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In�uence de la ventilation sur les propriétés de transport dans un
poumon sain et en�ammé.

Résumé : La fonction principale du poumon est d'alimenter le sang en oxygène
et d'enlever le dioxyde de carbone du sang. Le poumon s'empare de l'oxygène présent
dans l'air ambiant dans lequel il rejette le dioxyde de carbone prélevé dans le sang.
Cet échange est rendu possible par le processus de ventilation pulmonaire qui fait en-
trer et sortir périodiquement un volume d'air ambiant. D'un point de vue idéalisé, la
ventilation peut être caractérisée par deux paramètres : la vitesse maximale de l'air
dans la trachée (l'amplitude) et la fréquence respiratoire (la période). Le but de cette
thèse est d'étudier et de modéliser le processus de transport et d'échanges d'oxygène
et de dioxyde de carbone dans le poumon. Le transport de gaz est modélisé par des
équations de convection-di�usion-réaction dans un poumon idéalisé. Une analyse
mathématique du modèle a été réalisée a�n de prouver l'existence d'une solution
unique ainsi que la périodicité asymptotique en temps. Des simulations numériques
ont été réalisées pour étudier un large éventail de con�gurations physiologiques.
Dans le cas d'un poumon humain en bonne santé, les quantités de gaz échangées
prédites par notre modèle sont proches de la physiologie. Les énergies visqueuse
et élastique dépensées lors de l'inspiration ont ensuite été minimisées en supposant
que nos besoins en oxygène peuvent être représentés dans notre modèle par une
contrainte du �ux d'oxygène échangé avec le sang. Des simulations ont été réalisées
pour l'homme, mais aussi pour tous les mammifères en utilisant les lois allométriques.
Les prédictions de notre modèle montrent que les paramètres de ventilation chez les
mammifères pourraient être optimisés pour dépenser le moins d'énergie possible.
Ensuite, nous nous sommes concentrés sur la ventilation pulmonaire d'un humain
sou�rant d'une infection pulmonaire. La propagation d'une infection bronchique a
été modélisée de manière idéalisée et nous avons étudié comment la ventilation est
a�ectée par la réponse du système immunitaire à travers l'in�ammation de la paroi
bronchique. Nos résultats montrent que la localisation de la zone de transition en-
tre convection et di�usion in�uence principalement la quantité d'oxygène échangée
avec le sang. L'emplacement de cette transition peut être a�ecté par l'infection et
donc altérer l'e�cacité de la ventilation et modi�er la con�guration optimale. En-
�n, pour mieux comprendre l'e�cacité d'un traitement médicamenteux délivré sous
forme d'aérosol, nous avons modélisé le dépôt de particules d'aérosol dans la pre-
mière bifurcation des bronches du poumon humain. Notre modèle prend en compte
l'évolution du rayon des particules due à l'échange de vapeur d'eau et l'évolution de
la température des particules due au changement du milieu environnant. Nos résul-
tats montrent que la modélisation de ces paramètres est importante pour représenter
plus précisément le dépôt des particules sur les parois des bronches. Ces travaux
permettent de mieux comprendre comment le processus de ventilation pulmonaire
est ajusté et comment il est a�ecté par les pathologies pulmonaires. De plus, il
souligne comment la ventilation peut être utilisée e�cacement pour administrer des
médicaments dans le corps humain.

Mots clés : ventilation pulmonaire, transport de gaz, infections pulmonaires,
aérosol, modélisation mathématiques, modélisation computationnelle.
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In�uence of the ventilation on the transport properties in the healthy
and in�amed lung.

Abstract: The main function of the lung is to supply the blood with oxygen
and to drain the carbon dioxide from it. The lung captures the oxygen present in the
ambient air where it rejects the carbon dioxide taken from the blood. This exchange
results from the process of the lung's ventilation that repeatedly makes a volume
of ambient air enter and leave the lung. In an idealized view, the ventilation can
be characterized by two parameters: the maximum air velocity in the trachea (the
amplitude) and the breathing frequency (the period). The goal of this thesis is to
study and model the process of oxygen and carbon dioxide transport and exchanges
in the lung. Gas transport is modeled by convection-di�usion-reaction equations
in an idealized lung. A mathematical analysis of the model has been performed
to prove the existence of a unique solution along with an asymptotic periodicity in
time. Numerical simulations were performed to study a wide range of physiological
con�gurations. In the healthy human case, the amounts of gas exchanged predicted
by our model are close to physiology. The viscous and elastic energies spent during
inspiration were then minimized assuming that our body needs in oxygen can be
represented in our model by a constraint on the oxygen �ow exchanged with the
blood. Simulations were carried out for humans but also for any mammals using
allometric scaling laws. The predictions of our model show that the ventilation
parameters in mammals might be optimized to cost as little energy as possible.
Then, we focused on the lung's ventilation of a human subject su�ering from a
pulmonary infection. The spread of a bronchial infection has been modeled in an
idealized way and we studied how the ventilation is a�ected by the response of
the immune system through bronchi wall in�ammation. Our results show that the
location of the transition zone between convection and di�usion mainly in�uence
the quantity of oxygen exchanged with the blood. The location of this transition
can be a�ected by the infection and hence alter the e�ciency of the ventilation and
modify its optimal con�guration. Finally, to better understand the e�ciency of a
drug treatment delivered by aerosol, we modeled the deposit of aerosol particles
in the �rst bifurcation of the bronchi of the human lung. Our model takes into
account the evolution of the radius of the particles due to the exchange of water
vapor and the evolution of the temperature of the particles due to the change of the
surrounding environment. Our results show that the modeling of these parameters
is important to represent more accurately the deposit of the particles on the walls
of the bronchi. This work allows to better understand how the process of lung's
ventilation is adjusted and how it is a�ected by lung's pathologies. Moreover, it
highlights how ventilation can be used e�ciently as a way to deliver drugs in the
body.

Keywords: lung's ventilation, gas transport, pulmonary infections, aerosol ther-
apy, mathematical modeling, computational modeling.
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Chapter 1

Introduction

Nowadays, there is an urge to better understand pulmonary infections as their
prevalence is increasing. Recently the coronavirus SARS-CoV-2 (COVID-19) has
appeared in China and has spread to become a global pandemic [110]. This virus
has a�ected over 70 millions of people and has killed over 1.6 millions of people, with
these numbers still rising [92]. Two of its major symptoms are acute lung injury
and acute respiratory distress [61]. Once the distress is too important, patients can
be put on mechanical ventilators in order to maintain adequate levels of oxygen and
carbon dioxide in the blood and to decrease the work of breathing [14, 87]. It is
then essential to better understand how the ventilation is a�ected by an infection
and how to minimize the work of breathing. This is the goal of the work of this
thesis.

The lung is a complex system that serves as an exchange interface between
the ambient air and the blood. It transports the oxygen present in the ambient
air through its tree-like structure to the blood and removes carbon dioxide from
it. However, because of its direct interface with the external environment, the
lung is prone to develop infections. Once a pathogen starts infecting the lung, the
immune system responds. This response is both mechanical and biological and can
be supported by drug treatments to �ght the infection quicker. The goal of the
chapter 2 is to describe the physiology and biology of these complex systems in
order to better understand their structures and their functions.

The study of the mechanisms of gas transport and of the exchanges of oxygen
and carbon dioxide with the blood is a �rst step in order to understand how the
system behaves. Hence, chapter 3 describes and analyzes a model of gas transport
into an idealized human's lung. First, we assume that the transport mechanisms
are independant on the time (stationnary equations) and an explicit solution can be
computed. Then, in the non stationary case, the existence of an unique solution can
be proved while assuming that the concentration of the oxygen and of the carbon
dioxide is constant in the blood. Finally, when the gases are in the alveoli, they
are exchanged with the blood, where they are transported under di�erent forms,
modeled in the last part of chapter 3.

The ventilation is characterized by the volume of air that is inspired (tidal vol-
ume) and by the frequency at which it is renewed (breathing frequency). These two

1



2 CHAPTER 1. INTRODUCTION

values are stereotypic in humans and in mammals [117]. This raises the question:
How has the ventilation been adjusted by evolution ? We search in chapter 4 for
the optimal ventilation that minimizes the energy spent for breathing while ful�ling
the body needs in oxygen. The optimal ventilation found is in full agreement with
the physiological values for humans and for all mammals. Allometric scaling laws
link the morphological and functional properties of mammals to their mass with a
power law, and our model is able to predict accurately the allometric laws observed
for breathing rates and inhaled air volumes.

However, during a lifetime, the lung may be confronted to several pulmonary
infections that can a�ect the ventilation [78]. Hence, we propose in chapter 5 a
model of a lung's infection to get an insight on how the dynamics of an infection can
a�ect the ventilation and how its control could adapt to the morphological changes
induced by the resulting in�ammation. We model in chapter 5 the response of the
innate biological immune system to a pathogen. We start by studying how the
ventilation as well as the gaseous exchanges are a�ected in a simple case where the
infection does not spread and remains in one bronchus only. Then, we model the
propagation of the infection to its neighbouring bronchi. The model predicts that,
depending on the localization of the infection in the lung and its stage, the lung's
ventilation might become very costly in term of energy, up to a point where it is not
able to sustain anymore the body needs in oxygen.

A medication treatment such as aerosol therapy can be supplied to help the
immune system to �ght an infection. In order to better understand the e�cacy of
this type of treatment, the deposit of aerosol particles in the �rst bifurcation of the
human's lung is modeled in chapter 6. We track the behaviour of the droplets in the
lung. We assume that they exchange water vapour with the air in the lung and that
their temperature is a�ected by the temperature of their environment. We conclude
that these hypotheses are important to model correctly the displacement and the
potential deposit of the particles.

The biophysical problems encountered in this work have been studied using
mathematical tools. We study the equations properties in chapters 3 and 6 thanks
to functionnal analysis, we use optimization theory to minimize the energy in chap-
ter 4 and numerical schemes are used to determine the numerical approximations of
the solutions of the model equations.

All this work allows to better understand the lung's ventilation in humans and
more generally, in all mammals, whether healthy or with a pulmonary infection.



Chapter 2

Elements of the physiology

In this chapter, we present some elements of the physiology about the respiratory
system, the immune system and the aerosol therapy. A review of the literature
concerning each modeling approaches will be detailed in the introductions of the
corresponding chapters.

2.1 The respiratory system

Oxygen is essential for mammals. It takes part in the cellular respiration that
happens in the cell's mitochondria. This process transforms glucose with the help of
oxygen into carbon dioxide, water and adenosine trisphophate (ATP). This molecule
stores energy and is used by all our body's cells. They are the sources of energy of
the muscles and organs. Two structures allow the oxygen to be brought from the
ambient air to the cells and the carbon dioxide from the cells to the ambient air:
the lung that is the interface between the ambient air and the blood, and the blood
network that transports the respiratory gases (oxygen and carbon dioxide) in the
whole body.

2.1.1 The human's lung

The lung is an organ protected by the rib cage and supported by the diaphragm, a
muscle that separates the thorax from the abdomen. It has a bifurcating tree-like
geometry, almost dichotomic, as shown on Figure 2.1. This is why we can consider
it as a succession of generations (Figure 2.2), where a generation corresponds to
branches with the same number of bifurcations up to the root of the tree. The
trachea is the �rst generation bronchus. It is the biggest branch and has a radius
of around 0.9 cm [115]. The lung can be divided into two parts, the bronchial tree,
a conductive zone because no exchange with the blood occurs and the acini, the
exchange surface with the blood.

In an idealized view [115], the bronchial tree is composed of the seventeen �rst
generations of the lung. Its goal is to bring the ambient air with a high concentration
in oxygen and low concentration in carbon dioxide to the exchange surface. Since
no exchange with the blood is made in this part of the lung, it is also called the

3
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Figure 2.1: Cast of a human lung made by E.R. Weibel [113]. Bronchi are yellow,
arteries are red and veins are blue.

conductive zone or the anatomic dead space. Its volume varies between individuals
but it is around 150 mL [119].

The bifurcations are subject to some asymmetry. A mother bronchus divides
into two daughters bronchi that are not identical, they may have di�erences in
length and in diameter. As a matter of fact, the ratio between two sisters bronchi's
diameter is around 0.8 for humans [105, 36]. This asymmetry can be explained by
the development of the organ and its adaptation to the spacial con�guration [21],
by the increase of robustness against the variability of lung's sizes [37, 73] and by
the adaptation of the lung to the anatomy [68]. The �rst bronchi have to bypass
the heart, and divide the lung into three right lobes and two left lobes.

The acini are composed of roughly the six, seven last generations and occupy a
volume of around 2.5 - 3 L which represents the majority of the volume of the lung
[119]. On the contrary to the bronchial tree, the size of the alveolar ducts remains
more or less constant throughout the acinus with a diameter of around 0.5 mm [115].
The exchange with the blood occurs in the alveoli that cover the walls of the ducts.
They are more and more present as we go along the generations until they cover the
totality of the walls of the ducts in the last generations. All these alveoli form an
exchange surface of around 70-150 square meters [33, 102].
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Figure 2.2: Structure of the human's lung. Reproduced from [115]. The bronchial
tree is a conductive zone and the exchange with the blood is made in the acini.
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2.1.2 Respiratory gas transport

Respiratory gases are transported through the lung by di�erent mechanisms. In the
�rst generations of the lung, the transport of gases is mainly made by convection
thanks to the high velocity of the air �ow which is around 1m � s� 1 in humans, in
the trachea at rest [113]. Convection is the transport of a quantity by the movement
of its surrounding environment. However, the more we advance in the generations,
the smaller the velocity because of the increase of the total cross sectionals area of
the bronchi. The ambient air is rich in oxygen and poor in carbon dioxide, and
once it reaches the acinus, the velocity is small enough so that the di�usion becomes
dominant. This mechanism is based on the Brownian motion of the molecules and
induces a natural motion of these molecules from high concentration regions to low
concentration regions. Gases are exchanged with the blood by di�usion through a
thin membrane that separates the alveolar air from the blood (the alveolar capillary
membrane). The deoxygenated blood present in the capillaries stocks up on oxygen
and releases the carbon dioxide in the alveoli. In the blood capillaries, oxygen and
carbon dioxide are transported under di�erent forms [33, 68]. Oxygen is mostly
combined to hemoglobin present in the red blood cells (97 %) which can �xed up to
four molecules of oxygen. It can also be found under a dissolved form (3 %) in the
plasma. Carbon dioxide is mainly carried though a combined form as bicarbonate
ions (HCO �

3 ) in the plasma after a chemical reaction (60� 65 %). It is also combined
to the hemoglobin present in the red blood cells (30 %) and, �nally, under a dissolved
form in the plasma (5 � 10 %).

2.1.3 Ventilation

Gas transport is performed thanks to the ventilation. During inspiration, the di-
aphragm and intercostal muscles contract and allows an expansion of the thorax
that increases the volume of the lung. An air�ow is created thanks to the di�erence
in pressure between the ambient air and the acini. The volume of the air inhaled,
known as the tidal volume, is approximately 500 mL at rest [119, 113]. Inspira-
tion is an active mechanism because of the energy spent to contract the muscles.
It lasts around 2 seconds at rest in humans. During expiration, the mechanism is
di�erent. There is a relaxation of the muscles that induces an elastic recoil to the
initial volume of the lung and an ejection of the air previously inhaled. Expiration is
considered to be a passive process because there is no energetic cost. It lasts around
3 seconds at rest in humans.

Since inspiration is an active process, it can be controlled and optimized to
minimize the energy expenditure of ventilation. Indeed, it is based on the regulation
of the volume of air that is inhaled (tidal volume) and on the frequency at which this
volume of air is renewed (ventilation frequency) with the aim to satisfy the body's
needs in oxygen. This analysis of the energy cost of ventilation can be extended to
all mammals thanks to their common morphological and functional properties that
are known to depend on their massM with non trivial power laws, called allometric
scaling laws [117, 113]. In all mammals, the lung is comprised of two regions: the
bronchial tree which is a conductive zone and the acini where the exchange with the
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blood is made [83]. However, some di�erences in the geometry and the branching
pattern can occur in the di�erent species [105]. There exists three types of idealized
branching patterns [83]. The �rst type is the monopodial branching pattern (rat,
mouse...). At a bifurcation, a small bronchus branches from the main bronchus.
The second one is the dichotomus branching pattern (human, monkey...). At a
bifurcation, a mother bronchus divide into two daughters bronchi. Finally, the last
one is the polychotomous branching pattern where a bronchus may divide into more
than two bronchi.

2.2 Fighting pulmonary infections

The lung is prone to the development of infections. Because of the humidity of the
air, the high concentration of oxygen and the lung being a direct interface with the
external environment, viruses and bacteria can easily proliferate. However, there
exists di�erent types of defenses to �ght these infections.

2.2.1 Immune response

The immune response is a complex process designed to defend the body against
infection. This response can be divided into two parts, the innate immune response,
that is fast, and the adaptative immune response [68].

The innate immune defense system is the �rst system to activate on the site of
infection, it responds within minutes. The �rst defense of this system is the surface
barriers, i.e. skin and mucosae. In the lung this protection consists in the mucus,
a viscoelastic gel, and the ciliated cells on the bronchi's walls. The mucus, which
catches the pathogens, is moved by the cilia towards the oesopharyngeal region,
where it is either swallowed or expectorated [32]. Once a pathogen breaches this
�rst defense, the second one comes into action. This internal defense is composed
of chemicals and white blood cells, also called leucocytes, which are produced in the
bone marrow. First, the macrophages already present in the respiratory epithelial
barrier respond. These cells are phagocytes which means that they ingest and
destruct pathogens. They also product citokines that summon other cells to the
site of infection. Dendritic cells, also present in the respiratory epithelial barrier,
capture the antigen of the pathogen and trigger the adaptative immune system.
Next, neutrophils, present in the blood, arrive to the site of infection. They are
the most numerous phagocytes in the body and they represent60 � 70 % of all
leucocytes. Others leucocytes such as basophiles and eosophiles, are present in the
blood, but in small quantity.

The adaptative immune system, also called the acquired immune system, is com-
posed of white blood cells called lymphocytes. This system is speci�c to a pathogen
and create immunological memory after an initial infection. These cells are divided
into two categories, the lymphocytes B and the lymphocytes T. The humoral immune
response is the production by lymphocytes B of speci�c antibodies that corresponds
to the encountered antigen. This system �ghts against pathogens before their entry



8 CHAPTER 2. ELEMENTS OF THE PHYSIOLOGY

in the human's cells. The cell mediated immune response �ghts against the infected
cells. This response corresponds to an injection by the lymphocytes T of a toxic
substance into the body's cells to destroy the infected cells.

In�ammation is a reaction from the immune system that appears at the site of
infection once the tissue is injured. First, there is a vasodilation of the blood vessels
due to the presence of chemical mediators released by the macrophages present in
the tissue at the site of infection. It induces an increase of the blood supply and
of the capillaries permeability which allows the passage of some of the plasma from
the blood vessels to the tissue spaces. As a result of this in�ow of plasma in the
tissues, an oedema appears and it induces the migration of the leucocytes from the
blood vessels to the site of infection.

2.2.2 Drug response

Medicines is sometimes prescribed to help the immune system to �ght infections
faster. Aerosol therapy is one of the major curative way to treat obstructive pul-
monary diseases. It delivers drugs directly into the lung by inhaling solid or liquid
particles that can remain dispersed in the air. It allows to have a high local drug con-
centration in the lung tissue and, because of its local distribution, it limits systemic
toxicity, which is the occurance of toxic e�ects at multiple sites.

The deposition fraction, which is the fraction of inhaled particles that deposit,
and the localization of this deposit are two of the most important characteristics
of aerosol therapy. They depend on the interaction of three factors [78]. The �rst
factor is the physical properties of the droplets like its mass or its shape. The second
factor concerns the air �ow. Indeed the ventilation frequency and the tidal volume
can in�uence the deposit of the particles. Finally, the last factor is the anatomy
of the bronchi, whether they are in�amed and hence partially blocked, or healthy.
Usually droplets have a tendency to deposit more in the �rst generations bronchi.
It is due to the inertial impaction which happens when a particle fails to follow the
streamlines of the air �ow. Therefore the particles impact on the obstacle instead
of bypassing it.



Chapter 3

Gas transport model

The main goal of the respiratory system is to supply the body with oxygen and to
remove carbon dioxide from it. During inspiration, fresh air with a high concentra-
tion in oxygen and low concentration in carbon dioxide is brought from the nose and
the mouth through the bronchial tree to the alveolar region. Once in the acinus,
oxygen and carbon dioxide exchanges take place by di�usion through the alveolar
membrane to or from the blood capillaries. At expiration, a higher carbon dioxide
and lower oxygen concentration is expelled from the lung until fresh air comes in
again at the next inspiration [119]. The ful�llment of the required gas exchange is
made possible by the thin alveolar membrane combined with a large alveolar surface.

Two main appproaches have been proposed in the litterature to model gas trans-
port. The �rst one is based on an e�ective di�usion in porous media [59, 60, 10].
This type of approach have the bene�t of working with an homogeneous material
mimicking the last generations of the lung. The second approach is one based on
tree-like structures [57, 95, 69, 17]. This type of models have the bene�t of having
a detailed description of gas transport.

We choose this last approach for our model, with the main hypotheses that the
lung is a symmetric dichotomic bifurcating tree [113, 70] connecting ambient air to
an exchange surface and ventilated thanks to an air�ow that varies with time as a
sine function.

3.1 Oxygen and carbon dioxide transport in the
lung

3.1.1 Geometry of the human lung

Our geometrical model mimicking the human lung is based on a symmetric di-
chotomic bifurcating tree [70]. A generation corresponds to branches with the same
number of bifurcations from the root of the tree that mimics the trachea. Our
bronchi are assumed to be cylindrical. The tree is divided into two distinct parts
[113]: the �rst G generations (G = 17) form the conductive tree and the last H
generations (H = 6) form the acini, where exchanges with blood occur.

To account for the core geometrical properties of the lung, we assume that the
size of the branches in the conductive tree decreases from one generation to the next

9



10 CHAPTER 3. GAS TRANSPORT MODEL

with a ratio 0 < h < 1 [113, 70, 56]:

l i +1 = l i h ) l i = l0hi ;

r i +1 = r i h ) r i = r0hi ;

with l i the length and r i the radius of a generationi branch (i 2 J0; G � 1K).
Furthermore, we assume that in the acinus, the size of the bronchi remains constant
[113]. It means that the factorh is equal to one. We can deduce that the radiusrA

and the length lA of the branches in the acinus are respectively equal to the radius
and length of the branches of the last generation in the conductive tree.

We can express the lumen areaSi of a branch in generationi with the radius,
Si = �r 2

i . Consequently, the area of one branch decreases with the generation in the
conductive tree,Si = h2i S0 but remains constant in the acinus,SA = h2(G� 1)S0.

The volumetric �ow rate in a branch from generation i is the product of the
�uid velocity ui and the lumen area of the branchSi . We assume here that air
is an incompressible �uid because compressibility e�ects are considered small even
during forced expiration [30]. Consequently, mass conservation between a branch in
generationi and its two daughters in generationi +1 leads to a scaling on the mean
air velocity ui in each generation,

ui +1 Si +1 =
ui Si

2
) ui =

�
1

2h2

� i

u0:

We can rewrite this equation for the acinus, we obtain fori 2 JG; N K, whereN =
G + H � 1,

ui =
uG� 1

2i � G+1
:

3.1.2 Model equations

Now that a model for the lung's geometry is de�ned, we can expressed the equations
of the gas transport in each bronchi. We assume the bronchi to be cylindrical. The
transport of oxygen and carbon dioxide in the bronchial tree is driven by three
main phenomena: convection, di�usion and exchange with the walls in the case of
the acini. We will describe the �uid motion along the axis of the bronchus, using
a unidimensional model in space. As the bronchi and the �uid properties are the
same in all the branches from a same generation, the equations of transport are the
same for each branch in a same generation.

Let us evaluate the matter balance (see Figure 3.1) in a cylinder slice localized
in x and with a thicknessdx. We denoteCi (x) the meanO2 or CO2 concentration
(mol � m� 3) in the section. The quantity of matter entering the slice by the left side
Ql writes,

Ql =
�

ui (t)Ci (x) � D
dCi

dx
(x)

�
�r 2

i ;

whereD is the di�usion coe�cient in air of the species considered (m2 � s� 1), ui (t)
is the mean velocity of the �uid (m � s� 1) and r i is the radius (m) of the bronchus



3.1. OXYGEN AND CARBON DIOXIDE TRANSPORT IN THE LUNG 11

dx

Ql Qr

Qw

Figure 3.1: Matter balance in a slice of a bronchus.

of generationi . Then the quantity of matter leaving the slice by the right sideQr

writes,

Qr = �
�

ui (t)Ci (x + dx) � D
dCi

dx
(x + dx)

�
�r 2

i :

Finally the quantity of matter exchanged with the bronchus walls writes,

Qw = � � i %s (Pi (x) � Pblood ) 2�r i dx;

wherePi is the meanO2 or CO2 partial pressure (mmHg) on the section, andPblood

is the O2 or CO2 partial pressure (mmHg) in the blood. The amount of exchange
surface per unit of alveolar duct surface,%s � 9:3 is computed as the ratio of the
alveolar surface over the bronchial surface in the acinus [115, 81]. Assuming that each
alveoli is half a sphere, the alveolar surface is computed as follow,SA = 2�r 2

A � Nalv �
150 m2, whererA is the radius of the bronchi in the acinus andNalv = 480 � 106 is
the number of alveoli in the human lung [81].� i is the permeability of the alveolar
membrane (mol� m� 2 � s� 1 � mmHg� 1), we can express it as follow [34]

� i =

8
<

:

0; for i 2 J0; G � 1K;

� =
Dgas;H2O � gas;H2O

�
; for i 2 JG; N K;

(3.1)

whereDgas;H2O is the di�usion coe�cient of the gas in water (m2 � s� 1), � gas;H2O is
the solubility coe�cient (mol � m� 3 � mmHg� 1) of the gas in water and �nally � is
the thickness (m) of the alveolar membrane.

Finally, the variation of the gas concentration over time writes,

�r 2
i dx

@Ci
@t

= Ql + Qr + Qw :

Making the length of the slicedx go to zero, we obtain forx 2 [0; l i ],

@Ci
@t

�r 2
i � D

@2Ci

@x2
�r 2

i
| {z }

di�usion

+ ui (t)
@Ci
@x

�r 2
i

| {z }
convection

+ � i %s (Pi � Pblood ) 2�r i| {z }
exchange with blood

= 0:
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As the concentration and the partial pressure are proportional, we can work
only with partial pressure. We can then de�ne the transport dynamics of the partial
pressure of oxygen and carbon dioxide in a single branch from the previous equation,

@Pi
@t

� D
@2Pi

@x2| {z }
di�usion

+ ui (t)
@Pi
@x| {z }

convection

+ � i (Pi � Pblood )
| {z }
exchange with blood

= 0 for x 2 [0; l i ]: (3.2)

The exchange coe�cient � i (s� 1) is expressed as follow,

� i =

8
<

:

0; for i 2 J0; G � 1K;

%s
2k
rA

� i for i 2 JG; N K;
(3.3)

wherek is the ratio relating partial pressure of the gas to its concentration in water
and rA is the radius of the branches in the acinus.

3.1.3 Boundary conditions

The bronchi are connected together with bifurcations. Mass conservation in the
bifurcation leads to

Si

�
ui (t)Pi (t; l i ) � D

@Pi (t; l i )
@x

�
= 2Si +1

�
ui +1 (t)Pi +1 (t; 0) � D

@Pi +1 (t; 0)
@x

�
:

We suppose that we have partial pressure continuity at bifurcations, it writesPi (t; l i ) =
Pi +1 (t; 0). Mass conservation can then be rewritten,

� DSi
@Pi (t; l i )

@x
= � 2DSi +1

@Pi +1 (t; 0)
@x

: (3.4)

To close the system of equations, boundary conditions at both ends of the tree
are needed. We assumeP0(t; 0) = Pair at the inlet of the root of the tree that models
the trachea wherePair is the partial pressure of the gas considered in the air. And
for the end of the last generation of the acini, we use a �ux boundary condition,
based on the exchange laws previously de�ned,

� D
@PN
@x

(t; l N ) = �k%s (PN (t; l N ) � Pblood ) :

3.1.4 Oxygen and carbon dioxide �ow

Our model allows to easily compute the oxygen and carbon dioxide �ows exchanged
with the blood. Indeed, we just need to provide a temporal velocity pro�le to our
equations to obtain the partial pressure of the gases in all the bronchi of the lung.
To simulate the ventilation, we suppose that the velocity at the entrance of the
trachea follows a periodic pattern written as follow,

u0(t) = A sin
�

2�
T

t
�

;
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where A is the amplitude of the ventilation (m � s� 1) and T is the ventilation's
period (s). Then, both �ows depend only on the amplitude and the period of the
ventilation, thanks to the di�erence of partial pressures between the alveolar region
and the blood,

f (A; T ) =
NX

i = G

2i

T

Z tC + T

tC

Z l i

0

 (Pi (t; x ) � Pblood ) dx dt; (3.5)

with tC a time at which the system has reached a periodic regime, and


 = 2�r A �%s: (3.6)

3.1.5 Choice of physiological parameters

Our model is based on a set of anatomical parameters that needs to be quanti�ed
from the physiology. The parameters' list and values for humans are shown on
Table 3.1. The lung's geometry is de�ned from the radius (r0) of the root of the
branch, mimicking the trachea, and from the size reduction factorh that allows to
compute the radius and lengths of all the branches in the tree. The length of the
branches is related to the diameter of branches using the ratiol02r 0

= 3 [71, 105], and
we usel0 = 6r0. Although this value is not fully accurate for the main bronchi, it is
a good approximation for the other branches. Since, the global behavior is mainly
driven by the most numerous bronchi, extending the length over diameter ratio to
all the branch of the tree is a reasonable approximation. Furthermore to describe
properly the gas exchange between air and blood, we also need the thickness of the
alveolar membrane.

Parameters Values
Radius of the trachea 0:9 � 10� 2 m [71]
Homothetic ratio (h) 0.7937 [71]
Thickness of the alveolar membrane 1 � 10� 6 m [34]

Table 3.1: Table of parameters for the geometry of the human's lung.

Once the geometry of the lung is de�ned, we can de�ne the parameters linked
to the oxygen and the carbon dioxide behaviors, see Table 3.2 and Table 3.3. In
order to solve equation (3.2), we need the oxygen and the carbon dioxide di�usion
coe�cients in air, and the partial pressure of the gas in the blood. The di�usion
coe�cient of the gas in water, the solubility coe�cient of the gas in blood and the
dimensionless Henry solubility allows to describe the gas exchanges between alveolar
gas and blood. The dimensionless Henry solubility is the ratio between the aqueous-
phase concentration of a gas and its gas-phase concentration. It can be computed
as the product of the solubility coe�cient in the blood, the gas constant and the
temperature [94]. The temperature in our model is �xed at310:15 K ( 37o Celsius).
Finally for the boundary condition at the entry of the trachea, we need the partial
pressure of the gases in the ambient air.
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Parameters Values
Di�usion coe�cient in air 0:2 � 10� 4 m2 � s� 1 [71]
Partial pressure in the blood 40 mmHg [33]
Di�usion coe�cient in water 3:3 � 10� 9 m2 � s� 1 [34]
Solubility coe�cient in the blood 1:34� 10� 3 mol � m� 3 � mmHg� 1 [62]
Henry solubility 2:592� 10� 2 [94]
Partial pressure in the air 150 mmHg [33]

Table 3.2: Table of parameters for the oxygen

Parameters Values
Di�usion coe�cient in air 0:14� 10� 4 m2 � s� 1 [71]
Partial pressure in the blood 47 mmHg [33]
Di�usion coe�cient in water 2:505� 10� 9 m2 � s� 1 [67]
Solubility coe�cient in the blood 3:07� 10� 2 mol � m� 3 � mmHg� 1 [49]
Henry solubility 0.594 [94]
Partial pressure in the air 0.3 mmHg [33]

Table 3.3: Table of parameters for the carbon dioxide

3.2 Analysis of the model

In order to see if our problem is well posed and has a solution, we need to analyze it.
For simplicity, let us �rst adimensionalize our equation (3.2) in space. We make here
a misuse of langage as we keep the same notations for the dimensionless variables
than for the dimensional ones in equation (3.2). We obtain,

@Pi
@t

�
D
l2
i

@2Pi

@x2
+

ui (t)
l i

@Pi
@x

+ � i (Pi � Pblood ) = 0 for x 2 [0; 1]; (3.7)

and we assume in this section that the partial pressure in the bloodPblood is a
constant.

3.2.1 Stationnary case

In our analysis, we start by simplifying our model. Let us study the stationnary
case and observe if it could be a good enough approximation of the non-stationnary
solution.

We want to resolve the equations in the stationnary case. It means that for all
i 2 J0; N K, we have

@Pi
@t

= 0;

and now Pi depends only on the space variablex.
Each equations can be rewritten as follow,

�
D
l2
i

d2Pi

dx2
+

ui

l i

dPi

dx
+ � i Pi = � i Pblood;
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or,
d2Pi

dx2
�

ui l i
D

dPi

dx
�

� i l2
i

D
Pi = �

� i l2
i

D
Pblood : (3.8)

Air velocity ui = 0

In this paragraph, we suppose that the air velocity is equal to zero. We know that
in the convective tree (i 2 J0; G � 1K) the coe�cient � i is equal to zero. We just
have to solve,

d2Pi

dx2
= 0:

The solution is a linear function,

Pi (x) = A i x + B i :

In the acinus (i 2 JG; N K), we have to solve the following equation,

d2Pi

dx2
�

� i l2
i

D
Pi = �

� i l2
i

D
Pblood :

We start by solving the homogeneous equations. The solutions are,

Pi (x) = A i erx + B i e� rx ;

wherer = lN
p

� N =D.
Pblood is a constant, therefore it is a particular solution. We obtain,

Pi (x) = A i erx + B i e� rx + Pblood

Now we want to �nd the coe�cients A i et B i . In order to do that we need
boundary conditions and bifurcations conditions. We have,

8
>>>>>>><

>>>>>>>:

P0(0) = Pair

�
DSi

l i

dPi (1)
dx

= �
2DSi +1

l i +1

dPi +1 (0)
dx

Pi (1) = Pi +1 (0)

�
D
lN

dPN (1)
dx

= �k%s (PN (1) � Pblood )

With the explicit solution we can deduce,

B0 = Pair :

For i 2 J0; G � 2K, we have
(

A i = 2hA i +1 ;

A i + B i = B i +1 :
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At the bifurcation between the bronchial tree and the acinus, we obtain,
(

AG� 1 = 2rA G � 2rB G;

AG� 1 + BG� 1 = AG + BG + Pblood :

For i 2 JG; N � 1K, we have,
(

A i rer � B i re� r = 2 ( A i +1 r � B i +1 r ) ;

A i er + B i e� r = A i +1 + B i +1 :

Finally we have,

AN er

�
D
lN

r + �k%s

�
+ BN e� r

�
�

D
lN

r + �k%s

�
= 0:

All these coe�cients are easily found by solving a linear system.
Let us make an example by computing the explicit solution for a tree containing

only two generations (N = 1), one in the bronchial tree (G = 1) and one in the
acinus (H = 1). The solution in the �rst generation is then,

P0(x) = A0x + B0:

The solution in the second generation writes,

P1(x) = A1erx + B1e� rx + Pblood :

In this case, we need four equations to compute the coe�cientsA0, B0, A1 and
B1. The �rst one corresponds to the boundary condition at the entrance of the tree.
It writes,

B0 = Pair :

The next two equations are the ones corresponding to the birfurcations conditions
and since there are only two generations in our example, the bifurcation is the one
between the bronchial tree and the acinus. We have,

A0 = 2rA 1 � 2rB 1;

A0 + B0 = A1 + B1 + Pblood :

Finally the last equation corresponds to the boundary conditions at the outlets
of the tree. It writes,

A1er

�
D
l1

r + �k%s

�
+ B1e� r

�
�

D
l1

r + �k%s

�
= 0:

This equations can be rewritten as a linear system, de�ned as follow,MX = V.
We have,

M =

0

B
B
@

1 0 0 0
0 1 a � a

� 1 � 1 1 1
0 0 b c

1

C
C
A ; with a = 2r; b = e� r

�
�

D
l1

r + �k%s

�
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and c = er

�
D
l1

r + �k%s

�
:

X =

0

B
B
@

B0

A0

B1

A1

1

C
C
A and V =

0

B
B
@

Pair

0
� Pblood

0

1

C
C
A :

The coe�cients A0, B0, A1 and B1 are easily found by computing the inverse of
the matrix M . Indeed we haveX = M � 1V. The inverse of the matrixM is equal
to,

M � 1 =

0

B
B
@

1 0 0 0
� ab� ac

dM
c� b
dM

� ab� ac
dM

2a
dM

c
dM

c
dM

c
dM

a� 1
dM

� b
dM

� b
dM

� b
dM

a+1
dM

1

C
C
A ;

wheredM = b(2r � 1) + c(2r + 1) ; is the determinant of the matrix M .
We can then deduce the coe�cients,

8
>>>>>>>><

>>>>>>>>:

B0 = Pair

A0 =
(Pair � Pblood )( � 2rb � 2rc)

dM

B1 =
(Pair � Pblood )c

dM

A1 = �
(Pair � Pblood )b

dM
:

Thanks to these coe�cients, we have found the explicit solution of the equa-
tion (3.8) in a tree with two generations and whenui = 0.

The explicit solution of the equation (3.8) for oxygen whenui = 0 in a tree
mimicking the human lung with 23 generations including 17 in the bronchial tree
and 6 in the acinus is shown on Figure 3.2). Sinceui = 0, the transport of the gases
is only made by di�usion. It explains the steep decrease of the partial pressure in
the �rst generations of the tree.

Air velocity ui 6= 0

In this section, we suppose that the air velocity is di�erent than zero. We start
by solving the homogeneous equations. In order to do that we need to solve the
characteristic polynomial,

r 2
i �

ui l i
D

r i �
� i l2

i

D
= 0:

We know that in the bronchial tree no exchange is made with the blood which
implies that � i = 0. We then obtain two roots to our equation in the bronchial tree,

r i; 1 =
ui l i
D

;
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Figure 3.2: Explicit solution of the equation (3.8) for oxygen in a tree of 23 genera-
tions with 17 generations in the bronchial tree and 6 generations in the acinus when
ui = 0.

and,
r i; 2 = 0:

In the acinus, since exchange is made with the blood, we have� i > 0 and hence
we compute,

� =
u2

i l2
i

D 2
+

4� i l2
i

D
=

l2
i

D 2

�
u2

i + 4� i D
�

> 0:

We also obtain two roots,

r i; 1 =
ui l i
2D

+

p
�
2

=
l i

2D

�
ui +

q
u2

i + 4� i D
�

;

and,

r i; 2 =
ui l i
2D

�

p
�
2

=
l i

2D

�
ui �

q
u2

i + 4� i D
�

:

The solutions of the homogeneous equations are,

Pi (x) = A i er i; 1x + B i er i; 2x :

SincePblood is a constant, it is also a particular solution. The solution of the
equations are then,

Pi (x) = A i er i; 1x + B i er i; 2x + Pblood :

In order to �nd the coe�cients A i and B i , we need the boundary conditions and
the bifurcation conditions. We have,

8
>>>>>>><

>>>>>>>:

P0(0) = Pair

�
DSi

l i

dPi (1)
dx

= �
2DSi +1

l i +1

dPi +1 (0)
dx

Pi (1) = Pi +1 (0)

�
D
lN

dPN (1)
dx

= �k%s (PN (1) � Pblood )
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Thanks to the explicit solutions we obtain,

A0 + B0 = Pair � Pblood :

For i 2 J0; G � 2K, we have,

(
A i r i; 1er i; 1 + B i r i; 2er i; 2 = 2h (A i +1 r i +1 ;1 + B i +1 r i +1 ;2) ;

A i er i; 1 + B i er i; 2 = A i +1 + B i +1 :

For i 2 JG � 1; N � 1K, we have,

(
A i r i; 1er i; 1 + B i r i; 2er i; 2 = 2 ( A i +1 r i +1 ;1 + B i +1 r i +1 ;2) ;

A i er i; 1 + B i er i; 2 = A i +1 + B i +1 :

Finally we have,

AN er N; 1

�
D
lN

rN;1 + �k%s

�
+ BN er N; 2

�
D
lN

rN;2 + �k%s

�
= 0:

All these coe�cients can be determined by solving a linear system. Thanks to
them we can �nd the explicit solutions for the equation (3.8) for all generations in
the caseui 6= 0.

Let us also make an example by computing the explicit solution for a tree con-
taining only two generations (N = 1), one in the bronchial tree (G = 1) and one in
the acinus (H = 1). The solution in the �rst generation is then,

P0(x) = A0er 0;1x + B0er 0;2x + Pblood :

We know that in the bronchial tree, we haver0;2 = 0. The solution can then be
rewritten as follow,

P0(x) = A0er 0;1x + B0 + Pblood :

The solution in the second generation writes,

P1(x) = A1er 1;1x + B1er 1;2x + Pblood :

In this case, we need four equations to compute the coe�cientsA0, B0, A1 and
B1. The �rst one corresponds to the boundary condition at the entrance of the tree.
It writes,

A0 + B0 = Pair � Pblood :

The next two equations are the ones corresponding to the birfurcations conditions
between the bronchial tree and the acinus. We have sincer0;2 = 0,

A0r0;1er 0;1 = 2 ( A1r1;1 + B1r1;2) ;

A0er 0;1 + B0 = A1 + B1:
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Finally the last equation corresponds to the boundary conditions at the outlets
of the tree. It writes,

A1er 1;1

�
D
l1

r1;1 + �k%s

�
+ B1er 1;2

�
D
l1

r1;2 + �k%s

�
= 0:

This four equations can be rewritten as a linear system, written as follow,MX =
V, where,

M =

0

B
B
@

1 1 0 0
0 a b c

� 1 d 1 1
0 0 f g

1

C
C
A ; with a = r0;1er 0;1 ; b= � 2r1;2; c = � 2r1;1

d = � er 0;1 ; f = er 1;2

�
D
l1

r1;2 + �k%s

�
and g = er 1;1

�
D
l1

r1;1 + �k%s

�
:

X =

0

B
B
@

B0

A0

B1

A1

1

C
C
A and V =

0

B
B
@

Pair � Pblood

0
0
0

1

C
C
A :

The coe�cients four coe�cients of the vector X are easily found by computing
the inverse of the matrixM . Indeed we haveX = M � 1V. The inverse of this matrix
M is written as follow,

M � 1 =
1

dM

0

B
B
@

� af + cdf + ag � bdg f � g bg� cf c � b
cf � bg g� f cf � bg b� c

ag � dg � g ag � a + c + cd
� af df + f � af a � b� bd

1

C
C
A

where thedM is the determinant of the matrix M . It is equal to,

dM = f (� a + c + cd) + g(a � b� bd)

= f (� r0;1er 0;1 � 2r1;1 + 2r1;1er 0;1 ) + g(r0;1er 0;1 + 2r1;2 � 2r1;2er 0;1 ) :

The coe�cients can then be easily deduced. We obtain,
8
>>>>>>>>>><

>>>>>>>>>>:

B0 =
(Pair � Pblood )( � r0;1er 0;1 f + 2r1;1er 0;1 f + r0;1er 0;1 g � 2r1;2er 0;1 g)

dM

A0 =
(Pair � Pblood )( � 2r1;1f + 2r1;2g)

dM

B1 =
(Pair � Pblood )r0;1er 0;1 g

dM

A1 =
(Pair � Pblood )( � r0;1er 0;1 f )

dM

Thanks to these coe�cients, we have found the explicit solution of the equa-
tion (3.8) in a tree with two generations and whenui 6= 0.
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Figure 3.3: Explicit solution of the equation (3.8) in a tree of 23 generations with
17 generations in the bronchial tree and 6 generations in the acinus for di�erent
velocitiesui 6= 0.

The explicit solution of the equation (3.8) in the case of oxygen for di�erent non
null velocities in a tree mimicking the human lung with 23 generations (17 in the
bronchial tree and 6 in the acinus) is shown on Figure 3.3. With a high velocity, the
convection is important and hence, induces the air �ow to go deep into the lung.
However, when the velocity is negative the oxygen partial pressure goes from its
value in the ambient air to the one in the blood instantaneously. This phenomenon
is due to the boundary condition at the entrance of the tree. Indeed, we impose the
same partial pressure in the ambient air and at the entrance of the trachea, alrhough
the exhaled air �ow is poor in oxygen.

Continuity of the solution in time

We obtained two solutions, one whenui = 0 and one whenui 6= 0. We now want
to prove that the overall solution is continuous relatively toui in ui = 0. It means
that we want to see if the solution whenui ! 0 tends to the solution whenui = 0.

Proposition 3.2.1 (Continuity of the non stationnary solution). The solution of
the following equation,

d2Pi

dx2
�

ui l i
D

dPi

dx
�

� i l2
i

D
Pi = �

� i l2
i

D
Pblood;

is continuous relatively toui in ui = 0

Proof. For simplicity let us prove the continuity of the solution relatively to ui in
a reduced tree. We suppose that our tree only have two generations, one in the
convective tree and one in the acinus.

First let us recall the explicit solutions of the equation (3.8) computed in the
previous section. Let us denote with an exponent0 the solutions whenui = 0 and
with an exponent 1 the solutions whenui 6= 0.

When ui = 0, the solutions are the following functions,

P0
0 (x) = A0

0x + B 0
0;
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P0
1 (x) = A0

1erx + B 0
1e� rx + Pblood :

We haver = lN
p

� N =D, and
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

B 0
0 = Pair ;

A0
0 =

(Pair � Pblood )
�

� 2re� r
�

� D
l1

r + �k%s

�
� 2rer

�
D
l1

r + �k%s

��

dM 0

B 0
1 =

(Pair � Pblood )er
�

D
l1

r + �k%s

�

dM 0

A0
1 = �

(Pair � Pblood )e� r
�

� D
l1

r + �k%s

�

dM 0
;

and dM 0 = e� r
�

� D
l1

r + �k%s

�
(2r � 1) + er

�
D
l1

r + �k%s

�
(2r + 1) .

When ui 6= 0 the solutions are the following functions,

P1
0 (x) = A1

0er 0;1x + B 1
0 + Pblood ;

P1
1 (x) = A1

1er 1;1x + B 1
1er 1;2x + Pblood :

We haver0;1 = u0 l0
D , r1;1 = l1

2D

�
u1 +

p
u2

1 + 4� 1D
�

and

r1;2 = l1
2D

�
u2

1 �
p

u1 + 4� 1D
�
.

The coe�cients are

8
>>>>>>>>>><

>>>>>>>>>>:

B 1
0 =

(Pair � Pblood )( � r0;1er 0;1 f + 2r1;1er 0;1 f + r0;1er 0;1 g � 2r1;2er 0;1 g)
dM

A1
0 =

(Pair � Pblood )( � 2r1;1f + 2r1;2g)
dM

B 1
1 =

(Pair � Pblood )r0;1er 0;1 g
dM

A1
1 =

(Pair � Pblood )( � r0;1er 0;1 f )
dM

with

f = er 1;2

�
D
l1

r1;2 + �k%s

�
; g = er 1;1

�
D
l1

r1;1 + �k%s

�
;

and

dM 1 = f (� r0;1er 0;1 � 2r1;1 + 2r1;1er 0;1 ) + g(r0;1er 0;1 + 2r1;2 � 2r1;2er 0;1 ) :

Let us now focus on the continuity relatively toui in ui = 0. We know that the
solution in the �rst generation when ui 6= 0 is,

P1
0 (x) = A1

0er 0;1x + B 1
0 + Pblood :

We want to observe this solution whenui ! 0. We then haver0;1 ! 0 when
ui ! 0 and sincex 2 [0; 1] we have

jr0;1xj < jr0;1j �!
u i ! 0

0
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. The development in series of the exponential is then possible. We obtain

P1
0 (x) � A1

0(1 + r0;1x) + B 1
0 + Pblood = A1

0 + B 1
0 + Pblood + A1

0r0;1x:

Let us prove that this solution tends whenui ! 0 to the following solution ,

P0
0 (x) = A0

0x + B 0
0:

We have

A1
0 + B 1

0 + Pblood = Pblood + ( Pair � Pblood )�

er 0;1 (2r1;1f � r0;1f + r0;1g � 2r1;2g) � 2r1;1f + 2r1;2g
dM 1

= Pair � Pblood + Pblood = Pair = B 0
0:

Let us now compute

A1
0r0;1 =

(Pair � Pblood )( � 2r1;1f + 2r1;2g)r0;1

dM 1
:

We have

dM 1

r0;1
= � er 0;1 f �

2r1;1

r0;1
f +

2r1;1er 0;1 f
r0;1

+ er 0;1 g +
2r1;2

r0;1
g �

2r1;2er 0;1 g
r0;1

= � f
�

er 0;1 � 2r1;1

�
er 0;1 � 1

r0;1

��
+ g

�
er 0;1 � 2r1;2

�
er 0;1 � 1

r0;1

��
:

We know that r0;1 �!
u i ! 0

0, it implies that we have er 0;1 �!
u i ! 0

1 + r0;1. We can

deduce that
er 0;1 � 1

r0;1
�!
u i ! 0

1 . Finally we obtain,

A1
0r0;1 �!

u i ! 0

(Pair � Pblood )( � 2r1;1f + 2r1;2g)
� f (er 0;1 � 2r1;1) + g(er 0;1 � 2r1;2)

:

Futhermore we know that f �!
u i ! 0

e� r
�

� D
l1

r + �k%s

�
, g �!

u i ! 0
er

�
D
l1

r + �k%s

�
,

r1;1 �!
u i ! 0

r and r1;2 �!
u i ! 0

� r . We obtain,

A1
0r0;1 �!

u i ! 0

(Pair � Pblood )
�

� 2re� r
�

� D
l1

r + �k%s

�
� 2rer

�
D
l1

r + �k%s

��

dM 0
= A0

0:

We proved that the solution in the bronchial tree is continuous relatively toui

in ui = 0. Let us now prove it in the acinus.
When ui 6= 0, we have the following solution,

P1
1 (x) = A1

1er 1;1x + B 1
1er 1;2x + Pblood :

And when ui = 0, we have,

P0
1 (x) = A0

1erx + B 0
1e� rx + Pblood :
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Figure 3.4: Partial pressure of the oxygen in the lung for di�erent velocity.

Since we know thatr1;1 �!
u i ! 0

r and r1;2 �!
u i ! 0

� r We then want to prove that A1
1 �!

u i ! 0

A0
1 and that B 1

1 �!
u i ! 0

B 0
1.

Let us �rst focus on A1
1, we have,

A1
1 =

(Pair � Pblood )( � r0;1er 0;1 f )
dM 1

:

We computed previously,
dM 1

r0;1
�!
u i ! 0

dM 0:

We then have,

A1
1 �!

u i ! 0
�

(Pair � Pblood )e� r
�

� D
l1

r + �k%s

�

dM 0
= A0

1:

Likewise, we have

B 1
1 =

(Pair � Pblood )r0;1er 0;1 g
dM 1

B 1
1 �!

u i ! 0

(Pair � Pblood )er
�

D
l1

r + �k%s

�

dM 0
= B 0

1:

We proved for two generations the continuity of the solution relatively toui .
This continuity can be extended to more generations. We can observe the continuity
relatively to ui in ui = 0 numerically on Figure 3.2.1 for 23 generations.

We proved the uniform continuity relatively to ui of the explicit solution, i.e. for
all x 2 [0; 1], we have

P1
i (x) �!

u i ! 0
P0

i (x):
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3.2.2 Physical analysis of the transport

Now that we have obtained our stationnary explicit solutions, let us observe if it is
a good enough approximation of the general solution in the case of the lung. Let's
start by adimensionaling the equation (3.7). The space was already adimensionalized
previously for simplicity. However we still have to adimensionalize the time. Let us
de�ne the dimensionless time ass = t

~T
where we chose~T = 0:1 s. We obtain,

1
~T

@~Pi

@s
�

D
l2
i

@2 ~Pi

@x2
+

ui (s ~T)
l i

@~Pi

@x
+ � i ( ~Pi � Pblood ) = 0 ;

or also,

� i
@~Pi

@s
�

@2 ~Pi

@x2
+ Pei

@~Pi

@x
+ � i ( ~Pi � Pblood ) = 0 ;

where,

� i =
l2
i

D ~T
Pei =

l i ui

D
� i =

� i l2
i

D
:

� i represents the relative amplitude of the transitory e�ects and of the di�usion;
the Peclet numberPei represents the relative amplitude of the convection by air and
of the di�usion; and � i represents the relative amplitude of the gas capture by blood
and of di�usion and is meaningful only in the acini. These numbers are plotted on
Figure 3.5.

Figure 3.5: Dimensionless numbers at rest (left) and exercise (right). Results for
oxygen. The case of carbon dioxide is very similar as di�usion coe�cients of oxygen
and carbon dioxide are similar.� is the relative amplitude of the transitory e�ects
and of the di�usion; Peclet numberPe is the relative amplitude of the convection
and of the di�usion; � is the relative amplitude of the gas capture by blood and of
di�usion. The variable ~T is chosen to be 0.1 s.

These numbers gives us interesting insights on the behavior of gas transport.
We can observe on Figure 3.5 that at rest, convection is dominant in the whole
conductive tree. However transitory e�ects are only slightly smaller than convection
e�ects, they are of the same order. Interestingly, in the acini, transport by di�usion,
transitory e�ects and absorption by blood are of similar. It results the geometrical
properties of the acini. At exercise, convection is dominant on every other phenom-
ena down to the last quarter of the acini, where di�usion, transitory e�ects and
absorption by blood become dominant, with similar amplitude.
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We can deduce that at rest the stationnary solution is not a good approximation
in the case of the lung because the two coe�cient� and Pe are of the same order.
But during exercise, we could approximate the general solution by its stationnary
one in the convective tree, when the air velocity is su�ciently large, for example
when it is at its highest in a respiratory cycle which corresponds to the inspiration
peak.

3.2.3 General Case

In the following, we will work with the non stationnary equation. Let us study some
of its properties such as the existence of an unique solution.

Equations in the complete space domain

The equations (3.7) are de�ned for each generationsi 2 J0; N K, whereN + 1 is the
number of generations in the lung. We want to rewrite it so we have an unique
equation for the whole tree.

The �rst step is to change the space variable in order to have each equation for
each generation on a di�erent space domain (see Figure 3.6).

i = 0

0 1 2

i = 1Generations

N � 1 N N + 1

i = N � 1 i = N

Figure 3.6: Organization of the new space domains.

The new space variable is de�ned for each generationi as follow,

x̂ = x + i:

Then we haveP̂i (t; x̂) = Pi (t; x ) that veri�es,

@̂Pi

@t
�

D
l2
i

@2P̂i

@̂x2
+

ui (t)
l i

@̂Pi

@̂x
+ � i

�
P̂i � Pblood

�
= 0 for x̂ 2 [i; i + 1] : (3.9)

Now let us make a second change in the space variable, but only in the acinus.
We want to extend our space domain in order to remove the non boundary terms
coming from the conditions at the bifurcations in the variational formulation of the
equation on the space domain for the whole lung. Indeed, to prove the existence
of a solution we require to only have boundary conditions at the inlet and at the
outlets of the tree. We know that in the acinus the length of the bronchi are the
same in all generations and that the velocity decreases as follow,

ui +1 =
ui

2
:

To compensate this decrease in velocity, we look for functionssi (x̂) such that,

s0
i (x̂)ui = s0

i +1 (x̂)ui +1 ;
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Figure 3.7: Function si representing the change in space variable in the acinus
(i 2 JG; N K)

which implies for x̂ 2 [i; i + 1] ,

2s0
i (x̂) = s0

i +1 (x̂):

We also want the space domains to be connected, which implies fori 2 JG; N Kwhere
G is the number of generations in the bronchial tree,

(
sG(G) = G;

si +1 (i + 1) = si (i + 1) :

So for all i 2 JG; N K, and for j = i � G + 1, the function si (see Figure 3.7)
writes,

y = si (x̂) = 2 j x̂ + (1 � 2j )G +
jX

k=1

2k � 2j j; for x̂ 2 [i; i + 1] : (3.10)

Then we have ~Pi (t; y) = P̂i (t; x̂) and dy = 2 j dx̂. Finally we can rewrite the
equation (3.9) in the acinus for the generationsi 2 JG; N K,

@~Pi

@t
�

22j D
l2
i

@2 ~Pi

@y2
+

2j ui (t)
l i

@~Pi

@y
+ � i

~Pi = � i Pblood ; 8y 2 [ki; 1; ki; 2];

where the bounds of our domains are,

ki; 1 = 2 j i + (1 � 2j )G +
jX

k=1

2k � 2j j;

and

ki; 2 = 2 j (i + 1) + (1 � 2j )G +
jX

k=1

2k � 2j j:
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Let us now de�ne our complete space domain
 ,


 =
N[

i =0

[ki; 1; ki; 2] = [0; kN;2]:

where we have in the convective tree (i 2 J0; G � 1K),

[ki; 1; ki; 2] = [ i; i + 1] :

Then, the function ~P de�ned on 
 veri�es the following equation,

@~P
@t

� � 1(y)
@2 ~P
@y2

+ � 2(t; y)
@~P
@y

+ � 3(y) ~P = ~f (y); 8y 2 
 ; (3.11)

where,

� 1(y) =
G� 1X

i =0

D
l2
i

1[k i; 1 ;k i; 2 [(y) +
NX

i = G

22(i � G+1) D
l2
i

1[k i; 1 ;k i; 2 [(y);

� 2(t; y) =
G� 1X

i =0

ui (t)
l i

1[k i; 1 ;k i; 2 [(y) +
NX

i = G

2i � G+1 ui (t)
l i

1[k i; 1 ;k i; 2 [(y);

� 3(y) =
NX

i =0

� i 1[k i; 1 ;k i; 2 [(y);

and,

~f (y) =
NX

i =0

� i Pblood1[k i; 1 ;k i; 2 [(y):

This equation is completed with the following boundary conditions,

~P(t; 0) = Pair ;

�
2N � G+1 D

lN

@~P
@y

(t; kN;2) = �k%s( ~P(t; kN;2) � Pblood );

and with the following bifurcations conditions in the convective tree,

�
D
l i

@~P(t; k i; 2)
@y

= �
2Dh2

l i +1

@~P(t; k i +1 ;1)
@y

; (3.12)

and in the acinus,

�
D
l i

@~P(t; k i; 2)
@y

= �
4D
l i +1

@~P(t; k i +1 ;1)
@y

: (3.13)
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Homogeneous boundary condition in y = 0

Let us de�ne a function r (y) in order for our boundary condition at the entrance of
the tree to be homogenous. It is de�ned such that the function

Q(t; y) = ~P(t; y) � r (y);

veri�es the following conditions at the inlet and at the outlets of the tree,

8
<

:

Q(t; 0) = 0;

�
2N � G+1 D

lN

@Q(t; kN;2)
@y

= �k%sQ(t; kN;2):
(3.14)

The function r is de�ned as a sum of a�ne functions,

r (y) =
NX

i =0

r i (y)1[k i; 1 ;k i; 2 ];

wherer i (y) = A i y+ B i for each generationi 2 J0; N K. We suppose that the functions
r i satisfy the same properties as the function~P at the boundaries of the domain
and at the bifurcations. Then, the functionr satis�es at the inlet and at the outlets
of the tree,

8
<

:

r (0) = Pair

�
2N � G+1 D

lN

@r(kN;2)
@y

= �k%s(r (kN;2) � Pblood ):

The functions r i satisfy the following equations at the bifurcations in the con-
vective tree,

8
<

:

r i (ki; 2) = r i +1 (ki +1 ;1)

�
D
l i

@ri (ki; 2)
@y

= �
2Dh2

l i +1

@ri +1 (ki +1 ;1)
@y

;

and in the acinus,
8
<

:

r i (ki; 2) = r i +1 (ki +1 ;1)

�
D
l i

@ri (ki; 2)
@y

= �
4D
l i +1

@ri +1 (ki +1 ;1)
@y

:

Thanks to the existence of this functionr , we can now rewrite the equation (3.11),

@Q
@t

� � 1(y)
@2Q
@y2

+ � 2(t; y)
@Q
@y

+ � 3(y)Q = f (t; y); (3.15)

wheref (t; y) = ~f (y) + � 1(y) @2 r
@y2 � � 2(t; y) @r

@y� � 3(y)r (y) 2 H � 1(
) .
The bifurcation conditions remains the same, but the boundary conditions are

now those in equation (3.14).
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Variationnal formulation

We start our analysis by computing the variational formulation of the equation (3.15).

Proposition 3.2.2 (Variationnal formulation) . Let us de�ne V0 = f v 2 H 1(
) ; v(0) =
0g. The variationnal formulation of our model writes,

8	 2 V0;
Z




@Q
@t

	 dy + a(Q; 	) =
Z



f (t; x )	 dy; (3.16)

where,

a(Q; 	) =
Z



� 1(y)

@Q
@y

@	
@y

dy + � 2(t)
Z




@Q
@y

	 dy +
Z



� 3(y)Q	 dy

+
2N � G+1 �k%s

lN
Q(t; kN;2)	( kN;2);

:

Proof. We multiply our equation (3.15) by a test function	 2 V0 and we integrate
over the domain
 ,

Z




@Q
@t

	 dy �
Z



� 1(y)

@2Q
@y2

	 dy + � 2(t; y)
Z




@Q
@y

	 dy +
Z



� 3(y)Q	 dy

=
Z



f 	 dy:

First, let us take a look at the function � 2(t; y).

Analysis of the function � 2(t; y).

We know that,
ui +1 (t)

l i +1
=

ui (t)
l i

1
2h3

:

In the convective tree, we haveh = 2 � 1=3, we can deduce that,

ui +1 (t)
l i +1

=
ui (t)

l i
:

And in the acinus, we haveh = 1, so we obtain,

ui +1 (t)
l i +1

=
ui (t)
2l i

:

It means that for i 2 JG; N K, we have

2i � G+2 ui +1 (t)
l i +1

=
2i � G+1 ui (t)

l i
:

The function � 2 is then a constant regarding space, it writes

� 2(t; y) = � 2(t) =
u0(t)

l0
:
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We now want to compute the following part,

I = �
Z



� 1(y)

@2Q
@y2

	 dy:

In order to compute it, we split it on the intermediate domains and obtain,

I = �
NX

i =0

Z k i; 2

k i; 1

� 1(y)
@2Q
@y2

	 dy

= �
G� 1X

i =0

D
l2
i

Z k i; 2

k i; 1

@2Q
@y2

	 dy �
NX

i = G

22(i � G+1) D
l2
i

Z k i; 2

k i; 1

@2Q
@y2

	 dy

=
G� 1X

i =0

D
l2
i

Z k i; 2

k i; 1

@Q
@y

@	
@y

dy +
NX

i = G

22(i � G+1) D
l2
i

Z k i; 2

k i; 1

@Q
@y

@	
@y

dy

�
G� 1X

i =0

�
D
l2
i

@Q
@y

	
� k i; 2

k i; 1

�
NX

i = G

�
22(i � G+1) D

l2
i

@Q
@y

	
� k i; 2

k i; 1

=
Z



� 1(y)

@Q
@y

@	
@y

dy + � 4;

where� 4 is de�ned as follow,

� 4 = �
G� 1X

i =0

�
D
l2
i

@Q
@y

	
� k i; 2

k i; 1| {z }
� 4;1

�
NX

i = G

�
22(i � G+1) D

l2
i

@Q
@y

	
� k i; 2

k i; 1| {z }
� 4;2

:

To compute it, let's start by studying the �rst term.

Analysis of � 4;1.

We have,

� 4;1 = �
G� 1X

i =0

�
D
l2
i

@Q
@y

	
� k i; 2

k i; 1

:

� 4;1 =
G� 1X

i =0

D
l2
i

�
@Q(t; k i; 1)

@y
	( ki; 1) �

@Q(t; k i; 2)
@y

	( ki; 2)
�

=
D
l2
0

@Q(t; 0)
@y

	(0) +
G� 2X

i =0

�
D

l2
i +1

@Q(t; k i +1 ;1)
@y

�
D
l2
i

@Q(t; k i; 2)
@y

�
	( ki; 2)

�
D

l2
G� 1

@Q(t; kG� 1;2)
@y

	( kG� 1;2):

We know that 	(0) = 0 because	 2 V0. Furthermore we know that,

�
D
l i

@Q(t; k i; 2)
@y

= �
2Dh2

l i +1

@Q(t; k i +1 ;1)
@y

:
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If we divide the last equation byl i which is equals tol i +1

h , we obtain,

2Dh3

l2
i +1

@Q(t; k i +1 ;1)
@y

�
D
l2
i

@Q(t; k i; 2)
@y

= 0:

Yet in the bronchial tree wheni 2 J0; G � 1K, we know that h =
�

1
2

� 1=3
. We obtain,

D
l2
i +1

@Q(t; k i +1 ;1)
@y

�
D
l2
i

@Q(t; k i; 2)
@y

= 0:

It implies that,

� 4;1 = �
D

l2
G� 1

@Q(t; kG� 1;2)
@y

	( kG� 1;2):

Now, let us focus on the second term of� 4.

Analysis of � 4;2.
We obtain,

� 4;2 = �
NX

i = G

�
22(i � G+1) D

l2
i

@Q
@y

	
� k i; 2

k i; 1

=
NX

i = G

22(i � G+1) D
l2
i

�
@Q(t; k i; 1)

@y
	( ki; 1) �

@Q(t; k i; 2)
@y

	( ki; 2)
�

=
N � 1X

i = G

�
22(i � G+2) D

l2
i +1

@Q(t; k i +1 ;1)
@y

�
22(i � G+1) D

l2
i

@Q(t; k i; 2)
@y

�
	( ki; 2)

+
4D
l2
G

@Q
@y

(t; kG;1) 	( kG;1) �
22(N � G+1) D

l2
N

@Q
@y

(t; kN;2) 	( kN;2):

But we know that,

�
D
l i

@Q(t; k i; 2)
@y

= �
4D
l i +1

@Q(t; k i +1 ;1)
@y

:

Sincel i = l i +1 , we have,

22(i � G+2) D
l2
i +1

@Q(t; k i +1 ;1)
@y

�
22(i � G+1) D

l2
i

@Q(t; k i; 2)
@y

=
22(i � G+1) D

l2
i +1

�
4

@Q(t; k i +1 ;1)
@y

�
@Q(t; k i; 2)

@y

�

= 0:

We can deduce that,

� 4;2 =
4D
l2
G

@Q
@y

(t; kG;1)	( kG;1) �
D22(N � G+1)

l2
N

@Q
@y

(t; kN;2)	( kN;2)
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Finally, thanks to the computations of � 4;1 and � 4;2 we can deduce the value for
� 4.

Analysis of � 4.
We obtain,

� 4 = � 4;1 + � 4;2

= �
D

l2
G� 1

@Q
@y

(t; kG� 1;2)	( kG� 1;2) +
4D
l2
G

@Q
@y

(t; kG;1)	( kG;1)

�
D22(N � G+1)

l2
N

@Q
@y

(t; kN;2)	( kN;2)

We know that,

�
D

lG� 1

@Q(t; kG� 1;2)
@y

= �
4D
lG

@Q(t; kG;1)
@y

;

and that lG = lG� 1. It results in

� 4 = �
D22(N � G+1)

l2
N

@Q
@y

(t; kN;2)	( kN;2):

Or, thanks to the boundary condition,

� 4 =
2N � G+1 �k%s

lN
Q(t; kN;2)	( kN;2):

We �nally obtain the following variationnal formulation, 8	 2 V0;
Z




@Q
@t

	 dy +
Z



� 1(y)

@Q
@y

@	
@y

dy + � 2(t)
Z




@Q
@y

	 dy +
Z



� 3(y)Q	 dy

+
2N � G+1 �k%s

lN
Q(t; kN;2)	( kN;2) =

Z



f 	 dy:

Gårding Coercivity

Now, we will focus on the bilinear forma(Q; 	) . We will prove that it is Gårding
coercive. It will be useful in the following in order to prove the existence of a unique
solution to our equation (3.15).

Theorem 3.2.3. The bilinear form,

a(Q; 	) =
Z



� 1(y)

@Q
@y

@	
@y

dy + � 2(t)
Z




@Q
@y

	 dy +
Z



� 3(y)Q	 dy

+
2N � G+1 �k%s

lN
Q(t; kN;2)	( kN;2);

is Gårding coercive. It means that8Q 2 V0;

a(Q; Q) > C1 kQk2
H 1 (
) � C2 kQk2

L 2 (
) ;

whereC1 > 0 and C2 are constants.
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Proof. To start let us split our bilinear form a in two parts. Let us de�ne 8Q; 	 2 V0

:

a1(Q; 	) =
Z



� 1(y)

@Q
@y

@	
@y

dy +
Z



� 3(y)Q	 dx +

2N � G+1 �k%s

lN
Q(kN;2)	( kN;2);

and,

a2(Q; 	) = � 2(t)
Z




@Q
@y

	 dy:

We have,
a(Q; 	) = a1(Q; 	) + a2(Q; 	) :

Let us start by analyzing the symmetric bilinear forma1.

Analysis of a1(Q; Q).

We want to prove that the symmetric bilinear forma1 is H 1 coercive. We know
that �k%s > 0, then,

a1(Q; Q) >
Z



� 1(y)

�
@Q
@y

� 2

dy +
Z



� 3(y)Q2 dy:

Furthermore we know that the functions� 1 > 0 and � 3 > 0 are bounded.
We can write that,

a1(Q; Q) > min(� 1)










@Q
@y










2

L 2 (
)

+ min( � 3) kQk2
L 2 (
) :

We know that the minimum of the function � 3 is 0, then,

a1(Q; Q) > min(� 1)










@Q
@y










2

L 2 (
)

=
min(� 1)

2

 








@Q
@y










2

L 2 (
)

+










@Q
@y










2

L 2 (
)

!

Let us use the Poincaré inequality since we haveQ(0) = 0 . We obtain,

a1(Q; Q) >
min(� 1)

2

 








@Q
@y










2

L 2 (
)

+ C kQk2
L 2 (
)

!

;

whereC > 0 is a constant. Thus we have,

a1(Q; Q) >
min(� 1C; � 1)

2

 








@Q
@y










2

L 2 (
)

+ kQk2
L 2 (
)

!

>
min(� 1C; � 1)

2
kQk2

H 1 (
)

The coe�cient � 1 = min( � 1C;� 1 )
2 > 0 is a constant. We proved thata1 is H 1-

coercive.

Let us now focus ona2(Q; Q).
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Analysis of a2(Q; Q).
The function � 2(t) is bounded, hence,

� k � 2kL 1 (R+ ) 6 � 2(t) 6 k� 2kL 1 (R+ ) :

We can deduce thanks to the Cauchy-Schwarz inequality,

a2(Q; 	) > � k � 2kL 1 (R+ )










@Q
@y










L 2 (
)

kQkL 2 (
) :

Finally, let us focus of the bilinear forma(Q; Q).

Analysis of a(Q; Q).
We obtain from the analyses ofa1 and a2,

a(Q; Q) > � 1 kQk2
H 1 (
) � k � 2kL 1 (R+ )










@Q
@y










L 2 (
)

kQkL 2 (
)

Let us de�ne � 2 = k� 2kL 1 (R+ ) . We know that for all A, B , and � > 0, we have
� p �

2A � Bp
2�

� 2
> 0. By expanding this expression, we obtain

� AB > �
�
2

A2 �
B 2

2�
:

Let us chooseA =





 @Q

@y








L 2 (
)
and B = � 2kQkL 2 (
) . It results that,

a(Q; Q) > � 1 kQk2
H 1 (
) �

�
2










@Q
@y










2

L 2 (
)

�
� 2

2

2�
kQk2

L 2 (
)

>
�

� 1 �
�
2

�
kQk2

H 1 (
) �
� 2

2

2�
kQk2

L 2 (
)

We can �nally choose� = � 1 > 0, and we obtain,

a(Q; Q) >
� 1

2
kQk2

H 1 (
) �
� 2

2

2� 1
kQk2

L 2 (
)

We proved that the quadratic forma is Gårding coercive, sinceC1 = � 1
2 > 0 and

C2 = � 2
2

2� 1
are constants.

Let us note that if our boundary conditions at the outlets of the tree were
Dirichlet conditions, the quadratic form a(Q; 	) would be coercive,i.e. it would
satisfy the following property,

a(Q; Q) > C kQk2
H 1 (
) ;

whereC > 0 is a constant.
Furthermore, if we assume that for allt > 0 we have�%sk + uN (t )

2 > 0, then our
quadratic form a(Q; 	) would also be coercive [28] .

However, in our case the Gårding coercivity is su�cient to prove the existence
and uniqueness of a solution.
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Existence and uniqueness

In order to prove the existence and the uniqueness of a solution for our model, we
need the theorem 3.2.4 de J.L. Lions. The proof of this theorem is detailed in [63].

Theorem 3.2.4 (J.L. Lions). Let H and V be two Hilbert spaces. We suppose
that V � H with a dense and continuous injection and withV � H � V 0. Let
us have a �xed	 > 0; for almost every t 2 [0; T], let us have a bilinear form
a(t; u; v) : V � V ! R that verify the following properties :

1. the function t 7! a(t; u; v) is measurable8u; v 2 V,

2. ja(t; u; v)j 6 M kukV kvkV a.e. t 2 [0; T]; 8u; v 2 V

3. a(t; u; u) > C1kuk2
V � C2kuk2

H a.e. t 2 [0; T] 8u 2 V;

where M; C1 > 0 and C2 are constants. If we havef 2 L2(0; T; V 0) and u0 2 H ,
then there exists an unique functionu such that

u 2 L2(0; T; V) \ C([0; T]; H ) et
du
dt

2 L2(0; T; V 0)

8
<

:
h
du
dt

(t); vi + a(t; u(t); v) = hf (t); vi ; 8v 2 V

u(0) = u0:

Theorem 3.2.5. Let us de�ne T > 0 �xed, 
 = [0 ; kN;2] whereN > 1 is an integer.
Let us haveV0 = f v 2 H 1(
) ; v(0) = 0 g. If we havef 2 H � 1(
) and Q0 2 L2(
) ,
then there exists an unique functionQ such that,

Q 2 L2(0; T; V0) \ C([0; T]; L2(
)) ;
dQ
dt

2 L2(0; T; H � 1(
)) :

and,
8
<

:

Z




@Q
@t

	 dy + a(Q; 	) =
Z



f (t; y)	 dy;

Q(0; y) = Q0(y):
(3.17)

Futhermore since we are in one dimension, the solution is also continuous in
space.

Proof. First, let us prove that the injection of V0 in L2(
) is continuous and dense.
We know that 8v 2 H 1(
) , we have by de�nition :

kvk2
H 1 = kvk2

L 2 + kv0k2
L 2 :

Then we have,

kvk2
H 1 > kvk2

L 2 ;

or also,

kvkH 1 > kvkL 2 :
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It proves that the injection is continuous.

Now, let us prove that the injection is dense. We know from Adams [1] that the
spaceC1

0 (
) is dense in the spaceL2(
) . Furthermore

C1
0 (
) � V0 � H 1(
) ;

we can deduce thatV0 and H 1(
) are dense inL2(
) .

Now we want to verify the properties of the quadraticforma(Q; 	) :

1. The function t 7! a(Q; 	) is measurable for allQ; 	 2 V0 since the function
� 2(t) is continuous in time, hence measurable.

2. Let us de�ne � 1 = k� 1kL 1 (
) , � 2 = k� 2kL 1 ([0;	]) , � 3 = k� 3kL 1 (
) and � 4 =
2N � G +1 �k% s

lN
:

Let Q 2 V0 and 	 2 V0, we have,

ja(Q; 	) j 6 � 1

�
�
�
�

Z




@Q
@y

@	
@y

dy

�
�
�
� + � 2

�
�
�
�

Z




@Q
@y

	 dy

�
�
�
�

+ � 3

�
�
�
�

Z



Q	 dy

�
�
�
� + � 4Q(kN;2)	( kN;2)

We obtain thanks to the Cauchy-Schwarz inequality,

ja(Q; 	) j 6 � 1










@Q
@y










L 2 (
)










@	
@y










L 2 (
)

+ � 2










@Q
@y










L 2 (
)

k	 kL 2 (
)

+ � 3 kQkL 2 (
) k	 kL 2 (
) + � 4Q(kN;2)	( kN;2)

We can deduce by continuity of the trace,

ja(Q; 	) j 6 (� 1 + � 2 + � 3 + � 4C) kQkH 1 (
) k	 kH 1 (
)

whereC is a constant. We proved the continuity of the quadraticforma(Q; 	)
since� 1 + � 2 + � 3 + � 4C is a constant.

3. Previously we proved that the quadraticforma is Gårding coercive.

We veri�ed the three properties in order to apply the theorem 3.2.4. We proved
the existence and uniqueness of the functionQ. We proved that the solution is in
H 1(
) and since we are in 1D in space we know thatH 1(
) � C0(
) . We can
deduce that the solution is continuous in space.

We have proved the continuity of the solution in space, but we can go further
on each bronchus. Indeed on each open domain]ki; 1; ki; 2[, we can prove that the
solution is C1. We know that we have,

Z k i; 2

k i; 1

D
l2
i

@2Qi

@y2
	 dy =

Z k i; 2

k i; 1

�
@Qi
@t

+
ui (t)

l i

@Qi
@y

+ � i Qi � f i

�
	 dy:
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Since Qi 2 H 1(
 i ),
@Qi
@t 2 L2([0; T]) and f i 2 L2(]ki; 1; ki; 2[), we can deduce that

@Qi
@y 2 H 1(]ki; 1; ki; 2[). Since we are in 1D we can deduce that@Qi

@y is continuous.
It means that Qi 2 C1(]ki; 1; ki; 2[). The function Qi is not derivable at ki; 1 and
ki; 2. Indeed our condition at the bifurcations imply that at each bifurcation (see
equations (3.12) and (3.13)), the derivative on the right and the one on the left are
di�erent.

Periodicity

We suppose that the functionui (t) is periodic with a periodT, i.e.

ui (T + t) = ui (t):

We know that a solution to our model exists and is continuous in time. We now
want to know if our solution is asymptotically periodic of periodT.

Theorem 3.2.6 (Periodicity) . Let us assume that,

�k%s +
uN (t)

2
> 0:

The solution of our equations (3.15) is then asymptotically periodic in time for the
L2 norm with a period T, i.e. we have,

kQ(T + t; y) � Q(t; y)kL 2 (
) �!
t ! + 1

0: (3.18)

Proof. Let us have,
~Q(t; y) = Q(T + t; y) � Q(t; y):

It veri�es the following equation,

@~Q
@t

� � 1(y)
@2 ~Q
@y2

+ � 2(t)
@~Q
@y

+ � 3(y) ~Q = 0:

and the following boundary conditions,
8
><

>:

~Q(t; 0) = 0

�
2N � G+1 D

lN

@~Q(t; kN;2)
@y

= �k%s
~Q(t; kN;2):

The conditions at the bifurcations remain the same. And �nally the initial
condition writes,

~Q(0; y) = ~Q0(y) = Q(T; y) � Q(0; y):

The variationnal formulation writes for 	 2 V0,

Z




@~Q
@t

	 dy + a( ~Q; 	) = 0 ;

where
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a( ~Q; 	) =
Z



� 1(y)

@~Q
@y

@	
@y

dy + � 2(t)
Z




@~Q
@y

	 dy +
Z



� 3(y) ~Q	 dy

+
2N � G+1 �k%s

lN
~Q(t; kN;2)	( kN;2);

Let us choose	 = ~Q, we then have,

1
2

d
dt

k ~Qk2
L 2 (
) = � a( ~Q; ~Q):

Let us compute the following integral,

J = � 2(t)
Z




@~Q
@y

~Q dy = � 2(t)
�

1
2

~Q2

� kN; 2

0

=
� 2(t)

2
~Q2(t; kN;2):

Finally we obtain the following quadratic form

a( ~Q; ~Q) =
Z



� 1(y)

 
@~Q
@y

! 2

dy +
Z



� 3(y) ~Q2 dy

+
2N � G+1

lN

�
�k%s +

uN (t)
2

�
~Q2(t; kN;2):

Previously we proved that,

a1( ~Q; ~Q) =
Z



� 1(y)

 
@~Q
@y

! 2

dy +
Z



� 3(y) ~Q2 dy

> � 1






 ~Q








2

H 1 (
)
> � 1






 ~Q








2

L 2 (
)
:

We know that �k%s + uN (t)=2 > 0, we then can deduce that,

2N � G+1

lN

�
�k%s +

uN (t)
2

�
~Q2(t; kN;2) > 0:

We obtain,

a( ~Q; ~Q) > � 1






 ~Q








2

L 2 (
)
:

Finally we have,
d
dt






 ~Q








2

L 2 (
)
6 � 2� 1






 ~Q








2

L 2 (
)
:

Thanks to the Gronwall lemma, we obtain,





 ~Q








2

L 2 (
)
6






 ~Q0








2

L 2 (
)
exp(� 2� 1t):

Then,

lim
t !1






 ~Q








2

L 2 (
)
= 0;

hence the solution is asymptotically periodic att ! 1 .
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We proved the asymptotic periodicity for

�k%s +
uN (t)

2
> 0:

This condition is satis�ed in our model for an amplitude of ventilation inferior to
4 m � s� 1. Let us remark that we could choose to have two di�erent boundary
conditions at the outlets of the tree depending on the velocity,

8
>><

>>:

�
2N � G+1 D

lN

@Q(t; kN;2)
@y

= �k%sQ(t; kN;2); for uN > 0;

uN

lN
Q(t; kN;2) �

2N � G+1 D
lN

@Q(t; kN;2)
@y

= �k%sQ(t; kN;2); for uN < 0:

With these two conditions, we could obtain the asymptotic periodicity for all veloc-
ities. However, we did not make this assumption in our model since we observed a
numerical periodicity even for high amplitude of ventilation.

Comparison of the stationnary and non stationnary solutions

We proved in the last sections that the solution of the equation (3.2) exists and is
unique. We can now compare the two solutions and con�rm our assumption exposed
previously that, in the case of the lung at rest the stationnary solution is not a good
approximation of the general solution. Indeed, we can observe that at rest, when
the air velocity is at its peak (Figure 3.8 (a)), the two solutions di�er around the
middle of the lung (11th � 12th generation) in the convective tree. Whereas during
maximal exercise, we can observe that when the velocity is as its peak (Figure 3.8
(b)) the stationnary solution is a good approximation in the convective tree. The
di�erence appears around the19th generation of the lung, in the acinus. It con�rms
our analysis based on the adimensionalisation of our equations in section 3.2.2.

Figure 3.8: Comparison between stationnary and non stationnary solution at rest
(left) and during intense exercise (right) at the inspiration peak.

Finally we can compare the two solutions when the velocity is null (Figure 3.9).
The two solutions di�er everywhere in the lung. This analysis shows that the time
dynamics have to be included in the equations in order to reach satisfactory pre-
dictions for di�erent metabolic regimes. In the following, we will use the non sta-
tionnary approximation of the solution computed by an implicit �nite di�erence
numerical scheme, described in appendix A, using the language Julia [11].
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Figure 3.9: Comparison between the stationnary and the non stationnary solutions
when the velocity of the air is equal to 0 m/s.

3.3 Blood partial pressures

3.3.1 Modelling the exchanges between alveolar gas and blood

In the previous section we assumed that the partial pressure of the gas in the blood
(Pblood ) was a constant, but it is actually dependent on time, space and gas species.

Oxygen

Oxygen can be found in blood dissolved in the plasma and linked to hemoglobin.
To compute Pblood;O2 for oxygen, we use the formulation from [34]. We can relate
Pblood;O2 to the partial pressure of oxygen in the acini,PAO 2 , with several physiolog-
ical quantities by establishing a matter balance,

�ow going through the membrane
z }| {
� (PAO 2 � Pblood;O2 ) =

4Z0 (f (Pblood;O2 ) � f (PaO2)) vs + �v s(Pblood;O2 � PaO2 )
| {z }

�ow transported by the blood

:

The �rst term on the right hand side represents the link to hemoglobin. The
factor 4 corresponds to the fact that a molecule of hemoglobin can link 4 molecules of
oxygen. Z0 represents the concentration of hemoglobin in the blood (9:93 mol � m� 3

[24]). The function f is the oxygen saturation of hemoglobin in the blood. This
function is usually modelled using the following Hill equation (Figure 3.10) [50],

f (x) =
x2:6

x2:6 + 262:6
:

The second term on the right hand side of the equation represents the oxygen
solubility in the plasma. � is the solubility coe�cient (mol �m� 3 �mmHg� 1) of oxygen
in blood and PaO2 is the partial pressure of oxygen in pulmonary arterial blood.

Finally, present in the two parts of the equation, we havevs the blood velocity
(m � s� 1). It can be computed as the ratio of the length of the capillary (lc) over
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Figure 3.10: Percentage of total hemoglobin that is saturated with oxygen in the
blood modeled by an Hill function (blue curve). The red curve represents the
value P50 which is the oxygen partial pressure for which the oxygen saturation of
hemoglobin is50%. For humans, we haveP50 = 26 mmHg.

the transit time in the capillary ( tc). In our model the length lc is supposed to be
constant and equals to1mm [113]. The transit time is de�ned as the time the red
blood cells spend in the capillary. At rest, the value is around1 second for humans
[47].

The partial pressure of the oxygen in the bloodPblood;O2 is computed numerically
as a function of the alveolar oxygen partial pressurePAO 2 (see Figure 3.11).

Figure 3.11: Oxygen partial pressure in the blood as a function of the alveolar
oxygen partial pressure.

Carbon dioxide

In the blood, carbon dioxide can be dissolved in plasma, linked to hemoglobin or
linked to bicarbonate ions. The matter balance equation for the carbon dioxide is
computed using [104],

�ow through the membrane
z }| {
� (PACO 2 � Pblood;CO2 ) = ( Pblood;CO2 � PaCO2 ) � v s

�
1 + 10(pH � pK )

�
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�
�

1 �
0:0289Z0

(3:352� 0:456SO2) � (8:142� pH)

�

| {z }
�ow transported by the blood

;

with vs the blood velocity (m�s� 1), � the solubility coe�cient (mol �m� 3�mmHg� 1)
of carbon dioxide in blood,pH the blood pH that is equal to 7.4 [104],pK = 6:09072
the dissociation coe�cient of the chemical systemCO2 � HCO3� [104], Z0 the
hemoglobin concentration (g� dL� 1) and SO2 the oxygen-hemoglobin saturation
(percents).

The partial pressure of the carbon dioxide in the bloodPblood;CO2 is shown as a
function of the alveolar oxygen partial pressurePAO 2 in Figure 3.11.

Figure 3.12: Carbon dioxide partial pressure in the blood as a function of the alveolar
carbon dioxide partial pressure.

3.3.2 E�ective partial pressure estimation

Practically, the arterial partial pressure of oxygenPaO2 and carbon dioxidePaCO2

seen by the acini might be di�erent to that of the pulmonary arterial circulation,
as the history of the blood �owing in the acini wall is unknown. Blood could have
already been in contact with acini air upstream. Consequently, we compute and use,
instead ofPaO2 and PaCO2 , e�ective partial pressures in oxygen~PaO2 and in carbon
dioxide ~PaCO2 using rest regime as a reference state and �tting the physiological
parameters known for that reference state.

To compute the exchanges between alveolar air and blood, we need to esti-
mate the e�ective gas partial pressure in the pulmonary arterial and veinous blood
[33]. For low oxygenated blood (pulmonary arterial blood),PaO2 = 40 mmHg and
PaCO2 = 47 mmHg. For oxygenated blood (pulmonary veinous blood), we have
PvO2 = 100 mmHg and PvCO2 = 40 mmHg.

In our case, tidal volume (VT ), mean air �ow velocity in trachea (u0;mean) and
trachea cross-sections (S0) are related thanks to this expression,

VT =
Z T=2

0
u0;mean S0 dt;
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sinceu0 is assumed to be a sine function equals to,

u0(t) = A sin
�

2�
T

t
�

:

A represents the amplitude (m� s� 1) and T (s) the period of the idealised venti-
lation.

The mean air�ow velocity then writes :

u0;mean =
2
T

Z T=2

0
A sin(

2�
T

t) dt =
2A
�

:

During rest ventilation, a human breathes around 12 times a minute, which
corresponds to a period ofT = 5 s; the tidal volume is about0:5L [33]. If we inject
this expression into the tidal volume expression, we obtainA = 1:2 m � s� 1.

With all these parameters, our transport model allows to compute the amount
of oxygen captured by the blood (V O2) : 3:13 � 10� 4 mol � s� 1 and the amount of
carbon dioxide expelled from the blood (V CO2): 1:35� 10� 4 mol � s� 1. These values
are in the range of physiological data which is1 � 2 � 10� 4 mol � s� 1 [54].

Another coe�cient, the respiratory exchange ratio, has to be taken into account
to model more accurately the gases exchanges with the blood. This coe�cient is the
ratio of the amount of oxygen captured by the blood and of the amount of carbon
dioxide expelled from the blood. The respiratory exchange ratio (RER) is de�ned
as follow:

RER =
V CO2

V O2
:

The physiological range of the RER is 0.7 to 1. Using in our model typical arterial
and veinous partial pressures in blood, this coe�cient is predicted to be about 0.43.
The physiological value at rest is however about 0.8 [33]. In order to reach a correct
value of the RER, we have to account in our model for the fact that blood could
have captured oxygen at its previous visited locations: we need to use an e�ective
partial pressure for arterial blood. As shown on Figure 3.13, the value~Part = 90:5

Figure 3.13: Respiratory exchange ratio in function of the partial pressure of the
respiratory arterial blood.
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mmHg allows to reach a correct RER. With this value, our model predicts at rest
V O2 = 1:69� 10� 4 mol � s� 1 and V CO2 = 1:35� 10� 4 mol � s� 1 with a RER of 0.8.

In order to validate the choice for e�ective partial pressure, we did a perturbation
analysis on the RER at rest, see Table 3.4.

H H H H HHA
T

4 5 6

1.1 0.80 0.80 0.80
1.2 0.80 0.80 0.80
1.3 0.80 0.80 0.80

Table 3.4: Respiratory Exchange Ratio at rest with A the amplitude and T the
period of the respiration.

We have satisfactory little variation on the RER when rest ventilation amplitude
and frequency are perturbed and we remain in the physiological range.

Let us extend our analysis to maximal exercise. During more intense activities,
our heart rate increases and blood circulates faster to supply in oxygen all of our
cells correctly. The transit time tc then decreases from 1 second at rest to 0.51
second at maximal exercise [47]. We can also observe a decrease of the following
ratio, Vdead=VT , whereVdead represents the dead volume, the volume of the lung that
does not participate in the exchange with the blood. We can compute this volume
as the sum of each bronchi's volume in the conductive tree,

Vdead =
G� 1X

i =0

2i r 2
i l i �

= r 2
0l0�

G� 1X

i =0

2i h3:

Since in the convective tree we suppose thath = 2 � 1=3, we obtain,

Vdead = r 2
0l0�G:

We can now relate the radius of the trachea to the ratioVdead=VT . It gives us tracheal
radius of 1:27 cm during maximal exercise whereas at rest we have a radius of 0.9
cm. It is in accordance with physiology since it has been observed that airways
dilatation is related to work load [111].

During intense exercise, human can exhibit up to 59 breaths a minute, which
represents a respiratory period aroundT = 1 second and the tidal volume can
increase to3:1L [47]. With similar computation as we did for the rest regime,
we compute an amplitude of19m � s� 1. The values of the RER during exercise
predicted by our model are shown on Table 3.5. They are fully compatible with the
physiological data, as during exercise the RER increases with the metabolism and
comes close to 1, or even sometimes exceeds it [41].

These last analyses show that our hypothesis to use an e�ective partial pressure
in oxygen for exchanges in our model leads to predictions in good agreement with
the expected physiological responses.
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H H H H HHA
T

0.9 1 1.1

18 0.94 0.96 0.97
19 0.96 0.97 0.98
20 0.97 0.99 1.00

Table 3.5: Respiratory Exchange Ratio during exercise with A the amplitude and
T the period of the respiration.

3.4 Conclusion

We described and studied a model of gas transport in the human lung based on
the core physical properties of the human's lung: a tree-like structure of the lung,
convective and di�usive transports of oxygen and carbon dioxide and physiology-
based exchange surface properties. This model has few parameters and gives us
interesting insights on the gaseous exchanges with the blood. Also, it allows to better
understand the gas distribution inside the human's lung, along the generations.

The oxygen �ows exchanged with the blood computed with our model are close
with the physiology. Futhermore our model is robust regarding the intense exercise
rate. Indeed, it models properly the increase of the respiratory exchange ratio (RER)
during the increase of intensity of exercise.

Some improvements of the model are worth considering. It could be interesting
to model the change of volume of the alveolar region. Indeed, an air�ow is created
during inspiration due to the increase of the lung's volume that allows a pressure
drop between the ambiant air and the acinus. This change in the model could induce
a better modelisation of the exchange surface of the lung, especially during maximal
exercise. Furthermore, we could also improve the determination of the e�ective
arterial partial pressure of the oxygen. Indeed, since it represents a mean value of
the arterial partial pressure of oxygen in all the blood capillaries connected to the
lung, its value could depend on time and on the metabolic rate.



Chapter 4

Optimal ventilation in mammals

The transport of air in the lung requires a certain amount of energy due to physical
constraints. Indeed, a viscous energy is spent due to friction e�ects of the air
�ow in the bronchi [72]. It is related to the hydrodynamic resistance of the lung.
Furthermore, mechanical energy is needed to expand the thoracic cage and the lung
tissues during inspiration. It is related to the compliance of the lung that represents
the elasticity of the tissues. This energy is lost at expiration due to the viscoelastic
recoil of the tissues. This spending of energy can in�uence the control of ventilation,
which is based on the regulation of the volume of air that is inspired (tidal volume)
and the frequency at which it is renewed (ventilation frequency) with the aim to
keep oxygen and carbon dioxide partial pressure constant in blood. The lungs of
mammals share morphological and functional properties that depend on their mass
M with non trivial laws, called allometric scaling laws [43, 51, 53, 86, 117]. They
write under the following form,

Y = aM b;

wherea is the prefactor,M is the mass of the mammals,b is the exponent andY is
the property shared by the mammals like for example the maximal metabolic rate
as shown on Figure 4.1. These allometric scaling laws come from physiological and
physical constraints [117].

Since the physics of ventilation is linked to the geometry of the lung, the mor-
phological di�erences amongst mammals also a�ect the control of ventilation. It
is con�rmed by the allometric scaling laws for the ventilation frequency and tidal
volume observed in physiology. For example, at basal metabolic rate (BMR), ven-
tilation frequency has been estimated to follow the lawf BMR

b � 0:58M � 0:25 Hz
[121] and tidal volume to follow the lawV BMR

T � 7:14� 10� 3 M 1 L [117]. At other
metabolic rates, less data are available in the literature except for the breathing
frequency of mammals at maximal metabolic rate (MMR). It has been estimated to
follow the law f MMR

b � 5:08M � 0:14 Hz [122].
Previous studies in the literature have been looking for optimal ventilation using

modeling approaches [82, 75, 55]. In 1950, Otis et al. showed that by constraining
the alveolar ventilation, which is the inspired air �ow that enters the alveoli and
participates to gas exchanges,_VA = ( VT � VD )f b with VD the dead volume, an optimal
breathing frequency could be computed analytically by canceling the derivative of

47
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Figure 4.1: Maximal oxygen consumption_V max
O2

as a function of the mammals
mass (red dots) and the corresponding allometric scaling law (blue line),_V max

O2
=

118:2M 0:872 mL � min� 1. Values from [114].

the power relatively to the ventilation frequencyf b [82, 55],

f b;pred =
2 _VA =VD

1 +
q

1 + 4� 2RC _VA =VD

:

For all mammals, allometric scaling laws are available in the literature for all the
quantities present in the expression for the frequency at rest. Indeed we have,_VA /
M

3
4 [43], VD / M 1 [101],R / M � 3

4 [101, 117] andC / M 1 [101]. Consequently, we
can derive an allometric scaling law for the ventilation frequency based on ventilation
data in healthy humans [47],f b;pred / 0:9 M � 0:25 Hz. Thanks to this expression
and to the alveolar ventilation expression, the allometric scaling law for the tidal
volume is then, VT;pred = 7:5 M 1 mL. At rest, these predictions are not far from
the physiological values. However, this model is not able to predict the correct
allometric laws at other regimes.

More detailed models with links between ventilation, blood gas regulations and
control [42, 97, 19] or even neural controls [9] have been described in the literature.
These models are built on several interacting compartments mimicking the behavior
of the respiratory organs and are based on large sets of parameters. However, even
if it �ts precisely physiological responses, these types of models do not allow to
understand easily the physical phenomena linking the lung's properties and the
ventilation characteristics.

We propose a model that is based on the core physical phenomena involved in
lung's function and ventilation [113]. Indeed thanks to our gas transport model
de�ned in the previous chapter, we can link the parameters of the ventilation to the
amount of oxygen exchanged with the blood through the geometry of the lung. Fur-
thermore this model can predict results close to physiological data for all mammals
and at di�erent regimes.
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4.1 Minimization of the power spent for the venti-
lation of the lung

In the previous chapter, we assumed that the air �ow velocity in the trachea could
be idealized by a sinusoidal pattern in time,i.e.

u0(t) = A sin
�

2�
T

t
�

:

This expression is an approximation, since for example for humans, the inspiration
(around 2 seconds) lasts less than expiration (around 3 seconds) [71]. The quantity
A is the air velocity amplitude and T is the period of ventilation, inverse of the
breathing frequencyf b = 1=T. Denoting S0 = �r 2

0 the surface area of the tracheal
cross-section, the tidal volume is

VT =
Z T

2

0
S0u0(s)ds =

AS0T
�

:

The parameterization of ventilation using(A; T ) or (VT ; f b) are equivalent.
The power spent by the lung to bring air in contact with the exchange surface

can be divided in two parts [55]: a mechanical part due to the elasticity of the tissue
and a viscous part due to the hydrodynamic resistance induced by the bronchial
tree on the air �ow.

First, the motion of the tissues out of their equilibrium position implies that the
diaphragm has to furnish, during inspiration, an amount of energy that is stored in
the tissues as elastic energy. This energy is then used during expiration for a passive
tissues recoil. It means that there is a relaxation of the muscle to the initial volume
of the lung without spending energy. The power spentPe(A; T ) is related to the
elastic properties of the thoracic cage and of the lung. These properties depends on
the lung's complianceC � 5 � 10� 7 m3 � Pa� 1 (human) [2] which is de�ned as the
ratio between the change in volume of the lung and the change in transpulmonar
pressure. Compliance depends notably on lung's volume when deformation is high,
as shown by the pressure-volume curves in [3] but can be considered constant in
"normal lung's functionning". In this work, the compliance is assumed constant
and we neglect the non linearities arising at large lung's deformations. We obtain,

Pe(A; T ) =
1
T

Z T
2

0

1
C

V(t)V 0(t)dt =
1
C

A2S2
0T

2� 2
;

whereV(t) =
Rt

0 S0u0(s)ds is the volume of air inhaled as a function of time.

Second, the air�ow inside the bronchi induces an energy loss due to viscous e�ects
that has to be compensated by the motion of the diaphragm during inspiration.
The viscous power dissipated depends on the hydrodynamic resistance of the lung
R � 2 � 105 Pa � s � m� 3 (human) [23]. It writes,

Pv(A; T ) =
1
T

Z T
2

0
Ru2

0(t)S2
0dt = R

A2S2
0

4
:
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Finally, the total power spent is the sum of the power spent for the displacement
of the tissues and for compensating viscous e�ects due to air motion in the bronchi,

P(A; T ) = Pe(A; T ) + Pv(A; T )

= Pe(A; T )
�

1 +
� 2

2T
RC

�
=

A2S2
0T

2� 2C

�
1 +

� 2

2T
RC

�
: (4.1)

The power can also be expressed using the equivalent ventilation parameters
(VT ; f b), whereVT is the tidal volume andf b is the ventilation frequency,

~P(VT ; f b) =
V 2

T f b

2C

�
1 +

� 2f bRC
2

�
:

The function (A; T ) ! P (A; T ) is to be minimized relatively to the ventilation
amplitude A and the periodT with the constraint f O2 (A; T ) = _VO2 . f O2 (A; T ) is the
oxygen �ow resulting from a ventilation with characteristics(A; T ). It is computed
thanks to the gas transport model de�ned in chapter 3 with the expression 3.5._VO2

is the desired oxygen �ow, it depends on the metabolic rate as shown on Table 4.1.
First, only the oxygen �ow is constrained, the carbon dioxide �ow will be constrained
later in the following section.

Figure 4.2: Predicted link between ventilation amplitude and period when the oxy-
gen �ow is constrained (rest regime). It is obtained by solving,f O2 (A; T ) � _VO2 = 0;
for each periodT.

Practically, the ventilation period T and the amplitude A can be linked through
the constraint on the �ow of oxygen to the blood, in the form of a non linear function
T ! A(T). The non linear function is the result of the transport model of oxygen.
For a given value of the period, only one value of the amplitude is possible in order
to check the constraint. The amplitude has to be high enough to bring the oxygen
source close to the exchange surface so that di�usion is quick to drive the transport.
This behavior is shown on Figure 4.2 where the functionT ! A(T) is plotted. For
each periodT, we look for the corresponding amplitudeA by solving thanks to the
secant method,

f O2 (A; T ) � _VO2 = 0:
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Consequently, with the oxygen �ow constraint, the optimization problem is uni-
dimensional and we search for the minimum of the functionP or the zero of its
derivative relatively to T,

@P
@T

(A(T); T) =
�

A0(T)
�

1
2

+
T

� 2RC

�
+

A(T)
2� 2RC

�
A(T)RS2

0 = 0:

Since we impose a positive oxygen �ow, the valueA(T) must be di�erent than zero.
Consequently we only need to search the zero of the function,

D(T) = A0(T)
�

1
2

+
T

� 2RC

�
+

A(T)
2� 2RC

:

The numerical algorithm is detailed in appendix A. Interestingly, the optimal ven-
tilation does not depend independently on the hydrodynamic resistanceR and on
the complianceC, as it depends on the productRC only. Hence, we are expecting
the same behaviors for optimal ventilation relatively to changes in hydrodynamic
resistance or changes in compliance.

4.2 Human's optimal ventilation

Let us compare the predictions of our model with di�erent physiological cases. We
choose to mimic three physiological simulations. The �rst one is the physical activity,
the second one is the e�ect of altitude and �nally the last one is the change in
hydrodynamic resistance linked to a change in lung's size.

4.2.1 Physical activity

Our �rst physiological case aims to mimic the physical activity. Indeed, in the
everyday life, our body experiences metabolism changes: resting, walking, exercising.
Indeed, as explained in the previous chapter, the transit time in the blood capillaries
decreases as the intensity rises since the blood velocity increases. Furthermore, in
order to inhale more oxygen, the bronchi dilate [47]. To model exercise, we need to
adjust the transit time in the blood capillaries, the increase of the bronchi radius
in the bronchial tree and the increased body's need in oxygen. We run the model
for di�erent amount of oxygen, mimicking the di�erent intensities [26] depending on
the maximal oxygen consumption (_V max

O2
). The parameter's changes are detailed on

Table 4.1.
At rest, the model predicts an optimal ventilation amplitude of1:25m � s� 1 and

a ventilation period of 4:91 seconds (see Table 4.2). Both values are very close to
the acknowledged physiological values [113]. The model exhibits a robustness in
term of period perturbation around the optimal. A 5% shift in the energy brings
the period into a range between3:25 seconds up to7:5 seconds. This e�ect is due to
the fact that, at low regimes, a low amplitudeA is su�cient to perform an optimal
ventilation. As the power depends on the period with the quantityA2T, if A is
small then A2T remains small whatever reasonable values for periodT. When the
exercise intensity increases, the power pro�les as a function of the period become
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Percentage of _V max
O2

(Exercise) _VO2 (L �min� 1) r0 (cm) tc (s)
Rest (Sitting) 0.24 0.90 1
30 % (Walking) 0.9 0.93 0.71
45 % (Ballet) 1.35 1.05 0.65
60 % (Bicycling) 1.8 1.20 0.59
75 % (Handball) 2.25 1.25 0.55
90 % (Basketball) 2.7 1.27 0.52
100 % (Running) 3 1.27 0.51

Table 4.1: The �ows of oxygen consumed, the tracheal radius and the transit time
in function of the intensity of exercise. The radiusr i of the bronchi in the bronchial
tree (i 2 J0; G � 1K) are deduced from the tracheal radius as follow,r i = r0hi , where
h =

�
1
2

� 1=3
is the reduction factor between the generations.

Figure 4.3: Power as a function of ventilation period (left) and amplitude (right) for
di�erent intensity of exercise.

steeper and steeper and focus the optimal value within a tighter region. It implies
that a shift from the optimal con�guration at high intensities is predicted to be
costly in term of energy spent. This behavior is fully compatible with the fact that
the control of ventilation is stronger at exercise, preventing even talking. At_V max

O2
,

we observe a period of 1.22 seconds or a frequency of 49 breaths per minute during
maximal exercise, which is very close to physiology (around 44 breaths per minute
[47]). However, measured data for physiological amplitude [13] range between 7 and
21 m� s� 1. The optimal ventilation amplitude computed in our model at maximal
exercise is around7m � s� 1, in the physiological range but on the lower side. A
possible explanation for this underestimation might be that our model does not
account for the wide range of possible human physiology and body needs as our
study is based on one set of parameters only. Indeed, we could rise the value for
_V max
O2

and obtain a lower period but a higher amplitude. A second explanation could
be that the resistance and the compliance have non linear e�ects at high metabolic
rates which are not taken into account here.

In term of oxygen transport (Figures 4.4), as soon as the air �ow is deep enough
in the tree, di�usion is able to bring easily the needed oxygen �ow to the exchange
surface in the �rst generations of the acini. The deepest parts of the acini are not
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Exercise Optimal amplitude (m � s) Optimal period (s)
Sitting 1.25 4.91
Walking 4.05 1.91
Ballet 4.73 1.70
Bicycling 4.91 1.64
Handball 5.63 1.47
Basketball 6.53 1.31
Running 7.21 1.22

Table 4.2: Optimal ventilation amplitude and period for di�erent intensities of ex-
ercise.

Figure 4.4: Partial pressure distribution in the human lung at rest (left) and during
maximal exercise (right). Results are plotted for peak �ows. The red dotted line
represents the end of the bronchial tree and the start of the acinus.

contributing substantially to the oxygen �ow: this e�ect is called acini screening
[96] and it is the strongest at rest regime. The screening e�ect leaves some exchange
surface available for exercise, as a reserve. It brings also a robustness to reduced e�-
ciency of the exchange surface. For example, our model can mimic the physiological
e�ects of a pulmonary oedema by increasing the thickness of the alveolo-capillary
membrane� de�ned in the previous chapter in equation (3.1). As shown on Fig-
ure 4.5, the oxygen �ow is not really a�ected up to a point where the screening
disappears which means that no more exchange surface is available [96]. Then, any
subsequent increase of the membrane thickness� reduces the oxygen �ow, crashing
suddenly the patient.

As amplitude increases, the oxygen source goes deeper within the lung, entering
the acini and increasing the exchange e�ciency, but by thus draining more quickly
oxygen from air. Renewing of the internalized air becomes more crucial to keep
su�cient oxygen �ow. A similar behavior occurs for carbon dioxide, but in the
opposite direction.

The respiratory exchange ratio (RER) follows the expected physiological re-
sponse. Indeed we can observe on Figure 4.6 that this ratio is rising as the intensity
of the exercise increases. However at_V max

O2
, the optimal value corresponds to a RER

of 0.85 when it should be closer to 1, or even above it [41].
This underevaluation could be explained by the fact that only oxygen exchanges
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Figure 4.5: Model response in term of oxygen �ow to an increase of alveolar mem-
brane thickness at rest to mimic pulmonary oedema.

Figure 4.6: Respiratory Exchange Ratio as a function of intensity of exercise.

are constrained and not carbon dioxide. In order to validate or reject this hypothesis,
let us now compute the optimal ventilation by constraining the carbon dioxide �ow.
We ran our model for di�erent values of expired carbon dioxide �ow [26], modeling
di�erent intensities of exercise, as shown on table 4.3. The transit time and the
radius of the trachea remains the same as the one taken for the optimization with
the oxygen constraint (see Table 4.1).

At rest, the optimal ventilation is very similar if we use an oxygen or a carbon
dioxide constraint as shown on Figure 4.7. Indeed, the optimal amplitude is the
same1:25 m� s� 1 for the two constraints and the optimal period is very close with
4.91 s for the oxygen constraint and 4.83 s for the carbon dioxide constraint. It
might be explained by the fact that, in the previous chapter (in section 3.3.2), we
imposed for a physiological ventilation with an amplitude of 1.2m� s� 1 and a period
of 5 s, a RER of 0.8. Here, the optimal ventilation found with our model for the
oxygen �ow constrained is close to the physiological one and the carbon dioxide �ow
constrained have a RER of 0.8 with the oxygen �ow.

As the intensity of the exercise increases, the optimal ventilation frequency di�ers
more and more between the two constraints. Indeed, we impose a carbon dioxide
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Percentage of _V max
O2

(Exercise) _VCO2 (L �min� 1)
Rest (Sitting) 0.19
30 % (Walking) 0.77
45 % (Ballet) 1.21
60 % (Bicycling) 1.71
75 % (Handball) 2.31
90 % (Basketball) 3
100 % (Running) 3.3

Table 4.3: Flow of carbon dioxide exchange in function of the intensity of exercise.

�ow higher than the one obtained with the optimal ventilation parameters under
the oxygen constraint. Hence, the frequency has to be higher in order to expelled
the right amount of carbon dioxide.

Figure 4.7: Optimal frequency (left) and tidal volume (right) as a function of the
intensity of exercise when the constraint of the optimization is theO2 �ow (red
curve) or the CO2 �ow (blue curve).

Interestingly, for both constraints, we obtain very similar results for the tidal
volume. For each intensities, the same volume of air is inhaled but it is renewed at
di�erent frequencies depending on the constraint. At maximal exercise, under the
CO2 constraint we obtain a RER of 0.87 which is really close from the one under
the O2 constraint. We can observe that �nally, we have similar results for the RER
and the tidal volume whatever the constraint. Furthermore the results obtained for
the period with the oxygen constraint are more compatible with the physiology. It
might by explained by the fact that we only chose to use an e�ective arterial partial
pressure for the oxygen and not for the carbon dioxide in order to obtain a RER of
0.8 at rest (see section 3.3.2 in the last chapter). This is why we will mainly use the
oxygen constraint in the following.

In order to have a more physiological RER, we could think about constraining
at the same time the oxygen and the carbon dioxide �ow. However with our model,
it is currently not feasible because we do not have enough degrees of liberty. Indeed
we could suppose that the e�ective partial pressure of oxygen in the blood is not a
constant but a parameter of the gases �ow.
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4.2.2 Altitude induced hypoxia

In our everyday life, we do not always remain at sea level, we may go higher in
altitude and hence be confronted to an ambient air poorer in oxygen. That is why
our second physiological case is mimicking hypoxia induced by altitude. Hypoxia
corresponds to an insu�ciant supply of oxygen regarding the body needs. It can be
the consequence of an alteration of the gas �ows between the alveoli and the blood
or of the absence of the renewal of the air in the alveoli. This is typically one of
the response observed in high altitude [103, 84] where the �ows are reduced by the
smaller pressure gradient at the air/blood interface. To mimic altitude in our model,
we alter the variable representing the partial pressure of oxygen in the ambient air
while keeping the needed oxygen �ow rate constant, see [118] and Table 4.4. In this
framework, we can compare the predictions of our model with known physiological
responses [8].

Altitude (m) Inspired oxygen partial pressure (mmHg)
0 150
500 140
1000 132
1500 123
2000 117
2500 108
3000 103
3500 94

Table 4.4: Inspired partial pressures in oxygen as a function of altitude. Data from
[118].

Figure 4.8: Optimal ventilation period (left) and amplitude (right) as a function of
altitude.

Our model (Figure 4.8) predicts an increased ventilation in order to compensate
the lower oxygen partial pressure, with lower periods and higher amplitudes. This
allows to put the scarcer oxygen source deeper in the acinus and to bene�t from a
higher exchange surface to compensate for the lower oxygen gradient between the
alveolar gas and the blood. The response predicted is fully compatible with the
lung's physiology [108] and brings on the typical strategy of the lung to increase
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ventilation when gas exchanges are too low. When altitude is higher than3500
meters, the model is not anymore able to ful�l the oxygen �ow constraint because
the inspired oxygen partial pressure is lower than our e�ective partial pressure in
the blood, implying that blood homeostasy is not anymore sustainable in our model.

4.2.3 Response to change in hydrodynamic resistance

Finally, the lung is not identical for all humans. Indeed there are some variabilty
on the size of the lung that can depend on the height, the weight, the gender of
the person. The hydrodynamic resistance is a physical quantity that relates the
amount of energy given to the �uid to the actual �ow of the �uid. This quantity
is dependent on the size of the bronchi. A change in hydrodynamic resistance then
goes with a change of lung's geometry. This is why our �nal physiological case is the
change of the hydrodynamic resistance. In our model, if we know the size reduction
factor at each bifurcation of the bronchi and the tracheal radius, we can compute
the equivalent hydrodynamic resistance of the whole tree as follow [71],

R = R0

"

1 +
NC � 1X

k=1

1
(2h3)k

+
NX

k= NC

1
2kh3(NC � 1)

#

:

R0 is the resistance of the �rst generation bronchi, it writes,

R0 =
8�l 0

�r 4
0

;

where � = 1:8 � 10� 5 Pa � s is the viscosity of the air. This equivalent resistance
neglects the resistance of the bifurcations, the e�ects of inertia and turbulence, but it
can give us an estimation of the evolution of the resistance regarding the parameters
h and r0. Indeed, in order to compute a value for the resistance with a di�erenth or
r0, we chose to compute the resistance with the formula for the equivalent resistance
and to determine the ratio of increase or decrease relatively to the reference value
h =

�
1
2

� 1=3
= 0:7937and r0 = 0:9 cm. Finally, to obtain a coherent resistance we

multiply this ratio with the physiological value of the resistance.
First, we chose to modify the parameterh. To increase the equivalent resistance

of 30%, the corresponding size reduction factor ish = 0:7859and for a decrease of
the resistance of30%, we haveh = 0:8058.

The curves of the powers spent for the ventilation of the lung are plotted on
Figure 4.9, where resistance and geometrical changes have been related with the
reduction factor h between two successive generations: the amplitude of the veloc-
ity is almost the same for the three tree morphologies whereas the period decreases
when the resistance increases. The highest factorh tested corresponds to an opti-
mal period of about 6.64 seconds, the reference resistance corresponds to a period
of about 4.91 seconds and the lowest factorh tested corresponds to a period of
about 4.22 seconds. In all these con�gurations, the power remains �at around the
optimal value. For an increase in resistance, typically for smaller lungs, the optimal
ventilation changes signi�cantly. Indeed if the size reduction ratio is smaller, the
optimal con�guration keeps the same amplitude but lowers the period. Because the
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Figure 4.9: Power as a function of the ventilation period (left) and the amplitude
(right) for di�erent size reduction factor h.

exchange surface is also smaller, di�usion explores deeper in the acini, leaving less
reserve for exercise. This behavior is not the one expected from physiology, mainly
because the e�ect of an increase of resistance is �rst hypoxia, that induces the ven-
tilation control to use both an higher amplitude and a smaller period. Our results
show that in the optimal strategy found with our model, the resistance increase is
compensated by a volume of internalized air that is smaller (same amplitude but
for a lower period). The mechanical energy gained with a smaller volume to move
allows a decrease of the total energy.

However, we saw that the hydrodynamic resistance depends also on the tracheal
radius. Let us now modify this parameter. For a increase of resistance of about30%
we obtain a new tracheal radius of0:82 cm and for a decrease of resistance of about
30%we have a radius of 1.01 cm.

Figure 4.10: Power as a function of the ventilation period (left) and the amplitude
(right) for di�erent tracheal radii r0.

The curves of the powers spent for the ventilation of the lung are plotted on
Figure 4.10, where resistance and geometrical changes have been related to the
tracheal radius r0. Interestingly in this case the optimal ventilation is not exactly
the same as the previous one with the change of the size reduction ratio. Indeed the
ventilation amplitude increases when the resistance increases. The highest tracheal
radius tested corresponds to an optimal amplitude of1:02m � s� 1, the reference
radius gives an amplitude of1:25m� s� 1 and �nally the lowest tracheal radius has an
optimal amplitude of 1:45m � s� 1. However the period follows the same trend as in
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the previous case, and the optimal values are of the same order. In this case, for an
increase of resistance, the optimal con�guration increases the amplitude and lowers
the period. This behavior is the one expected from physiology since the e�ect of an
increase of the hydrodynamic resistance is �rst hypoxia. Our results show that in
the optimal strategy found with our model, the resistance increase is compensated
by a smaller lumen area which allows a decrease of the total energy.

To conclude, the response to a change in hydrodynamic resistance depends on
how the lung's resistance is modi�ed.

4.3 Mammal's optimal ventilation

The lungs of mammals share morphological and functional properties, raising the
question on whether the previous results for human can be extended to all mammals.
These shared properties are known to be dependent on the massM of the animal
following allometric scaling laws [43, 51, 53, 86, 117]. These laws are written as
follow,

Y = aM b;

where Y represents the morphological or functional characteristic,a is denoted as
the prefactor, M is the mass of the mammals (in kg in our work) andb is the
exponent. It is then essential to de�ne the allometric scaling laws of the parameters
used in our model in order to extend our work to all mammals.

4.3.1 Extension of the model to mammals

Let us extend our gas transport model and our hypotheses de�ned in chapter 3 in
order to be validated for all mammals. First, even if there are some di�erences
in the geometry of the lung for the mammals [105], it can be considered in a �rst
approximation as a tree-like structure with bifurcating branches. It decomposes
into two parts: the bronchial tree and the acini. The size of the branches in the
bronchial tree is decreasing at each bifurcation with a ratio in the whole tree close to
h =

�
1
2

� 1=3
[113, 70, 56]. In the acini, the size of the branches are considered invariant

at bifurcations [113, 105]. We want to relate explicitly morphological parameters in
our model to the mass of the mammals. We based our hypotheses on the datasets
available in [117], which brought a large set of theoretical allometric scaling laws for
the cardiorespiratory system, compatible with the ecological observations.

The �rst morphological parameter used in our model is the trachea radiusr0. It
follows the law [117],

r0 = aM
3
8 :

The prefactor a can be determined based on human data. Indeed at rest, the mean
trachea radius is 0.9 cm for humans, which leads toa = 1:83� 10� 3, when the mass
M of the animal is in kg.

The allometric law for the tracheal length is not explicitly detailed in [117].
However we can derive the exponent from the data available. Indeed the dead



60 CHAPTER 4. HEALTHY VENTILATION

volume (Vdead / M 1) is assumed to be proportionnal to the tracheal volume [106].
Since we have

Vdead / �r 2
0l0 / M 1;

we can easily deduce that
l0 / M

1
4 :

The number of generations in the conductive tree (G) and in the acinus (H ) are
two essential parameters to de�ne the geometry of the lung. The computation ofG
requires to assume that the radius of the alveolar ducts are similar to the radiusrA

of the branches in the acini [113], for which an allometric scaling law is known [117],

rA / M
1

12 :

The number of generationsG in the conductive tree is then obtained from the
following formula,

rA = rG� 1 = r0hG� 1:

Indeed, since we suppose that the decreasing ratioh =
�

1
2

� 1=3
is constant for all

mammals, we have
2G� 1 / M

7
8 :

We can �nally express the number of generations in the conductive tree,

G =
�

log(rA =r0)
log(h)

�
+ 1 =

�
7
8

log(M )
log(2)

+ cst
�

+ 1:

We can also de�ne the length of the branches in the acinus as follow,

lA = lG� 1 = l0hG� 1:

Thanks to this formula, the allometric scaling law forlA is easily computed. Indeed
we know that,

lA
rA

=
l0hG� 1

r0hG� 1
=

l0
r0

:

Since the law forl0, r0 and rA are known, we obtain,

lA / M � 1
24 :

We suppose in our case that the number of generations in the acinusH is inde-
pendant on the mass of the mammals [93, 45]. The last allometric scaling law for
the morphometric parameters left to de�ne is the law for the amount of exchange
surface per unit of alveolar duct surface%s. First the total lung's exchange surface
SA can be de�ned as the product of the number of alveolinA / M 3=4 [117] and the
surface of an alveolussA . We suppose that an alveolus is a half-sphere, hence its
surface issA = 2�r 2

A . Since we know the law for the radius of the alveolusrA , we
have the law for the surfacesA / M 1=6. The total lung's exchange surface is then
SA / M 11=12 [117]. Second, in our model, a branch in an acinus has a surface

sad = 2�r A lA / M
1

24 :
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The total surface of the alveolar ducts in the idealised lung is then

Sad = 2G
H � 1X

k=0

2ksad = 2G(2H � 1)sad / M
11
12 :

SinceH is independant on the mass of the animal, the amount of exchange surface
per unit of alveolar duct surface,

%s = SA =Sad / M 0:

We de�ned in chapter 3, the oxygen saturation of hemoglobin in the blood and
we modelled this function using the following Hill equation (see Figure 3.10) [50],

f (x) =
x2:6

x2:6 + 262:6
:

The variable P50 which represents the oxygen partial pressure for which the oxygen
saturation of hemoglobin is50% is an interesting parameter that express theO2

a�nity of the blood. This parameter is dependant on the mass of the mammals
and follows an allometric scaling law with an exponent of� 1

12 [117]. We extend the
oxygen saturation in the blood to all mammals by shifting the function on order to
obtain the correct oxygen partial pressure at50 %saturation.

Finally, we recall the formula of the power that we want to minimize,

P(A; T ) =
A2S2

0T
2� 2C

�
1 +

� 2

2T
RC

�
:

The hydrodynamic resistanceR and the complianceC are two parameters essential
for our optimization. The allometric scaling law for the resistance is already known,
we have [117],

R / M � 3
4 :

The compliance is de�ned as the ratio between the change in volume of the lung,
i.e. the tidal volume (VT / M 1) and the change in transpulmonary pressure which
we approximate with a change in pleural pressure (Ppl / M 0 [98]). Then, we can
deduce an allometric scaling law for the compliance,

C / M 1:

This exponent is in agreement with the physiological data from [101]. All the allo-
metric scaling laws previously described are summarize in Table 4.5.

4.3.2 Optimal allometric scaling laws

Our analysis explores a set of masses ranging from the mouse (20 grams) to the ele-
phant (5 tons) under three regimes: basal metabolic rate (BMR), �eld metabolic rate
(FMR) and maximal metabolic rate (MMR). The basal metabolic rate corresponds
to a resting rate. The �eld metabolic rate corresponds to an intermediary rate, it
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Variables
Exponent

Prefactor
Predicted [117] Observed

Lung volume 1 1.06 [101] 53.5 mL [101]
Tracheal radius 3/8 0.39 [106] 1.83 mm�

Tracheal length 1/4 0.27 [106] 1.87 cm�

Radius of alveolar ducts 1/12 0.13 [107] 0.16 mm�

Length of alveolar ducts -1/24 N.D. 1.6 mm�

Number of alveoli 3/4 N.D. 19 800 000�

Tidal volume (rest) 1 1.041 [117] 7.69 mL [101]
O2 a�nity of blood -1/12 -0.089 [27] 37.05 mmHg�

Total resistance -3/4 -0.70 [101] 18 mmHg� s� L � 1 [101]
Total compliance 1 1.04 [101] 2.12 mL� mmHg� 1 [101]
Interpleural pressure 0 0.004 [44] N.D.

Table 4.5: Predicted and observed/computed values of allometric exponents for
variables of the mammalian respiratory system.� : Prefactor computed using human
values (M = 70 kg) at rest. N.D.: No data found.

represents the mean energy spent during our everyday life : walking, foraging ...
Finally the maximal metabolic rate represents the maximal energy spending,_V max

O2
.

The amount of carbon dioxide removed from the blood by the lung is not detailed
in the literature for all mammals. This is why we only use in our computations the
oxygen �ow exchanged with the blood.

The powerP(A; T ) is optimized with the constraint f O2 (A; T ) = _VO2 . We need
to de�ne the desired �ow for the three rates. At BMR, we have the following law
[58, 86],

_V BMR
O2

= 9:92� 10� 3 M
3
4 L � min� 1:

The prefactor is computed using the human value at rest.
At FMR, the allometric scaling law [52] is,

_V FMR
O2

= 2:4 � 10� 2 M 0:64 L � min� 1:

We also found the prefactor using the human value,_V FMR
O2

= 0:58L � min� 1 [79]. It
represents an intensity of around 20% of _V max

O2
for humans.

Finally, at MMR the allometric scaling law is [116],

_V max
O2

= 1:18� 10� 1 M
7
8 L � min� 1:

When we modify the intensity of the exercise, we also modify the radius of the
trachea and the velocity of the blood as explained in the previous section. There
are di�erent laws for the three rates. The allometric scaling laws for the tracheal
radius keep the same exponent but the prefactor is modi�ed. It is computed using
human values. We know that for human, the oxygen �ow at FMR is about20%of
_V max
O2

, and we interpolate the values taken in [26] to obtain a radius of0:93 cm.

r BMR
0 = 1:83� 10� 3 M

3
8 m;
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r FMR
0 = 1:89� 10� 3 M

3
8 m;

r MMR
0 = 2:58� 10� 3 M

3
8 m:

The blood velocity is computed as the ratio of the length of the capillarylc over
the transit time in the capillary tc. We assume that the length of the capillarylc
is not dependant on the mass of the mammals and is a constant, as in [117]. It is
chosen to be 1 mm. However the transit time in capillaries depends on the metabolic
regime but also on the mammal's mass. No data is available in the literature for
the �eld metabolic rate, so we can compute the prefactor using the human value
tc = 0:78 s computed by interpolation of data from [47]. Since the exponent of the
allometric laws for the �eld metabolic rate is not known, we chose to take the same
as the one for the basal metabolic rate. We �nally obtain,

tBMR
c = 0:35M

1
4 s [47; 117];

tFMR
c = 0:27M

1
4 s;

tMMR
c = 0:25M 0:165 s [12; 47]:

Allometric scaling laws of breathing rates and tidal volumes

Our model predicts that the optimal ventilation follows allometric scaling laws in
the three regimes, as shown in Figure 4.11.

At _V BMR
O2

:
f BMR

b ' 0:71 M � 0:29 Hz, V BMR
T ' 5:7 M 1:05 mL;

at _V FMR
O2

:
f FMR

b ' 1:39 M � 0:32 Hz, V FMR
T ' 9:4 M 0:98 mL;

at _V max
O2

:
f MMR

b ' 2:05 M � 0:15 Hz, V MMR
T ' 21 M 1:04 mL:

Our predicted laws are close to the ones observed in physiology. Indeed at BMR,
breathing frequency has been estimated in the physiology to follow the law [101],

f BMR
b = 0:89M � 0:26 Hz;

and tidal volume to follow the law [101],

V BMR
T = 7:7M 1:04 L:

For the other rates, less data are available in the literature. We only have the law
at MMR for the breathing frequency [122],

f MMR
b ' 5:08M � 0:14 Hz:

A larger dead volume at exercise [47] makes the oxygen source for di�usion slower
to deplete. This might lead to a decrease in the optimal breathing rate, depending
on how the need of oxygen is increased. As a consequence, for small mammals, our
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Figure 4.11: Predicted breathing frequency (left) and tidal volume (right) as a func-
tion of the mammals' mass (log-log) for three di�erent rates, the basal metabolic rate
(BMR), the �eld metabolic rate (FMR) and the maximal metabolic rate (MMR).

model predicts breathing frequencies at MMR smaller than breathing frequencies at
FMR.

These results are only slightly sensitive to the allometric scaling law of the blood
residence time in the pulmonary capillaries. Indeed we performed a sensibility anal-
ysis on this parameter. We increased and decreased of30%the exponent of the law
at FMR, our predicted laws for the breathing frequency and the tidal volume were
only modi�ed by 0:1%. It supports our trust in our results.

In our work, we suppose that the hydrodynamic resistance is independant on the
ventilation regime. However if we neglect the increased inertia and turbulence in the
bronchi at MMR, the change in dead volume at this regime leads the hydrodynamic
resistance to be decreased by a factor4. In this case, the corresponding exponent
for breathing rate goes to� 0:13. Even with a important change in resistance, the
exponent of the law for breathing frequency does not have a signi�cative change.
Since we do not really know how the increased inertia and turbulence can compensate
the increase in dead volume and since our predicted laws are not extremely sensitive
to resistance, we can assume that taking the hydrodynamic resistance independent
on the ventilation regime is a good enough approximation.

Exhaled oxygen fraction

The oxygen �ow captured by the lung is a proportion of the air �ow inhaled,

_VO2 = _VE (f I � f E );

with _VE = VT f b the air �ow rate, f I the oxygen fraction in ambiant air andf E the
mean exhaled oxygen fraction. Our model can predict the allometric laws for the
drop in oxygen fraction between ambiant and exhaled air denoted� f = f I � f E .
We obtain for our three regimes the following laws,

� f BMR = 3:60 M 0:02 %;

� f FMR = 4:42 M � 0:006 %;

� f MMR = 4:47 M 0:008 %:
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The drop in oxygen fraction depends only slightly on the mass and is in the range
3 to 5%, whatever the ventilation regime. Since the inhaled oxygen fraction in air
is about 21 %, the oxygen fraction in the exhaled air is between16 and 18 %, in full
accordance with the the physiology [113]. Let us de�ne the quantity� = � f=f I ,
it represents the e�ciency of oxygen extraction by the lung. Our model suggests
that the optimal value is around 20 %. Since the exponent for all regimes are not
exactly zero we obtain some di�erences between small and large mammals. These
di�erences could be explained by the simplications made in our model.

Transition between convection and di�usion

The localization of the transition between convective and di�usive transports can
be estimated by the analysis of the variations with the mass of the Péclet number,
through the generations. This number arises by writing the transport equations
in their dimensionless form. Let us recall the adimensionalized equation for our
transport model explained in the previous chapter,

� i
@Pi
@s

�
@2Pi

@y2
+ Pei

@Pi
@y

+ � i (Pi � Pblood ) = 0 ;

where,

� i =
l2
i

D ~T
Pei =

l i ui

D
� i =

� i l2
i

D
:

The air �ow velocity in generation i 2 J0; N K, where N + 1 is the number of
generations in the lung, is computed as follow,

8
>><

>>:

ui (t) =
�

1
2h2

� i

u0(t); for i 2 J0; G � 1K;

ui (t) =
uG� 1

2i � G+1
; for i 2 JG; N K;

whereu0(t) is,

u0(t) = A sin
�

2�
T

t
�

:

The mean Péclet number over a half breath is then, fori < G ,

�Pei =
2
T

Z T=2

0
Pei (t)dt =

2VT f bl0
�r 2

0D

�
1

2h

� i

;

and for i > G,

�Pei =
2
T

Z T=2

0
Pei (t)dt =

2VT f bl0
�r 2

0D

�
1

2h

� G� 1 �
1
2

� i � G+1

:

The localization of the transition zone is reached when�Pei becomes smaller
than one over the ventilation cycle. We suppose that the transition occurs at the
generationk, it means that we have,

�Pek = 1:
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If this generation k is in the conductive tree, we then have,

2k =
�

2VT l0f b

�r 2
0D

� 3
2

=
�

2 _VE
l0

�r 2
0D

� 3
2

/ _V
3
2

E � M � 3
4 :

However if the generationk is in the acinus, we obtain,

2k =
2VT l0f b

�r 2
0D

�
2G� 1

� 1
3 = 2 _VE

l0
�r 2

0D

�
2G� 1

� 1
3 / _VE � M � 5

24 :

We can observe on Figure 4.12 that at rest the localization of the transition
zone between convection and di�usion is in the convective tree for large mammals
(mass superior to 160 kg) and in the acini for smaller mammals. Hence, we obtain
two allometric scaling laws at rest. For large mammals, we have2kr / M 0:39 and
for smaller animals we obtain,2kr / M 0:55. At maximal exercise, the transition
between convection and di�usion happens to be deeper in the lung than at rest.
It is located in the acini for all our selection of mammals. We then have only
one allometric scaling law,2ke / M 0:68. Hence, the transition generationk can be
localized relatively to the generation of the terminal bronchiolesG � 1. At rest we
have,

kr = G � 1 + 3:57� 0:49 log(M )=log(2); for M > 160kg;
kr = G � 1 + 2:38� 0:3252 log(M )=log(2); for M 6 160kg:

At maximal exercise, we obtain,

ke = G � 1 + 4:81� 0:1977 log(M )=log(2):

Figure 4.12: Localization of the transition between a convective and di�usive trans-
port of the oxygen in the lung as a function of the animal's mass (logarithmic scale).
This localization is predicted by our model that minimizes the powerP(A; T ). The
lines correspond to the localizations of this transition at BMR (rest, blue line) and
MMR ( _V max

O2
, orange line). The vertical green line corresponds to human's mass (70

kg). The lower beige region corresponds to the convective zone of the lung, while
the upper blue region corresponds to the exchange surface (acini).

Depending on the localization in the lung of the transition between convection
and di�usion, an exchange surface in the acini can be only partly active. Indeed if
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this transition is made at the entrance of the acini, like for humans at rest, only the
�rst generations of the acini have an oxygen concentration high enough to create
a signi�cant oxygen �ow to the blood. This phenomenon is called the screening
e�ect [95]. The oxygen di�uses but is quickly absorbed by the bronchi walls so
that there is little oxygen in the last generations of the acinus. Our model predicts
that small mammals use almost all their available exchange surface at rest, with
low screening e�ect. However the localization of the transition between convection
and di�usion for large mammals at rest happens to be at the end of the bronchial
tree, with strong screening e�ect. They have a clear di�erence in term of volume
usage between rest and exercise. The di�erence can be explained by the fact that
large mammals needs less oxygen relatively to their mass than small mammals, as
the exponent of the allometric law of _VO2 =M is negative for all metabolic regimes.
Indeed we have at BMR, _VO2 =M / M � 1=4 and at MMR, _V max

O2
=M / M � 1=8.

4.4 Conclusion

We described and studied a model that minimizes the power dissipated during res-
piration and how it depends on the ventilation parameters. This dissipated power
depends on the resistance to the air�ow in the bronchi and on the mechanical en-
ergy stored in the tissue. The optimization is made assuming that the oxygen �ow
exchanged with the blood has to �t the body needs.

Our results are close to the physiology for humans and for all mammals, for dif-
ferent metabolisms. This suggests that the control of ventilation is highly dependent
on the morphological characteristics of the lung, and helps us to better understand
the allometric scaling of its ventilation in mammals. These results might highlight
how the evolution may have driven the design of the respiratory system.

This model could be improved in many ways, especially during maximal exercise.
Indeed, we know that during intense activity, expiration is no longer a passive action.
The contraction of the muscles might induce a supplementary mechanical energy in
the tissue at expiration that is not taken into account in our model. Furthermore,
we made the assumption that the hydrodynamic resistance is not modi�ed during
exercise even though we increased the dead volume. This new resistance should be
computed by counterbalancing the increase of the bronchial radius by the augmen-
tation of the inertia and the turbulence due to an higher air�ow. Finally, we could
improve the model regarding the geometry of the mammals lung. We could take
into account the asymmetry of the bifurcations [105, 36] or the di�erent types of
branching patterns found in mammals (monopodial, dichotomous, polychotomous)
[83].
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Sections 2 and 3 were the subjects of two articles. The results presented in the
papers are slightly di�erent than the one presented here, since some parameters have
been adjusted. However, the conclusions remain the same.

The section 2 of this chapter was the subject of an article published in Frontiers
in Physiology. The references are:

Interplay between optimal ventilation and gas transport in a model of
the human lung.
F.Noël1;2, B. Mauroy1;2,

Frontiers in Physiology, 10:488, 2019.

1 Laboratoire JA Dieudonné, UMR CNRS 7351, Université Côte d'Azur, Nice,
France.
2 VADER Center, Université Côte d'Azur, Nice, France.

The section 3 of this chapter is the subject of an article that is in prepublication.
The references are:

The origin of the allometric scaling of lung's ventilation in mammals.
F.Noël1;2, C. Karamaoun1;2, B. Mauroy1;2,

hal-02567829v2, 2020.

1 Laboratoire JA Dieudonné, UMR CNRS 7351, Université Côte d'Azur, Nice,
France.
2 VADER Center, Université Côte d'Azur, Nice, France.



Chapter 5

Ventilation of a non-healthy human

In the previous chapters, we considered the human's lung to be one of a young,
healthy subject. However, in a lifetime several pulmonary infections can occur. For
pathogens, the lung is an organ easy to in�ltrate and where to proliferate. Indeed,
it is an humid environment, full of oxygen, connected to the ambient air through
the mouth and the nose. Once in the lung, the development of an infection induces
an in�ammation in the bronchi. This reaction allows the tissue to swell in order for
the white blood cells of the immune system to converge at the site of infection and
to start eliminating the pathogens [68]. The in�ammation modi�es the geometry of
the lung, and hence the distribution of the air�ow as well as the ventilation.

Di�erent approaches in the litterature have been used to model the response of
the immune system following a pulmonary infection. A �rst approach is to model
the macrophage response after an infection using ordinary di�erential equations [25]
or using models of granulomas development [46, 38, 20] which are macrophage clus-
ters. These types of approaches have the bene�t of mimicking the immune response
speci�c to the lung and allows to explore potential treatments. However, even if
macrophages are the �rst responders during a pulmonary infection, these models do
not take into account neutrophils present in the blood that are the majority of the
leucocytes. A second approach has been to model the in�ammatory response in a
part of the acinus [89]. This model allows to represent the infection in the whole
lung and to model the exchanges with the blood. However, even if this model takes
into consideration the swelling of the tissue, it does not represent the pathogen evo-
lution in the lung which is important in order to be able to model di�erent types
and speeds of infection.

We choose to use a more global immune response model that is not speci�c to the
lung and that can be used in any organs. This type of models has the bene�t of not
being speci�c to a certain virus or a certain bacteria. Nevertheless, simple models
with only three [74, 85, 120] or four di�erent variables [90, 18, 77, 31] describe
the evolution of tissue damage all along the infection but not the in�ammation
of the tissue. Hence, we used a more speci�c, but also more complex model [91]
that describes the immune response in the tissue and in the blood, but also the
in�ammation of the tissue. This last model is then linked to our gas transport model
described in the chapter 3 to simulate the propagation of idealized lung infection and
in�ammation bronchi per bronchi. Our model is generic, it does not focus on one

69
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Tissue

Blood

IL 10

IL 10b

TNF

TNFb

RAD

RAD bN �
b

Nb

N �

M M � P TI

Figure 5.1: Interactions of the immune system and the pathogen. Di�usion is rep-
resented by black arrows, up-regulation of immune interactions by red arrows and
down-regulation of immune interactions by blue arrows. Reproduced from [91].

pathogen only. In this explorative model, we study di�erent stages of the infection
and how the exchanges with the blood are a�ected by the altered lung's geometry
arising from the in�ammation of its airways.

5.1 Infection model

The surface barriers are the �rst defenses of the innate immune system. In the lung,
they consist in the mucus and in the ciliated cells [32]. We focus in this chapter on
the second defense of the innate immune system that responds once a pathogen has
breached the barriers. It is composed of chemicals and white blood cells, which are
also called leucocytes [68].

5.1.1 In�ammation of the bronchi

We choose to model an infection in the lung by using an existing model representing
the response of the immune system in a human organ and its interplay with the
blood [91]. It describes the evolution of several variables that represent the response
of the immune system in the tissue and in the blood, as shown in Figure 5.1.

When the body detects a pathogen in the tissues (P) or in the blood (Pb), the �rst
reaction of the immune system is to bring white blood cells (here macrophages and
neutrophils) to the site of infection. When resting macrophages (M ), already present
in the tissue, come in contact with some pathogens, they become activated (M � ).
Then, they can eliminate the pathogens and produce pro-in�ammatory (TNF ) and
anti-in�ammatory ( IL 10) cytokines. Pro-in�ammatory cytokines migrate into the
blood (TNFb) and send a signal to resting neutrophils (Nb) already present in the
blood. Once the signal is received by the neutrophils, they become activated (N �

b ).
These activated neutrophils have the ability to go into the tissue (N � ) and to �ght
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the pathogens. Furthermore, during this infection, the tissue becomes in�amed (Z )
and the presence of radicals (RAD and RAD b) produced by activated macrophages
and neutrophils, can damage the tissue that becomes less functional (T I ). This
immune response can be modeled by ordinary di�erential equations and the values
and the descriptions of all parameters used are detailed in Annexe B. All these
equations and parameters come from [91].

First, let us tackle the pathogens equations:

dP
dt

= kpgP
�

1 �
P

P1

�
�

sbkpbP
� b + kbpP

� kpmgi (M � )g(P; xm� p; hm� p)

� kpngin (N � )g(P; xn� p; hn� p) + dp(Z )
dpb(Pb) � dpt(P)

VT

dPb

dt
= kpbgPb

�
1 �

Pb

Pb1

�
�

sbbkpbbPb

� bb + kbbpPb

� kpnbgib(N �
b )g(Pb; xn� pb; hn� pb) + dp(Z )

dpt(P) � dpb(Pb)
VB

:

(5.1)

The �rst term in the equations represent the logistic growth of the pathogens in
the tissue and in the blood. The pathogens are �rst destroyed by the macrophages
already present on the site of infection which is modeled by the second term in the
equations. The pathogens in the tissue are also eliminated by activated macrophages,
a mechanism which is modeled by the third term in the �rst equation. However,
the presence of anti-in�ammatory cytokines (IL 10) a�ects their ability to deplete
pathogens, which is modeled by the following inhibition function,

gi (x) = x

0

B
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1 +
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� h i
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1

C
A :

Furthermore, the macrophages can eliminate the pathogens up to a maximal rate,
which is modeled by an Hill function that has a sigmoid variation,

g(v; x; h) =
vh

vh + xh
:

The pathogens can also be eliminated by the activated neutrophils, a mechanism
which is modeled by the second to last term. As for the activated macrophages,
IL 10 a�ects the ability of the activated neutrophils to deplete pathogens, which is
modeled by an inhibition function in the tissue,

gin (x) = x

0

B
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�

IL 10
IL 10n 1

� h in
+ cin

1
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A ;
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and in the blood,

gib(x) = x

0

B
@

1 � cib

1 +
�

IL 10b
IL 10b1
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1

C
A ;

Finally the last term of the equations (5.1) represents the di�usion of the pathogens.
The di�usion depends linearly on the in�ammation (Z ),

dp(Z ) = dbp(1 + dfp Z):

Furthermore, the pathogens in the tissues form colonies at high concentration. The
di�usion is then dependent on the surface area of the population. The di�usion of
the pathogens is then modeled by,

dpb(Pb) = abPb; and dpt(P) =
atP2=3

1 + btP1=3
:

Now, let us focus on the macrophages equations,

dM
dt

= sm � � mM � kmpgi (M )g(P; xmp ; hmp)

� kmtcell gi (M )g(TNF; x t ; ht ) � kmrcell gi (M )RAD;
dM �

dt
= � � m� M � + kmpgi (M )g(P; xmp ; hmp)

+ kmtcell gi (M )g(TNF; x t ; ht ) + kmrcell gi (M )RAD:

(5.2)

The �rst terms represent the source (sm ) and the death (� m ) of the macrophages.
Indeed, only resting macrophages (M ) are provided by the organism. The next terms
model the activation of the macrophages when in contact with pathogens, with the
pro-in�ammatory cytokine ( TNF ) and with radicals (RAD ).

Likewise, let us de�ne the equations for the neutrophils in the blood,

dNb

dt
= snb � � nbNb + ksnbg(cN �

b + dN � ; xsnb; hsnb)

� knpbcellgib(Nb)g(Pb; xnpb; hnpb)

� kntcell gib(Nb)g(TNFb; xtb; htb) � knrb gib(Nb)RAD b;
dN �

b

dt
= � � nb� N �

b + knpbgib(Nb)g(Pb; xnpb; hnpb)

+ kntcell gib(Nb)g(TNFb; xtb; htb) + knrb gib(Nb)RAD b

� (1 � rb)kpncell gib(N �
b )g(Pb; xn� pb; hn� pb) �

dn (Z )N �
b

VB
:

(5.3)

As for the macrophages, the �rst terms represent the source (snb) and the death
(� nb) of the neutrophils. However, we also assume that the increase of in�amma-
tion increases the source of neutrophils. This phenomenon is modeled by the third
term of the equation. This term depends on the resting neutrophils (Nb) in the
blood through the non linear functiong, which is itself depending on the number



5.1. INFECTION MODEL 73

of activated neutrophils in the blood and in the tissue. As for the macrophages,
the neutrophils are activated when in contact with the pathogens (Pb), with the
pro-in�ammatory cytokine ( TNFb) and with the radicals (RAD b). Furthermore,
activated neutrophils can be depleted during the elimination of pathogens, a mech-
anism which is modeled by the second to last term in theN �

b equation. Finally,
the last term of the N �

b equation represents the fact that activated neutrophils can
di�use into the tissue. Di�usion is modeled thanks to a linear function with the
in�ammation ( Z ),

dn (Z ) = dbn(1 + dfn Z):

The equation for the activated neutrophils in the blood writes,

dN �

dt
= � � n� N � � (1 � r )kpncell gin (N � )g(P; xn� p; hn� p) +

dn (Z )N �
b

VT
: (5.4)

As for the activated neutrophils in the blood, the equation takes into account the
death of the neutrophils, their depletion when eliminating the pathogens and the
di�usion of the cells.

Let us now focus on the pro-in�ammatory cytokines (TNF ),

dTNF
dt

= � � tTNF � kmtmol gi (M )g(TNF; x t ; ht )

+
dmol (Z )(TNFb � TNF )

VT
+ kmat git (g(M � ; xm� t ; hm� t )) ;

dTNFb

dt
= � � tbTNFb � kntmol gib(Nb)g(TNFb; xtb; htb)

�
dmol (Z )(TNF � TNFb)

VB
:

(5.5)

The �rst term of the equations represents the decay of the cytokines. Then, the
second term models the binding ofTNF to resting macrophages that causes the ac-
tivation of the macrophages. The third term represents the di�usion of the cytokines
between the tissue and the blood thanks to a linear function,

dmol (Z ) = dbmol(1 + dfmol Z):

The last term in the equation of TNF in the tissue represents the production of
TNF by the activated macrophages. It is modeled thanks to the following inhibition
function,

git (x) = x
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The anti-in�ammatory cytokines ( IL 10) equations write,

dIL 10
dt

= ( � � imax + ( � imax � � imin )g(IL 10; x i ; hi )) IL 10

+
dmol (Z )(IL 10b � IL 10)

VT
+ kmai gi (g(M � ; xm� i ; hm� i )) ;

dIL 10b

dt
= ( � � ibmax + ( � ibmax � � ibmin )g(IL 10b; x i ; hi )) IL 10b

+
dmol (Z )(IL 10� IL 10b)

VB
:

(5.6)

The �rst term of the equations represents the decay rate of the cytokines by assuming
that the decay rate is minimum when theIL 10 concentration is at its maximum.
Then, as for the pro-in�ammatory cytokines, the equations take into account the
di�usion between the tissue and the blood of the molecules and the production of
IL 10 by the activated macrophages.

Now we focus on the radicals (RAD ) equations,

dRAD
dt

= � � r RAD +
dmol (Z )(RAD b � RAD )

VT
+ knar gin (N � )

+ knatr N � T I + krntp N � P TI + krtmp M � P TI

+ krtr RAD TI

dRAD b

dt
= � � rbRAD b + knarb ginb (N �

b ) +
dmol (Z )(RAD � RAD b)

VB
:

(5.7)

The �rst two terms of the equations represent the death of the radicals, and their
di�usion between the blood and the tissue. The next terms model the production of
radicals (RAD ). First, they are released by the activated neutrophils in the tissue
and in the blood where the inhibition function for the neutrophils in the blood
writes,

ginb (x) = x
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The radicals in the tissue are also produced by tissue damage (T I ). Indeed, activated
neutrophils cause tissue damage that releases radicals. Then, activated neutrophils
and activated macrophages damage the tissue while eliminating pathogens. Hence,
this also also releases radicals. Finally, radicals themselves are causing damage to
the tissue,i.e. they increase their own concentration.

Now let us describe the evolution of the tissue damage with the following equa-
tion,

dT I
dt

= ktgT I
�

1 �
T I
T1

�
(T I � a) � krtt RAD TI: (5.8)

The tissue damage is assumed to follow a logistic growth, as shown by the �rst
term of the equation. However, whenT I falls belowa, the tissue is unable to repair
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itself. Furthermore, the second term represents the fact thatT I is depleted once it
encounters a radical.

Finally, let us focus on the last variableZ ,

dZ
dt

= ktz (g(TNF; x tz ; htz ) + kzti (1 � T I )) (1 � Z ) � � zZ: (5.9)

This last variable Z models the evolution of the in�ammation. Its growth depends
on the level ofTNF and on the amount of tissue damage (T I ). The last term of
the equation depicts the decay of the in�ammation.

In our work, we focus on one particular variable of this infection model, the
in�ammation of the tissue Z . Its values are between 0 (no in�ammation) and1
(maximal in�ammation). We suppose that this amount of in�ammation can be
linked to the evolution of the bronchial volume (Vbr ) during an infection through
the following function [89],

Vbr (Z ) =
Vbr, he

1 + mvta Z
; (5.10)

whereValv, he is the volume of the healthy tissue andmvta is a reduction parameter.
Its value is chosen to be the same as the one presented in [89]. It is equals to1. We
can link this change of volume to the radius of the bronchus. Indeed, we know that
the volume of a bronchusVi of generationi can be computed as follow,

Vi = �r 2
i l i ;

with r i and l i being respectively the radius and the length of the bronchus. Further-
more, since the length of the bronchus is not modi�ed during an in�ammation, we
can replace this last expression in the equation (5.10). It leads to,

r i (Z ) =
r i; hep

1 + mvta Z
;

where r i is the in�amed radius and r i; he is the healthy radius of the bronchus of
generation i . Since the radius of the airways are decreasing during in�ammation,
it implies that the thickness of the bronchi walls is increasing. In particular, the
thickness of the alveolar membrane (� ) is computed as follow,

� i (Z ) = � i; he + r i; he � r i (Z );

where � i; he = 1 � 10� 6 m is the thickness of the alveolar membrane in generationi
in a healthy case [95].

We will work with three di�erent outcomes. The �rst one is a cured outcome
where the pathogens are eliminated quickly by the immune system and the tissue
recovers after the in�ammation and goes back to a healthy state. We obtain this
outcome with an initial number of pathogens between 0 and 840P-units. In our
case, we choose an initial number of 500P-units (Figure 5.2) as in [91]. The second
outcome simulated is an aseptic death. In this case, the immune system succeed
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to remove all the pathogens. However, the immune response is so intense that the
tissue does not recover and stays in�amed. This outcome results from an initial
number of pathogens between 840 and 1060P-units. In our case, we choose an
initial number of 850 P-units (Figure 5.3) as in [91]. Finally our last outcome is
a septic death, where there are too many pathogens for the immune system which
fails to cure the infection. This outcome results from an initial number of pathogens
superior to 1060P-units. In our case, we choose an initial number of 1200P-units
(Figure 5.4) as in [91].

5.1.2 Asymmetric transport model

Let us recall that in chapter 3, we de�ned the transport of oxygen and carbon dioxide
in an idealized symmetric dichotomic bifurcating tree with the following equation
for each generationi 2 J0; N K, with N + 1 being the number of generations in the
lung, and for each bronchij 2 J0; 2i K

@Pi;j
@t

� D
@2Pi;j

@x2
+ ui;j (t)

@Pi;j
@x

+ � i;j Pi;j = � i;j Pblood ; for x 2 [0; l i ]: (5.11)

However, when in�ammation appears in a bronchus, its radius is modi�ed which
implies that the correspoding bifurcation is no longer symmetric. Indeed, the sis-
ter branch of the in�amed bronchus does not have the same radius anymore (see
Figure 5.5).

This asymmetry appears in the bifurcation equation. Indeed, the volumetric �ow
rate does no longer divide into two similar �ow rates. We have,

Si;j

�
� D

@Pi;j (l i;j ; t)
@x

+ ui;j (t)Pi;j (l i;j ; t)
�

=

Si +1 ;2j
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� D

@Pi +1 ;2j (0; t)
@x

+ ui +1 ;2j (t)Pi +1 ;2j (0; t)
�

+

Si +1 ;2j +1

�
� D

@Pi +1 ;2j +1 (0; t)
@x

+ ui +1 ;2j +1 (t)Pi +1 ;2j +1 (0; t)
�

:

However, we still have the conservation of the volumetric �ow rate. Let us
de�ne qi;j = ui;j Si;j , the volumetric �ow rate in the bronchus j of generation i ,
qi +1 ;2j = ui +1 ;2j Si +1 ;2j , the volumetric �ow rate in one of the branch's daughter and
qi +1 ;2j +1 = ui +1 ;2j +1 Si +1 ;2j +1 the volumetric �ow rate in the second branch. Then,
we obtain,

qi;j = qi +1 ;2j + qi +1 ;2j +1 :

Thanks to this equation and the continuity of Pi between successsive generations,
we can simplify the bifurcation equation. Then, we obtain,

Si;j
@Pi;j (l i;j ; t)

@x
= Si +1 ;2j

@Pi +1 ;2j (0; t)
@x

+ Si +1 ;2j +1
@Pi +1 ;2j +1 (0; t)

@x
: (5.12)

Furthermore, with the asymmetry of the lung, the air�ows do not divide into
two equal values at a bifurcation. In order to compute the air�ow velocities in all
bronchi, we can suppose that we have the same pressure at the outlets of the tree,
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Figure 5.2: Pathogens (left) and in�ammation (right) evolution for a cured outcome.

Figure 5.3: Pathogens (left) and in�ammation (right) evolution for an aseptic death
outcome.

Figure 5.4: Pathogens (left) and in�ammation (right) evolution for a septic death
outcome
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i; j

i + 1; 2j i + 1; 2j + 1

Figure 5.5: Indices of the bronchi in an asymmetric bifurcation.

which implies that the strength provided by the muscles is homogeneous in the whole
lung. Furthermore, we also suppose that the viscous energy dissipated by the �uid
in the tree is minimized [29]. These assumptions lead to the following equation,

q2
i +1 ;2j

E i +1 ;2j
+

q2
i +1 ;2j +1

E i +1 ;2j +1
=

q2
i;j

E i +1 ;2j + E i +1 ;2j +1
;

where,

E i +1 ;2j =
l i

l i +1

�
r i +1 ;2j

r i;h

� 4

and E i +1 ;2j +1 =
l i

l i +1

�
r i +1 ;2j +1

r i;j

� 4

:

We can deduce the volumetric �ow rates in the two branch's daughters,

qi +1 ;2j = qi;j
E i +1 ;2j E i +1 ;2j +1 + E 2

i +1 ;2j

(E i +1 ;2j + E i +1 ;2j +1 )2
;

and

qi +1 ;2j +1 = qi;j
E i +1 ;2j E i +1 ;2j +1 + E 2

i +1 ;2j +1

(E i +1 ;2j + E i +1 ;2j +1 )2
:

We can observe that if the bronchus of generationi divides into two branches of
the same size,i.e. r i +1 ;2j = r i +1 ;2j +1 , we then have,

qi +1 ;2j = qi +1 ;2j +1 =
qi;j

2
:

It is in agreement with our computations in chapter 3. The numerical scheme used
to compute numerically the approximated solution of equation 5.11 is detailed in
appendix A.

Finally, the last aspect changed by the asymmetry is the oxygen and carbon
dioxide �ows to the blood. We can de�ne the gas �ow exchanged with the blood in
the generationi , with the following equation,

f (A; T ) =
NX

i = G

1
T

Z tC + T

tC

2iX

k=1

Z l i

0

 i;k (Z ) (Pi (t; x ) � Pblood (t; x )) dx dt;
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Figure 5.6: Tree model of the lung. The red bronchus represents the infected
bronchus and the number on the bronchi represents the generation index.

whereA is the amplitude of the ventilation, T is the period of ventilation, G is
the number of generations in the conductive tree,N +1 is the number of generations
in the lung, tC a time at which the system has reached a periodic regime and


 i;k (Z ) = 2 �r i;k (Z )� i;k (Z )%s:

r i;k (Z ) is the radius of the numberk bronchus of generationi . � i is the permeability
of the alveolar membrane, it writes,

� i;k =
Dgas;H2O � gas;H2O

� i;k (Z )
;

where Dgas;H2O is the di�usion coe�cient of the gas in water (m2 � s� 1), � gas;H2O

is the solubility coe�cient (mol � m� 3 � mmHg� 1) of the gas in water and� i;k (Z ) is
the thickness (m) of the alveolar membrane in the numberk bronchus of generation
i . %s is the amount of exchange surface per unit of alveolar duct surface. It was
previously de�ned in chapter 3.

5.2 One branch infection

Let us start by assuming that we have only one bronchus infected in the lung. We
suppose that we have a cured outcome (Figure 5.2) and that the infection does not
spread to the other bronchi. We suppose that the infected bronchus belongs to the
third generation (index 2). We de�ne four subtrees coming from each bronchi of the
third generation, see Figure 5.6.



80 CHAPTER 5. NON-HEALTHY VENTILATION

5.2.1 Constant ventilation parameters

First, let us assume that the ventilation is exactly the same as the healthy case.
Then, we impose a ventilation amplitude of1:2m � s� 1 and a ventilation period of
5 s at rest. During maximal exercise, we suppose that the ventilation amplitude is
19m � s� 1 and the ventilation period is1s.

At rest, an interesting phenomenon appears, when only one bronchus is infected
more oxygen is exchanged with the blood than when the bronchus is healthy, see
Figure 5.7. It can be explained by the distribution of oxygen in the generations.
Indeed, we can observe that, in the subtree 2, the air �ow goes deeper into the lung.
It allows the oxygen to meet a larger exchange surface and hence to counterbalance
the low oxygen �ow in the subtree coming from the infected bronchus.

We observe a major di�erence between the resting regime and the maximal exer-
cise regime. During maximal exercise, an expected response happens: the decrease
of the �ow when the radius of the bronchus is lower than the healthy radius, see
Figure 5.8. The repartition of the oxygen �ow in the blood in each of the four
subtrees (Figure 5.8) gives us an indication on this behaviour. We can observe that
the �ow in the subtree 1 decreases with an higher amplitude that the increase of the
�ow in the subtree 2. Since in the subtrees 3 and 4, the �ow remains constant, this
di�erence of amplitude explains the global decrease of the �ow.

We chose to infect a bronchus in the third generation of the lung because of its
proximity to the trachea. Indeed, when we infect a bronchus in a deeper generation,
there are more and more healthy subtrees that help to counterbalance the lower air
�ow going through the in�amed bronchus. The o�set and hence, the variation of
the total oxygen �ow to the blood is smaller and smaller as the generation of the
in�amed bronchus goes deeper. Consequently, the deeper the generation, the closer
the �ow exchanged with the blood is to the healthy �ow (Figure 5.9).

5.2.2 Constant air pressure at the outlets of the tree

We assumed in the last section that when a bronchus is infected, we have the same
ventilation than when we are healthy. This hypothesis might be valid for a single
infected bronchus but when the infection spreads and a whole region of the lung is
blocked, the ventilation is probably not anymore adapted to the situation.

We now make the assumption that the di�erence of pressure between the inlet
and the outlet of the tree remains constant throughout the in�ammation of the
bronchi. We know that this di�erence in pressure� P depends on the volumetric
�ow rate q0 through the tree and the hydrodynamic resistanceR of the tree [29]. It
writes,

� P(t) = Rq0(t) = RS0u0(t):

The hydrodynamic resistanceR which represents the di�culty of a �uid to pass
through the bronchi, is dependent on the radius of the bronchi. Indeed, we know
that the hydrodynamic resistanceRi in a cylinder writes,

Ri =
8�l i

�r 4
i

;
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Figure 5.7: Infection of a single bronchus in the third generation at rest. Left:
Evolution of the oxygen �ow to the blood. Right: Oxygen partial pressure at the
inspiration peak during maximal in�ammation in each of the four subtrees.

Figure 5.8: Evolution of the oxygen �ow to the blood during the infection of a single
bronchus in the third generation during maximal exercise. Left: in the whole lung.
Right: in each of the four subtrees.

Figure 5.9: Evolution of the oxygen �ow to the blood of a single bronchus in several
generations at rest (left) and during maximal exercise (right).
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R0

S1 S2

Figure 5.10: Computation of the equivalent resistance of the lung. The subtreesS1

and S2 have a resistance ofR1 and R2 respectively. The total equivalent resistance

of the lung is then computed as follow,R = R0 +
�

1
R1

+ 1
R2

� � 1
.

where l i is the length of the cylinder, r i its radius and � is the viscosity of the
�uid. In our case the �uid is the air and its viscoisty is � = 1:8 � 10� 5 Pa � s.
Thanks to the resistance expression and the assumption that the lung is just an
interlocking of cylinders, we can compute the equivalent hydrodynamic resistance
of the whole tree by recurrence, see Figure 5.10. Indeed, the �rst bronchus of the
tree, the trachea, divide into two subtreesS1 and S2 which each have a resistance
of R1 and R2 respectively. The total resistanceR of the lung is then,

R = R0 +
�

1
R1

+
1

R2

� � 1

;

with R0 being the resistance of the trachea. The resistance of the two subtreesS1

and S2 is computed the same way and so on. This equivalent resistance neglects the
resistance of the bifurcations and the e�ects of inertia. However, as in chapter 4, we
chose to compute the resistance with the formula for the equivalent resistance and
to determine the ratio of increase or decrease relatively to the healthy state. Finally,
to obtain a coherent resistance we multiply this ratio with the physiological value
of the resistance.

We de�ned in chapter 3 the cross section areaS0 = �r 2
0 and the velocity of the

air�ow in the trachea as the following sine function,

u0(t) = A sin
�

2�
T

t
�

;

whereA is the ventilation amplitude and T is the ventilation period. Let us denote
our variables with a "he" subscript when the bronchus is healthy and with a "inf"
subscript when the bronchus is in�amed. Furthermore, we assume that the breathing
frequency is the same when healthy or sick.

In this section, we assume that the di�erence of pressure between the inlet and
the outlet of the tree remains constant throughout the in�amamation of the bronchi,

� Phe(t) = � Pinf (t):
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By substituting the values, we obtain,

Rhe�r 2
0;heAhe sin

�
2�
T

t
�

= Rinf �r 2
0;inf A inf sin

�
2�
T

t
�

:

Finally, the ventilation amplitude when the lung is infected writes,

A inf = Ahe
Rhe

Rinf

r 2
0;he

r 2
0;inf

:

Figure 5.11 depicts the evolution of the ventilation amplitude during the infection
of a third generation bronchus at rest and during exercise. We can observe that this
evolution is the same for the two regimes, it follows the evolution of the in�ammation
during the cured outcome (Figure 5.2).

Thanks to this new ventilation amplitude, we can compute the oxygen �ow to
the blood at rest and during maximal exercise for a cured outcome, see Figures 5.12
and 5.13.

At rest, on the contrary to the previous section, we observe a lower oxygen �ow
to the blood when a bronchus is in�amed. Interestingly, a curious phenomenon
appears between hour 75 and hour 125 of the infection. Indeed, we observe a change
of variation of the oxygen �ow during the decrease of the in�ammation of the bronchi.
This phenomenon can be explained thanks to the oxygen �ow in the subtrees of the
lung. Actually, we can observe on Figure 5.12 that the �ow in the subtrees 1 and
2 do not come back to the healthy situation with the same slope. The oxygen
�ow in the subtree 2 starts its decrease around hour 75. Since the air�ow is more
important in the substree 2, it can go deeper into the lung and hence, reach a larger
exchange surface. However, once the air �ow decreases, it will not go as deep in the
lung and hence, the usable exchange surface will be smaller. In the subtree 1 the
oxygen �ow remains almost constant until hour 100. Indeed, small air �ows do not
reach the exchange surface. It is due to the localization of the transition between
convection and di�usion. In chapter 4, we computed the localization of the transition
with the optimal ventilation. This transition happens at the very beginning of the
acinus. However, if the amplitude is smaller, the transition between convection and
di�usion will occur higher in the generations. Hence, the air �ow in subtree 1 has
to be su�ciently large to reach the acinus.

During maximal exercise (Figure 5.13), we do not observe the same phenomenon.
Actually, during intense exercise the air�ow is larger and uses the totality of the
exchange surface as predicted by the localization of the transition between convection
and di�usion detailed in chapter 4. Hence, in the subtree 1 attached to the in�amed
bronchus, the lower air�ow can still reach the exchange surface. This explains why
the oxygen �ows in the subtrees 1 and 2 evolve similarly with time and why we obtain
strickly increasing oxygen �ows with time when the in�ammation of the bronchus
decreases.

Notice that the same computations were made for the carbon dioxide �ow from
the blood. Since the evolutions were very similar to those of oxygen, the results are
not shown and allows to focus only on the oxygen �ow in all this chapter.
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Figure 5.11: Evolution of the ventilation amplitude during an infection of a single
bronchus in the third generation at rest (left) and during maximal exercise (right)
for a cured outcome.

Figure 5.12: Evolution of the oxygen �ow to the blood during an infection of a single
bronchus in the third generation at rest in the whole lung (left) and in each of the
four substrees (right).

Figure 5.13: Evolution of the oxygen �ow to the blood during an infection of a single
bronchus in the third generation during maximal exercise in the whole lung (left)
and in each of the four substrees (right).
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5.3 Proximal infection

Most of the time, the infection does not remain on one bronchus only, it spreads to
its neighbors bronchi. In order to be more realistic, it is important to simulate the
propagation of an infection throughout the lung. First, we chose to model only a
proximal infection, i.e. an infection that is limited to the nine �rst generations of the
lung. Indeed, some diseases are localized in certain part of the lung. For example,
pneumonia a�ects mainly the alveoli and bronchitis a�ects the �rst generations of
the bronchial tree [78]. In our case, the limitation to the nine �rst generations is
because of a technical limitation as explained in appendix A.

Our infection starts from the the third generation of bronchi and we suppose
that we have a constant pressure drop between the inlet and the outlet of the tree
during the infection, like in the previous section. To model the propagation of the
infection, we suppose that we have a probability to spread the infection every 15
minutes. Once a bronchus is infected it can infect its mother bronchus and its
two daughters bronchi with a probability that depends on the amount of pathogens
present in the brochus. The newly infected bronchi will su�er from an infection with
the same properties as the one from where the infection originates.

We assume that the probability functionPF for the propagation of the infection
in the bronchi has the following form,

PF(P; P�nal ) =

8
>>>>><

>>>>>:

1
2

�
2P

P�nal

� 2

; for P <
P�nal

2
;

1 �
1
2

�
2(P�nal � P)

P�nal

� 2

; for
P�nal

2
6 P < P �nal ;

1; for P > P �nal :

(5.13)

P is the number of pathogen present in the bronchus andP�nal is a parameter
that represents the speed of the propagation. Actually, the lower this variable is,
the faster the propagation. In our simulations, we use four di�erentP�nal to model
di�erent speeds of infection proliferation, as shown on Figure 5.14.

Figure 5.14: Probability functions for the propagation of infections in the lung.
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Since our model is stochastic, the simulations do not always lead to the same re-
sults. We propose here several computations that are representative of the majority
of the responses observed.

5.3.1 Cured outcome

Our �rst set of simulations re�ects a propagation of an infection where each bronchus
has a cured outcome (Figure 5.2). First, with the propagation speed parameterP�nal

equal to 4000, the infection tends to remain in the initial bronchus. The results for
this case were already detailed in the previous section. Next, by decreasing the
propagation speed parameter, the infection spreads to other bronchi but not to the
whole lung. Indeed withP�nal equals to 3000, the infection spreads to its mother
bronchus and its two daughters, with a total of 4 infected bronchi. WithP�nal

equals to 2000, we obtain 24 infected bronchi. Finally, withP�nal equals to 1000,
the infection propagates to 208 infected bronchi.

In this cured outcome, some interesting phenomenon appears. Indeed, as shown
on Figure 5.15, we observe �rst that whenP�nal = 1000 and when P�nal = 2000,
the ventilation amplitude becomes higher than the healthy ventilation amplitude.
This results from the propagation of the infection to the �rst generation bronchus.
Indeed, the expression for the new amplitude writes,

A inf = Ahe
Rhe

Rinf

r 2
0;he

r 2
0;inf

:

The resistance of the in�amed lung is higher than the resistance of the healthy lung
since the radius of some bronchi is reduced. Hence, the ventilation amplitude should
decrease. However, since the bronchus in the �rst generation is in�amed the ratio
r 2

0;he

r 2
0; inf

is bigger than 1, and hence increase the amplitude of the ventilation. The

variation of the amplitude of the ventilation is then due to a balance between the
in�ammation of the tracheal radius and the increase of the hydrodynamic resistance
in the lung. Consequently, we can deduce than forP�nal = 1000 and for P�nal = 2000,
the decrease of the tracheal radius due to the in�ammation is dominant over the
change in hydrodynamic resistance in the whole lung.

Furthermore, we can also observe that less oxygen is exchanged with the blood
in the case with 208 infected bronchi than in the one with 24 infected bronchi. This
phenemenon can be explained by the di�erence in ventilation amplitude as seen on
Figure 5.15. Indeed, with an higher amplitude of ventilation, the air �ow can go
deeper into the lung. Hence, the air �ow reaches a larger exchange surface. This
di�erence in amplitude is explained by the fact that the hydrodynamic resistance is
higher with a larger number of in�amed bronchi while the tracheal radius is in�amed
at the same intensity. Finally, once the infection propagates to the bronchus in the
�rst generation, the oxygen �ow exchange with the blood is signi�cantly reduced
regardless of the number of infected bronchi.
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Figure 5.15: Evolution of the oxygen �ow to the blood (left) and of the ventila-
tion amplitude (right) during the propagation of an infection starting in a third
generation bronchus with an cured outcome.

5.3.2 Aseptic death outcome

Our second set of simulations re�ects a propagation of an infection where each
bronchus follows an aseptic death outcome (Figure 5.3). The infection spreads to
more bronchi than in the cured outcome since more pathogens are present. However,
thanks to the elimination of the pathogens by the immune system, it spreads slowly
to throughout the lung. We recall that propagation is limited to the nine �rst
generations in the bronchial tree. WithP�nal = 4000, the infection spreads to 108
bronchi. With P�nal = 3000, it spreads to 226 bronchi. WithP�nal = 2000 or lower,
it spreads to the whole proximal lung studied here,i.e. to 511 bronchi.

As expected, the oxygen �ow decreases as the number of infected bronchi in-
creases, as shown on Figure 5.16. However, an interesting phenomenon appears re-
garding the ventilation amplitude: we observe two ventilation amplitudes below the
healthy ventilation amplitude (1.2 m � s� 1) and one above. In the caseP�nal = 4000,
the amplitude decreases because the �rst generation bronchus is not infected. In
the two other cases, the infection has spread to a big part of the lung, including the
�rst generation bronchus. However, with 226 infected bronchi the ventilation am-
plitude is above the healthy ventilation amplitude. But, with 511 infected bronchi
the ventilation amplitude drops below the healthy ventilation amplitude. It raises
the question: at which number of infected bronchi does the ventilation amplitude
crashes ? We can observe on Figure 5.17 that the crash of ventilation amplitude
occurs at around 300-350 infected bronchi. At this threshold, the increase of the hy-
drodynamic resistance in the whole lung becomes dominant over the in�ammation of
the tracheal radius. It con�rms that in the case whereP�nal = 3000, the ventilation
amplitude stays above the healthy ventilation amplitude. Once the propagation of
an infection reaches a certain amount of infected bronchi, the optimal ventilation
amplitude to keep a constant pressure drop between the ambient air and the alveoli
decreases signi�cantly.
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Figure 5.16: Evolution of the oxygen �ow to the blood (left) and of the ventila-
tion amplitude (right) during the propagation of an infection starting in a third
generation bronchus with an aseptic death outcome.

Figure 5.17: Evolution of ventilation amplitude (blue) and number of infected
bronchi (red) during the propagation of an infection starting in a third generation
bronchus with an aseptic death outcome.
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Figure 5.18: Evolution of oxygen �ow exchange with the blood (left) and venti-
lation amplitude (right) during the propagation of an infection starting in a third
generation bronchus with a septic death outcome.

5.3.3 Septic death outcome

Our last set of simulations re�ects a propagation of an infection where each bronchus
has a septic death outcome (Figure 5.4). Since the number of pathogens skyrocket
almost to its maximal capacity (20,000), the infection propagates very quickly to
the 511 bronchi considered in our simulations, whatever the propagation speed pa-
rameter.

In this case, as expected, there is almost no oxygen exchanged with the blood.
Indeed, the oxygen �ow is reduced by a factor 4, going from1:7 � 10� 4 mol � s� 1 for
the healthy case down to4 � 10� 5 mol � s� 1. The new oxygen �ow cannot ful�ll the
body needs in oxygen. The ventilation parameters must be modi�ed in order to hope
to ful�ll the body needs in oxygen. To con�rm this hypothesis, we computed the
optimal ventilation that minimizes the energy spent for breathing while ful�lling the
oxygen needs in oxygen during maximal in�ammation thanks to our model presented
in chapter 4. The response predicted is fully compatible with the lung's physiology
[78] and brings on the typical strategy of the lung to increase ventilation when gas
exchanges are too low. Indeed, the optimal amplitude varies from1:25 m� s� 1 in the
healthy case to2:36 m� s� 1 during maximal in�ammation and the optimal period
varies from 4.9 s in the healthy case to 4 s during maximal in�ammation.

5.4 Conclusion

We described and studied a model of the propagation of the infection and of the
in�ammation bronchi per bronchi in the human's lung linked to the gas transport
model described in the chapter 4. This last model has been modi�ed in order to
take into account the asymmetry of the lung induced by the infection. This �rst
approach gives an insight on the gaseous exchange with the blood during an infection
of the lung and also a better understanding of the distribution of the gases along
the generations of the lung.

Our �rst results highlight two main informations. First, with the same ventilation
parameters than for a healthy lung, the oxygen �ow exchanged with the blood can be
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increased during an infection, depending on its localization and its expansion. This
results from the reserve in exchange surface not used in the healthy case. The second
main phenomenon happens when we impose a constant pressure drop between the
ambiant air and the alveoli. The oxygen �ow exchange with the blood does not
always depend on the number of infected bronchi, but more on the localization of
the infection.

A lot of work remains to be done concerning this model. It represents a �rst step
towards the understanding of the behaviours of the �ows exchange with the blood
during an infection. The next logical step would be to minimize the energy spent
during the respiration with an in�amed lung and hence, to compute the optimal
ventilation for each stage of the in�ammation. Furthermore, the model of infection
propagation could be improved. Indeed, we assumed that all the infected bronchi
follow the same behaviour (cured, aseptic death or septic death). However, we could
suppose that the initial number of pathogens in a new infected bronchus is not a
constant. For example, it could depend on the amount of in�ammation and on the
amount of pathogens present in the bronchus from where the infection is coming.
The dynamics then become much more complex.



Chapter 6

Deposit of particles for aerosol
therapy

Sometimes, the immune system is not e�cient enough to �ght a pulmonary infection.
Many medication aids can be used to help eliminate pathogens. In our case, we will
only focus in this chapter on the aerosol therapy, which is commonly used to treat
obstructive pulmonary diseases [99]. However, it is extremely di�cult to observe in
vivo drug deliveries in the human lungs. This is why it appears crucial to model and
be able to compute numerically the aerosol �ow in the bronchi and especially the
deposition fraction which is the fraction of inhaled particles that deposit and their
localization with a good enough accuracy.

Aerosol particles have the ability to exchange water with the water saturated
air present in the lung. Consequently the size of the aerosol droplets varies along
time [66, 64, 65]. Under the assumption that the particles are and stay spherical, we
study the in�uence of the radius growth on deposition (number of deposited parti-
cles, characteristic times of propagation/deposition inside a given realistic geometry,
deposition areas...).

In the litterature, there exists di�erent types of models that describe the motion
of the aerosol particles in the air. First, in the two-phase models [6, 22], the aerosol
droplets are considered as a �uid mixed with the ambient air in the lung. Then one
focuses on the concentration of the aerosol in the air. However, the drawback of
these models is the di�culty to determine the aerosol deposition area. The second
type of models [80, 123] is the agent based models, which simulate the behavior of
individual particles within an environment. However, the drawback of these models
is the di�culty to track the trajectory of numerous particles, in particular when
there is a strong coupling between the particles and the air �ow. Finally, the kinetic
models [7, 40] describe the changes in properties of the system of interest. It is
relevant from the modelling point of view since numerous particles are present in
the aerosol, but their volume is negligible compared to the airways volume.

This is why we choose to use this last approach. In this work, the aerosol
behavior is described through a distribution function that represents the density
of the particles and depends on macroscopic variables (time, space, position) as
well as microscopic ones (velocity, for instance). This function sati�es the Vlasov-
type equation and is coupled with the incompressible Navier-Stokes equations that

91
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Figure 6.1: Equivalent radii in a droplet

describe the air�ow [15]. Our model is an extension of a previous one [76], where
the the air temperature, the mass fraction of the water vapor in the air and the
dependence of the distribution function on both the size and temperature of the
particles are taken into account.

6.1 Model of the deposit of aerosol particles

6.1.1 Particles behavior

An aerosol particle is composed of three di�erent elements: active products (drug),
excipient and water. For simpli�cation, our particles are assumed to remain spher-
ical at all times. We can then de�ne the radiusrdrug of the drug component (see
Figure 6.1) such that the value4

3 �r 3
drug %drug is the mass of the active product inside

the particle and where%drug is the constant density of the drug. Likewise the radius
rex of the excipient is de�ned such that the expression43 �

�
r 3

ex � r 3
drug

�
%ex is the mass

of the excipient component in the droplet wher%ex is the constant density of the
excipient. The radius rex is also considered as the particle dry radius since there
is no water in a dry droplet. With these de�nitions, it is now possible to de�ne
the mass and the density of the particle, which both depend on the radiusr of the
droplet:

m(r ) =
4
3

�
�
r 3

drug %drug + ( r 3
ex � r 3

drug )%ex + ( r 3 � r 3
ex)%w

�
;

%d(r ) =
1
r 3

�
r 3

drug %drug + ( r 3
ex � r 3

drug )%ex + ( r 3 � r 3
ex)%w

�
;

where%w is the constant density of water.
The radius of the aerosol particles can change over time. Indeed, since the

droplets are in an humid environnement (lung) and are composed of water, they can
exchange water molecules with the environnement. We can de�ne the functiona
that represents the evolution of the radius based on [65]. It depends on the radius
r of the particle, on the temperatureT of the particle and on the water vapor mass
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fraction in the air Yv;air (t; x ). It writes,

a(r; T; Yv;air (t; x )) = �
Nd(r; T; Yv;air (t; x ))

%w
; (6.1)

whereNd is the water mass �ux at the droplet surface. This function writes [65],

Nd(r; T; Yv;air (t; x )) = %air
ShDv(Tair ) Cm

2r
Yv;surf (r; T ) � Yv;air (t; x )

1 � Yv;surf (r; T )
:

Let us now de�ne the quantities used in this expression. First we have the air density
%air . In our work the air is assumed to be Newtonian and incompressible, hence%air

is constant. Notice that the water vapor density in the air can be computed as
%air Yv;air . Sh is the Sherwood number, describing the water transfer between the air
and the droplet. Cm is the mass Knudsen number correction [88]. The functionDv

is the binary di�usion coe�cient of water vapor in the air, it writes [65],

Dv(Tair (t; x )) = 0 :216
�

Tair (t; x )
273:15

� 1:8

:

The temperature of the airTair is expressed in Kelvin in this expression. Finally,
Yv;surf represents the water vapor mass fraction on the droplet surface. It depends
on the radius and on the temperature of the particle [65]:

Yv;surf (r; T ) =
S(r )K (r; T )Pv;sat(T)

%d(r )RvT
:

The constant Rv is the gas constant of water vapor. The functionS(r ) represents
the water activity coe�cient:

S(r ) =

%w(r 3 � r 3
ex)

Mw

%w(r 3 � r 3
ex)

Mw
+ i drug

%drug r 3
drug

M drug
+ i ex

%ex(r 3
ex � r 3

drug )

M ex

;

whereMw, M drug and M ex are respectively the molar masses of the water, the drug
and the excipient. The constantsi drug and i ex denote the van't Ho� factors of the
drug and of the excipient. It allows to take into account the molecular dissociation
during dissolution. This expression was derived using the expression detailed in [65]
and by stating that S must be equal to zero when the particle is dry, in other terms
when r = rex.

The function K (r; T ) represents the in�uence of the Kelvin e�ect on the droplet
surface concentration of water vapor [65]:

K (r; T ) = exp
�

2�
r%d(r )RvT

�
;

where� , the droplet surface tension, is assumed to be constant.
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Finally, we have the water vapor saturation pressurePv;sat that depends on the
temperature T of the droplet in Kelvin,

Pv;sat(T) = 10 exp
�

23:196�
3816:44

T � 46:13

�
:

Let us de�ne a lower bound for the particle's radius. We suppose that, at initial
time, all droplets have a radius superior torex. In this case, if the radius decreases
and reaches the valuerex, we obtain by de�nition S(rex) = 0 and consequently
Yv;surf = 0. This implies that the function Nd is negative and the functiona positive.
Since the functiona governs the time evolution of the particle's radius, the fact that
this function is positive once it reachesr = rex means that the radius will grow once
the particle is dry. That ensures thatr cannot go belowrex.

The radius of the particle is not the only physical value that changes over time.
The evolution of the temperature can also be taken into account. Indeed, usually
the ambient air is colder than the body temperature (37° C). Hence, the inhaled air
and, consequently, the particles get warmer once in the respiratory system. Since
we want to take into account water vapor condensation on the droplet surface and
water vapor evaporation from the droplet surface, we must de�ne the two heat
�uxes between the air and the droplet: the convective �uxQd and the evaporative
�ux L vNd whereL v is the latent heat of water vaporisation. The convective �uxQd

depends on the radiusr , on the temperatureT of the droplet and on the temperature
of the air Tair [65]:

Qd(r; T; Tair (t; x )) =
Nu � air CT

2r
(T � Tair (t; x )) ;

where Nu is the droplet Nusselt number corresponding to the ratio of convective
to conductive heat transfer between the particle and the air,� air is the thermal
conductivity of the air as a gaseous mixture andCT is the Knudsen correlation.
This last constant is small in our work, it allows us to neglect non-continuum e�ects
of the �uid. We can then de�ne the function b describing the evolution of the
temperature of the particles,

b(r; T; Yv;air (t; x ); Tair (t; x )) =
3

%d(r )cPd r
�

(� Qd(r; T; Tair (t; x )) � L vNd(r; T; Yv;air (t; x ))) ;
(6.2)

wherecPd is the constant speci�c heat of the droplet.
We can de�ne a lower bound for the droplet's temperature. IfT somehow come

close to46:13 K (the value in Pv;sat) then Yv;surf tends to zero andNd is negative.
Furthermore Qd is also non positive sinceTair in the lung is around 300 K. The
function b that governs the evolution of the temperature of the droplet, is positive
when the temperatureT reaches 46.13 K. It ensures thatT cannot go below 46.13
K in our model. Notice that from the physiological viewpoint, it seems relevant to
assume that all the temperatures remain around 300 K and that the water vapor
mass fractionYv;air stays positive.
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6.1.2 Equations of the model

Domain

First let us de�ne our space domain
 . It is assumed not to depend on time. Its
boundary � = @
 is divided into three subsets, the wall� wall , the inlet � in and
the outlet � out . In our case, since we want to observe the behavior of the aerosol
particles in the lung, the domain represents a bronchus and its bifurcation into two
smaller branches (see Figure 6.2).

� in

� out

� out

� wall

Figure 6.2: Domain


Distribution function

We consider now a distribution functionf representing the density of particles per
unit volume. This function depends on the timet > 0, on the position x of the
particles in the domain 
 , on the velocity v 2 R3, on the radius of the particles
r > 0 and on the temperatureT > 0. We assume that the particles remain spherical
and do not interact with each other since their number is not signi�cant enough
to take into account their collisions. The density functionf satis�es a Vlasov-type
equation [15]:

@t f + v � r x f + div v[(� (u � v) + g)f ] + @r (af ) + @T (bf ) = 0 ; (6.3)

whereg is the gravitational �eld and � (u � v) is the drag acceleration undergone by
the aerosol from the air. u is the velocity of the air�ow and the � function writes
[15],

� (r ) =
6��r
m(r )

;

with � the constant air dynamic viscosity.
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We can complete the equation (6.3) with the following boundary and initial
conditions,

8
<

:

f = f in on R+ � � in � R3 � R�
+ � R�

+ ;
f (t; �) = 0 on � wall � R3 � R�

+ � R�
+ ; if v � n � 0; a.e. t;

f (0; �) = f init on 
 � R3 � R�
+ � R�

+ ;

where f in : R+ � � in � R3 � R�
+ � R�

+ ! R and f init : 
 � R3 � R�
+ � R�

+ ! R are
given. The boundary condition on� wall ensures that any droplet landing on the wall
remains deposited afterwards.

Fluid dynamics of the air

Now let us express the equations of the �uid dynamics of the air. First, we want
to determine the �uid velocity u(t; x ) 2 R3 and its pressurep(t; x ) 2 R3 [15]. They
satisfy the incompressible Navier-Stokes equations onR+ ,

%air [@tu + ( u � r xu)] � � � xu + r xp = F; (6.4)

divx u = 0: (6.5)

The function F is called the aerosol retroaction on the air:

F (t; x ) = �
ZZZ

R3 � R+ � R
m(r )� (r )(u(t; x ) � v)f (t; x; v; r; T ) dv dr dT

= �
ZZZ

R3 � R�
+ � R�

+

6��r (u(t; x ) � v)f (t; x; v; r; T ) dv dr dT:

We can complete this equation with the following boundary and initial condi-
tions, 8

>><

>>:

u = uin on R+ � � in ;
u = 0 on R+ � � wall ;

� (u; p) � n = 0 on R+ � � out ;
u(0; �) = uinit on 
 ;

with � (u; p) = r xu + ( r xu)| � pId, the stress tensor,n the outgoing normal vector
from � . The function uin : R+ � � in ! R3 is the air�ow velocity at the entrance
of the bronchus, it is assumed to be a Poiseuille �ow in our case. The function
uinit : 
 ! R3 is the initial datum.

Second, we have to describe the evolution of the water vapor mass fractionYv;air

in the air. It satis�es an advection-di�usion equation on R+ � 
 , it writes,

%air [@tYv;air + ( u � r x )Yv;air ] � divx (Dv(Tair )r xYv;air ) = SY ; (6.6)

where SY is a source term that accounts for the water mass exchanges between
the air and the aerosol. However, other e�ects could be taken into account in this
expression such as turbulence [64, 66]. The source termSY is de�ned very similarly
as in [65] by,

SY (t; x ) = %w

ZZZ

R3 � R�
+ � R�

+

4�r 2Nd(r; T; Yv;air (t; x )) f (t; x; v; r; T ) dv dr dT:
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We complete our equation with the following boundary and initial conditions,
8
>><

>>:

Yv;air = Y in
v;air on R+ � � in ,

Yv;air = Yv;wall on R+ � � wall ,
r xYv;air � n = 0 on R+ � � out ,

Yv;air (0; �) = Yv;air ;init on 
 ;

where the functionsY in
v;air , Yv;wall and Yv;air ;init > 0 are given. The boundary condition

on � wall ensures us that the wall continuously provides water vapor to the air.

Finally, let us describe the evolution of the temperatureTair of the air. It also
satis�es an advection-di�ussion equation onR+ � 
 :

%air cPair [@tTair + ( u � r x )Tair ] � � air � xTair = ST ; (6.7)

with ST a source term that represents the heat transfer between the air and the
particles through the water vapor. It is also de�ned as in [65] by,

ST (t; x ) =
ZZZ

R3 � R�
+ � R�

+

4�r 2 Qd(r; T; Tair (t; x )) f (t; x; v; r; T ) dv dr dT:

We complete this equation with the following boundary and initial conditions,
8
>><

>>:

Tair = T in
air on R+ � � in ,

Tair = Twall on R+ � � wall ,
r xTair � n = 0 on R+ � � out ,

Tair (0; �) = Tair ;init on 
 :

To summarize let us rewrite all our equations without the boundary and initial
conditions to form our complete model,

8
>><

>>:

@t f + v � r x f + div v[(� (u � v) + g)f ] + @r (af ) + @T (bf ) = F;
%air [@tu + ( u � r xu)] � � � xu + r xp = 0; divx u = 0;
%air [@tYv;air + ( u � r x )Yv;air ] � divx (Dv(Tair )r xYv;air ) = SY ;
%air cPair [@tTair + ( u � r x )Tair ] � � air � xTair = ST ;

(6.8)

6.1.3 Physical conservations

Let us check some physical conservations of the two quantities that involve water
vapor. First, let us observe the water vapor mass exchange. Indeed the water vapor
coming from the air is supposed to lead to a radius variation of the aerosol droplets.

Proposition 6.1.1. Assume thatu = 0 and r xYv;air � n = 0 on @
 , and that f = 0
on @
 � R3 � R�

+ � R�
+ . Then we have

d
dt

" Z




 

%air Yv;air (t; x ) +
ZZZ

R3 � R�
+ � R�

+

m(r )f (t; x; v; r; T ) dv dr dT

!

dx

#

= 0:
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Proof. On the one hand, multiplying equation (6.3) bym(r ), integrating it with
respect to all the variables exceptt, and eliminating the conservative terms through
integrations by parts, we obtain

d
dt

" Z




ZZZ

R3 � R�
+ � R�

+

m(r )f (t; x; v; r; T ) dv dr dT dx

#

=
Z




ZZZ

R3 � R�
+ � R�

+

m0(r ) a(r; T; Yv;air (t; x )) f (t; x; v; r; T ) dv dr dT dx:

On the other hand, integrating equation (6.6) on
 , we get,

d
dt

� Z



%air Yv;air (t; x ) dx

�
=

Z



SY (t; x ) dx

=
Z




ZZZ

R3 � R�
+ � R�

+

4�r 2%wNd(r; T; Yv;air (t; x )) f (t; x; v; r; T ) dv dr dT dx

= �
Z




ZZZ

R3 � R�
+ � R�

+

m0(r ) a(r; T; Yv;air (t; x )) f (t; x; v; r; T ) dv dr dT dx:

That clearly concludes the formal proof.

Second let us observe the exchange of the thermal energy associated to water
transfers between the air and the aerosol droplets.

Proposition 6.1.2. Assume thatu = 0 and r xTair � n = 0 on @
 , and that f = 0
on @
 � R3 � R�

+ � R�
+ . Then we have

d
dt

" Z




 

%air cPair Tair (t; x ) +
ZZZ

R3 � R�
+ � R�

+

m(r )cPd T f (t; x; v; r; T ) dv dr dT

!

dx

#

= �
Z




ZZZ

R3 � R�
+ � R�

+

4�r 2(L v+ cPd T)Nd(r; T; Yv;air (t; x )) f (t; x; v; r; T ) dv dr dT dx:

(6.9)

Proof. On the one hand, we integrate (6.7) over
 to obtain

d
dt

� Z



%air cPair Tair (t; x ) dx

�
=

Z



ST (t; x ) dx:

Then we multiply (6.3) by m(r )cPd T and integrate it with respect to all the variables
except t to get

d
dt

" Z




ZZZ

R3 � R�
+ � R�

+

m(r )cPd T f (t; x; v; r; T ) dv dr dT dx

#

=
Z




ZZZ

R3 � R�
+ � R�

+

[m0(r )cPd T a(r; T; Yv;air (t; x )) f (t; x; v; r; T )

+ m(r ) b(r; T; Yv;air (t; x ); Tair (t; x )) f (t; x; v; r; T )] dv dr dT dx:

Then we sum both previous equalities to recover equation (6.9), noticing that the
term involving Qd vanishes, keeping two terms involvingNd: one with L v to take
the change of physical state into account and one with the added thermal energy in
the aerosol due to the mass exchange.
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6.2 Numerical method

Now, let us perform some numerical tests in order to observe the deposit of the
aerosol droplets in a model of a lung's bifurcation. First, for simpli�cation, we
suppose that the aerosol retroactionF in equation (6.4) can be neglected (F = 0)
because it is negligible regarding the particle size range chosen in our model [15].

Now, let us explain the numerical scheme used for our system (6.8). We proceed
as in [15] by using a time marching scheme and uncoupling the �uid and the particles
equations. All our computations are performed in a two dimensional frame using
FreeFem++ [48]. We run our model on a time interval[0; � ], where � > 0 is given.
The time step is de�ned as� t = �=N > 0, such that N 2 N� . We can then denote
tn = n� t for any n in J0; N K. Regarding the space, the domain
 is discretized as
a triangular mesh
 h.

6.2.1 Solving the air equations

We start by solving the three air equations (6.4)-(6.5), (6.6) and (6.7) using a �nite
element method. The �rst step in the �nite element method is computing the
weak formulation of the equations. Hence, we have to introduce the following test
functions: � 2 L2(
) for the equation (6.5), and� ,  , � 2 H 1(
) , vanishing on
� in and � wall , respectively for the equations (6.4), (6.6) and (6.7). The second step
of the method is the discretization of the functions. We useP2 functions for the
velocities u and � and P1 functions for p, Yv;air , Tair , � ,  and � . To increment
from time tn to time tn+1 , we assume that all our functions are known at timetn .
To handle the convective terme in equation (6.4), we introduce the approximated
characteristic �ow X n , which approximates the solutionX of the following Cauchy
problem on[tn ; tn+1 ] for any x 2 
 h,

_X (s) = un (s; X (s)); X (tn+1 ) = x:

This approximated X n is computed using theFreeFem++ commandconvect. It is
now possible to de�neun+1 the solution of the discrete weak formulation for the
Navier Stokes equations (6.4)-(6.5):

%air

Z




un+1 � un � X n

� t
� � dx + �

Z



r xun+1 : r x � dx

�
Z



pn+1 divx � dx +

Z



divx un+1 � dx = 0:

Likewise, Y n+1
v;air and Tn+1

air are de�ned as the solutions of the following discrete
weak formulations,

%air

Z




Y n+1
v;air � Y n

v;air � X n

� t
� dx + Dv

Z



r xY n+1

v;air � r x � dx =
Z



Sn

Y � dx;

%air cPair

Z




Tn+1
air � Tn

air � X n

� t
 dx + � air

Z



r xTn+1

air � r x  dx =
Z



Sn

T  dx:

As previously explained, the functionDv is assumed to be constant and not
dependent onTair since its value only has a2% variation in the considered air
temperature range.
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6.2.2 Solving the Vlasov equation

With the �uid equations resolved at time tn+1 , we can now solve the aerosol equa-
tions (6.3). We discretize the distribution function f as a weighted sum of Dirac
masses in the position, the velocity, the radius and the temperature [35]. Since the
total number of physical aerosol particlesNaero 2 N� is high for our computations,
we suppose that we haveNnum 2 N� numerical particles, each of them having the
representativity ! 2 N� , so that we haveNaero = !N num . Nnum must be chosen small
enough with respect toNaero to limit the cost of our computations, but large enough
to faithfully represent the distribution of the aerosol particles. The distribution
function is then discretized as follow,

f (t; x; v; r; T ) ' !
NnumX

p=1

� xp (t ) 
 � vp (t ) 
 � r p (t ) 
 � Tp (t )(x; v; r; T );

where xp(t), vp(t), rp(t), Tp(t) are the coordinates of the numerical particlep 2
f 1; : : : ; Nnum g at time t, expressed in the phase space off .

The particles coordinates are modi�ed at each time step. They follow the fol-
lowing di�erential system,

8
>><

>>:

_xp(t) = vp(t);
_vp(t) = � (rp(t))( u(t; x p(t)) � vp(t)) + (1 � %air

%d
)g;

_rp(t) = a(rp(t); Tp(t); Yv;air (t; x p(t))) ;
_Tp(t) = b(rp(t); Tp(t); Yv;air (t; x p(t)) ; Tair (t; x p(t))) :

(6.10)

To complete this system we add initial data that �t the initial distribution of the
droplets f init . To solve this system at timetn+1 , we resolve �rst the radius equation
using an accurate Runge Kutta 4 scheme. It involves the newly computed valueY n+1

v;air
and the current positionxn

p . Then, the velocity and the temperature equations are
solved with a semi-implicit Euler scheme involving the newly computed dataun+1 ,
Y n+1

v;air and Tn+1
air at the current position of the particle xn

p . Finally, we update the
position xn+1

p using the newly computed velocityvn+1
p . If the position of the particle

xn+1
p is outside the domain
 h or if the distance between the boundary and the

position is smaller that the radius of the particler n+1
p , then our droplet is considered

deposited or outside our domain,i.e. in the next bronchus. Once the particle is
deposited or out of the domain, it is no longer treated numerically.

Since all our particles coordinates are updated, we can now de�ne the the source
terms in equations (6.6) and (6.7) for the timetn+1 . We obtain,

Sn+1
Y = !%w

NnumX

p=1

4�
�
r n+1

p

� 2
Nd(r n+1

p ; Tn+1
air (xn+1

p ); Y n+1
v;air (xn+1

p )) � xn +1
p

;

Sn+1
T = !

NnumX

p=1

4�
�
r n+1

p

� 2
Qd(r n+1

p ; Tn+1
p ; Tn+1

air (xn+1
p )) � xn +1

p
:

We observed that a time-subcycling was necessary for our aerosol computations.
Indeed, without this subcycling, the particle would be able to go accross multiple
cells of the mesh during a single �uid time step. Furthermore, it allows to better
deal with the very sti� temperature ODE.
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6.3 Numerical simulations

6.3.1 Initial situation

Our domain (see Figure 6.2) represents the trachea and the �rst bifurcation of the
human's lung. Our choice in sizes and shapes of this domain are the ones described
in [100, 112], taking into account a 3D-2D correction coe�cient for each branch
length. The diameter of the trachea is set toD0 = 1:80 cm and its length to
l0 = 7:52 cm. The right-hand bronchus has an angle of25° with the tracheal axis,
it is quite short (l10 = 3:75 cm), but its diameter quite large,D10 = 1:50 cm. The
left-hand bronchus has an angle of45° with the tracheal axis, it is longer than the
�rst one ( l01 = 6:75 cm), but its diameter is smaller, with D01 = 1:00 cm. The
right-hand bronchus is the left branch on Figure 6.2, and conversely: we have the
outsider's view, not the patient's. The origin of our domain is set to the middle of
the boundary inlet � in . Our simulations are run during� = 1 s.

Let us now provide all our boundary and initial conditions. First, for the �uid
equations, the �uid velocity is initialized at uinit = 0, and, at the inlet, uin follows a
Poiseuille law,i.e. it is vertically oriented from up to bottom and its amplitude is
given, for anyx 2 � in , by

juin (x)j =
4u0

D0
2

�
D0

2

4
� x1

2

�
;

where u0 = 50:0 cm � s� 1 and x1 the abscissa coordinates of the positionx. The
initial and boundary values ofYv;air uses the relative humidities in the airways,

Yv;air ;init =
RHlung Pv;sat(Tair ;init )

%air RvTair ;init
; Y in

v;air =
RHlung Pv;sat(T in

air )
%air RvT in

air
;

Yv;wall =
RHwall Pv;sat(Twall )

%air RvTwall
:

Here we suppose for homogeneity that the relative humidities in our �rst bifurcation
are RHlung = 0:99 and RHwall = 1:00. However, we know that the relative humidity
at the entrance of the trachea at inspiration is between 0.8 and 0.95 [56].

Likewise the air temperatures are chosen as follow,

Tair ;init = 37°C = 310 K; T in
air = 24°C = 297 K; Twall = 37°C = 310 K:

However, as for the relative humidity, the air temperature at the entrance of the
trachea at inspiration is around30� 34°C [56].

Let us now focus on the parameters for the aerosol particles. We consider5
injections of 100 numerical particles each with a representativity! = 104. These
injections are periodically released between the initial time andt = 0:25s. Hence, we
deal with Nnum = 500 numerical particles andNaero = 5 � 106 physical particles. We
suppose that, at the initial time, the particles do not contain excipient nor water,
i.e r = rdrug = rex. All the numerical particles initially have the same vertical
velocity vp;2(0) = � 100 cm � s� 1, the same radiusrp(0) = 2 :25� 10� 5 cm, and the
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same temperatureTp(0), equals to the air temperatureT in
air at the inlet. They are

released from random positionsxp(0) 2 � in with its �rst coordinate in [� D0=4; D0=4]
following a uniform law. We choose this latter interval instead of[� D0=2; D0=2] so
that it allows a larger deposition phenomenon. Since we use a particle method, it is
mandatory, in order to obtain meaningful results, to perform averaging computations
over several initial randomly chosen distributions of droplets. In our case, we worked
with 10 di�erent distributions. We validated our code by checking the computional
mass conservation of water vapor and the thermal energy balance implied by the
thermodynamic state change of water vapor.

Finally, Table 6.1 summarizes all the constants used in our model.

Quantity Value
jgj: Gravitation 980 cm� s� 2

%air : Air mass density 1:18 10� 3 g�cm� 3

cPair : Air speci�c heat 1:01 107 cm2 � s� 2 � K � 1

� air : Air thermal conductivity 2:60 103 g�cm�s� 3 � K � 1

� : Air dynamic viscosity 1:18 10� 4 g�cm� 1 � s� 1

%w: Water mass density 0:997g�cm� 3

%drug : Drug mass density 1:34 g�cm� 3

%ex: Excipient mass density 2:17 g�cm� 3

Mw: Water molar mass 18:0 g�mol� 1

M drug : Drug molar mass 577g�mol� 1

M ex: Excipient molar mass 58:4 g�mol� 1

i drug : Drug van't Ho� coe�cient 2:10
i ex: Excipient van't Ho� coe�cient 2:10
cPd : Droplet speci�c heat 4:18 107 cm2 � s� 2 � K � 1

Cm : Droplet mass Knudsen number correction 1:00
CT : Droplet temperature Knudsen correlation 1:00
Nu: Droplet Nusselt number 2:00
Sh: Droplet Sherwood number 2:00
L v : Water vaporization latent heat 2:26 1010 cm2 � s� 2

� : Droplet surface tension 72:0 dyn�cm� 1

Rv : Water vapor speci�c gas constant 4:61 106 cm2 � s� 2 � K � 1

Table 6.1: Value of the physical constants.

6.3.2 Exploration of the model

First, we observe the results obtained without aerosol particles in the domain. Fig-
ure 6.3 shows the values of the velocityu, the water vapor mass fraction in the air
Yv;air and the temperature of the airTair at the �nal time � = 1 s where a stationary
state is reached for the �uid.

Let us now inject the aerosol particles in the domain. On Figure 6.4, we can
observe the movement of the various aerosol releases and the behavior of the air
velocity u. On Figure 6.5 we can observe the behavior of the air temperatureTair

at di�erent times. The water vapor mass fractionYv;air reaches a stationnary state
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(a) (b)

(c)

Figure 6.3: Distribution of (a) the velocity juj, (b) the water vapor mass fraction in
the air Yv;air and (c) the temperatureTair at the �nal time � = 1 s.

very fast, whereasu and Tair only do so near 0.48 s. The distribution ofYv;air in the
domain is the same as on Figure 6.3.
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It is di�cult to observe interesting details about the air temperature after each
aerosol releases on Figure 6.5. Figure 6.6 allows to have a better understanding
of the evolution of the air temperatureTair . We can observe an air temperature
increase at the location of the particles for all aerosol releases except for the �rst
one. This e�ect comes from the water vapor mass exchange between the humidi�ed
air and the droplets.

Figure 6.6: Local e�ects of the aerosol on the air temperature at time0:25 + � t
(in seconds), with the plot of the particles (left) and without (right).

Let us now focus on the aerosol particles. The droplets trajectories obtained
with our model are shown on Figure 6.7. In this particular case, the majority of the
droplets (348 over 500) has left the domain by the left branch as expected because of
its diameter. It is the most natural way out for the aerosol. The remaining particles
are distributed as follow: 98 go out through the right branch, 47 deposit on the wall
and the last remaining 7 are still in the domain at the �nal time.

(a) (b) (c)

Figure 6.7: Particle trajectories (a) towards the left branch, (b) towards the right
branch, (c) deposition.

Finally, we observe the evolution of the radius and of the temperature of the
aerosol particles. In one of our initial distribution (Figure 6.8), the droplets from
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the �rst release do not behave in the same way as throse from the following releases.
Indeed, the particles radius grows slowler than in most of the other releases. This
behavior is con�rmed with the evolution of the temperature. Indeed, even if the
temperature of the injected particles is initially 297 K, they almost instantaneously
reach 310 K due to the temperature of the surrounding air. The other releases
spread in a cooler air (Figure 6.5) and hence are not submitted to the same thermal
shock.

Interestingly, on Figure 6.8, we can observe that for all releases, except for the
�rst one, there is a temperature jump. For the second release, this jump happens
around 0.25 s, which is approximatively the time when the particles go into the
branches with diameters signi�cantly smaller than the one of the trachea (see Fig-
ure 6.4). There, the in�uence of the walls is stronger and increase the particles
temperature.

Figure 6.8: Radius (left) and temperature (right) sevolution of all the particles
with respect to time.

6.3.3 Comparison of three models

Three di�erent models are de�ned to study the role of the evolution of the radius
and of the temperature of the aerosol particles on the deposit of the droplets. The
�rst model includes all the e�ects related to aerosol size and temperature variation.
It is the complete model previously de�ned and will be referred to as the(A) model:

(A)

8
>><

>>:

@t f + v � r x f + div v[(� (u � v) + g)f ] + @r (af ) + @T (bf ) = 0 ;
%air [@tu + ( u � r xu)] � � � xu + r xp = 0; divx u = 0;
%air [@tYv;air + ( u � r x )Yv;air ] � divx (Dv(Tair )r xYv;air ) = SY ;
%air cPair [@tTair + ( u � r x )Tair ] � � air � xTair = ST :

The second model, referred to as the(B) model does not include temperature
evolution (b= 0):

(B)

8
<

:

@t f + v � r x f + div v[(� (u � v) + g)f ] + @r (af ) = 0 ;
%air [@tu + ( u � r xu)] � � � xu + r xp = 0; divx u = 0;
%air [@tYv;air + ( u � r x )Yv;air ] � divx (Dv(Tair )r xYv;air ) = SY :
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Finally, the last model, referred to as the(C) model does not include size and
temperature variation (a = 0 and b= 0):

(C)
�

@t f + v � r x f + div v[(� (u � v) + g)f ] = 0;
%air [@tu + ( u � r xu)] � � � xu + r xp = 0; divx u = 0:

Let us now compare the radius and the temperature time evolutions of speci�c
droplets of the second release in the three models. We chose to plot three particles
with di�erent outcomes in model (A), the �rst leaves the domain through the left
branch (see Figure 6.9), the second leaves the domain through the right branch
(see Figure 6.10) and �nally the last one deposits (see Figure 6.11). These three
particles have also di�erent outcomes depending on the model used. Indeed the
second particle, in models(A) and (C), exits the domain by the right branch but
deposits in model(B). The third droplet chosen deposits in models(A) and (B) but
exit the domain through the right branch in model(C). Finally, we obtain the same
outcome for the three models with the �rst particle leaving the domain through the
left branch.

We focus �rst on the behavior of the temperature. Since, by de�nition, there
are no evolution of the temperature in the(B) and (C) model, it remains constant,
whereas in the(A) model, the particle temperature grows until it (approximatively)
reachesTwall . This may seem peculiar since the second release of aerosols enters the
domain at 297 K and evolves in a cooler air. These temperature variations cannot
be explained by the ambiant air temperature. Consequently, it means that they
are triggered by hygroscopic phenomena. This leads us to study more carefully the
evolution of the droplet radius. We can observe that the model(B) induces a larger
size growth than the model(A). This could explain the deposit of the second particle
considered in model(B) instead of leaving through the right branch in model(B).
The hygroscopic e�ects imply radius variations in the models(A) and (B), but a
part of this variation existing in the model (B) also a�ects the temperature in the
model (A). This justi�es why the radius in the model (A) is smaller than in the
model (B).

We provide some statistics about the evolution of the radius and of the temper-
ature for the three models (see Table 6.2). From ten initial aerosol distributions,
we can compute the mean radius and temperature of the droplets at the �nal time.
When a particle is deposited or has left the domain, the radius and the temperature
remain constant until the end of the simulation. We also compute the mean percent-
age of deposited particles and droplets reaching the boundaries� out among the 500
droplets and the corresponding mean event times. As shown on Figures 6.9-6.11,
the particles mean radius for the model(A) is between the ones from the model(B)
and (C). The radius growth in model(A) is signi�cant compared to model(C), it
seems to be the main reason for the larger aerosol deposit in model(A). Moreover
the models(A) and (C) have closer mean behaviors, which may imply that the model
(B) is not relevant here.

Finally, we compute the mean radius for the models(A) and (B) depending on
the position of the particles (deposit, left/right exit) at the �nal time (see Table 6.3).
The variations of the radius can be linked to the mean event times in Table 6.2. In
the model (A), the particles going out through the right branch stay longer in the
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Figure 6.9: Radius (left) and temperature (right) evolution of a droplet which goes
out through the left branch in models(A), (B) and (C).

Figure 6.10: Radius (left) and temperature (right) evolution of a droplet which goes
out through the right branch in models(A) and (C) and deposits in model(B).

Figure 6.11: Radius (left) and temperature (right) evolution of a droplet which
deposits in models(A) and (B) but goes out through the right branch in model(C).
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Models (A) (B) (C)
Mean radius (cm) 6:55� 10� 4 1:67� 10� 3 2:25� 10� 5

Mean temperature (K) 309 297 297
Deposited particles 7:6 % 35:5 % 0:0 %
Left exiting particles 69:0 % 64:5 % 69:6 %
Right exiting particles 22:4 % 0:0 % 24:7 %
Mean depos. time (s) 0:409 0:270 �
Mean left exit time (s) 0:289 0:261 0:296
Mean right exit time (s) 0:509 � 0:461

Table 6.2: Statistics in the reference case. The temperature in this case areTair ;init =
310 K; T in

air = 297 K; Twall = 310 K: We assume that we have 5 injections of 100
particles each with a representativity! = 104 periodically released between the
initial time and t = 0:25 s. The initial radius of particles is assumed to ber =
2:25� 10� 5 cm.

domain, thus undergoing a larger radius growth. In the model(B), deposit or exit
happen more or less at the same time, leading to very similar radii for the particles.

Mean radius (cm)
Model (A) Model (B) Model (C)

Deposited particles 6:43� 10� 4 1:68� 10� 3 �
Left exiting particles 6:25� 10� 4 1:67� 10� 3 2:25� 10� 5

Right exiting particles 7:42� 10� 4 � 2:25� 10� 5

Table 6.3: Statistics for the particles depending on their future (depositing/exiting).

6.4 Conclusion

We described and studied a model that describes the trajectories of aerosol droplets
in the �rst bifurcation of the lung. It models the evolution of the radius and temper-
ature of the droplets and gives us an appreciation on the deposition of the particles
on the bronchus walls.

Our results allowed to point out the relevance of the model(A) compared to the
other two models(B) and (C) to properly take into account the hygroscopic e�ects
on aerosols in the airways. However, there are still more situations to investigate.
The �rst concerns the numerical subcycling. Indeed, let us observe the source term
modelled by the functionb equation (6.2). This function drives the evolution of the
temperature of the droplets and is composed of two terms:

b1(r; T; Tair (t; x )) = �
3

%d(r )cPd r
Qd(r; T; Tair (t; x )) ;

and
b2(r; T; Yv;air (t; x ); Tair (t; x )) = �

3
%d(r )cPd r

L vNd(r; T; Yv;air (t; x )) :
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The two functions b1 and b2 have opposite signs but are of the same order of mag-
nitude, around 2 � 105 K � s� 1 at the initial time (see Figure 6.12). The function
b, which is the sum of the two previous functions has a value around400K � s� 1

at the initial time (see Figure 6.12). The model behaves nicely with respect to the
temperature (see Figure 6.13), because we used a very �ne subcycling time step to
guarantee numerical accuracy in the description of the thermal e�ects. However,
from the computational viewpoint, this can probably be improved.

Figure 6.12: Order of magnitude of each thermal e�ectb (left) and b1 and b2 (right)
for a given particle.

Figure 6.13: Temperature evolution of the chosen particle in Figure 6.12.

The second investigation could be the addition of the excipient. Our numerical
computations were made with the assumption that no excipient were present in the
droplets. However, since standard values of%drug and %ex are similar (see Table 6.1),
the addition of the excipient might not imply major behavior changes on the aerosol.

The next investigation could be the extension of the domain. Our computational
domain represents only the trachea and the �rst bifurcation in the lung. We could
study our model behavior within other domains, not necessarily with a vertical main
axis since deeper bronchi can have di�erent orientation angles, to understand the
e�ect of the geometrical variability. Furthermore, we only studied the air�ow in this
domain during inspiration. It could be interesting to add the expiration. However,
it is a di�cult task because of the unclear boundary conditions on the functionf at
� out .
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Finally, to study more faithfully the model, we should extend our two-dimensionnal
model into a three-dimensional one. We know that two-dimensional simulations tend
to increase the aerosol deposit [16] compared to three-dimensional models [15].
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temperature.
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Jacques-Louis Lions, éuipe REO, F-75012 Paris, France.
3 MAP5, CNRS UMR 8145, Sorbonne Paris Cité, Université Paris Descartes, F-
75006 Paris, France.
4 IMAG, University of Montpellier, CNRS, Montpellier, France.
5 Laboratoire JA Dieudonné, UMR CNRS 7351, Université Côte d'Azur, Nice,
France.
� Authors are in alphabetical order.



Chapter 7

Conclusion

The goal of this thesis is to reach a better understanding on how the lung's ventila-
tion can a�ect the transport of the respiratory gases in the lung whether healthy or
infected by a pulmonary infection. For that we have used relatively simple mathe-
matical models to mimic the ventilation by modeling the core physical and morpho-
logical properties of the lung.

Our �rst step was to model the ventilation and the gaseous exchanges with
the blood in a young healthy subject in order to have a benchmark close to the
physiology. We modeled the respiratory gas transport based on the core physical
properties of the human's lung: a tree-like structure of the lung, convective and
di�usive transports of oxygen and carbon dioxide and physiology-based exchange
surface properties. Then, we described a model that minimizes the power dissipated
during the lung's ventilation while ful�lling the body needs in oxygen. Our results
showed that the control of ventilation is due to the energy minimization spent during
respiration and hence, highly depends on the morphological characteristics of the
lung. Futhermore, this study showed that that it is not only accurate for the humans
but also for all mammals, for di�erent metabolisms.

In a second part, we extended this study to a non healthy subject. We ask
ourselves how this ventilation could be modi�ed by a pulmonary infection. That is
why we described and studied a model of the propagation of the infection and of
the in�ammation bronchi per bronchi in the human's lung. This model was linked
to the previous gas transport model which has been modi�ed to take into account
the asymmetry of the bifurcations induced by the in�ammation of the bronchi. Our
�rst results showed that the localization in the lung of the transition between the
convection and the di�usion, the localization of the infection and its intensity play
a major part in the amount of oxygen exchanged with the blood.

Finally, to cure this infection, the immune system can be helped with drugs
delivered in the form of aerosol droplets. The study of the amount of deposited
particles allows to have a better understanding in the e�cacy of such a treatment.
We modeled the trajectory of the aerosol particles in the �rst bifurcation of the lung
by taking into account the evolution of their radius and their temperature. Our
results showed that the hygroscopic properties of the droplets and the evolution of
their temperature a�ect signi�cantly the deposit of the particles.

113
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In this work, we obtained a complete model that optimizes the ventilation in
humans as well as in all mammals, whether they are healthy or with an infected
lung. In future works, we could couple this model to the aerosol particles deposition
model during the propagation of a pulmonary infection. This would therefore make
it possible to observe the changes in the air distribution as well as their in�uence on
the deposition of the particles. This approach could be a �rst step towards a better
understanding of the animal models for aerosols [109, 39, 4]. Indeed, our model
would allow to mimic and understand the change of size between the animal and
the human. The numerical model then could replace the animal model in order to
be more ethical.

This work is part of the projects of the ANR Virtual Chest and of the Vader
Center in UCA which aims to promote the use of mathematics and numerical meth-
ods to better understand how physical and chemical laws allow breathing. Di�erent
projects are developed such as the study of the ventilation at exercise in master ath-
letes, the modeling of the lung's geometry for biomedicals applications, the study of
the lung's evolution, the study of the link between music and respiration and �nally
the development of a numerical lung for chest physiotherapy.

Finally, this work clearly shows the importance of interdisciplinarity and the
usefulness of a mathematical approach to analyze and understand biophysical phe-
nomena such as the in�uence of the ventilation on the transport properties in the
lung.



Appendix A

Numerical Schemes

This appendix presents the numerical schemes used for the computation of the nu-
merical solutions for the gas transport model presented in the chapter 3 for a healthy
lung and in the chapter 5 for an in�amed lung. We also present the optimization
algorithm to compute the optimal ventilation in the chapter 4.

A.1 Gas transport in a healthy lung

A.1.1 Gas transport numerical scheme

In chapter 3, we described a model for the gas transport in the lung. In this section,
we will describe the numerical scheme used to compute the numerical approximations
of our model. Let us �rst recall that we assumed that the partial pressures of the
respiratory gases are described in each generation of the lungi by the equation,

@Pi
@t

�
D
l2
i

@2Pi

@x2
+

ui (t)
l i

@Pi
@x

+ � i Pi = � i Pblood ; 8x 2 [0; 1]: (A.1)

Let us recall that D is the di�usion coe�cient of the gas in the air, l i is the
length of the bronchus in generationi , ui (t) is the air �ow velocity in generation i
and � i is an exchange coe�cient de�ned in chapter 3 (equation (3.3))

We complete the equation with the following condition at the bifurcations,
8
<

:

Pi (t; 1) = Pi +1 (t; 0);

� DSi
@Pi (t; 1)

@x
= � 2DSi +1

@Pi +1 (t; 0)
@x

;
(A.2)

and the following boundaries conditions,
8
<

:

P0(t; 0) = Pair

� D
@PN
@x

(t; 1) = �k%s (PN (t; 1) � Pblood (t; 1)) :
(A.3)

We recall that Si is the lumen area of the bronchus in generationi , Pair is the
partial pressure of the gas in the air,� is an exchange coe�cient (see equation (3.1)),
k is the ratio relating partial pressure of the gas to its concentration in water and
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%s is the amount of exchange surface per unit of alveolar duct surface, all previously
de�ned in the chapter 3.

Let us now de�ne the space domaine for each generation i
 i = [0; 1]. This
domain is divided in M intervals each of length� x = 1

M . The time span[0; T�nal ],
where T�nal is the �nal time, is divided into L intervals each of length� t = T�nal

L .
Our approximated solution is computed on a mesh where each point of index(j; n )
is marked on the space axis by the positionx j = j � x (j 2 J0; M K), and on the time
axis by tn = n� t (n 2 J0; LK). The approximated solution at each mesh nodes is
denoted,

Pn
i;j = Pi (tn ; x j ):

To approximate our equation (A.1), we look for an approximation of the �rst and
second derivative in space and of the �rst derivative in time. For that, we use the
implicit �nite di�erences scheme. The �rst derivative in time is then approximated
by,

@Pi
@t

(tn ; x j ) �
Pn+1

i;j � Pn
i;j

� t
:

The second derivative in space is approximated by,

@2Pi

@x2
(tn ; x j ) �

Pn+1
i;j +1 � 2Pn+1

i;j + Pn+1
i;j � 1

� x2
:

The approximation of the �rst derivative in space depends on the sign of the
parameters in front of this derivative, hereu i (t )

l i
. We use an upwind scheme and

hence, ifui (t) > 0, the �rst derivative is approximated by,

@Pi
@x

(tn ; x j ) �
Pn+1

i;j � Pn+1
i;j � 1

� x
;

and if ui (t) < 0, the �rst derivative is approximated by,

@Pi
@x

(tn ; x j ) �
Pn+1

i;j +1 � Pn+1
i;j

� x
:

Finally, we obtain the following �nite di�erent scheme,

Pn+1
i;j � Pn

i;j

� t
�

D
l2
i

Pn+1
i;j +1 � 2Pn+1

i;j + Pn+1
i;j � 1

� x2

+
ui (t)

l i

 
Pn+1

i;j � Pn+1
i;j � 1

� x
1u i > 0 +

Pn+1
i;j +1 � Pn+1

i;j

� x
1u i < 0

!

+ � i Pn+1
i;j = � i Pn

blood;j :

It can also be written as follow,

Pn+1
i;j

�
1 +

2D� t
l2
i � x2

+
ui (t)� t

l i � x
(1u i > 0 � 1u i < 0) + � i

�

+ Pn+1
i;j +1

�
�

D � t
l2
i � x2

+
ui (t)� t

l i � x
1u i < 0

�
+ Pn+1

i;j � 1

�
�

D � t
l2
i � x2

�
ui (t)� t

l i � x
1u i > 0

�
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= Pn
i;j + � t� i Pn

blood;j

The computation of the partial pressure of the oxygen in the blood is computed
thanks to a Newton algorithm such that,

cb(Pn
blood;O2 ;j ) = � (Pn

i;j � Pn
blood;j )

� 4Z0
�
f (Pn

blood;O2 ;j ) � f (PaO2)
�

vs + �v s(Pn
blood;j � PaO2 )

= 0:

The recurrence relation for the Newthon method writes,

xn+1 = xn �
cb(xn )
c0

b(xn )
:

This algorithm stops oncejcb(xn )j < � , for � > 0 small enough.
The computation of the partial pressure of the carbon dioxide in the blood, is

computed easily thanks to this expression,

� (Pn
i;j � Pn

blood;CO2 ;j ) =
�
Pn

blood;CO2 ;j � PaCO2

�
� v s

�
1 + 10(pH � pK )

�

�
�

1 �
0:0289Z0

(3:352� 0:456SO2) � (8:142� pH)

�
:

Then, let us compute the approximation for the bifurcations conditions (A.2),
8
<

:

Pn
i;M = Pn

i +1 ;0;

� DSi
Pn

i;M � Pn
i;M � 1

� x
= � 2DSi +1

Pn
i +1 ;1 � Pn

i +1 ;0

� x
:

Finally, the boundary conditions (A.3) are approximated by,
8
<

:

Pn
0;0 = Pair

� D
Pn

N;M � Pn
N;M � 1

� x
= �k%s

�
Pn

N;M � Pn
blood;M

�
:

We assumed that the human lung could be idealized by a symmetric dichotomic
bifurcating tree. Thanks to this assumption, we only need to compute the partial
pressure of the respiratory gases for one path from the trachea to an acinus in the
lung. Consequently, we only have to resolve the equation for a single bronchus in
each generation. At each time step, we resolve a linear system. The vectors of this
linear system have a length ofK = ( N +1) � (M +1) , whereN +1 is the number of
generations in the lung (N + 1 = 23 for humans). Since we have to inverse a matrix
of sizeK � K at each time step, we then have a total complexity of our numerical
scheme ofO(K � K � (L + 1)) .

A.1.2 Oxygen and carbon dioxide �ow

In the previous section, we explained how to compute the partial pressure of the
respiratory gases in the lung and in the blood at each mesh point. Now, we can
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compute the gases �ows exchange with the blood during a respiratory cycle. Let us
recall that the �ow is computed as follow,

f (A; T ) =
NX

i = G

2i

T

Z tC + T

tC

Z l i

0

 (Pi (t; x ) � Pblood ) dx dt: (A.4)

We recall that T is the period of the ventilation, 
 is an exchange coe�cient
de�ned in chapter 3 (see equation 3.6) andG is the number of generation in the
bronchial tree.

We approximate the integral with the rectangle rule where we divide our integral
on each time step and each space step.

We then obtain,

f (A; T ) �
NX

i = G

2i

T

LX

n=0

MX

j =0

� t� xl i 

�
Pn

i;j � Pn
blood;j

�
:

A.2 Optimal ventilation

In chapter 4, our goal was to optimize the ventilation in order to minimize the power
spent during breathing while ful�lling the body's needs in oxygen. In this section,
we will describe our algorithm. First, let us recall the expression of the power spent
during breathing,

P(A; T ) = Pe(A; T ) + Pv(A; T )

= Pe(A; T )
�

1 +
� 2

2T
RC

�
=

A2S2
0T

2� 2C

�
1 +

� 2

2T
RC

�
: (A.5)

The function (A; T ) ! P (A; T ) is to be minimized relatively to the ventilation
amplitude A and the period T with the constraint f O2 (A; T ) = _VO2 , where _VO2 is
the desired oxygen �ow to the blood.

Practically, the ventilation period T and the amplitude A can be linked through
the constraint on the �ow of oxygen to the blood, in the form of a non linear
function T ! A(T). The non linear function is the result of the transport model of
oxygen. For a given value of the period, only one value of the amplitude is possible
in order to check the constraint (see Figure 4.2). For each periodT, we look for the
corresponding amplitudeA by solving thanks to the secant method,

c(A) = f O2 (A; T ) � _VO2 = 0:

The recurrence relation for the secant method writes,

xn+1 = xn �
xn � xn� 1

c(xn ) � c(xn� 1)
c(xn ):

This algorithm stops oncejc(xn )j < � , for � > 0 small enough.
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Consequently, with the oxygen �ow constraint, the optimization problem is uni-
dimensional and we search for the minimum of the functionP or the zero of its
derivative relatively to T,

@P
@T

(A(T); T) =
�

A0(T)
�

1
2

+
T

� 2RC

�
+

A(T)
2� 2RC

�
A(T)RS2

0 = 0:

Since we impose a positive oxygen �ow, the valueA(T) must be di�erent than zero.
Consequently we only need to search the zero of the function,

D(T) = A0(T)
�

1
2

+
T

� 2RC

�
+

A(T)
2� 2RC

:

Since the computation of the functionA is numerical, we can approximate its
derivative by,

A0(T) �
A(T + m) � A(T)

m
;

wherem > 0 tends to 0.
The optimal ventilation is then computed thanks to the secant method in order

to obtain the zero of the functionD(T).

The secant method converges if the initial pointsx0 and x1 are su�ciently close
to the root of our function. The order of convergence of this method is the golden
ratio which is approximated by 1.618. Finally, the resolution time will depends on
the initial points, the time step and the space step used for the computation of the
gases �ow exchanged with the blood and on the desired precision� . In pratice, the
order of magnitude of the resolution time is around 15 to 30 minutes with initial
points close to the optimal value and a relative precision of� = 10� 8 on a 3.1 GHz
dual-core CPU.

A.3 Gas transport in an in�amed lung

In the chapter 5, we assumed that the lung was subjected to a pulmonary infection
and to the propagation of the in�ammation in the bronchi. This leads to the asym-
metry of some of the bifurcations in the lung. In this section, we will present the
numerical scheme used in order to compute the partial pressure of the respiratory
gases in an in�amed lung.

Since the bifurcations are no longer symmetric, we can not anymore compute the
partial pressure of the gases in only one path of the lung. Our �rst step is then to
compute the number of the di�erent paths required to compute the partial pressure
of the gases in the whole lung. This step is important as we do not want to compute
the partial pressure of the respiratory gases in each bronchus of the whole lung. We
assume that the bronchi are ordered numerically (see Figure A.1). For example,
we suppose that our tree has four generations and that �ve bronchi are in�amed.
We can observe on Figure A.1 that in this case, �ve paths have to be computed to
model the partial pressure in the whole lung. Indeed, three paths result from the
three in�amed bronchi in the fourth generation, one path results from the bronchus
(3; 3) connected to an in�amed bronchus and �nally the last path is an healthy one.
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(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

Figure A.1: Tree of 4 generations mimicking a small lung. The numbers represent
the indices of the bronchi. The red bronchi are in�amed.

Now that we know the number of paths required to compute the partial pressure
in the whole lung, we can use the �nite di�erences scheme to compute numerically
the approximated solution of the equation,

@Pc;i

@t
�

D
l2
i

@2Pc;i

@x2
+

uc;i (t)
l i

@Pc;i

@x
+ � c;i Pc;i = � c;i Pblood ; 8x 2 [0; 1]: (A.6)

The index c corresponds to the number of the paths andi represents the gener-
ation in the lung. As in section A.1, we use the following scheme,

Pn+1
c;i;j

�
1 +

2D� t
l2
i � x2

+
uc;i (t)� t

l i � x
(1uc;i > 0 � 1uc;i < 0) + � c;i

�

+ Pn+1
c;i;j +1

�
�

D � t
l2
i � x2

+
uc;i (t)� t

l i � x
1uc;i < 0

�
+ Pn+1

c;i;j � 1

�
�

D � t
l2
i � x2

�
uc;i (t)� t

l i � x
1uc;i > 0

�

= Pn
c;i;j + � t� i Pn

blood;c;j :

The equation (A.6) is completed with the following boundary conditions,
8
<

:

Pc;0(t; 0) = Pair

� D
@Pc;N

@x
(t; 1) = �k%s (Pc;N (t; 1) � Pblood (t; 1)) :

(A.7)

It is approximated as in section A.1 by,
8
<

:

Pn
c;0;0 = Pair

� D
Pn

c;N;M � Pn
c;N;M � 1

� x
= �k%s

�
Pn

c;N;M � Pn
blood;c;M

�
:
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Number of in�ammed bronchi Resolution time
0 9.5 s
1 13 s
6 25 s
12 37 s
62 149 s (� 2 min 30)
128 313 s (� 5 min)
256 697 s (� 12 min)
511 1771 s (� 30 min)

Table A.1: Resolution time of the computation of the oxygen partial pressure in an
idealized human's lung during depending on the number of infected bronchi.

Finally, the equation (A.6) is also completed by the conditions at the bifurcations,
8
<

:

Pc;i (t; 1) = Pc;i+1 (t; 0);

Sc;i
@Pc;i (l i ; t)

@x
= Sc;i+1

@Pc;i+1 (0; t)
@x

+ S~c;i+1
@P~c;i+1 (0; t)

@x
;

(A.8)

where~c is the path that takes into account the bronchus connected to the one in
path c of generationi + 1. Let us consider again our previous example, we assume
that the path going from the bronchus(0; 0) to (3; 0) has for index 1 and that the
path going from the bronchus(0; 0) to (3; 1) has for index 2. We focus on the
bifurcation where the bronchus(2; 0) divides into bronchus(3; 0) and (3; 1). Here if
c = 1, then we have~c = 2 and vice versa.

Finally, this bifurcation conditions can be approximated by,
8
<

:

Pn
c;i;M = Pn

c;i+1 ;0;

Sc;i
Pn

c;i;M � Pn
c;i;M � 1

� x
= Sc;i+1

Pn
c;i+1 ;1 � Pn

c;i+1 ;0

� x
+ S~c;i+1

Pn
~c;i+1 ;1 � Pn

~c;i+1 ;0

� x
:

We have to resolve for each path the equation for a single bronchus in each
generation. As for the healthy lung in section A.1 we have to resolve a linear
system at each time step. The vectors of this linear system have a length ofK =
NbP � (N + 1) � (M + 1) , whereN + 1 is the number of generations in the lung
(N + 1 = 23 for humans) andNbP is the number of paths. Since we have to inverse
a matrix of sizeK � K at each time step, we then have a total complexity of our
numerical scheme ofO(K � K � (L + 1)) . It becomes more and more di�cult
to resolve this system as the number of in�amed bronchi increases. Indeed, if each
bronchus of the human lung is in�amed then we have to compute the partial pressure
in all the bronchi of the lung i.e. in 223 bronchi which becomes complicated in terms
of memory and of resolution time. For example, Table A.3 references the resolution
time depending on the number of infected bronchi. This computations were made
on a 3.1 GHz dual-core CPU, with a adimensionalized space step of� x = 0:01 and
a time step of� t = 0:1 s where the �nal time is T�nal = 10 s.
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Appendix B

Infection model parameters

The equations and parameters detailed here are the ones needed for the infection
model described in chapter 5. They come from [91]. We know that when the body
detects a pathogen in the tissues (P) or in the blood (Pb), the �rst reaction of the
immune system is to bring white blood cells (here macrophages and neutrophils) to
the site of infection. When resting macrophages (M ) already present in the tissue
come in contact with some pathogens, they become activated (M � ). They can now
eliminate pathogens and produce pro-in�ammatory (TNF ) and anti-in�ammatory
(IL 10) cytokines. Pro-in�ammatory cytokines migrate into the blood (TNFb) and
send a signal to resting neutrophils (Nb) already present in the blood. Once the
signal is received by the neutrophils they become activated (N �

b ). These activated
neutrophils have the ability to go in the tissue (N � ) and to �ght the pathogens. Fur-
thermore, during this infection, the tissue becomes in�ammed (Z ) and the presence
of radicals (RAD and RAD b), produced by activated macrophages and neutrophils,
can damage the tissue that becomes less functional (T I ). This immune response
can be modeled by ordinary di�erential equations,

dP
dt

= kpgP
�

1 �
P

P1

�
�

sbkpbP
� b + kbpP

� kpmgi (M � )g(P; xm� p; hm� p)

� kpngin (N � )g(P; xn� p; hn� p) + dp(Z )
dpb(Pb) � dpt(P)

VT

dM
dt

= sm � � mM � kmtcell gi (M )g(TNF; x t ; ht )

� kmrcell gi (M )RAD � kmpgi (M )g(P; xmp ; hmp);
dM �

dt
= � � m� M � + kmtcell gi (M )g(TNF; x t ; ht )

+ kmrcell gi (M )RAD + kmpgi (M )g(P; xmp ; hmp);

dN �

dt
= � � n� N � � (1 � r )kpncell gi n(N � )g(P; xn� p; hn� p) +

dn (Z )N �
b

VT
;

dTNF
dt

= � � tTNF � kmtmol gi (M )g(TNF; x t ; ht )

+ kmat git (g(M � ; xm� t ; hm� t )) +
dmol (Z )(TNFb � TNF )

VT
;
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dIL 10
dt

= ( � � imax + ( � imax � � imin )g(IL 10; x i ; hi )) IL 10

+
dmol (Z )(IL 10b � IL 10)

VT
+ kmai gi (g(M � ; xm� i ; hm� i )) ;

dRAD
dt

= � � r RAD + krtr RAD TI + knar gin (N � ) + knatr N � T I

+ krntp N � P TI + krtmp M � P TI +
dmol (Z )(RAD b � RAD )

VT
;

dT I
dt

= ktgT I
�

1 �
T I
T1

�
(T I � a) � krtt RAD TI;

dZ
dt

= ktz (g(TNF; x tz ; htz ) + kzti (1T I )) (1 � Z ) � � zZ;

dPb

dt
= kpbgPb

�
1 �

Pb

Pb1

�
�

sbbkpbbPb

� bb + kbbpPb
� kpnbgib(N �

b )g(Pb; xn� pb; hn� pb)

+ dp(Z )
dpt(P) � dpb(Pb)

VB
;

dNb

dt
= � � nbNb � kntcell gib(Nb)g(TNFb; xtb; htb)

� knpbcellgib(Nb)g(Pb; xnpb; hnpb)

� knrb gib(Nb)RAD b + snb + ksnbg(cN �
b + dN � ; xsnb; hsnb);

dN �
b

dt
= � � nb� N �

b + kntcell gib(Nb)g(TNFb; xtb; htb)

knpbgib(Nb)g(Pb; xnpb; hnpb) + knrb gib(Nb)RAD b

� (1 � rb)kpncell gib(N �
b )g(Pb; xn� pb; hn� pb) �

dn (Z )N �
b

VB
;

dTNFb

dt
= � � tbTNFb � kntmol gib(Nb)g(TNFb; xtb; htb)

�
dmol (Z )(TNF � TNFb)

VB
;

dIL 10b

dt
= ( � � ibmax + ( � ibmax � � ibmin )g(IL 10b; x i ; hi )) IL 10b

+
dmol (Z )(IL 10� IL 10b)

VB
;

dRAD b

dt
= � � rbRAD b + knarb ginb (N �

b ) +
dmol (Z )(RAD � RAD b)

VB
:

Let us now de�ne the di�erent functions used in these equations. First we have
a Hill function that writes,

g(v; x; h) =
vh

vh + xh
:
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Next, some inhibitions functions are present in the equations, they write,

gi (x) = x

0

B
@

1 � ci

1 +
�

IL 10
IL 101

� h i
+ ci

1

C
A ;

git (x) = x

0

B
@

1 � cit

1 +
�

IL 10
IL 10t 1

� h it
+ cit

1

C
A ;

gin (x) = x

0

B
@

1 � cin

1 +
�

IL 10
IL 10n 1

� h in
+ cin

1

C
A ;

ginb (x) = x

0

B
@

1 � cinb

1 +
�

IL 10
IL 10nb 1

� h inb
+ cinb

1

C
A ;

The di�usion functions write,

dn (Z ) = dbn(1 + dfn Z); dpb(Pb) = abPb;

dmol (Z ) = dbmol(1 + dfmol Z) qquad dpt(P) =
atP2=3

1 + btP1=3
; dp(Z ) = dbp(1 + dfp Z):

The parameters used in these equations are detailed in the following tables.

Parameters Values
kpb: Rate at which the local response in

0.461B units� 1 � hr� 1tissueB eliminate pathogen (P)
in the tissue
kpbb: Rate at which the local response in

0.461B units� 1 � hr� 1blood Bb eliminate pathogen (Pb)
in the blood
kbp: Rate at which B is exhausted byP 0:0001P units� 1 � hr� 1

kbbp: Rate at which Bb is exhausted
0:02 P units� 1 � hr� 1

by Pb

sb: Source ofB 0.0075B units � hr� 1

sb: Source ofB 0.0075B units � hr� 1

sbb: Source ofBb 0.0075B units � hr� 1

� b: Decay rate forB 0.0023 hr� 1

� bb: Decay rate forBb 0.0023 hr� 1

kpg: Growth rate of P and Pb 0.6 hr� 1

Table B.1: Parameters of the infection model 1/6
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Parameters Values
P1 : Maximum P population 20 000P units
Pb1 : Maximum Pb population 20 000P units
kpm : Rate at which activated

2.8 P units � M � units� 1 � hr� 1

macrophages (M � ) eliminate P
kmp : Rate at which pathogen activates

40 hr� 1

resting macrophage (M )
xm� p: Determines level ofP needed

20 P units
to bring elimation of P by M �

xmp : Determines level ofP needed
20 P unitsto bring activation of M to half

their maximum
hm� p: Hill coe�cient for the elimination

3
and activation terms containingP
sm : Source ofM 10 M units � hr� 1

sn;b: Source of resting blood
10 Nb units � hr� 1

neutrophils (Nb)
� m : Decay rate ofM 0.12 hr� 1

� nb: Decay rate ofNb 0.12 hr� 1

� m� : Decay rate of activated
0.05 hr� 1

macrophages (M � )
� n� : Decay rate of activated neutrophils

0.05 hr� 1

in the tissue (N � )
� nb� : Decay rate of activated neutrophils

0.05 hr� 1

in the blood (N �
b )

kmtcell : Rate at which TNF activates M 20 hr� 1

kmtmol : Rate at which TNF is consumed
5 TNF units � M units � 1 � hr� 1during the activation of M

x t : Determines level ofTNF needed
20 TNF unitsto bring activation of M by TNF to

half its maximum
ht : Hill coe�cient for the activation

2
of M by TNF
kmrcell : Rate at which radicals (RAD )

0.01RAD units� 1 � hr� 1

activate M
kpn : Rate at which N � eliminatesP 5.8 P units � N� units� 1 � hr� 1

Table B.2: Parameters of the infection model 2/6
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Parameters Values
kpncell : Rate at which N � is destroyed

5 hr� 1

when it eliminatesP
r : Population of N � that survives

0.98
the elimination of P
xn� p: Determines level ofP needed

1500P unitsto bring elimination of P by N �

to half its maximum
r : Population of N � that survives

0.98
the elimination of P
xn� p: Determines level ofP needed

1500P unitsto bring elimination of P by N �

to half its maximum
hn� p: Hill coe�cient for the elimination

3
term by N � containing P
� t : Decay rate forTNF 1.8 hr� 1

� tb: Decay rate forTNFb 1.8 hr� 1

kmat : Rate of TNF production by M � 3 000TNF units�hr� 1

xm� t : Determines level ofM � needed
80 M � unitsto bring TNF production

to half its maximum
hm� t : Hill coe�cient for the production

2
term of TNF by M �

� imax : Maximum decay rate forIL 10 0.34 hr� 1

� ibmax : Maximum decay rate
0.34 hr� 1

for IL 10b

� imin : Minimum decay rate for IL 10 0.005 hr� 1

� ibmin : Minimum decay rate
0.005 hr� 1

for IL 10b

kmai : Rate of IL 10 production by M � 1 000IL 10 units�hr� 1

xm� i : Determines level ofM � needed
140M � unitsto bring IL 10 production

to half its maximum
hm� i : Hill coe�cient for the

2
production term of IL 10 by M �

x i : Determines level ofIL 10 and
8 IL 10 unitsIL 10b needed to cause its decay rate

to decrease to half its maximum
hi : Hill coe�cient for the production

2
term of IL 10
� r : Decay rate forRAD 4 hr� 1

Table B.3: Parameters of the infection model 3/6
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Parameters Values
� rb: Decay rate forRAD b 4 hr� 1

krtr : Rate at which RAD is produced
0.1hr� 1

when RAD is in the tissue
knar : Rate at which RAD is

0.01RAD units � hr� 1 � N� units� 1

released byN �

knarb : Rate at which RAD b is
0.01RAD units � hr� 1 � N� units� 1

released byN �
b

knatr : Rate at which RAD is
0.01RAD units � hr� 1 � N� units� 1produced whenN � is in the

tissue causing damage
krtmp : Rate at which RAD is produced

1 � 10� 5 hr� 1

when M � eliminatesP in the tissue
ktg : Repair rate of the tissue integrity 2 hr� 1

T1 : T I maximum 1
a: Below T I = a, tissue is inable to

0.1
repair itself
krtt : Rate at which RAD depleteT I 0.01RAD units� 1 � hr� 1

ktz : Rate at which TNF and tissue
0.5 hr� 1

damage cause in�ammation (Z )
x tz : Determines level ofTNF needed

20 TNF -unitsto bring production of Z by TNF
to half its maximum
htz : Hill coe�cient for the production

2
term of Z by TNF
kzti : Relative e�ectiveness ofTNF

0.1
versus tissue damage in producingZ
� z: Decay rate ofZ 0.01 hr� 1

kpnb: Rate at which N �
b 0.04P units � N� units� 1 � hr� 1

eliminatesPb

kpnbcell : Rate at which N �
b is destroyed

5 hr� 1

when it eliminatesPb

rb: Population of N �
b that survives

0.98
the elimination of Pb

xn� pb: Determines level ofPb needed

0.1 P units
to bring activation of Nb and P
elimination by N �

b
to half their maximum

Table B.4: Parameters of the infection model 4/6
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Parameters Values
hn� pb: Hill coe�cient for Pb elimination

1
by N �

b

kntcell : Rate at which TNFb 2 hr� 1

activates Nb

kntmol : Rate at which TNFb is
0.8 TNF units � N units� 1 � hr� 1

consumed during the activation ofNb

x tb: Determines level ofTNFb needed
2 TNF unitsto bring activation of Nb by TNFb

to half its maximum
htb: Hill coe�cient for the activation

2
of Nb by TNFb

knrb : Rate at which RAD activate Nb 0.1 RAD units� 1 � hr� 1

ksnb: Rate at which the source of
3 N units � hr� 1

Nb increases
c: E�ectiveness ofN � at increasing

1
the source ofNb (snb)
d: E�ectiveness ofN �

b at increasing
1

the source ofNb

xsnb: Determines level ofN � and
200N � unitsN �

b needed to bring increase
in snb to half their maximum
hsnb: Hill coe�cient for the increase of snb 2
ci : Maximum inhibition level of gi , 0.05
inhibition of macrophage functions
cit : Maximum inhibition level of git , 1 � 10� 6

inhibition of TNF production
cin : Maximum inhibition level of gin ,

0.15
inhibition of neutrophils in the tissue
cinb : Maximum inhibition level of ginb ,

0.15
inhibition of blood neutrophils
hi : Hill coe�cient for gi 3
hit : Hill coe�cient for git 5
hin : Hill coe�cient for gin 1
hinb : Hill coe�cient for ginb 1
IL 101 : Determines level ofIL 10 needed

200 IL 10 unitsto bring macrophage inhibition
to half its maximum
IL 10t1 : Determines level ofIL 10 needed

60 IL 10 units
to bring the inhibition of TNF production

Table B.5: Parameters of the infection model 5/6
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Parameters Values
IL 10n1 : Determines level ofIL 10 needed

80 IL 10 unitsto bring tissue neutrophils inhibition
to half its maximum
IL 10nb1 : Determines level ofIL 10b needed

80 IL 10b unitsto bring blood neutrophils inhibition
to half its maximum
dbn: Baseline di�usion of neutrophils 0.005 L�hr� 1

dfn : E�ectiveness ofZ in increasing
50

neutrophil di�usion
dbp: Baseline di�usion of pathogen 1
dfp : E�ectiveness ofZ in increasing

1
pathogen di�usion
dbmol : Baseline di�usion of molecules 10 L�hr� 1

dfmol : E�ectiveness ofZ in
1

increasing molecule di�usion
at : Constant in the numerator ofdpt 50
bt : Constant in the denominator ofdpt 0.8 (P units)� 1=3

ab: Rate of pathogen di�usion in dpb 2000 hr� 1

krntp : Rate at which RAD 0.2 RAD units � M � units� 1�
is produced whenN �

P units� 1 � hr� 1

eliminatesP in the tissue

Table B.6: Parameters of the infection model 6/6
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