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Abstract v

Detection and characterization of quasi singularities in turbu-

lence

Abstract

It is still not known whether the equations of Navier�Stokes are well posed, i.e. whether
their solutions can develop singularities from regular initial conditions. This unsolved
problem might be the key to explain anomalous dissipation. As such, a method based on
local energy transfers has been developed as a mean to identify potentially singular events
in turbulence data. In this thesis, a local statistical method derived from multifractal
analysis is developed in order to measure local Hölder coe�cients. This method provides
an estimate of the local regularity of turbulent velocity �elds. Combined with local energy
transfers, this allows us to locate and characterize quasi singular events. The method is
applied in simulation to extract rare irregular structures at the dissipative scale. From the
data aggregated, we derive a "typical singular event" bearing similarities with a Burgers
vortex. Extending the analysis to time resolved data shows that irregular events are
connected with vortex interactions. In parallel, we developed a new simulation scheme for
Navier�Stokes based on a particles-in-cell model and using the Clebsch decomposition. Its
purpose is to track potential singularities in scale for a comparatively low computational
cost.

Keywords: Navier�Stokes, Singularities, Turbulence, Multifractal, Simulations, PIC
method

Détection et caractérisation des singularités en turbulence

Résumé

Il n'est pas encore démontré que les équations de Navier�Stokes sont bien posées, c'est à
dire que leur solutions ne développent pas de singularités à partir de condition initiales
régulières. Résoudre ce problème pourrait conduire à expliquer l'anomalie dissipative.
Ainsi, une méthode fondée sur les transferts d'énergie locaux a été développée comme
un critère de détection de singularités potentielles. Dans cette thèse, nous développons
une méthode à la fois locale et statistique, dérivée de l'analyse multifractale, a�n de
mesurer des coe�cients de Hölder locaux. Cette méthode nous permet d'estimer la régu-
larité locale de champs de vitesse turbulents. Combiné au critère fondé sur les transferts
d'énergie, ceci nous permet de localiser et quanti�er des événements quasi singuliers. La
méthode a été appliquée sur des données de simulation a�n d'extraire des structures ir-
régulières à l'échelle dissipative. A partir des données ainsi obtenues, nous reconstituons
un "événement singulier typique" qui présente des similarités avec le vortex de Burgers.
L'analyse sur des données résolues en temps montre une connexion avec les interactions
entre tourbillons. En parallèle, nous avons construit un nouveau schéma de simulation
pour Navier�Stokes fondé sur un modèle particulaire et la décomposition de Clebsch.
L'objectif a�ché est de suivre à moindre coût les singularités potentielles en échelle.

Mots clés : Navier�Stokes, Singularités, Turbulence, Multifractal, Simulations, Mé-
thode PIC

Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet
Boulevard Paul Langevin, 59655 Villeneuve d'Ascq
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Preambule

Turbulence is a phenomenon manifesting itself in a very wide range of scale, from

human size to the atmosphere and up to galaxies. At the human scale, its e�ects

are observed in a multitude of �elds including meteorology and aeronautics, but

also in food industries. In some cases those e�ects are bene�cial, as it increases

the mixing e�ciency of slowly di�usive scalar. In other situations, turbulence

is problematic, as it increases the energy consumption due to its high level of

dissipation. All these factors makes it a subject of major interest for research, as

any development can be bene�cial for a large range of applications.

The governing equations for �uids mechanic in general and turbulence in par-

ticular are the Navier�Stokes equations. Despite having been derived in the 18th

century, they are still a subject of active research. A major yet unsolved issue is

the regularity of its solutions. This issue has physical implications. Indeed, it was

proven that if singularities exist in turbulent velocity �elds, they would be able

to dissipate energy in a non viscous way. This contribution to the global energy

budget might be an explication to the phenomenon of anomalous dissipation, or

the fact that the energy dissipation rate no longer depends on viscosity for high

enough Reynolds numbers.

The objective of this thesis is to build a new tool to detect potential singularities

in both numerical and experimental turbulent velocity �elds. This tool is based on

a measure of local regularity inherited from the concept of multifractal analysis.

It is meant to complement a previously designed criterion based on local energy

transfer. Indeed, this other tool is designed to analyze the "anomalous dissipation"

part of the problem and does not provide a way to quantify the regularity of a given

velocity �eld. The conjunction of these two tools allows for an in-depth analysis

of the extreme events found in turbulent �elds. This analysis brings some hints

about the distribution, physical mechanism and evolution of the events assimilated

to quasi singularities.

In parallel with the elaboration of tools to characterize the �ow regularity, we

develop a new numerical simulation method based on the Clebsch decomposition.
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2 Preambule

Its purpose is to simulate the small scales of the �ow using the inviscid Euler

equations in order to potentially track singularities where they would otherwise be

dissipated by viscosity. In order to keep the simulation cost a�ordable, a Particle

in Cell method is used to model those small scales.

This thesis is structured as follow: The Chapter 1 is dedicated to a general

introduction about turbulence and singularities. The Chapter 2 is dedicated to

local energy transfers and their usefulness as a criterion for the detection of singu-

larities. The Chapter 3 explains the new method to quantify singularities that was

developed during this thesis. The results of this method for numerical and experi-

mental datasets are presented in the Chapter 4. Before the conclusion, the Chapter

5 develops the basis for the new simulation method, of which the implementation

is un�nished at the time of the redaction of this manuscript.



Chapter1
Turbulence and singularities

In this chapter, we introduce the properties of turbulence and the Navier�Stokes

equation and show why there are interrogations about the existence or non exis-

tence of singularities.

1.1 Generalities about turbulence

Turbulence manifests itself in a �ow when the viscosity of the �uid is low enough

that viscous e�ects are dominated by inertia. In this section, we recall the gov-

erning equations and present some of their properties. We particularly focus on

properties leading to the suspicion of singularities.

1.1.1 Navier�Stokes: A governing equation

The governing equations for viscous �ow are the Navier-Stokes equations. Derived

in the 19th century, they include two partial di�erential equations, one coming

from the conservation of mass and the other from the conservation of momentum.

In the incompressible case, they are expressed as follow:

∂tui + uj∂jui = −1

ρ
∂ip+ ν∂j∂jui + fi,

∂juj = 0.

(1.1)

(1.2)

where the Einstein convention for repeated indices is used.

In these equations, hereafter referred to as INSE for Incompressible Navier�

Stokes Equations,

� ui(x, t) for i = 1, 2, 3 are the three components of the velocity �eld;

3



4 CHAPTER 1. Turbulence and singularities

� p(x, t) is the pressure �eld;

� ν is the molecular viscosity;

� fi(x, t) corresponds to the volumic forces acting on the �uid.

The �rst equation is derived from the conservation of momentum (i.e. New-

ton's second law) applied to an elementary volume of �uid. In this equation, the

left hand side, corresponding to a material derivative of the velocity (duidt ), is the

elementary volume acceleration. The right hand side corresponds to the forces ap-

plied to the volume. This includes a pressure term, the contribution of viscosity, as

well as exterior volumic forces. The second equation expresses mass conservation,

or in this incompressible case, the conservation of volume.

Several conditions must be ful�lled for the INSE to be applicable to a �ow. The

�rst of those is the incompressibility condition. Most �uids can be considered

incompressible, i.e. keeping an uniform density ρ, under certain conditions. For

this to be valid, the time required to regularise variations of density must be very

small compared to the other characteristics time of the �ow. This property is

captured by the Mach number:

M =
u

c
(1.3)

where u is a characteristic velocity of the �ow and c is the sound velocity in the

medium. The incompressibility condition is then valid provided M � 1.

Another condition is the scale separation, related to the validity of using

an elementary volume of �uid when computing the conservation of mass and the

conservation of momentum. This is made more apparent when the Navier�Stokes

equations are derived using the kinetic theory of gas (see e.g. [42]). The general

idea is that for the momentum equation (1.1) to be valid without including molec-

ular e�ects, the elementary volume must be very large compared to the range of

these interactions. This property is captured by the Knudsen number:

Kn =
`mol

`min,flow
(1.4)

where `mol is the scale of the molecular interactions and `min,flow is the minimum

scale of the �ow. This last scale represents the size of the elementary volume of

�uid that needs to be considered in order to describe the �ow with equation (1.1).

Typically, `min,flow is the Kolmogorov scale. The scale `mol is typically the mean

free path for a gas or the distance between molecules for a liquid. In this thesis, we

only use �uids with a molecular scale of the order of 0.1 nm, while the Kolmogorov
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scale is always greater than 10 µm. As a result, the scale separation should always

be respected.

1.1.2 Inertia versus viscosity

The momentum part of the INSE can be made dimensionless using a characteristic

velocity U and a characteristic scale L as follows:

∂∗t u
∗
i + u∗j∂

∗
ju
∗
i = −∂∗i p∗ +

1

Re
∂∗j ∂

∗
ju
∗
i + f ∗i (1.5)

where the asterisk denotes a dimensionless quantity or derivative and the Reynolds

number is de�ned as:

Re =
UL

ν
. (1.6)

The Reynolds number is thus the main parameter for the INSE. It can be

interpreted as a ratio of inertial e�ect over viscous e�ects. Indeed, if the Reynolds

number is low, the viscous term ∂∗j ∂
∗
ju
∗
i dominates the inertial terms in the INSE.

This leads to a laminar �ow, with a number of properties including symmetry by

time reversal. Such �ows can be observed for very viscous �uid (e.g. honey) or at

very small scale and velocity (e.g. �ow around a bacteria swimming).

Conversely, if the Reynolds number is very high, the nonlinear terms u∗j∂
∗
ju
∗
i

and ∂∗i p
∗ dominate the viscous term. This type of �ow is much more chaotic than

laminar �ows, leading to the name turbulence, originating from the Latin turba

meaning "disorder" or "tumult". Such �ow is commonly seen in the wakes of

boats or planes for example.

In practice, the exact threshold of Reynolds number separating laminar and

turbulent �ow depends on the geometry of the system.

1.1.3 A multiscale phenomenon

One characteristic of turbulent �ows is the corresponding wide range of scales.

This property is observed visually in the velocity �elds as one can observe vortices

of very di�erent size in a same �ow. Examples of such velocity �eld are given in

Chapter 4.

Meanwhile, the multiplicity of scales is also something that can be anticipated

from the INSE. This is particularly the contribution of the non linear terms, fun-

damental to turbulence. Indeed, let us suppose an initial condition of velocity with
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only one mode of wave number k. By the trigonometric formula

cos(kx)2 =
cos(2kx) + 1

2
, (1.7)

this initial mode will cause the apparition of a mode with wave number 2k. This

process is repeated, leading to cover a large range of scales. In the limit of zero

viscosity, corresponding to the Euler equations, this cascade continues inde�nitely.

However, in the case of a �nite viscosity, this process is interrupted as the viscous

term becomes comparable to the non linear term. Using the dissipation rate ε as a

basis for dimensional analysis, one can estimate the characteristic velocity at scale

` as u` = (ε`)1/3. This means that the corresponding viscous term (resp. nonlinear

term) has an order of magnitude of νε1/3`−5/3 (resp. ε2/3`−1/3). Those terms are

balanced at the scale ` = η, known as the Kolmogorov scale:

η =

(
ν3

ε

)1/4

. (1.8)

This "cascade" can be observed in the energy spectra corresponding to tur-

bulent velocity �elds. Such spectra are shown in Chapter 3, and a schematic

illustration is presented in �gure 1.1. The main feature observed is a large range

of modes, named the inertial range, over which the energy follows a power law

in k−5/3. This is the Kolmogorov law, named after Andrey Kolmogorov who de-

rived it in his famous 1941 paper [39]. It can be recovered less rigorously using

an argument based on dimensional analysis. Indeed, as the inertial range ob-

served experimentally occurs above the Kolmogorov scale, the viscous e�ect are

still dominated by inertial e�ects. Removing viscosity, the only pertinent physical

parameter for the analysis is the energy dissipation rate ε (in a stationary regime,

this is also the energy injection rate). As such, the energy of the mode of wave

number k must scale as E(k) ∝ ε2/3k−5/3.

The inertial range is followed at small scale by the dissipative range (also

referred to as the viscous range). For scales close to the Kolmogorov scale, viscosity

becomes e�ective and energy is dissipated. On the other side of the inertial range,

at large scale, is the injection range. This corresponds to the scales at which energy

is injected in the �ow. The exact behavior at this range is highly dependent on

the method of forcing and the geometry of the �ow.
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E(k)

k

E(k) ∝ k−5/3

Energy injection

Energy transfer

Energy dissipation

1/L 1/η

Inertial range Dissipative range

Figure 1.1: Schematic illustration of the energy spectra in a turbulent �ow in
log-log.

1.1.4 The zeroth law of turbulence

The viscous term in the INSE leads to energy dissipation. The energy balance

assuming smooth solutions reads:

∂t

(
1

2
|u|2

)
+∇ ·

[(
1

2
|u|2 + p

)
u− ν∇

(
1

2
|u|2

)]
= −ν|∇u|2 (1.9)

where the dissipative term is on the right hand side. Thus, the average dissipative

term ε = 〈ν|∇u|2〉, the average being taken in space and time, appears to scale with

the viscosity ν. In other world, it would be expected that the lower the viscosity

of the �uid (i.e. the higher the Reynolds number), the less forcing is required

to keep it in motion. This intuition is however disproved by both experiment

and simulations. In what is referred to as the zeroth law of turbulence or

anomalous dissipation. This behavior is schematically illustrated in the �gure

1.2. What is observed is that for low values of Reynolds number, the dissipation

rate indeed scales proportionally to the inverse of Re, i.e. to the viscosity. However,

past a certain critical Reynolds number, this scaling changes and the dissipation

rate no longer depends on the Reynolds number [63].
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logRe

log ε

ε ∝ Re−1

ε ∝ Re0

Figure 1.2: Schematic of anomalous dissipation scaling.

1.2 Singularities of Navier�Stokes

1.2.1 Onsager's conjecture

This observation about dissipation becoming independent of viscosity at high

Reynolds number leads to a �rst argument for the singular behavior of the �ow.

Indeed, if the term ε becomes independent of ν for high Reynolds number, this

means that the gradients of velocity ∇u become larger and larger as the viscosity

increases. As the corresponding scaling would be ∇u ∝ Re−1/2, the limit Re→∞
leads to a divergence of the velocity gradient.

From another point of view, at ν = 0 the Navier�Stokes equations 1.1 become

the Euler equation. This equation is such that, assuming smooth solutions, the

energy is conserved. As such, it appears paradoxical that the limit ν → 0 is

observed to have a constant, non zero dissipation. Lars Onsager [61] proposed a

solution to this contradiction: a non smooth velocity �eld solution of the Euler

equations would allow for a non zero dissipation.

�. . . in three dimensions a mechanism for complete dissipation of all

kinetic energy, even without the aid of viscosity, is available."

(Onsager)

1.2.2 Mathematical results

In this thesis, we are interested in looking for such loss of smoothness. In particular,

a major problem which has yet to be resolved since the 19th century is whether the
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3D incompressible Euler and Navier�Stokes equations are well posed. The later

in particular is the object of one of the "Millenium Problems" set by the Clay

Mathematics Institute of Cambridge. This problems are a collection of di�cult

mathematical questions, the resolution of which would be rewarded by a prize of

one million dollars.

The well posedness of an equation has three requirements in the meaning of

Hadamard [29]. Those are the existence of a solution, its unicity and its regularity.

For this last criterion, it appears indeed that if a solution to Navier�Stokes is not

at least twice di�erentiable, the Laplacian in the viscous term of equation (1.1) is

not properly de�ned.

In the 2D case, the well posedness of the Euler equations [77] and the Navier�

Stokes equations [43] have already been proven. The proof in the 3D case is much

more di�cult. For the 3D incompressible Euler equations, it was proven that there

is no unicity of the solution, if it exists [66]. Moreover, it was proven that if a non

regular solution exists, then the vorticity is unbounded [7]. There are however no

result proving the existence of solutions, nor their regularity or non regularity.

For the case of the Navier Stokes equations, Leray [46] actually proved the

existence of solutions in the weak sense, without any assumption about regular-

ity. This leaves uniqueness and regularity as open questions. Some results have

been obtained for this second point. First, Constantin [14] proved that if singu-

larity exists in Navier�Stokes, then they take the form of an unbounded velocity

|u| → ∞. This is an even stronger condition than for the Euler case. Moreover, it

was also proven that singularity must be very rare events. More precisely, singu-

larities cannot form continuous curves in space-time, i.e. they must be punctual,

instantaneous events [11]. Finally, singular stationary solutions of Navier�Stokes

have been found [47]. This however does not provide a proof for the regularity of

solutions starting from a regular initial condition, which would be more pertinent

from a physical point of view.

1.2.3 Physical approach to singularities

The impact of those mathematical results on our understanding of the physical

�ow described by the Navier�Stokes equations is not obvious. In particular, the

physical reality of a point like singularity or a diverging velocity is questionable.

Under these circumstances, it is important to make the distinction between the

mathematical equations and the phenomena observable in real �ows, as well as

simulated �ows.

The objective of this thesis is to approach the question of the regularity of
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the solutions to the Navier�Stokes equations from a physical point of view. The

working hypothesis is that mathematical singularities do exist, i.e. that there exist

solutions becoming singular in a �nite time from a regular initial condition. This

hypothesis does not lead to the existence of singularities in a real �ow. Indeed, for

the INSE to work as a model of the �ow, the conditions exposed in section 1.1.1

must be ful�lled. However, the very concept of punctual singularity, in other words

a structure at scale ` = 0, is contradictory with the condition of scale separation.

Furthermore, the mathematical result by Constantin [14] means that a singularity

of Navier-Stokes would lead to an unbounded velocity. From the strict perspective

of the Navier�Stokes equations, this would mean breaking the incompressibility

condition, as the Mach number would locally blow up: Ma� 1.

In summary, the existence of singularities in Navier�Stokes would lead to lo-

cations of the �ow where the INSE are no longer the valid model. The detection

of such events, hereafter called potential singularities or quasi singularities, is the

target of this thesis. In accordance to the mathematical results already presented

[11], such events are expected to be rare. This means that there is no reason

to question the validity of the Navier�Stokes equations in general to describe a

turbulent �ow. However, in accordance with Onsager's conjecture, the mathemat-

ical singularities could lead to a non viscous energy dissipation, enough to explain

anomalous dissipation. This would mean that quasi singularities might be relevant

to the global energy budget despite their rarity. The questions of energy transfers

are further discussed in the next chapter.

In this thesis, we will primarily work using numerical simulations, even though

all tools described are similarly applicable to experimental results. By their na-

ture, simulations fundamentally di�er from the real �ow in the relationship with

Navier�Stokes singularities. Indeed, as the simulations are based on the equations,

the conditions of validity of the INSE do not matter. The di�erence with the com-

plete Navier�Stokes equations manifests itself in the numerical scheme used to

discretize them. For example, a spatial derivative can be approximated using a

�nite di�erence method using the following method (in 1D):

df
dx

(x) ≈ f(x+ ∆x)− f(x−∆x)

2∆x
. (1.10)

These approximations fundamentally relies on the Taylor expansion of the func-

tion f . In other words, a certain regularity is required for the derivatives to be

accurate. On the other hand, the spectral method uses exact derivatives of func-

tions decomposed over Fourier modes. The approximation in the spectral method
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comes from the limited number of modes that can be computed, e�ectively cutting

o� �uctuations at a lower scale. In other words, the accuracy of the simulation

of the INSE requires a grid step smaller than the smallest scales of the �ow, such

that ∆x < `min,flow. Typically, the discretization scale ∆x is chosen of the order

of the Kolmogorov length η. This means that if the solution to the Navier�Stokes

equations contains real mathematical singularities, those cannot be observed in

the equivalent simulations. Note that more complex methods, for example using

an adaptive mesh, may not have a de�nite smallest scale. Even for these methods,

the scale ` = 0 of a punctual singularity is still inaccessible.

We expect that wherever a real singularity would happen in the INSE, we would

detect a quasi singularity in the simulated velocity �eld, resolved down to ∆x.

This justi�es our use of simulations for the detection of singular features. In this

aspect, our approach is similar to several previous studies which exhibited emergent

irregular structures in simulations. These studies are preferentially conducted

using the Euler equations, like the works by Luo and Hou [48] or Pumir [64],

who observed events with a diverging vorticity. Similarly, numerous numerical

studies have been performed by Kerr (e.g. [33, 34, 35, 32]) in order to study

the relationship between potential singularities and vortex dynamics using criteria

based on enstrophy and vorticity. Other such simulations include works by Grauer

et al. [27], Uhlig et al. [69] and Grafke et al. [26]. Some studies have been

performed using the full Navier�Stokes equations. This is the case in particular

of a work by Vassilicos et al. [70], which uses a criterion based on the geometry

of the streamlines of velocity to search for singularities. This thesis uses Navier�

Stokes simulations and a new detection tool in order to locate and quantify quasi

singularities.

We discussed that the real �ow and the simulated one would no longer verify the

INSE in case of a mathematical Navier�Stokes singularity for di�erent reasons. As

such, one might worry that the quasi singularities observed in these two cases would

be di�erent. However, we will suppose that the INSE represent a valid model down

to the Kolmogorov scale even in presence of quasi singularities. Likewise, we expect

the INSE to be simulated accurately down to the same scale. In consequence, the

events quali�ed as potential singularities should be the same in experimental and

simulation data. In this thesis, only simulations will be studied but some element

of comparison with the experimental results by Paul Debue [15] are provided.

Additionally, the tools developed are designed to be later used on experimental

data.
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Chapter2
Tracking singularities using local energy

transfer and the turbulent force

As the anomalous dissipation is suspected to be related with singularities, it is

natural to try to use an approach based on energy transfer when searching for

them. As a result, local energy budgets have already been used as the main

criterion to detect and quantify singularities, in particular in the thesis by Dennis

Kuzzay [40] and Paul Debue [15]. More precisely, the criterion is based on a scale

by scale energy budget. The underlying idea is that if singularities exist and are

related to the anomalous energy dissipation, then they would transfer energy to

lower and lower scales without ever being dissipated by viscosity. This would go

on until some hypothesis required for the formalism is broken and the energy is

dissipated in a non viscous way. In contrast, in absence of singularity, the cascade

of energy to lower scales would be interrupted by viscous dissipation. As such,

locating regions of extreme energy transfer at a dissipative scale is an intuitive

way to probe for singularities. This method is also used in this thesis. As a result,

we detail the derivation of the local energy budget and some previous results in

this chapter. We also describe a similar method based on the turbulent force.

2.1 Derivation using the weak formulation

2.1.1 Smoothed velocity �eld

The formalism used was introduced by Duchon and Robert in their paper [19].

The derivation of this formalism is based on an energy budget on the weak INSE.

This is akin to smooth the velocity �elds using a regularizing function, such that

supposing their regularity is no longer required. Said another way, for all terms

13
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involving a derivative in the equation, the derivative operator is applied to the

regularizing function instead of the velocity �eld. The smoothed velocity �eld

u` in 3D for a scale ` is expressed as a convolution of the velocity �eld and the

smoothing function φ`:

u`(x) = φ` ∗ u(x) =

∫
φ`(y)u(x− y)dx. (2.1)

The regularizing function φ` is de�ned by:

φ`(x) =
φ(x/`)∫
φ(y/`)d3y

(2.2)

where φ is an even function, positive of norm unity. As a consequence φ` is also

even, positive with norm unity. As a result of the �ltering, increasing the scale `

reduces the amount of small scales in u`. On the other hand, we can verify that

in the sense of distributions, lim`→0 u
` = u.

In this thesis, for all computation related to the Duchon Robert formalism, we

will use a simple Gaussian:

φ(x) =
1

(2π)3/2
exp

(
−x

2

2

)
. (2.3)

Spatial derivatives of the �ltered velocity �eld u` can thus be interpreted as

wavelet transforms of the velocity using a Gaussian wavelet.

2.1.2 Energy budget on the �ltered velocity by Duchon and

Robert

Applying the convolution with φ` to the INSE (without forcing) yields:

∂ju
`
j =0,

∂tu
`
i + (uj∂jui)

` =− ∂ip` + ν∂j∂ju
`
i .

(2.4)

(2.5)

By computing an energy budget on these equations, Duchon and Robert [19]

obtained the following relation:

1

2
∂tuiu

`
i + ∂iT

`
i =

1

2
ν∂j∂j(uiu

`
i)− ν∂jui∂ju`i −D`

I (2.6)

where:

T `i =
1

2

[
uju

`
jui + p`ui + pu`i

]
+

1

4

[
(uiujuj)

` − (ujuj)
`ui
]

(2.7)
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and

D`
I(x) =

1

4

∫
∇φ`(ξ) · δξu(x)(δξu(x))2dξ. (2.8)

where δξu(x) = u(x+ ξ)− u(x) is the velocity increment.

They then demonstrated that in the limit `→ 0, the equation (2.6) converges

in the sense of distributions to:

∂t
u2
i

2
+ ∂j

[
uj

(
u2
i

2
+ p

)]
= ν∆

u2
i

2
− ν∂jui∂jui +D(u) (2.9)

where D(u) = lim`→0D
`
I . This limits holds for all smoothing function φ verifying

the properties stated in the previous section.

This result adds the term D(u) to the classical energy budget. If the velocity

�eld is regular, a Taylor expansion leads to δξu ≈ ξ ·∇u for small increments.

In consequence, the scaling of the local energy transfer is D`
I ∝ `2 and hence

we have D(u) = 0. This is however not true in the presence of strong enough

singularities, which would lead to an additional energy dissipation independent of

viscosity. This property is also true in the case of the Euler equations. This term

is proven positive for the weak solutions of the INSE proposed by Leray.

2.1.3 Physical interpretation

For our objective of evaluating energy transfers in situations where the velocity

�eld might not be regular, the equation (2.6) is still problematic as computing the

right hand side requires to apply derivative on the unsmoothed velocity �eld u.

We can rearrange the terms to obtain this equation [17]:

1

2
∂tuiu

`
i + ∂iJ

`
i = −D`

ν −D`
I (2.10)

where

J `i = T `i −
1

2
ν∂i[(ujuj)

` + uju
`
j] + νuj∂iu

`
j (2.11)

and

D`
ν(x) = ν

∫
∇2φ`(ξ)

δξu(x)2

2
dξ. (2.12)

We can interpret the di�erent terms of the equation as follows:

� the spatial transport, pressure term and viscous di�usion are contained in

the term ∂iJ
`
i .

� the viscous dissipation at scale `: D`
ν .
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� the energy transfer to the lower scales: D`
I .

Using this interpretation, we can de�ne a strategy on how to detect potential

singularities. Indeed, if it exists, a true singularity would carry energy to the

scale ` → 0. Similarly, a quasi singularity can be expected to transport energy

to a scale smaller than the Kolmogorov scale η. As a result, the general idea of

using local energy transfers to detect rare irregular structures consists in �nding

locations where the term D`
I stays high at low scale. The natural quantity to

which compare D`
I is the viscous term D`

ν . As such, the method to detect quasi

singularities is to identify the locations where the energy transfer D`
I is greater

than the energy dissipation D`
ν at a scale ` ∼ η.

In order to further re�ne this intuition, let us suppose the velocity �eld is

such that velocity increments over a distance ` verify a scaling ‖δ`(u)‖ ∼ `h, with

0 < h < 1. This concept is formalized in the next chapter. By injecting this

scaling in equations (2.8) and (2.12), we get the scalings:

D`
I(x) ∝ `3h−1,

D`
ν(x) ∝ ν`2h−2.

(2.13)

(2.14)

As a result, we can obtain an estimate for the scale at which the energy transfer

term D`
I and the energy dissipation term D`

ν are balanced:

ηh ∝ ν1/(h+1). (2.15)

Those two terms being balanced means that the velocity �eld starts to get

regularized at scale ηh. In other words, the velocity increments no longer follow

the initial power law ‖δ`(u)‖ ∼ `h for ` < ηh.

For a Hölder exponent of h = 1/3, which would correspond to the K41 scaling

[39] in the inertial range, this regularizing scale matches the classical Kolmogorov

scale ηh=1/3 = η. However, if the velocity �eld is more singular, i.e. h < 1/3,

this means that the regularizing scale ηh gets lower than η. In the case of a true

singularity, we would have ηh = 0 as the velocity �eld is never regularized, leading

to a Hölder coe�cient of h = −1. The case h < 0 has not been discussed in section

3.1 and would correspond to a local blowup of velocity, which is coherent with the

result by Constantin [14].

Using those scalings, our intuition of the energy budget around a potential sin-

gularities can be re�ned: For a singularity of "regularity" h < 1/3, the dissipation

term D`
ν only catches up to the energy transfer term D`

I below the Kolmogorov
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scale. However, this interpretation is only based on scalings and might not be

perfectly robust. In order to con�rm the strength of a singularity located using

this criterion, it might be necessary to actually extract the power law behavior of

these terms with respect to `. The computational cost of this operation makes it

impractical. A more easily implemented choice is to consider any event with an

extreme value of energy transfer D`
I � ε as a candidate for singularity [41]. This

situation is one of the reason why the aim of this thesis is to develop a method

to compute local Hölder exponent that could be used as a direct criterion for the

detection of quasi singularities.

2.1.4 Turbulent force

We can also study the �ltered INSE (2.5) for the velocity. Following a process

much similar to the previous one, the following equation was derived by Eyink

[20]:

∂tu
`
i + u`j∂ju

`
i = −∂ip` + ν∂j∂ju

`
i + F `

i (2.16)

where F ` can be identi�ed as a force perceived at scale ` caused by the �uctuations

of the �ow at smaller scales. This force will hereafter be referred to as the turbulent

force and is computed as follow:

F `
i (x) =

1

`

{∫
∂jφ

`(ξ)δξui(x)δξuj(x)dξ −
∫
∂jφ

`(ξ)δξui(x)dξ
∫
φ`(ξ′)δξ′uj(x)dξ′

}
.

(2.17)

One might interpret this turbulent force from the point of view of the Large

Eddy Simulations (LES). In the context of LES, the turbulent force would corre-

spond to the gradient of the Reynolds tensor. This term is then modeled, in order

to avoid resolving the small scales required for its computation.

Following the same method as for the local energy transfer, one can evaluate

the scaling of the turbulent force de�ned in equation (2.17) as:

‖F `‖ ∝ `2h−1. (2.18)

This means that the norm of the turbulent force diverges when `→ 0 whenever

the local h exponent veri�es h < 1/2. In other words, a criterion based on the

anomalous turbulent force would be more sensitive than one based on the local

energy transfer.
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2.2 Implementation

The explicit computation of the integrals in the energy transfer from equations

(2.8), the viscous dissipation from equation (2.12), and the turbulent force from

equation (2.17) would be too computationally intensive. It is however possible to

rearrange the terms in a more favorable way.

Using the Einstein summation convention, the equation (2.8) can be rewritten

as:

D`
I(x) =

1

4

∫
(∂iφ

`)(ξ) · δξui(x)δξuj(x)δξuj(x)dξ. (2.19)

By reinserting the de�nition of the increments δξuj(x) = u(x+ ξ)−u(x) and

expanding the products, we obtain:

D`
I(x) =

1

4

{∫
∂iφ

`(ξ)ui(x+ ξ)uj(x+ ξ)uj(x+ ξ)dξ

− ui(x)

∫
∂iφ

`(ξ)uj(x+ ξ)uj(x+ ξ)dξ

+ uj(x)uj(x)

∫
∂iφ

`(ξ)ui(x+ ξ)dξ

− 2uj(x)

∫
∂iφ

`(ξ)ui(x+ ξ)uj(x+ ξ)dξ

+ 2ui(x)uj(x)

∫
∂iφ

`(ξ)uj(x+ ξ)dξ
}
. (2.20)

The integrals in this last expression can be interpreted as convolutions up to

a minus sign, knowing that φ is even so its derivative is odd. The resulting con-

volutions can then be computed e�ciently using Fast Fourier Transforms (FFTs).

This makes it particularly convenient in the processing of data from simulations

with periodic boundary conditions. The same method can be applied to compute

D`
ν or F ` using FFTs. The code has been developed in C with OpenMP paral-

lelization and uses the FFTW3 library [22]. It has been validated against two

other independently developed codes for the computation of the energy transfer

term D`
I .

2.3 Localization of potential singular events using

the local energy transfer and turbulent force

These tools have been used in the past to track rare and potentially singular

events in turbulent �elds. The results discussed in this section are extracted from

the thesis of Dennis Kuzzay and Paul Debue. They focus particularly on the
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Figure 2.1: Schematic representation of a Von�Kármán setup. Figure reproduced
from [40].

local energy transfers. The earlier work performed by Dennis Kuzzay gives us an

element of comparison for the potential of the turbulent force as a criterion for

the detection of potential singularities. The thesis by Paul Debue is focused on

the study of events in experimental data, which serves as a good reference for our

numerical study in Chapter 4.

2.3.1 Detection of singularities in experimental measure-

ments

Both of these thesis applied these tools to experimental measurements in a Von�

Kármán setup. The set-up consists of a vertical cylindrical tank of radius R =

100 mm and height H = 240 mm. The �ow is generated by two counter-rotating

impellers. These are �at disks of diameter 185 mm �tted with 8 curved, radial

blades of height hb = 20 mm and curvature |α| = 72 . The distance between the

impellers is h = 180 mm. The impellers are driven by two independent motors set

to rotate at the same speed in order to get exact counter-rotating regime. These

motors maximum frequency is around f ≈ 10 Hz. A schematic representation of

the setup is given in �gure 2.1.

In the thesis of Dennis Kuzzay, the measurement were performed using Stereo

Particle Image Velocimetry (or SPIV). Using this method allowed him to extract

velocity �elds with the three components of velocity on a 2D vertical plane passing

through the center of the setup. The most interesting results for us were obtained
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Figure 2.2: Four types of singularities found among the extreme events extracted
from the data at the dissipative scale, where the Kolmogorov scale is resolved.
Main �gures: colormap of the dimensionless D`

I(u) �eld. The arrows correspond
to in plane velocity. The white square materializes the location with the largest
turbulent force in norm. Vector �eld insets: Velocity �eld near the singularity.
The arrows stand for the radial (x) and axial (z) components while the colour scale
stand for the azimuthal (y) component. Plot insets: D`

I(u) in dimensionless unit
near the singularity as a function of `/η. Figure reproduced from [41].
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from an experiment using a mixture of water and glycerol. This mixture allows

to reduce the Reynolds number down to Re = 2πR2f/ν ≈ 6000, which allows

measurements down to the Kolmogorov scale. Using these measurements, 33 po-

tentially singular events have been found using a criterion based on local energy

transfers. Among those, four di�erent categories were observed. Visualizations are

provided in �gure 2.2. Those categories, based on an interpretation using only a

2D slice, are "front","vortex", "jet" and "cusp". The "front" singularities, which

include events where two volumes of �uid with very distinct velocity appear to

interact, are the most common. The evolution of the local energy transfer as a

function of scale provided in inset illustrates the behavior discussed previously:

the local energy transfer is still increasing at a scale close to Kolmogorov.

The same events can also be detected using a method based on the turbulent

force instead. Among the events detected with extreme value of the turbulent

force in norm, we recognize the same 4 categories found by Dennis Kuzzay, as

illustrated in �gure 2.3. The evolution of the turbulent force as a function of

scale is represented in the insets in the same �gure. In all the cases illustrated, we

observe a rise of the turbulent force as the scale decreases, which is then dampened

for a scale of order ` = 5η (with the notable exception of the event in �gure

2.3a). This short rise is similar to the blow up at small scale expected for real

singularities. In this case, the divergence is interrupted, although it is not clear if

it is by viscosity or if the limited resolution introduces errors in the computation

of the turbulent force. This is what is typically expected for quasi singularities,

i.e. a singular behavior observed close to the Kolmogorov scale but interrupted

either by viscosity or by the resolution of the dataset.

The comparison of the events found using the turbulent force and the local

energy transfers shows that we encounter the same types of event. Moreover, the

computational cost associated to turbulent forces is higher than for local energy

transfer. For these reasons, we prefer using only the local energy transfer in the

following.

This study and classi�cation has been expanded to events found in 3D mea-

surements in Paul Debue's thesis. Those results will be discussed in more details

in Chapter 4.

2.4 The Velocity Gradient Tensor Invariants

Another tool used by Paul Debue in order to characterize the singular events is the

Velocity Gradient Tensor (VGT) invariant method. This method is �rst described
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Figure 2.3: Four types of singularities found among the extreme events extracted
from the data at the dissipative scale, where the Kolmogorov scale is resolved.
Main �gures: dimensionless F` vector �eld for ` ≈ 5η. The arrows stand for the
radial (x) and axial (z) components while the colour scale stand for the azimuthal
(y) component. The white square materialize the location with the largest turbu-
lent force in norm. Vector �eld insets: Velocity �eld near the singularity with
the same conventions. Plot insets: Maximum of F` in dimensionless unit near
the singularity as a function of `/η.

in a paper by Chong [13] and is used to classify the di�erent possible topology for

the streamlines of velocity. This classi�cation relies on the eigenvalues of the VGT:

(∇u)ij = ∂jui. Depending on the degeneracy of these eigenvalues, whether they

are complex or real, positive or negative, there are only a �nite amount of possible

con�gurations. Assuming those eigenvalues are λ1,λ2 and λ3 in no particular order,

the VGT invariants P , Q and R are computed as follow:
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Figure 2.4: QR plane with the di�erent topologies and three Vieillefosse lines [71]
drawn.

P = λ1 + λ2 + λ3,

Q = λ1λ2 + λ1λ3 + λ2λ3,

R = −λ1λ2λ3

(2.21)

(2.22)

(2.23)

such that the characteristic polynomial is λ3 + Pλ2 +Qλ+R.

Furthermore, the incompressibility condition translates to P = 0. As a result,

the computation of the invariants Q and R simpli�es to:

Q = −1

2
Tr(∇u)2,

R = − det(∇u).

(2.24)

(2.25)

With these constraints, only 4 main topologies remain possible. Those are

placed on the QR plane in �gure 2.4. In detail, they are the following:

� The �lament: As 27R2+4Q2 < 0, all three eigenvalues are real. WithR < 0,

only one of them is positive. The �uid is compressed in two directions and

stretched in a third one, without rotation.

� The sheet: Like for the �laments, all eigenvalues are real, but as R > 0, two

of them are positive. The �uid is compressed in one direction and stretched

in another, still without rotation.
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� The vortex stretching: As 27R2 + 4Q2 > 0, there are two complex con-

jugate eigenvalues. As R < 0, the remaining eigenvalue is positive. As

the name suggest, the corresponding structure is a vortex spiraling inward

stretched in the third direction.

� The vortex compressing: Like for the vortex stretching, two eigenvalues

are complex conjugate. As R > 0, the third eigenvalue is negative. This

corresponds to a vortex spiraling outward and compressed in the third di-

rection.

In the same �gure 2.4 are drawn three Vieillefosse lines, de�ned by:

27R2 + 4Q3 = cst. (2.26)

According to a paper by Vieillefosse [71], these lines described the possible

trajectories of an elementary �uid particle in an inviscid liquid not subject to

anisotropic pressure e�ects. The corresponding equations would be:

Q̇ = −3R/2,

Ṙ = Q2/3.

(2.27)

(2.28)

In consequence, should the elementary particle of �uid follow these trajectory,

this would lead to Q → −∞ and R → +∞ in �nite time. In other words, this

would lead to a singularity. As such, it is pertinent to verify the behavior of the

criteria for the detection of singularity on the QR plane. This work has been done

in Paul Debue's thesis, by taking conditional average of D`
I for given Q and R.

The results feature a higher average local energy transfer below the right branch

of the Vieillefosse line drawn in red in �gure 2.4, in the "sheet" region. Those

results are reproduced in this thesis in Chapter 4.
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The quasi singularities can be identi�ed using the local energy transfers as a cri-

terion, as described in the previous chapter. However, such method only provides

an incomplete picture of the intensity of the singularities. In particular, while the

criterion based on local energy transfers allows to detect intense events, it does not

provide a quantitative measurement of how singular those events are. The ideal

tool for this task would be a local scalar that gives a measure of the strength of

singularities.

This chapter presents the method developed during this thesis to compute such

a scalar. In order to reach this method, we �rst describe the multifractal framework

which provides statistical tools to quantify the global regularity of a function. We

then present a more recent concept of active volumes, which is a mathematical

tool developed to locate regions of interest in a turbulent velocity �eld. These two

preexisting concepts are then combined in order to obtain local information about

the regularity of velocity �elds.

3.1 Overview of the multifractal framework

3.1.1 The Hölder exponents or a measure of regularity

In order to quantify the regularity of the velocity �eld when searching for quasi

singularities, we need a mathematical tool that quanti�es the regularity of a func-

tion. The concept of Hölder exponents (or Hölder coe�cients) is such a tool. This

scalar is a local measure of the regularity of a function. The Hölder coe�cient of

the velocity �eld u at point x0 is de�ned [50, 49, 4] as the larger value of h(x0)

such that there exists a polynomial Pn of degree n < h(x0) and a constant C > 0

25
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such that for x in the vicinity of x0:

|u(x)− u(x0)− Pn(x− x0)| 6 C |x− x0|h(x0) . (3.1)

If the velocity �eld is n times di�erentiable in x0, its Taylor expansion around

x0 can be used for Pn which leads to h(x0) > n. Likewise, for 0 < h < 1, the

equation 3.1 becomes:

|u(x)− u(x0)| 6 C |x− x0|h(x0) . (3.2)

When interpreting the equation (3.2), one can observe that it is equivalent

to the simple continuity in the limit h → 0+. Likewise, the limit h → 1 gives

the property of Lipschitzianity, which is close to di�erentiability. As a result, the

Hölder exponent for 0 < h < 1 is a scalar that makes the bridge between these two

concepts and gives a measure of the regularity of the velocity �eld over a continuous

spectrum. This observation can be generalized for h > 1 using the equation (3.1).

Hence, the general interpretation is that the higher the Hölder exponent is, the

more regular is the velocity �eld. Computing a local Hölder exponent is required

to both locate quasi singularities and estimate their strength.

One pitfall however is that this measure of regularity is only able to detect al-

gebraic singularities (a.k.a. cusps) but not oscillating singularities (a.k.a. chirps).

Those two types of singularities are illustrated in �gure 3.1. For oscillating sin-

gularities, the Hölder exponent only evaluates the regularity of the envelop. As a

result, the measure of the regularity of a chirp event using the Hölder exponent

gives an inaccurate estimation of its strength, in particular with regard to the

strong associated gradients. A generalized measure including oscillating singular-

ities exists (see e.g. [30, 1]) but will not be considered during this study. This

will e�ectively limit the reach of all our tools based on Hölder regularity to cusps.

Ideally, we hope that if the INSE generate chirp singularities, their corresponding

quasi singularities observable in numerical and experimental datasets would still

be detectable using the tool for cusps.

3.1.2 The multifractal framework

Hölder exponents were �rst used in turbulence in the context of the multifractal

framework. This model has been introduced by Parisi and Frisch [62] and is based
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Figure 3.1: Two functions with h = 0.5 at x = 0.

on the power law behaviour of the structure functions [23, 55]:

〈‖δu`‖p〉 ∝ `ζp . (3.3)

The Hölder exponent from equation (3.2) is interpreted as a measure of the local

scale invariance of the velocity increment ‖δu`(x)‖ ∝ `h(x). The relative distribu-

tion of the Hölder exponents in space is represented by the multifractal spectrum

or singularity spectrum. Given the subset of Hölder exponent ∆(h) de�ned by

∆(h) = {x|‖δu`(x)‖ ∝ `h}, (3.4)

the multifractal spectrum D(h) is the Hausdor� dimension of ∆(h) :

D(h) = DimH(∆(h)). (3.5)

The Hausdor� dimension is one �avor of fractal dimension. Where a line has

a dimension of 1 and a surface a dimension of 2, fractal dimensions are a general-

ization of this concept for more complex structures that do not fall in any simple

category. A more easily interpreted concept, used further in this chapter, is the

box counting dimension.

Another interpretation can be made in terms of "frequency". In the case of

the subsets de�nes in equation (3.4), the closer the value D(h) is to the dimension

of the space, the more ubiquitous are the points with Hölder exponent h.
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From here, the rate function of the Hölder exponent is derived as:

Prob [ln(‖δu`‖) = h ln(`/L)] ∼ eln(`/L)(D−D(h)) =

(
`

L

)D−D(h)

. (3.6)

where D is the dimension of the full space. By injecting equation (3.6) in the

computation of the average in equation (3.3), we can demonstrate that the multi-

fractal spectrum and the scaling exponents of the velocity structure function are

connected through a Legendre transform [23]:

ζp = min
h

(ph+D −D(h)) (3.7)

As pointed out by Muzy et al. [56], multiple di�culties arise in derivating

the multifractal spectrum directly from the structure function exponents. In par-

ticular, the potential existence of regular regions with h > 1 would mean using

the de�nition from equation (3.1) instead of equation (3.2). This would impact

the computation of the coe�cients ζp and thus the derivation of the multifractal

spectrum through a Legendre transform [6, 57, 3].

3.1.3 Wavelet transforms

The velocity increments used until now can also be interpreted as a particular type

of wavelet transforms [28, 53, 54]. More explicitly, in 1D, the increment of a signal

δ`f(x0) = f(x0 + `)− f(x0) can be written as:

δ`f(x0) =
1

`

∫
∆(1)

(
x− x0

`

)
f(x)dx (3.8)

where ∆(1)(x) = δ(x+ 1)− δ(x).

Wavelet transforms were introduced by Morlet and Grossman in the context of

seismology as a powerful tool in signal processing. The transformation consists in

decomposing a signal using a set of functions characterized by a position x0 and

a scale `. This property makes it suitable to study local scale invariance, which is

the fundamental property of multifractals.

Hence, Arneodo et al. [3] proposed a new method to apply the multifractal

analysis that does no share the problems of the structure function based method

and can thus be applied on functions with h > 1. This methods relies on continuous

wavelet transforms while the classical method used box increments.

In this thesis, we will only consider two di�erent types of wavelets: the Gaussian
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Figure 3.2: Representation of the two wavelets in 1D.

wavelet and the Mexican wavelet. They are respectively de�ned using the Gaussian

and the mexican hat as smoothing functions:

φGauss(x) = e−x
2/2,

φMex(x) = (2− x2)e−x
2/2.

(3.9)

(3.10)

In one dimension, this leads to:

ΨGauss(x) =
dφGauss
dx

(x) = −xe−x
2/2,

ΨMex(x) =
dφMex

dx
(x) = x(x2 − 4)e−x

2/2.

(3.11)

(3.12)

Those two wavelets are represented in �gure 3.2.

The wavelet transform is then computed by:

TΨ{f}(x, `) =

∫
1

`
Ψ(
x− y
`

)f(y)dy. (3.13)

Extending this concept in several dimensions imposes to compute elementary

wavelets that are partial derivatives of the smoothing function with respect to each

direction:

Ψi =
∂φ

∂xi
. (3.14)

The total wavelet transform is then expressed as a vector. In 3D, this results
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in:

TΨ{f}(x, `) =



TΨ1{f}(x, `) =

∫
`−3Ψ1(`−1(x− y))f(y)dy

TΨ2{f}(x, `) =
∫
`−3Ψ2(`−1(x− y))f(y)dy

TΨ3{f}(x, `) =
∫
`−3Ψ3(`−1(x− y))f(y)dy


 . (3.15)

As such, multidimensional wavelet transforms capture the variation of a func-

tion along all directions. This makes the norm of the wavelet transform an equiv-

alent to the increments.

One particular advantage of the wavelet transforms is the ability to deal with

the h > 1 case which was problematic for the structure function method. Indeed,

a judicious choice of wavelet can cancel out the polynomial Pn from the signal.

Formally, let's take a function f with a local Hölder exponent h(x0) ∈]n, n + 1[.

Taking the same interpretation as before, this means that around x0:

f(x)− f(x0)− Pn(x− x0) ∼ |x− x0|h(x0) . (3.16)

Now let us take a wavelet Ψ with nΨ cancellation, i.e. such that:

∀k ∈ J0, nΨK,
∫
xkΨ(x)dx = 0. (3.17)

Taking the wavelet transform of f around x0 then gives [16, 4]:

{
if nΨ > h(x0) : TΨ{f}(x) ∼ |x− x0|h(x0),

if nΨ < h(x0) : TΨ{f}(x) ∼ |x− x0|nΨ .

(3.18)

(3.19)

Using Gaussian wavelets allows us to get good results for h < 1 and using

Mexican wavelets extends this range to h < 3.

3.1.4 The WTMM method

What follows is a brief overview of theWavelet Transform Modulus Maxima method

or WTMM. The reader is invited to peruse the original references for the details

and original implementation (see [16] for 1D and 2D WTMM and [36] for the 3D

generalization).

The general idea of the 1D method consists in extracting the local Maxima of

the Modulus of the Wavelet Transform (hence the name) of the signal f at any

given scale `. These maxima are linked across scales to form lines of maxima Λk

that converge when `→ 0 to the position of singularities. The position of the local



3.1. Overview of the multifractal framework 31

maximum of the line Λk at scale ` is noted Λk(`).

The line of maxima corresponding to a singularity of Hölder exponent h < nΨ

veri�es for small scales:

MΨ{f}(Λk(`), `) ∼ `h (3.20)

whereMΨ{f} is the modulus of the wavelet transform TΨ{f} de�ned in equation

(3.15). The wavelet transform skeleton is then de�ned as the set of lines of maxima

{Λk}.

The WTMM method is a statistical tool using this skeleton to determine the

multifractal spectrum D(h). Calling Λ(`) the set of lines, subset of {Λk}, that
exists at scale `, we de�ne the partition functions:

Z(q, `) =
∑

Λk∈Λ(`)

(
MΨ{f}(Λk(`), `))

)q
(3.21)

where q ∈ IR.

Those partitions functions behave as a power law for small scales, leading to

the de�nition of the exponents τ(q):

Z(q, `) ∝ `τ(q). (3.22)

The singularity spectrum is then obtained by Legendre transform:

DT (h) = min
q

(qh− τ(q)). (3.23)

In practice, we bypass the Legendre transform by computing:

h(q, `) =
∑

Λk∈Λ(`)

ln |MΨ{f}(Λk(`), `)|W(q,Λk, `), (3.24)

D(q, `) =
∑

Λk∈Λ(`)

W(q,Λk, `) ln
(
W(q,Λk, `)

)
(3.25)

where W(q,Λk, `) = 1
Z(q,`)

(
MΨ{f}(Λk(`), `))

)q
is a Boltzmann weight computed

from the wavelet transform skeleton. These quantities behave with respect to the

scale ` as follows:

h(q, `) ∼ h(q) ln(`), (3.26)

D(q, `) ∼ D(q) ln(`). (3.27)
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By combining the exponents h(q) and D(q) obtained as functions of the parameter

q, we can recover the singularity spectrum D(h). Note that the multiscale nature

of turbulence means that this spectrum is not independent of the scale at which

the power laws are measured. We do not expect to observe the same multifractal

spectrum in the inertial range and in the dissipative range. By simplicity, we omit

the dependency in scale unless required.

The generalization of this method for scalar and vector �elds in several dimen-

sions follows the same general construction, the main di�erence coming from the

determination of the skeleton {Λk}. In particular, applying the method to a 3D

velocity �eld u requires the use of a tensorial wavelet transform, de�ned by:

TΨ{u}(x, `) =



TΨ1{u1}(x, `) TΨ1{u2}(x, `) TΨ1{u3}(x, `)
TΨ2{u1}(x, `) TΨ2{u2}(x, `) TΨ2{u3}(x, `)
TΨ3{u1}(x, `) TΨ3{u2}(x, `) TΨ3{u3}(x, `)


 . (3.28)

The process of determining the skeleton of maxima and the multifractal spec-

trum requires the Singular Value Decomposition of TΨ{u}, leading to:

MΨ{u} = max
j
σj (3.29)

where σj are the singular values of TΨ{u}. The computation of the multifractal

spetrum D(h) can then be performed using this new de�nition of MΨ{u} in

equations (3.24) and (3.25).

All these methods have been implemented in the program xsmurf [37], which

we use in the sequel for all computations related to the WTMM method, with only

minor modi�cations to the software.

3.2 A local estimate of Hölder exponents

The WTMM method is based on statistical properties, which makes it very robust

with respect to noise and limited statistics. However, using this method only yields

global information about the regularity of the velocity �eld, through the multifrac-

tal spectrum. Meanwhile, in order to study the extreme irregular structures of the

velocity �eld, we need local information about the Hölder exponents.

Some methods have been designed to provide such information based on the

chains of maxima from the WTMM method (see e.g. [68]). The general idea

behind those methods is to extract the power law behaviour from a single chain

of maxima in order to determine the local Hölder exponent of the corresponding
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singularity. However, this involves at least partially giving up on the advantage of

the statistical method. Furthermore, the method relies on a fractal behavior robust

in scale. With its multiscale nature, turbulence does not ful�ll the conditions for

this method. One objective of this thesis being the study of experimental data, we

need to preserve the robustness with respect to experimental noise of the statistical

method. Moreover, our method must take into account the multiscale nature of

turbulence.

Our objective in the following is to devise a local statistical analysis, which

would allow us to evaluate the local Hölder continuity while keeping the robustness

of the WTMM method [59]. The idea of the method is to combine the results

from the WTMM, which gives information about the distribution of the Hölder

exponent in the space, with a local method delimiting regions of interest in space

closely related to Hölder exponents. In this process, we eventually come back to an

intuitive approach of the local regularity: the larger the local gradients, the least

regular the �eld. The objective of the method is to transform this intuition into a

rigorous, reproducible method, which would associate a value of Hölder exponent

in accordance to the intensity of the local gradients or the amplitude of the local

velocity increments.

3.2.1 Wavelet velocity increments

In order to devise this new method, on need to modify the type of wavelet based in-

crements used. Indeed, the method originally developed by Kestener and Arneodo

[38] de�nes velocity increments using the singular values of the matrix |G`
ij|.

The method that we propose will require to use the local velocity increments.

As a result, the use of the singular values might introduce undesired noise. This

motivates us to de�ne the wavelet velocity increments δW (u) through the smoothed

velocity gradient G`
ij and its symmetric and antisymmetric parts:

G`
ij =`

∫
dy
`3
∇jΨ

(y
`

)
ui(y),

S`ij =
1

2

(
G`
ij +G`

ji

)
,

A`ij =
1

2

(
G`
ij −G`

ji

)
,

(3.30)

(3.31)

(3.32)

where the base wavelet Ψ(x) will be chosen later.

The normal, longitudinal and perpendicular (also referred to as "transverse")
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wavelet velocity increments are de�ned as:

δLW`(u) = max
ij
|S`ij|,

δPW`(u) = max
ij
|A`ij|,

δGW`(u) =
(
δLW`(u)2 + δPW`(u

2)
)1/2

.

(3.33)

(3.34)

(3.35)

By construction, the longitudinal component δLW`(u) contain the information

about the potential part of the velocity �eld while the perpendicular component

δPW`(u) provides information about the vortical component. Their combination

δGW`(u) is thus a good choice to provide general scaling properties of the velocity

�eld. In the following, the subscript G will be droped when referencing to the

global velocity increment δGW`(u).

This de�nition uses neither derivatives over the velocity �eld nor singular val-

ues. This makes our wavelet based velocity increment the smoothest choice possible

to quantify the scaling properties of both the potential and the rotational part of

a velocity �eld.

In the WTMM method described in section 3.1.4, the three type of veloc-

ity increments de�ned in equations (3.33)-(3.35) can be used as a substitute of

the velocity increment based on singular values. One might wonder whether the

wavelet transform skeleton {Λk} needs to be recomputed using these new incre-

ments. By simplicity, we made the choice of keeping the same skeletons as the

original method. The results presented in the following of the thesis will show

that this choice preserves the multifractal spectra obtained through the standard

WTMM method.

3.2.2 Active volumes and multifractal

The modi�ed WTMM only yields global information about the regularity of the

velocity �eld. In order to reach local information, we need to combine these results

with a more local concept. This new source of information comes from the de�ni-

tion of actives volumes for a turbulent velocity �eld [59]. The original motivation

for the development of active volumes is reported in annex B of [59].The method

delimits the so called active regions by clever thresholding on the velocity incre-

ments. In this aspect, it appears closely related to our objective of estimating the

local regularity based on the intuition of strong velocity increments corresponding

to more singular regions.
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We �rst de�ne a family of thresholds Tp,dp as:

Tp,dp(`) =

(〈(δW`(u))p+dp〉
〈(δW`(u))p〉

)1/dp

. (3.36)

The limit as dp→ 0 can be computed as:

Tp(`) ≡ Tp,0(`) = exp

(
〈ln
(
δW`(u)

)(
δW`(u)

)p〉
〈
(
δW`(u)

)p〉

)
. (3.37)

On the other hand, assuming the velocity �eld u is multifractal, i.e. δW`(u)p ∝
`ζ(p), then we have the scaling:

Tp,dp(`) ∝ `(ζ(p+dp)−ζ(p))/dp. (3.38)

Hence, the limit dp→ 0 gives the scaling:

Tp(`) ∝ `h(p), (3.39)

where h(p) = dζ(p)
dp is obtained in a way alternative to the WTMM method. Note

that the expression of Tp in equation (3.37) is analogous to the expression of

equation (3.24) used in the WTMM method, so we do not expect this method to

yields di�erent results.

The active volume Ap is then de�ned as:

x ∈ Ap iff δW`(u)(x) > cpTp(`), (3.40)

where cp is a scale independent constant, to be determined later.

Given the scaling law of the thresholds Tp from equation (3.39), the property

of the points in the active volume Ap can be rewritten as δW`(u)(x) > Cp`
h(p)

with Cp a scale independent constant. This property is analogous to the de�nition

of Hölder exponents from the equation (3.2), with a reversed inequality. This

similarity can thus be used as a connection point between the information about

the regularity of the �eld provided by the WTMM method and the local property

of active volumes. As a result, we de�ne the scalar �eld h̃, coined local singularity

exponent and by abuse of language local Hölder exponent, such that all elements

x in Ap verify h̃(x) 6 h(p). This means that the frontier set of Ap, which is also

the isosurface corresponding to the velocity increment δW`(u) = cpTp,0(`), is the

set of points x of local singularity exponent h̃(x).
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The wavelet based velocity increment δW`(u) is continuous in space. This

property is thus transferred to the singularity exponent h̃. This property di�ers

from the multifractal framework, and instead would be more accurate to a multi-

fractional framework [5]. This di�erence means that the quantity h̃ is not a real

measure of the local Hölder exponent. We will however show that it shares some

properties of the real Hölder exponent, making it relevant for measuring the local

regularity of the velocity �eld.

3.2.3 Box counting method

The de�nition of the scalar �eld h̃(x) is dependent of the choice of the constants

cp. In order to properly mesh the local method with the WTMM, we must ensure

that the properties of the �eld h̃ match the ones of the Hölder exponent as closely

as possible. In particular, the "multifractal spectrum" associated with h̃ which

dictates its distribution in space must match the results of the WTMM. Expressed

using the fractal dimension of the isosurfaces of h̃, this means:

Dim
({

x|h̃(x) = h
})

= D(h). (3.41)

As discussed previously, the isosurface of h̃ = h(p) is de�ned as the frontier of

the volume Ap. This frontier is an isosurface of the velocity increment δW`(u),

such that:

Dim ({x|δW`(u)(x) = cpTp(`)}) = D(h(p)). (3.42)

In practice, the fractal dimension can be estimated using a box counting

method. The principle of this methods is to count the number of boxes of size

a required to recover a set S. For boxes small enough, this number follows the

scaling N(a) ∝ a−d where d = Dbc(S) is the box counting dimension of the set S.
The intuitive interpretation of this method relies on the following. Let us

consider a line segment of length b. This is a structure of dimension 1, and it

takes b/a boxes of size a in order to cover it, which gives a scaling N(a) ∝ a−1.

Likewise, a square of size b takes b2/a2 boxes of size a to cover. This gives a scaling

N(a) ∝ a−2 for a structure of dimension 2.

The same process can be applied to cases of non integer dimension, which are

frequent for fractal structures. As such, the box counting algorithm consists in

counting the boxes needed to recover a set and express this number as a function

of the box size in order to determine the corresponding power law. The �gure 3.3

illustrates the process applied to a well known fractal, the Sierpinski triangle [21].
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Figure 3.3: Three steps of box counting applied to the Sierpinski triangle (drawn
here with 5 iterations). If the main triangle is of size 30, the box sizes are from
left to right 5, 2.4 and 1.2. The respecting box counts are 24, 76 and 240.

Based on just the three steps represented, the measured fractal dimension would be

d ≈ 1.6. As the Hausdor� dimension of this fractal is actually ln(2)/ ln(3) ≈ 1.58,

this is a good example of the accuracy of the method.

In this work, the concrete implementation of the box counting algorithm consist

of a �xed grid scan: using a grid of step a starting at the origin, the number N(a)

is computed by counting the number of boxes covering the measured set [52]. The

mathematical de�nition of the box counting dimension would normally require us

to determine an optimal covering, i.e. covering the structure using the minimal

number of boxes, including rotations and o�sets. Using a �xed grid might impact

the precision of the measured dimension. However, this choice has the advantage

of a very fast implementation, so we rely on the large amount of statistics in order

to compensate for the inaccurate count of the optimal number of boxes.

Hence, applying the box counting to compute the dimension of the left hand

side of equation 3.42 leads to:

D`
bc(cpTp(`)) = D(h(p)). (3.43)

where D`
bc(T ) is the box-counting dimension of the isosurface of the velocity in-

crement at scale ` of value δW`(u) = T .

3.2.4 Statistical �tting of the constants

Most of the terms in the equation 3.43 can be computed. Indeed, the term Tp(`)
can be computed from the velocity �eld using equation (3.37), the multifractal

spectrum D(h) is accessible through the WTMM method and the function D`
bc(T )

can be evaluated by using box counting. The term h(p) is accessible both from the

WTMM and the power laws on the Tp(`) as described in equation (3.39). We can
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choose to use the scaling on the Tp(`) for simplicity, as the two methods should be

equivalent.

As a result, we can use equation (3.43) to solve for cp. As the functions involved

are not monotonous, there can be several solutions. Noting Tmax the isovalue of

velocity increments corresponding to the largest box counting dimension, we lift the

ambiguity by imposing cpTp(`) < Tmax for p > 0 and Tmax and cpTp(`) > Tmax for
p < 0. This choice originates from the fact that a larger velocity increment should

correspond to a less regular point of the velocity �eld. Matching the dimensions

from equation (3.43) gives a relationship in the form of:

h`(p) = f`(cpTp(`)). (3.44)

The dependency with respect to ` of the Hölder exponent h(p) and of the func-

tion resulting of the matching of the fractal dimensions are made explicit using a

subscript. This provides an unique de�nition of cp.

It is worth noting that the computation of the coe�cients cp is not technically

required to recover the scalar �eld h̃(x). Indeed, it is possible to derive a rela-

tionship between the isovalue T and the local singularity exponent h̃ using the

following equation:

D`
bc(T ) = D(h̃), (3.45)

which is derived from equation (3.41). As before, we lift the ambiguity by imposing

h̃(T ) < h(p = 0) for T > Tmax and reciprocally. This leads to the equation:

h̃`(x) = f`(δW`(u)). (3.46)

using the same matching function f`.

In summary, the algorithm to evaluate maps of local singularity exponent h̃ at

a given scale ` is performed as follow:

1. First the WTMM method is applied using the velocity increments de�ned in

equation (3.35). This provides the multifractal spectrum of the velocity �eld

D(h). Given that the �tting of the power law is performed around the scale

`, the results are speci�c to this scale.

2. In parallel, we compute the thresholds Tp from equation (3.36) and �t their

power law behaviour around the same scale ` using equation (3.39).

3. Finally, we compute the box counting dimensions Dbc(T ) for isosurfaces of

velocity increment δW`(u) = T .
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4. The last step is to aggregate the results of those three steps using equation

(3.46) to get a function matching a value of h̃ to velocity increments. This

directly allows us to compute maps of local singularity exponent from a

snapshot of velocity �eld.

Note that step 2 is only required in order to compute the coe�cient cp. While

the knowledge of the coe�cients cp is not required to compute the maps of singu-

larity exponents at a given scale, it is still pertinent. Indeed, these coe�cients are

independent of the scale `. This property can be intuited from equation (3.40) as

both the velocity increments and the thresholds follow the same power law as a

function of the scale. This allows to compute the function f` from equation (3.44)

at a di�erent scale ` without needing to recompute the multifractal spectrum at

this new scale, thus skipping steps 1 and 3. This will be proven to be useful as

step 1 is both expensive in computations and sensitive to the �tting range used.

The invariance of the coe�cients cp with respect to scale will be further discussed

in the following. Note however that the method exposed here does not provide

any guarantee for the behavior of the coe�cient cp as a function of the Reynolds

number.

3.2.5 Scalings in the dissipative range

One of the objective of this thesis is to measure the regularity of the �eld in the

dissipative range. For this purpose, we would need to apply the tools described in

this chapter in a range without the inertial scaling laws. In absence of a robust

scaling law, one might doubt about the applicability of the WTMM method de-

scribed in section 3.1.4. Likewise, the scaling of equation (3.39) is necessary for

the local method to work.

However, we believe that the method described here can work even outside

of the inertial range. The reason for this comes from an universal scaling law

exhibited in a paper by Geneste et al. [25]. In terms of structure functions, this

universal law for turbulence is expressed as:

β(Re) log
Sp(`)

S
p/3
3 (`)

= H(β(Re) log(`/η), p) (3.47)

where the Sp are the structure functions, H is some function, and β bears the

dependency in Reynolds. This last function is empirically found to be β =

4/(3 log(Rλ)) where Rλ is the Taylor based Reynolds number [25].

The interesting point about this universal law for our purpose is that it includes
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a large range over which the extended self similarity holds, i.e. such that:

Sp(`)

S
p/3
3 (`)

∝ `h(p)−ζ(3)p/3. (3.48)

where the exponent h(p)− ζ(3)p/3 is invariant with respect to scale. Such scaling

law would be enough for the methods described in this chapter to be functional.

We can rewrite this universal law for our thresholds Tp. The universality would
be expressed as:

β(Re) log
Tp(`)
T0(`)

= G(β(Re) log(`/η), p) (3.49)

where we choose the threshold at p = 0 as a reference and G is some function.

This choice is motivated by the fact p = 0 would correspond to the most probable

Hölder exponent. With this choice, we would have the same extended �tting range

as for the structure functions:

Tp(`)
T0(`)

∝ `h(p)−h(0). (3.50)

The extended range over which the scaling is veri�ed allows us a better estimation

of the power laws, although the �nal accuracy of the Hölder exponents is limited

by the estimation of h(0). Indeed, when using the method in the dissipative range,

this last term has to be computed using a narrow range of scales.

This universal law can also provide some insight about the behavior of the

coe�cients cp with respect to the Reynolds number. Indeed, taking the de�nition

of active volumes in equation (3.40) and dividing by T0, we get:

x ∈ Ap iff
δW`(u)(x)

T0(`)
> cp
Tp(`)
T0(`)

. (3.51)

The universal law from equation (3.49) tells us that the right hand side of this

inequality behaves as follows:

cpTp(`)/T0 = cp exp

(
1

β(Re)
G(β(Re) log(`/η), p)

)
. (3.52)

At the same time, the left hand side can be interpreted as the ratio between the

velocity increment δW`(u) and the most probable increment T0. Using the same

thermodynamic analogy as in [25], we would expect this ratio to follow a scaling

of the type exp(−∆F/β(Re)) where ∆F is a di�erence in free energy.

Hence, for the expression of equation (3.52) to have the correct behavior, we
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would expect the coe�cients cp to verify the following for all Reynolds numbers:

cβ(Re)
p = cst(p). (3.53)

Taking into account that β(Re) ∼ 1/ log(Re) [25], this would lead to:

cp = Reα(p) (3.54)

with a function α(p) to be determined.

In this thesis, the datasets analyzed are produced at only two di�erent Reynolds

numbers. This will be insu�cient to verify this property with a su�cient accuracy,

leaving it as a work for the future.

3.3 Validation of the method on fractional Brow-

nian motion (fBm)

The method explained above is designed to yield a measure of the local regularity

of a velocity �eld through the scalar h̃, assimilated to a local Hölder exponent.

However, while this scalar satis�es some properties of the true Hölder exponent by

construction, we are not able to provide a mathematical proof that it is the Hölder

exponent. As a result, a validation is required in order to use the local singularity

exponent as a criterion for the detection of singularities in a real velocity �eld. In

addition to provide a validation of the method, this section is meant as a step by

step illustration of the algorithm.

3.3.1 De�nition and implementation of fBm

A �rst test of our method is to apply it to synthetic �elds with well known fractal

behaviour. In this case, a simple choice is the case of the fractional Brownian

motion (or fBm), which has also been used in [38]. Such a �eld is designed to

have an uniform regularity. As such, its fractal behaviour can be described by a

uniform Hölder exponent H, called in this case the Hurst exponent [51].

This means that its multifractal spectrum in dimension d degenerates to a

single point:

D(h) =




d if h = H,

−∞ otherwise.
(3.55)

By Legendre transform, this leads to the following formula for the exponent
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τ(q):

τ(q) = qH − d. (3.56)

The objective of the following test is to recover the value of H from a generated

database of fBm. A similar test was performed to validate the original WTMM

method in [36], which justi�es that we use the same test to validate our variation

of it, using the di�erent components of the wavelet based velocity increments. The

fBm are generated in 2 dimensions with 3 components of velocity (2D3C) with a

value of H = 1/3. The generation is performed by �ltering the Fourier transform

of a white noise, which gives a good approximation of the expected scale invariance

properties.

3.3.2 Test of the global MFR analysis

A total of one hundred 2D3C fBm are generated in squares of size unity with a

resolution of 4096×4096. The output of our method using the velocity increments

de�ned in equations (3.33) to (3.30), as well as the original WTMM method using

Singular Value Decomposition are shown in �gure 3.4.

The results from our method match the theoretical prediction, although with

less accuracy than the original method. Indeed, the value of Hölder exponent

found using the new method is H ≈ 0.31, while the classic WTMM gives a result

of H ≈ 0.33. While it is expected that the multifractal spectrum computed from

a �nite number of snapshot does not fully degenerate as in equation (3.56), we

also observe that the spectrum computed using our method spreads over a larger

range of Hölder exponents. The loss of accuracy might be partially explained by

the lack of the third dimension hindering the computation of the perpendicular

component from equation (3.34).

3.3.3 Test of the local estimate

The next step consists in extracting the local singularity exponent h̃ from the fBm

snapshots. For these computations, we set a scale ` = 2.8× 10−3 corresponding to

11.4 grid points for the resolution of the �eld. This guarantees that the wavelets

are well resolved and allows to probe small structures. The di�erent quantities

to compute in order to apply the method are the box counting dimensions asso-

ciated with the isosurfaces of velocity increments D`
bc(T ) (equation (3.45)) shown

in �gure 3.5 and the thresholds Tp(`) (equation (3.37)) shown in �gure 3.6. Both

are computed using the full statistics. We check that the power law behavior of
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Figure 3.4: Main �gure: Exponent τ as a function of the parameter q for the
global (red), longitudinal (green), perpendicular (blue) components as well as for
the original WTMM method (black) applied to 100 �elds of fBm in 2 dimensions
with 3 components of velocity at H = 1/3. The 3 components are generated
independently before enforcing the divergence free condition. The theoretical curve
from equation (3.56) is materialized in magenta. Inset �gure: Corresponding
parametric plot of D(q) with respect to h(q). The dashed line materializes the
theoretical value of H = 1/3.
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Figure 3.5: Box counting dimension of the isocontours of the di�erent components
of the wavelet based velocity increments for ` = 2.8× 10−3 for the fBm. The color
code for the di�erent components is the same as for �gure 3.6.

the threshold from equation (3.39) is consistent over a large range of scales. Fur-

thermore, we observe little dependency of h̃ with respect to p as expected for a

monofractal, with a measured value of h ≈ 0.34. This is close to the expected

value of H = 1/3.

At this point, the method described in section 3.2.3 would involve matching

the multifractal spectrum from �gure 3.4 with the box counting dimension from

�gure 3.5. However, as the spectrum is degenerated in this case, this step is

impractical. A substitute for this monofractal case would be to choose the cp
such that for all p, cpTp(`) = Tmax, e�ectively guaranteeing the degeneracy of

the spectrum. Furthermore, we take the freedom to renormalize the box counting

dimensionD`
bc(T ) such thatD`

bc(Tmax) = 2. This is justi�ed by the fact that getting

measurements of box counting dimension that exactly reach 2, the dimension of

the space, is very di�cult given the accuracy of the power laws �tted. If the

fractal dimensions from the WTMM and the box counting method are not properly

renormalized, this would lead to an unnatural jump in the matching function f`
obtained through equation (3.46).

The monofractal nature of fBm makes maps of h̃ of little interest. A more

instructive test is to verify the scale invariance of the coe�cients cp in order to

compute �elds of local exponent h̃ at a di�erent scale. For this purpose, we com-

pute the box counting dimension at the lower scale ` = 8.2×10−4 corresponding to

approximately 3.4 grid points. The objective is to verify that the equation (3.43)
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Figure 3.6: Values of the threshold Tp(`) for the global increments as a function
of scale for several p for the fBm.

is satis�ed at this new scale.

The box counting dimensions of the isosurfaces of "velocity" increments are

shown in �gure 3.7. By combining it with the cp computed at the scale ` and the

scaling exponents from the Tp(`), we can recover the multifractal spectrum using

equation (3.43). The results are displayed in �gure 3.8. They match the theoretical

spectrum, with a slightly higher value of Hölder exponent than the value found

by the WTMM method. This is coherent with the previous results and provides a

�rst validation of the scale invariance of the coe�cients cp.

Summary of this chapter

In this chapter, we introduced the multifractal framework and the WTMMmethod

used to compute multifractal spectra [36]. These can provide global statistical in-

formation about the regularity of a velocity �eld. We combined these concepts

with the notion of active volumes, providing local information about the turbu-

lent velocity �elds. The resulting method allows us to estimate the local Hölder

exponents of a velocity �eld, provided statistical information about the dataset.

The validity of this method has then been tested using a synthetic case.
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Figure 3.7: Box counting dimension of the isocontours of the di�erent components
of the wavelet based velocity increments for ` = 8.2× 10−4 for the fBm. The color
code for the di�erent components is the same as for �gure 3.6.
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Figure 3.8: Pseudo "multifractal spectrum" reconstructed from the boxcounting
dimensions of isovalues of velocity increments at scale ` = 8.2 × 10−4 and the
scaling laws over the Tp(`). The solid vertical line materializes the theoretical
h = 1/3.



Chapter4
Applications to turbulent �elds

In this part, we apply the methods described previously on turbulent velocity �elds

originating from Direct Numerical Simulations (DNS).

The �rst objective is to further validate the method based on local Hölder

exponent. For this aim, it is ideal to use �elds for which we can precisely control

the parameters, hence the numerical simulation. The main advantages to DNS

�elds in this case are the absence of noise and the well controlled and periodic

boundary conditions. For the sake of the validation of the method, we can use the

turbulent �eld in the inertial range, as this provides a range of scale over which

we know that the Hölder regularity is of the order of h = 1/3 (see [39]).

Once the validation is done, the second objective is to detect and characterize

potential singularities using both the local Hölder regularity and the local energy

transfers. For this purpose, we need to probe velocity �elds in the dissipative

range, down to the Kolmogorov scale. This study will likewise be performed on

numerical velocity �elds, but can be extended to experimental results.

4.1 Simulation in the inertial range

4.1.1 Description of the datasets

The turbulent velocity �elds are generated using two DNS in a periodic box of size

(2π)3. The parameters for the simulations are presented in Table 4.1. The code

used is a pseudo spectral code adapted [9] with a Taylor-Green forcing. The code

is parallelized using OpenMP and the Fourier Transform are computing using the

FFTW library [22]. Such forcing is chosen in order to make the parallel between

the simulations and the experimental �elds that have been extracted from a Von�

Kármán experiment. The experimental results which have been mentioned in

47
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Figure 4.1: Time evolution of the energy dissipation rate as a function of time for
the Run I. The vertical line materializes the time at which the �rst snapshot of
velocity was extracted.

Chapter 2 will be the object of further comparisons in this chapter.

The averaged energy spectra corresponding to those two simulations are pre-

sented in �gure 4.2. This illustrates that the �rst simulation (Run I) features a

large range of scale in the inertial regime while the second simulation (Run II) is

resolved beyond the Kolmogorov scale. As such, we can use the �rst simulation in

order to validate the method using a well known power law behavior. Meanwhile,

the extensive dissipative range allows us to probe the actual singular behavior of

the �ow.

The simulations have been run on the Jean-Zay supercomputer, equipped with

Intel Cascade Lake 6248 processors. Using 20 cores for each simulation, the total

integration time is of the order of 20,000 CPUh.

In this section, we focus on the results from the Run I. The simulation has

been integrated over a total time of 40s, or more than 400 eddy turnover times

tη = (ν/ε)1/2. As can be observed from the plot of the time evolution of energy

dissipation represented �gure 4.1, this integration time includes a transitory pe-

riod of about 10s. The statistics used for the inertial case are computed from 10

snapshots of velocity �elds extracted evenly from the end of the transitory period.

As such, two successive �elds are separated by a period of about 3s, or more than

30 eddy turnover times. As a result, the �elds are uncorrelated, which ensures

better statistical convergence.
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Run ν L λ η 〈u2〉1/2 ε ηkmax ReL Reλ
I 7.5× 10−4 0.79 0.19 0.0083 0.54 0.089 2.1 570 140
II 5× 10−3 0.94 0.48 0.034 0.55 0.097 8.5 104 53

Table 4.1: Parameters used in the simulations with grid resolution 7683. ν is the
kinematic viscosity, L is the integral scale, λ is the Taylor scale, η is the Kolmogorov
scale, 〈u2〉1/2 is the rms velocity, ε is the energy dissipation rate, ηkmax characterizes
the resolution (ηkmax > π is well resolved), ReL is the Reynolds number based on
the integral scale, and Reλ is the Reynolds number based on Taylor scale λ.
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Figure 4.2: Energy spectra for the two simulations. The blue continuous (resp. red
dashed) curve stands for the simulation in the inertial (resp. dissipative) range.
The black line materializes the k−5/3 slope for the inertial range. The horizontal
lines of the same color as the curves materialize the corresponding �tting range
used when computing power laws. The vertical lines materialize the Taylor scale
wave number kλ for each simulation.
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Figure 4.3: Main �gure: Multifractal spectra for the velocity �elds from sim-
ulation in the inertial region. The red (resp. green, blue) curve corresponds to
the global (resp. longitudinal, perpendicular) increments. The black curve cor-
responds to the increments based on singular value decomposition used in the
original WTMM method. The vertical line materializes the expected exponent of
h = 1/3 according to K41. The error bars correspond to a shift of the �tting range
by 5% for the power laws. Inset: Exponents τ as a function of q.

4.1.2 Validation of the WTMMmethod in the inertial range

The �rst step for the validation of the method in the inertial range consists in

applying the modi�ed WTMM method to the velocity �elds from Run I. This is

both a veri�cation that the modi�cation we made to the method does not com-

promise its accuracy in the multifractal case, and a step towards the application

of the local method. Furthermore, we can take the opportunity to test the mul-

tifractal behavior of the di�erent components of the velocity increments (i.e the

longitudinal and perpendicular components) independently.

The method is applied on 10 snapshots of velocity �eld decorrelated in time.

Given the resolution of 7683, this represent more than 4 billions data points, enough

to guarantee the convergence of results presented in �gure 4.3. The power law

�tting required from equations (3.26) and (3.27) (as well as equation (3.22) ) are

performed over the range of scale speci�ed in �gure 4.2, well within the inertial

range. While a Gaussian wavelet might work in this case as we expect h < 1, we

use a Mexican wavelet for the sake of comparison with the dissipative range.

The multifractal spectrum computed is centered around a value of h = 0.40

for all components but the perpendicular one. This is higher than the value of

h = 1/3 expected from the Kolmogorov 41 theory [39]. We however observe a
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very close agreement between our modi�ed method using the global increment

δGW`(u) and the unmodi�ed version of the WTMM, which is enough to validate

our modi�cation. The discrepancy of the results compared to the expected sin-

gularity exponent can be attributed to the anisotropy of the �ow chosen. Indeed,

using the same method, Arneodo [2] has found a most probable Hölder exponent

of around h = 0.34 for isotropic turbulent velocity �elds. The di�erent behavior of

the multifractal spectrum for the perpendicular component at this scale may also

be attributed to the anisotropy caused by the Taylor�Green forcing.

4.1.3 Computation of the local singularity exponent

Another point of our method that requires validation is the local estimate of the

regularity. In particular, we have yet to justify how the scalar �eld h̃ de�ned in

the previous part can be used as a pertinent measure of local regularity even if it

is not the real Hölder exponent of the multifractal framework. For the purpose of

this veri�cation, we �rst compute it in the inertial range.

The computation follows the same steps as shown for the fractional Brownian

motion in part 3.3. In this case, the scale ` is set at the value ` ≈ 0.24, well within

the inertial range. The method involves computing box counting dimensions over

isosurfaces of the velocity increments. As described in the previous chapter, this

process consists in the counting of "boxes" of given size required to recover an

entire isosurface. The process is repeated over all snapshots of velocity in the

dataset. The total box counts in this case are reported in �gure 4.4a for six

di�erent isovalues. We can verify that these counts follow convincing power laws

as a function of the size of the boxes. The exponent of the power laws is the fractal

dimension associated to the given isosurface.

The results of the box counting, shown �gure 4.4b, can be interpreted in terms

of distribution of the velocity increments within space. As such, extreme values

of velocity increments, either low or high, are concentrated in smaller structures,

leading to a fractal dimension lower than 3. Compared to the box counting results

for a fBm from �gure 3.5, we observe a range of velocity increments for which the

corresponding box counting dimension exhibit a plateau close to 3. As observed

in the box counts in �gure 4.4a, the corresponding isosurfaces display very similar

behavior, with close box counts. This can be interpreted as a approximate way

to observe intermittency, with large change of the velocity increments over very

short period. Such change would lead to the isosurfaces of increments being close

to each other hence the similar box counts. It is however unclear how pertinent

this metric alone can be for the study of intermittency.
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Figure 4.4: (a) Box count of 6 isosurfaces of velocity increments as a function
of the box size. The results are totaled over 10 snapshots of velocity. (b) Box
counting dimension of the isosurfaces of the di�erent components of the wavelet
based velocity increments for ` ≈ 0.24 for the simulation in the inertial range. The
color code for the di�erent components is the same as for the previous �gures.

The thresholds Tp(`) are computed over the same dataset. We verify in �gure

4.5a that once renormalized by T0(`), the results give a convincing power law over a

wide range of scales, compatible with the prediction of equation (3.50). In order to

compute the power law exponents, the �t are performed �rst over the renormalized

thresholds, which yields a quantity γ(p) = h(p)−h(0). The reference value h(0) is

then evaluated by �tting a power law over the thresholds T0(`) in �gure 4.5b over

the inertial range. As a reminder, the thresholds and the corresponding power

laws are only used to compute the coe�cients cp, which are not strictly required

to recover the local Hölder exponents. We will however use these results to verify

the invariance of cp with respect to scale.

As the multifractal spectrum in this case is non degenerated, we can proceed

di�erently from the fBm case. We use equation (3.45) to match the fractal di-

mensions from the WTMM method (�gure 4.3) with the ones obtained by box

counting (�gure 4.4b). This gives us a direct relationship between the velocity

increments and the local Hölder exponent h̃. In the process, the lower values of h̃

must be associated with the larger values of velocity increments, as it represents

a more singular velocity �eld. The resulting matching function f` is represented

�gure 4.6. The perpendicular and longitudinal increments are no longer treated

separately as we are interested in the regularity properties of the full velocity �eld.

This process allows us to produce maps of h̃ from the corresponding maps of

velocity increments, with one pitfall: the range of velocity increment accessible
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Figure 4.5: (a) Values of the threshold Tp(`) for the global increments as a function
of scale for several p computed over 10 snapshots of run I. The thresholds are
renormalized by T0(`). Fits corresponding to the scales delimited by the green and
blue vertical lines are given in dotted lines. (b) Reference thresholds T0(`). The
�t used in the calibration of the method is materialized by a dotted line.
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Figure 4.6: Mapping function of the coe�cient h̃ from the global velocity incre-
ments at scale ` ≈ 0.24.
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to this method is limited. In particular, for the boxcounting method to work for

an isosurface at value T , a minimum amount of data points with such value of

velocity increment is required. Likewise, the WTMM method is also constrained

by the amount of statistics available. A lower fractal dimension corresponds to

rarer events, which makes the collect of su�cient statistics harder. As a result,

no reliable fractal dimension has been computed for isosurfaces corresponding to

a value T > 0.5, which prevents us from measuring values of h̃ < 0.1. In conse-

quence, the maps of singularity exponent that we can compute have regions where

we only know that h̃ < 0.1 without being able to give any precise value.

4.1.4 Comparison with the local energy transfers

The production of these maps of h̃ is the opportunity to compare this measure of

regularity to the local energy transfers. As mentioned in Chapter 2, the Duchon�

Robert term D`
I of the energy budget is expected to be higher in the regions where

the velocity �eld is singular. Con�rming that this term is correlated to the �eld h̃

would validate the use of the latter as a criterion to detect pseudo singularities.

Computing maps of those two quantities in the snapshots from Run I shows

that these two quantities are visually correlated, with structures of low regularity

measured by h̃ being observed in the same location as structures of extreme energy

transfer D`
I . This is illustrated in �gure 4.7. In particular, regions with low h̃

appear to be surrounded by a pair of regions of high energy transfer. This also

means that the extrema of those two quantities do not occur exactly in the same

location.

Nevertheless, it is still relevant to compute the joint Probability Density Func-

tion (PDF) of these two terms in order to con�rm their correlation. Such PDF,

computed over 50 velocity �elds extracted at regular interval over approximately

30 turnover times, is displayed in �gure 4.8. With this dataset, small scales rel-

evant to the computation of both the local Hölder exponent h̃ and the energy

transfer D`
I should not be correlated between di�erent snapshots. The conditional

PDF is imperfectly converged for extreme values of h̃, as those correspond to rarer

events. It is however enough to demonstrate a clear correlation between the two

terms, with higher values of energy transfer being more predominant where the

local Hölder exponent h̃ is lower. As such, the �eld h̃ compares favorably with the

energy transfer to measure the regularity of the velocity �eld and can be used as a

criterion for the detection of potential singularities and the quanti�cation of their

strength. Meanwhile, the complexity of the structures of energy transfer observed

in �gure 4.7 and the physical meaning of the term D`
I justi�es its use alongside
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Figure 4.7: Region with strong irregularity extracted from one snapshot of Run
I. (a) Velocity along a slice passing through the point of maximal velocity incre-
ment (corresponding to an undetermined minimal value of Hölder exponent). The
arrows stand for the velocity in plane and the colormap for the third component
of velocity. (b) Local energy transfers on the same slice. (c) Local Hölder expo-
nents on the same slice. White area corresponds to velocity increments so strong
we cannot associate a value of h̃ using the mapping function of �gure 4.6. (d)
3D representation of the irregular region. The magenta isosurface corresponds to
h̃ = 0.25. The red isosurface corresponds to D`

I = 4ε.
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Figure 4.8: Joint PDF of h̃ and the Duchon�Robert energy transfer term DI
`

over 50 �elds regularly spaced over approximately 30 turnover times. In order to
enlighten the correlation of those terms independently of the number of occurrence,
the PDF is rescaled such that every vertical line is a conditional PDF of DI

` at
given h̃.

the singularity exponent to characterize those singularities.

4.1.5 About the scale invariance of the cp coe�cients

At this point, we have yet to use the coe�cients cp de�ned in equation (3.40). As

it has been discussed in section 3.2.4, those coe�cients do not depend on the scale.

This property makes it possible to compute the cp at any one scale and recover

the matching function from 4.6 at any other scale without having to perform the

WTMM method or box counting algorithm again. We can use the data from the

simulations to verify this property.

In order to do this, one must account for the errors generated by �tting power

laws. Indeed, the computation of the multifractal spectrum using the WTMM re-

quires to determine power laws according to equations (3.26) and (3.27). Likewise,

the local method relies on the power law behaviour of the threshold as described

in equation (3.39). While in theory, the equation (3.44) used to determinate the

coe�cients cp involves quantities de�ned at a given scale, in practice the power

law exponents have to be estimated over a range of scales `. The accuracy of the

power law �t and uncertainty of the corresponding scale limit the accuracy of the

computation of the coe�cients cp.
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Figure 4.9: Pseudo spectra reconstituted using the coe�cient cp computed at scale
` ≈ 0.24 and the boxcounting dimensions of the velocity increments computed at
scales ` ≈ 0.12 (green curve), ` ≈ 0.24 (red curve) and ` ≈ 0.46 (blue curve). The
scale are also materialized by vertical lines of the same colour on the �gure 4.5a.

The coe�cients cp do not have an obvious physical meaning, making it di�cult

to determine what range of error is acceptable. As a result, we use a similar method

as for the fBm case to test their scale independence. This involves computing the cp
at a scale ` ≈ 0.24 and using the results to infer multifractal spectra of the velocity

�eld at a di�erent scale. Using the coe�cients cp and the box-counting dimensions

of the isosurfaces of velocity increments computed at two di�erent scales, we use

the equation (3.42) to recover pseudo multifractal spectra at two di�erent scales.

The results are presented in �gure 4.9 using the scales materialized in �gure 4.5a.

The blue curve shows that using a larger scale in the inertial range results in

a similar multifractal spectrum. The shift towards Hölder exponents even lower

than the value h = 1/3 can be attributed to the proximity to the injection scale.

Conversely, the green curve demonstrate that using a scale at the lower bound of

the inertial range shifts the spectrum, with much higher values of h. This is a

result of the velocity �eld starting to regularize through the e�ects of viscosity.

Although a direct comparison with the output of the WTMM method would

be ideal, too many statistics would be required in order to have accurate results

with very small �tting range. Considering the qualitative aspect of the measure of

local regularity through the singularity exponent h̃, we estimate that this analysis

is enough to justify the scale independence of the coe�cients cp. The result of

this analysis is that using coe�cient cp computed at a di�erent scale will provide
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qualitatively sound results. Since the complete method is dependent on �tting

scaling exponents, it is reasonable to use the cp for quantitative measurements.

4.1.6 VGT invariants

As we have analyzed the correlations between the Hölder exponents and the local

energy transfers, it can be pertinent to reproduce the study by Paul Debue on

the VGT invariants [15] as mentioned in Chapter 2. The objective is to verify

that we obtain similar results for the location of high energy transfers on the QR-

plane. Additionally, we can conduct a similar study focused on the local Hölder

exponents.

Because most quantities computed in this thesis are �ltered using a Fourier

transform, we choose to do the same for the VGT invariants. As a result, instead

of the standard velocity gradient, we use a molli�ed gradient de�ned similarly to

equation (3.30):

Q = −1

2
Tr(A2

`),

R = − det(A`)

(4.1)

(4.2)

where:

A`,ij = −
∫
∇jΨ

`
mex(y)ui(x+ y)dy. (4.3)

with Ψmex the 3D Mexican wavelet at scale `. The choice of a Mexican wavelet

instead of a Gaussian wavelet is made in preparation for the study at the dissipative

scale, for which the Gaussian wavelet is no longer adapted.

The results of the computations over 10 snapshots of velocity are shown in

�gure 4.10. The use of the molli�ed velocity gradient leads to smoother results

compared to [15], but the qualitative observation are the same. We can verify that

we obtain the same common droplet shape for the distribution of the invariants Q

and R in �gure 4.10a. We also recover similar results for the local energy transfer

in �gure 4.10b. Indeed, we have the same behavior with strong positive energy

transfer along the Vieillefosse line in the lower right quadrant, corresponding to

the limit between sheets and vortex compression, as well as in the vortex stretching

region. Meanwhile, negative energy transfers are found for high values of Q, both

in the vortex stretching and the vortex compressing regions.

The local Hölder exponents however do not follow the same distribution. Over-

all, we observe lower regularity whenever the invariants Q and R are far from the

average, in particular but not only in the vortex region. This is not unexpected, as

high values of the VGT invariants require strong velocity gradients, and hence a
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(a) (b) (c)

Figure 4.10: (a) Joint PDF of Q and R. (b) Conditional average of the local
energy transfer D`

I at given Q and R. (c) Conditional average of the local Hölder
exponents at given Q and R. For each �gures, three Vieillefosse lines are drawn
in dashed lines.

low regularity. It is however a con�rmation that the structure of low local Hölder

exponent are not limited to the same topologies as the local energy transfer. This

corroborates the observations from �gure 4.7.

4.2 Simulation in the dissipative range

The results in the inertial range serve as a second validation for our method to

compute local Hölder exponents. This assurance acquired, our next objective is to

apply the method in the dissipative range. By acquiring a concrete measurement

of the local regularity of the velocity �elds observed close to the Kolmogorov scale,

we intend to localize regions of the �ow with singular behavior. Used in addition

to the local energy transfer, this would be an e�ective way to characterize extreme

events.

The well resolved simulation (Run II) has been integrated over a total duration

of 45s, or about 200 eddy turnover times tη. The plot of the energy dissipation

as a function of time is given in �gure 4.11. As the objective of the study at the

dissipative scale is the detection and characterization of quasi singular events, the

simulation is split in two parts. During the �rst part, delimited by the two vertical

lines in �gure 4.11, velocity �elds are saved every 600 time steps, with an interval

of over 3 eddy turnover times between each snapshot. This gives us 40 velocity

�elds uncorrelated in time, which allows us to compute all statistical quantities.

We also use this part of the dataset to extract singular events in order to identify

the typical structures.

The second part of the simulation consists in saving a velocity �eld every 30

time steps, or 0.15tη. The purpose of this part is to analyze the time evolution of
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Figure 4.11: Time evolution of the energy dissipation rate as a function of time for
the Run II. The �rst vertical bar materializes the time at which the �rst snapshot
was extracted. The second vertical bar materializes the start of the time resolved
dataset.

irregular events. This would be useful in order to identify the mechanism behind

the formation of quasi singularities.

4.2.1 Multifractal spectrum in the dissipative range

One idea in order to accomplish this goal is to apply the method again for the

new dataset. As such, we start by using the modi�ed WTMM, while choosing the

range of �tting for the power laws in the dissipative range. The range chosen is

materialized in �gure 4.2 and spans from around 3η to 9η. This range of scale is

large for the purpose of measuring a trend particular to a single scale, as would

be suitable in theory for the method. It is however a decent compromise between

the localization of the scale and the accuracy of the power law �tted. As we do

not expect consistent power law behavior of the velocity increments over this large

range of scale in the dissipative range, the WTMM method might not work as well

as in the dissipative case.

For similar statistics as for the inertial case, we use 10 snapshots from the Run

II, decorrelated in time. With this amount of statistics, we are con�dent as before

of the convergence of the results. The multifractal spectra obtained are displayed

in �gure 4.12. One �rst observation in comparison to the inertial case in �gure

4.3 is that the spectra computed using the di�erent components of the velocity

gradient follow approximately the same curve. In other words, we have recovered
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isotropy at the dissipative scale. This is an expected behavior, as the small scales

structures should not be too heavily in�uenced by the large scale forcing. This

nevertheless is an important property to note in order to generalize the small scale

observations of this chapter.

One other striking observation is that the range of Hölder exponents observed

at this small scale has much higher values than what was observed at large scale.

Again, this is coherent with the expectations. As mentioned before, the e�ect of

viscosity is to make the velocity �eld more regular. At this scale, the most frequent

Hölder exponent observed is around hmax = 2.7. In e�ect, this means that most of

the �eld appears to be twice di�erentiable at this scale. The spectrum is bounded

on the right side by h = 3, which is the maximum value measurable using a

Mexican wavelet, with three cancellations. In other words, if the actual Hölder

exponent of the �eld was any higher, we would still only measure a value of h = 3.

On the other hand, the fractal dimension associated with a Hölder exponent of

h = 2 is non zero. This means that there are locations in the velocity �elds with

a lower regularity at this scale.

One other observation about this spectrum is that the fractal dimension does

not reach the dimension of the space. We can interpret it as the lines of maxima

de�ned in the section 3.1.4 are not space �lling at this scale. This means that the

singular events followed across scales by the WTMMmethod are more sparse. This

aspect is detrimental to our method as we need to match the dimension obtained

from the box counting algorithm with the present spectra.

4.2.2 Calibration of the local Hölder for the dissipative range

The behavior of the multifractal spectrum at the dissipative scale makes it impos-

sible to apply the method directly. In particular, the fractal dimension computed

is much lower than 3, while we expect the box counting algorithm to give fractal

dimensions close to 3 for the most common values of velocity increments. As a

result, it is not suitable to use the full method described in part 3.2.

In order to overcome this di�culty, we use the property that the coe�cients cp
are independent of the scale. The idea is thus to apply our method in the inertial

range, where we know the method works properly. From the results we compute

the coe�cients cp. Those coe�cients can then be used to recover the matching

function between the velocity increments at the dissipative scale and the Hölder

exponents at the same scale using equation (3.44).

We thus compute the multifractal spectrum and the boxcounting dimensions

at the scale ` ≈ 1.4λ ≈ 19η. The results of these two operations, as well as the
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Figure 4.12: Main �gure: Multifractal spectra for the velocity �elds from simu-
lation in the dissipative regime. The red (resp. green, blue) curve corresponds to
the global (resp. longitudinal, perpendicular) increments. The black curve is the
result using the velocity increments based on singular value decomposition. The
error bars correspond to a shift of the �tting range by 10% for the power laws.
Inset: Exponents τ as a function of q.

resulting matching function between the velocity increments and the local Hölder

exponents, are shown �gure 4.13. Because the inertial range is much shorter than

for the previous simulation and the scale at which the computation is performed

is much closer to the injection scale, we encounter di�culties for this step. In

particular, it is di�cult to get the WTMM method to converge, as there are much

fewer lines of maxima compared to the previous case. In order to help with the

convergence, we use all the 40 velocity �elds uncorrelated in time from the �rst part

of the simulation. We further verify that adding 60 more time resolved velocity

�elds from the second part of the simulation do not modify the results signi�cantly.

This does not prevent the e�ect of the proximity to the injection scale, which is

made apparent by the fact the most probable Hölder coe�cient in �gure 4.13a

drops to h = 0.3, compared to the results in the previous simulation. As such, we

need to keep in mind for the future interpretation that there may be inaccuracies

in the estimation of the local Hölder exponents.

From this matching function, the next step is to determine the coe�cents cp. In

order to do this, we compute the thresholds Tp(`) for this dataset. Once again, the
thresholds are renormalized by the reference value T0(`). The results are show in

�gure 4.14. The statistics are computed using the same 40 uncorrelated velocity

�elds and 60 velocity �elds from the time resolved period. From the results in

4.14a, we get two convincing �tting ranges, one for the inertial scales and one
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Figure 4.13: (a) Multifractal spectrum �tted around ` ≈ 1.4λ. The spectrum
corresponding to the global increments is shown in red, while the spectrum ob-
tained using the unmodi�ed WTMM method is shown in black for comparison.
The vertical line materializes h = 1/3. The error bars correspond to a shift of the
�tting range by 5% for the power laws. (b) Box counting dimensions evaluated at
the same scale. (c) Matching function resulting from the combination of (a) and
(b).
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for the dissipative scale. While the inertial range is narrow, the power law over

the dissipative range is sustained over about a decade. This justi�es the use of

multifractal based tools for the dissipative range.

Using the same method as for the inertial case, we can derive the values of

h(p) from the power laws �tted in 4.14 for both ` = 1.4λ in the inertial range and

` = 1.8η in the dissipative range. Using equation (3.44) for the �rst scale allows

us to compute the coe�cients cp from the thresholds and the matching function of

�gure 4.13. We can then use the same equation at ` = 1.8η to recover the matching

function in the dissipative range, shown in �gure 4.15. The corresponding Hölder

exponents are as expected much higher than those computed in the inertial range

from �gure 4.13c. This is the e�ect of viscosity regularizing the velocity �elds at

this scale. In terms of rarity of an event, one must understand a local Hölder

exponent of 1.4 at this scale to be as exceptional as a Hölder exponent of 0.2 in

the inertial range.

Note that the corresponding local Hölder exponents are lower than the one

determined using WTMM in �gure 4.12. We do not have a clear explanation for

this discrepancy, as for both cases a Mexican wavelet is used, which is supposed

to only cause problems when the regularity reaches h = 3. For the purpose of our

analysis of the local regularity, we will trust the results from �gure 4.15, at least

for qualitative interpretations. Even taking into account the uncertainty on the

exact values of Hölder exponent, it is clear that there are events with h < 2 at this

scale, i.e. such that the velocity �eld does not appear to be twice di�erentiable.

In the following, we will try to probe for very irregular events at the dissipative

scale. In order to give a value of Hölder exponent even if the velocity increment

is greater than 0.2, we choose to extrapolate the matching function as shown in

�gure 4.15. Events with such low regularity are expected to be rare, and we expect

the local Hölder exponent to reach such low value only in very localized regions, as

it was the case for the maps shown in �gure 4.7. As such, we deem that a simple

linear extrapolation based on the last two datapoints should be enough for our

purpose. In order to associate a local Hölder exponent to these quantities without

the use of extrapolation, one would need to compute thresholds and multifractal

spectrum for higher orders of p. However, the amount of statistics available to us

is not enough to get converged results for p > 5.

Additionally, we are also unable to map a Hölder exponent to the very small

values of velocity increments. This is because such values are also very rare,

corresponding to the p < 0 branch of the multifractal spectrum. While this has no

e�ect on our study of very singular events, one can expect the Hölder exponent to
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Figure 4.14: (a) Values of the threshold Tp(`) for the global increments as a func-
tion of scale for several p computed over Run II. The thresholds are renormalized
by T0(`). (b) Reference thresholds T0(`). Fits corresponding to the inertial range,
associated to ` ≈ 1.4λ are given in dotted lines while �t in the dissipative range
associated to ` = 1.8η are given in dashed lines.

keep growing when the velocity increment goes to zero, corresponding to a velocity

�eld almost constant.

4.2.3 Comparison to the local energy transfers in the dissi-

pative range

Now that we have access to the local Hölder exponents at the dissipative scale,

it is important to perform another comparison with the local energy transfer.

Indeed, the purpose of the study performed in section 4.1.4 was to validate the

use of the local Hölder exponents computed using this method as a criterion for

the detection of quasi singularities. While a good correlation between these two

scalars computed in the inertial range is a �rst step for validation, the detection

of irregular event is to be performed at the dissipative scale.

As a result, we compute the joint PDF of these two terms computed at ` = 1.8η.

The statistics are aggregated over the same 100 velocity �elds from Run II which

have been used before. This ensures a good convergence, with the exception of the

cases with extreme values of Hölder exponents. The results shown in �gure 4.16

con�rm the clear correlation between those two terms. This �nally concludes the

validation of the use of local Hölder exponents h̃ as a criterion for the detection of

singularities.

The clear correlation exposed here might appear contradictory to the observa-

tion made in �gure 4.7 that the mimima of h̃ exponents do not occur in the same
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Figure 4.15: Matching function linking the velocity increment to a value of local
Hölder exponent at the scale ` = 1.8η. The red curve and dots corresponds to the
result of the calibration. The dotted blue line is the extrapolation used in case the
velocity increment is higher than the 0.2.

location as the maxima of D`
I . This contradiction is lifted by plotting the same

PDF restricted to very low values of Hölder exponents. The results are shown

in �gure 4.17. We observe that for very small values of Hölder exponent, the

correlation is reversed. This shows that, particularly at the dissipative scale, the

structures of very low Hölder exponents and very large local energy transfer are

not superposed. This observation will be further discussed in the following.

4.2.4 VGT invariant in the dissipative range

When analyzing extreme events at the dissipative scale, we will make use of the

VGT invariants in order to get an idea of the topologies most representative of

quasi singularities. For this purpose, we need to know the global, unconditioned

PDF of the invariants Q and R as a reference. As for the Run I, we use VGT

invariants computed over the molli�ed velocity gradient, as de�ned in equation

(4.2). We compute as before the joint PDF of the invariants Q and R and the

conditional average for both the local Hölder exponents h̃ and the local energy

transfer D`
I . The results are shown in �gure 4.18. The conclusions previously

made in the inertial case are still applicable: We recover the common droplet

shape for the joint PDF of Q and R in �gure 4.18a. With the exception of a single

excursion in the "vortex stretching" region, the strong positive Duchon Robert
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Figure 4.16: Joint PDF of h̃ and the Duchon�Robert energy transfer term DI
`

over 100 �elds from Run II. In order to enlighten the correlation of those terms
independently of the number of occurrence, the PDF is rescaled such that every
vertical line is a conditional PDF of DI

` at given h̃.

Figure 4.17: Detail of the joint PDF of h̃ and the Duchon�Robert energy transfer
term DI

` over 100 �elds from run II corresponding to very low Hölder exponents.
The PDF is rescaled such that every vertical line is a conditional PDF of DI

` at
given h̃.
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(a) (b) (c)

Figure 4.18: (a) Joint PDF of Q and R. (b) Conditional average of the local
energy transfer D`

I at given Q and R. (c) Conditional average of the local Hölder
exponents at given Q and R. For each �gures, three Vieillefosse lines are drawn
in dashed lines.

energy transfer term appear strongly segregated in the lower right quadrant of

�gure 4.18b, in the "sheet" region. This is even more salient than in the inertial

case. Here again this is in agreement with the observations made by Paul Debue

in experimental data [15]. Finally, we observe very low values of the local Hölder

exponent wherever the VGT invariants are large.

4.3 Study of extreme singular events using uncor-

related data.

4.3.1 Extraction of the events and general statistics

Using the 40 velocity �elds uncorrelated in time from run II, we can use the

mapping function from �gure 4.15 to compute the �elds of Hölder exponents.

From the results, we select all events where the minimum value of h̃ gets below

1.3. This value is chosen to strike a balance between the strength of the events and

the number of events found. With such a low value of h̃ at the dissipative scale,

only inferred through the matching function of �gure 4.15 by using extrapolation,

we target very irregular events. On the other hand, this threshold is high enough

to allow us to extract 213 distinct events ful�lling this condition. This will be

enough to perform statistics.

We can verify that the events detected are spread evenly among the snapshots

of velocity �elds, as shown in the histogram of �gure 4.19. Likewise, we also verify

that the events are not concentrated in a single region of the simulation domain.

This guarantees that there is no bias caused by the forcing chosen.

Before analyzing the events in detail, we can use the VGT invariants to get a
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Figure 4.19: Histogram of the number of distinct events detected in the 40 velocity
�elds uncorrelated in time.

�rst grasp of the topology of the singular events. We de�ne the location of the

minimum of local Hölder exponent as the center of the event. The VGT invariants

Q and R computed at the center of each using the molli�ed velocity gradient (see

equation (4.2)) are represented in �gure 4.20. The �rst observation is that, with

only two exceptions, all events appear to be either in the "vortex compressing"

or the "vortex stretching" regions of the QR-plane. Moreover, we observe a bias

toward the later as more than 75% of the events detected verify R < 0. We

con�rm that this bias is stronger than what is observed in the whole domain in

�gure 4.18. This trend is in agreement with several studies relating singularities

to vortex stretching (e.g. [33] in the case of Euler equations).

4.3.2 Visualization of singular events

The next step in the analysis is to observe the events directly. In order to reduce

the in�uence of the large scale motion in the visualizations, we subtract the mean

velocity over a cubic sub-domain of side 1.7λ centered on the point of minimal

Hölder exponent.

For each events, we compute the vorticity, the inter scale energy transfer D`
I

(from equation (2.8)), the viscous dissipation at this scale D`
ν (from equation

(2.12)) and the molli�ed velocity gradient tensor invariants Q and R (from equa-

tion (4.2)).

A �rst overview of the events detected leads to two observations. First of all,

we verify the conclusion obtained through the use of the VGT invariants in �gure

4.20: the streamlines of velocity for most events are typical of vortices. Moreover,

the isosurfaces of local Hölder exponents h̃ are oblong, seemingly oriented in the

same direction as the lines of vorticity. The other principal observation is that
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Figure 4.20: Scatterplot of the molli�ed velocity gradient tensor invariants Q and
R at the location of minimal Hölder exponent for the 213 extreme events extracted
at the dissipative scale. Three Vieillefossse lines at 27R2 + 4Q3 = −62500, 0 and
62500 are drawn in dashed lines.

the structures of low local Hölder exponent appear to be sandwiched by a pair of

structures of strong energy transfer D`
I , in a way similar to what was observed in

�gure 4.7.

In order to help with the analysis, it is preferable to have all of them oriented

in the same way. The way the events are reoriented is as follow:

� As the local Hölder exponent h̃ is the most relevant scalar for our study, we

de�ne the direction of a �rst axis by using the �rst eigenvector e1 of the

covariance matrix of h̃. Reorienting the events using this axis, the structures

of Hölder exponent must be aligned along the x-axis.

� As singular events appear to be vortices, we want all vortices to face the same

direction. We thus choose the direction of the �rst axis such that ωx > 0 at

the center.

� We observed that the events are not axisymmetrical from the structures of

D`
I and D

`
ν . This justi�es the de�nition of a second axis, orthogonal to the

�rst one. Using the �rst eigenvector e2 of the covariance matrix of D`
ν , we

reorient the events such that e1 × e2 is along the z-axis.

Note that those choices do not impose a direction to the second axis, such that

rotating the event by an angle π around e1 still ful�lls the conditions. Three events
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reoriented as explained are represented in �gures 4.21 to 4.23. Additional events

can be found in Appendix A.

Using the data collected, we can pick up the work of classi�cation for the

extreme events mentioned in Chapter 2. The thesis by Paul Debue [15] approaches

the same problem using extreme events of D`
I . As was discussed before, those are

closely related to the extreme events of Hölder exponents studied here. In that

work, two types of vortices are distinguished based on the behavior of the helicity:

the roll vortices and the screw vortices. The roll vortices corresponds to events

where the helicity changes sign over the structures. On the other hand, the screw

vortices are vortices without change of helicity in the structure. It is mentioned

in this work that the di�erence between the two types of events might just be a

simple Galilean transformation.

In our dataset, the predominant structure is the one corresponding to roll vor-

tices. Such a structure is visible in the streamlines of �gure 4.22. In some cases,

the change of helicity occurs o� centered, away from the location of minimum regu-

larity. This can be attributed to a remnant contribution of the large scale velocity.

Meanwhile, screw vortices rarely appear. One could interpret the aforementioned

o� centered roll vortices, like for example 4.23, as screw vortices. However, we

observe no qualitative di�erence between those two types of vortices in any of the

observable used here. The conclusion is that, as [15] supposed, those two structures

are the same up to a Galilean transformation.

In the work of [15], a third type of structure is identi�ed. The so called "U-turn"

is characterized by a sharp change of direction of the velocity streamlines. We do

not observe any "U-turns" in our dataset. The closest match are tight vortices,

such that they could be seen as "U-turn" if observed at a lower resolution and

with the addition of experimental noise. It is however possible that "U-turns" �t

the criterion based on local energy transfer but not the one based on local Hölder

exponents, hence they are not detected in our case. It is also possible that "U-

turns" correspond to an earlier phase in the development of a quasi singularity, such

that the local Hölder exponent is too high to be detected by our method. Finally,

it could also be a di�erent structure appearing at higher Reynolds number. If the

last hypothesis is true, we would not be able to study this type of event through

the simulations performed in this thesis.

Among the recurrent features of the events observed is an asymmetry of the

vortices. This asymmetry is particularly manifest in �gure 4.22, where the isosur-

faces of vorticity are compressed in a pancake shape. This shape is shared by the

isosurfaces of Hölder exponent, and the isosurfaces of D`
I and D

`
ν appear as pairs of
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Figure 4.21: Visualization of the 2nd strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 5ε, 6.5ε.
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Figure 4.22: Visualization of the 15th strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 4ε, 5ε.

(m): Isosurface of local energy dissipation at D`ν = 5ε, 6.5ε.
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Figure 4.23: Visualization of the 30th strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 40% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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(a)

D`
I

D`
ν

h̃

(b)

Figure 4.24: (a): Streamlines of velocity. The axial velocity is oriented away from
the x = 0 plane. The red (resp. blue) isosurface corresponds to an helicity of
H = 2.5 (resp. H = −2.5). (b): The magenta isosurface corresponds to the local
Hölder exponent h̃ = 1.35. The red isosurface corresponds to D`

I = 2ε. The blue
isosurface corresponds to D`

ν = 4ε.

pancakes sandwiching the event. This reminds the behavior observed by Vincent

and Meneguzzi [72]. In this study, the authors remark that regions of high vorticity

are pancake like at their apparition, before bending and rolling up. A connection

between this process and the energy cascade is also made. This could explain why

the event in �gure 4.22 features higher values of D`
I than the others. For this to

occur at a scale of ` = 1.8η might be another hint of a structure carrying energy

below the Kolmogorov scale.

4.3.3 Typical event

Having extracted a large amount of extreme irregular events, we can try to average

them in order to obtain a "typical event". This is made possible by the fact all

events have been reoriented along the same axis. This is also justi�ed by the fact

that most events detected share a similar structure of "roll vortex". Exceptions are

composed of events happening close to each other, leading to complex streamlines

pattern. However, in order to avoid introducing any bias in the average, we do

not perform any �ltering of the events. As the complex, non categorized events

do not have clear common features, we expect them to not contribute too much

in the average.

The average is taken over all 213 most singular events extracted. As a reminder,
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Figure 4.25: (a) Fit of the component of the vorticity ωx in the x = 0 plane for the
averaged event. The vorticity along the z (resp. y) direction is represented with
blue circles (resp. red crosses) while the Burgers �t is shown as a black continuous
curve. (b) Colormap of the component of the vorticity ωx in the x = 0 plane for
the averaged event.

this corresponds to all events with a local Hölder exponent h̃ < 1.3. Visualizations

of the averaged event are provided in �gure 4.24. Note that the quantities displayed

are the averaged values of the exponent h̃, the energy transfer D`
I and the energy

dissipation D`
ν . As those scalars are not linear functions of the velocity, they do not

correspond to the quantities that would be computed from the averaged velocity

�eld, materialized by the streamlines.

The pattern of streamlines for the averaged event corresponds to the roll vor-

tices, which emphasizes the prevalent character of this type of structure among

extremely singular events. As expected, averaging over many events completely

removed the contribution of the large scale velocity, such that the helicity changes

sign at the x = 0 plane corresponding to the minimum of Hölder exponent. From

this structure one might recognize a Burgers vortex. This type of uniformly

stretched vortex has been de�ned by [10] and it is characterized by its vorticity

pro�le:

ωx(r) =
Γ

2πν
exp

(
−σr

2

2ν

)
. (4.4)

This pro�le can be �tted over the vorticity of the averaged event in the plane

x = 0. This yields Γ = 5τν and σ = 0.36. While the �t is accurate in the z

direction, as shown in �gure 4.25a, it fails in the y-direction. Because the x com-

ponent of the vorticity actually changes sign, this �t cannot be �xed using the non

axisymmetric Burger vortex pro�le. The �gure 4.25b illustrates this asymmetry.
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Likewise, the averaged D`
I and D

`
ν show a very strong non axisymmetry. The

invariance by a rotation of π around the x-axis can be explained by the way the

events are averaged. However, the presence of two structures of D`
I and D`

ν on

either side of the main axis is also observed in individual events (see �gures 4.21

to 4.23). In order to interpret this asymmetry of the averaged event, we can

emit the hypothesis that extreme events result of the interaction between several

vortices. In the process of averaging, only the main, most singular vortex was

conserved. This hypothesis is supported by the presence of nearby vortices in

several of the extracted events as can be seen in the example of �gure 4.23. Under

this hypothesis, the structures of vorticity could be similar to what is observed in

the bridge of a vortex reconnection [73, 74]. In order to re�ne this hypothesis, we

can use time resolved data. Indeed, it is not clear whether the snapshots that have

been extracted are captured before, during or after the peak of the event, de�ned

as the time at which the local Hölder exponent reaches its minimum.

4.3.4 Link with the energy transfers

The local energy transfer D`
I stays positive in the averaged event, even though

strong negative energy transfers are observed in individual events. This means

that while there are large �uctuations, on average, extreme singular events transfer

energy to the smaller scale. Furthermore, we observe that, at the scale ` = 1.8η,

the average of the dissipative term D`
ν in the typical event is slightly stronger than

the average of the energy transfer term D`
I . Using the discussion from Chapter

2, this means that events used in this average are observed approximately at the

scale at which they get regularized by viscosity. Note that as the study has been

performed very close to the Kolmogorov scale, the Duchon Robert term D`
I is likely

still comparable to the dissipative term D`
ν at ` = η. This implies a contribution

to the energy budget which would not have been captured if the cuto� scale for

the simulation was the Kolmogorov scale.

Another observation that can be made on the averaged event is that the struc-

tures of D`
I and D`

ν are not on the same axis. From the point of view of the

streamlines, the peak of energy transfer happens before the dissipation. This is

not the e�ect of the averaging, as such structure is also observed in individual

events (see �gure 4.22).
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4.4 Temporal evolution of an event.

The purpose of using a time resolved dataset is to try and uncover the generation

mechanism for extreme events. In the time period covered by the time resolved

part of the simulations, we found 11 events for which the minimum of local Hölder

exponent is kept under the threshold of h̃ = 1.3 for 10 snapshots or more. This

corresponds to at least 3 eddy turnover times tη. This very strict threshold keeps

the number of events to analyze low. Indeed, analyzing time series of events is a

lot more time consuming than what was done in the previous section.

The results support the hypothesis evoked previously: the extreme events of

local Hölder exponent appear related to vortex interaction. Indeed, two or more

vortices are observed for most of the events detected. One such event is illustrated

at di�erent times in �gures 4.27 and 4.28. For this event, the structures of Hölder,

energy transfer and energy dissipation start to appears in �gure 4.27b, when the

vortices are approaching each other. We recognize the structure of the typical event

in �gure 4.27d, as the vortex observed is deformed by another vortex coming from

z > 0. This structure becomes more chaotic when the vortices further interact in

�gure 4.27e. For this particular event, the structure of strong energy dissipation

D`
ν does not follow the structures of low Hölder exponents h̃ and high energy

transfer D`
I in the second part of the interaction visualized in �gure 4.28. The

structures shown in �gure 4.28 di�er from the typical event obtained by averaging

in �gure 4.24. This might be the origin of the complex structures identi�ed in the

uncorrelated dataset. It is worth noting that the local Hölder exponents becomes

greater than 1.3 before the reconnection is completed.

A timeline of the evolution of the scalars analyzed is given in �gure 4.26.

This event is particularly irregular, as the local Hölder exponent drops to almost

h = 1.2. The rarity of the event can be visualized by how low this value is on

�gure 4.15.

From the time evolution of the event, the most singular moment happens during

the interaction, as the vortices are close to each other, at the time corresponding

to �gure 4.27f. At this time, the vorticity and the energy dissipation reach their

maximum, and the Hölder exponents reach their minimum. Interestingly, we ob-

serve that the energy transfer D`
I reaches its maximum slightly before the other

scalars. This behavior is observed for multiple events. This coincides with the

previous observation that regions of high energy transfer are located earlier on the

streamlines of velocity. While this could be a hint toward the mechanism behind

the formation of quasi singularities, we currently lack a physical explanation for
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Figure 4.26: Time evolution of the local Hölder exponents (in magenta, left axis),
the vorticity ωtν (in green, middle axis), the local energy transfer D`

I/ε (in red,
rightmost axis) and the energy dissipation D`

ν/ε (in blue, rightmost axis). The
vertical lines materializes the �ve snapshots represented in �gures 4.27 and 4.28.

this behavior.

Finally, note that the local energy transfer reaches the same values as the

dissipation term for this event. Again, according to the analysis from Chapter 2,

this means that this event is susceptible to carry energy below the Kolmogorov

scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.27: Snapshots of time resolved event: (a-b): Before the interaction. (c-d):
Beginning of interaction. (e-f) Time of the minimum oh h̃. (a-c-e): Isosurfaces of
vorticity ωtη = 23 colored in red and blue respectively for positive and negative
helicity. (b-d-f) Isosurface h = 1.3 in blue, D`

I/ε = 4 in red, D`
ν/ε = 6 in green.
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(a) (b)

(c) (d)

Figure 4.28: Snapshots of time resolved event: (a-b): Toward the end of inter-
action. (c-d): Slightly before the local Hölder exponent h̃ grows back above 1.3.
(a-c): Isosurfaces of vorticity ωtη = 23 colored in red and blue respectively for
positive and negative helicity. (b-d) Isosurface h = 1.3 in blue, D`

I/ε = 4 in red,
D`
ν/ε = 6 in green.
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Chapter5
A PIC simulation method using the

Clebsch decomposition

The method exposed in the previous chapters allows us to localize potential sin-

gularities of Navier�Stokes in turbulent velocity �elds. Because of the relatively

low Reynolds number at which the method has been used, we are unable to follow

those structures very far in scale. The objective of this chapter is to try and de-

velop a new numerical method for Navier�Stokes simulations based on a Particles

in Cells (PIC) method. This would allow us to use much smaller viscosity and

potentially follow singular events much farther in scale. The general construction

of this chapter is widely inspired from the thesis of Jean-Philippe Laval [44], who

developed a PIC method for Navier�Stokes. The original method relies on particles

of vorticity advected by the large scale velocity in order to model the small scales

of the �ow. In this chapter, we use the Clebsch decomposition of the velocity �eld

to exhibit scalars �eld that can ful�ll the same role as vorticity did. We then lay

the basis for the simulation model using those scalars for the PIC method.

5.1 Motivations

In addition to the considerations for the simulations of singularities, the trigger for

the work performed in this chapter comes from three publications, respectively by

Yoshida and Morrison [76], Cartes et al. [12] and Ohkitani and Constantin [60].

Among those, the �rst one is dedicated to an analysis of the topology of the �ow,

while the two others develop simulation methods for Navier�Stokes. The common

point of these papers is the usage of a Clebsch parameterization of the velocity

�eld, also known as the Weber-Clebsch representation. This method decomposes

83
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the initial vector �eld into several scalar �elds, for which the evolution equations

can be derived. Using the reasoning reproduced in section 5.4.1, these papers

show that the evolution equations for these scalar �elds are similar to the equation

of di�usion of a passive scalar. This makes this scalar �elds good candidate to

the use of a PIC method: we expect to be able to model the small scales of the

�ow by particles carrying the information of the scalar �elds passively advected

by the large scale �ow. This bears great similarity with the work performed by

Laval[44]. In his thesis, Laval models 2D turbulence using a PIC method using

the equation for vorticity. However, the approach used can not be generalized

to the 3D equations of vorticity. The advantage of a method using the Clebsch

parameterization over this previous work is that it would ba applicable to the 3D

Navier�Stokes equation.

5.2 Decomposition between large scales and small

scales

As a prerequisite to develop the new PIC method, we recall the Navier�Stokes

equations in vector form:

∂tu+ (u · ∇)u = −1

ρ
∇p+ ν∆u+ f

∇ · u = 0

(5.1)

(5.2)

As expressed before, the general idea behind the PIC method is to decompose

the velocity �eld into large scales and small scales. The large scales are to be

simulated using a classical numerical method, while the small scales are to be ap-

proximated by particles advected by the large scales. Formally, the decomposition

is as follow:

U(x) = ū(x) =

∫
G(x− x′)u(x′)dx′,

u′(x) = u(x)−U(x).

(5.3)

(5.4)

Applying the �lter on equation (5.1) yields:

∂tU + (u · ∇)u = −1

ρ
∇P + ν∆U + F (5.5)

In a way not dissimilar to Large Eddy Simulations, this equation will be in-

tegrated while approximating the term (u · ∇)u thanks to the small scales. For

this purpose, we get the small scale equation by subtracting equation (5.5) from



5.2. Decomposition between large scales and small scales 85

equation (5.1). This leads to:

∂tu
′ + (u · ∇)u− (u · ∇)u = −1

ρ
∇p′ + ν∆u′ + f ′ (5.6)

At this point we need to make some hypothesis in order to simplify the equa-

tions. Those hypothesis are based on two little parameters. The �rst one is

based on the ratio between the large scales L and the small turbulent structures l:

ε = l/L. The other one is based on the ratio between the characteristic time asso-

ciated to the turbulent scales τ and the characteristic time associated to the large

scales T (estimated as T = 1/∇U) : η = τ/T . Using the results from Dubrulle

Nazarenko [18], we take the hypothesis ε . 1/η � 1.

Applying dimensional analysis to the non linear terms and taking (U · ∇)U as

a reference, we have in orders of magnitude:

(U · ∇)u′ ∼ 1/(εη) (U · ∇)U

(u′ · ∇)U ∼ ε/η (U · ∇)U

(u′ · ∇)u′ ∼ 1/η2 (U · ∇)U

Keeping only the dominant terms, equations (5.5) and (5.6) reduce to:

∂tU + (U · ∇)U = −1

ρ
∇P + ν∆U + Fforcing + Fsmall→large

∂tu
′ + (U · ∇)u′ = −1

ρ
∇p′ + ν∆u′ + Flarge→small

(5.7)

(5.8)

with:

Fsmall→large = −(U · ∇)u′

Flarge→small = (U · ∇)U − (U · ∇)U + (U · ∇)u′.

(5.9)

(5.10)

The approximations realized here have already been veri�ed in [44].

On the other hand, applying the decomposition between large and small scales

to the incompressibility equation (5.2) yields:

∇ ·U = 0 and

∇ · u′ = 0.

(5.11)

(5.12)
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5.3 Algorithm for the large scales

For this model, the large scales can be simulated using a conventional algorithm,

similar to what is used for LES simulations. Our choice in this case is to use a

spectral code, as it has the merit of simplicity.

In order to derive the equations for the spectral method, we take the Fourier

transform and solenoidal projection of (5.7). Assuming the system is forced directly

in the spectral space, this results in the following:

∂tU(k, t) = −νk2U(k, t) +G(k, t) + Fforcing(k, t) (5.13)

where G(U) gathers the non linear terms:

G(k, t) = FT (Psol(−(U · ∇)U + Fsmall→large)) (5.14)

where FT designate the Fourier transform and Psol the solenoidal projection.

Putting the forcing aside and introducing Ũ(t) = eνk
2tU (t), we get:

∂tŨ(k, t) = eνk
2tG(k, t). (5.15)

This equation can be integrated numerically. One possible choice is to use a

Runge-Kutta algorithm. For a time step of ∆t, this would give:

Ũ(k, t+ ∆t)− Ũ(k, t) = ∆teνk
2(t+∆t/2)G(k, t+ ∆t/2). (5.16)

Going back to the original variables, the integration scheme is the following:

U (k, t+ ∆t) = e−νk
2∆tU(k, t) + ∆te−νk

2∆t/2G(k, t+ ∆t/2) (5.17)

where the computation of G(k, t+ ∆/2) will require the use of:

U(k, t+ ∆t/2) = e−νk
2∆t/2

(
U(k, t) +

∆t

2
G(k, t)

)
. (5.18)

As a result, the core of the model consists in evaluating the non linear term

G with a good balance of accuracy and e�ciency. This prominently factor the

retro-action from the small scales to the large scales Fsmall→large.

The forcing can be added every time step simply as follow:

Uforced(k, t+ ∆t) = U(k, t+ ∆t) + ∆tFforcing(k, t). (5.19)
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5.4 Equations for small scales

In this section, we derive the equations governing the small scales that will be

implemented in a PIC model. This will eventually lead to the computation of the

small scale contribution to the non linear term G.

5.4.1 Clebsch decomposition

Deriving the equations with viscosity massively increases the complexity of the

computation. This work has been done, in particular in [12], but the resulting

equations are less suitable to a PIC method than in the inviscid case. For the time

being, we consider the inviscid equation without the large scale contribution:

∂tu
′ + (U · ∇)u′ = −1

ρ
∇p′. (5.20)

Making the Particles of our Particles in Cells model not dissipative also partic-

ipates in our overall objective of trying to observe singular behaviors. Indeed, this

means that the small scales quantities will follow Euler's equations, and potentially

transport energy to arbitrarily small scales.

The Clebsch decomposition is introduced by:

u′ = −∇φ+

p∑

α=1

λα∇µα. (5.21)

In this equation, φ is a scalar �eld working exactly as the potential in the Helmholtz

decomposition. The speci�city of the Clebsch decomposition comes from the scalar

�elds λα and µα for α = 1..p. As we are working in 3 dimensions, a result by

Yoshida [75] guarantees the existence of such scalar �elds for p > 2. There is

however no unicity of the decomposition.

Injecting the equation (5.21) into (5.20) gives:

p∑

α

(
Dλα
Dt
∇µα −

Dµα
Dt
∇λα

)
−∇

(
Dφ

Dt
−

p∑

α

Dµα
Dt

λα

)
− u′ · (∇U) = −1

ρ
∇p′

(5.22)

where we use the material derivative D
Dt

= ∂t + (U · ∇), computed using the large

scale velocity. In this equation, the term colored in red is of the same order as

(u′ · ∇)U which has already been neglected in the previous section, so we neglect

it again.
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For this equation to be satis�ed, a su�cient but not necessary condition is:

Dλα
Dt

= 0

Dµα
Dt

= 0

Dφ

Dt
=
p′

ρ

(5.23)

(5.24)

(5.25)

Combined with the non unicity of the scalar �elds λα and µα in the Clebsch

decomposition, we can a�ord to impose these conditions. The equations (5.23) and

(5.24) are particularly interesting as it means the scalar �elds can be portrayed as

"passively" advected by the large scale velocity. This description is inaccurate as

the model we develop here does include a retro-action on the large scale velocity,

as described in the section 5.5.5. In this aspect, it is a situation strikingly similar

to how the small scale vorticity is "passively" advected by the large scale in Laval's

thesis [44]. This similarity is what lead us to try and develop a PIC based method,

where the scalar �elds λα and µα are decomposed into particles advected by the

large scale velocity.

Supposing that the scalar �elds λα and µα are known, we can recover the po-

tential �eld φ using the incompressibility condition. Indeed, applying the Clebsch

decomposition from equation (5.21) to the equation (5.12) yields:

∆φ =

p∑

α

∇ · (λα∇µα). (5.26)

This means we can avoid integrating the equation (5.25), and thus that we don't

have to keep track of the small scale pressure.

5.4.2 Filter function and Gabor transform

In order to progress further, the �ltering needs to be formalized. The �lter is

de�ned as:

U(X, t) = ū(x, t) =

∫
f 2 (ε?(x− x′))u(x′)dx′ (5.27)

where ε? is a small parameter di�erentiating the "slow" spatial variable X = x/ε′

and the "fast" variable x. The small parameter ε? is such that 1 � ε? � ε.

The function f is an odd function with a fast decay toward in�nity and a norm

unity, i.e.
∫
f 2(x)dx = 1. This ensures an intuitive behavior of the �ltering when

applied to constant functions. The choice of a f 2 instead of f does not change the
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properties of the problem and will simplify later computations.

Additionally, we introduce the Gabor transform using the same function f :

GT{u′}(x,k, t) = û′(x,k, t) =

∫
f (ε?(x− x′)) eik(x−x′)u′(x′, t)dx′. (5.28)

This operation bears striking similarities with continuous wavelet transforms,

as it conveys information about both space and frequency. It is the principal factor

by which the small scale scalar �elds will be modelled by particles evolving in the

space-frequency domain.

Similarly to the continuous wavelet transforms, this transformation can be

inverted as follow:

u′(x, t) =
1

(2π)3f(0)

∫
û′(x,k, t)dk. (5.29)

All �elds in physical space are real valued, which leads to:

û′(x,−k, t) = û′(x,k, t)∗

λ̂α(x,−k, t) = λ̂α(x,k, t)∗

µ̂α(x,−k, t) = µ̂α(x,k, t)∗

(5.30)

where the star denotes the complex conjugate.

Several properties of the Gabor transform will be required for later computa-

tions. Those properties are also demonstrated in [44] and these demonstrations

are reported here for the sake of convenience. By using integration by part, one

can show that the Gabor transform and spatial derivatives commute:

TG{∂iu′}(x,k, t) = ∂iû′(x,k, t). (5.31)

The same term can also be expanded using the small parameter ε?. Indeed, we

have:

∂iû′(x,k, t) = ∂i

∫
f (ε?(x− x′)) eik(x−x′)u′(x′, t)dx′

= ikiû′(x,k, t) + ε?
∫
f ′ (ε?(x− x′)) eik(x−x′)u′(x′, t)dx′

= ikiû′(x,k, t) +O(ε?) (5.32)
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5.4.3 Main equations for the small scale velocity

The objective in this part is to derive the equations for the Gabor transformed

scalar �elds λ̂α and µ̂α which would then be used as basis for the PIC model.

For this purpose, we apply the Gabor transform to equation (5.23). In the

following Einstein summation convention for repeated indices is used:

∂tλ̂α +GT{Uj∂jλα} = 0. (5.33)

We need to compute the Gabor transform of a product of a small scale quantity

and a large scale quantity:

GT{Uj∂jλα}(x, t) =

∫
f (ε?(x− x′)) eik(x−x′)Uj(x

′, t)∂jλα(x′, t)dx′. (5.34)

As the large scale quantity U is slowly varying compared to f , we perform a

Taylor expansion of U around x′:

Uj(x
′, t) = Uj(x, t) + (x− x′) · ∇Uj(x, t) +O((x′ − x)2). (5.35)

As such:

GT{Uj∂jλα}(x, t)
≈Uj(x, t)GT{∂jλα}(x, t)

+ ∂lUj(x, t)

∫
f (ε?(x− x′)) eik(x−x′)(xl − x′l)∂jλα(x′, t)dx′

≈Uj(x, t)GT{∂jλα}(x, t) + i∂lUj(x, t)
∂

∂kl
GT{∂jλα}. (5.36)

Finally, using the propriety from equation (5.32), we have:

0 = ∂tλ̂α +GT{Uj∂jλα} ≈ ∂tλ̂α + Uj∂jλ̂α + i∂lUj
∂

∂kl
(ikjλ̂α)

≈ ∂tλ̂α + Uj∂jλ̂α − ∂lUjkj
∂

∂kl
λ̂α −����

λ̂α∂jUj (5.37)

The term ∂jUj is removed as a consequence of incompressibility from equation

(5.11).

The exact same process can be applied to the equation (5.24). As a result, we
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have the main equations for the Gabor transformed scalar �elds λ̂α and µ̂α:

Dtλ̂α(x,k, t) = 0,

Dtµ̂α(x,k, t) = 0,

(5.38)

(5.39)

with :

Dt = ∂t + ẋ · ∇+ k̇ · ∇k,

ẋ = ∇kΦ,

k̇ = −∇Φ,

Φ = U · k.

(5.40)

(5.41)

(5.42)

(5.43)

5.5 Implementation of a PIC method

The di�erential operator Dt from equations (5.38) and (5.39) can be interpreted as

a material derivative in the space-frequency domain with a well chosen "velocity"

directly de�ned from the large scale velocity U . This way, the Gabor transformed

scalar �elds λ̂α and µ̂α are interpreted as scalar transported in the space-frequency

domain. The idea of the PIC model is to decompose the small scale scalars into

particles with given position and wave vector that are advected independently

using equation (5.40). The retro-action of the small scale on the large scale motion

would then be a combination of the action of all individual particles, with the

estimation being more precise the more particles there are.

Such computing method have been �rst developed for computing the dynamic

of charged particles within a plasma and has been used e�ectively ever since [8]. Its

use has been expanded to less straightforward application with no actual particle

involved, for example by Nazarenko, Zabusky and Sheidegger in order to simulate

the interaction between wave packet of sound and vortices [58]. It has also been

used by Laval to simulate the transport of vorticity [44].

The expected advantage of such method over a direct numerical simulation

is that an individual particle might represent much smaller scale for a meager

computation cost compared to a re�nement of the resolution.

In order to implement the PIC model, we will �rst discuss the de�nition of

the particles and how they are related to the scalar �elds λ̂α and µ̂α. We will

then proceed to detail how those particles implement the di�erent contributions of

small scales on the large scales of the �ow. This means implementing the forcing

Flarge→small from equation (5.10) that large scales exert on small scales in the form

of creation of new particles. We will then discuss the implementation of a



92 CHAPTER 5. A PIC simulation method using the Clebsch decomposition
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µ̂′
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Figure 5.1: Schematic representation in 2D of the particles being advected by the
large scale velocity.

numerical dissipation based on the removal of particles from the computations.

The description of the implementation of the advection of particles will follow.

Finally, we will explain how to derive the retro-action of the small scales on the

large scales Fsmall→large using the particles.

5.5.1 De�nition of the particles

Let us suppose that the small scale scalar �elds λ̂α et µ̂α are decomposed into Np

particles characterised by:





xn the posistion of the particle,

kn its corresponding wave vector (3D),

λ̂α,n the complex amplitudes for the λ �elds,

µ̂α,n the complex amplitudes for the µ �elds.

The decomposition has to be such that the scalar �elds can be reconstructed

as follow:

λ̂α(x,k, t) =

Np∑

n=1

λ̂α,nSx(x− xn(t))Sk(k − kn(t)). (5.44)

where Sx et Sk are the interpolation functions for the PIC method.

By simplicity, we chose the interpolation function in the wave vector space
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to be the Dirac function: Sk(k) = δ(k). This zero order function will spare

us complications when dealing with particle interactions. For the interpolation

function in space, we choose a simple �rst order interpolator:

Sx(x) = Sx(x)× Sy(y)× Sz(z), (5.45)

where

Sx(x) =

{
dh− |x|/dh if |x| < dh,

0 otherwise.
(5.46)

and likewise for Sy and Sx. We choose the parameter dh equal to the grid step for

the large scales dh = ∆x.

The �gure 5.1 gives a representation of particles moving independently from

the main simulation grid used for the large scales. In this representation, the �eld

λ̂α at the point x2,2 can be reconstructed from the complex amplitudes carried by

the particles numbered 1,2 and 3. With this choice of interpolation function Sx,

the reconstruction of a small scale �eld at a given node only depends on particles

directly around the node. A higher order of interpolation might make the result

more accurate, but the computational cost will be heavier.

One can observe that the equations (5.38) and (5.39) are symmetric under the

transformation

k→ −k.

For our PIC model, it means that for every particle simulated, one can deduce

the behaviour of a particle with the same position but opposite wave vector. In

practice, it means we can simulate twice as many particles for the same cost. Let

us assume we add Np more particles to the system. We will distinguish pairs of

particle with same position but opposite wave vector with a plus or minus index.

The equation (5.44) then becomes:

λ̂α(x,k, t) =

Np∑

n=1

(
λ̂α,n+δ(kn(t)) + λ̂α,n−δ(−kn(t))

)
Sx(x− xn(t)). (5.47)

By taking the inverse Gabor transform of this equation using the formula (5.29),

this results in:

λα(x, t) =
1

(2π)3f(0)

Np∑

n=1

(
λ̂α,n+ + λ̂α,n−

)
Sx(x− xn(t)). (5.48)

Because the resulting scalar �elds are real valued, this imposes λ̂n,α+ = λ̂∗n,α−.In
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the following, we drop the + index when there is no ambiguity. Adopting the

notation <[z] and =[z] for respectively the real part and the imaginary part of a

complex number z, the resulting equation is:

λα(x, t) =
2

(2π)3f(0)

Np∑

n=1

<
[
λ̂α,n

]
Sx(x− xn(t)). (5.49)

Of course, the exact same reasonning can be applied for µ, leading to:

µα(x, t) =
2

(2π)3f(0)

Np∑

n=1

< [µ̂α,n]Sx(x− xn(t)) (5.50)

When a spatial derivative is used, the property of the Gabor transform with respect

to derivation (5.32) gives:

∂jµα(x, t) ≈ −2

(2π)3f(0)

Np∑

n=1

kj= [µ̂α,n]Sx(x− xn(t)). (5.51)

5.5.2 Forcing from the large scales: creation of particles

Similarly to the PIC method developed in the thesis of Laval, the e�ect of large

scales on small scales is not modeled by interacting with the existing particles but

by creating new particles. At this point, the equation for the small scales is as

follows:

Dtu
′ = −1

ρ
∇p′ + Flarge→small. (5.52)

The pressure term is already included in the dynamic of the particles. In order

to model the contribution of the large scale to the small scales, we add at each time

step particles corresponding to the velocity �eld u′f = ∆t×Flarge→small, where ∆t

is the time step for the large scale simulation de�ned in section 5.4.

This is the opportunity to decide the number p of scalar �elds used in the

Clebsch decomposition, which has been left undetermined until now. We chose

the value p = 3, which is also the value taken by Cartes et al. [12]. As this

corresponds to the number of spatial dimensions, we adopt the same convention

for the indices in the following.

This means that we can take the same choice as [12] for the Clebsch decompo-

sition of u′f :

λi(x) = u′fi,

µi(x) = xi.

(5.53)

(5.54)
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This particular choice is inconvenient when using periodic boundary conditions.

For this purpose, we set µ′i(x) = µi(x) − xi and the complex amplitudes carried

by the particle model will correspond to this new quantity µ′. Note that even if

the µi are not periodic, their derivatives ∂jµi are, so there is no problem for the

decomposition of u′f periodic.

From this change of variable, it entails that:

µ̂′i(x,k) = µ̂i(x,k)− x̂i(x,k). (5.55)

This leads to:

∂jµ̂′i(x,k) = ∂jµ̂i(x,k)− δij 1̂(x,k)

= ∂jµ̂i(x,k)− δijf(k)

(5.56)

(5.57)

where 1̂ is the Gabor transform of the function unity, which is also the Fourier

transform of the �lter function f(k).

The equation (5.39) becomes:

Dtµ̂′i(x,k, t) = −Uif(k). (5.58)

The �elds λ and µ corresponding to this added velocity u′f being determined,

we needs to decompose these �elds into particles to add to the system. A simple

choice is to generate N3 particles, indexed by n, with one particle at each node

of the grid used for the simulation of the large scales. With the initial complex

amplitude corresponding to the µ′ �elds being set at zero, we still need to determine

the wave vectors kn and the complex amplitudes ˆλi,n.

Applying equation (5.49) gives:

u′fi(x) =
2

(2π)3f(0)

N3∑

n=1

<
[
λ̂α,n

]
Sx(x− xn). (5.59)

By evaluating this formula at each grid point, the support of the interpolation

function Sx is such that we have:

<
[
λ̂i,n

]
=

(2π)3f(0)

2
u′fi(xn). (5.60)

In order to obtain constraints on the wave vector kn and the imaginary part of

the complex amplitudes, one must use the derivatives of the velocity �eld u′f . Note

that if we use a spectral method to simulate the large scales, those derivatives are

exact quantities. By taking two components of the rotational ω′f = ∇×u′f as well
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as the incompressibility condition, we obtain the following system:




0 =
[
λ̂3,n

]
−=

[
λ̂2,n

]

−=
[
λ̂3,n

]
0 =

[
λ̂1,n

]

=
[
λ̂1,n

]
=
[
λ̂2,n

]
=
[
λ̂3,n

]






k1

k2

k3


 =



− (2π)3f(0)

2
ω1

− (2π)3f(0)
2

ω2

0


 (5.61)

Further derivatives might give more constraints, at the cost of increased com-

plexity. We follow the choice made by Laval in similar circumstances in the model

described in [44], and impose:

=
[
λ̂i,n

]
= <

[
λ̂i,n

]
(+ε) (5.62)

where the small quantity ε is added when necessary to prevent the matrix in (5.61)

from being non inversible.

To summarize, the N3 particles created at each time step at all node of the

large scale grid have the following initial parameters:





xn the position of the grid point,

kn the wave vector solution of (5.61),

<
[
λ̂i,n

]
= (2π)3f(0)

2
u′fi real part of the amplitude for λ,

=
[
λ̂i,n

]
= <

[
λ̂i,n

]
(+ε) imaginary part of the amplitude for λ,

µ̂′i,n = 0 initial complex amplitude for µ′ set to zero,

(5.63)

The generation of new particles in this manner causes several complications for

the model. The �rst one is caused by the properties of the Clebsch decomposition.

Indeed, there is no unicity for the �elds λ and µ. The concrete consequence is that

the λ and µ �elds decomposed at time T cannot be combined with the �elds at

time T + ∆T . In other words, at each time step the Clebsch decomposition of the

velocity �eld u′f is performed using a di�erent gauge condition.

This di�culty can be overcome by keeping track of the time at which the

particles have been created. Assuming that the �elds λTi (t) and µTi (t) are recovered

from the particles created at time T , the small scale velocity at time t is computed

as such:

u′(x, t) =
∑

T<t

u′T (x, t) =
∑

T<t

[
−∇φT (x, t) + λTα(x, t)∇µTα(x, t)

]
. (5.64)

The computation is then developed as follow. First, the incompressibility con-
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dition on the Clebsch decomposition from equation (5.26) is used to get rid of the

potential �elds. We then change from the µ �elds to the modi�ed µ′:

u′j(x, t) =
(
δjl − ∂j∆−1∂l

)∑

T<t

λTα(x, t)∂lµ
T
α(x, t)

=
(
δjl − ∂j∆−1∂l

)∑

T<t

λTα(x, t)
(
∂lµ
′T
α(x, t) + δαl

)
(5.65)

The �nal expression is obtained by injecting the equations (5.49) and (5.51):

u′j(x, t) =
4

(2π)6f(0)2

(
δjl − ∂j∆−1∂l

)
[∑

T<t

NT∑

n=1

<
[
λ̂Tα,n

]
Sx(x− xn(t))

(
δjl −

NT∑

m=1

kl=
[
µ̂′
T

α,m

]
Sx(x− xm(t))

)]
(5.66)

where the sums over n and m are performed over the particles created at time T .

In this expression, the di�erential operator preceding the sum can be computed

using a spectral method over the large scales. It is worth noting that this oper-

ation's computational complexity is quadratic in the number of particles created

at time T , i.e. in N3. While the small support of the interpolation function keeps

the actual number of operation moderate, we will design the algorithm in a way

that minimizes the use of this formula.

5.5.3 Dissipation

The other problem caused by the generation of particles is of practical order.

Indeed, running such model would imply adding N3 particles to the system at

each time step. Following through this process would quickly increase the cost

of computations, such that the computational advantage over a more classical

method would be lost. We list here several ideas that could be used to keep the

number of particles under control.

The �rst idea is to use the removal of particles to implement the numerical

dissipation. The most natural approach would then be to use the equivalent of

a spectral �lter, removing all particles with a wave vector too large ‖k‖ > kmax.

This is coherent with the method used by Laval in his thesis [44].

Our situation present one major di�erence with the case discussed in [44].

This distinction is that we use the particle model to model the small scale velocity

instead of the small scale vorticity. This remove the possibility to create particles

only in the representative points, as there is no reason to not simulate particles
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based on a threshold on velocity. We could use a threshold based on vorticity, at

the cost of computing the rotational every time particles are created.

One option in common with [44] is the possibility to "recycle" the particles

after a certain time. The idea is that once the number of particles has reached a

certain threshold Nmax, we can use equation (5.66) to reconstruct the small scale

velocity u′. This reconstructed velocity can then be transformed back into particles

using the same process as described in part 5.5.2. In our case, this method can

be applied to only "recycle" part of the particles by delimiting a range of time.

In other words, we could choose to "recycle" only the particles from time T1 to

T2. This would ensure that the number of particle do not fall so low that the PIC

reconstruction loses in precision.

Recycling the particles also allows to limit the risk of a particle falling into a

local reverse cascade, with the norm of the wave vector k reaching a value too low.

This would cause the formalism to break as the small scale velocity would have a

slowly varying component. While this event is unlikely in 3D turbulence, it is not

forbidden locally.

All those methods require testing to verify the e�ect on the accuracy of the

simulation and on the computational cost. As was discussed in the introduction

to this chapter, the implementation of the algorithm has not been completed yet,

hence nether are the tests.

5.5.4 Advection of particles

The dynamic of the particles is governed by equations (5.38) and (5.58). Expressed

from the point of view of the particles parameters, these translate to:

∂xn
∂t

(t) = U(xn(t)),

∂kn
∂t

(t) = −(kn(t) · ∇)U(xn(t)),

∂µ̂′i,n
∂t

(t) = −Uif(kn(t)).

(5.67)

(5.68)

(5.69)

Incidentally, the complex amplitude associated to the λ �eld is constant:

λ̂i,n = cst. (5.70)

In order to implement these equations, we need to know the large scale velocity

�eld U and its derivative at a point which is not on the grid. For this, we need to

use the already de�ned interpolation function Sx from equation (5.45).
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Formally, we consider the 8 closest nodes to the particle n, noted xn,β for

β = 1 . . 8. Then the large scale velocity at the location x is obtained by:

U(x, t) =
8∑

β=1

U(xn,β, t)Sx(xn,β − xn). (5.71)

Going back to the schematic representation of �gure 5.1, one can visualize how

the velocity at the position of a particle is computed as the weighted average of the

velocity at the neighboring grid nodes. Like for the reconstruction, it is possible

to choose a higher order for the interpolation function Sx in order to get more

accurate results but this would be at higher computational cost.

The same can be done for the di�erent spatial derivatives of U , provided that

these are computed exactly using the spectral method on the large scale grid.

The equations (5.67) to (5.69) can then be integrated using the second order

stable Runge-Kutta method. In order to compute the new parameters of the

particles at a time step ∆t/2 required by the large scale scheme from equation

(5.18) we need the intermediate variables:

x�n = xn(t) +
∆t

4
U(xn(t)),

k�n = kn(t)− ∆t

4
(kn(t) · ∇)U(xn(t)).

(5.72)

(5.73)

The time stepping over the duration ∆t/2 is then given by:

xn

(
t+

∆t

2

)
= xn(t) +

∆t

2
U(x�n),

kn

(
t+

∆t

2

)
= kn(t)− ∆t

2
(k�n · ∇)U(x�n),

µ̂′i,n

(
t+

∆t

2

)
= µ̂′i,n(t)− ∆t

2
Ui(x

�
n)f(k�n).

(5.74)

(5.75)

(5.76)

Note that the currently chosen numerical scheme means performing operations

on the particles four times by time step in total.

5.5.5 Retro-action on large scales

Having determined the mechanic of creation/removal of particles and their dy-

namic, we can use them to determine the contribution of the small scale velocity

to the large scales. The term involving the small scale velocity that need to be de-

termined is Ui∂iu′j, which is present for both the forcing on small scales Flarge→small



100 CHAPTER 5. A PIC simulation method using the Clebsch decomposition

(equation (5.10)) and the retro-action on large scales Fsmall→large (equation (5.9)).

To simplify this expression, we use the Taylor development of the large scale ve-

locity U :

Ui∂iu′j(x, t) =

∫
f 2 (ε?(x− x′))Ui(x′, t)∂iu′j(x′, t)dx′

≈
∫
f 2 (ε?(x− x′)) [Ui(x, t) + (x− x′) · ∇Ui(x′, t)] ∂iu′j(x′, t)dx′

≈ Ui(x, t)∂iu′j(x, t) +

∫
f 2 (ε?(x− x′)) (x− x′) · ∇Ui(x′, t)∂iu′j(x′, t)dx′

= Ui(x, t)∂iu′j(x, t) +O(ε?).

In this last development, only the �rst order is kept. This is because the next

term is of comparable magnitude with terms already neglected when deriving the

equations in section 5.2. As a result, we have:

Fsmall→large ≈ −(U · ∇)u′. (5.77)

The �nal step consists in determining the �ltered small scale velocity u′(x, t)

using the particle model. One possible option would be to compute the small

scale velocity u′(x, t) using the formula from equation (5.66) then apply the �lter.

However, it has already been mentioned that this operation is computationally

costly as it is quadratic with respect to the number of grid points N3. A cheaper

alternative is to use the following:

u′j(x, t) =
∑

T<t

u′T j(x, t)

=
(
δjl − ∂j∆−1∂l

)∑

T<t

λTα∂lµ
T
α(x, t). (5.78)

In order to compute the �lter of a product of two small scale quantities, we make

the following remark:



5.5. Implementation of a PIC method 101

∫
<
[
λ̂Tα(x,k, t)∂lµ̂

T
α(x,−k, t)

]
dk

=

∫
<
[∫

f(ε?(x− x′))eik(x−x′)λTα(x′, t)dx′

∫
f(ε?(x− x′′))eik(x−x′′)∂lµ

T
α(x′′, t)dx′′

]
dk

=

∫∫
f(ε?(x− x′))f(ε?(x− x′′))λTα(x′, t)∂lµ

T
α(x′′, t)

(∫
eik(x′′−x′)dk

)
dx′dx′′

=(2π)3λTα∂lµ
T
α(x, t). (5.79)

This leads to:

λTα∂lµ
T
α(x, t) =

1

(2π)3

∫
<
[
λ̂Tα(x,k, t)∂lµ̂

T
α(x,−k, t)

]
dk

=
1

(2π)3

∫
<
[
λ̂Tα(x,k, t)(∂lµ̂

′T
α (x,−k, t) + δlαf(−k))

]
dk

≈ 1

(2π)3

∫
<
[
λ̂Tα(x,k, t)(−iklµ̂′Tα (x,−k, t) + δlαf(−k))

]
dk

≈ 1

(2π)3

∫
<
[
λ̂Tl (x,k, t)f(−k)

]
dk

+
1

(2π)3

∫
kl=

[
λ̂Tα(x,k, t)µ̂′Tα (x,−k, t)

]
dk. (5.80)

The �rst term can be computed directly by applying the relation (5.44). In the

following computation, the �rst sum needs to include the particles with opposite

wave vectors introduced in part 5.5.1. The �lter f being real valued, we use the

properties f(k) = f(−k)∗ and λ̂Tl,n− = λ̂T∗l,n+ to simplify the expression.

∫
<
[
λ̂Tl (x,k, t)f(−k)

]
dk

=

∫
<
[ NT

p∑

n=1

[
λ̂Tl,n+δ(k − kTn (t)) + λ̂Tl,n−δ(k + kTn (t))

]

f(−k)Sx(x− xTn (t))
]
dk

= 2

NT
p∑

n=1

<
[
λ̂Tl,nf(−kTn )

]
Sx(x− xTn (t)). (5.81)
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The second term of equation (5.80) can be computed using the same method.

∫
kl=

[
λ̂Tα(x,k, t)µ̂′Tα (x,−k, t)

]
dk

=

∫
kl=






NT
p∑

n=1

[
λ̂Tl,n+δ(k − kTn (t)) + λ̂Tl,n−δ(k + kTn (t))

]
Sx(x− xTn (t))







NT
p∑

m=1

[
µ̂′Tl,m+δ(−k − kTm(t)) + µ̂′Tl,m−δ(−k + kTm(t))

]
Sx(x− xTm(t))




 dk.

Using the fact that di�erent particles are very unlikely to have the exact same

wave vector, the choice of a Dirac for the interpolation function in the spectral

space in part 5.5.1 allows us to simplify the computation:

∫
kl=

[
λ̂Tα(x,k, t)µ̂′Tα (x,−k, t)

]
dk = 2

NT
p∑

n=1

kTl,n=
[
λ̂Tα,nµ̂

′T∗
α,n

]
Sx(x− xTn (t))2.

(5.82)

Finally, injecting the results of (5.81) and (5.82) in equation (5.80) and grouping

the sums, the �ltered small scale velocity is recovered as follow:

u′j(x, t) =
2

(2π)3

(
δjl − ∂j∆−1∂l

) Np∑

n=1

(
<
[
λ̂l,nf(−kn)

]
Sx(x− xn(t))

+kl,n=
[
λ̂α,nµ̂

′∗
α,n

]
Sx(x− xn(t))2

)
.

(5.83)

The leading di�erential operator of this expression can be computed using a spec-

tral method. Remarkably, the computation cost of this term is linear in the number

of particles.

5.5.6 Constraints on the �lter

The knowledge of the �lter is required in order to complete the model. However, the

choice of this �lter is not left free. This constraint is apparent in the computation

of the �lter of a product of small scale variables. For the sake of argument, let us

take the �ltered product λTi µ
T
i . A common rectangle integration over all the grid
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points xi would give:

λTi µ
T
i (x, t) =

∑

i

λTi (xi)µ
T
i (xi)f

2(x− xi)(∆x)3. (5.84)

Estimating the same quantity using the particle model yields:

λTi µ
T
i (x, t) =

2

(2π)3

Np∑

n=1

λ̂Ti,nµ̂
T
i,nSx(x− xTn )2. (5.85)

As those two relations must be true for any two small scale �elds, this imposed

that f 2 and S2
x are proportional to one another:

f 2 = C × S2
x. (5.86)

Additionally, the �lter must be normalized such that
∫
f 2(x)dx = 1. As a

result, we have:

f 2 = f 2(0)S2
x. (5.87)

where

f(0) =
1√∫

S2
x(x)dx

. (5.88)

For our choice of Sx, this results in:

f(0) =

(
3

2dh

)3/2

. (5.89)

The Fourier transform of both the function and its square are required. Those

are computed as follow:

f(k) = f(0)dh3sinc2

(
kxdh

2

)
sinc2

(
kydh

2

)
sinc2

(
kzdh

2

)
,

f 2(k) = 63

(
sinc(kxdh)− 1

(kxdh)2

)(
sinc(kydh)− 1

(kydh)2

)(
sinc(kzdh)− 1

(kzdh)2

)
.

(5.90)

(5.91)

As a remark, we have:

lim
x→0

sinc(x)− 1

x2
= −1

6
. (5.92)

so there is no divergence around the origin for f 2.
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5.6 Accessing to small scale statistics: the energy

spectrum

Assuming the algorithm described in this chapter is implemented, we would need

to have some access to statistical values pertaining to the small scales. At the

very least, this would be required in order to validate the model. At best, we

could make use of these statistics to study some small scale behaviors with only a

fraction of the computational cost of a large DNS.

The very �rst quantity that needs to be checked is the energy spectrum. Again,

assuming the simulation runs smoothly and the energy spectrum of the large scale

behave as expected, showing an inertial range, we would then focus our interest

on the energy spectrum of the small scales. As the equations for the dynamic of

the particles are inviscid, we would expect the inertial range to extend from the

large scales to the cuto� kmax at which we remove the particles.

The similar work by Laval [45] used the energy carried by individual particles

in order to reconstruct the complete energy spectra. This method is not strictly

applicable the current model because of the non linearity of the Clebsch decompo-

sition: the local energy is not a simple sum of the "energy" carried by neighboring

particles. Nevertheless, we can still use this approach as an estimation. Starting

from the expression of the velocity combined from the particles created at time T :

u′
T
i = (δij − ∂i∆−1∂j)(λ

T
j + λTα∂jµ

′T
α). (5.93)

The λ and µ terms can be recovered using the particles by:

λTi =
2

(2π)3f(0)

∑

n

<
[
λ̂Tj,n

]
Sx(x− xTn ),

∂jµ
′T
α ≈ −

2

(2π)3f(0)

∑

n

kTj,n=
[
µ̂′
T

α,n

]
Sx(x− xTn ).

(5.94)

(5.95)

If we ignore the contributions from the other particles, the velocity at point xn
associated to a single particle n is expressed as:

u′
T
i,n ≈

2

(2π)3f(0)
<
[
λ̂Ti,n

]
− 4

(2π)6f(0)2
kTi,n<

[
λ̂Tα,n

]
=
[
µ̂′
T

α,n

]
. (5.96)

As a result, the energy associated to this particle would be:

ET
n =

1

2

∑

i

u′
T
i,n

2
. (5.97)
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In order to recover the energy spectrum for the small particles, the idea would

then be to sum the contributions of all particles with a wave vector of same length.

More formally, the result would be:

E(k) =
1

dk

∑

T<t

∑

|‖kTn ‖−k|<dk/2
ET
n . (5.98)

where the interval dk would be chosen large enough to have several particles per

bin.

This method has the �aw of circumventing the base principle of the PIC model,

by neglecting all the terms that result in the combination of several particles. It

is however the best approach that we have developed at the time of the redaction

of this manuscript.

5.7 Current state and discussion

The implementation of this PIC method is currently at the debugging phase. As

the project has been stalled for some time, it is unlikely to be someday concluded.

Should it continue, we would expect several roadblocks before completion.

From the point of view of the model, we expect that the process of creation

of particles described in part 5.5.2 might require some revisions. The points with

some degrees of freedom are the choice of the equations to constrain the wave

vector k and the choice of imaginary part for the complex amplitudes λ̂α,n. By

analogy with the similar model developed in Laval thesis [44], we expect these

choices to be valid. However, they need to be properly validated.

While the exact method of validation is yet undetermined, one potential ap-

proach would be to run an a posteriori validation test against a well resolved DNS.

The principle of such validation would be to run the particle dynamic using the

large scale velocity of the DNS as the large scales U , and verify if the particle

model reproduces the same small scale velocity. Another idea would be to com-

pare the retroaction of the small scales on the large scales computed in section

5.5.5 to a common LES model, for example the Smagorinsky model [67].

At this point, it is di�cult to evaluate how this model would perform, let alone

if it could outperform existing models. It however shows potential with regards

to our original motivation of investigating the simulation of quasi singularities.

Indeed, the particle dynamics runs according to approximated Euler equations.

This means that in absence of numerical cuto�, we would expect particles carrying

energy to evolve such that their wave vector k would grow very large, corresponding



106 CHAPTER 5. A PIC simulation method using the Clebsch decomposition

to very strong gradient, without viscous dampening. By following the track of a

group of particles past the frequency cuto�, this could grant us access to quantities

such as the rate of production of quasi singular events without having to use an

expensive DNS followed by the complex computations presented in the �rst part

of this thesis.



Chapter6
Conclusions and perspectives

The starting point for this thesis was the question of the regularity of the solutions

to the Navier�Stokes equations. Our approach to this question was to look for

irregular events in turbulent velocity �elds which could be interpreted as potential

singularities.

In a �rst part, we developed a method based on multifractal analysis to es-

timate the local regularity of a turbulent velocity �eld through the Hölder co-

e�cients. This method complements an existing criterion based on strong local

energy transfers. That older method has already been used for the detection of

potential singularities [41, 40]. Using this preexisting concept as a reference, we

validated in the inertial range the value of the method based on local Hölder ex-

ponents as a new criterion for the detection of irregular events. We indeed showed

that the lower values of Hölder exponents did correspond to strong energy trans-

fers, and thus to more irregular events. However, we also show by comparison with

the VGT invariants that the criterion based on the local Hölder exponents is not

limited to the same structures as the local energy transfer. This is con�rmed by

visualization of maps of these two quantities at the inertial scale.

We then described a way to use this tool in the dissipative range using a

calibration in the inertial range. The results obtained in the dissipative range

are in agreement with the previous study performed using experimental data [15].

The use of numerical simulation allowed us to produce statistical results without

the di�culties of experimental measurements. This comes with the drawback of a

lower Reynolds number, which could potentially lead to less quasi singular events,

or weaker events. Nevertheless, we obtained similar results for the topology of the

streamlines of velocity around quasi singular events. Indeed, we observe the same

shape of "roll vortices" previously identi�ed by [15]. In addition, the amount of

statistics available allowed us to de�ne a "typical event", with the same topology,

107
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by averaging many very singular events. This shows the existence of a structure

of local Hölder exponents, energy transfer and dissipation that is common to most

irregular events. Furthermore, we exhibit a relationship between the apparition

of potential singularities and vortex interactions. This is apparent from isolated

snapshots of irregular events �guring several vortices close to each other. This

�nding was con�rmed by a detailed study of several events using a time resolved

dataset. In particular, we found that the formation of a particular event coincides

with an interaction between two vortices. Those �ndings might be a step toward

explaining the physical mechanism behind the formation of quasi singularities.

This in turn could potentially explain the phenomenon of anomalous dissipation.

In a second part, we tried to develop a new simulation scheme based on a PIC

method. The principle of the method would be to model the small scale velocity

as particles advected by the large scale. We show how this could be done using

the Clebsch decomposition. We also derive a way to recover the e�ect of the small

scale velocity on the large scales. The purpose of this new method of simulation

in the context of this thesis would be to track potential singularities through the

scales by the mean of the PIC model. The project is currently stalled before the

new model could be validated.

6.1 Going forward

6.1.1 Universality of the local Hölder method

The method to compute local Hölder exponents developed in this thesis was meant

to be later used on experimental data. This includes in particular the data from

the study to which we compared our results in Chapter 4. However, we have

shown that in order to apply the method to compute local Hölder exponents at

the dissipative scale, one had to �rst perform a calibration in the inertial scale.

This requirement to have a dataset with both an inertial range and a resolution

close to the Kolmogorov scale is hard to ful�ll with experimental data. The solution

to this problem has been mentioned in Chapter 3 and comes from the universal

nature of turbulence. As such, the idea would be to determine the coe�cients cp
corresponding to a new dataset without having to do the calibration in the inertial

range.

First of all, we can verify that this universality exists. The paper by Geneste

et al. [25] shows that the structure functions verify an universal behavior. We

can verify using our two simulations that this universal behavior is shared by
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Figure 6.1: (a) Test of universality of equation (3.49). The data points from run
I are marked by triangles and the data points from run II are marked by circles.
The orders of p are color coded. (b) Comparison of the coe�cients cp for the two
runs. Blue circles correspond to Run I and red triangle to Run II.

the thresholds Tp used to compute the active volumes, as expressed in equation

(3.49). The �gure 6.1a shows a good collapse of the curves of thresholds. For

this �gure, we chose to use the thresholds from run I as a reference, such that

the corresponding β is β1 = 1. In order to obtain the collapse, the β for run II

is set to β2 = 1.5. Moreover we observe that the coe�cients cp computed for the

two datasets follow similar trends, as is shown in �gure 6.1b. The work from here

would be to compute the coe�cients cp for some other datasets in order to �nd

their dependency in Reynolds numbers. This would eventually allow us to apply

the computation of local Hölder exponents to experimental data.

6.1.2 Improving the analysis

Obtaining the local Hölder exponents in experimental data, in particular with the

dataset used by Debue [15] would be useful in determining whether the behaviors

observed in Chapter 4 with simulations at relatively low Reynolds are robust.

We would be particularly interested in verifying that the typical structure of low

regularity is the same at higher Reynolds number. It would also be interesting to

see whether events with lower singularity exponent can appear.

Similarly, this study would pro�t from using very large DNS, giving access to

both higher resolutions and higher Reynolds numbers. In order to study such a

DNS, it would be necessary to adapt the current post processing code to scale.

Indeed, the resolution of 7683 used in this thesis is close to the limit for a code

parallelized in OpenMP.
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6.1.3 Other applications of the Hölder exponent

Turbulence is not the only research �eld that can bene�t from a tool for the

detection of singularities. Indeed, such tools based on Hölder regularity have

already been used in various domain. In the thesis by Kestener [36], the WTMM

method is applied in the context of mammography. Other medical application

include the study of human gait [65] or arrhythmia [31].

The method developed during this thesis relies on the multifractal framework

and the active volumes, which makes it �ne tuned for the case of turbulence.

However, it could be adapted to other adjacent domains, with the example of

Magneto Hydro Dynamics (MHD). As we have observed strong events of Hölder

exponents at the location of vortex reconnections in Chapter 4, one might expect

that a similar tool adapted to MHD would be able to detect events of magnetic

reconnection.
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AppendixA
Visualization of events

This appendix is dedicated to the visualization of several more singular events
extracted from Run II. The selection is made to cover a large range of events, not
restriced to the few most singular ones.
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Figure A.1: Visualization of the 1st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.2: Visualization of the 11th strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.



120 APPENDIX A. Visualization of events

Figure A.3: Visualization of the 21st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.4: Visualization of the 31st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.5: Visualization of the 41st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.6: Visualization of the 51st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.7: Visualization of the 61st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.8: Visualization of the 71st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.9: Visualization of the 81st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.10: Visualization of the 91st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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Figure A.11: Visualization of the 101st strongest event detected.
(a-c): Slices of velocity (the quiver plot codes for the vector in plane
and the color for the third component.)
(d-f): Slices of vorticity (same as above)
(h): Scatter plot of D`I at coordinates (R,Q).

(i): Scatter plot of h̃ at coordinates (R,Q).
(j): Streamlines of velocity.
(k): Isosurfaces of vorticity at 30% and 60% of ωmax.
(l): Isosurfaces of local Hölder at h̃ = 1.3, 1.35.
(m): Isosurfaces of local energy transfer at D`I = 2ε, 3ε.

(m): Isosurfaces of local energy dissipation at D`ν = 4ε, 5ε.
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It is still not known whether solutions to the Navier-Stokes equation can develop singularities
from regular initial conditions. In particular, a classical and unsolved problem is to prove that the
velocity field is Hölder continuous with some exponent h < 1 (i.e. not necessarily differentiable)
at small scales. Different methods have already been proposed to explore the regularity properties
of the velocity field, and the estimate of its Hölder exponent h. A first method is to detect of
potential singularities via extrema of an ”inertial” dissipation D∗ = lim`→0D

I
` that is independent

on viscosity [1]. Another possibility is to use the concept of multifractal analysis that provides
fractal dimensions of the subspace of exponents h. However, the multifractal analysis is a global
statistical method that only provides a global information about local Hölder exponents, via their
probability of occurrence. In order to explore the local regularity properties of a velocity field, we
have developed a local statistical analysis, that estimates locally the Hölder continuity. We have
compared outcomes of our analysis, with results using the inertial energy dissipation DI

` . We observe
that the dissipation term indeed gets bigger for velocity fields that are less regular according to our
estimates. The exact spatial distribution of the local Hölder exponents however shows non trivial
behavior and does not exactly match the distribution of the inertial dissipation.

I. INTRODUCTION.

Viscous incompressible fluids are described by the In-
compressible Navier-Stokes equations (INSE) in space-
time

∂tui + uj∂jui = −1

ρ
∂ip+ ν∂j∂jui + fi, (1)

∂juj = 0,

where Einstein summation convention over repeated
indices is used and ui (x, y, z, t) is the velocity field,
p (x, y, z, t) the pressure field, ρ the (constant) mass den-
sity, fi (x, y, z, t) some forcing and ν the molecular vis-
cosity. A natural control parameter for the INSE is the
Reynolds number Re = LU/ν, which is built using a
characteristic length L and velocity U .

Mathematically, it is not known whether a solution of
the INSE which is smooth at some initial time remains
smooth at all later times. This problem was first ad-
dressed by Leray [2] who introduced the notion of weak

∗ florian.nguyen@univ-lille.fr
† shvydkoy@uic.edu; acheskid@uic.edu

solutions (i.e. in the sense of distribution). This no-
tion has since remained a framework to explore regular-
ity condition for both INSE and its inviscid limit, the
Euler equation. It prompted people to consider weaker
regularity conditions on u. In particular, a classical and
unsolved problem is to prove that the velocity field is
Hölder continuous with some exponent h < 1 (i.e. not
necessarily differentiable) at small scales, i.e. to find un-
der which conditions the following holds:

|u (x + `)− u (x) | < C`h. (2)

Let us note that Hölder continuity defined in equation (2)
is a weaker regularity condition than differentiability and
uses the velocity increment δu(x, `) = u(x+`)−u(x) as
a building block.

A perhaps more tractable problem is to consider local
scaling (Hölder) exponents of the velocity fields. They
are defined as:

h (x) = lim
`→0

ln
(
max|`|=` |δu (x, `) |

)

ln (`/L)
, (3)

where L is a characteristic integral length of scale. Math-
ematically, these exponents are only defined under the
assumption that the limit ν → 0 is taken, before the
limit ` → 0. In the sequel, we consider extension of this
definition by intermediate asymptotic in a range of scale
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ηh(x) � `� L, where ηh(x) ∼ LRe−1/(1+h(x)). It is how-
ever still difficult to estimate directly such local Hölder
exponents via a simple fit on velocity increments based
on equation (3). Indeed, since accessible resolutions nu-
merically or experimentally do not allow to probe the ve-
locity field at arbitrarily small scale, the range of scales
over which the fit is performed is limited. This induces
a lot of noise in the determination of h(x), that makes it
unreliable.

A global statistical method, was developed by Parisi
and Frisch [3] to quantify the probability of observation
of a singularity of scaling exponent h via a function C(h).
From C(h) we may infer the multifractal spectrum as
D(h) = D−C(h), where D is the space dimension. The
team of A. Arneodo developed a powerful method based
on wavelet transform to measure such spectrum for 1D
turbulent velocity fields. This method has been applied
to experimental measurements of one velocity component
at a single point at high Reynolds numbers in [4], where
it was shown that the data are compatible with the mul-
tifractal picture, with a most probable h close to 1/3.
Later Kestener and Arneodo [5] extended the method
to 3D signals (3 components of the velocity field), and
showed on a numerical simulation that the picture pro-
vided by the 1D measurements was still valid, with the
most probable h shifting closer to 1/3.

Since the original MFR method is based on statistical
properties, it is robust with respect to noise and limited
statistics. However, it only provides a global information
about local Hölder exponents, via their probability of oc-
currence. In order to explore the regularity properties of
a velocity field, it would however be useful to devise a
local statistical analysis, that keeps the robustness of
the global MFR method and quantify locally the Hölder
continuity, while avoiding pitfalls induced by a naive di-
rect fit of equation (3). In the present paper, we extend
recent mathematical results of [6] to multifractal settings
to provide the best local estimate of Hölder regularity
compatible with the global MFR analysis. Our method
is in spirit similar to an inference algorithm based on
information theory: the local estimate depends on non-
dimensional constants that are are statistically fitted on
the available data set. Therefore, the estimate depends
on the data set, and can only provide information a pos-
teriori. The larger the data set, the more information
available, the better the estimate. In our case, the larger
the data set, the lowest values of h can be explored.

The paper is organized as follows: in Section II, we
describe the wavelet based velocity increments and our
method for anisotropic multifactal analysis. In Section
III, we generalize the notion of active volume introduced
by [6] and show how it can be used to build a local es-
timate of the Hölder exponents . The method is tested
using a fractional brownian motion in Section IV. It is
further implemented on 3D turbulent velocity fields com-
puted using DNS in Section V. Our results are discussed
in Section VI.

II. VELOCITY INCREMENTS AND
MULTIFRACTAL

Our method relies heavily on velocity increments and
multifractal theory. We therefore provide some gener-
alities about velocity increments in appendix A. We
then proceed by defining our new approach using wavelet
transforms.

A. Wavelet velocity increments

For an incompressible velocity field, both side of the
first equation in (A6) are reduced to zero, so we cannot
use it to get any information on φ, the potential part of
the velocity field. The usual velocity increments defined
in equation (A2) can be seen as the wavelet transform
of the velocity with a Haar wavelet. This motivates us
to define wavelet velocity increments δW (u) through the
smoothed velocity gradient G`ij and its symmetric and
antisymmetric parts defined as:

G`ij = `

∫
dy

`3
∇jΨ

(y
`

)
ui(y),

S`ij =
1

2

(
G`ij +G`ji

)
,

A`ij =
1

2

(
G`ij −G`ji

)
, (4)

where Ψ(x) = exp(−x2/2)/N is the Gaussian function.
By construction, A`ij is a function only of the rotational

part Q, and S`ii is a function only of φ.
We then define normal, longitudinal and transverse

wavelet velocity increments as:

δLW`(u) = max
ij
|S`ij |,

δPW`(u) = max
ij
|A`ij |,

δGW`(u) =
(
δLW`(u)2 + δPW`(u

2)
)1/2

. (5)

By construction, δPW`(u) provides information only on
the rotational part of the velocity field, while all infor-
mation regarding the potential part is stored in δLW`(u).
The component δGW`(u) gives general scaling properties
about the velocity field.

This definition bears some similarity with the defini-
tion by Kestener and Arneodo [5], that uses principal
values of |G`ij |. Like theirs, our definition involves no
derivative over velocity fields, so it does not introduce
additional noise. However, our definition does not in-
volve computation of singular values, that may generate
some noise. So, our definition is the smoothest possible
one can imagine that enables to quantify scaling proper-
ties of potential and rotational part of a given velocity
field.
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B. Multifractal theory

The multifractal (hereafter MFR) theory that assumes
that the Hölder exponent at scale `, defined as

h (x, `) =
ln
(
max|`|=` |δu (x, `) |

)

ln (`/L)
, (6)

follows a large deviation property [3]

Prob (h (x, `) = h) ∼
(
`

L

)C(h)

. (7)

Formally, C(h) corresponds to the codimension of the
set where the local Hölder exponent at scale ` is equal
to h. From C(h) we may infer the MFR spectrum as
D(h) = D − C(h), where D is the space dimension.

1. Computation of the multifractal spectrum

Parisi and Frisch devised in 1987 the first global deter-
mination of the multifractal spectrum through the struc-
ture functions [3]. The latter are defined from the veloc-
ity increments and are supposed to scale as:

〈|δu|p〉 ∝ `ζ(p). (8)

The set of scaling exponents ζ(p) is then connected to the
multifractal spectrum through a Legendre transform:

ζ(p) = minh(ph+D −D(h)), (9)

Assuming the spectrum D(h) is strictly concave, we can
apply a variational formula to recover:

h(p) =
dζ(p)

dp
. (10)

Notice that for p = 0, h(0) represents the most proba-
ble scaling exponent (with D(h) equals to the full space
dimension). When p → −∞, the right part of the MFR
spectrum (the more and more regular points) is explored;
while when p→ +∞, it is the left part of the MFR spec-
trum (the more and more singular points). This method
is global in the sense that it uses global averages of ve-
locity increments to get the multifractal spectrum, and
the set of available Hölder exponents. It provides the
probability to observe a given Hölder exponent, but pro-
vides no information about their exact location. Other
methods have been designed based on structure func-
tions. One notable example is the work of Jensen [7]
which uses an inverted version of equation (8) to obtain
potentially more accurate results for p < 0. As we are
more interested in probing the less regular region of the
velocity field, corresponding to p > 0, we will not use this
method in the following.

2. WTMM method

In 1991, A. Arneodo and his group showed that a much
more efficient algorithm of computation of the multifrac-
tal spectrum for scalar fields was possible, provided one
uses structure functions based on wavelet increments in-
stead of velocity increments. An extension of this method
to 3D vector field was developed later by Kestener [5, 8]
based on singular value decomposition of the wavelet
transform of the velocity gradient Gij = ∂jui. Here, we
apply their algorithm, using the smooth velocity incre-
ments equation (5). The algorithm follows the (Wavelet
Transform Modulus Maxima) (WTMM) method. We
first compute the wavelet transform skeleton, which pro-
vides us with a set of lines {Lk} where Lk(`) gives the
position of the line indexed by k at scale `. Then, one
computes the partition functions for the different type of
wavelet based increments as follow:

ZT (q, `) =
∑

Lk∈L(`)

(
δTW`(u)(Lk(`))

)q
(11)

where T stands for G,L or P, q ∈ IR and L(`) is the set
of lines that exists at scale `.

Those partitions functions behave as a power law of
the scale:

ZT (q, `) ∝ `τT (q). (12)

Then by Legendre transforming τT (q), we get the sin-
gularity spectrum DT (h) = minq(qh − τT (q)). Alterna-
tively, we can bypass the Legendre transform by comput-
ing:

hT (q, `) =
∑

Lk∈L(`)

ln |δTW`(u)(Lk(`))|W(q,Lk, `), (13)

DT (q, `) =
∑

Lk∈L(`)

δTW`(u)(Lk(`)) ln
(
W(q,Lk, `)

)
(14)

where W(q,Lk, `) = 1
ZT (q,`)

(
δTW (u, `)(Lk(`))

)q
is a

Boltzmann weight computed from the wavelet transform
skeleton. These quantities behave as power laws as fol-
lows:

hT (q, `) ∝ `hT (q), (15)

DT (q, `) ∝ `DT (q) (16)

and thus we can recover the singularity spectrum DT (h).

III. LOCAL CHARACTERIZATION OF
MULTIFRACTAL VECTOR FIELDS

The previous section describes a procedure to com-
pute globally a multifractal spectrum. We now describe
a method that gives access to estimates of local scaling
properties of the velocity field, using the notion of nested
active volume described in appendix B.
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A. Active volumes and multifractal

We first define Sp,dp as:

Sp,dp(`) =

( 〈(δW`(u))p+dp〉
〈(δW`(u))p〉 ,

)1/dp

. (17)

The limit as dp→ 0 can be computed as:

Sp(`) ≡ Sp,0(`) = exp

(
〈ln
(
δW`(u)

)(
δW`(u)

)p〉
〈
(
δW`(u)

)p〉
,

)
.

(18)
One can prove that if u is multifractal, then :

lnSp(`) ≈ h(p) ln `, (19)

which gives access to the value h(p).
We can then define the active volume Ap by:

x ∈ Ap iff δW`(u)(x) > cpSp(`), (20)

where cp is a scale independent constant, to be fitted con-
sistently later. The property verified by the points in the
volume Fh(p) is analogous to the property of equation (2).
This analogy leads us to define a local singularity expo-
nent h̃ such that all elements x in Ap verify h̃(x) 6 h(p).
As a result, the frontier of this volume, i.e. the isosurface
of the increment δW`(u) at value cpSp,0(`), is identified
as the set of the points where the local singularity expo-
nent is h̃.

While the local Hölder exponent h cannot be continu-
ous in the multifractal formalism, the exponent h̃ is con-
tinuous by definition. As a result, it is not a real measure
of the Hölder exponent. However, it will still be relevant
as a measure of the local regularity of the field, hence
the name ”singularity exponent”. This property will be
shown by comparing it to other used criteria in the fol-
lowing part.

B. Statistical fitting of the constants

To completely define the field h̃(x), we need to fix the
scale independent constants cp. These constants are the
core of the method, as we can tune them such that the
field of singularity exponents h̃ provide a meaningful esti-
mation of the real Hölder exponent smoothed at the scale
`. In order to guarantee that the singularity exponent is
physically consistent with the global multifractal prop-
erties, we set cp such that the fractal dimensions of the

isosurfaces of h̃ match with the multifractal spectrum.
More formally:

Dim
({

x|h̃(x) = h
})

= D(h). (21)

This leads directly to:

Dim ({x|δW`(u)(x) = cpSp(`)}) = D(h(p)). (22)

In practice the dimension of the isosurfaces of h̃, which
are also isosurfaces of the velocity increment, can be mea-
sured using a box-counting method. If we note D`

bc(T )
the box-counting dimension of the isosurface of the veloc-
ity increment at scale ` of value T , the problem reduces
to the following equation:

D`
bc(cpSp(`)) = D(h(p)). (23)

The multifractal spectrum are obtained by WTMM, the
Sp(`) can be computed from the fields, as well as the
function D`

bc. The quantity h(p) can be accessed using
the WTMM or power laws on the Sp(`) as described in
equation (19). As the two methods are expected to give
similar results, we will choose in practice the method of
fitting power laws over the functions Sp(`) for simplicity.
The functions involved are not monotonous so equation
(23) could have multiple cp solution. However, we can
expect the function D`

bc(T ) to be concave with a maxi-
mum at Tmax. If we impose cpSp(`) < Tmax for p > 0
and Tmax and cpSp(`) > Tmax for p < 0, we get a unique
definition of cp.

Note that our method ensures that the field h̃(x) can
be recovered without computing explicitly the constant
cp. Indeed, we can derive a relationship h̃(T ) from the
following equation:

D`
bc(T ) = D(h̃), (24)

which is derived from equation (21). We can ensure that

this function is well defined by imposing h̃(T ) < h(p = 0)
for T > Tmax and reciprocally. While this is the method
we will use preferentially to compute maps of h̃, the
knowledge of cp is still pertinent as it is scale indepen-
dent. This property makes it possible to test the sound-
ness of the method by checking that the procedure, re-
peated at a different scale, verify the equation (22) for
the same value of cp. Once a value of cp is computed us-

ing one scale, one can then obtain maps of h̃ at any scale
in the inertial range for a much lower computational cost.
The accuracy of this statements will be discussed in the
following.

IV. APPLICATION TO FRACTIONAL
BROWNIAN MOTION (FBM)

A. Definition and implementation of fBm

In order to test our analysis, we used synthetic field
with well determined fractal behavior. The simplest pos-
sible field in this case is the fractional Brownian motion
(or fBm), which was already used in [5]. The fBm has
properties of isotropy that can be characterized by a sin-
gle Hölder exponent H for any point.

As a consequence, the multifractal spectrum of a fBm
of exponent H in dimension d reduces to a single point:

D(h) = d if h = H,

= −∞ otherwise. (25)
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In this case, the exponent τ(q) of both the original
WTMM method and our variation should have the fol-
lowing expression:

τ(q) = qH − d. (26)

The fBm used in the following are generated by filter-
ing the Fourier transform of a white noise. This method
gives a good approximation of the expected invariance
properties. For all purposes requiring a range of Hölder
exponents, it is assumed that this practical realization
with a finite number of snapshots of finite size has a
wider multifractal spectrum, centered around the the-
oretical value H. We chose the value of H = 1/3 for a
2 dimensions, 3 components (2D3C) fBm. The objective
in the following is to recover this value H using both the
original WTMM and our variation of it.

B. Test of the global MFR analysis

As a first test and benchmark of our methods, we gen-
erate a hundred 2D3C fBm (H = 1/3) in squares of size
unity with a definition of 4096×4096. The Figure 1 shows
the τ(q) corresponding to the different components, as
well as the output of the original WTMM method.

The results of our new method are consistent with
the theoretical predictions, although a little less accu-
rate than the native method. The consequence of this
lack of accuracy is an estimation of the Hölder expo-
nent h ≈ 0.31 using the global term, which is slightly
inferior to the value of h ≈ 0.33 evaluated by the origi-
nal WTMM method. Furthermore, the computation of
the perpendicular component suffers from the lack of the
third dimension in the provided fields, hence a spectrum
spreading over a much wider range of h than expected.

C. Test of the local estimate

In parallel, we can apply our second method to extract
the local coefficients h̃ in one field of the same set of fBm.
The computation requires to chose a value of `. In the
sequel, we fix the value ` = 2.8× 10−3 for any computa-
tion on the fBm at definite `. This value, corresponding
to 11.4 grid points at the resolution of the field, is small
enough to probe the small structures and large enough so
that wavelets are well resolved. The Figure 2 shows the
function D`

bc(T ) resulting from the boxcounting, while
the Figure 3 illustrates the power law behavior of Sp(`).
The values of h are convincingly independent with re-
spect to p, with very little fluctuations. The value of h
obtained is around h ≈ 0.34, which is slightly higher than
the expected value of H = 1/3 but still within acceptable
range.

Applying the method described to compute fields of
h̃ would normally require to match the box-counting di-
mensions from Figure 2 with the multifractal spectrum

−2 0 2 4
q

−0.5

0.0

0.5

1.0

τ
+
2

0.0 0.2 0.4
h

1

2

D

FIG. 1. Main figure: Exponent τ as a function of the param-
eter q for the global (red circles), longitudinal (green squares),
perpendicular (blue triangles) components as well as for the
native method (black diamonds) applied to 100 fields of fBm
in 2 dimensions with 3 components of velocity at H = 1/3.
The 3 components are generated independently before enforc-
ing the divergence free condition. The theoretical curve from
equation (26) is materialized by the solid magenta line. Inset
figure: Corresponding parametric plot of D(q) with respect
to h(q). The dashed line materializes the theoretical value of
H = 1/3.
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D
bc
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)

FIG. 2. Box counting dimension of the isocontours of the
global (solid red), longitudinal (dashed green) and perpendic-
ular (dotted blue) components of the wavelet based velocity
increments for ` = 2.8× 10−3 for the fBm.

from Figure 1. Unfortunately, the degenerated spectrum
makes it impractical. A solution is to use the fact that
we are working with a monofractal and ensure that for
all p, cpSp(`) = Tmax. Considering the fact that it is very
difficult to get measurements of box counting dimension
that reach 2, the dimension of the space, we also take the
liberty to renormalize D`

bc(T ) such that D`
bc(Tmax) = 2.

In this artificial case, analyzing maps of h̃ will not be
very instructive, so we verify the validity of using the
scale invariant coefficients cp in order to compute fields
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FIG. 3. Values of the threshold Sp(`) for the global increments
as a function of scale for several p for the fBm. The values of
p increase from bottom to top.
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FIG. 4. Box counting dimension of the isocontours of the
different components of the wavelet based velocity increments
for ` = 8.2×10−4 for the fBm. The color code for the different
components is the same as for the previous figure.

of h̃ at a different scale. To such aim, we use instead the
box-counting dimension at the lower scale `2 = 8.2×10−4

corresponding to approximately 3.4 grid points. This al-
lows to check that equation (23) is satisfied, thus proving
the point in the case of fractional Brownian motion.

The Figure 4 shows the box-counting dimension of
the isosurfaces of ”velocity” increments computed at the
scale `2. Although the quality of the measure is lower for
less resolved wavelets, we can still verify that the pseudo
multifractal spectra constructed using the scaling expo-
nent from the Sp(`), the cp obtained at higher scale and
the box counting dimensions from Figure 4, is coherent
with the theoretical spectrum, as illustrated in Figure 5.

Now that the methods have been tested in the case of
fBms, we apply them in the more complex and realistic
case of turbulence fields.

0.20 0.25 0.30 0.35 0.40
h(p)

1.8

2.0

2.2

D
bc
(c

p
S
p
(ℓ

2
))

FIG. 5. Pseudo ”multifractal spectrum” reconstructed from
the boxcounting dimensions of isovalues of velocity increments
at scale ` = 8.2 × 10−4 and the scaling laws over the Sp(`).
The red circles (resp. green squares, blue triangles) corre-
spond to the spectrum reconstructed using the global (resp.
longitudinal, perpendicular) increments. The solid vertical
line materializes the theoretical h = 1/3.

V. APPLICATION TO VELOCITY FIELDS IN
NUMERICAL SIMULATION

A. Characteristics of the numerical simulation

We generate turbulent velocity fields via two simula-
tions of turbulence in a box of size 2π. The corresponding
parameters are presented in Table I. We use a pseudo
spectral code [9] with a forcing term with the symme-
tries of the Taylor–Green vortex. The first simulation
(Run I) provides velocity fields with an inertial range
large enough to validate our method against known scal-
ing laws. The second simulation (Run II) is very well
resolved with an extensive dissipative range. It will al-
low us to probe the actual singular behavior of the flow
at small scales of the order of the Kolmogorov scale. The
energy spectra presented Figure 6 illustrate the difference
of scale resolution between these two simulations.

B. MFR spectra

By applying the previously described variation of the
WTMM method, we extract the global multifractal sin-
gularity spectra out of 10 snapshots of velocity fields for
the two simulations, presented in Figure 7 and 8. As the
velocity fields include 7683 grid points and are decorre-
lated in time, this represents enough statistics to guar-
antee the convergence of the following results.

In the inertial regime, we recover spectra centered
around h = 0.40 for all components but the perpen-
dicular one, which is higher than the expected value of
h = 1/3 according to the Kolmogorov 41 theory. The
analysis by Arneodo [10] yielded a most probable Hölder
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Run N ν L λ η 〈u2〉1/2 ε ηkmax Re Reλ
I 7683 7.5× 10−4 0.79 0.19 0.0083 0.54 0.089 2.1 570 140
II 7683 5× 10−3 0.94 0.48 0.034 0.55 0.097 8.5 104 53

TABLE I. Parameters used in the simulations. N is the linear grid resolution, ν the kinematic viscosity, L is the integral scale,
λ is the Taylor scale, η is the Kolmogorov scale, 〈u2〉1/2 is the rms velocity, ε is the energy dissipation rate, ηkmax characterizes
the resolution (ηkmax > π is well resolved), Re is the Reynolds number based on the integral scale, and Reλ is the Taylor based
Reynolds number.
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FIG. 6. Energy spectra for the two simulations. The solid
blue (resp. dashed red) curve stands for the simulation in the
inertial (resp. dissipative) range. The black line materializes

the k−5/3 slope for the inertial range. The horizontal lines
of the same color as the curves materialize the corresponding
fitting range used when computing power laws. The vertical
lines materialize the kλ corresponding to each simulation.
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FIG. 7. Main figure: Multifractal spectra for the velocity
fields from simulation in the inertial region. The solid red
(resp. dashed green, dotted blue) curve corresponds to the
global (resp. longitudinal, perpendicular) increments. The
dash-dotted black curve corresponds to the native method.
The vertical line materializes the expected exponent of h =
1/3 according to K41. The error bars correspond to a shift of
the fitting range by 5% for the power laws. Inset: Exponents
τ as a function of q for the global (red circles), longitudinal
(green squares)and perpendicular (blue triangle) increments,
as well as the native method (black diamonds).
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FIG. 8. Main figure: Multifractal spectra for the velocity
fields from simulation in the dissipative regime. The solid red
(resp. dashed green, dotted blue) curve corresponds to the
global (resp. longitudinal, perpendicular) increments. The
dash-dotted black curve corresponds to the native method.
The error bars correspond to a shift of the fitting range by
10% for the power laws. Inset: Exponents τ as a function of
q for the global (red circles), longitudinal (green squares)and
perpendicular (blue triangle) increments, as well as the native
method (black diamonds).

exponent of around h = 0.34, which was much closer
to the Kolmogorov value. It is however not clear how
universal this value should be, in particular as we use
data from anisotropic turbulence where Arneodo used
homogeneous turbulence. The fact that the perpendicu-
lar component does not follow exactly the same tendency
is the manifestation of the anisotropy of the flow at this
scale simulated with a Taylor–Green forcing. Addition-
ally, one can also notice the remarkable agreement be-
tween the native method from Pierre Kestener and the
modified method applied to global increments, which fur-
ther validates the choice of the increments in equation
(5).

The multifractal spectra for the simulation resolved
under the Kolmogorov scale provide significantly differ-
ent results, shown Figure 8. Indeed, the values of the
singularity exponents are much higher since the velocity
field is much more regular at this scale. As a reminder, a
Hölder exponent 2 < h < 3 means that the velocity field
at this point is twice differentiable but not thrice. We also
observe that the spectra reach a maximum D ≈ 1.4 < 3.
This can be interpreted as singularities appearing less
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FIG. 9. Box counting dimension of the isosurfaces of the
different components of the wavelet based velocity increments
for ` ≈ 0.24 for the simulation in the inertial range. The
color code for the different components is the same as for the
previous figures.

likely once the behavior of the velocity fields at the dis-
sipative scale is taken into account. Finally, the super-
position of the spectra for the different components hint
the recovery of isotropy at small scale.

C. Estimates of local singularity exponents

As already discussed, the multifractal spectra obtained
here do not provide any local information. While the
field h̃ defined with equation (21) is not equivalent to a
measure of local Hölder exponents, we will show in the
following that it is still relevant for the measure of local
regularity.

To compute this field, we follow the same steps as for
the fBms, and first compute boxcounting dimensions over
isosurfaces of the increments (Figure 9), as well as the
power law behavior of the coefficients Sp(`) (Figure 10).
The computation of increments before applying the box-
counting algorithm implies to chose a value of `. The
value chosen in the following is ` ≈ 0.24, well within the
inertial range.

The situation here slightly differs from the fBm case,
since the multifractal spectrum is non degenerated. This
allows us to match the dimensions from figures 9 and
7 using equation (24) to get a relationship directly con-

necting the velocity increments to the coefficient h̃. By
taking care of associating the high velocity increments
to low values of h̃ and reciprocally, we obtain the re-
lationship represented Figure 11. At this point, we do
not produce separate measurements for the perpendicu-
lar and longitudinal components anymore, as they only
provide partial information about the velocity field.

Using this procedure, we are able to deduce maps of
h̃ from the corresponding maps of velocity increments.
One flaw of the process however is that the range of T
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FIG. 10. Values of the threshold Sp(`) for the global incre-
ments as a function of scale for several p for the simulation in
the inertial range.
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FIG. 11. Mapping function from the global velocity incre-
ments at scale ` ≈ 0.24 to the coefficients h̃.

shown in Figure 11 is smaller than the total range of
velocity increments encountered in practice. The reason
for this comes from the fact that both WTMM and the
boxcounting of isosurfaces of the velocity increments are
limited by the statistics available. The lower the fractal
dimension, the harder it is to get enough statistics. With
the amount of statistics available (10 fields of size 7683),
we cannot get reliable value of boxcounting dimension
below approximately 2.4 as shown in Figure 9. As a
result, we cannot get values of h̃ for velocity increments
much higher than 0.5. This will eventually leads to the
maps of singularity exponents having regions where we
know that h̃ < 0.1 but cannot give any precise value.

D. About the scale invariance of the cp coefficients

We have stated in Section III that the coefficients cp
defined in equation (20) are scale independents. This
property makes it possible to use the coefficient cp mea-
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FIG. 12. Pseudo spectra reconstituted using the coefficient cp
computed at scale ` ≈ 0.24 and the boxcounting dimensions of
the velocity increments computed at scales ` ≈ 0.12 (dashed
green curve),` ≈ 0.24 (solid red curve) and ` ≈ 0.46 (dotted
blue curve). The scale are also materialized by vertical lines
of the same color on the Figure 10.

sured at a given scale to extrapolate to all scales, thus
saving computation time. Indeed, once these coefficients
are known, the knowledge of the Sp(`) is sufficient to
recover the active volume at any scale without having
to compute box-counting dimensions nor applying the
WTMM method.

We use the present simulation data to test the validity
of this property. The first hurdle here is that the coeffi-
cient h(p) from equation (19) as well as the multifractal
spectrum from the WTMM method are defined in sec-
tions II and III as dependent of the scale `. However,
both actually requires the estimation of the power law
behavior with respects to `, which are done in practice
by fitting curves over a range of `. The limited accuracy
over the power law exponents, as well as the actual corre-
sponding scale within the fitting range used, are expected
to reduce the accuracy of the cp computed.

As the cp do not have an obvious physical meaning, it
is difficult to estimate what range of error in the mea-
sures of cp would be coherent with the property of scale
independence. This leads us to use a slightly different
method to test this property. Using the results computed
at the scale of ` ≈ 0.24 used in the previous figures, we
compute the coefficients cp that we assume to be scale in-
dependent. Using these coefficients and the box-counting
dimensions of the isosurfaces of velocity increments com-
puted at two different scales, we recover pseudo multi-
fractal spectra using equation (22). The results are pre-
sented in Figure 12. We observe that the spectra are
qualitatively coherent. In particular, the green curve
shows that when we reach the lower bound of the inertial
range, the spectrum widen with much higher values of h.
In other words, the velocity fields starts to get regularized
by viscosity.

A direct comparison with the output of the WTMM

method is unfortunately not possible, as the WTMM per-
forms poorly with fitting ranges too short. More statis-
tics would be required to perform the power law fit of
equations (15) and (16) with a good accuracy on a very
small fitting range. The result of this analysis is that
using coefficient cp computed at a different scale will
provide qualitatively sound results. Since the complete
method is dependent on fitting scaling exponents, it is
reasonable to use the cp for quantitative measurements.

E. Comparison with another indicator of regularity

By construction, our method guarantees that the local
estimates of the Hölder exponent are statistically mean-
ingful and respect the global MFR properties. To evalu-
ate the physical soundness of our estimate (i.e. how good
it is to detect area of lesser regularity), we may compare

our maps of h̃(x) with maps of local energy transfer [1],
hereafter referred to as Duchon-Robert term. Indeed,
this quantity has been used in [11] to build a new crite-
rion to detect areas with Hölder exponent h < 1/3, by
looking at local maxima of such quantities. The Duchon–
Robert term is expressed as:

DI
` (x) =

1

4

∫
dy∇Ψ`(y) · δu(x,y)||δu(x,y)||2 (27)

where Ψ`(x) = Ψ(x/`)/`3 and δu(x,y) is the con-
ventional velocity increment as defined in equation A2.
When ` goes to 0, the term DI

` (x) scales as `3h−1, hence
it diverges for an Hölder exponent h < 1/3. In practice,
at any given scale `, the higher the term DI

` (x) the less

regular the velocity field is in x. So if our new index h̃
is meaningful, its areas of lower values should correlated
with areas of higher value for the Duchon–Robert term.

We computed maps of both the singularity exponent
h̃ and the Duchon–Robert term DI

` (x). The Figure 13
illustrates one of the strong events that can be found
in our velocity fields. It appears in this case that the
two quantities are correlated, meaning that regions of
lower h̃ visually corresponds to regions of high |DI

` (x)|
in absolute value. However, looking in more detail, the
region of low h̃ seems to be enclosed between two regions
of high |DI

` (x)|.
While it appears that the minima of h̃ are not located

at the same location as the extrema of |DI
` (x)|, it is still

relevant to observe the joint PDF of those two terms in
order to confirm this observation. The results of statis-
tics aggregated over 50 fields extracted at regular interval
over approximatively 30 turnover times are reported in
Figure 14. We estimate that the small scales of two dif-
ferent fields are not correlated. While the conditional
PDF is not perfectly converged for the extreme values of
h, it is enough to do qualitative observations. We observe
a very clear correlation between the two quantities. In
particular, lower values of h̃ correspond to higher values
of |DI

` (x)| in absolute value, which can be associated to
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(a)

(b)

(c)

FIG. 13. (a): Arrows stand for in plane velocity; color plot for

the singularity exponent h̃(x). The gray areas corresponds to
increments outside of the domain of the mapping function.
(b): Arrows stand for in plane velocity; color plot for the
Duchon–Robert term DI

` (x). (c): 3D representation of the

same event. The green surface is an isosurface of h̃(x) at

value h̃ = 0.14, the red surface is an isosurface of DI
` (x) at

value DI
` = 0.5 . All computations are done for a value of

` ≈ 0.24.

FIG. 14. Joint PDF of h̃ and the Duchon–Robert energy
transfer term DI

` over 50 fields regularly spaced over approxi-
matively 30 turnover times . For the sake of better displaying
the correlation of those terms, the PDF is rescaled such that
every vertical line is a conditional PDF of DI

` at given h̃.

a more singular velocity field. This observation comforts
us in the idea that the field of singularity exponents h̃
can be used as a measure of the local regularity.

VI. DISCUSSION

In this paper, we have introduced a tool to estimate
the regularity of velocity fields. It is derived using the
Wavelet Transform Modulus Maxima method and as-
sociates the multifractal spectra and the isosurfaces of
velocity increments to compute a field h̃(x) which has
similar properties than the Hölder exponents. We have
checked the physical soundness of our estimate by com-
paring it with the energy transfer term |DI

` (x)| [1], that
can be used as a marker of regions of lesser regularity [11].

We have found that our h̃(x) and |DI
` (x)| are globally

statistically correlated, but that local maxima of |DI
` (x)|

do not coincide exactly with local minima of h̃(x). On
the practical side, we found that, once the relation be-
tween the wavelet based velocity increments and the co-
efficients h̃ shown Figure 11 is established, computing
h̃(x) from a new velocity field is approximately three
times faster than computing the field of DI

` (x). As a re-
sult, our method can be used to process velocity fields for
candidates of singularities faster than through the energy
transfer term.

The study of particular events like the one presented
in Figure 13 shows a non trivial correlation of the low h̃
regions with respect to the extreme DI

` regions. This en-
courages further studies using both scalars to character-
ize the velocity structures and the regularity properties of
turbulent flows. Finally, this study has been focused on
turbulence driven by a Taylor-Green forcing. It could be
interesting to study other types of flows like turbulence
induced by Rayleigh-Taylor and Richtmyer-Meshkov in-
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stabilities [12, 13].
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Appendix A: General considerations about velocity
increments

Consider a 3D velocity field u. Without loss of general-
ity, it can be decomposed using Helmoltz decomposition
as:

u = ∇φ+∇×Q,

∇ ·Q = 0. (A1)

By construction, ∇ × u = −∆Q and ∇ ·u = ∆φ. So,
if the fluid is incompressible (which we do not assume
for the present time), ∆φ = 0. We can further define
velocity increments of such field over a scale ` as:

δu(x, `) = u(x + `)− u(x), (A2)

that can be further decomposed into longitudinal δLu(`)
and perpendicular δPu(`) velocity increments as:

δLu(`) = δu · `

‖`‖ ,

δPu(`) = δu× `

‖`‖ .

(A3)

With this definition, δLu(r) is a scalar and δPu(r) is a
vector orthogonal to both δu and r. The definition of the
perpendicular velocity increment is similar to the more
commonly used transverse increment, as they have the
same norm but different orientation.

We consider now the angle average of ‖r‖δLu(r)
and ‖r‖δPu(r) over a sphere of radius `, defined
through convolution with a Gaussian function Ψ(x) =
exp(−x2/2)/N , where N is chosen so that the Gaussian
is of norm unity:

〈‖r‖δLu(x, r)〉ang,` =

∫
dy

`3
Ψ
(y
`

)
‖y‖δLu(x,y),

〈‖r‖δPu(x, r)〉ang,` =

∫
dy

`3
Ψ
(y
`

)
‖y‖δPu(x,y).(A4)

Using properties of the Gaussian, it can be easily checked
that:

Ψ
(y
`

)
y = −`2∇Ψ

( y
R

)
. (A5)

Using this property and the Helmoltz decomposition, we
then see that after an integration by part that:

〈δLu(r)‖r‖〉ang,` = `2
∫
dy

`3
Ψ
(y
`

)
∆φ(x + y),

〈δPu(r)‖r‖〉ang,` = −`2
∫
dy

`3
Ψ
(y
`

)
∆Q(x + y).(A6)

Rephrasing this, we see that the angle averaged longitu-
dinal velocity increment is connected with the potential
part of the Helmoltz decomposition (or the divergence of
the velocity field), while the angle averaged transverse ve-
locity increment is connected with the rotational part of
the Helmoltz decomposition (or the vorticity). The con-
nection is through a wavelet transform, using a Gaussian
wavelet. That way, studying the scaling properties of
either 〈δLu(r)‖r‖〉ang,` or 〈δPu(r)‖r‖〉ang,` provides in-
formation about the scaling of the potential or rotational
part of the velocity. Such decomposition has already been
used by [14] and [15] to study structure functions in ex-
perimental turbulence.

Appendix B: Volumetric concentration and
amplitude factors

In this section we introduce several scalar factors asso-
ciate to a general vector or scalar field f , which capture
a measure of concentration and size of f .

We use the following definition of the space-time aver-
age

〈f〉 =
1

|ΩT |

∫

ΩT

f(x, t) dx dt, (B1)

where ΩT = Ω × [0, T ], and Ω denotes a fluid domain.
We also denote dµ = 1

|ΩT | dx dt, the averaging measure.

1. Concentration factors

We now present formalities of the active volume/region
theory. Let f ∈ L∞(ΩT ) be an arbitrary field. Let 1 6
p, r 6∞, r 6= p. We define the (r, p)-concentration factor
of f as follows

Vr,p =
〈|f |r〉 p

p−r

〈|f |p〉 r
p−r

. (B2)

Let us list a few elementary properties: Vr,p is adimen-
sional, Vr,p = Vp,r, and by Hölder, Vr,p 6 1. For any
triple p1 < p2 < p3 we have by interpolation,

Vr,p2 6 (Vr,p1)
r−p1
r−p2

p3−p2
p3−p1 (Vr,p3)

r−p3
r−p2

p2−p1
p3−p1

The idea is that Vr,p measures a proportion of the vol-
ume of ΩT where much of the Lp-weight of f concentrates
provided p > r. More precisely, we have the following
lemma.
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Lemma B.1. There exists a set A ⊂ ΩT with |A| =
Vr,p|ΩT | such that

(1− cr,p)
∫

ΩT

|f |p dµ 6
∫

A

|f |p dµ, (B3)

where cr,p =
(
p−r
p

) p−r
p
(
r
p

) r
p

.

Proof. We can assume that |ΩT | = 1. If Vr,p = 1, the
statement is trivial. Suppose Vr,p < 1. Note that the
function µ({|f | > α}) is continuous from the left, and at
a point of a jump the size of the jump is exactly µ({|f | =
α}). Hence, there exists an α > 0 and a set B ⊂ {|f | =
α} such that A = {|f | > α} ∪ B has measure exactly
Vr,p. By Chebyshev,

Vr,p 6
1

αr

∫

A

|f |rdµ.

Using this and that on ΩT \A , |f | 6 α we obtain

〈|f |pχΩT \A〉 6 αp−r〈|f |rχΩT \A〉

6 1

V
p−r
r

r,p

〈|f |rχA〉
p−r
r 〈|f |rχΩT \A〉

6 〈|f |p〉 〈|f |
rχΩT \A〉

r
p 〈|f |rχA〉

p−r
r

〈|f |r〉

Note that the latter fraction is of the form θ
r
p (1− θ) p−r

r ,
θ ∈ [0, 1], which attains its maximum exactly at the value
cr,p. This proves the lemma.

Note that as r → p, cr,p → 1, and as a result the
information about concentration of f gets lost. How-
ever, the corresponding concentration factors converge
to something non-trivial, namely,

Vp = lim
r→p

Vr,p = 〈|f |p〉 exp

{
−〈|f |

p ln |f |p〉
〈|f |p〉

}
. (B4)

Let us call it p-concentration factor. The factor have
some natural monotonicity properties, which will be ad-
dressed in the next section.

2. Amplitude

Although Lemma B.1 explains why the measure of con-
centration of f can be defined by Vr,p, the method of
proof provides little constructive information about the
threshold amplitude α. Such amplitude can be defined
quite explicitly, if one is ready to sacrifice precise measure
of the set A. Namely, let us denote

sr,p =
〈|f |p〉 1

p−r

〈|f |r〉 1
p−r

. (B5)

We will call it (r, p)-amplitude. Note that the physical
units of sr,p and f coincide.

Let us further expand our dictionary by calling a point
(x, t) ∈ ΩT (r, p)-active if the amplitude of f passes the
sr,p threshold:

|f(x, t)| > cr,psr,p,

where 0 < cr,p < 1 are empirical adimensional factors.
Collectively the set of all (r, p)-active points form a (r, p)-
active domain:

Ar,p = {|f | > cr,psr,p}. (B6)

Directly by Chebyshev, we readily obtain the bound

|Ar,p| 6
1

cpr,ps
p
r,p
〈|f |p〉|ΩT | =

1

cpr,p
Vr,p|ΩT |,

and

〈|f |pχΩT \Ar,p
〉 6 cp−rr,p

〈|f |p〉
〈|f |r〉 〈|f |

rχΩT \Ar,p
〉 6 cp−rr,p 〈|f |p〉,

which implies

(1− cp−rr,p )〈|f |p〉 6 〈|f |pχAr,p
〉. (B7)

Note again that as r → p, the information about concen-
tration of f gets lost. However, the corresponding thresh-
old amplitudes converge to a non-trivial value, namely,

lim
r→p

sr,p = sp = exp

{ 〈|f |p ln |f |〉
〈|f |p〉

}
. (B8)

Let us call it p-amplitude. One can easily restore sr,p
from sτ by the formula

sr,p = exp

{
1

p− r

∫ p

r

ln sτ dτ

}
. (B9)

The amplitudes have several monotonicity properties.
First, applying Jensen’s inequality,

sp−rr = exp

{ 〈|f |r ln |f |p−r〉
〈|f |r〉

}

6 〈|f |
r exp(ln |f |p−r)〉
〈|f |r〉 = sp−rr,p .

Thus, sr 6 sr,p, for all r < p. Second, one versifies again
by Jensen, that ∂rsr,p, ∂psr,p > 0. By taking the limit as
r → p, sr,p 6 sp. This in turn implies that

sr 6 sr,p 6 sp, for all r < p.

From (B9) we see that ln sr,p is precisely the mean value
of ln sτ on [r, p]. In view of the identities

spr,pVr,p = 〈|f |p〉, srr,pVr,p = 〈|f |r〉

we deduce the opposite monotonicity properties of the
concentration factors: ∂rVr,p, ∂pVr,p 6 0, and thus

Vr > Vr,p > Vp, for all r < p.
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3. p-active regions

Let U0 be a characteristic size of f , and let us assume
that the units of f is velocity as well. It is then more
natural to rewrite the formula for sp as follows:

sp = U0 exp





〈
|f |p ln |f |U0

〉

〈|f |p〉



 . (B10)

(note that this holds for any U0 > 0). This way of ex-
pressing sp makes the main exponent adimensional. We
can view the ratio sp/U0 as an adimensional threshold
value for an active size. Next, we show the active region
defined in (26) with 0 < cp < 1 and sp as above cap-
tures an appreciable concentration of the renormalized

probability density Fp = |f |p
〈|f |p〉 , provided U0 as chosen

appropriately. So, let us define as before

Ap = {|f | > cpsp}. (B11)

Let us consider the entropy concentration on the comple-
ment of Ap:

〈
|f |p ln

|f |
U0

χΩT \Ap

〉
6 ln cp

〈
|f |pχΩT \Ap

〉

+

〈
|f |p ln |f |U0

〉

〈|f |p〉
〈
|f |pχΩT \Ap

〉

(B12)

Let us choose U0 = 〈|f |p〉1/p, and denote I =〈
|f |p ln |f |U0

〉
. Then

p

〈|f |p〉I = 〈Fp lnFp〉 ,

which by the classical Csiszar-Kullback bounded from
below by ‖Fp − 1‖21, i.e. non-negative. This allows to
continue the line of (B12):

〈
|f |p ln

|f |
U0

χΩT \Ap

〉
6 ln cp

〈
|f |pχΩT \Ap

〉
+

〈
|f |p ln

|f |
U0

〉
.

(B13)
Multiplying the above by the factor of p

〈|f |p〉 and rewriting

in terms of Fp we obtain

〈
Fp lnFpχAp

〉
>
〈
FpχΩT \Ap

〉
ln

1

cpp
. (B14)

Note that ln 1
cpp

> 0. Thus, (B14) expresses quantita-

tively a concentration proportion of the entropy relative
to the complementary probability of the event Ap.
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We investigate universality of the Eulerian velocity structure functions using velocity fields

obtained from the stereoscopic particle image velocimetry (SPIV) technique in experiments

and the direct numerical simulations (DNS) of the Navier-Stokes equations. We show that

the numerical and experimental velocity structure functions up to order 9 follow a log-

universality1; we find that they collapse on a universal curve, if we use units that include

logarithmic dependence on the Reynolds number. We then investigate the meaning and

consequences of such log-universality, and show that it is connected with the properties of a

”multifractal free energy”, based on an analogy between multifractal and themodynamics.

We show that in such a framework, the existence of a fluctuating dissipation scale is asso-

ciated with a phase transition describing the relaminarisation of rough velocity fields with

different Hölder exponents. Such a phase transition has been already observed using the

Lagrangian velocity structure functions, but was so far believed to be out of reach for the

Eulerian data.
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I. INTRODUCTION

A well-known feature of any turbulent flow is the Kolmogorov-Richardson cascade by which energy

is transferred from large to small length scales until the Kolmogorov length scales below which it

is removed by viscous dissipation. This energy cascade is a non-linear and an out-of-equilibrium

universal process. Moreover, the corresponding non-dimensional energy spectrum E(k)/ǫ2/3η5/3

is an universal function of kη, where η = (ν3/ǫ)1/4 is the Kolmogorov length scale, ǫ the mean

energy dissipation rate per unit mass, and ν the kinematic viscosity. However, there seem to be

little dependences on the Reynolds number, boundary, isotropy or homogeneity conditions2. In

facts, the energy spectrum is based upon a quantity, the velocity correlation, that is quadratic in

velocity. Nevertheless, it is now well admitted that the universality does not carry over for statistical

quantities that involve higher order moments. For example, the velocity structure functions of order

p, given by Sp(ℓ) = 〈‖u(x+r)−u(x)‖p〉x,‖r‖=ℓ are not universal, at least when expressed in units of

the Komogorov scale η and velocity uK = (νǫ)1/4(see below, section IIIB for an illustration).

The mechanism behind this universality breaking was identified by, wherein a generalization of

the Kolmogorov theory introduced, based on the hypothesis that a turbulent flow is multifractal.

In this model, the velocity field is characterized locally by an exponent h, such that |δℓu(x)| ≡
〈‖u(x + r) − u(x)‖〉‖r‖=ℓ ∼ ℓh(x); here h is a stochastic function that follows a large deviation

property3 P (log(|δℓu|/u0) = h log (ℓ/L0)) ∼ (ℓ/L0)
C(h), where u0 (resp. L0) is the caracteristic

integral velocity (resp. length), and C(h) is the multifractal spectrum. Velocity fields with h < 1 are

rough in the limit ℓ → 0. In real flows, any rough field with h > −1 can be regularized at sufficiently

small scale (the ”viscous scale”) by viscosity. The first computation of such dissipative scale was

performed by Paladin and Vulpiani, who showed that it scales with viscosity like ηh ∼ ν1/(1+h),

thereby generalizing the Kolmogorov scale, which corresponds to h = 1/3. Such a dissipative scale

fluctuates in space and time (along with h), resulting in non-universality for high order moments,

at least when expressed in units of η and uK.

A few years later, Frisch and Vergassola4 claimed that the universality of the energy spectrum can

be recovered, if the fluctuations of the dissipative length scale are taken into account by introducing

a new non-dimensionalisation procedure. The new prediction is that log
(
E(k)ǫ−

2
3 η−

5
3

)
/ log(Re)

should be a universal function of log(kη)/ log(Re), where Re is the Reynolds number. This claim

was examined by Gagne et al., later using data from the Modane wind tunnel experiments1. They

further suggested that the prediction can be extended to the velocity structure functions, so that,

at any given p log(Sp(ℓ)/u
p
K)/ log(Re) should be a universal function of log(ℓ/η)/ log(Re); they
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found good agreement for p up to 6. The velocity measurements, in the above experiments, were

performed using hot wire anemometry, which provide access to only one component of velocity.

To our knowledge, no further attempts have been made to check the claim with more realistic

measurements.

The purpose of the present paper is to reexamine this claim; however, now using the velocity fields

obtained from the Stereoscopic Particule Image Velocimetry (SPIV) in experiments and the direct

numerical simulations (DNS) of the Navier-Stokes equations (NSE). We show that the numerical

and experimental velocity structure functions up to order 9 follow a log-universality1; they indeed

collapse on a universal curve, if we use units that include log(Re) dependence. We then investigate

the meaning and consequences of such a log-universality, and show that it is connected with the

properties of a ”multifractal free energy”, based on an analogy between multifractal and thermo-

dynamics (see for summary). We show that in such a framework, the existence of a fluctuating

dissipation length scale is associated with a phase transition describing the relaminarisation of

rough velocity fields with different Hölder exponents.

II. EXPERIMENTAL AND NUMERICAL SETUP

A. Experimental facilities and parameters

We use experimental velocity field described in5. The radial, axial and azimuthal velocity are

measured in a von Krmn flow, using Stereoscopic Particule Image Velocimetry technique at different

resolutions ∆x. The von Krmn flow is generated in a cylindrical tank of radius R = 10 cm through

counter-rotation of two independent impellers with curved blades. The flow was maintained in

a turbulent state at high Reynolds number by two independent impellers, rotating at frequency

F . Figure 1 shows the sketch of the experimental setup. The five experiments were performed in

conditions so that the non-dimensional mean energy dissipation per unit mass is constant. The

viscosity was monitored using mixture of water and glycerol, so as to vary the Kolmogorov length

η. Table I summarizes the different parameters; Rλ = λurms/ν is the Reynolds number based on

the Taylor length scale λ =
√

〈u2〉
〈∇u2〉 , the mean squared velocity urms and the viscosity ν.

All velocity measurements are performed in a vertical plane that contains the rotation axis. The

case A corresponds to measurements over the whole plane contained in between the two impellers,

and extending from one side to the other side of the cylinder. Its resolution is 5 to 10 times coarser

than similar measurements performed by zooming on a region centered around the symmetry
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D = 185 mm

(a) (b) (c) (d)

20 mm

12 mm

70 mm

204 mm

13 mm

FIG. 1: Von Krmn swirling flow generator. (a) normal view, bottom (b) and top (c) impellers

rotating -both seen from the center of the cylinder, and (d) sketch with the relevant measures. A

device not shown here maintains the temperature constant during the experiment. Both impellers

are counter-rotating.

Case F (Hz) Glycerol part Re Rλ η (mm) ∆x Frames Symbol

A 5 0% 3× 105 1, 9× 103 0.02 2.4 3× 104 ◦
B 5 0% 3× 105 2, 7× 103 0.02 0.48 3× 104 �
C 5 0% 3× 105 2, 5× 103 0.02 0.24 2× 104 ♦
D 1 0% 4× 104 9, 2× 102 0.08 0.48 1× 104 △
E 1.2 59% 6× 103 2, 1× 102 0.37 0.24 3× 104 ⋆

TABLE I: Parameters for the 5 experiments realized (A,B,C,D and E). F is the rotation

frequency of the discs, Re refers to the Reynolds number based on the diameter of the tank, Rλ is

the Reynolds based on the Taylor micro-scale. η gives the estimated Kolmogorov length

according to the experiment and ∆x refers to the spatial resolution of SPIV measurements. The

last columns gives the number of frames used and the number of points over which are calculated

the statistics. Except for (E), the Reynolds are much larger than those available with DNS. Table

taken from5

point of the experiment (on the rotation axis, half way in between the two impellers), over a

square window of size 2 cm × 2 cm.

B. Direct Numerical Simulation

The direct numerical simulations (DNS), based on pseudo-spectral method, were performed in

order to compare with our experimental data. The DNS runs with Rλ = 25, Rλ = 80, Rλ = 90

and Rλ = 138 were performed using the NSE solver VIKSHOBHA6, whereas the run with Rλ = 56
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Rλ η kmaxη Nx×Ny×Nz ℓmin/η k̃f Samples Symbol

25 0.079 3.35 1283 0.635 1 5000 ⋆

56 0.034 6.42 2563 0.31 1 105 000 △
80 0.020 1.68 2563 1.22 1 270 000 �
90 0.017 5.70 10243 0.36 1 10 000 ♦
138 0.009 1.55 5123 1.37 1 12 000 ◦

TABLE II: Parameters for the DNS. Rλ is the Reynolds based on the Taylor micro-scale. η is the

Kolmogorov length. The third column gives resolution of the simulation through kmaxη,where

kmax = N/3 is the maximum wavenumber. The fourth column gives the grid size; notice that the

length of the box is 2π. Here, ℓmin is the smallest scale available for the calculations of the

wavelets. k̃f is the forcing scale. The Sample columns gives the number of points (frames ×
gridsize) over which are calculated the statistics.

was carried out using another independent pseudo-spectral method based NSE solver. The velocity

field u was computed on a 2π triply-periodic box.

Turbulent flow in a statistically steady state was obtained by using the Taylor-Green type external

forcing in the NSE at wavenumber kf = 1 and amplitude f0 = 0.12, the value of viscosity was

varied in order to obtain different values of Rλ (see Ref.6 for more details).

III. THEORETICAL BACKGROUND

A. Velocity increments vs Wavelet Transform (WT) of velocity gradients

The classical theories of Kolmogorov7? are based on the scaling properties of the velocity increment,

defined as δℓu = u(x+ r)− u(x), where ℓ = |r| is the distance over which the increment is taken.

As pointed out by, a more natural tool to characterize the local scaling properties of the velocity

field is the wavelet transform of the tensor ∂jui, defined as:

Gij(x, ℓ) =

∫
dr∇jΦℓ (r) ui(x+ r), (1)

where Φℓ(x) = ℓ−3Φ(x/ℓ) is a smooth function, non-negative with unit integral. In what follows,

we choose a Gaussian function Φ(x) = exp(−‖x‖2/2)/(2π) 3
2 such that

∫
Φ(r)dr = 1. We then

compute the wavelet velocity increments as

δW (u)(x, ℓ) = ℓmax
ij

|Gij(x, ℓ)|. (2)
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This formulation is especially well suited for the analysis of the experimental velocity field, as it

naturally allows to average out the noise. It has been verified that the wavelet based approach yields

the same values for the scaling exponents as those computed from the velocity increments6.

B. K41 and K62 universality

In the first theory of Kolmogorov7, the turbulence properties depend only on two parameters: the

mean energy dissipation per unit mass ǫ and the viscosity ν . The only velocity and length unit

that one can build using these quantities are the Kolmogorov length η = (ν3/ǫ)1/4 and velocity

uK = (ǫν)1/4. The structure functions are then self-similar in the inertial range η ≪ ℓ ≪ L0, where

L0 is the integral scale, and follow the universal scalings:

Sp(ℓ) ≡ 〈|δℓu|p〉 ∼ upK

(
ℓ

η

)p/3

, (3)

which can also be recast into:

S̃p ≡
Sp

S
p/3
3

= Cp, (4)

where Cp is a (non universal) constant.

This scaling is typical of a global scale symmetry solutions, and was criticized by Landau, who

considered it incompatible with observed large fluctuations of the local energy dissipation. Kol-

mogorov then built a second theory (K62), in which fluctuations of energy dissipation were assumed

to follow a log-normal statistics, and taken into account via an intermittency exponent µ and a

new length scale L, thereby breaking the global scale invariance. The resulting velocity structure

functions then follow the new scaling:

Sp(ℓ) ∼ (ǫℓ)p/3
(
ℓ

L

)µp(3−p)

, (5)

which implies a new kind of universality involving the relative structure functions S̃p as:

S̃p ≡
Sp

S
p/3
3

∼ Ap

(
ℓ

L

)τ(p)

, (6)

where τ(p) = µp(3 − p) and Ap is a constant. Such a formulation already predicts an interesting

universality, if L = L0, as we should have:

(
L0

η

)τ(p)

S̃p ∼ Ap

(
ℓ

η

)τ(p)

. (7)
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Therefore, we should be able to collapse all structure functions, at different Reynolds number by

plotting (L0
η )τ(p)S̃p as a function of ℓ

η , given that L0/η ∼ Re3/4. There is however no clear prediction

about the value of L and we show in the data analysis section that L differs from L0.

The relation (7) shows that log

((
L0
η

)τ(p)
S̃p

)
is a linear function of log( ℓη ). In principle, such

universal scaling is not valid outside the inertial range, i.e. for example when ℓ < η. To be more

general than previously thought, it can however be shown using the multifractal formalism as first

shown by4.

C. Multifractal and fluctuating dissipation length

For the multifractal (MFR) model, it is assumed that the turbulence is locally self-similar, so that

there exists a scalar field h(x, ℓ, t), such that

h (x, t, ℓ) =
log (|δℓu(x, t)|/u0)

log(ℓ/L)
, (8)

for a range of scales in a suitable ”inertial range” ηh ≪ ℓ ≪ L, where L is a characteristic

integral-length-scale, ηh a cut-off length scale, and u0 a characteristic large-scale velocity. This

scale is a generalization of the Kolmogorov scale, and is defined as the scale where the local

Reynolds number ℓ|δℓu|/ν is equal to 1. Writing δℓu = |δℓu| = u0(ℓ/L)
h leads to the expression

of ηh as a function of the global Reynolds number Re = u0L/ν as ηh ∼ LRe−1/(1+h). This scale

thus appears as a fluctuating cut-off which depends on the scaling exponent and therefore on x.

This is the generalization of the Kolmogorov scale η ∼ ν3/4 ≡ η 1
3
, and was first proposed in.

Below ηh, the velocity field becomes laminar, and |δℓu| ∝ ℓ. When the velocity field is turbulent,

h ≡ log(|δℓu|/u0)/ log(ℓ/L) varies stochastically as a function of space and time. Also, if the

turbulence is statistically homogeneous, stationary and isotropic, h only depends on ℓ, the scale

magnitude. Therefore, formally, h can be regarded as a continuous stochastic process labeled by

log(ℓ/L). By Kramer’s theorem8, one sees that as in the limit ℓ → 0, log(L/ℓ) → ∞, we have

P [log(δℓu/u0) = h log(ℓ/L)] ∼ elog(ℓ/L)C(h) =

(
ℓ

L

)C(h)

, (9)

where C(h) is the rate function of h, also called multifractal spectrum. Formally, C(h) can be

interpreted as the co-dimension of the set where the local Hölder exponent at scale ℓ is equal to h.

Using Gärtner-Elis theorem8, one can connect C and the velocity structure functions as:

Sp(ℓ) = 〈(δℓu)p〉 =
hmax∫

hmin

up0

(
ℓ

L

)ph+C(h)

dh. (10)
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To proceed further and make connection with previous section, we set ǫ = u30/L so that Sp(ℓ) can

now be written:

Sp(ℓ) = (ǫℓ)p/3
hmax∫

hmin

( ℓ

L

)p(h−1/3)+C(h)
dh ∼ (ǫℓ)p/3

( ℓ

L

)τ(p)
. (11)

This shows that τ(p) is the Legendre transform of the rate function C(h + 1/3), i.e. τ(p) =

minh(p(h − 1/3) + C(h)), and equivalently, that C(h) is the Legendre transform of τ(p). Because

of this, it is necessarily convex. The set of points where it satisfies C(h) ≤ d, represents the set

of admissible or observable h, is therefore necessarily an interval, bounded by −1 ≤ hmin and

hmax ≤ 1.

As noted by4, the scaling exponent ζ(p) = p/3+ τ(p) defined via Equation (11) is only constant in

a range of scale where ℓ > ηh for any h ∈ [hmin, hmax]. For small enough ℓ, this condition is not met

anymore, since as soon as ℓ < ηh, all velocity fields corresponding to h are ”regularized”, and do

not contribute anymore to intermittency since they scale like ℓ. This results in a slow dependence

of ζ(p) with respect to the scale, which is obtained via the corrected formula:

Sp = (ǫℓ)p/3
∫

ηh≤ℓ

( ℓ

L

)p(h−1/3)+C(h)
dh ∼ (ǫℓ)p/3

( ℓ

L

)τ(p,ℓ)
. (12)

To understand the nature of the correction, we can compute the value of h such that ℓ = η(h). It

is simply: h(ℓ) = −1 + log(Re)/ log(L/η). We note θ = log(L/ℓ)/ log(Re). We can now rewrite

equation (12) as:

S̃p ≡
Sp

S
p/3
3

=

hmax∫

−1+1/θ

( ℓ

L

)p(h−1/3)+C(h)
dh ∼ exp (−θτ(p, θ) log(Re)) , (13)

where τ(p, θ) = τp when θ ≤ 1/(1+hmax) and τ(p, θ) = p(θ−1/3)+C(−1+1/θ) when 1/(1+hmax) ≤
θ ≤ 1/(1 + hmin). As discussed by4, this implies a new form of universality that extends beyond

the inertial range, into the so-called extended dissipative range, as;

log(S̃p)

log(Re)
= −τ(p, θ)θ, θ = log(L/ℓ)/ log(Re). (14)

If the scale L is constant and equal to L0, the integral scale, then we have Re = (L0/η)
4/3 and

the multifractal universality implies that log(S̃p)/ log(L0/η) is a function of log(ℓ/η)/ log(L0/η).

When the function is linear, we thus recover the K62 universality. The multifractal universaility is

thus a generalization of the K62 universality.

This form of universality is however not easy to test, as the scale L is not known a priori, and may

still depend on Re. In what follows, we demonstrate a new form of universality, that allows more

freedom upon L and encompass both K62 and multifractal universality.
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D. General universality

Using the hypothesis that turbulence maximizes some energy transfer in the scale space, Castaing9

suggested a new form of universality for the structure functions, that reads:

γ(Re) log

(
Sp

Apu
p
K

)
= G (p, γ(Re) log(ℓK0/η)) , (15)

where Ap and K0 are universal constant and β and G are general functions, F being linear in the

inertial range, G(p, x) ∼ τ(p)x. The validity of this universal scaling was checked by Gagne and

Castaing1 on data obtained from the velocity fields measured in a jet using hot wire anenometry.

They found good collapse of the structure functions at different Taylor Reynolds Rλ, provided

γ(Re) is constant at low Reynolds numbers and follows a law of the type: γ(Re) ∼ γ0/ log(Rλ/R∗),

where R∗ is a constant, whenever Rλ > 400. Since we have Rλ ∼ Re1/2 and (L0/η) ∼ Re3/4, we

can rewrite equation (15) as:

β(Re)

(
log(S̃p/S0p)

log(L0/η)

)
= G

(
p, β(Re)

log(ℓ/η)

log(L0/η)

)
, (16)

where S0p are some constants and β and F are general functions. Comparing with the K62 or

MFR universality formulae (7) or (14), we see that formula (16) is a generalization of these two

universality with L = L0. It allows however more flexibility than K62 or MFR universality through

the function β(Re), that is a new fitting function. We test these predictions in Section IV and

provide a physical interpretation of (16) in Section V.

IV. CHECK OF UNIVERSALITY USING DATA ANALYSIS

The various universality are tested using the velocity structure functions based on the wavelet

velocity increments Eq. (2), in order to minimize the noise in the experimental data. We de-

fine:

Sp = 〈|δW (u)(x, ℓ)|p〉. (17)

We then apply this formula to both experimental data (Table I) and numerical data (Table II), to

get wavelet velocity structure functions at various scales and Reynolds numbers.
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FIG. 2: Test of K41 universality Eq. (4). a) Numerical data b) Experimental data. The structure

functions have been shifted by arbitrary factors for clarity and are coded by color: p = 1: blue

symbols; p = 2: orange symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green

symbols; p = 6: light blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange

symbols. For K41 universality to hold, all the function should be constant, for a given p.

A. Check of K41 universality

The K41 universality (3) can be checked by plotting:

log

(
Sp

upK

)
= F

(
log

(
ℓ

η

))
. (18)

This is shown in figure 2 for both experimental and numerical data. Obviously, the data do not

collapse on a universal curve, meaning that K41 universality does not hold. This is well known,

and is connected to intermittency effects10.

B. Check of K62 universality

The K62 universality (7) can be checked by plotting:

log

[(
L0

η

)τ(p)

S̃p

]
= F

(
log

(
ℓ

η

))
. (19)

The collapse depends directly on τ(p), the intermittency exponents. Obtaining the best collapse

of all curves is in fact a way to fit the best scaling exponents τ(p). We thus implemented a

minimization algorithm that provides the values of τ(p) that minimized the distance between the
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FIG. 3: Test of K62 universality Eq. (7). a) Numerical data b) Experimental data. The structure

functions have been shifted by arbitrary factors for clarity and are coded by color: p = 1: blue

symbols; p = 2: orange symbols; p = 3: yellow symbols; p = 4: magenta symbols; p = 5: green

symbols; p = 6: light blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange

symbols. The dashed lines are power laws with exponents τ(p) = ζ(p)− ζ(3)p/3, with ζ(p) shown

in figure 4-a.

curve and the line of slope τ(p). The values of τ(p) are reported in Table III. The best collapse is

shown on Figure 3-a for the DNS, and Figure 3-b for the experiment. The collapse is better for

experiments than for the DNS. However, in both cases, there are significant differences in between

points at different Rλ, at larger scales, showing that universality is not yet reached.

C. Check of General Universality

We can now check the most general universality, by plotting:

β(Re)

(
log(S̃p/S0p)

log(L0/η)

)
= F

(
p, β(Re)

log(ℓ/η)

log(L0/η)

)
, (20)

In this case, best collapse is obtained by fitting two families of parameters: S0p, β(Re) that were

obtained through a procedure of minimization. We take the DNS at Rλ = 138 as the reference case,

and find for both DNS and experiments, the values of β(Re) and S0p that best collapse the curves.

The corresponding collapses are provided in figure 5. The collapse is good for any value of Re,

except for the DNS at the lowest Reynolds number, which does not collapse in the far dissipative

range.
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FIG. 4: . a) Determination of ζ(3) by best collapse using both DNS (open symbols) and

experiments (filled symbols). The black dashed line is ℓ0.8. b) Scaling exponents ζ(p) of the

wavelet structure functions of δW as a function of the order, from Table III, for DNS (blue circle)

and experiments (red square) . The red dotted line is the function minh(hp+ C(h)) with C(h)

given by C(h) = (h− a)2/2b, with a = 0.35 and b = 0.045. The black stars correspond to

ζSAW(p)/ζSAW(3) (see Table III), while the black triangle correspond to ζEXP(p)/ζEXP(3).
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FIG. 5: Test of general universality equation (20) using both DNS (open symbols) and

experiments (filled symbols). The functions are coded by color. a) p = 1: blue symbols; p = 2:

orange symbols; p = 4: magenta symbols; p = 5: green symbols; b) p = 6: light blue symbols;

p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. The functions have been shifted

by arbitrary factors for clarity. The dashed lines are power laws with exponents

τ(p) = ζ(p)− ζ(3)p/3, with ζ(p) shown in figure 4-a.
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FIG. 6: a) Variation of 1/β(Re) versus log(Rλ) in experiments (red square) and DNS (blue circle)

when using the DNS at Rλ = 138 as the reference case. We plotted in black the values found by

Gagne and Castaing in1 shifted by an arbitrary factor to coincide the values at large Reynolds.

The black dashed line is (4/3) log(Rλ/5). b) Multifractal spectrum C(h) for the experiments.

The spectrum has been obtained by taking inverse Legendre transform of the scaling exponents

ζ(p) shown in figure 4-b. The dotted line is a parabolic fit C(h) = (h− a)2/2b with a = 0.35 and

b = 0.045.

D. Function β(Re)

Motivated by earlier findings by1, we plot in figure 6 the value 1/β as a function of Rλ.

Our results are compatible with 1/β ∼ β0/ log(Rλ), with β0 ∼ 4/3 over the whole range of Reynolds

number. For comparison, we provide also on figure 6 the values found by Gagne and Castaing1 in

jet of liquid Helium, shifted by an arbitrary factor to make our values coincide with them at large

Reynolds number. This shift is motivated by the fact that β(Re) is determined up to a constant,

depending upon the amplitude of the structure functions used as reference. At large Reynolds, our

values are compatible with theirs. At low Reynolds, however, we do not observe the saturation of

1/β that is observed in the jet experiment of1. An interpretation of the meaning of β(Re) will be

provided in Section V.
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E. Scaling exponents

Our Collapse method enables us to obtain the scaling exponents of the structure functions ζ(p) by

the following two methods:

i) Using the K62 universality, we get τ(p), and then ζ(p) = ζ(3)p/3 + τ(p). These estimates still

depend on the value of ζ(3), which is not provided by the K62 universality plot. To obtain it, we use

a minimization procedure on both experimental log(S3/u
3
K) from the one hand, and the numerical

log(S3/u
3
K) on the other hand (see figure 4-a), to compute ζ(3) as the value that minimizes the

distance between the curve and a straight line of slope ζ(3). The values so obtained are reported

in Table III, and have been used to compute ζ(p) from τ(p).

ii) Using the general universality, we may also get τp,univ by a linear regression on the collapse curve.

Note that since the data are collapsed, this provides a very good estimates of this quantity, with

the lowest possible noise. In practice, we observe no significant differences with the two estimates;

therefore, we only report the values obtained by following the first method.

The corresponding values are plotted in figure 4 and summarized in Table III. Note that for both

DNS and experiments, the value of ζ(3) is different from 1, which is apparently incompatible

with the famous Kolmogorov 4/5th law, that predicts ζ(3) = 1. This is because we use absolute

values of wavelet increments, while the Kolmogorov 4/5th law uses signed values. We have checked

that using unsigned values, we obtain a scaling that is closer to 1, but with larger noise. Note

also that when we consider the relative value ζ(p)/ζ(3), we obtain values that are close to the

values obtained5 on the same set of experimental data, using velocity increments and Extended

Self-Similarity technique11.

F. Multifractal spectrum

From the values of ζ(p), one can get the multifractal spectrum C(h) by performing the inverse

Legendre transform:

C(h) = min
p

[ph+ ζ(p))]. (21)

Practically, this amount to use the following formula:

C
(d ζ(p)

d p

∣∣∣
p∗

)
= ζ(p∗)− p∗

d ζ(p)

d p

∣∣∣
p∗
. (22)

To estimate C, we thus first perform a polynomial interpolation of order 4 on ζ(p), then derivate

the polynom to estimate d ζ(p)
d p , thus get C through equation (22). The result is provided in figure
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exponent \ order p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

ζSAW/ζSAW(3) 0.36 0.69 1 1.29 1.55 1.78 1.98 2.17 2.33

ζDNS 0.31 0.58 0.80 0.98 1.12 1.23 1.26 1.25 1.23

ζEXP 0.32 0.58 0.80 0.98 1.12 1.23 1.32 1.39 1.44

τDNS 0.04 0.05 0 -0.09 -0.21 -0.37 -0.61 -0.88 -1.17

τEXP 0.05 0.05 0 -0.09 -0.21 -0.36 -0.54 -0.74 -0.96

TABLE III: Scaling exponents τ(p) and ζ(p) found by the collapse method based on K62

universality for experimental data (subscript EXP) or numerical data (subscript DNS). The

subscript SAW refers to the values obtained by5 on the same set of experimental data, using

velocity increments and Extended Self-Similarity technique11. The exponents τEXP(p)(red square)

and τDNS (blue circle) have been computed through a least square algorithm upon τ(p),

minimizing the scatter of the rescaled structure functions log

[(
L0
η

)τ(p)
S̃p)

]
with respect to the

line (ℓ/η)τ(p). The corresponding ζ(p) were inferred using the formula ζ(p) = τ(p) + ζ(3)p/3,

where ζ(3) is computed in figure 4-a.

6-b for both the DNS and the experiment.

The curve look like the portion of a parabola, corresponding to a log-normal statistics for the

wavelet velocity increments. Specifically, fitting by the shape:

C(h) =
(h− a)2

2b
, (23)

we get a = 0.35 and b = 0.045. This parabolic fit also provides a good fit of the scaling exponents,

as shown in figure 4 by performing Legendre transform of C(h) given by equation (23).

V. THERMODYNAMICS AND TURBULENCE

A. Thermodynamical analogy

Multifractals obey a well-known thermodynamical analogy12? ,13 that will be useful to interpret

and extend the general universality unraveled in the previous section. Indeed, consider the quan-

tity:

µℓ =
|δWℓ|3
〈|δWℓ|3〉

. (24)
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By definition µℓ is positive definite and 〈µℓ〉 = 1 for any ℓ. It is therefore the meaning of a scale

dependent measure. It then also follows a large-deviation property as:

P [log(µℓ) = E log(ℓ/η)] ∼ elog(ℓ/η)S(E), (25)

where S(E) is the large deviation function of log(µℓ) and has the meaning of an energy while

log(ℓ/η) has the meaning of a volume, and log(µℓ)/ log(ℓ/η) is an energy density. Because of the

definition of µℓ, it is easy to see that S is connected to C, the large deviation function of |δWℓ. In

fact, since in the inertial range where 〈|δWℓ|3〉 ∼ ℓζ(3), we have S(E) = C(3h−ζ(3)). By definition,

we also have:

S̃3p =
S3p

Sp
3

= 〈ep log(µℓ)〉, (26)

so that Z = S̃3p is the partition function associated to the variable log(µℓ), at the pseudo-inverse

temperature p = 1/kT . Taking the logarithm of Z, we then get the free energy F as:

log(S̃3p) = F. (27)

By the Gärtner-Elis theorem, F is the Legendre transform of the energy S: F = minE(pE−S(E)).

The free energy a priori depends on the temperature; i.e. on T = 1/kp, on the volume V = log(ℓ/η)

and on the number of degrees of freedom system N . If we identify N = (1/β(Re)) log(L0/η), we

see that the general universality means:

F (T, V,N) = NF (T,
V

N
, 1), (28)

i.e. can be interpreted as extensivity of the free energy.

Thermodynamics Turbulence

Temperature kBT 1/p

Energy E log(µℓ)

Number of d.f. N log(Re) ≡ log(L0/η)/β0

Volume V log(ℓ/η)

Pressure P τ(p, ℓ)

Free energy F log(S̃3p)

TABLE IV: Summary of the analogy between the multifractal formalism of turbulence and

thermodynamics.

The thermodynamic analogy is thus meaningful and is summarized in Table IV. It can be used to

derive interesting prospects.
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B. Multifractal pressure and phase transition

Given our free energy, F = log(S̃3p), we can also compute the quantity conjugate to the volume,

i.e. the multifractal pressure as: P = ∂F/∂V . In the inertial range, where S̃p ∼ ℓτ(p), we thus get

P = τ(p), which only depends on the temperature. Outside the inertial range, P has the meaning

of a local scaling exponents also depends upon the scale, i.e., on the volume V and on N (Reynolds

number). Using our universal functions derived in figure 5, we can then compute empirically the

multifractal pressure P and see how it varies as a function of T , V and N . It is provided in figure 7

for Rλ = 25 and Rλ = 56, and in figure 8 for Rλ = 90 and Rλ = 138. We see that at low Reynolds

number, the pressure decreases monotonically from the dissipative range, reaches a lowest points

and then increases towards the largest scale. There is no clear flat plateau that would correspond

to an ”inertial” range. In contrast, at higher Reynolds number, a plateau appears for p = 1 to

p = 4 when going towards the largest scale, the value of the plateau corresponding to τDNS. The

plateau transforms into an inflection point for p ≥ 5 making the derivative ∂P/∂V change sign.

This is reminiscent of a phase transition occurring in the inertial range, with coexistence of two

phases: one ”laminar” and one ”turbulent”. We interpret such a phase transition as the result of

the coexistence of region of flows with different Hölder exponents, with areas where the flow has

been relaminarized due to the action of viscosity, because of the random character of the dissipative

scale (see below).

VI. CONCLUSION

We have shown that a deep analogy exists between multifractal and classical thermodynamics. In

this framework, one can derive from the usual velocity structure function an effective free energy

that respects the classical extensivity properties, provided one uses a number of degrees of freedom

(given by N = 1/β(Re)) that scales like log(Rλ). This number is much smaller than the classical

N ∼ Re9/4 that is associated with the number of nodes needed to discretize the Navier-Stokes

equation down to the Kolmogorov scale. It would be interesting to see whether this number is also

associated with the dimension of a suitable ”attractor of turbulence”. Using the analogy, we also

found the ”multifractal” equation of state of turbulence, by computing the multifractal pressure

P = ∂F/∂V . We found that for large enough Rλ and p (the temperature), the system obeys a

phase transition, with coexistence of phase like in the vapor-liquid transition. We interpret this

phase transition as the result of the coexistence of region of flows with different Hölder exponents,
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FIG. 7: Multifractal equation of state of turbulence. Multifractal pressure as a function of the

volume for Rλ = 25 (line) , Rλ = 56 (dashed-dotted line). The functions are coded by color. a)

p = 1: blue symbols; p = 2: orange symbols; p = 4: magenta symbols; p = 5: green symbols; b)

p = 6: light blue symbols; p = 7: red symbols; p = 8: blue symbols; p = 9: orange symbols. The

colored dotted line (resp. dashed dotted line) are values corresponding to P (p, V ) = τEXP(p)

(resp. τDNS(p), that are reported in Table III.

with areas where the flow has been relaminarized due to the action of viscosity, because of the

random character of the dissipative scale. We note that this kind of phenomenon has already

been observed in the context of Lagrangian velocity increments, using the local scaling exponent

ζ(p, τ) = d(log(Sp(τ)))/d(log(τ))
14. The phase transition is then associated with the existence

of a fluctuating dissipative time scale. It has further been shown that in a multifractal without

fluctuating dissipative time scale, the local exponent decreases monotically from dissipative scale

to large scale, implying a disappearance of the phase transition15.
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Detection and characterization of quasi singularities in turbu-

lence

Abstract

It is still not known whether the equations of Navier�Stokes are well posed, i.e. whether
their solutions can develop singularities from regular initial conditions. This unsolved
problem might be the key to explain anomalous dissipation. As such, a method based on
local energy transfers has been developed as a mean to identify potentially singular events
in turbulence data. In this thesis, a local statistical method derived from multifractal
analysis is developed in order to measure local Hölder coe�cients. This method provides
an estimate of the local regularity of turbulent velocity �elds. Combined with local energy
transfers, this allows us to locate and characterize quasi singular events. The method is
applied in simulation to extract rare irregular structures at the dissipative scale. From the
data aggregated, we derive a "typical singular event" bearing similarities with a Burgers
vortex. Extending the analysis to time resolved data shows that irregular events are
connected with vortex interactions. In parallel, we developed a new simulation scheme for
Navier�Stokes based on a particles-in-cell model and using the Clebsch decomposition. Its
purpose is to track potential singularities in scale for a comparatively low computational
cost.

Keywords: Navier�Stokes, Singularities, Turbulence, Multifractal, Simulations, PIC
method

Détection et caractérisation des singularités en turbulence

Résumé

Il n'est pas encore démontré que les équations de Navier�Stokes sont bien posées, c'est à
dire que leur solutions ne développent pas de singularités à partir de condition initiales
régulières. Résoudre ce problème pourrait conduire à expliquer l'anomalie dissipative.
Ainsi, une méthode fondée sur les transferts d'énergie locaux a été développée comme
un critère de détection de singularités potentielles. Dans cette thèse, nous développons
une méthode à la fois locale et statistique, dérivée de l'analyse multifractale, a�n de
mesurer des coe�cients de Hölder locaux. Cette méthode nous permet d'estimer la régu-
larité locale de champs de vitesse turbulents. Combiné au critère fondé sur les transferts
d'énergie, ceci nous permet de localiser et quanti�er des événements quasi singuliers. La
méthode a été appliquée sur des données de simulation a�n d'extraire des structures ir-
régulières à l'échelle dissipative. A partir des données ainsi obtenues, nous reconstituons
un "événement singulier typique" qui présente des similarités avec le vortex de Burgers.
L'analyse sur des données résolues en temps montre une connexion avec les interactions
entre tourbillons. En parallèle, nous avons construit un nouveau schéma de simulation
pour Navier�Stokes fondé sur un modèle particulaire et la décomposition de Clebsch.
L'objectif a�ché est de suivre à moindre coût les singularités potentielles en échelle.

Mots clés : Navier�Stokes, Singularités, Turbulence, Multifractal, Simulations, Mé-
thode PIC
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