(xi − xj)2

(m) − (xi − xj)2
(m−1)

]
· · ·

+ f(V \ (xi − xj)2
(m))[(xi − xj)2

(2) − (xi − xj)2
(1)]

+ f(V)[(xi − xj)2
(1) − 0]

where (.) is the permutation defined within Equation 3.3,V is the full set of all m-
dimensions of the features.

Straightforward manipulation of the Lovasz extension w.r.t the set-function f leads to
the following expression, d2

f (xi,xj) = aijf as a calculated vector aij for i-th and j-th
sample multiply with the submodular set function vector, where :

aij =



0− (xi − xj)2
(m)

0
· · ·

(xi − xj)2
(m) − (xi − xj)2

m−1

0
· · ·
0
· · ·

(xi − xj)2
(2) − (xi − xj)2

(1)

0
· · ·

(xi − xj)2
(1) − 0



, (3.12)

For computing the multi-linear dissimilarity, it will be easier because the form of dMf
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with m-dimensions can be written as following :

dMf
(xi,xj) =Muf (v(xi,xj)) (3.13)

=
2|V|∑
S⊆V

f(S)
∏
k∈S

(v(xi,xj)k)
∏

l∈V\S
(1− v(xi,xj)l) (3.14)

=f
∏
k∈S

(‖xik − xjk‖)
∏

l∈V \S
(1− ‖xil − xjl‖) (3.15)

So the expression of multi-linear dissimilarity dMf
could be also written as a calculated

vector a′ij for i-th and j-th sample multiply with the submodular set function vector, dMf
=

a′ijf , where :

a′ij =



(1− ‖xi1 − xj1‖) ∗ (1− ‖xi2 − xj2‖) ∗ · · · ∗ (1− ‖xim − xjm‖)
‖xi1 − xj1‖ ∗ (1− ‖xi2 − xj2‖) ∗ · · · ∗ (1− ‖xim − xjm‖)
(1− ‖xi1 − xj1‖) ∗ ‖xi2 − xj2‖ ∗ · · · ∗ (1− ‖xim − xjm‖)

· · ·
‖xi1 − xj1‖ ∗ ‖xi2 − xj2‖ ∗ · · · ∗ ‖xim − xjm‖


, (3.16)

xik is the k-th dimension feature of the sample xi.

Therefore, the inequality CT
r f + b ≤ 0 could be finally written as

CT
r =

(
a1
ij − a1

ik, · · · , aκij − aκik
)
, (3.17)

corresponding to the κ constraints of C, and the alij − alik is the calculated vectors for l-th
selected constraints triple of (i, j, k)-th sample.

Because the Lovasz extension metricLf (x) and multi-linear dissimilarity dMf
are linear

in f(S), with such a form of set-function, the Equation 3.10 can be written as a linear
inequality program :

min fT r (3.18)

s.t. CT f + t ≤ 0

0 ≤ f ≤ 1
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where

C =
 CT

r

CT
s

 , t =
 b

0

 , (3.19)

and r is the unit 2m dimensional vector as the regularization for set-function vector f .

In practice, all constraints cannot be satisfied with real data, so that we introduce non-
negative slack variables ξi for each of these constraints. We subsequently add the penalty
term a

∑2m

i=1 ξi to fT r, where a is a trade-off parameter (set to 1 in our experiments).

3.3.2 Submodular Constraints Matrix Reduction

The computational complexity of the SML algorithm comes from two aspects, one is
the size of the sample size that can be solved from the optimization method (in the future
we will improve the SML algorithm to an online learning method or other computational
complexity that does not depend on the sample size Method), on the other hand is derived
from submodular constraints matrix. The number of values to be learned in the submodular
constraints matrix, for am-dimensional dataset is 2m−2. Furthermore, as indicated earlier,
the number of constraints for verifying submodularity is 1

22m(2m + 1). That makes the
problem intractable for size-able dimensional data sets. Somewhat naive way of tackling
this inability is to reduce the dimension of the data. Use dimension reduction methods and
then learn the metric in the new feature space. However, the dimension reduction and metric
learning would not be jointly learned, and so the resulting metric would be sub-optimal.

To deal with this problem, we propose in this work to consider the extension of the
concept of k-additive fuzzy measure, see [Gra16], to set-functions to simplify the opti-
mization problem. To do so, we consider pseudo-Boolean functions, that can express set-
functions as a polynomial of degree m. Formally, we define a k-additive set-function as
an additive set-function whose corresponding pseudo-Boolean function has a polynomial
development of degree at most k. Interestingly, if a set-function is k-additive, it means that
there are no interactions between subsets of more than k elements.

Therefore, k-additive set-functions restrict their values to sets S for which we have
|S| ≤ k. This drastically reduces the number of variables required to fully define the set-
function f(S), going from 2m to 2k, with k << m. Note that this definition differs from the
proposition of [BFNS14], where the objective is to find the subset verifying this cardinality
constraint.

Additionally, it also corresponds to the fact that the inverse of the function f(S) (also
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known as Mobius Transform, see [Gra16]), defined as

f−1(S) =
∑
T ⊂S

(−1)|S\T |f(T ), for all S ⊆ V (3.20)

vanishes for subsets whose cardinal is greater than k.

The Lovasz extension can be written using the inverse function as

Lf (x) =
∑
T ⊆V

f−1(T ) min
i∈T

xi, (3.21)

therefore simplifying the problem. Note that there is a one-to-one correspondence between
f(S) and f−1(), since we have

f(S) =
∑
T ⊂S

f−1(T ) (3.22)

In order to obtain a metric, the set-function f(S) must remain submodular (see Proposi-
tion 1). One can write the submodular constraint imposed on f(S) with its inverse f−1(S).
Furthermore, writing the submodular constraint on the set-function with the help of its
inverse function allows to decrease the number of constraints of the optimization problem.

Proposition 3. Let f : 2|V| → [0, 1] be a set-function and f−1(S) : 2|V| → [0, 1] its

inverse function defined by Equation 3.20, then a) and b) are equivalent.

a) f(S) is a submodular set-function,

b)
∑
T ⊂S1∪S2,T 6⊂S1,T 6⊂S2 f

−1(T ) ≤ 0.

Démonstration. Let us introduce, for every T in V , I(T ) = {k|1 ≤ k ≤ 2, T ⊂ Sk}.
Submodularity of f(S) can be written as

f(S1 ∪ S2) + f(S1 ∩ S2) ≤ f(S1) + f(S2) (3.23)

for Sk in V . Using Equation 3.20, we write f(S1∩S2) = ∑
T ⊂S1∩S2 f

−1(T ), and developing
f(S1 ∪ S2) gives

∑
I(T )6=∅ f

−1(T ) +∑
T ⊂S1∪S2,T 6⊂S1,T 6⊂S2 f

−1(T ).
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Consequently, Equation 3.23 is satisfied if and only if

∑
T ⊂S1∩S2

f−1(T ) +
∑

I(T ) 6=∅
f−1(T )

+
∑

T ⊂S1∪S2,T 6⊂S1,T 6⊂S2

f−1(T ) (3.24)

≤
∑
T ⊂S1

f−1(T ) +
∑
T ⊂S2

f−1(T )

holds. Finally, it is straightforward to obtain
∑
T⊂S1∪S2,T 6⊂S1,T 6⊂S2 f

−1(T ) ≤ 0 from
Equation 3.24, concluding the proof.

Using this formulation, the number of constraints for preserving submodularity de-
creases to 1

82m(m2 − m), which is much more reasonable for practical problems. More
precisely, incorporating the constraint b) of Proposition 2 allows decreasing the size of the
ternary matrix Cs, whose size was initially 1

22m(2m + 1). Moreover, we use the propo-
sition relying on k-additive set-functions, i.e. we restrict the computation of the inverse
set-function f−1, given by Equation 3.20, on sets S for which |S| ≤ k holds. In that case,
this is even reduced to 1

82k(k2 − k), where k << m, typically lower than 10. Combining
this reduction and a k-additive set function leads to a tractable problem.

The solution obtained with this k-additive approach, and implementing submodular
constraints following Proposition 2., is denoted as Lkf (S) hereafter.

3.4 Experiments and Result

Now, we conduct experiments which demonstrate the performance, and in particular
the classification generalization performance, of the proposed method of metric learning
on some real-world datasets.

3.4.1 Datasets and Experiment Design

For the test datasets, 8 data sets from the UC Irvine Machine Learning Repository
[Lic13] are chosen, and their main characteristics are given in Table 3.3.

From most of the metric learning algorithms, we could see cross-validation on the task
of K-nearest neighbours classification is used for comparing the accuracy. The K is selec-
ted between [3, 5], and the folds of cross-validation are set between [3, 15]. Different values

89



Partie , Chapitre 3 – Metric Learning based on the Lovasz Extension of Submodular Set-Function

Dataset m c n

seeds 7 3 210
sonar 60 2 208
iono 34 2 351

balance 4 3 625
glass 10 7 214
digits 64 10 1797
liver 6 2 347

segment 19 7 2310

TABLE 3.3 – UCI datasets used in the experiments. c indicates the number of classes.

are tested, without significant modification on the comments that can be drawn from the
results. So the shown results are set with K = 5 with 10 folds of cross-validation.

As mentioned earlier, due to the complexity of the model, our first proposition Lovasz
extension metric learning algorithm Lf (x) is not able to process datasets for which the
dimension is (even moderately) large. Consequently, a PCA(Principal component analysis)
is used on the data whose dimension is greater than 10 : sonar, ionosphere, digits and
segment, for which the lost variance is 12.02, 21.97, 26.26 and 0.008, respectively. The
other datasets remained unchanged.

For a fair comparison, and avoid the potential benefit obtained from PCA, the result of
all other metric learning algorithms are also obtained after PCA projection. Results without
PCA for other metric learning approaches were worse than those obtained with PCA.

Several state-of-the-art linear and nonlinear metric learning algorithms are compared
against the results obtained with our proposed method : LMNN [WS09], ITML [DKJ+07],
LSML [LGZ+12], LFDA [Sug06], GMML [ZHS16] and GB-LMNN [KTS+12, KXW].
We also give the results obtained without metric learning, i.e. the Euclidean distance for
which M = Id and the kernel principal component analysis algorithm [SSM99].

In order to build the set C of relative constraints, the triples of objects (xi,xj,xk) are
randomly selected based on labels, for which (xi,xj) have the same labels and (xi,xk)
have different labels. For the number of constraints, in LMNN [WS09] they use all su-
pervised information and limit with maximum number of iteration ; in ITML [DKJ+07]
it could be a user-select number of constraints and limit with maximum number of itera-
tion ; in LSML [LGZ+12] they choose 100 for all dataset and compared algorithms ; in
GMML [ZHS16] and GB-LMNN [KTS+12, KXW] the number of constraints depends on
the size of datasets. To be fair, for all learning algorithms(which could select the number of
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constraints with the original code), the same maximum number of constraints is set, and as
shown in Figure 3.5, after testing several different sets the ranks are similar.

3.4.2 Result for the Lovasz Extension Norm

In the first part of the experiments, we are using SML, that is using all possible orders
of feature interactions. In particular, the only constraints are related to submodularity and
relative distance constraints.

Accuracy score obtained of the cross-validation of KNN algorithms on the 8 datasets
for each method are given in Table 3.4. In this table, the number of constraints κ is 200,
and the accuracy score is the avenge of 10 times running of the accuracy rate, than multiply
100. As can be seen, the proposed Lf (x) generally performs better than all the other metric
learning algorithms (with the notable exception of Ionosphere and Segment datasets). More
precisely, given the average rank of each method, we obtain the following ranking SML �
GB − LMNN � GMML � LFDA ∼ LMNN � LSML � KPCA � ITML � Id.
Statistical significance of the results are assessed using a Friedman test [Fri40] as sugges-
ted by [Dem06]. The value of the Friedman test, FF = 7.10 > F0.05(8, 56) shows the
significance of the difference between the ranks.

Dataset Euc. KPCA LMNN ITML LSML LFDA GMML GB-LMNN SML

balance 72.66 73.74 78.86 77.17 73.82 80.22 80.34 68.90 81.03
digits 93.77 94.20 94.33 90.94 92.83 94.10 94.73 94.78 93.88
glass 61.02 65.51 65.21 57.24 64.27 58.17 64.86 66.79 68.72
iono 85.75 88.72 87.17 85.18 86.04 77.18 87.56 94.32 86.60
liver 66.48 66.61 63.87 62.26 65.70 66.14 64.72 66.48 66.49
seeds 82.57 88.95 88.52 87.62 88.10 89.48 88.67 88.10 90.88
sonar 50.87 56.16 55.69 48.92 51.53 52.86 55.83 66.76 56.95
segment 78.10 78.19 82.52 80.29 85.67 83.61 83.34 83.42 84.23

TABLE 3.4 – Accuracy score of KNN with SML and different comparing metrics learning
algorithms.

3.4.3 Result for the K-additive Complexity Reduction

This part of the experiments uses the SML-K , which is the SML with the modified k va-
lue for K-additive complexity reduction on the submodular constraints matrix. In particular,
it uses the constraint obtained by using the result of Proposition 2 (in which submodularity
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constraints can be written using the inversion f−1). In this experiment, we use the same
datasets as in the previous experiment, but we use SML-K and make this k varies from 1 to
min(10,m). A value of k = 1 means that there is no interaction between features, and only
singletons are considered. Increasing k adds orders of interaction, and finally reaches the
order of interaction tackled by the first Lf (x) approach. It can be noted that each time we
decrease k, the number of free parameters of f(S) is divided by 2, so that running time of
the method is now very reasonable, even for quite large dimensional data. The results for
varying k are given in Figure 3.6.

Dataset LMNN ITML LSML LFDA GMML GB-LMNN SML SML-K

balance 78.86 77.17 73.82 80.22 80.34 68.90 81.03 81.14
digits 94.33 90.94 92.83 94.10 94.73 94.78 93.88 94.03
glass 65.21 57.24 64.27 58.17 64.86 66.79 68.72 68.17
iono 87.17 85.18 86.04 77.18 87.56 94.32 86.60 88.61
liver 63.87 62.26 65.70 66.14 64.72 66.48 66.49 66.60
seeds 88.52 87.62 88.10 89.48 88.67 88.10 90.88 90.23
sonar 55.69 48.92 51.53 52.86 55.83 66.76 56.95 58.75
segment 82.52 80.29 85.67 83.61 83.34 83.42 84.23 83.72

TABLE 3.5 – Accuracy of KNN with SML, SML-K and different comparing metrics lear-
ning algorithms.

Table 3.5 gives the results obtained through a grid search of k (last column) and Table 3.6
gives the running time in seconds. Interestingly, one can see that SML-K often gives better
results than SML, showing that using all the m-tuple-wise combinations are not always

Dataset LMNN ITML LSML LFDA GMML GB-LMNN SML SML-K

balance 16.95s 7.35s 0.01s 0.01s 0.42s 0.23s 0.01s 0.01s
digits 254.0s 0.71s 0.01s 0.07s 1.76s 4.60s 126.0s 2.60s
glass 4.19s 7.53s 3.95s 0.01s 0.32s 0.39s 0.94s 0.09s
iono 6.58s 6.12s 0.09s 0.09s 0.16s 2.32s 150.9s 2.54s
liver 36.11s 7.55s 5.43s 0.02s 0.85s 3.52s 0.01s 0.01s
seeds 2.45s 14.30s 2.71s 0.01s 0.61s 2.42s 0.02s 0.01s
sonar 2.80s 3.11s 0.02s 0.01s 1.04s 2.07s 124.9s 2.17s
segment 76.75s 1.26s 0.05s 0.01s 1.03s 2.12s 168.8s 2.76s

TABLE 3.6 – Running time in seconds of SML, SML-K and different comparing metrics
learning algorithms.
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Dataset Euc. LMNN ITML Mf

balance 72.66 78.86 77.17 62.22
glass 61.02 65.21 57.24 65.23
iono 85.75 87.17 85.18 78.45
seeds 82.57 88.52 87.62 83.42
sonar 50.87 55.69 48.92 42.53

TABLE 3.7 – Accuracy of KNN with multi-linear extension dissimilarity and different me-
trics learning algorithm

useful, and may even penalize the performances (e.g. balance, ionosphere, liver and sonar).
Note that for low dimensional datasets, the running time of the SML is low, and quickly
increases with the dimension of the data. According to these results, one can draw the fol-
lowing comments. As can be expected, increasing k allows obtaining a better classification
accuracy on almost all datasets. One interesting point is that going from order 1 (weighted
feature) to order 2 (e.g. Mahalanobis) is generally sufficient to obtain better results. Increa-
sing to high-order can be worth the computational effort (e.g. Balance), but sometimes the
difference is not significant (e.g. Digits). One possible future work could be finding the
optimal k with respect to a given loss function, or optimal k that trades-off accuracy for
computation. Nonetheless, experimental results show that the SML-K allows to success-
fully (i.e. outperforms other metric learning algorithms, both in accuracy and running time)
consider huge scale problem, by choosing a sufficiently low value of k.

3.4.4 Result for Multi-linear Extension Dissimilarity

Several tests are also done with the multi-linear extension dissimilarity. As shown in
Table 3.7, the performance of the multi-linear extension dissimilarity learning algorithm
is far from good and almost worse than all the metric learning and ever not better than
Euclidean distance. The problem of this dissimilarity may come from the extra transfer
function, the no strong constraints, the no stable dissimilarity definition or other reasons.

Virtual Reality Result

We also tried to find the difference between the metric based on the aggregate func-
tion and the metric based on the Mahalanobis distance. With virtual reality technology, we
have successfully constructed the possibility of directly observing two distances in three-
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FIGURE 3.6 – Evolution of the classification performance using Lkf as a function of k-
additive constraints, where k is varying from 1 (single feature weighting) to min(10, d).

dimensional space. After several invited testers observed the embedded 3D projections ob-
tained on the dataset using various metric learning algorithms, most of them pointed out
that the scenes with metrics based on the aggregate function were based on the Mahalano
ratio. Scenes of various metrics (including Euclidean distances) are notably different. In se-
veral cases, Lovasz extended metric scenarios make it easier to classify data points visually.
Unfortunately, we don’t have enough time to go further and do not expand our research with
human vision.

Figure 3.7 and Figure 3.8 give the 3D projection of the embedding obtained with va-
rious metric learning algorithms on two 3-classes datasets, Seeds and Balance. As can be
observed, our proposition allows better visual discrimination of the classes than existing
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FIGURE 3.7 – 3-dimensional embedding of Seeds dataset using different metrics.

FIGURE 3.8 – 3-dimensional embedding of Balance dataset using different metrics.
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approaches.

3.5 Conclusion

In this chapter, we present the first major contribution of this paper : In order to solve
the defect that the general Mahalanobis distance-based metric distance algorithm cannot
consider high-order dimension information, we introduce the set function to weight all
possible combinations of dimensions. Also, a new metric distance is proposed based on the
Lovasz extension of the submodular set function. We have also tried other extensions such
as multi-linear extensions and defined a similarity that is more compromised under finite
conditions. Then we propose a linear programming learning method that learns the Lovasz
extended metric and multi-linear similarity, and reduces the computational complexity of
the submodular constraints by the k-additive fuzzy measure technique.

In the subsequent design experiments, we tested on multiple real-world datasets that the
Lovasz extended metric is superior to the current classical metric learning algorithm and
related nonlinear metric learning algorithms in low-dimensional data sets. Unfortunately,
the performance of the multi-linear similarity is poor. Moreover, the Lovasz extension me-
tric on the high-latitude database also has limited performance due to high computational
complexity.

Although the proposed algorithm has both advantages and disadvantages, it is worthw-
hile to note that this paper demonstrates the potential for metric learning of high high-order
dimension intersection information. In the future, we will further explore this aspect of
development, such as improving the learning of metrics through different regularization,
and will also consider improving the shortcomings of current algorithms reducing the com-
plexity of algorithms through online learning and other methods.
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CHAPITRE 4

METRIC LEARNING FOR NON-FLAT

DATASET

The vast majority of metric learning approaches are meant to be applied to data descri-
bed by feature vectors, and constraints are generated by the target labels or other supervised
information. Such a distance is perfectly adapted for flat or iid data but obviously fails to
take into account complex and/or (semi-)structured, non-iid data without considering the
structured information. In real-world datasets, data can be in many different non-iid forms :
for example, string sequences such as text documents or conversation records, time series
such as speech or object tracking records, trees such as XML documents or spanning the
tree of RNA, graphs such as social networks or web page jump network. These data sets
are so-called non-flat datasets.

At the beginning of this work, we hoped that the goal was to propose a general metric
suitable for heterogeneous structures for non- flat data. But soon we found many difficulties
and challenges. In this chapter, we list a number of different non-planar data and related
metric distance learning algorithms that we have investigated. From the similarities and
differences of various algorithms and development over time, it can be seen that the metric
learning of non-flat data has developed from shallow to deep. So we start with the most
complex non-flat datasets, the relational datasets. After investigation showed that there is
not much research on relational datasets, we decided a new goal, which is to fill the gap of
metric distance learning in relational databases. This is also the motivation for our proposed
distance learning learning algorithm in the next chapter.

For so many different structure datasets, several metric learning algorithms have been
especially proposed for them in the current years. It is interesting and necessary to apply
metric learning theory to non-flat datasets because metric learning has many advantages
when dealing with these data sets. One of the advantages of applying metric learning me-
thods to non-iid data is that they can be used as a proxy for any metric-based algorithm
that accesses data as if the data consisted of feature vectors without having to manipulate
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these complex objects. Another reason for suggesting metric learning for non-flat data sets
is that there are already many structural metrics associated with representing structured ob-
jects, such as edit distances and alignment indices. Those existing metrics can be learned
by metric learning strategies, just like learning metrics from feature vectors.

In this chapter, we will introduce metric learning algorithms that are specific to non-flat
data sets, in the order as follows :

— String sequence dataset is one of the most comprehensive non-flat datasets. For
measuring the similarity between the samples of the string sequence dataset, there
are several metrics such as alignment-based score, character-level metric, edit string
distance and vector-space cosine similarity. Most of them are metrics which could
be learned with supervised information ( Notice that there are also unsupervised
or semi-supervised metric learning algorithms with these metrics ). In Section 4.1,
we will review the definition of these string sequence metrics and summarize the
related metric learning algorithms.

— Time Series 4.2
— Graph Network 4.3

We would not discuss the metric learning method for relation dataset, because most of
them are similar or based on the metric learning for the network we already mentioned. The
algorithms specific to the relation dataset are discussed in more detail in the next chapter.

At the end of this chapter, it is a summary of metric learning methods for the non-flat
dataset in Section 4.4, and we again illustrate the motivation to fill the gap in applying
metric distance learning algorithms to relational datasets.

4.1 Metric Learning method for String Sequence Dataset

In this section, we will focus on metric learning algorithms which are specific to the
string sequence dataset. The string sequence means every sample x of the dataset is a finite
sequence of symbols σ with symbols in the alphabet set A. The task of string sequence
metric learning is learning a similarity or distance d(xi,xj) = d(σi, σj).

4.1.1 Metric for String Sequence

For describe the similarity of two string, there are already several metrics. The basic
ones are quite simple, such as alignment-based measures (e.g., the Needleman-Wunsch
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score [NW70] and the Smith-Waterman score [SW+81]), character-level analysis mea-
sures (e.g., the Jaro-Winkler metric [Win90]). Most of them are based on encoding the cost
`(σi, σj) of converting σi to σj with a linear gap penalty function. Besides these, vector-
space cosine similarity [BYRN+99] is a standard measure of a string sequence, which has
a similar idea to the previous measures, but it is an extension of the cosine similarity which
is between character-level space.

Another standard string sequence metric is the string edit distance. In fact, edit distance
is one of the most versatile tools for metric learning algorithms for non-flat datasets. The
first edit distance learning algorithm was proposed for string sequences and quickly exten-
ded to other structured data sets, such as tree or graph data sets. A standard edit distance
[Lev66] d(σi, σj), or called Levenshtein edit distance, is defined as the cost `(σi, σj) of the
cheapest edit script which is a sequence of operations that turns σi to σj . It replaces the en-
coding penalty function part of the other metrics we mentioned earlier to the insert/delete
cost.

4.1.2 String Metric Learning Algorithms

EDL(Edit Distance Learning) [RY98] is the first proposed edit distance learning me-
thod. The authors model the edit distance as a memoryless stochastic transducer φ =<
δ, σi, σj > that turns σi to σj with the joint probability ρ(σi, σj|φ) = ∑

σk:<σi,σj> ρ(σk|φ).
The evaluate and the estimation of the joint probability is performed with a EM processing.
The supervised information of training set is encoding in the M-step for maximizing the
likelihood probability.

Based on this model, there are many different extension algorithms. For example, the
model could be extended with alignment-based measures, such as in ADDSSM(Adaptive
duplicate detection using string similarity measures) [BM03] which combine the Needleman-
Wunsch score [NW70] and applied it to duplicate detection, or in OAASM(Optimizing
amino acid substitution matrices) [SVA06] which combine the Smith-Waterman score [SW+81]
and plug it in their local alignment kernel(Notice that the kernel Smith-Waterman score
can be optimized by the gradient descent process, which not only brings the advantages of
avoiding the need for an iterative process but also brings the disadvantages of non-convex
object functions). In BSME(Bayesian similarity model estimation) [Tak09], the author ex-
tended the model using Bayesian expectation-maximization techniques to provide better
estimation performance. The authors in RFSED(A conditional random field for string edit
distance) [MBP12] have similar ideas, but they apply conditional random fields model for
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edit sequences instead of Bayesian expectations, and unlike the generic model, positive
and negative instances of string pairs are trained in their models. In SED(stochastic edit
distance) [OS06], the authors propose to use a conditional sensor as a discriminant model
to directly simulate the posterior probability ρ( sigmaj| sigmai) using the editing opera-
tion to change the input string sigmai to the output. The string sigmaj . The parameter
estimates in this paper are also done using the EM iterative model, where the maximization
step is improved on [RY98].

Another group of string metric learning algorithms are based on the vector-space cosine
similarity [BYRN+99], which is defined as following :

s(σi, σj) = < σi, σj >

‖σi‖‖σj‖
(4.1)

Notice that the σi, σj is represented as vectors. There are different variants of the cosine
metric. For example the SoftTFIDF [CM06] which define the similarity as

s(σi, σj) = sim(σi, σj) < w(σi), w(σj) >
‖w(σi)‖‖w(σj)‖

(4.2)

where the w is a weight value w(t, σ) for each token t in string σ based on TF-IDF method
and sim(σi, σj) is Jaro-Winkler score. In SfNEM(Robust similarity measures for named
entities matching) [MYC08], the authors review different extension of SoftTFIDF and pro-
posed a generic model combining the Soft-TFIDF with Levenshtein alignment.

In addition to string metric learning algorithms based on standard sequence string me-
trics, several new approaches attempt to combine deep learning techniques. For example,
in LSSRN(Learning text similarity with siamese recurrent networks) [NVR16], the authors
proposed a text similarity learning algorithm based on the Siamese deep recurrent networks.
In the Section 2.4, we already introduce the deep metric learning based on the Siamese net-
work frame. This paper is also based on the same framework but replaces CNN with LSTM
(long-short-term memory network) [HS97], which has been successful in natural language
processing-related tasks and is suitable for sequence learning.

4.2 Metric Learning method for Time Series Dataset

Time series data and its classification and prediction are widely used in machine lear-
ning and data mining fields such as bioinformatics, speech recognition, object recognition
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and tracking, and patient care.

The field of time data mining involves ordered data streams with temporal interdepen-
dence. In the past decade, much interesting time data mining and machine learning algo-
rithm techniques have been proposed and proved to be useful in many applications. These
methods include various methods for describing differences in time series dataset objects
and can be viewed as similarities of time series entities. In this section, we will introduce
those similarities and related metric learning algorithms.

4.2.1 Metric for Time Series

Euclidean distance can still naturally play a role in the measurement of time series data,
but it is also the simplest method. For a pair of time series xi = χi and xj = χj with
the length t, the Euclidean metric for them could treat the moments as different feature
dimensions as following :

d(xi,xj) = (
t∑

(χik − χjk)2)1/2 (4.3)

Also, several time-series metrics are the extension of this model, such as STS(Short
time-series distance) [MLKCW03] which proposed method for unevenly sampled time
series, SVD(singular value decomposition) [WS08b] which decomposes the co-variances
matrix of the data and use the eigenvectors as features, CID(Complexity-invariant dis-
tance) [BKTDS14] which uses a complexity estimate for information as a correction factor
for Euclidean distance and CRD(Compression rate distance) [VA15] which is based on the
same idea but replace the complexity estimate with compression rate.

However, for the above time series indicators, most of the hypothetical processing time
series are the same length, and even some require uniform sampling. In real-world data
sets, data is typically sampled at different lengths by different sensors at different frequen-
cies in different scenarios. Therefore, in order to measure the similarity of these data, it is
necessary to align the time series.

Time series alignment

In applications ranging from bioinformatics to audio processing, the problem of ali-
gning time series is ubiquitous. The goal of time series alignment is to align two similar
time series with the same global structure but local time differences.
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For a pair of time series χi and χj of length ti and tj , their time series alignment can be
expressed as a series of indexes :

℘ij =
℘i(k)
℘j(k)

 , k = 1, 2, · · · , tij (4.4)

where ℘i(k) is an index for realigning time series χi, ℘j(k) is the one for χj , while the
℘i(k) of χi corresponds to time moment ℘j(k) of χj . The tij is the length of the time series
alignment. Under such an alignment the time series χi and χj can be realigned to new ones
X ′i and X ′j , which have the same length and can be compared directly by the Euclidean
distance based on metrics we mentioned before. To ensure that the time series alignment is
at least longer than the longest alignment of the two and shorter than the cumulative length
of the two, time series alignment needs to follow three constraints as follows :

— Boundary constraint : ℘(1) = (1, 1),℘(ti,j) = (ti, tj) ;
— Monotonicity constraint :if ℘(K) = (i, j) and ℘(k + 1) = (i′, j′), then i′ ≥ i and

j′ ≥ j ;
— Continuity constraint :if ℘(K) = (i, j) and ℘(k + 1) = (i′, j′), then i′ ≤ i + 1 and

j′ ≤ j + 1 ;

These constraints are also treated as time series alignment properties. In the following
section, several metric learning algorithms treat these constraints as part of the metric lear-
ning constraint construction.

Dynamic time warping

One of the most popular time series distances based on time series alignment is DTW
(Dynamic Time Warping) [Kru83], which is intended to provide optimal alignment bet-
ween two temporal sequences and measure their similarities. DTW is widely applied on
automatic speech recognition, speaker recognition, online signature recognition or partial
shape matching application. DTW is based on the time series alignment and uses a dyna-
mic programming technique to search for an optimal match that has minimal cost while
satisfies all the constraints of time series alignment.

DTW warps sequences by nonlinearly stretching or contracting in the time dimension
to determine a measure of their similarity, regardless of some nonlinear changes in the time
dimension, as shown in Figure 4.1. For calculate the cost of warping, DTW is generated
by a cumulative cost matrix CDTW . Given a pair of time series χi and χj , the cost matrix
Ccost is constructed according to the time series alignment, where the entry at the index
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FIGURE 4.1 – Example of dynamic time warping alignment.

(i, j) represents the cost computed by distance of alignment of the time moment i from
the series χi with j in time χj . Than the CDTW will be computed from Ccost where each
element CDTW

i,j represents the minimum cost as :

CDTW
i,j = Ccost

i,j + min(CDTW
i−1,j−1, C

DTW
i−1,j , C

DTW
i,j−1 ) (4.5)

Where the CDTW
1,1 = CCcost

1,1 and CDTW
ti,tj

is the best alignment. The pseudo-code of
DTW is detailed in Algorithm 1.

Although DTW can be thought of as a metric of the similar distance between two given
time series, it does not guarantee triangular inequalities.

4.2.2 Metric Learning for Temporal Sequence Alignment

As we mentioned before, after time series alignment, the distance between the realigned
temporal sequence could be learned as a feature vector. There are several metric learning
algorithms for time series are based on temporal sequence alignment.

In LSMLTS(Localized supervised metric learning) [SSHE10], the author specifically
applies ANMM (average neighborhood boundary maximization) [WZ07] to the time phy-
siology data. With a statistical time-domain method and a wavelet domain method, the
temporal sequence is aligned and represented into a 50-dimensional feature. More details
are in the original paper. For learning the metric, the author defines that :

— the local within-class compactness : `(S) = ∑
S d

2
M(xi,xj) should be low, where
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Algorithm 1 Dynamic time warping
Require: Time seriesχi with length ti,time seriesχj with length tj ,d()
Ensure: DTW (χi, χj)

1: DTW (χi, χj) := array(a, b)
2: for k from 1 to ti do
3: DTW [k, 0] :=∞
4: end for
5: for l from 1 to tj do
6: DTW [0, l] :=∞
7: end for
8: DTW [0, 0] := 0
9: for k from 1 to ti do

10: for l from 1 to tj do
11: cost = d(Xi[k], Xj[l])
12: DTW [k, l] = cost+mininum(
13: DTW [k − 1, l], // insertion
14: DTW [k, l − 1], // deletion
15: DTW [k − 1, l − 1]) // match
16: end for
17: end for
18: return DTW [a, b]
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for the aligned sequence, the patients of the same label in set S are close together ;
— the between-class scatterness as D = ∑

D d
2
M(xi,xk) should be high,where for the

aligned sequence, the patients of different labels in set D are far away from each
other.

Therefore, the metric is learned by mininum the ratio between the sum of the distance :

min
M

∑
xi∈N

∑
xjS d

2
M(xi,xj)∑

xi∈N
∑

xkD d
2
M(xi,xk)

(4.6)

where the set N is the set for all instance.

In MLTSA(Metric learning for temporal sequence alignment) [GLAB14], the author
proposed a similarity measure from annotated examples and presented the approach to
learn it and improve the relevance of the alignments.

For a pair (xi,xj) of training instances (A,B), the author define the binary matrix
Y ∈ {0, 1}TA×TB , Y(ai,bj)=1 for every i ∈ 1, ..., u and 0 otherwise, u is the size of the match
of (A,B). The metric of pairs is based on Mahalanobis metric, denoted as :

dM(xi,xj) = −((ai − bj))TM((ai − bj)) (4.7)

They aims finding a matrix M , which makes the predicted alignments close to the
ground-truth on the training instance.

The loss function they used is the same idea of LMNN, while the loss is not only the
hamming loss but also area loss.

4.2.3 Metric Learning for Dynamic Time Warping

DTW can be thought of as a measure of time series (Notice that it is not an accurate
measure because it does not follow the triangular inequality property) and it is one of the
most popular ways to measure the similarity of time series data. Therefore, several metric
learning algorithms learn DTW-based metrics or apply DTW as regularization.

ITML and LMNN are the most classic metric learning algorithms, so in the past few
years, many scholars have proposed their DTW extensions. These algorithms are based
on an extension of DTW, which is called MDDTW(Mahalanobis distance Dynamic Time
Warping ) [MLWG15]. For traditional DTW we mentioned before, the local distance func-
tion d(., .) for generate the cost matrix Ccost is Euclidean distance. The MDDTW replace
the Euclidean distance function to the Mahalanobis distance function with the parameter
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matrix M . There are several advantages when applying MDDTW instead of the traditional
DTW to measure the similarity of time series. First is with this form, it will be easy to study
the corresponding metric learning algorithm based on the Mahalanobis distance. Secondly,
the stretching or contraction of the time series is along the time axis as a whole rather than
independent. Finally, a good Mahalanobis distance will rebuild a relationship among va-
riables accurately which could be treated the learned parameter matrix M give weight to
dimensions of features.

LG-DTW(LogDet-Dynamic Time Warping Learning) [MLWG15] proposed the MDDTW
and was designed to learn a Mahalanobis distance under DTW with the same LogDet re-
gularizer as ITML. It could be veiw as a DTW version of ITML. The author choose the
relative constraints and the loss function is :

L(M) =
∑

(i,j,k)∈C
(DTWM(xi,xj)−DTWM(xi,xk) + γ) +λ(tr(M)− logdet(M)) (4.8)

which is similar with ITML. The problem for optimizing the loss function is similar
with the MDDTW, the computation of DTW is also based on the learned Mahalanobis
distance and will be changed when the metric is changed, which lead to NP-hard for op-
timizing. The author propose an iterative closed-form approach for solving the problem,
with the object function as :

Mt+1 = arg min
(i,j,k)∈C

(DTWM(xi,xj)−DTWM(xi,xk) + γ) + λtDlogdet(M,Mt)) (4.9)

with the trade-off parameter λt and LogDet regularizer Dlogdet(M,Mt) keeping the
metric matrix M close to the one in the previous iteration.

metricDTW(local distance metric learning in Dynamic Time Warping) [ZXI16] propo-
sed point-wise DTW, which is actually the same as MDDTW and an adaptation of LMNN
for univariate time series k-NN classification. The authors say they learned the local metrics
for Mi,j and Mi,k in different clusters of different time series and tried to keep Mi,j ≡Mi,k

for global metric learning. However, they simplify the matrix by constraining M with only
a single weight value on the diagonal, which results in eventually they learn only a scalar
rather than a metric.

DTW-LMNN [SHZL17] is another DTW verion of LMNN for the multivariate time
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series case. The loss function is more similar to the LMNN than the previous one and as
following :

L(M) =
∑

(i,j,k)∈C
(DTWM(xi,xj)−DTWM(xi,xk)+γ)+λ

∑
(i,j)∈S

DTWM(xi,xj) (4.10)

It has the same NP-hard problem like the LG-DTW and also solves the problem with
the iterative approach, which first computes the DTW with a fixed metric then computes
the metric with fixed DTW. The computation complexity of DTW-LMNN is higher than
LG-DTW, which lead to slower and lower performance.

In addition to these MDDTW-based metric learning algorithms for learning DTW dis-
tances, other scholars combine metric learning with DTW in other ways. For example, in
DTWCL(Dynamic time warping constraint learning) [YYH+11], the author applies LMNN
to adapt to global path constraints, which improve the performance of alignment constraints
construction for DTW.

4.3 Metric Learning method for Tree and Graph Dataset

Many non-iid data sets are structurally like trees or graphs. The proliferation of social
networks on the Internet has spurred the creation of more tree or graph structures data-
sets. If we survey the machine learning method in the past few years, there are two types
of algorithms worth paying attention to : one is the graph learning using the edit distance
method[GXTL10] we mentioned in Section 4.1, and the other is the graph learning using
the embedded method[GF18]. Logically, for tree and graph datasets, there are two impor-
tant sets of metric learning methods. One is based on edit distance. Most of them are similar
to the proposed string edit distance metric learning. Another set of metric learning methods
focuses on embedding the structural information of trees and groups. Most related metric
learning methods are to use the existing embedding method to represent structural informa-
tion as the similarity of trees and groups, or to combine existing embedding methods with
the prepossessing. The related embedding methods included the graph factorization[BN02],
random walk[PARS14], deep learning [KW16] and miscellaneous[TQW+15]. In this work,
we will not introduce all related algorithms, but will introduce several most important ones.
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4.3.1 Metric Learning with Edit Distance Method

As we mentioned before, edit distance is widely used in the string or tree-structured
data. After many scholars proposed the metric learning algorithm for string editing dis-
tance, they expanded it into a tree or graph version of distant learning algorithm based on
themselves or others.

Extending the work of EDL [RY98] and SED [OS06] on string edit similarity learning,
Learning STED(stochastic tree edit distance) [BHS06]and PMTED(Learning probabilis-
tic models of tree edit distance)[BBHS08] propose both a generative and a discriminative
model for learning tree edit costs. The author points out the problem of classical tree edit
distance, which hard to tune the fixed priory edit costs. To overcome this drawback, they
focus on the automatic learning of a non-parametric stochastic tree ED. They update the
EM algorithm of classical tree edit distance for learning the primitive edit costs with the
conditional adaptation in [Sel77] which it is cheaper to compute.

The work of MLbTSD(Learning Metrics Between Tree Structured Data) [BHS07] is
also based on the tree edit distance in EDL [RY98], but it has a more complicated variant,
which not only allows the operation of a single node but also allows the subtree. The es-
timation of parameters is also based on the EM algorithm. However, this method has a
theoretical limitation, that is, factoring in some cases may not be correct, as [Emm12]
point out. In OSTD(On stochastic tree distances) [Emm12], the authors show that a correct
factorization is achieved only when the most probable editing script is considered instead
of all possible scripts. According to this theory, corresponding EM updates are derived.

In GESL(Good edit similarity learning by loss minimization) [BHS12], the authors
propose good edit similarity learning by loss minimization, which is deal with strings,
and extend it to trees and lead to robust and competitive similarities in LDTDS(Learning
discriminative tree edit similarities for linear classification) [BBHS16].

The tree edit distance (TED) dTED($i, $j) between two trees $i and $j is the mini-
mum number of edit operations to change $i into $j . Based on TED, the authors define
the edit similarity function as :

dCcost($i, $j) = 2e−dT ED($i,$j) − 1 (4.11)

where Ccost is the positive cost matrix defining the possible edit operations over nodes
of trees. The algorithm GESL could optimize this similarity while satisfying several condi-
tions.
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4.3.2 Metric Learning with Embedding Structure Information Me-
thod

In SPML(Structure Preserving Metric Learning) [SHJ11], the authors propose a metric
learning algorithm based on the adjacency matrixA of a network. They learn a Mahalanobis
distance metric defined by matrix M transformation with structure preserving embedding,
which is more effective on the inherent connectivity structure of the network and show as :

dM(xi,xj) = xTi Mxi + xTj Mxj − xTi Mxj − xTj Mxi (4.12)

The authors use as supervised constraints the fact that the distances to all disconnected
nodes xj must be larger than the distance to the farthest connected neighbour of all neigh-
bour nodes xl. However, not every connected neighbour is considered. As an alternative
solution, they propose to set an additional input parameter K and only visited K connected
neighbour nodes xl. The associated constraint on the distance is thus given by

d2
M(xi,xj) > (1− Aij) max

l
(Aild2

M(xi, xl)),∀i, j (4.13)

The objective function of this approach, denoted as SPML, is :

L(M) = λ
2‖M‖

2+
1
|C|
∑

(i,j,k)∈Cmax(d2
M(xi,xj)− d2

M(xi,xk) + 1, 0),
(4.14)

where C is a set of triplets (i, j, k), for which Aij = 1 and Aik = 0. Using a convenient
notation, one can rewrite the difference between the two distances in the loss function with
a sparse matrix C as follows

d2
M(xi,xj)− d2

M(xi,xk) = C(i,j,k)XTMX,

where C is a sparse matrix storing the parameters C(i,j,k)
jj = 1, C(i,j,k)

ik = 1, C(i,j,k)
ki = 1,

C
(i,j,k)
kk = −1, C(i,j,k)

ij = −1 and C(i,j,k)
ji = −1. Otherwise C(i,j,k) = 0.

Finally, they use a projected stochastic sub-gradient descent to find a solution of the
minimization of loss function L(M).

With the development of deep learning today, there are several algorithms combining
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deep learning method to deal with the graph datasets.

In SRLR(Demystifying relational latent representations)[DB17], the authors point out
that although the latent space generated from deep learning is not well interpretable, the
clustering performed in this space can show the re-presentation of features. They construct
and benefit from local metrics in latent space.

In BCNML(Brain Connectivity Networks Metric Learning) [KPF+18], the authors pro-
pose a new graphical re-presentation method for solving functional brain connections pro-
blem. The idea is similar to the [CHL05] mentioned in Chapter 2 which learn a metric
with "Siamese network". The progress of this paper is that the authors use a siamese graph
convolutional neural network to learn a graph similarity metric. This paper is the first al-
gorithm to apply GCN (graph convolution neural network) [KW16] to metric learning
method.

GCN is a natural generalization of convolution neural network model in the graph struc-
ture. The convolutional neural network is based on local perception region, shared weights
and downsampling in the spatial domain because it has stable and invariable characteristics
and can extract spatial features of images well. Graph structure does not have the transla-
tion invariance of the image, and the traditional convolution method is not suitable for graph
structure. The essence of GCN is to extract the structural features of graphs by defining the
receptive field, for example, spectral approach processes graph structure by eigenvalues and
eigenvectors of the Laplacian matrix of the graph.

The Figure 4.2 shows the structure of graph convolution neural network. For each layer
of GCN, the forward function is as following :

Hi+1 = f(Hi, A) = fact(AHiWi) (4.15)

where fact() is an active function(generally select the ReLU nonlinear active function),
A is the processing adjective matrix, Wi is the parameter of the layer Hi.

In BCNML [KPF+18], the authors transfer the training set to the bipartite graph as
the training pairs. The inputs of siamese GCN are the training pairs, and the outputs are
combined by an inner product layer followed by a single fully connected as the similarity
estimate. The model is driven by the hinge loss of similar pairs (matching graphs) and
dissimilar pairs (non-matching graphs).
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FIGURE 4.2 – The structure of graph convolution neural network.[KW16]

4.4 Conclusion

In this chapter, we mainly introduce the development and current status of metric dis-
tance learning in non-flat databases from three aspects : string database, time-series data-
base and graph database. As can be seen from the summary, most non-flat metric distance
learning algorithms are based on specific non-flat metrics, such as edit distance and dyna-
mic timing alignment. With the development of deep learning today, several algorithms like
SRLR and BCNML use the feature learning nature of deep learning to deal with non-flat
databases directly.
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4.4. Conclusion

In the Table 2.2, we collated all the metric distance learning algorithms introduced in
this chapter. By comparing these algorithms, we can see that the metric distance learning
algorithm for non-flat databases inherits various models and techniques of flat database
metric distance learning algorithms on the one hand, and develops unique means of hand-
ling for many unique structures on the other hand. In many cases, prepossessing of non-flat
data (such as timing alignment of time series databases) can be not only as optimization of
the feature learning properties of the metric distance learning algorithm but also as a pre-
preparation for subsequent metric distance learning. This duality reflects the characteristic
of metric distance learning as a re-presentation of learning.

After introducing various non-flat data and related metric distance learning algorithms,
we can see that with the development of time, non-flat metric distance learning algorithms
are more and more focused on more complex and more realistic databases. The relatio-
nal databases not only have the complex topology of the graph-like database but also have
additional feature information such as the relationship between the tables and the side in-
formation. There are not many metric distance learning algorithms explicitly developed for
relational databases, but they are worth exploring. In order to fill this gap and further deve-
lop based on the prior relational metric learning algorithm, in the next chapter, we propose
several metric learning algorithms for relational databases.
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CHAPITRE 5

RELATIONAL METRIC LEARNING

As mentioned in the previous Chapter 4, most metric learning methods are specific to
applications in flat databases ; that is, feature vectors primarily describe samples. Howe-
ver, non-flat databases outside the column, such as strings, time series, trees or graphs, are
still worth noting. Although many real-world datasets present multiple relationships bet-
ween observations, such as social service networks, Wikipedia networks, molecular bio-
logy classifications, etc., most machine learning algorithms focus on only partially vecto-
rized characterizations. Table plane database. These databases still contain a large amount
of potential data for the association table between the entity table and the entity. It is also
worth developing a specialized machine learning algorithm. Although some computer lear-
ning has been tried in some machine learning, such as [Get07], as far as we know, the
metric distance learning algorithm that is specially processed for such databases still has
little attention. The primary purpose of this chapter is to propose several metric distance
learning algorithms that individually consider relational databases.

In this Chapter 5, we introduce the concept and classical approaches of relational lear-
ning in Section 5.1. Then in the following sections, there are three ways proposed to process
different relational data :

The goal to propose a metric learning algorithm that can be applied to a relational
database with multiple entity tables and multiple relationships between entity tables. To
achieve this goal, we have tried three ideas :

— Propose a metric based on relational information for relational data : This method
is inspired by edit distance, but the difficulty lies in the representation of the rela-
tionship structure. In this article, we have not proposed a proper way.

— Select the constraints based on relational information : The performance of metric
learning algorithms is highly dependent on constraints selection. In Section 5.2,
we proposed the LSCS(Relational Link-strength Constraints Selection) algorithm.
A general model is denoted as link-strength constraints which are generated by a
link-strength function. LSCS is suitable to the relational data which the structure
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Partie , Chapitre 5 – Relational Metric Learning

of the relationship graph is complex because the link-strength function transfers
the side information of the relationships between entities to a weight value measu-
ring the relational similarity between entities. This proposed method was published
on Conférence sur L’Apprentissage Automatique in 2018 [PLCL] and the Eighth
International Workshop on Statistical Relational AI at the 27th International Joint
Conference on Artificial Intelligence in 2018 [PCL18].

— Combine the existing relational learning algorithms and metric learning algorithms :
There are several relational learning algorithms that are suitable for combining with
metric learning algorithms. We chose the RESCAL decomposition based on the re-
lational tensor. The proposed RFML(RESCAL Factorization Metric Learning) is
apply the exist metric learning algorithms on a union space which is the combine
of RESCAL Factorization latent space and original feature space. This is a simple
basic application of metric learning algorithms, so in this article, we propose this
method mainly as a baseline for comparing other algorithms. This part will be pre-
sented in Section 5.3

The third proposed relational metric learning algorithm is MRML(Multi-Relational
Metric Learning) in Section 5.4. MRML is based on both "Select the constraints based
on relational information" and "Combine the existing relational learning algorithms and
metric learning algorithms" ideas, which sums the loss from relationship constraints and
label constraints. MRML uses both label constraints and relational constraints. This pro-
posed method was published on a workshop of 5th International Conference on Learning
Representations[PCL18] in 2017 and published on 27th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning[PLC19a] in 2019.

Note that, the LSLC is proposed for the datasets with one mainly entities table (or
several table in one type) with multi-relation reference table from the parents entities table
(one or more). The RFML and MRML are proposed for the datasets with only one entities
table with multi-relation links between the entities. In experiment Section 5.5, we will
discuss the difference again.

In the end, there are experiments designed for the different dataset and comparing al-
gorithms, and results shown in the Section 5.5.

At the end of this chapter, in the conclusion Section 5.6, we re-synthesized and collated
the main contributions of this chapter. We also listed some of the problems encountered in
the study, describing the studies and experiments that we tried but did not go deep because
of time, equipment or other constraints.
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5.1. Relational Learning and Metric Learning

5.1 Relational Learning and Metric Learning

As we mentioned in Chapter 1, Relational learning deals with learning models for which
data consists of a generally complex relational structure. As a difference with flat datasets,
the primary learning tasks pay more attention to supervised information from the relations
and knowledge from the topology of the relational graph, such as collective classification,
or link prediction. Relationship learning can be divided into different branches depending
on the model and method as we introduced in Chapter 1, including statistical relational
learning, inductive logic programming, relational reinforcement learning, graph mining and
multi-relational mining. In our work, we focus on relational learning based on graph-based
mining and multi-relational mining. In Chapter 4, we have introduced several metric dis-
tance learning methods for graph databases, many of which can be extended to relational
databases. For example, our proposed MRML is inspired by SPML(Structure-Preserving
Metric Learning) [SHJ11] and extends it from a single un-weighted graph to a set of the
weighted graph representing multiple relationships.

Notice that, although there are many machine learning tasks related to relational lear-
ning, we specifically focus on using relational information for collective classification. Col-
lective classification is a classification of related entities that may share identical classes
[SNB+08] from the relationship information. For collective classification, there are several
approaches to learn metric with relational information.

In DRLR(Demystifying Relational Latent Representations) [DB17], the authors pro-
pose an analysis of the meaning of the latent space learned by a deep learning algorithm
on relational datasets, mainly because of the black box problem of deep approaches. The
same analysis can be conducted for the meaning of metric learning, which can also be
treated as mapping original feature space to a latent space. This work mainly focuses on
the usefulness of latent space and the redundancy of the features. They show the excellent
performance of using unsupervised relational information for a classifier in a latent space.

In [KLF01], they use relational graph information with propositionalization, transfer
the relational representation of a learning problem into a propositional representation. Ano-
ther approach uses metric learning on graphs for domain adaptation [DTC12]. To this aim,
they propose an iterative learning algorithm on the graph. From the resource domain, the
nodes with labels, they learn a new metric and apply it on the related target domain, the
nodes without labels. Then, the graph is updated depending on the learned distance, and
constraints with low entropy instances are selected for the next iteration.
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Some metric learning algorithms consider relational data as heterogeneous networks
for each different relationships. For instance, in [ZPX13], they propose a heterogeneous
metric learning algorithm, which integrates the structure of different graphs into a joint
graph regularization. They use two mapping function for the feature space of the object
entities and subject entities in one relation, and then introduce a joint graph regularization
for iterative optimize the loss function. In [DCS17], they start from the same principle
but use meta-path-based random walks to incorporate the heterogeneous network struc-
tures into skip-gram vectors for dealing with the relational graph. Those algorithms use
joint regularization for different entities in heterogeneous networks, which has an excellent
performance on considering the structure information in the relational dataset but do not
consider the side information in the relational links. It processes the relational variables
the same way as the entities and subject to their algorithm, but it ignores the differences
between entity tables and association tables. Our proposed method includes the value of
different variables on the relationship in the datasets and distinguishes them with entities.

5.2 Relational Link-strength Constraints Selection

The first proposed approach LSCS(Relational Link-strength Constraints Selection) starts
with constraints selection. We got inspiration from approaches in [DTC12], which is me-
tric learning method for (hyper)graph data. Instead of using label constraints, the authors
used graph-based constraints which enforce the distance between the unlinked node and
target node to be bigger than the distance between the k-farthest linked node and the target
node.

We propose a more general model denoted as link-strength constraints which are gene-
rated by a link-strength function measuring the similarity of nodes by the side information
of the relationships between them. The proposed link-strength function gives the possibility
of using similarity learning to encode the relational information into the constraints for the
metric learning algorithm.

We have tried to define a metric based on the link strength function, but this will result in
either sacrificing the consideration of non-numerical side information or making it difficult
to prove that it is a metric and can only be counted as similarity.
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5.2. Relational Link-strength Constraints Selection

5.2.1 Link-strength Function

A basic statement is two connected individuals are more similar than two unconnected
individuals. We evaluate the amount of link similarity between individuals by proposing a
link-strength function to measure that.

A link-strength function LS(xi,xj|r) is a function with the input is the relational infor-
mation between the entities nodes xi and xj and the output is a real value to measure the
"strength" or the similarity of the two nodes. The symbol r represents the related informa-
tion of the entities nodes x ∈ Rn×m, where n is the number of instances and m the number
of node attributes.

There are many ways to encode the relational information for this link-strength func-
tion, and we choose that the link-strength depends on the side-information of the common
parents, which are the values of the references.

A relational schema R = Re ∪ Rr contains a set of relational information where Rr

denotes the set of relational information( like groups and types) between entities in same
tables and Rr denotes the set of relational information(like reference links) between dif-
ferent tables. For a relation subset rk ⊆ Rr including all references between two entity
tables, for examples like the reference Ratings between User and Movie as shown in Fi-
gure 5.1, we consider it as a many-to-many relationship. Let Pij be the set of common
parents of xi and xj , and numPij

= |Pij|, the number of common parents.

FIGURE 5.1 – Data structure of movie datasets.
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In Figure 5.2, we give a sub-sample of a bipartite relational graph, along with an
example of common parents.

x1
1

x1
2

x1
3

x1
4

x2
1

x2
2

x2
3

x2
4

Relation
R2

Relation
R1

FIGURE 5.2 – Bipartite relational graph for a many-to-many relationship table. The com-
mon parents of {x2

2,x2
3} is the set of entities Px2

2,x
2
3

= {x1
2,x1

3,x1
4}

Naturally, a similar node would get similar references from the same parents nodes.
Consequently, we consider that the link-strength depends on the side-information of the
common parents, which are the values of the references. In the Figure 5.1 is a relational
dataset with two entities tables(Users and Movie) and two relational tables (Rating and
Tags). The Figure 5.3 shows the common parents of two target data nodes in the Movie
table.

Additionally, as shown in Figure 5.3 the references can be quantified by numn numeri-
cal variables varn (the red link) and numc categorical variables varc(the blue link).

Given a relation rk, we propose to defined the link-strength function LS() as :

LS(xi,xj|rk) = LS(xi,xj|Pij)

=
numPij∑
l=1

(
γ · fa(l, i, j) + (1− γ) · f b(l, i, j)

)
(5.1)

where

fa(l, i, j) =
numn∑
m=1

exp (− |varnm(pl,xi)− varnm(pl,xj)|) , (5.2)

and

f b(l, i, j) =
numc∑
m=1

(varcm(pl,xi) ◦ varcm(pl,xj)) , (5.3)

in which x ◦ x′ = 1 iff x = x′, and 0 otherwise, and pl is the l-th parent node in the
set Pij for relation rk. Notice that numerical association attributes v are normalized in the
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FIGURE 5.3 – The common parents of movie "Spider man" and "Dead pool".

unit interval before link strength computation and we use the exponential function rather
than other kernel function because we pay more attention to the change from the difference
close to 0 while the gradient of the exponential function changes more when approaching
0. Note also that we restrict to unit-length slot chains, i.e. the length of the sequence of
foreign key references is equal to 1. We have not done more normalization for other factors
yet but it maybe interesting in the future work.

5.2.2 Link-strength Constraints Selection

For relational constraints selection, the simplest way is the relative link constraints
dM(xi,xj) ≤ dM(xi,xk) + m, (i, j) ∈ S, (i, k) ∈ D with the adjacent matrix A that
Aij = 1, Aik = 0,∀(i, j) ∈ S,∀(i, k) ∈ D, which only check the relative distance between
the connected and disconnected relational links.

We extend the relative link constraints by separating S and D with the dedicated link-
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strength function as the above subsection. The proposed constraints enhance the classical
metric learning algorithms using relative constraints, such as ITML [DKJ+07] and LSML
[LGZ+12].

We select the strongest links as similarity constraints and the weakest links as dissimi-
larity constraints. Remark that if two entities xi and xj do not have common parents, their
link strength is zero, and therefore considered as dissimilar. With the link-strength function,
we select the relative constraints set C = {(i, j, k) : LS(xi,xj) ≥ LS(xi,xk)} and use the
constraints on two different classical metric learning algorithms, ITML and LSML.

5.3 Metric Learning with RESCAL Factorization

The link-strength constraints algorithm in Section 5.2 is good at the process the data-
sets with complex structure. However, in many real-world datasets, the primary informa-
tion for the relational dataset is not the structure or topology information, but the multi-
relational links between the entities. For example, the facebook focuses on the following
link or graphing relation between users, and the parties system focus the vote and support
relation between party members. Typically, this kind of relational dataset only contains
one entities table with multi-relationship between them. For this particular kind of multi-
relational datasets, we considered the relational tensor and tensor factorization and propo-
sed RFML(Metric Learning with RESCAL Factorization).

5.3.1 Relational Tensor

In [Dže10], the authors present different relational frameworks, primarily first-order
logic, relational database model and set theory. Relational tensor is one of them, which is a
mathematical definition combining nr-tuples and set theory. In particular, relational tensor
rely on the use of nr-array relations defined as a set of nr-tuples. Let× denote the Cartesian
product of sets. An nr-array relation R is then defined as a subset of the Cartesian product
of nr sets [FGKP99], as follows :

R ⊆ V1 × · · · × Vnr

V1 × · · · × Vnr = {(v1, · · · , vnr)|v1 ∈ V1 ∧ · · · ∧ vnr ∈ Vnr}
. (5.4)

The domain of R, dom(R), which also denotes the Cartesian product V1 × · · · × Vnr ,
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5.3. Metric Learning with RESCAL Factorization

is the set of all possible relationships over the entities in their domains. For a set X and a
subset Xsub ⊆ X, the characteristic function of Xsub is a boolean-valued function fcha|Xsub

:
X → {0, 1} which indicates for all elements in X, whether they are also an element of the
subset Xsub [Hal98]

∀x ∈ X : fcha|Xsub
)(X) =

 1 if x ∈ Xsub

0 otherwise
(5.5)

For a relation R, its characteristic function is a function

fcha|R : V1 × · · · × Vn → {0, 1} =

 1 if a relation exists
0 otherwise

(5.6)

This work focuses on dyadic (binary-valued relations) relational data, where Rk ⊆
Vi × Vj for all relations Rk. Similarly to the RDF convention [AVH04], a relationship
Rk(a, b) refers to a as the subject and to b as the object of the relationship. Relational
learning domain shows strong links with learning the characteristic function of relation
from supervised information, in particular, to predict the existence of a relation between
two individuals.

A relational tensor is a tensor which stores the relationships of relational data with
the characteristic function fcha|R. For dyadic relational data modelling, we use a labelled
directed graph, in which entities are nodes and relationships are labelled directed edges
pointing from the subject to the object. The relational tensor then consists of the union of
the characteristic function of the relations.

A relational tensor T with n entities and nr different relations can be written as T ∈
Rn×n×nr :

tijr =

 1 if r(i, j)exist
0 otherwise.

(5.7)

As shown in Figure 5.4, a third order tensor, which contains the characterizing function
of relationships between entities is used. All of the proposed relational learning process in
this work are based on this relational tensor. Notice that we restrict to a binary tensor (i.e.
presence or absence of relation) in this work, but relations can be valued (e.g. rating of a
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FIGURE 5.4 – Relational tensor.

movie by a user), or vector-valued (e.g. ratings of actors in a movie).

Several approaches using relational tensors have been proposed for relational learning.
In [ME11], focusing on existing link prediction models, the authors extend matrix facto-
rization to use the side information and overcome the imbalance. Tucker Decomposition
(TD) model is used on user-tag-item relational tensor to provide high-quality tag recom-
mendations. In [RST10], they improve TD to PITF(Pairwise Interaction Tensor Factori-
zation) with an adaptation of the Bayesian Personalized Ranking (BPR) criterion. PITF
factors the tensor to a fixed diagonal core tensor, user matrix, item matrix, and pairwise tag
matrix. The pairwise tag matrix can be trained with pairwise constraints form supervised
information.

5.3.2 Metric learning on the RESCAL latent space

In [Nic13] and [NTK11], they propose RESCAL factorization. RESCAL factorization
decomposes the relational tensor T ∈ Rn×n×nr to a core tensor R ∈ Ra×a×nr and a matrix
A ∈ Rn×a, as shown in Figure 5.5. where a is a user-given positive integer parameter with
0 < a < n.

Figure 5.5 shows the RESCAL factorization decomposes the relational tensor to two-
part : the first part is a core tensor R with information loss, that we need and could control
its size ; the second part is a matrix Al which we pay attention to its capacity. The matrix Al
can be regarded as an embedding of the entities from dataset into an a-dimensional latent
space. For the relational tensor, this matrix L quantifies the similarity of the relationships

126



5.4. Metric Learning with Multi-Relation

FIGURE 5.5 – RESCAL factorization decomposes relational tensor X to a matrix A which
represents the relational information and a core tensor R. [Nic13]Notice that, in our work,
we denoted the notation T as relational tensor X , Al as factor matrix A

between entities and can be seen as a new latent feature space.

Notice that, the latent space Al, only use the relational information but not the original
features information. In [NTK11], [Nic13] and [NTK12], their solution is using a bigger
tensor with the features as a relational between entities. In our opinion, this leads to the
base and loss during the tensor factorization.

So in this work, we only use the RESCAL factorization on the relational information to
get the latent space which represent the relation information and use it as a new " relational
feature" for the entities. Our proposed RFML is applying the usual metric learning algo-
rithms on the combine of "relational feature" latent space and original feature space. For
example, in the next experiment Section 5.5 the RFML-ITML means applying the ITML
on such union space.

5.4 Metric Learning with Multi-Relation

In the Section 5.3, we use the classical metric learning algorithms with RESCAL facto-
rization, which is quite simple. Through we combine the metric learning method and tensor
technique, but considering in [Nic13] they also solve a similar task, it is not a significantly
progressive innovation.

Therefore, in this section, we consider starting with the metric learning method and pro-
posing an algorithm for the multivariate relational data set, which is called MRML(Multi-
Relation Metric Learning).
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5.4.1 Relational Constraints

There are several relational constraints methods, which based on the relational side-
information or relational structures. We will introduce some of them :

— The simple exist relational constraints : This constraints is the simplest way we
mentioned in Chapter 4, dM(xi,xj) ≤ dM(xi,xk) + γ, (i, j) ∈ S, (i, k) ∈ D with
the adjacent matrix Aij = 1, Aik = 0,∀(i, j) ∈ S, ∀(i, k) ∈ D, which only check
the relative distance between the connected and disconnected relational links.

— Our proposed link-strength constraints : In Section 5.2, we proposed the link-strength
constraints,C = {(i, j, k) : LS(xi,xj) ≥ LS(xi,xk)} where the LS(xi,xj) is a
link-strength function could be any function measure the similarity with the side-
information from the relational structure, in our case, which is depended on the
side-information on the common parents of the target pair of nodes.

— Connected neighbour constraints : As we mentioned in Chapter 4,in SPML(Structure
Preserving Metric Learning) [SHJ11], the authors propose a metric learning al-
gorithm based on the adjacency matrix A of a network for learning a Mahalano-
bis distance metric defined by matrix M , which is more effective on the inherent
connectivity structure of the network. The associated constraint on the distance is
d2
M(xi, xj) > (1 − Aij) maxl(Aild2

M(xi, xl)),∀i, j with the adjacent matrix Aij ,
which is depended on the fact that the distances to all disconnected nodes xj must
be larger than the distance to the farthest connected neighbour of all neighbour
nodes xl.

5.4.2 Proposed Loss Function for Multi-Relation

Our proposed approach of metric learning MRML(Multi-Relation Metric Learning)
considers all of the three information : features, links and labels. We make use of the Ma-
halanobis distance for the metric definition, and add relational constraints into the objective
function. Formally, the objective function is almost the same as the general model of metric
learning algorithms, with the following modification :

L(M) =
∑

(i,j,k)∈CS

`M(i, j, k) + λr(M) (5.8)

where CS = {CR ∪ CL}, i.e. the union of constraints obtained from relational informa-

128



5.4. Metric Learning with Multi-Relation

tion, CR, and constraints obtained from labels, CL.

For the label information constraints, two popular approaches are mainly used for taking
into account target labels : similar/dissimilar constraints and relative constraints. Without
loss of generality, we take the relative one, given by d2

M(xi, xj)+γ ≤ d2
M(xi, xk), ∀(i, j, k) ∈

CL. The set CL contains (i, j, k) triples of data, where the (xi, xj) share the same label and
(xi, xk) have different labels, and γ is a margin. The relative constraints make sure the en-
tities in different classes be farther with the margin than the entities with the same labels.
Based on common usage [WBS06], we choose γ = 1.

We can decompose the loss `M(i, j, k) of Eq. (5.8) into two distinct losses `L and `R
that take into account label constraints and relational constraints. Using a hinge-loss, we
obtain

`L = 1
|CL|

∑
(i,j,k)∈CL

max(d2
M(xi, xj)− d2

M(xi, xk) + 1, 0) (5.9)

for label constraints.

For the relational constraints, we propose to use a multi-relationship tensor in place
of the adjacency matrix. More precisely, every slice of the relational tensor is seen as an
adjacency matrix. Consequently, every slice gives a particular sum of loss functions. and
summing over all slices allows to obtain constraints from all relational links. Therefore, we
consider the connected neighbour constraints,

d2
M(xi, xj) > (1− Rr(i, j)) max

l
(Rr(i, l)d2

M(xi, xl)),∀(i, j) (5.10)

for each slice r of T .

Summing up over all slices, and using a hinge loss, gives

`R = 1
nr

nr∑
z=1

1
|Cz|

∑
(i,j,k)∈Cz

max(d2
M(xi, xj)− d2

M(xi, xk) + 1, 0), (5.11)

where Cz is the set of constraints obtained through the z-th relation r of the tensor cube
T , more precisely Cz = {(i, j, k)|rz(i, j) = 1, rz(i, k) = 0}. Note also that

⋃nr
z=1 Cz =

CR. Combining label constraints and relational constraints finally gives L(M) = λ′`R +
(1− λ′)`L + λr(M), where the parameter λ′ is introduced to control the trade-off between
relational constraints and label constraints. Setting λ′ to 0 makes the approach consider only
label constraints, while setting it to 1 only uses relational constraints. Taking the squared
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Frobenius norm as regularization term, the objective function is now

L(M) = λ

2‖M‖
2 + λ′`R + (1− λ′)`L (5.12)

5.4.3 Stochastic Sub-gradient Descent Learning Processing

In the sequel, we use a stochastic sub-gradient descent with mini-batches to optimize
the loss function of MRML.

Using a convenient notation, one can rewrite the difference between the two distances
in the loss function with a sparse matrix C as follows

d2
M(xi, xj)− d2

M(xi, xk) = C(i,j,k)XTMX,

where C is a sparse matrix storing the parameters C(i,j,k)
jj = 1, C(i,j,k)

ik = 1, C(i,j,k)
ki = 1,

C
(i,j,k)
kk = −1, C(i,j,k)

ij = −1 and C(i,j,k)
ji = −1. Otherwise C(i,j,k) = 0.

The sub-gradient of the objective function is :

∇L(M) = λM + 1−λ′
|CL|

∑
(i,j,k)∈CL

+ XC(i,j,k)XT

+ λ′

nr

∑nr
z=1

1
|Cz |

∑
(i,j,k)∈C+

z
XC(i,j,k),zXT ,

(5.13)

where CL
+ and C+

z are subset of CL and Cz, respectively, for which d2
M(xi, xj) −

d2
M(xi, xk) + 1 > 0.

In the sequel, we use a stochastic sub-gradient descent with mini-batches to optimize
the loss function. As a benefit of this choice, complexity will be independent of the number
of constraints we choose.
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Algorithm 2 Metric learning based on relational tensor with stochastic sub-gradient des-
cent
Require: X , T ,CL, CR and parameters λ, nc ≤ |C|, λ′,t
Ensure: M

1: M0 = Im

2: for ti from 1 to t− 1 do
3: C = 0n,n, Cz = 0n,n, ∀z ∈ {1, · · · , nr}
4: nL = 0, nR = 0
5: for b from 1 to nc do
6: sample (i, j, k) from CL with probability λ′

7: if d2
M (xi, xj)− d2

M (xi, xk) + 1 > 0 then
8: nL+ = 1
9: Cjj+ = 1, Cik+ = 1, Cki+ = 1,

10: Ckk+ = −1, Cij+ = −1, Cji+ = −1.

11: end if
12: sample (i, j, k) from CR with probability 1− λ′

13: for r from 1 to nr do
14: if d2

M (xi, xj)− d2
M (xi, xk) + 1 > 0 then

15: nR+ = 1
16: Crjj+ = 1, Crik+ = 1, Crki+ = 1,

17: Crkk+ = −1, Crij+ = −1, Crji+ = −1.

18: end if
19: end for
20: end for
21: ∇ti = 1−λ′

nL
XCXT + λ′

nRnr

∑
zXC

zXT + λMti

22: Mti+1/2 = Mti −
∇ti
tiλ

23: Mti+1 = ProjS+
m

(Mti+1/2) // projection on closed convex cone of Sm, space of symmetric

m-by-m matrices

24: end for
25: return MT

The algorithm 2 shows the detail of the MRML with stochastic sub-gradient descent.
As in [SHJ11], this algorithm is variation of the PEGASOS algorithm [SSSSC11] without
projection, giving, with probability 1 − δ, a bound on the optimization error ε, given by
84R2 ln(t/δ)

λt
, if the norm of any input x is at most R, and t is the number of iterations.
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5.5 Experiments and Result

The evaluation of the proposition is done by comparing the effect of learned metric with
K-nearest-neighbour classification. For the set of KNN classification, we use K equal to 5
and score the performance with accuracy rate via randomly shuffled 3-fold cross-validation.
Notice that we tried different values for K (in particular 3, 5, 7 and 9), and the results were
consistent with the results reported here for K = 5 on most datasets. For each experiment,
the number of constraints varies from 100 to 500, and we give the average value of each set
as the final result. All the experiments were run on a 3.1Ghz Intel Core i5 processor, with
16 Go 1867 MHz DDR3, and the code will be published for research reproducibility. We
also give results obtained without learning a metric, i.e. using a Euclidean distance for the
KNN algorithm (Euc).

5.5.1 Experiments on One Relation Dataset For LSCS

In this section, we mainly focus on testing the proposed LSCS(Relational Link-strength
Constraints Selection) algorithm on one Rr relation dataset. Notice that, LSCS could be
easily extended to multi-relational datasets by summing the link-strength for each relation.
It could also be extended from the reference relation Rr to Re, that consider the group
structures as every edge between nodes is the side-information of common parents but as
a binary value. We will test this approach with multiple relation dataset and compare with
another proposed algorithm and other metric learning algorithms in the next section.

We conduct experiments to compare the performance of the constraints generated by
link-strength function and the constraints generated by the label information. To compare
fairly, we set the number of constraints generated by different ways is the same, and the
formula is both in the relative distance constraint. Basically, any relational data for which
classification is needed can be tackled by our proposition.

Datasets and Tasks

We consider several real-world relational datasets which contains feature information
for mapping with the learned metric, the target label information, and the relational infor-
mation (existing links or valued links). We learn the metric of one entity table for predicting
target label, so for the same dataset, we can learn different metrics for different tasks. Here
are the descriptions of the chosen datasets and tasks :
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— Movie : MovieLens dataset [HK16] is a classical relational dataset which is wi-
dely used in many related papers. It consists of a relational table which has 100,000
ratings (1-5) from 943 users on 1682 movies ; a movie entity table with feature in-
formation about the movies ; and a user entity table with id, age, gender, occupation,
and other feature information on users. Each user has rated at least 20 movies, so
the supervised relational information is quite dense. We define two tasks on this
dataset :
— Movie-item : We select the movies table as the entity table to learn the metric

on. We choose the most popular genre as the target label and use the release date
and other genres as the attributes.

— Movie-year : We select the users table as the entity table to learn the metric
on. The age of users is discretized into 5 bins as the target label, and the other
feature information is the attributes.

— BookCX : We also consider the book-crossing database [ZMKL05]. We select a
randomly sampled subset BookCX from the data. This subset contains 2,400 users
giving 5,000 ratings (1-10) on 10,000 books. For this dataset, we use the bag-of-
words model to encode the text information from the titles, the authors and the
publishers into binary attributes.
— BookCX-year : We consider the public year segmented into 5 bins as the target

label and the bag-of-word of text information as the attributes.
— BookCX-word : We apply PCA (Principal Component Analysis) on the bag-of-

word of text information and limit the number of dimensions to 12. Then we
randomly choose one of the processed dimension and segment it into 5 bins as
the target label. The other features are considered as attributes.

— Citelike : There are two versions of citelike dataset, Citelike-t, and Citelike-a, both
used in the paper [WCL13]. They were collected from CiteULike and Google Scho-
lar. CiteULike allows users to create their own collections of articles. There are abs-
tracts, titles, and tags for each article. They manually select hundreds of seed tags
and collect all the articles with at least one of these tags. They also crawl the cita-
tions between the articles from Google Scholar. Notice that the final number of tags
associated with all the collected articles is far more than the number of seed tags.
To reduce the computation complexity, we apply PCA on the large and sparse tag
feature space and limit the number of dimensions to 12. We randomly choose one of
the processed features and segment it into 5 bins as the target label. Notice that the
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ITML Movie-item Movie-user BookCX-year BookCX-word Citelike-t Citelike-a
Euc 98.58 ±0.46 68.28 ±4.00 36.16 ±1.25 90.36 ±0.91 88.03 ±0.45 88.94 ±0.55
Lab 98.62 ±0.52 67.72 ±5.38 36.19 ±1.09 89.57 ±0.87 85.91 ±0.62 89.89 ±0.23
Rel 97.48 ±0.66 68.66 ±3.40 36.12 ±1.17 91.29 ±0.74 90.76 ±0.56 89.94 ±0.41
Pro 97.54 ±0.42 69.04 ±4.02 36.38 ±1.62 90.33 ±0.74 92.06 ±0.46 90.35 ±0.32
Both 98.67 ±0.50 69.48 ±3.08 36.97 ±1.69 90.43 ±0.72 92.65 ±0.40 90.35 ±0.32

TABLE 5.1 – The accuracy score of KNN with ITML

LSML Movie-item Movie-user BookCX-year BookCX-word Citelike-t Citelike-a
Euc 98.58 ±0.46 68.28 ±4.00 36.16 ±1.25 90.36 ±0.91 88.03 ±0.45 88.94 ±0.55
Lab 99.06 ±0.58 65.92 ±5.38 36.36 ±1.06 94.46 ±1.06 85.53 ±0.67 94.62 ±0.33
Rel 98.63 ±0.52 66.67 ±4.03 36.21 ±1.21 94.91 ±0.41 85.65 ±0.63 94.62 ±0.65
Pro 98.63 ±0.40 66.98 ±4.63 36.42 ±1.52 94.92 ±0.61 85.69 ±0.57 94.63 ±0.42
Both 99.12 ±0.52 66.98 ±4.63 36.42 ±1.15 94.92 ±0.61 85.69 ±0.57 94.63 ± 0.30

TABLE 5.2 – The accuracy score of KNN with LSML

sampling of Citelike-t and Citelike-a are independent, and the density of the links is
different.

For all the used datasets, the balance parameter between association attributes in the
link-strength function is set to γ = numn

numn+numc to adapt to different situations of the data-
sets, where numn is the number of numerical variables and numc is the number of catego-
rical variables as mentioned before.

Result of Comparing Different Constraints

In Tables 5.1, 5.2 and 5.3, Lab indicates the result obtained using only the constraints
generated from label, Rel shows the result obtained by the constraints generated from
the relative link constraints, i.e. using the adjacency matrix A of the graph. Pro gives the
performance of our proposition based on link-strength constraints and Both shows the best
result with both label constraints and the link-strength constraints while the proportion of
them are appropriated.

Result of Comparing Different Proportion of label constraints and the link-strength
constraints

The Table 5.4 and Table 5.5 show the results with different set of proportion of label
constraints and the link-strength constraints. Proportion equal to 1 corresponds to the si-
tuation of using only labels, and a proportion of 0 corresponds to the fact of using only
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LSML Movie-item Movie-user BookCX-year BookCX-word Citelike-t Citelike-a
Euc 98.58 ±0.46 68.28 ±4.00 36.16 ±1.25 90.36 ±0.91 88.03 ±0.45 88.94 ±0.55
Lab 99.06 ±0.58 65.92 ±5.38 36.36 ±1.06 94.46 ±1.06 85.53 ±0.67 94.62 ±0.33
Rel 98.63 ±0.52 66.67 ±4.03 36.21 ±1.21 94.91 ±0.41 85.65 ±0.63 94.62 ±0.65
Pro 98.63 ±0.40 66.98 ±4.63 36.42 ±1.52 94.92 ±0.61 85.69 ±0.57 94.63 ±0.42
Both 99.12 ±0.52 66.98 ±4.63 36.42 ±1.15 94.92 ±0.61 85.69 ±0.57 94.63 ± 0.30

TABLE 5.3 – The accuracy score of KNN with MMC

Proportion Movie-item Movie-user BookCX-year BookCX-word Citelike-t Citelike-a Mondial
1.0 98.62 ±0.52 67.72 ±5.38 36.19 ±1.09 89.57 ±0.87 85.91 ±0.62 89.89 ±0.23 70.39 ±8.29
0.8 98.52 ±0.23 66.21 ±3.71 36.21 ±1.06 89.52 ±0.55 86.71 ±0.67 89.71 ±0.42 72.00 ±7.16
0.6 98.42 ±0.54 66.87 ±4.09 36.66 ±1.67 89.41 ±0.82 92.65 ±0.40 89.61 ±0.31 71.03 ±6.22
0.4 98.67 ±0.50 67.65 ±4.82 36.97 ±1.69 88.87 ±0.78 90.87 ±0.38 89.91 ±0.35 70.82 ±7.66
0.2 97.32 ±1.52 69.48 ±3.08 36.28 ±1.16 90.43 ±0.72 91.24 ±0.41 90.21 ±0.37 69.21 ±7.98
0.0 97.54 ±0.42 69.04 ±4.02 36.38 ±1.62 90.33 ±0.74 92.06 ±0.46 90.35 ±0.32 71.24 ±7.77

TABLE 5.4 – The accuracy score of KNN with ITML while the proportion of label
constraints and the link-strength constraints gradient change from full label constraints to
full link-strength constraints.

link-strength based constraints. As can be seen in the Table, results tend to be better when
using mostly link-strength constraints.

As can be seen, except on Movie-item task and BookCX-year task, comparing with
constraints generated only from labels, the link-strength constraints lead to a significant
improvement of accuracy. On most datasets, the link-strength constraints show better per-
formance than the relative link constraints, except the BookCX-word task with ITML. For
both labels and relational information, it provides better accuracy than the constraints obtai-
ned from labels and similar to the constraints generated with link-strength function. Consi-
dering the different number of references in these datasets, for example, 100, 000 references
for 943 entities for Movie-user and 5,000 references for 10,000 entities for BookCX-year,
we speculate that density or sparsity of the references leads to the deviation of results.

5.5.2 Experiments on Multi-relation Dataset

Datasets and Tasks

To conduct this study, we use 5 benchmark real-world databases. In Table 5.6, properties
of the datasets we used are given, where n is the number of instances, nr is the number of
types of relations and m is the number of features.

— Elite : DutchElite dataset [DvR08], this is a dataset containing the relational in-
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Proportion Movie-item Movie-user BookCX-year BookCX-word Citelike-t Citelike-a Mondial
1.0 99.06 ±0.58 65.92 ±5.38 36.36 ±1.06 94.46 ±1.06 85.53 ±0.67 94.62 ±0.33 68.45 ±8.47
0.8 99.04 ±0.54 65.67 ±4.32 36.22 ±1.14 94.89 ±0.60 85.46 ±0.61 94.59 ±0.38 71.03 ±7.35
0.6 99.12 ±0.52 65.78 ±3.80 36.13 ±1.18 94.78 ±0.58 85.53 ±0.79 94.61 ±0.41 70.22 ±8.42
0.4 99.08 ±0.67 66.21 ±4.52 36.3 ±1.50 94.85 ±0.68 85.45 ±0.70 94.63 ±0.30 69.79 ±6.54
0.2 98.87 ±0.62 66.14 ±5.39 36.42 ±1.15 94.83 ±0.86 85.45 ±0.67 94.63 ±0.52 70.67 ±7.22
0.0 98.63 ±0.40 66.98 ±4.63 36.42 ±1.52 94.92 ±0.61 85.69 ±0.57 94.63 ±0.42 70.62 ±7.04

TABLE 5.5 – The accuracy score of KNN with LSML while the proportion of label
constraints and the link-strength constraints gradient change from full label constraints to
full link-strength constraints.

Dataset n nr m Classes

Elite 4747 41 7 2
Mondial 185 23 4 2

Movie 1804 26 5 18
UW 278 4 3 2
MG 4893 6 2 3

TABLE 5.6 – Dataset characteristics.

formation of administrative elite in The Netherlands. The label distinguishes if the
elite is top200 or not.

— Mondial : Mondial dataset [May99], it is a dataset containing the relational version
of the geographical Web data sources. The labels are the classes of entities.

— Movie : Movie-Remark dataset [Lic13], which is a dataset containing the relational
form across several files of movie information, labels are the movie types.

— UW : UW-std version of UW-CSE dataset [KSHG12], it is the relationships of
students and professors of the Department of Computer Science and Engineering at
the University of Washington. The labels are defined by the phase they are in.

— MG : Mutagenesis dataset [DLD+91], comprises of molecules trialled for muta-
genicity on Salmonella typhimurium. We just use the atom and the bond between
them as the relationship. The labels are the types of atom.

As mentioned in the introduction, usual metric (learning) approaches solely rely on the
use of features, and do not make use of the relations between observations. In order to fairly
compare metrics, we propose to first embed the data into a space that reflects the relations
within the data.
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Experiments Configuration for LSCS

The link-strength function could be extended to multi-relational datasets by summing
the link-strength for each relation, and also be extended from the reference relation Rr to
Re considering the group structures as every edge between nodes is the side-information
of common parents but as a binary value. In that case, the link-strength function would
consider the additional term

`kij∑
k

vmPk(i, j), (5.14)

where Pk(i, j) is the parent adjacency matrix of the k-relation in the group structure defined
as

Pk(i, j) =



1 if xi and xj have
common parents in relation rk

0 otherwise,

(5.15)

and `kij is the number of common parents of xi and xj in the relation rk.

Experiments Configuration for Metric Learning with RESCAL Factorization

As mentioned before, for metric based on rescal factorization, the latent feature space
is based on matrix Al, which is generated by T ≈ R×1 Al×2 Al where the factor matrix is
Al ∈ Rn×a and the core tensor is R ∈ Ra×a×m. Al and R depend on the user-given positive
integer parameter a.

If we choose a large value for a, the approximation error decreases, at the cost of higher
complexity. In the experiments, there will be a better factorizationAl with more dimensions
while the larger rank leads to a bigger core tensor R and tedious calculation. So we test
the performance of Euclidean distance on the latent feature space of dataset Mondial with
gradual change rank.

In the sequel, we choose to find an optimal trade-off between accuracy and complexity
as follows. We set the value of a as a proportion of the total number of observations n. For
each value of a, accuracy and running times (in seconds) are computed. The result is given
in Figure 5.6, for the Mondial dataset, where the value a = b0.3 × nc is selected. As can
be expected, both accuracy and running times increase along with a.

137



Partie , Chapitre 5 – Relational Metric Learning

0 0.1 0.2 0.3 0.4 0.5 0.6

0.56

0.58

0.6

0.62

0.64

a
n

C
V

ac
cu

ra
cy

sc
or

e

0

0.5

1

1.5

2

2.5

C
os

tt
im

e

FIGURE 5.6 – Evolution of performance and complexity metrics of RESCAL for dimension
space of varying size.

Dataset Euc. Res Res+Fea LSCS-ITML no-label LSCS-LSML no-label MRML no-label

Elite 87.60±12.08 91.14±0.80 89.59±0.85 84.56±12.46 88.25±1.28 87.80±5.67
Mondial 68.66±7.99 61.31±7.83 58.59±5.30 64.66±8.81 59.57±5.97 69.40±1.33

Movie 38.56±1.86 33.31±7.84 39.56±2.25 38.21±1.21 39.42±1.52 40.07±2.07
UW 86.03±5.17 54.03±8.65 87.51±7.87 85.55±9.08 84.73±6.19 87.63±4.60
MG 86.11±0.79 61.72±1.04 75.39±2.19 79.06±19.96 82.94±9.33 86.16±1.17

TABLE 5.7 – Cross-validation accuracy of KNN with different metrics related on different
combination of data information.

In this chart, the x-axis is a
n

and 0 < a
n
< 1, which means we flexibly chose the a,

n is the number of instance. When chosen rank is bigger, the cost time obviously linearly
increases, while the performance do not be better after a threshold a = 0.3n.

Result of Comparing Different Algorithms Without Label Information

In this section, we compare the performance of different metrics related on different
combination of features information and relational information without using labels, but
only relational constraints.

In Table 5.7 and Table 5.8, cross-validation accuracy and F1 score (and their standard
deviations) of K-nearest-neighbour algorithm using different metrics are given. Euc. stands
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Dataset Euc. Res Res+Fea LSCS-ITML no-label LSCS-LSML no-label MRML no-label

Elite 86.39±2.60 89.93±11.08 87.25±0.78 87.86±1.00 86.63±1.02 86.41±2.67
Mondial 68.27±6.56 60.04±5.41 57.13±7.31 67.86±7.00 68.47±8.26 69.42±6.58

Movie 32.44±1.88 24.04±2.24 34.10±1.36 33.21±1.29 34.31±2.89 34.25±0.89
UW 87.84±5.09 45.45±6.56 87.26±5.39 84.10±8.36 84.04±6.42 87.34±6.43
MG 83.45±7.23 60.31±2.87 74.05±2.04 83.67±7.72 83.63±7.48 85.84±2.24

TABLE 5.8 – Cross-validation f1 score of KNN with different metrics related on different
combination of data information.

for the usual Euclidean distance in the feature space (i.e. M = Id). Inv. stands for the
usual Mahalanobis distance, which is using the simple covariance matrix Σ (M = Σ−1).
Res stands for the usual Euclidean distance in the latent space obtained using RESCAL
factorization, as described before. Finally, Res+Fea corresponds to the joint space of RE-
SCAL embedding Al and the original feature space X , given by (X,Al). Each observation
i is described by (xi1, · · · , xin, ali1, · · · , alir). MRML no-label is MRML in a restricted
unsupervised setting where it uses only relational constraints and no target labels. LSCS-
ITML no-label are LSCS-LSML no-label are classical metric learning algorithm ITML
and LSML with LSCS but only selecting constraints with relational side-information. In
the tables, best values are indicated in bold font. From Table 5.7 and Table 5.8, one can see
that MRML no-label consistently performs better than the other approaches, except for the
Elite dataset, for both accuracy and F1 metrics.

Result of Comparing Different Algorithms With Label Information

For the MRML, the impact of λ′ in the loss functionL(M) = λ
2‖M‖

2+λ′`R+(1−λ′)`L
need be studied, which is controlling the importance of labels and relations on the learned
metric, on the performances. Consequently, for each dataset, we evaluate the learned metric
for λ′ varying from 0 (no relations) to 1 (no labels). Results are shown in Figure 5.7. As
can be seen, for all datasets, the best accuracy is obtained in-between, showing that taking
both information into account is useful, as expected.

For each dataset, the optimum λ′ is chosen according to this preliminary analysis.

We finally compare the accuracy and F1 metrics of ITML, LSML and LFDA with the
proposed RFML and MRML algorithm. RFML-ITML is using ITML with RFML, while
LSCS-ITML is using ITML with the LSCS, the rest follow the same naming principles.
We use the MLN(Markov Logic network) as the baseline, which is learned by the pracmln
package[NPB+ ] with default discrimination parameters.
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FIGURE 5.7 – Performance of MRML with respect to different values of λ′.

Dataset MLN RFML-ITML RFML-LSML RFML-LFDA LSCS-ITML LSCS-LSML MRML

Elite NT 89.28±0.33 90.76±0.87 90.20±.54 89.18±0.64 88.66±00.80 91.19±1.33
Mondial 67.71±7.82 61.29±6.64 56.54±11.28 59.46±7.11 64.66±5.90 59.35±6.90 71.23±6.27

Movie 40.84±0.84 39.16±2.76 38.54±1.81 39.86±1.53 38.16±1.25 39.38±1.62 40.80±1.26
UW 77.12±6.12 70.21±1.48 55.88±7.03 90.63±5.28 85.98±8.99 85.32±3.60 88.54±2.67
MG 81.45±9.71 79.74±1.48 70.61±1.58 72.03±1.27 82.98±10.10 84.51±5.17 86.16±1.26

TABLE 5.9 – Cross-validation accuracy of KNN with different metric learning methods.

Results are shown in Tables 5.9 for accuracy rating and 5.10 for accuracy and F1 me-
trics, respectively. NT means the running of the algorithm is out of the time limit. As can
be observed in Table 5.9, MRML performs better than other approaches, except on the UW
dataset which RFML-LFDA is better and the Movie dataset which MLN is better(although
both of them are closely followed by MRML). From Table 5.10, it shows LSCS, and
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Dataset MLN RFML-ITML RFML-LSML RFML-LFDA LSCS-ITML LSCS-LSML MRML

Elite NT 87.43±1.02 88.89±1.37 88.15±1.22 87.15±2.04 82.64±10.96 89.31±1.05
Mondial 75.82±8.45 58.99±9.74 53.60±6.75 57.28±7.40 70.34±6.85 67.56±10.00 69.67±8.63

Movie 35.48±6.25 33.48±1.78 32.29±2.72 33.92±1.72 34.91±0.41 36.16±1.25 35.06±0.36
UW 78.61±3.58 68.72±2.64 57.23±2.68 90.41±3.05 87.20±3.11 85.40±7.18 88.02±1.07
MG 68.61±8.78 79.25±0.89 68.70±1.74 70.13±1.90 83.57±7.45 83.48±7.20 82.40±1.63

TABLE 5.10 – Cross-validation F1 score of KNN with different metric learning methods.

MRML performs better than other approaches, except on the UW dataset and Mondial,
and the best one is LSCS-ITML on MG, LSCS-LSML on Movie and MRML on Elite. The
f1 score shows LSCS sometimes is steadier. Statistical significance of the results are asses-
sed using a Friedman test [Fri40] as suggested by [Dem06]. The value of the Friedman test,
FF = 7.63 > F0.05(6, 24) shows the significance of the difference between the ranks.

Result of Comparing Cost Time of Different Algorithms

In this section, the cost time of different algorithms in our experiments will be compa-
ring. The cost time of the link-strength algorithm is depended on the number of relational
constraints selection which is user-given, so the time of it will not be compared.

Dataset RESCALITML LSML LFDA MRML

Elite 2864 206.6 4.13 3.02 25.30
Mondial 1.17 1.89 0.09 0.01 21.52

Movie 832 434.1 0.96 2.19 22.15
UW 0.96 44.4 0.06 0.01 16.80
MG 96.14 92.61 3.19 1.37 21.12

TABLE 5.11 – Running times, in seconds, of different metric learning methods.

Running times for the different metric learning methods are given in Table 5.11, where
best values are indicated in bold font. The columns Res corresponds to the running time
of RESCAL algorithm, that is required for ITML, LSML and LFDA algorithms. Conse-
quently, the total running time of each of these algorithms is given by adding the RESCAL
projection and their running times. According to this table, MRML is much faster on Elite,
Movie, and MG, while being reasonably slower on Mondial and UW (except for UW and
ITML). As described before, the complexity of our method does not depend on the number
of observations, so that it scales well to extensive scale data, both in volume n or dimension
m.
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Partie , Chapitre 5 – Relational Metric Learning

5.6 Conclusion

In this chapter, we present the second major contribution of this paper : the current
metric distance learning algorithm is very scarce in the specialized field of the relational
database. To fill this gap, we propose three graph-based and side information-based metric
distance learning algorithm to solve the relational learning task. The experimental results
on the real database clearly show that the proposed algorithms outperform other metric
learning algorithms in terms of accuracy or cost time.

For a variety of relational learning algorithms, we chose to start with graph mining and
multi-relational learning. The relational database is mainly regarded as an entity table as a
node on the graph, and the relational table is a pattern of the weighted edge of the graph.
And we are targeting two different situations :

The first case is a relational data set with complex structure and side information on
the relational link. For this case, we propose a LSCS(Relational Link-strength Constraints
Selection) algorithm. We propose a method for calculating link strength based on graph
analysis techniques. A constraint set of metric distance learning algorithms is then selected
according to the method. After selecting the set, the experiment is conducted by combining
the traditional metric distance learning algorithms of ITML and LSML.

The second case is that for a relational data set with a large entity table and multiple
relationships between entities, we propose two new methods for metric distance learning :

— The first method is based on RESCAL. First, we establish the relational table as
the relationship tensor and use the RESCAL factorization technique to obtain a
resolved latent space on the tensor. Then we use the latent space as the feature space
that re-presentation the relationship information and combine it with the original
feature space. Finally, we use various metric distance learning algorithms in the
newly acquired embedded space. This method is more often seen as a baseline for
relational metric learning in this chapter.

— The second method is MRML (Multi-Relation Metric Learning). The method is
based on the features and relationships of entities in the multi-relational data, pro-
poses a relationship constraints for each relationship and accumulates it, and then
combines with the constraints according to the label selection. Finally, we propose
a stochastic sub-gradient descent algorithm to learn the metric.

According to the experimental results, we can propose that the three relationship metric
distance learning algorithms have their own advantages and disadvantages, which are sui-
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5.6. Conclusion

table for different situations. And from the experiment process, we also found that there is
still room for improvement. For example, in the LSCS there are still many possibilities for
the calculation of the link strength, and in MRML more optimized results can be obtained
by performing a given weight analysis for each relationship.
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CONCLUSION AND PERSPECTIVES

At the end of this article, we organize full-text context and summarize contributions and
make some predictions for the future.

5.7 Summary of Contributions

Metric distance learning as a branch of machine learning has been developed and ap-
plied in various fields. The main contribution of this paper is to propose new algorithms to
supplement the gaps in today’s metric distance learning algorithms for both flat and non-flat
databases. As the structure of this paper, in Chapter 1, after briefly introducing the relevant
background, the Chapter 2 and the Chapter 3 correspond to the first major contribution of
this paper, summarizing the development and current situation of the metric learning algo-
rithm of the flat database, and proposing submodular extension metric learning algorithm,
the Chapter 4 and the Chapter 5 correspond to the second major contribution of this paper,
summarizes the development and current situation of metric learning algorithm for non-flat
database, and proposes three kinds of metric learning specifically for relational database.

5.7.1 Contributions for Flat Datasets

We summarize the development of metric distance learning in Chapter 2. In order to
distinguish it from the second contribution, we only focus on the simple flat database,
which is a single table that represents the characteristics of the entity as a vector. After the
research summary, it can be seen that the basis of most metric distance learning algorithms
is the Mahalanobis distance. The drawback of the Mahalanobis distance is that only the
wight a single dimension or the intersection of two dimensions is considered. It is worth
mentioning that other partial metrics, such as linear correlation also have this defect. The
submodular metric learning algorithm [PLC19b] we proposed in Chapter 3 starts from the
set function. We take the set of arbitrary dimensions as the input of the set function and
use the weight of this intersection as the output. This model gives the possibility to learn
a metric considering the intersection of any number of dimensions. To learn this complex
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set function, we apply the special properties of the submodular function. Starting from the
extension of the submodular function, the Lovasz metric and Multi-linear similarity are
proposed and proved. Finally, we give the learning algorithms of these two kinds of metrics
and carry out experiments on the real database. The experimental results show that the
Lovasz metric has an absolute superiority compared with other current metrics, while the
Multi-linear similarity does not perform well.

5.7.2 Contributions for Non-Flat Datasets

Although we introduced many metric distance learning algorithms for non-flat data-
bases in Chapter 4, such as for string databases, time-series databases, tree or graph da-
tabases. However, when investigating metric distance learning algorithms for relational
databases, the current results are still minimal. So in Chapter 5, we present three metric
learning algorithms specifically for relational databases.

Relationship learning has many branches from different angles. We focus on relational
learning based on graph mining and multi-relationship learning. We propose three methods
for two types of relational databases. The first type is a sophisticated relational database
of multi-entity tables and multi-relation tables. We propose LSCS(Relational Link-strength
Constraints Selection) [PCL18], which is a method based on graph analysis technology
to calculate the link strength between entities, and then select the constraints set for the
metric distance learning algorithm according to this method. The second type is the rela-
tional database of the single entity table and multi-relation tables. We propose to use the
RESCAL factorization technique to obtain the latent space in the application of the clas-
sic metric distance learning algorithm as the baseline algorithm. Then we propose another
multi-relational metric distance learning algorithm that sums the relationship constraints
and label constraints. An algorithm of learning such a metric by stochastic gradient descent
is proposed. The experimental results show that these three methods have their advantages
and disadvantages in different situations.

5.8 Perspectives of Future

During the research period, we also tried many different methods to accomplish the
expected tasks. There have been various failures and regrets that have not been further ex-
plored. In this section, we will not only discuss possible solutions and related technologies
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based on the shortcomings of current algorithms but also explore some of the perspectives
and conjectures we have tried but have not gone further.

5.8.1 Possible Improvements to Proposed Algorithms

— For the submodular metric distance learning algorithm, there are two shortcomings :
First, the research on other extensions is not enough. We are not satisfied with the
performance of the similarity based on the definition of multi-linear extension with
additional restrictions. If a conversion function or other technique that allows mul-
tiple linear expansions to satisfy all the conditions of a metric could be proposed,
then this situation is well worth exploring. Secondly, the computational complexity
of the current algorithm is high. Two limitations limit current algorithms. The first
limitation is the size of submodular constraints with the large increase in dimen-
sions. Although we use k-additive to solve, it still limits the performance of the
submodular metric distance learning algorithm on high-dimensional databases. In
future work, we will try to study more optimization techniques for set expressions
or measure expressions. The second limitation is that as the number of learning
samples increases, the size of the label constraints also increases. In this regard, we
will try to extend the algorithm to the online learning version in the future so that it
does not depend on the number of samples to learn.

— For the LSCS(Relational Link-strength Constraints Selection), we want to try more
graph analysis methods in the future to determine the link strength. The existing
common parent method limits the link strength of only the structure of xi-Pij-xj ,
and can not adequately consider the link strength between nodes with more compli-
cated links and more distant links. We hope to improve this problem by using the
shortest path and other graph analysis technique. Another possible improvement is
to extend the selection process to online learning version. Each time the current
algorithm has a new node because the link structure is changed, it is necessary to
recalculate all the link strengths and reselect all the constraints sets. We hope to
improve it by combining the online selection constraints set in CWSML(Constraint
Weighted Selection Metric learning)[LC18].

— For the MRML (Multi-Relation Metric Learning), its performance is still limi-
ted by choice of relationship constraints. Although simple sum all the relationship
constraints can accomplish the expected task, a natural cognition is that different re-
lationships should have different effects on the metric between entities, so we hope
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to weight different relationship constraints. Limited to the time constraints and the
complexity of learning more parameters, we have not completed this part yet, but
in the future, this idea is still worth trying. On the other hand, inspired by the suc-
cess of RESCAL factorization applications, we also hope that in the future we will
find suitable factorization or other tenser techniques for a relational tensor that can
improve the performance of MRML or reduce its computational complexity.

5.8.2 Perspectives to Related Research

When we are working on metric distance learning algorithm specifically for relatio-
nal databases, we have noticed a class of deep learning algorithms based on the graph
topology–GCN (graph convolution neural network) [KW16]. As introduced in Chapter 1,
we mentioned a point of view of deep neural networks, where the hidden layer is a re-
presentation of features. As a type of multi-layer neural network, each layer of the neural
network of the GCN is a re-presentation of the topology of the input network. The rela-
tionship metric distance algorithm we are looking for also needs to re-presentation the re-
lationship information. This gives us an interest in combining GCN with relational metrics
learning.

Note that in Chapter 4 we have introduced the latest graph dataset metric distance lear-
ning algorithm BCNML(Brain Connectivity Networks Metric Learning) [KPF+18] which
is based on the application of GCN. In the future, we will try two aspects of research follo-
wing the inspiring of this paper : one is that we will try to extend BCNML from the single
processing graph to the processing of multiple relational graphs ; And the second is that we
will try to extend BCNML from the "Siamese network" of GCN to the "Triplet network" of
GCN, where the "Triplet network" structure of GCN is proposed in TNDML(Triplet Net-
work Deep Metric Learning) [HA15] and in TNDML, the experimental results show that
for the metric distance learning algorithm, "Triplet network" performs better than "Siamese
network".
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Titre : Métrique d’apprentissage pour les données structu-
rées

Mot clés : Apprentissage métrique, Fonction sous-modulaire, Apprentissage relationnel

Resumé : L’apprentissage à distance mé-
trique est une branche de l’apprentissage par
re-présentation des algorithmes d’apprentis-
sage automatique. Nous résumons le déve-
loppement et la situation actuelle de l’al-
gorithme actuel d’apprentissage à distance
métrique à partir des aspects de la base de
données plate et de la base de données non
plate. Pour une série d’algorithmes basés sur
la distance de Mahalanobis pour la base de
données plate qui ne parvient pas à exploiter
l’intersection de trois dimensions ou plus,
nous proposons un algorithme d’apprentis-
sage métrique basé sur la fonction sous-
modulaire. Pour le manque d’algorithmes

d’apprentissage métrique pour les bases de
données relationnelles dans des bases de
données non plates, nous proposons LSCS
(sélection de contraintes relationnelles de
force relationnelle) pour la sélection de
contraintes pour des algorithmes d’appren-
tissage métrique avec informations paral-
lèles et MRML (Multi-Relation d’appren-
tissage métrique) qui somme la perte des
contraintes relationnelles et les contraintes
d’etiquetage. Grâce aux expériences de
conception et à la vérification sur la base
de données réelle, les algorithmes proposés
sont meilleurs que les algorithmes actuels.

Title : Metric learning for structured data

Keywords : Metric Learning, Submodular Function, Relation learning

Abstract : Metric distance learning is a
branch of re-presentation learning in ma-
chine learning algorithms. We summarize
the development and current situation of the

current metric distance learning algorithm
from the aspects of the flat database and non-
flat database. For a series of algorithms ba-
sed on Mahalanobis distance for the flat da-



tabase that fails to make full use of the in-
tersection of three or more dimensions, we
propose a metric learning algorithm based
on the submodular function. For the lack
of metric learning algorithms for relational
databases in non-flat databases, we propose
LSCS(Relational Link-strength Constraints
Selection) for selecting constraints for me-

tric learning algorithms with side infor-
mation and MRML (Multi-Relation Metric
Learning) which sums the loss from rela-
tionship constraints and label constraints.
Through the design experiments and veri-
fication on the real database, the proposed
algorithms are better than the current algo-
rithms.


