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Abstract

The Laser Interferometer Space Antenna is a European Space Agency mission that aims
to measure gravitational waves in the millihertz range. Three spacecraft are placed in a
quasi-equilateral triangular formation whose barycenter trails the Earth on its heliocen-
tric orbit. Laser beams are exchanged to monitor pico-metric variations between the test
masses due to gravitational waves. Because various instrumental noise sources couple to
the measurements, several data processing techniques are used to reduce them before we
can extract gravitational-wave signals.

We propose a realistic instrumental model to study these noise-reduction algorithms. We
investigate how the main noise sources appear in the measurements and work out their
residuals in almost noise-free combinations. To validate these results, we develop a flexible
numerical simulation tool that aims to generate realistic measurements: LISANode propa-
gates noise time series between the spacecraft and in the optical benches, all the way down
to the phasemeters and the on-board computers. It also computes the response to grav-
itational waves. LISANode is capable of executing the main noise-reduction algorithms,
including the computation of Time-Delay Interferometry laser noise-free combinations, as
well as clock-calibrated combinations.

As we account for instrumental and numerical imperfections, noises do not exactly vanish
in the final combinations. In particular, we study the performance hit of the constellation
flexing and the on-board data processing on the laser-noise reduction. We model the flexing-
filtering coupling and propose a technique to mitigate this effect. Moreover, we derive
exact clock-noise calibration expressions. Simulations are used to validate these results and
confirm that the dominant sources of noise can be reduced to the required levels.

We also investigate machine-learning techniques to discriminate between instrumental glitches
and transient gravitational signals. Analytic studies show that both appear differently in
noise-free combinations and experiments suggest that some neural networks are capable of
distinguishing between them.
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Résumé

Laser Interferometer Space Antenna est une mission de l’Agence Spatiale Européenne vi-
sant à mesurer les ondes gravitationnelles dans le domaine millimétrique. Trois satellites en
formation triangulaire autour du Soleil s’échangent des faisceaux lasers. Les variations de
distances entre masses d’épreuve, dues aux ondes gravitationnelles, sont mesurées au pico-
mètre près. Plusieurs algorithmes de réduction des bruits instrumentaux qui contaminent
les mesures sont utilisés avant l’extraction des signaux gravitationnels.

Afin d’évaluer la performance de ces algorithmes, nous étudions la manière dont les bruits
instrumentaux apparaissent dans les mesures, ainsi que leurs résidus après calibration. Un
outil de simulation numérique flexible, destiné à générer les mesures de manière réaliste,
permet de valider ces résultats. En effet, LISANode propage les séries temporelles de bruit
entre les satellites et sur les bancs optiques, jusqu’aux phasemètres et aux ordinateurs
embarqués. Il calcule aussi la réponse aux ondes gravitationnelles. Par ailleurs, LISANode
permet de générer les combinaisons Time-Delay Interferometry exemptes de bruit laser,
ainsi que la calibration pour les bruits d’horloge.

Malheureusement, ces bruits ne disparaissent pas totalement si l’on tient compte des im-
perfections instrumentales et numériques. Nous étudions en particulier l’impact de la dé-
formation de la constellation, ainsi que du traitement des données en vol. Nous modélisons
le couplage déformation-filtrage et proposons une technique permettant de réduire cet ef-
fet. En outre, nous proposons une méthode de calibration exacte des bruits d’horloge. Les
simulations permettent de valider ces résultats, et confirment la possibilité de réduire les
bruits dominants aux niveaux requis.

Nous considérons aussi les techniques d’apprentissage automatique pour discriminer les
artéfacts instrumentaux et les signaux gravitationnels courts. Une étude analytique montre
un couplage différemment dans les mesures, et les premières expériences suggèrent que
certains réseaux de neurones peuvent distinguer ces deux types de signaux.
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– La gravité est-elle essentielle ?
– Oui, la gravité est nécessaire sinon le punch s’envole

et l’on est obligé de courir après avec le bol.

Le cœur a ses raisons
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Chapter 1

Introduction

In this introductory chapter, I briefly describe how gravitational waves naturally arise in the
framework of the General Theory of Relativity when one considers small perturbations of
the metric in an almost flat spacetime. I then explore their main properties, and their effect
on matter using the canonical example of a ring of particles. In the second part, I present
the past and ongoing efforts to observe gravitational waves and the various associated
techniques. I describe in particular detection using light interferometry used for the current
ground-based detectors LIGO and Virgo, as well as future detectors such as the space-based
Laser Interferometer Space Antenna (LISA) mission. For this last experiment, I give a brief
historical overview of the mission, as well as of the launch and success of the technological
demonstrator LISA Pathfinder. In the last section, I present the various astrophysical and
cosmological sources of gravitational waves that we expect to observe with LISA. For each
of these sources, I attempt to sketch the underlying current models, the characteristics of
the associated gravitational radiations, as well as the main measurements that LISA will
be able to perform. This gives me a good opportunity to build the science case of the LISA
mission, by outlining the scientific objectives associated with each of these sources.

1.1 Gravitational Waves

1.1.1 Rise and Fall of Newton’s Law of Universal Gravitation

For more than two centuries, Isaac Newton’s Law of Universal Gravitation has set a solid
theoretical basis for mechanics. A great number of natural phenomena, that were thought

1
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unrelated, could be explained and predicted with great precision within a unified framework.
The theory uses a few key concepts that are now the core of classical mechanics, such as
inertia, acceleration, and forces. The motion of a cannonball, that of the Moon around
the Earth, and the positions of the planets in our sky are some examples of what could be
computed using Newton’s theory of gravitation.

During the 19th century, several theoretical and observational concerns had been raised
regarding Newton’s Law of Universal Gravitation. Newton himself was uncomfortable with
the concept of instantaneous action at a distance, without any identified mediator. In
1693, he wrote [Ein93]: “It is inconceivable that inanimate brute matter should, without
the mediation of something else which is not material, operate upon and affect other matter
without mutual contact... That one body may act upon another at a distance through a
vacuum without the mediation of anything else, by and through which their action and
force may be conveyed from one another, is to me so great an absurdity that, I believe, no
man who has in philosophic matters a competent faculty of thinking could ever fall into it.”
Besides, accumulated years of astronomical observations showed that the orbit of Mercury
has a non-vanishing precession, i.e. that its perihelion advances slightly after each rotation
around the Sun. Newtonian mechanics, accounting for the influence of other planets in the
Solar System as well as the oblateness of the Sun, cannot explain this mismatch of about
43′′ (arc-second) per century.

In physics, it is a well-established procedure that two main families of hypothesis are pro-
posed when observations are incompatible with the mainly accepted theory. On the one
hand, ontological proposals attempt to resolve the theoretical discrepancy by assuming the
existence of a new entity, which is yet to be observed. Among those proposals, the presence
of an undetected planet whose mass supposedly perturbs Mercury’s orbit; after numerous
attempts to observe such a planet, this idea, like many others, was discarded. On the other
hand, legislative solutions suggest to revise or replace the mainstream theory to make it
compatible with the new observations. Among such proposed new theories, the General
Theory of Relativity provided a definitive explanation.

1.1.2 Einstein’s General Theory of Relativity

Albert Einstein proposed in 1915 [Ein15] a new interpretation of gravity, compatible with
his Special Theory of Relativity. In this framework, spacetime is no longer flat and described
by a Minkowski metric, but instead curved by its mass and energy content. The curvature
of spacetime drives in turn the trajectory of free-falling bodies. The latter follow geodesics,
or lines of shortest distance, which are no longer straight lines on a curved spacetime. One
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interprets these curved trajectories as the effect of the gravitational force. Paraphrasing a
famous John Wheeler’s quote, this is often summarized as follows: matter tells spacetime
how to curve, and spacetime tells matter how to move.

Einstein’s field equations relate the curvature of spacetime, expressed through the metric
tensor gµν , with the stress-energy tensor Tµν ,

Rµν −
1

2
Rgµν = Tµν , (1.1)

where Rµν is the Ricci tensor computed from Christoffel’s symbols, themselves functions
of the metric; R = Rµµ is the scalar curvature obtained by total contraction of the Ricci
tensor. Behind a rather simple appearance, this set of six independent scalar equations1

is complicated. Indeed, the Ricci tensor and scalar curvature depend on the metric tensor
in a nonlinear manner. Therefore Einstein’s field equations are a set of nonlinear, partial
differential equations whose complete solutions are not known without making approxima-
tions.

As expected, the General Theory of Relativity reduces to Newton’s Law of Universal Grav-
itation in the regime of weak gravitational fields and slow motions. This is a valid approx-
imation for most of the planets in our Solar System, which does not hold for the planets
orbiting close to the Sun. Einstein carried out the full relativistic computation of Mercury’s
orbit [Ein06] and found an extra perihelion precession compatible with observations made
by astronomers [Le 59]. This deviation from Newton’s theory of about 43′′ is explained by
the contribution of gravity on the geometry of spacetime, or self-force.

Although this result crowned the General Theory of Relativity as the accepted successor of
Newton’s Law of Gravitation, the development of this new theory was guided by theoretical
considerations, and in particular the Equivalence Principle. The Equivalence Principle
states that no local experiment could distinguish between an accelerated frame of reference
and an inertial frame of reference inside a gravitational field. This foundation finds its origin
in a famous thought experiment, proposed by Albert Einstein and presented in fig. 1.1: the
equations of motion for an observer in a cabin at rest on the surface of the Earth, or an
observer on a cabin far from any mass, uniformly accelerated, take the same form. Einstein,
therefore, postulated that both these situations are identical, and free-falling bodies are only
subjected to inertial motion, by contrast with Newton’s view of gravity as an external force.

1Indeed, Einstein’s field equations relate symmetric 4×4 tensors, which contain 10 components. Bianchi’s
identity reduces the number of independent equations to 6.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematics of the famous thought experiment proposed by Einstein, to illustrate
the Equivalence Principle. On the left-hand side, an experiment is performed in a cabin
immersed in the Earth gravitational field. On the right-hand side, the same experiment
is performed in a uniformly accelerated cabin, far from any mass. The results of both
experiments are identical.

1.1.3 Weak-Field Regime

Solving Einstein’s field equations (eq. (1.1)) is a notoriously non-trivial task without dedi-
cated approximations. A small number of exact solutions exist and are used in a range of
astrophysical and cosmological problems. The Schwarzschild metric, for example, describes
a spacetime containing only a static, spherical distribution of mass and is commonly used
in astrophysics. Cosmologists extensively use the Friedmann–Lemaître–Robertson–Walker
metric to describe a homogenous isotropic and expanding Universe.

Another approach to solving Einstein’s equations is to study perturbative solutions in the
regime of weak gravitational fields. We will show that the free-space solutions for a nearly
flat Minkowski spacetime take the form of a wave equation propagating at the speed of light.
These propagating waves are called gravitational waves and were predicted by Einstein
already in 1916. It was not clear at that time whether they were physical, or artifacts of
calculus; the debate has been resolved in the 1950s when the properties of gravitational
waves have been fully understood.

Let us consider a flat Minkowski spacetime, whose associated metric tensor under the
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timelike sign convention is given by

ηµν =


1

−1

−1

−1

 . (1.2)

We consider a first-order perturbation hµν with respect to this flat metric, and assume that
|hµν | � 1 for all µ and ν in the following discussion. We can find a coordinate system in
which the total metric tensor can be simply expressed as the sum of the flat metric and the
perturbation

gµν ≈ ηµν + hµν . (1.3)

Linearizing eq. (1.1) using the first-order metric defined in eq. (1.3), we obtain the evolution
equation for the metric perturbation

ηαβhµν,αβ −
ηαβηµνh,αβ

2
=

16πG

2
Tµν , (1.4)

where one recognizes the universal gravitational constant G. Opting for the Lorentz gauge
condition, and considering transverse and traceless perturbations, we define the reduced
metric perturbation

h̄µν = hµν −
1

2
hααηµν . (1.5)

Inserting this reduced variable in eq. (1.4) yields wave solutions of the metric perturbation,
propagating at the speed of light c,

ηµν∂µ∂ν h̄µν =
16πG

c4
Tµν . (1.6)

We call gravitational waves these propagating solutions in free space.

1.1.4 Properties of Gravitational Waves

In this section, we explore the properties of solutions to eq. (1.6). In general, Fourier
analysis shows that every solution can be expressed as a superposition of monochromatic
plane waves, propagating at c. Let us consider one unique plane wave,

h̄µν = Aµν exp(ikαx
α) , (1.7)

where Aµν is the (complex) wave amplitude, and kα the wave vector.
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Aµν is a symmetric 4 × 4 tensor, and is therefore described by 10 independent compo-
nents. It follows from the Lorentz gauge condition that Aµαkα = 0, leaving 6 independent
components for Aµν . This number can be further reduced using the remaining 4 degrees
of freedom in our gauge choice. Opting for the traceless and transverse gauge yields the
equality hµν = h̄µν , and only 2 independent components remain.

In this gauge, the wave is transverse and non-vanishing components of the wave amplitude
are perpendicular to its propagation direction. If we consider a gravitational wave prop-
agating along the z-direction, we are left with 4 non-vanishing components Axx, Axy, Ayx
and Ayy. By symmetry of the wave amplitude, and because its trace must cancel, we have
two conditions

Axy = Ayx and Axx = −Ayy . (1.8)

These two independent components are assimilated to two polarization states of the gravi-
tational wave, denoted h+ and h× for reasons that will become obvious in section 1.1.6.

A standard polarization basis is formed by{
e+ = êx ⊗ êx − êy ⊗ êy, e

× = êx ⊗ êy + êy ⊗ êx
}
, (1.9)

so that we can write the metric perturbation

hµν = h+e+
µν + h×e×µν , (1.10)

or in a matrix form

h̄µν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.11)

Like electromagnetic waves, it can be shown that gravitational waves carry away energy,
linear momentum, and angular momentum. As we will see in the next sections, this has
important consequences for astrophysical gravitational wave sources.

However, unlike its electromagnetic counterparts, gravitational waves are hardly affected
by matter. Electromagnetic waves can suffer lensing, scattering, or absorption, while grav-
itational waves follow their geodesics essentially unaffected. As we will see in section 1.3,
their interaction with matter is indeed very weak because of their very small amplitude.
The back-effect of the matter on gravitational waves is of the same order of smallness.
This property makes gravitational waves highly prized messengers, carrying information
from sources located in very distant regions of the Universe. We can detect them at a
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great distance and from the first seconds after the Big Bang, through dust clouds or galaxy
centers.

Gravitational waves exhibit a shift of wavelength and frequency due to the relative velocity
of the source and the observer. In particular, they are redshifted due to cosmic expansion.
It is important to keep in mind this phenomenon when characterizing distant astrophysical
sources with the received gravitational signals.

1.1.5 Effect of Gravitational Waves

Let us define a frame of reference, in which we consider a free particle at rest. We describe
its four-velocity Uα according to the transverse and traceless gauge. The particle is free-
falling, and therefore satisfy the geodesic equation

dUα

dτ
+ ΓαµνU

µUν = 0 , (1.12)

where τ is the proper time.

The particle is initially at rest, i.e. Uα = δαt , and we can write the initial acceleration of
the particle as

dUα

dτ

∣∣∣∣
0

= −Γαtt = −1

2
ηαβ
(
∂hβt
∂t

+
∂htβ
∂t
− ∂htt

∂β

)
. (1.13)

From eq. (1.11), we find that all components of the gravitational wave that appear in the
previous equation vanish, and therefore

dUα

dτ

∣∣∣∣
0

= 0 . (1.14)

Hence the coordinates of a free particle initially at rest will never change when they are
expressed in the transverse and traceless gauge. As a gravitational wave passes, our coordi-
nate system adapts itself to the ripples in spacetime, so that the particle remains attached
to the same position.

This does not provide any geometrical information about spacetime, and we will instead
study the proper distance of two nearby particles initially at rest. One is at the origin of
the coordinate system, and the other has the spatial coordinates x = ε, y = z = 0. The
proper distance between the particles is given by

∆l =

∫ √
|gµν dxµ dxν | =

∫ ε

0

√
|gxx| dxx . (1.15)
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If ε is very small with respect to the characteristic length of evolution of the metric, we can
approximate

∆l ≈
√
|gxx(x = 0)|ε (1.16)

Using eq. (1.3), we have gxx(x = 0) ≈ ηµν +hxx(x = 0). Expanding the square root to first
order in hxx yields

∆l ≈ ε
(

1 +
1

2
hxx(x = 0)

)
. (1.17)

In general, hxx(x = 0) is not constant so that the proper distance between our free-falling
particles varies with time as a gravitational wave passes. This is why the effect of grav-
itational waves is often compared to that of a tidal force. Gravitational-wave detectors
essentially attempt to measure this change in the proper distance between two test bodies.

1.1.6 Ring of Particles and Polarization States

The effect of gravitational waves is often illustrated by the deformation of a ring of test
particles. Let us generalize the previous result, by defining the four-vector ξµ which connects
two free particles. It can be shown that in the weak-field regime, and assuming that the
proper time is approximately the time coordinate,

∂2ξα

∂t2
= RαµνβU

µUνξβ , (1.18)

where Uµ is the four-velocity of the particles.

We suppose that the first particle is initially at rest at the origin, and the other on a circle
of radius ε centered on the first particle, with an angle θ defined in fig. 1.2. We initially
have Uµ = (1, 0, 0, 0)T and ξα = (ε cos θ, ε sin θ, 0, 0)T . eq. (1.18) reduces to

∂2ξα

∂t2
= ε cos θRαttx + ε sin θRαtty . (1.19)

Working in the transverse and traceless gauge, we can use the non-vanishing components
of the metric perturbation to compute the Riemann tensor. Finally, the separation vector
for the two particles obey the differential equations

∂2ξx

∂t2
=

1

2
ε cos θ

∂2hxx
∂t2

+
1

2
ε sin θ

∂2hxy
∂t2

, (1.20)

∂2ξy

∂t2
=

1

2
ε cos θ

∂2hxy
∂t2

− 1

2
ε sin θ

∂2hxx
∂t2

. (1.21)
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z 

Figure 1.2: The separation vector ξα connects a particle initially at rest at the origin, and
a second particle on a circle of radius ε and centered at the origin.

In the transverse and traceless gauge, we can write for a plane wave propagating along the
z-direction,

hxx(t) = h+ cos[ω(t− z)] , (1.22)

and
hxy(t) = h× cos[ω(t− z)] . (1.23)

Inserting these expressions in eqs. (1.20) and (1.21), we can identify the solution, which
reads

ξx = ε cos θ +
1

2
ε cos θh+ cos(ωt) +

1

2
ε sin θh× cos(ωt) , (1.24)

ξy = ε sin θ +
1

2
ε cos θh× cos(ωt)− 1

2
ε sin θh+ cos(ωt) . (1.25)

The parameter θ is a free-running variable so that we can study the effect of the passage of
a gravitational wave, propagating along the z-axis, on a ring of test particles. If the wave
has h+ 6= 0 and h× = 0, we have

ξx(t) = ε cos θ

[
1 +

1

2
h+ cos(ωt)

]
and ξy(t) = ε sin θ

[
1− 1

2
h+ cos(ωt)

]
, (1.26)
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x 

y 

z 

(b)

(a)

Figure 1.3: Effect of a gravitational wave propagating along the z-axis, on a ring of free
particles. (a) show the effect of the “plus” polarization state, and (b) the effect of the “cross”
polarization state.

We understand that the ring has its proper distances increased along the x − axis and
reduced along the perpendicular y − axis for a half-period, and conversely for the second
half-period. This is illustrated in fig. 1.3. This study justifies the naming of this “plus”
polarization state, and the notation h+ for the related wave amplitude components.

Now if we consider a wave such that h+ 6= 0 and h× = 0, the separation vector reads

ξx(t) = ε cos θ +
1

2
ε sin θh× cos(ωt) , (1.27)

and
ξy(t) = ε sin θ +

1

2
ε cos θh× cos(ωt) . (1.28)

The relationship between this solution and the “plus” polarization state becomes clear if we
define a new set of axes (x′, y′), rotated by −π/4 with respect to the original coordinate
axes. We then have

x′ =
1√
2

(x− y) and y′ =
1√
2

(x+ y) . (1.29)

Using these expressions, one finds that in this new coordinate system, the separation vector
has the same form as in eq. (1.26), up to a rotation of π/4,

ξ′x(t) = ε cos
(
θ +

π

4

)[
1 +

1

2
h× cos(ωt)

]
, (1.30)
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Figure 1.4: Gravitational spectrum, with the frequency bands associated with the main
sources of gravitational waves, and the main three detection techniques.

and

ξ′y(t) = ε sin
(
θ +

π

4

)[
1− 1

2
h× cos(ωt)

]
. (1.31)

This justifies why this polarization state is therefore called the “cross” polarization, and
associated wave amplitude components are denoted h×.

1.2 Detection of Gravitational Waves

1.2.1 Gravitational-Wave Astronomy

The first astronomical observations were originally conducted with naked eyes, using the
visible light. During the second half of the 16th century, Galileo Galilei notably used
telescopes to enhance the quality of these observations, and today we have access to high-
precision telescopes. However, visible light only represents a small fraction of the entire
electromagnetic spectrum, and not all objects in the Universe shine significantly in that
band. This became clear when the first observations using radio wavelengths, in the first
half of the 20th century, led to the discoveries of pulsars and quasars. The opening of the
microwave-band astronomy revealed the Cosmic Microwave Background, an imprint of the
Big Bang. Similarly, the development of gamma-ray, X-ray, ultraviolet and infrared astron-
omy led to new astrophysical and cosmological insights. But the gravitational spectrum
(fig. 1.4) remains untouched.

Today, the hope is that observations of gravitational waves could provide a further means
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of making new astrophysical observations. This is known as the “gravitational-wave astron-
omy”.

Gravitational waves possess two unique properties. On the one hand, gravitational waves
pass through matter essentially unimpeded, as explained in section 1.1.5. Although light
from distant objects can be blocked, e.g. by dust clouds, gravitational waves can carry
information on astrophysical objects across large distances.

On the other hand, a lot of astrophysical phenomena emit gravitational waves. In particu-
lar, the most violent processes are expected to be significant gravitational radiation sources.
They grant us access to regions that are not directly accessible with electromagnetic ob-
servations. For example, the electromagnetic radiation coming from the collapsing core of
a supernova is scattered a great number of times before it can escape the dense medium
surrounding the explosion. In the process, it loses information about the phenomenon.
On the contrary, gravitational waves travel directly from the core of the supernova to the
Earth. Let us take another example: an accretion disc is needed around binary systems of
black holes, so we can observe a signal in the electromagnetic spectrum. The detection is
therefore indirect, while the emission of gravitational waves does not require matter around
the binary system, as we will see in section 1.3.

1.2.2 Early Days of Gravitational-Wave Detection

The technical challenges in building and running a gravitational-wave detector are enor-
mous since the expected gravitational wave amplitudes are so small. The properties of
gravitational waves were well understood in the 1950s, but long technological developments
were needed before the first measurement could be made. This was achieved in 2016 by the
LIGO-Virgo Collaboration with the announcement of the first direct detection of gravita-
tional waves emitted by the merger of a binary system of black holes [AAA+16a].

The first design for a gravitational-wave detector is attributed to Joseph Weber in 1961.
He used resonant bars, solid masses vibrating at a resonance frequency when a gravita-
tional wave interacts. In the early 1970s, Weber published several papers announcing the
first detections of gravitational radiations. Follow-up investigations proved him wrong and
showed that Weber’s signal was, most likely, noise. Weber worked on improving his equip-
ment until his death, but the sensitivity could never be brought to the required level. As of
today, no firm detection could be claimed using this kind of detector. If we take reasonable
orders of magnitude for our detector, a strong resonant gravitational wave of amplitude
10−20 will excite the bar with an energy of 10−20 J. This corresponds to a vibration am-
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plitude of around 10−15 m, which is about the diameter of an atomic nucleus. Besides, the
sensitivity of such detectors is limited to a very narrow frequency band, around the bar
resonance. Only a small fraction of an astrophysical signal sweeping different frequencies
can be measured, as what is expected for binary mergers, c.f. section 1.3.2.

The first indirect evidence for the existence of gravitational waves was provided by Russell
Alan Hulse and Joseph Horton Taylor. In 1974, Hulse and Taylor detected pulsed radio
signals using the Arecibo antenna. They could identify it as a pulsar, i.e. a highly mag-
netized, rapidly rotating neutron star. PSR B1913+16 rotates on its axis 17 times per
second so that its pulse period is 59 ms. However, they observed a systematic variation in
the radio pulses’ times of arrival, as some of them arrived a little sooner than expected,
and some later. They concluded that the pulsar was in a binary system, rotating with a
companion neutron star around their common center of mass. By studying the variations in
the pulses’ times of arrival, they could estimate the orbital diameter of the binary system.
They showed that the orbital distance decays at a rate that matches the predictions of
the General Theory of Relativity: gravitational waves carry energy away from the binary
system, whose orbital distance decreases. The discovery of this system and their analysis
earned them the Physics Nobel Prize is 1993.

1.2.3 Measuring Distances with Light

As of today, the only demonstrated technique to measure the tiny variations in the proper
distance between two free-falling bodies is light interferometry. It is the detection principle
upon which all modern gravitational wave detectors are based. Given its central role in
the Theory of Relativity, light is used as a probe of the spacetime curvature. A pulse of
electromagnetic radiations is sent on a geodesic and we measure its time of arrival. We show
here that this time of arrival is affected by the passage of gravitational waves. The derivation
of this time of arrival, as well as the presentation of the various detection techniques, are
mostly taken from [Sch12, Hen07].

Let us consider two free-falling bodies, not necessarily close to each other. We assume
without loss of generality that they are placed on the x-axis, with respective coordinates
(0, 0, 0) and (L, 0, 0). We consider a gravitational wave propagating in the z-direction, with
a pure “plus” polarization. In the transverse and traceless gauge, the metric reads

ds2 = cdt2 − (1− h+) dx2 − (1 + h+) dy2 − dz2 . (1.32)

A photon emitted by the first body, and received by the second one, travels on a null
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geodesic dt2 = 0, so that the times of emission t0 and arrival t1 are given by∫ t1

t0

cdt = c(t1 − t0) =

∫ L

0

√
1− h+(t(x)) dx . (1.33)

Using the fact that the metric perturbation h+ is small, we can expand the previous equation
to first order around 1. We now have

t1 ≈ t0 +
L

c
− 1

2c

∫ L

0
h+(t(x)) dx , (1.34)

and we must express the argument of h+ as an explicit function of x. On a flat spacetime,
t(x) = t0 +x/c. Any correction due to the effect of the gravitational wave will be of second
order in h+, so that if we restrict ourselves to first-order expressions,

t1 ≈ t0 +
L

c
− 1

2c

∫ L

0
h+

(
t0 +

x

c

)
dx . (1.35)

To gain physical understanding, let us assume that the gravitational wavelength is large
compared to L. This means that h+(t0 + x/c) ≈ h+(t0) and eq. (1.35) now reads

t1 ≈ t0 +
L

c

[
1− h+(t0)

2

]
, (1.36)

so that the time of arrival is proportional to the proper distance between the two bodies,
as measured in the transverse and traceless gauge. We already obtained this result in
eq. (1.17), for two particles very close to each other.

More generally, we can differentiate the photon time of arrival t1 with respect to its time
of emission t0. Using eq. (1.36), we find that

dt1
dt0

= 1− 1

2

[
h+

(
t0 +

L

c

)
− h+(t0)

]
. (1.37)

It is remarkable to note that the rate of change of the time of arrival only depends on
the wave amplitude at the emission and reception times. The wave amplitude during the
photon’s propagation plays no role.

Let us imagine now that the first body emits a continuous electromagnetic wave at a given
frequency ν0. We can apply the previous reasoning to each “crest” of the wave, so that
the frequency of the received wave ν1 is such that ν1/ν0 = dt1/dt0. Using this result in
eq. (1.37) yields

ν1 − ν0

ν0
= −h+(t0 + L/c)− h+(t0)

2
. (1.38)
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Measuring the change of frequency, or equivalently measuring the phase of the returning
wave, provides a direct measurement of the amplitude of the gravitational wave.

In general, the vector connecting our two free-falling bodies is not in the plane orthogonal
to the direction of wave propagation. If we parametrize the former with an inclination angle
ι and the polarization angle ψ2, it can be showed that previous equations hold, with an
effective wave amplitude of

heff+ = h+ sin2 ι cos 2ψ . (1.39)

For a wave with in a pure “plus” polarization state, the effect is strongest when ι = π/2

and ψ = 0, i.e. the case studied above. On the contrary, the detector is blind to the effect
of a gravitational wave with ι = 0 or ψ = π/4.

These results can be generalized to a gravitational wave with a pure “cross” polarization,
and then to a combination of both polarization states.

1.2.4 Light Interferometry

Let us now plug some numbers in eq. (1.38). The expected gravitational wave amplitude is
of the order of 10−20. The precision required on the measurement of the photon’s time of
arrival, or equivalently, the change of frequency, if of the same order. Today, the best clocks
do not provide stability at tens of zeptoseconds and another technique should be used.

An interferometer provides a way to measure very small variations in phase or frequency.
In the Michelson setup, the light from a very stable laser source is split into two beams,
which travel in perpendicular directions. At the end of both arms, the light is reflected
onto a mirror, and travels back to recombine on a photodiode. This is illustrated in fig. 1.5
for a gravitational wave with a pure “plus” polarization.

Since the phases of the two beams are correlated, they interfere constructively or destruc-
tively depending on the optical path difference between the two arms of the interferometer.
Let us suppose that an electromagnetic wave is emitted with a frequency ν0 so that its
electric component reads

E(t) = Aej2πν0t . (1.40)

A beam splitter divides it into two beams of equal amplitudes propagating in perpendicular
directions. The beam propagating along the x-axis bounces off the first mirror, and reaches
back the beam splitter. Using eq. (1.38), and setting the phase reference to zero at the

2Refer to section 3.2.6 for details about the source parametrization.
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x 
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z 

Figure 1.5: Schematics of a Michelson interferometer when a gravitational wave with a pure
“plus” polarization propagates along the z-axis.

beam splitter, the contribution of this beam to the total electric field reads

E1 =
j

2
Aej4πLν1 =

j

2
Aej4πLν0(1− 1

2
[h+(t0+2L)−h+(t0)]) , (1.41)

and similarly for the beam propagating along the y-axis, we have

E2 =
j

2
Aej4πLν0(1+ 1

2
[h+(t0+2L)−h+(t0)]) . (1.42)

The power at the photodiode is the squared sum of these two contributions, and reads

P = |E1 + E2|2 =
|A|2

2

[
1 + cos

(
4πLν0[h+(t0)− h+(t0 + 2L)]

)]
. (1.43)

When a gravitational wave in a pure “plus” polarization state passes through our equal-arm
Michelson interferometer, the power at the photodiode is modulated by the difference of
the wave amplitude at splitter time and recombinaison time, scaled by the interferometer
armlength.

Let us estimate the orders of magnitude entering this last formula, and assume that the
interferometer armlengths are of the order of the kilometer, i.e. L ≈ 103 m, and that
the laser frequency is at the tens of terahertz, ν0 ≈ 1014 Hz. For an wave amplitude of
h+ ≈ 10−20, the contrast is given by

κ =
P − P0

P0
≈ cos(4πLν0h+) ≈ 99.992 % , (1.44)
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which can be measured. Of course, this contrast is proportional to the armlength, and
increasing it is a straightforward way to enhance the detector sensitivity.

1.2.5 Ground-Based Observatories

The LIGO and Virgo interferometers are gravitational-wave observatories based on the
technique presented in section 1.2.4. As of today, they are the only instruments that
succeeded in the direct detection of gravitational signals.

The Hanford and Livingston LIGO Observatories are Michelson light interferometers with
4 km-long armlengths, located in the United States. Semi-transparent mirrors are used in
both arms to create Fabry-Perrot cavities so that the effective optical path lengths are larger
than the “physical” armlengths, represented in fig. 1.6. The interferometer is calibrated
on the dark fringe. Thus the power is zero at the photodetector. When a gravitational
wave passes, the power does not vanish and its value is a direct measurement of the wave
amplitude.

The Virgo Observatory is a gravitational-wave detector run by a French-Italian collabora-
tion, located in Cascina, Italy. Its design is very similar to that of the LIGO detectors,
although the physical armlengths are three-kilometer long. An aerial photograph of the
facilities is presented in fig. 1.7.

On the 11 February 2016, the LIGO-Virgo Collaboration announced the first direct detec-
tion of gravitational waves [AAA+16a], opening the era of gravitational-wave astronomy
(c.f. section 1.2.1). The signal GW150914 was detected in full coincidence in both LIGO
observatories on the 14 September 2015, with a slight delay corresponding to the time of
flight between the two detectors. The signal was shown to be fully compatible with the
signal expected from the merger of two black holes, with masses of 35 and 30 solar masses,
in a binary system at a luminosity distance of around 440 Mpc from us. For their work
leading to this discovery, Barry Barish, Kip Thorne and Rainer Weiss were awarded the
2017 Nobel Prize in Physics.

Shortly after the first detection, the Virgo instrument joined LIGO in the search for grav-
itational events. GW150914 was followed by many other events [AAA+16b, AAA+17b,
AAA+17a]. On the 17 August 2017, a signal compatible with a neutron star binary merger
was detected for the first time by the LIGO interferometers [AAA+17c]. For this event,
electromagnetic counterparts were measured in multiple parts of the spectrum, ranging from
gamma-rays, X-rays, visible light, down to radio wavelengths. No high-energy neutrinos
burst could be associated with GW170817. Nevertheless, this event opened the promising
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Figure 1.6: Schematics of a gravitational-wave detector using interferometry. A laser
source (a) sends an electromagnetic wave, which goes through a power recycling mirror (b).
The beam splitter (c) splits the signals into two beams traveling along perpendicular arms,
4 km (resp. 3 km) long in the case of the LIGO (resp. Virgo) observatories. Free-falling
mirrors (d) create resonating cavities, which increase the effective optical path length. The
beams are recombined and go through a signal recycling mirror (e) before it reaches the
photodiode (f).
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Figure 1.7: Aerial view of the Virgo Observatory facilities in Cascina, Italy. Credits: the
Virgo collaboration.

era of multi-messenger astronomy, as gravitational-wave observations complement observa-
tions made in the electromagnetic spectrum.

In the coming years, the Japanese Kamioka Gravitational Wave Detector (KAGRA) and
the Indian Initiative in Gravitational-wave Observations (INDIGO) detector will join the
network of running gravitational-wave observatories. By simultaneous detection of the
same event on these multiple detectors, a precise location in the sky can be pinpointed for
the source of the detected waves. This will help follow-ups in other spectra, fostering the
development of multi-messenger astronomy. Third-generation observatories, such as the
European Einstein Telescope, are under study and expected to be the successors of LIGO
and Virgo detectors. They are designed to circumvent some fundamental limitations of the
current detectors but are not expected before the 2030s.

1.2.6 Shortcomings of Ground-Based Interferometry

The sensitivity of light interferometer gravitational-wave detectors is limited by the various
noises entering the measurements [MHA+16]. We review here the main sources of noise in
the running ground-based detectors and show a schematics of the LIGO noise budget in
fig. 1.8.

Below 10 Hz, the so-called gravity gradient noise couples in the measurements. The varia-
tions of the gravitational field, due to the motion of ocean waves, clouds, tectonic plates,
etc., induce a motion of the detector test mirrors. The associated signals mimic a stochastic
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Figure 1.8: Schematics of the LIGO Observatory noise budget.

background of gravitational waves and therefore constitute a noise [HT98].

At frequencies above 103 Hz, the sensitivity is limited by the shot noise, which is the quan-
tum uncertainty when counting the photons reaching the surface of the photodetector. This
fluctuation of the incident power can be misinterpreted as the passage of the gravitational
wave. Increasing the laser power reduces this noise, but increases the thermo-mechanical
coupling between the laser beams and the test mirrors. This is, therefore, a fundamental
quantum limit for interferometer detectors, although “light squeezing” techniques are being
developed to overcome it [AAA+13].

One of the main challenges for ground-based observatories is to isolate the free-falling mir-
rors from any other spurious forces. Indeed, such forces create signals in the photodetectors
which can mimic gravitational signals, or create a loud background in which the real gravi-
tational signals are lost. Staged suspensions and pendulums are used to isolate the mirrors
and decouple their motions from ground vibrations. Unfortunately, these mechanical sys-
tems are low-pass filters and ground vibrations remain the limiting factor at frequencies
below 10 Hz.

Because gravity cannot be shielded, it is natural to imagine a detector operating in space,
not subjected to seismic vibrations, and far from important gravity gradients. Because the
armlengths are not limited in space as they are on Earth (by the Earth curvature or the cost
of tunneling for example), they are chosen of the order of millions of kilometers, shifting
the frequency band of such space observatories to below 10−4 Hz and up to 0.1 Hz.
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Figure 1.9: Illustration of the LISA Pathfinder Technology Package core assembly. The two
free-falling gold-platinum test masses are enclosed in vacuum containers. The optical bench
interferometer monitors the differential acceleration between the two test masses. Credits:
ESA.

Therefore the observations of space-based detectors are very complementary to those of
ground-based interferometers. In particular, we will see in section 1.3 that both types of
observatories will not access the same astrophysical sources. The rest of this thesis focuses
on such a space-borne observatory.

1.2.7 LISA Pathfinder

The first design studies for a space-borne observatory dates back to the 1980s. Already
in these early days a technological demonstrator was foreseen to validate the critical sub-
systems for such a mission. The proof-of-concept mission LISA Pathfinder was proposed
in the early 2000s. Its objective was to prove that two test masses can fly in free fall,
untouched yet shielded by the hosting spacecraft. The so-called drag-free system ensures
that the spacecraft follows the test masses, such that they remain at the center of their
housings. Laser interferometry was used to measure deviations from geodesic motion, with
an accuracy of around 30 fm Hz−1/2 at high frequencies. LISA Pathfinder’s interferometer
was based on LISA’s local interferometer, with arms reduced from millions of kilometers to
38 cm, see fig. 1.9.
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Figure 1.10: Amplitude spectral density of the spurious differential acceleration between
the two test masses. First results published in [AAA+16c] are in blue, while the final
results from [AAB+18] are colored in red. They are both far below the LISA Pathfinder
requirements at all frequencies, and the final results are even below LISA requirements.
Taken from [AAB+18].

After significant technical delays, LISA Pathfinder was launched on 3 December 2015 on-
board a Vega rocket and placed in a Lissajous orbit around the Lagrange point L1. After
two months of scientific investigation, the first results showed that the technology developed
for space-based gravitational-wave detection exceeded the expectations [AAA+16c]. After
576 days of mission, LISA Pathfinder was decommissioned on 30 June 2017 and finally
passivated on 17 July 2017. The excellent final results [AAB+18] published in 2018, and
presented in fig. 1.10, confirmed the feasibility for a drag-free control system of a spacecraft
hosting two test masses, space interferometric measurements at the desired precision and
frequency band, as well as the reliability of the necessary components.

1.2.8 LISA, Space-Borne Observatory

Laser Interferometer Space Antenna (LISA) was proposed as a mission to European Space
Agency (ESA) in the early 1990s, and in the next decade, its design was refined to three
spacecraft in a 5 km-long triangular configuration, as NASA joined the project. In the
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2000s LISA was proposed as a joint ESA-NASA candidate for the L1 slot in ESA’s Cosmic
Vision 2015-2025 program. NASA announced in early 2011 its decision to withdraw from
the project, due to budget costs. ESA chose to push forward a descoped version of LISA.

Due to the LISA Pathfinder shifting schedule, the L1 slot was finally attributed to the
JUICE mission and the LISA mission was postponed. In 2013, ESA selected the theme
called “the Gravitational Universe” for the L3 slot. Following the first detection by the
LIGO-Virgo Collaboration (c.f. section 1.2.5), NASA announced its interest in joining back
the mission as a junior partner. Following the ESA call for mission and based on the
excellent results of LISA Pathfinder, a proposal for a 2.5 million kilometer-arm LISA was
submitted on January 2017 [DASpAh+17]. The mission was selected for the L3 slot, and
successfully underwent analysis and identification (phase 0). As of today, feasibility studies
(phase A) are conducted and coordinated by ESA, the industry, NASA, and the LISA
Consortium, to formulate a mission design and architecture compatible with the scientific
objectives. My work is part of this effort.

I will now sketch the baseline mission characteristics, as they are currently foreseen [DASpAh+17].
Although this design is subject to changes, the main choices and ideas will most probably
still apply during the future mission phases.

LISA is a European Space Agency scientific space mission, which aims to measure grav-
itational waves in the millihertz range [DASpAh+17, LL18]. LISA will consist of three
spacecraft flying in a nearly-equilateral triangle formation, which will orbit the Sun at a
distance of 1 au (astronomical unit). As presented in fig. 1.11, the constellation’s center of
mass will trail the Earth by about 20◦, and all spacecraft will exchange laser beams along
arms of 2.5× 106 km. Essentially based on the light interferometry technique described in
section 1.2.4, the exchanged laser beams are bounced on free-falling test masses inside each
spacecraft, before they are made to interfere. However, we will see in chapter 3 that LISA
uses heterodyne interferometry and the split-interferometry configuration. The test masses
are protected from external spurious forces, such that they fly on geodesics and play the
role of inertial references.

We will see in chapter 4 that the measurement along each arm can be combined in various
ways to synthesize Michelson interferometers, which are sensitive to the two polarizations
of incoming gravitational waves. Moreover, as the constellation orbits the Sun, its antenna
pattern sweeps the sky and allows for a wide field of view, as well as a good localization of
the source.

Conversely, several complications arise from the very principles of the LISA mission. It
is impossible to anchor the spacecraft in space, and therefore the armlengths will vary
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Figure 1.11: Schematics of the LISA constellation (a), orbiting the Sun (b) and trailing the
Earth (c) by about 20◦. The armlengths are 2.5× 106 km.

with time over a year. These long-term variations are at the root of multiple technical
challenges. For example, the angle at which the outgoing beams are emitted on each
spacecraft must be adjusted in real-time. Moreover, the relative motion of the spacecraft
induces a Doppler shift in the transmitted laser signals, which sets requirements on the
phasemeter and the choice of laser frequencies. Finally, we will see that unequal and
time-varying-arm interferometry demands sophisticated data processing to synthesize usual
Michelson measurements.

This thesis focuses on modeling and simulating the LISA instrument, as well as studying
the key factors affecting its sensitivity.

1.2.9 Pulsar Timing

A third technique to detect gravitational waves with frequencies below 10−6 Hz uses ra-
dio bursts emitted by rapidly-rotating, highly-magnetized neutron stars, which are called
pulsars. For some millisecond pulsars, the regularity of the pulses is higher than what it
is possible to achieve with atomic clocks. Therefore, by monitoring the deviations from
the expected times of arrival for multiple pulsars, astrophysicists hope to detect specific
patterns of correlations, which would be the sign of the effect of a gravitational wave.

Three main pulsar timing array projects are currently working on this technique, gathered
in the International Pulsar Timing Array project. As of today, no gravitational wave has
been detected but constraints on the amplitude of such waves have been set [HAA+10]. It
is expected that the accumulation of high-precision data, the improvement of the detector
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sensitivity, the use of more pulsars, the understanding of the noise and calibration, as well
as the development of new computational methods and resources will allow for the detection
of very low-amplitude gravitational waves in the next decade.

1.3 Gravitational Wave Sources and Science Goals

1.3.1 Quadrupole Formula

To understand how a system can produce gravitational wave, we build an analogy with
electromagnetic radiations. Let us define the electric dipole moment δ of an ensemble of
charges qi, with positions xi for 1 ≤ i ≤ n, by

δ =
n∑
i=1

qixi . (1.45)

The dominant effect for accelerating charges is due to the change in their dipole, as it can
be shown that the total radiated power is

Lelectric dipole ∝
d2δ

dt2
=

n∑
i=1

qi
d2xi
dt2

. (1.46)

The gravitational analog of the electric dipole moment is the mass dipole moment, defined
as

δ =
n∑
i=1

mixi , (1.47)

where mi are the rest masses of the particles. The first derivative of this mass dipole
moment, in fact the total linear momentum p, as

dδ

dt
=

n∑
i=1

mi
dxi
dt

= p . (1.48)

Since this quantity is conserved, the associated radiated power is

Lmass dipole ∝
d2δ

dt2
=

dp

dt
= 0 , (1.49)

and we deduce that there is no dipolar gravitational radiations.
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The next-order electromagnetic effects are due to a change in the magnetic dipole and
the electric quadrupole moment. The magnetic dipole moment µ is defined, for the same
ensemble of particles, by

µ =

n∑
i=1

xi × qi
dxi
dt

=

n∑
i=1

xi × (qivi) , (1.50)

and the associated magnetic dipole radiation has a power

Lmagnetic dipole ∝
d2µ

dt2
. (1.51)

Following our gravitational analogy, we express the equivalent of the magnetic dipole mo-
ment for a distribution of masses,

µ =

n∑
i=1

xi × (mivi) = J , (1.52)

and we see that it is the total angular momentum of our system. Since it is a conserved
quantity, the associated radiation vanishes.

In conclusion, there can be no dipolar emission of gravitational waves because of the con-
servation of linear and angular momenta. Therefore a system cannot emit gravitational
radiation if it is spherically symmetric, and the dominant form of gravitational emission is
quadrupolar.

The mass quadrupole moment Iij is the tensor defined by

Iij =

n∑
l

ml(xilxjl −
1

3
‖xl‖2δij) . (1.53)

It can be shown [Sch12] that in the slow-motion approximation, the metric perturbation
tensor hµν at a distance r of the source is given by the so-called quadrupole formula

hµν =
2G

rc4

d2Iµν
dt2

. (1.54)

Therefore a system with a time-varying quadrupolar moment emits gravitational waves,
whose amplitude goes like the inverse of the distance to the system. For a binary system
of two spherical stars with the same mass M , in a circular orbit of radius R and orbital
frequency f , in the plane (Oxy) such that at t = 0 both objects are aligned along the
x-axis, we find from eq. (1.53) and eq. (1.54) that

h+ =
32π2GMR2f2

rc4
cos(4πft) and h× = −32π2GMR2f2

rc4
sin(4πft) . (1.55)
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Figure 1.12: Main sources expected to be detected by LISA, superimposed with the sensi-
tivity of the instrument. The time to coalescence is indicated for supermassive black hole
binary signals. Taken from [DASpAh+17].

In the following sections, we review the main astrophysical and cosmological sources that
we expect to see in the LISA band. For each of them, we briefly sketch the main models
which are used to describe the source, and then give the main characteristic of the associated
gravitational wave signals, as will be detected by LISA. In particular, we list the parameters
of interests that will be inferred from the gravitational signals. We use this opportunity to
give the associated scientific objectives that physicists hope to solve with the detection of
such sources.

Most of the materials in this section are extracted from the LISA mission proposal [DASpAh+17],
the LISA science requirement document [LL18], and the lecture notes on binary black hole
astrophysics from M. Celoria, R. Oliveri, A. SESAna, and M. Mapelli [COSM18].
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1.3.2 Compact Galactic Binaries

The gravitational signals of millions of compact binary systems from our Galaxy are ex-
pected to be detected by LISA [NYZ01]. They mainly consist of white dwarves, neutron
stars, stellar-mass black holes, or combinations thereof, orbiting around each other in quasi-
circular orbits. These objects have masses less than a million of Solar masses3, and a small
mass ratio. Because they are in their early inspiral phase, the energy lost by gravitational ra-
diation is not important enough to have a noticeable impact on the orbital radius. Therefore
we expect that these systems will emit continuous, quasi-monochromatic gravitational-wave
signals. They are often modeled with a constant frequency f0 = 2/Porbital, which is twice
the inverse of the orbital period (see section 1.3.1). In the non-relativistic case, the Kepler
laws yield a gravitational signal frequency

f0 =

√
GMtotal

π2R3
, (1.56)

where Mtotal is the total mass of the system, and R the separation between the two bodies.
We sometimes add a non-vanishing first derivative of the frequency to the model.

The amplitude of such a binary system can be numerically approximated [Pet08] to

h ≈ 6× 10−21

(
1 kpc

d

)(
Mtotal

M�

)5/3( f0

1 Hz

)2/3

q , (1.57)

where d is the source luminosity distance, Mtotal = M1 +M2 the total mass of the binary,
and q = M1M2/Mtotal the mass ratio between 0 and 1/4 for equal masses. For LISA, we
can see that such binary systems can be detected up to a few kiloparsecs, which limit the
detection to the galactic region.

The heaviest galactic systems, such as neutron star or black hole binaries, will appear
with frequencies above 1 mHz. Since most of the estimated mass distribution functions for
compact objects drop for larger masses, the number of such systems per frequency bin is low
(around 1, with an integration time of 1 yr according to [NYZ01]). Consequently, we expect
to perform individual analyses to extract their signals and provide good estimates of their
parameters. Below 1 mHz, a large population of about 3× 107 white dwarf binaries will
produce a superimposition of gravitational signals. We expect they will form a stochastic
confusion background of non-resolvable sources, apart from a few systems with high signal-
to-noise ratios. An iterative procedure to extract loud galactic binaries from this confusion
background is foreseen but remains to be demonstrated with realistic data.

3A good order of magnitude to keep in mind is that 1 M� ≈ 2× 1030 kg.
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We expect to measure the orbital periods of about 25 000 resolved systems with great ac-
curacy, by integrating their signals over long periods. Similarly, we will measure the chirp
masses and orientations of the most massive, highest-frequency and closest compact galactic
binaries. Besides, the orbital motion of LISA will provide an estimate of their sky localiza-
tions with a 1 deg2 precision. These measurements allow to work out distribution functions
and help discriminate between the formation and evolution scenarios of our Galaxy.

As of today, we know from X-ray observations more than 15 neutron star binaries in our
Galaxy, whose parameters have been measured. We are confident that LISA will be able
to detect their gravitational-wave signals. Since they will serve to check the quality of the
instrument as soon as it will be turned on, we call those sources “verification binaries”, and
many more will be discovered in the coming years, thanks to surveys such as Gaia or LSST.

Joint observations in the electromagnetic spectrum will also help understand the physical
processes at play in compact binary systems, and in particular, the tidal forces exerted
which we expect to play a role in energy dissipation necessary to bring the bodies close
enough so that they merge.

1.3.3 LIGO-Type Black Hole Binaries

We don’t expect any compact galactic binary to merge in the LISA frequency band. How-
ever, the recent detections of merging stellar-mass black hole binaries by ground-based
interferometers (c.f. section 1.2.5) opened new possibilities for gravitation-wave multi-band
astronomy. Joint observations of gravitational waves at millihertz frequencies and second or
third-generation ground-based detectors around tens of Hertz could maximize the science
returns [Ses16, SBK+19].

Indeed, during their early inspiral phase, binary systems of objects of a few tens of solar
masses will emit gravitational waves in the LISA band years before they are detectable by
the ground-based detectors. During this time, it will be possible to estimate their param-
eters, some of which cannot be measured around the merger. In particular, their eccen-
tricities, sky locations and times to coalescence will be estimated to good precision. With
this information, we can make sure that ground-based gravitational-wave observatories are
up and running, and tuned for these specific events. In the perspective of multi-messenger
astronomy, this allows pointing electromagnetic telescopes in the correct direction. Astro-
physicists hope to disentangle between different formation channels. To do so, the mea-
surements of the system eccentricities obtained in the early inspiral phase will be combined
with the spins obtained at the merger [BRL+16].
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1.3.4 Supermassive Black Hole Binaries

Supermassive black holes, with masses of millions or billions of solar masses, are expected
to be found at the center of most galaxies. Accretion of gas around such objects is the
process that we think is responsible for powering quasars and other types of active galactic
nuclei. The latter is detected at cosmological distances in many parts of the electromagnetic
spectrum.

In the case of the Milky Way, the detection of bright infrared and X-ray flares [SOG+02],
as well as the observation of a number of stars orbiting very close to the Galactic cen-
ter [SOG+02, GET+09], points towards the existence of a supermassive black hole of about
4 million solar masses, dubbed Sagittarius A*. More recently, the GRAVITY Collaboration
measured the gravitational redshift of the S2 star near its periapsis and found that it is
compatible with the theoretical predictions for Sagittarius A* [GAA+18]. In April 2019,
the Event Horizon Telescope project released for the first image of a supermassive black
hole. M87* lies at the center of the M87 galaxy more than 16 pc away from our Galaxy,
and has a mass of six billion solar masses [AAA+19].

We have observational evidence and theoretical hints that such objects can form binary
systems, i.e. when two galaxies hosting supermassive black holes merge. Supermassive
black hole binaries emit high signal-to-noise ratio transient gravitational signals, lasting
from years to days in the LISA frequency band. We expect that LISA will detect a few
supermassive black hole binary mergers per year [KBS+16], up to very large redshifts, that
is almost anywhere in the Universe. This is illustrated in fig. 1.12.

It is generally accepted that supermassive black holes descend from seeds at large redshifts,
as no known physical process can form black holes of millions of solar masses. While
the observation of supermassive black holes at a redshift larger than 7 favors an early
formation and rapid growth, the precise origin and evolution of supermassive black holes
in cosmological timescales lack convincing models.

Three main formation scenarios have been proposed [Vol10, KBS+16]. In the first picture,
metal-free molecular clouds collapse without fragmentation, to give birth to Population III
stars of thousands of solar masses. These metal-free stars leave remnant black holes of
similar masses at the end of their lives, and these light seeds grow through the accretion of
the surrounding halo and successive mergers. This scenario is now questioned, as Popula-
tion III stars may not be as massive as previously thought, and therefore might not settle
in the center of protogalaxies. The second scenario gathers various models, in which the
most massive protogalaxies accrete gas from the cosmic web at a very high rate. The direct
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Figure 1.13: Contours of constant signal-to-noise ratios in LISA, for supermassive black
hole binaries with a mass ratio of 0.2. We plot these contours as a function of the total
mass in the source frame, and the redshift. Reproduced from [LL18].
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collapse of these gas clouds leads to the formation of heavy black hole seeds, with masses of
tens of thousands of solar masses. Lastly, it is proposed in the third scenario that compact
clusters of massive stars are a common occurrence at large redshifts. Such clusters can be
subject to rapid segregation of the most massive stars towards its center before a significant
mass loss, leading to runaway mergers. This leaves a single star at the center of the cluster,
which ends its life as a black hole of hundreds to thousands of solar masses.

Combining a precise measurement of the luminosity distance with an accurate localiza-
tion for high signal-to-noise ratio signals, we can identify the galaxy cluster hosting the
supermassive black hole binary system. Therefore, we have access to the redshift, and thus
an estimate of the Hubble constant H0 as well as other cosmological parameters. Finally,
the motion of the two supermassive black holes provides a check of the General Theory of
Relativity in the strong-field regime.

We expect LISA to detect supermassive black hole binaries up to redshifts larger than 10,
yielding information about today’s supermassive black hole seeds and their merger history.
The measure of the parameters of such systems, and in particular redshifted masses and
spins, will help discriminate between different formation channels.

1.3.5 Extreme Mass-Ratio Inspirals

As described in section 1.3.4, we expect that the nucleus of most galaxies is composed of
a few-parsec-large cluster of millions of stars orbiting a central supermassive black hole.
A star cannot form a binary system with an inspiral phase, as it is torn apart as soon
as it passes near the central body. However, other compact objects are expected to form
such systems. We call Extreme Mass-Ratio Inspiral (EMRI) the long-lasting plunging of a
stellar-mass black hole into the supermassive central object. The mass ratio of such binary
objects is around 104 or higher, hence perturbation theory must be used to study their
dynamics. We expect that the light object describe 105 to 106 highly relativistic orbits
before coalescence, with very large periapsis precessions [ASGF+07].

EMRIs are expected to emit in the LISA frequency band continuous year-long gravitational-
wave signals, composed of multiple harmonics that encode the orbit of the light compact
object. These harmonics will typically be buried into the instrumental and confusion noise
(c.f. fig. 1.12), and a dedicated analysis technique must be used to extract EMRI gravi-
tational signals. The formation and evolution processes of galaxy nuclei are not well con-
strained, and the merger rate has very large uncertainties. Pessimistic scenarios expect that
one EMRI will merge in the LISA band per year [ASGF+07], while optimistic estimates
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predict a few million per year [BGS+17].

With the detection of EMRI gravitational signals, we can follow closely motion of the light
body, and therefore deduce the mass and angular momentum of the central body. These
measurements help set constraints on the formation and evolution of supermassive black
holes and galaxies, as described in section 1.3.4. In addition, they allow for an accurate
mapping of spacetime in the vicinity of the supermassive black hole. This is a unique
opportunity to perform tests of the General Theory of Relativity in the strong-field regime.

1.3.6 Extreme Mass-Ratio Bursts

In the previous section, we described the continuous gravitational signals associated with
extreme mass-ratio systems in their inspiral phases. Such systems initially evolve from more
eccentric orbits, resulting from the scattering of a compact object in the galactic core on
the central supermassive black hole [BG13]. Such a process does not appear in LISA as a
continuous signal, but as a burst of gravitational radiations when the compact object passes
near its periapsis. We call such a transient signal an extreme mass-ratio burst (EMRB).
It is important to note that all EMRBs are not expected to evolve to become EMRIs, as
the compact object can plunge directly into the central body, or be scattered away. The
detection rate in LISA for such events is currently estimated at one per year [BG13].

1.3.7 Processes from the Relativistic Early Universe

Various processes from the early Universe epoch may lead to gravitational wave sources.
One property of great interest is that these gravitational radiations propagate freely in the
early Universe, immediately after they are produced. Thus they carry valuable information
about the state of the Universe at epochs inaccessible through other means.

Gravitational-wave sources from the early Universe typically lead to stochastic backgrounds
of gravitational waves today. In that case, hij is a random variable, and one must perform
statistical analyses to characterize the sources and extract cosmological and theoretical
information. Stochastic gravitational wave backgrounds are usually characterized by their
power spectral density evaluated at the present time Sh(f). We often use the energy density
per logarithmic frequency interval dρGW/d log f , defined such that the total energy is

ρGW =

∫
df

f

(
dρGW

d log f

)
. (1.58)

We review here the main mechanisms that LISA could detect [CF18, Buo03].
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Amplification of Vacuum Fluctuation during Inflation

The inflationary period is an early phase of accelerated expansion, introduced to solve
the shortcomings of the hot Big Bang model, namely the horizon and flatness problems.
Besides, it provides an elegant explanation for the large-scale structures that we can observe
today. During inflation, the quantum fluctuations of any light field are stretched to reach
super-Hubble scales, i.e. beyond the causal radius. When the modes re-enter the Hubble
radius during the post-inflationary period, this leads to a classical, though the stochastic,
scale-invariant background of gravitational waves.

This is an irreducible gravitational wave emission that is expected for any inflationary
model, including the most widely accepted single-field slow-roll model. However, these
gravitational waves leave an imprint of the cosmic microwave background B-modes. Current
constrained, associated with the slow-roll model, show that the amplitudes of such stochastic
gravitational-wave background are too small to be detected by LISA.

Some other models predict stochastic backgrounds with higher amplitudes other spectral
shapes. This is, for instance, the case if additional fields intervene during the inflationary
period, leading to strong particle creation. Spectator fields can also produce gravitational
waves if they have time-dependent subliminal propagation velocities during inflation. An-
other possibility is that new symmetries give a non-vanishing mass to the graviton. Lastly,
modified theories of gravity at play during inflation could produce a much louder stochastic
background of gravitational waves.

Reheating

After the inflationary period, the particle number density has been diluted away by the
exponential stretching of space. To explain the current state of the Universe, we assume
that it undergoes a period of particle creation, called the reheating stage. Particle creation
is modeled by coupling the inflaton to the matter fields of the standard model. If we imagine
non-perturbative coupling mechanisms, this process does not only reheat the Universe but
can also create a large number of gravitational waves in the form of a stochastic background.

First-Order Phase Transitions

During the adiabatic expansion of the Universe, its temperature has decreased, and it
might have undergone several phase transitions, some of them predicted by the standard
model of particle physics. Several processes related to first-order phase transitions can
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create gravitational-wave backgrounds, which carry precious information about the physics
of these phase transitions.

Indeed, a phase transition describes the spontaneous breaking of some symmetry. A new
energy-favorable vacuum state, called the true vacuum, appears with an energy lower than
that of the previous state, called the false vacuum. The transition to the true vacuum
is not instantaneous in the Universe but triggered by the nucleation of bubbles of true
vacuum. These bubbles grow in size because of the pressure on the domain walls enclosing
the bubbles, and the latent heat is released to the medium. This energy can heat the
surrounding primordial plasma, but it also accelerates the domain walls up to the speed
of light. If we safely assume that the field driving the phase transition is coupled to the
matter fields, then a part of the latent heat is converted to the bulk motion of the plasma.

Because spherical bubbles yield to spherical plasma motions, they do not produce any
gravitational waves. But as the bubble grow to fill up the entire Universe, they collide and
lose their spherical symmetry, and so do the domain walls and the plasma bulk motion.
Since can be a source of a stochastic gravitational-wave background. The characteristics of
this stochastic background depend on the temperature at the time of the transition. This
drives the size of bubbles and their collision dynamics, as well as the latent heat, i.e. the
energy density released during the phase transition and partially converted to gravitational
waves. As a result, the amplitude density of the gravitational background.

Cosmic Defects

We defined in the previous section a phase transition as a spontaneous breaking of symmetry,
yielding the conversion of an unstable state to a more energy-favorable state. During such
transitions, topological defects of various dimensions can arise, such as strings, monopoles
or textures. We call these defects cosmic defects.

Cosmic strings are a well-motivated case of cosmic defects for particle physics, and they may
produce gravitational waves through several mechanisms. Indeed, they are one-dimensional
objects characterized by their linear energy density, which form loops of all sizes up to super-
Hubble scales. This is illustrated in fig. 1.14. Because there is no observational evidence of
the existence of cosmic strings today, they must have decayed in the past if they exist at
all. The main decay channel is the emission of gravitational waves. Indeed, super-Hubble
strings can intersect to produce small loops, oscillate at relativistic frequencies, radiate
gravitationally, shrink and eventually evaporates. This phenomenon creates a stationary
stochastic gravitational-wave background.
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(a)

(b)

(c)

(d)

Figure 1.14: Schematics of two cosmic strings intersecting (a), and forming a loop (b). This
loop decays by radiating away gravitational waves (c), until its disappearance (d).

In addition, strong bursts of gravitational waves are expected to be generated by cusps and
kinks. These events are produced by loop shape discontinuities, which propagate along the
string at the speed of light. The amplitude of such signals depends on the tension and the
string size; in some models, cusps and kinks can be detected by LISA.



Chapter 2

LISANode

Designing, developing, and building a community of users and contributors around a flexible
and realistic simulator for LISA is one important part of my work. It matches one of the
main objectives of the LISA Simulation Working Group and fulfills the needs expressed by
multiple groups inside the LISA Consortium, expressed in section 2.1.1. In this chapter,
I first outline these needs in the form of draft requirements and use them to justify the
main software design choices. The simulator software architecture and the main algorithms
driving its execution are then described.

The project is accessible for full members of the LISA Consortium at https://gitlab.
in2p3.fr/j2b.bayle/LISANode. A Wiki accompanies the codebase, and provides the user
with a Getting Started manual, as well as detailed descriptions of the software. It is still a
living project, with multiple contributors, and the current state of the project might differ
from what is described in this chapter.

2.1 General Background

2.1.1 Need for a Simulator

LISA is a complex instrument, where measurements couple at many points with noise
sources, some of which present non-linear behavior. Therefore the raw measurement signals
correlate in complicated ways, which is hard to capture with simple analytical models. Plus,
numerous calibration and data processing algorithms are required to produce science data,
which can be used to answer astrophysical, cosmological and theoretical questions. These
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processing steps add other levels of complexity and correlation in the data channels.

According to ESA’s nomenclature, LISA is currently in an early phase of its development.
The LISA Consortium aims to explore various instrumental configurations to identify and
select the best alternatives. Design studies are therefore conducted to assess the instru-
mental and science performance, and build a realistic noise budget. The role of the LISA
Simulation Working Group is to provide performance and physical models for critical sub-
systems. Flexible simulation software is undeniably a key asset for this task.

Because it implements the most recent physical models, such a tool can generate realis-
tic data, close to what we expect to receive from the instrument when it flies. Having
such data allows to check the data processing algorithms foreseen for the mission, assess
their performance, and develop new ones if required. Realistic data is also necessary to
study noise propagation and correlations, in particular in non-linear subsystems such as
controllers. Lastly, it can be used to test the first analysis pipelines actively developed by
the LISA Data Processing Group. Also, it can be integrated into the LISA Data Challenge
dataset to evaluate the resilience of data analysis algorithms to several instrumental and
calibration defects.

As we see, several ongoing activities of the LISA Consortium call for the immediate devel-
opment of a flexible and realistic mission simulator. The latter must be able to generate
measurement data, as well as execute a list of calibration algorithms. Since the exact spec-
ifications for an end-to-end mission simulator remain to be defined, and its development is
not foreseen in the immediate future, the simulator that is being developed cannot be iden-
tified as the mission end-to-end simulation software. However, it can serve as a prototype:
it enables us to gather the first requirements, to test a software architecture, and to build
a community of scientists and developers.

2.1.2 Previous Simulators

LISANode is not the first nor the only simulator for LISA, for it draws its inspiration
from other software that has been developed over the last fifteen years. I sketch here the
features and limitations of the main simulation software which were used, along with the
main findings that they enabled.

SyntheticLISA is a Python-based simulator developed by M. Vallisneri [Val05b]. It works
in the time domain and uses an idealized and today out-of-date instrumental configuration
to study the performance noise reduction algorithms for a constellation with time-varying
armlengths, c.f. chapter 4.
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LISASimulator was developed by N. Cornish to quickly generate LISA measurement data [RCP04].
The simulator works exclusively in the frequency domain and is based on transfer functions
for a simple instrumental model of LISA.

At the time this Ph.D. work started, LISACode was the main simulation tool used by the
LISA Simulation Working Group. LISACode takes advantage of the efficiency of C++,
as well as the flexibility that such an object-oriented language offers. Indeed, a small
number of classes represent high-level models of the main subsystems, gravitational wave-
forms, and instrumental noises. These classes are then connected to generate the response
of the instrument to gravitational waves. This structure and the use of human-readable
configuration files enable us to study a certain number of setups in a limited pre-defined
configuration space. Besides, LISACode enables an easy generation of scientific products,
such as sensitivity curves, signal-to-noise ratios, or parameter estimations.

However, LISACode does not exhibit a clear separation between the telemetry data, and
the pre-processed calibrated time series. Moreover, the simulation scheme is hard-coded,
and changes beyond simple adjustments of values are difficult. Indeed, an ominous object
controls the simulation, configures and connects the different modules, and imposes the
sampling rate. Although the project is now integrated with a collaborative development
toolchain, such as Gitlab and Jenkins, contributing to the project remains hard and the
learning curve is steep.

2.1.3 Simulation Requirements

LISANode must be designed with the following principles in mind: it must first exhibit
high flexibility and modularity, as the mission specifications evolve quickly. This includes
the possibility to fine-tune the simulation parameters and general structure, to study the
different instrument setups, as well as the use of multiple timescales and sampling rates.
This also enables us to refine models for subsystems without changing the general struc-
ture of the simulation, or interface LISANode with other tools dedicated, for example, to
generating orbits or gravitational waveforms.

The simulator must also demonstrate good performance since one wants to generate a few
years of data in a significantly shorter amount of time. The simulation timespan, including
its duration and the start and end dates, must be adjustable. The entire execution of the
simulation should be monitored, and intermediary products should be made available to
perform sanity checks and re-run only parts of the simulation.

Lastly, LISANode should be as user-friendly as possible, as a large community of users,
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Figure 2.1: LISANode framework capabilities.

ranging from software engineers, instrumentalists, to astrophysicists, will eventually use it.
LISANode must be portable to most platforms, and in particular, deployed on clusters to
perform large simulations. The definition of its structure and the main algorithms must be
language-agnostic, although its implementation will, of course, be based on a given set of
languages, namely C++ and Python as explained below. The aim is to build a community
of contributors and users around the simulator, and therefore contribution should be made
easy with the use of collaborative development tools such as Gitlab, Wikis, or Continuous
Integration, and an adopted contribution workflow. A clear documentation and user manual
should be made available, and the code itself must be self-documented with references to
the underlying models or numbers.

We present in fig. 2.1 the simulation chain, from the generation of the constellation orbits
and the waveforms, the core instrumental simulation, the processing algorithms including
Time-Delay Interferometry (TDI) and calibrations, down to data analysis which delivers
the science products. LISANode must provide a unified framework that allows for the in-
strumental simulation and delivers telemetry data (L0 data), as well as the data processing
algorithms (L1 data). It must be able to either generate simple orbits and waveforms for
quick standalone analysis or read data generated with external software. There must be a
very clear separation between the simulation of the instrument, and the on-ground process-
ing, so that no information other than telemetry is communicated between the two. This
strict restriction allows for realistic demonstrations of the performance of these processing
algorithms.

The LISA End-to-End Performance Requirements Document [LIS19b] gathers the require-
ments for an end-to-end simulator. This document has been prepared using the experience
gained from the development of LISANode, and conversely, the development of LISANode
was largely inspired by this document. Its software architecture, described in the next
section, fulfills most of the functional requirements, and in particular:
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• The simulation time can be adjusted from hours to years.

• The simulation must not prevent implementing non-linear effects.

• Multiple and arbitrary sampling frequencies can be used.

• Simulation products must adopt an open data format.

• The simulator can be built using open-source software, and support multiple platforms
(Windows, macOS, and Linux).

• Series of unit tests must be developed along with the simulator.

2.2 Software Architecture

In this section, I describe and justify the main architectural choices made to fulfill the
requirements described in section 2.1.3. The main ideas and associated algorithms that
drive the simulation are sketched, independently of the instrumental model developed for
LISA.

This section is written in the hope that it can provide a smooth entry point to anyone who
wishes to understand the simulator in depths to contribute to the project. Of course, the
end-user who simply wishes to run simulations does not need to master the inner workings
of LISANode. We refer these users to the next sections describing the instrumental model
implemented in LISANode.

2.2.1 Overview

LISANode is a flexible and general framework that can be used to build simulations. It
works exclusively in the time domain and can handle discrete time series with different
sampling rates. In the following section, we call a time-dependent data stream a signal.
Each simulation is represented in LISANode by a simulation graph, which describes the
various nodes, used to generate or transform signals, and how these signals flow from and
to the nodes. Users can compose their custom simulation graphs by assembling existing
nodes, or simply run existing predefined simulation graphs.

Formally, a graph is defined as an ensemble of interconnected nodes. Each node represents
a physical model and computes several output signals using a number of input signals, and
some model parameters. As described in detail in section 2.2.2, the interface of a node is
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indeed constituted by zero or more parameters, which can only be set before the simulation
starts, as well as zero or more inputs and outputs, which can be connected to other nodes.

On the one hand, a node can represent a very simple model, such as the addition of two
signals. In this case, we say that the node is atomic. It is defined as a C++ subclass of
Node and placed in its header file. LISANode offers a library of atomic nodes, ranging from
mathematical operations, logical gates, samplers, random number generators, deterministic
signal generators, to input/output operations, digital filters, and delay operators. We give
a list of these atomic nodes, their interface, and the underlying models in appendix B.

On the other hand, a node can itself be an entire graph, i.e. an ensemble of nodes encap-
sulated into one single opaque object. In that case, it is defined as a Python subclass of
Graph, among other graphs in a Python script. Similarly to any other nodes, its interface
is defined by several parameters, inputs, and outputs, and it can be connected to other
nodes. This nested architecture is a powerful feature that allows us to create various levels
of abstraction for complex operation, or to divide one instrument into different subsystems.
It is also used to refine a model without changing the structure of the simulation, by simply
replacing an atomic node with a much more complex graph.

When a node is used inside a simulation graph, it is given a name that uniquely identi-
fies the node. Most of the time, the node type is used, but if multiple instances of the
same type are used, these names must be different. One can access the parameters, in-
puts, and outputs of a node using a dot-chaining pattern, such as my_node.myparam, or
my_other_node.awesome_output.

LISANode can make sense of a simulation graph, unwrap the compound nodes so that only
atomic nodes remain, check the graph consistency, schedule the execution of each atomic
node, compile an executable and run it. This is illustrated in fig. 2.2. Using a single
command line, each of these steps is executed to produce the simulation products. In the
following subsection, we describe the architecture of a node, the graph analysis algorithms
performed by LISANode, and provide a brief description of the main commands provided
by LISANode.

2.2.2 Graphs and Nodes

As pictured in fig. 2.3, each type of node has a unique and descriptive name, such as Addition,
TravelTimes, or FractionalDelay. In addition, it defines an interface composed of:

• A set of parameters, which are used to adjust the model which supports the node.
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Figure 2.2: LISANode workflow. Each box represents an algorithm executed, to go from a
Python class (the simulation graph), all the way down to the execution of a software (the
simulation), and the generation of the simulation products.

The node parameters can be set before the simulation starts, but are kept constant
when the simulation is executed. They are in particular used to configure the node
or pre-compute values for efficiency.

• A set of inputs signals, used to feed the model. The node is responsible to store
the previous input samples it needs to evaluate the model. An input can be set to a
constant value or connected to another node’s output. In the last case, we call parents
the upstream connected nodes, and children the downstream nodes.

• A set of output signals, calculated from the model which supports the node. New
samples for each output are computed when the node is executed.

2.2.3 Atomic Nodes

For atomic nodes, this interface is declared in the associated C++ class, as parameters,
inputs, and outputs are member variables. Many atomic nodes use generic types <T>,
i.e. their implementations are type-agnostic. They can, therefore, be used for a large
variety of signals, and the type must be given when instances of the node are created,
such as MyNode<double> or MyNode<int>. Failing to do so will result in an error during
compilation.
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Figure 2.3: The anatomy of a fictitious node of type MyNode (a). A node defines a set
of parameters, represented by the gear icon (b), and a number of named inputs (c) and
outputs (b), which can be connected or not to other nodes.

All atomic nodes define a few common parameters, used to schedule the execution of the
simulation. Among others, the sampling frequency defines the rate at which the node is
fired, the time origin defines the timestamp associated with the first generated output sam-
ples, and the upsampling and downsampling factors are used when the sampling frequencies
of the node’s parents and children are not identical.

If needed, an atomic node stores previous samples of its input signals with a circular buffer.
This is an efficient memory structure, and its size N is defined when the node is configured.
We use the standard BOOST library implementation boost:circular_buffer<T> for efficiency
and quality. A new value is pushed into the buffer with push_front(), and previous values
are accessed with subscript notation my_input[k], with 0 ≤ k < N , so that the most recent
sample is for k = 0.

Only two methods must be implemented by an atomic node:

• prepare() is called after all parameters have been set on the node and before the sim-
ulation starts. This is where the node should configure its state, pre-compute values
to optimize its execution or throw errors if invalid parameters have been used.

• fire (time) is called during the simulation, when the node should compute one new
sample for every output signal. This is where the model that supports the node is
implemented. This method is called a large number of times during the simulation,
and a particular effort must be made to reduce the complexity of this method.
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As an example, we give below the example of the WhiteNoise node, which generates stochastic
white noise samples given an amplitude spectral density. The various parameters, inputs,
and outputs are described in more detail in appendix B.

using namespace std ;
using namespace boost ;

/∗∗
Generate a Gaussian whi te no i se .

This node genera t e s a no i se r e a l i z a t i o n f o r a g iven ampl i tude
s p e c t r a l d en s i t y and sampling f requency .
∗/
class WhiteNoise : public Node {

public :

// MARK: Parameters

/∗∗ On−o f f sw i t ch f o r the no i se ∗/
bool enabled = true ;

/∗∗ Amplitude s p e c t r a l dens i t y , in / s q r t (Hz) ∗/
double asd = 1 . 0 ;

/∗∗
Seed used to i n i t i a l i z e the sequence o f random numbers .

I f the seed i s s e t to i t s d e f a u l t va lue 0 , a random seed
i s drawn in s t ead . Set i t to another va lue a l l ow s f o r
r e p r oduc i b l e r e s u l t s .
∗/

unsigned int seed = 0 ;

// MARK: Outputs

/∗∗ Generated no i se ∗/
double r e s u l t ;

void prepare ( ) {

// Draw a random seed , i f needed
prepared_seed = seed ;
i f ( seed == 0) { prepared_seed = seed_generator ( ) ; }

// Set up random genera tor and pre−compute f a c t o r s
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generato r = mt19937 ( prepared_seed ) ;
double standard_deviat ion = asd ∗ s q r t ( sampling_frequency / 2 . 0 ) ;
d i s t r i b u t i o n = normal_distr ibut ion<double>(0.0 , standard_deviat ion ) ;

r e s u l t = 0 . 0 ;
}

void f i r e (double time ) {
i f ( enabled ) {

r e s u l t = d i s t r i b u t i o n ( genera tor ) ;
}

}

protected :

mt19937 generato r ;
unsigned int prepared_seed ;
random_device seed_generator ;
normal_distr ibut ion<double> d i s t r i b u t i o n ;

} ;

2.2.4 Graphs and Compound Nodes

As briefly mentioned in section 2.2.1, an entire simulation graph can also be viewed as a
single node and therefore used to compose another graph. In this case, the content of the
embedded graph is opaque for the embedding graph, following the encapsulation principle.
Only its declared interface, that is the set of parameters, inputs, and outputs, is accessible,
as pictured in fig. 2.4.

The interface of a compound node is declared in its Python class. This is done by publishing
existing parameters, inputs, and outputs of inner nodes, using the respective methods
publish_param(), publish1_input(), and publish_output(). Note that the published name does
not have to match the corresponding inner node’s.

When a graph is run as a simulation, the published parameters, inputs, and outputs are
interpreted differently. Indeed, parameters and inputs become available as command-line
options, so that the user can quickly change their values without compiling the simulation
again. Outputs become the product of the simulation and are written to files for further
processing.

As an example, we reproduce here the Python class associated with the graph illustrated
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Figure 2.4: Exploded view of a graph which would correspond to the node pictured in
fig. 2.3. Published inputs and outputs are connected to embedded nodes’ input and outputs,
and these node are interconnected. Note that published parameters follow the same pattern,
but are not pictured here.

in fig. 2.5. This graph has one published input signal, which is first rescaled by a Gain

node, whose gain parameter is also published so that it can be adjusted using a command-
line option. Then a white noise is generated, whose amplitude spectral density is also
published, and therefore adjustable. This noise is added to the rescaled input signal using
the Addition node, and the result is published as sum. We also publish the white noise alone,
as noise.

from l i s anode import Graph

class MyGraph(Graph ) :
def __init__( s e l f ) :

super ( ) . __init__( "MyGraph" )

s e l f . add ( "WhiteNoise" , name=" no i s e " )
s e l f . add ( "Gain<double>" , name=" gain " )
s e l f . add ( "Addition<double>" , name="sum" )

s e l f . connect ( " no i s e . r e s u l t " , "sum . a" )
s e l f . connect ( " gain . r e s u l t " , "sum . b" )

s e l f . nodes [ " no i s e " ] . f s = 1 .0
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Figure 2.5: An example of a graph, which rescales an input signal, and adds a white noise
to it.

s e l f . nodes [ " no i s e " ] . params = { ’ seed ’ : 0}

s e l f . publish_param ( " no i s e . asd" , "asd" )
s e l f . publ ish_input ( " gain . input " , " input " )

s e l f . publish_output ( "sum . r e s u l t " , "sum" )
s e l f . publish_output ( " no i s e . r e s u l t " , " no i s e " )

2.3 Graph Analysis

We describe here the various steps illustrated in fig. 2.2, along with the associated algo-
rithms. They are all implemented in the Python classes Graph and Node, and prevent from
attempting to compile an inconsistent or ill-defined graph. The user can run the graph anal-
ysis algorithm from the terminal, using lisanode analyze GRAPH, where GRAPH is a path to the
Python script, and the name of the graph, in the form of path/to/python/script.py:GraphName.
Alternatively, if the graph is defined in a Python module, this can be the module path, and
the name of the graph, in the form of lisanode . lisa .instrument:Phasemeter.
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2.3.1 Output Insertion

LISANode inserts and connects WriteText nodes to each published output so that they are
written to individual text files when the simulation is executed. Note that the name of the
file matches the name of the published output. Because published outputs can be selectively
disabled with the corresponding command-line option −{}−enable or −{}−disable, we only
consider enabled published outputs here.

2.3.2 Subgraph Unwrapping

This algorithm flattens the graph, by recursively unwrapping all compound nodes until only
atomic nodes remain. The steps are as follows:

1. The algorithm first transfers the internal nodes of each compound node to the em-
bedding graph. The interconnections between these internal nodes are preserved, and
the unwrapped compound nodes are removed from the graph.

2. Graph’s published parameters, inputs, and outputs that point to compounds nodes
are replaced so that they refer to the internal nodes of these compounds nodes.

3. Published parameters, inputs, and outputs of each compound nodes are rerouted
to their internal nodes. In other words, parameters defined at the compound node
level are set to the corresponding internal nodes. Similarly, parents and children of
compound nodes are reconnected to the corresponding internal nodes.

2.3.3 Connectivity Check

We check here that the graph is connected, i.e. that there is a path between every pair of
nodes, i.e. there is no unreachable or isolated node. In our case, an isolated node is a node
that has no parent nor child, and which is not the only node in the graph. We also check
that the graph defines at least one published output.

2.3.4 Cycle Detection

We require here that the graph is acyclic, i.e. that it does not contain direct connections
forming a path, starting and ending at the same node. Indeed, such a cycle would indicate
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Figure 2.6: Example of cycle broken down using an indirect connection from C to A.
Although A depends on C, the latter will use the former’s previous output sample.

an acausal simulation structure, because the production of one signal sample would depend
on that very same sample.

The simulation of feedback loops, for instance in controllers, is possible if one breaks the
cycle. This is done by replacing usual, or direct, connections with indirect connections that
allow for delays. No cycle is present in fig. 2.6: if A has a dependency in C, the connection
is indirect so that there is an implicit delay. A will use C’s previous output samples.

2.3.5 Sampling and Multiplicity Deduction

Indeed, the user does not have to provide a sampling frequency for all nodes, but the
information must be sufficient to deduce a sampling frequency for all nodes. This algorithm
checks that the sampling frequencies defined on the nodes are consistent with each other,
and fill the missing sampling frequencies.

In most cases, a node’s sampling frequency fs must match that of its parents and children.
In general, this sampling frequency changes when a node holds non-unity downsampling d
or upsampling 1/d ratios. The following rule, illustrated in fig. 2.7, is used to check the
sampling consistency of the graph and deduce the missing sampling frequencies

∀A ∈ nodes, ∀B ∈ parents(A), fBs = dAfAs . (2.1)

A graph must define at least one explicit sampling frequency, from which LISANode is able
to deduce that of all other connected nodes, upstream and downstream.

From this equation, we can show that all sampling frequencies in one graph are linked by
simple ratios,

∀A,B ∈ nodes, ∃p, q ∈ N∗, pfAs = qfBs . (2.2)

The simulation sampling period, or atomic sampling period, is the smallest period that
divides all node sampling periods. More formally, it is the greatest common divisor of
all sampling periods. Therefore the simulation sampling frequency is defined as the least
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Figure 2.7: Relationship between a node’s sampling frequency and that of its parents and
children. It must be verified for all nodes of the graph. It is used to check that the sampling
frequencies specified by the user are consistent with each other, and deduce missing sampling
frequencies.
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Figure 2.8: Simple simulation graph whose nodes have been assigned their stages. The
stages 0, 1, 2, and 3 correspond respectively to nodes in red, orange, green, and blue.

common multiple of all node sampling frequencies,

f simu
s = lcm(fAs , ∀A ∈ nodes) . (2.3)

Each node A must be fired every nA atomic sampling periods, such that

f simu
s = nAfAs , (2.4)

and we call nA the multiplicity of A. Using this formula, the algorithm assigns to each
node its multiplicity, used to compute the schedule.

2.3.6 Stage Assignment

At this point, we are certain that the graph does not contain any cycle (see section 2.3.4),
and that it is only made of atomic nodes because it has been unwrapped (see section 2.3.2).
Here we partition these atomic nodes into different stages so that the following rule holds:
for any node A of stage N , all its direct parents are of stages strictly less than N , and all
its children are of stages strictly greater than N . Formally,

∀A ∈ nodes, ∀B ∈ parents(A), stage(B) < stage(A) . (2.5)

This is illustrated by an example in fig. 2.8.

We use the Khan algorithm to build the stages, which is quick and always converges for
acyclic graphs. A set S of nodes that have not yet been processed is created, and we iterate
over the nodes of S until the set is empty, i.e. until all nodes have been assigned a stage. If
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the node has no direct parents, we assign it to stage 0. If the node has at least one parent
in S, it is skipped and left in S for later processing. Finally, if the intersection of the node’s
direct parents and S is empty, this means that all its direct parents have been processed and
assigned a stage. We can, therefore, assign the maximum of the parent stages, augmented
by 1, as the node’s stage.

2.3.7 Simulation Scheduling

Now that we have ordered the nodes of our graphs in terms of dependencies, we can build
a valid schedule, i.e. a procedure for the execution of the nodes, such that we produce the
expected signals at the end of the chain.

It is very simple to understand in the case of graphs with only one sampling frequency: we
run, possibly in parallel, all nodes in the first stage since they don’t depend on any other
nodes. Then, we run the nodes in the successive stages, once again possible in parallel.
eq. (2.5) ensures that the input samples the nodes require from their direct parents are
produced before they are used. A schedule is, therefore, a list of sets of nodes that can be
executed in parallel. In this simple case, each set corresponds to exactly one stage.

In general, the schedule is composed of the content of N super-sets, where N is the schedule
size given by

N = lcm(nA, A ∈ nodes) . (2.6)

To build the schedule, we append N simple schedules, in which we keep only nodes whose
multiplicity is a divisor of the super-set index. All other nodes are not executed.

As an example, let us consider the three-node simulation graph pictured in fig. 2.9. The user
has specified a non-unity downsampling ratio of 2 for node B, as well as an upsampling ratio
of 3 for node C, and the sampling frequency for node A, fAs = 1 Hz. From these information,
the sampling deduction described in section 2.3.5) fills the missing sampling frequencies
fBs = 0.5 Hz, and fCs = 1.5 Hz. Following the algorithm described in section 2.3.6, we
distinguish three stages so that the simple schedule associated to this graph is

{[A], [B], [C]} . (2.7)

Using eq. (2.3), we compute the simulation sampling frequency f simu
s = lcm(1, 0.5, 1.5) =

3 Hz. The nodes therefore have the following multiplicities: nA = 3, nB = 6, and nC = 2.

The schedule size is N = lcm(3, 6, 2) = 6. The first super-set has index 0, and is exactly
the simple schedule {[A], [B], [C]}. The second super-set is empty. The third keeps node
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Figure 2.9: Simple simulation graph with multiple sampling frequencies. We give in black
the downsampling or upsampling ratios and the sampling frequencies specified by the user,
and in red the sampling frequencies and multiplicities deduced by LISANode.

C, and becomes {[C]}. The fourth is {[A]}, the fifth is {[C]}, and the sixth and last is once
more empty.

Therefore the complete schedule reads:

{[A], [B], [C], [C], [A], [C]} . (2.8)

2.4 Code Generation and Compilation

At the end of the graph analysis steps, described in section 2.3, the schedule is ready and
LISANode can generate a valid main.cpp file. LISANode then uses the local C++ compiler
to build this file into an executable and runs it.

The user can analyze, build, and run a graph using the single command lisanode run GRAPH

in their terminal. Note that lisanode viz GRAPH can be used to obtain a graphical represen-
tation of the graph.

2.4.1 Structure of main.cpp

The generated main.cpp document contains the following elements:

1. A list of header files are imported, in which the classes associated with the atomic
nodes used in the graph are defined.



2.4. CODE GENERATION AND COMPILATION 55

2. The declaration of the various nodes of the graph, as well as the output nodes auto-
matically inserted before the graph was analyzed, see section 2.3.1.

3. The declaration and configuration of the command-line argument parser. We include
here the published parameters and inputs of the graph. If −{}−help is given, we print
the help message and return.

4. The assignment of the parameters of each node. In particular, we assign the de-
duced sampling frequencies, upsampling and downsampling ratios, and all other node-
specific parameters set at the graph level. If some parameters are published, we check
whether they are given some values as command-line options. If this is the case, we
assign these new values to the corresponding node’s parameters.

5. We call prepare() on each node.

6. If some inputs are published, we check whether they are given some values as command-
line options. It this is the case, we assign these new values to the corresponding node’s
parameters.

7. The main simulation loop, containing all the sets of the schedule. For each set, we
execute all the nodes in this set by calling fire (), passing the current time. This time
is computed from the loop iteration index, the set index, and the associated periods.
We then push the generated output samples to the child nodes using the push_front()

method.

As an example, we consider the graph illustrated in fig. 2.5, and described in section 2.2.2.
We reproduce here the associated main.cpp, generated with LISANode.
#include " cxxopts . hpp"
#include "Gain . hpp"
#include "Addit ion . hpp"
#include "WhiteNoise . hpp"
#include "WriteText . hpp"

int main ( int argc , char∗∗ argv ) {

// MARK: Node d e f i n i t i o n s

WhiteNoise _noise ;
Gain<double> _gain ;
Addition<double> _sum;
WriteText<double> _output_for_sum ;
WriteText<double>:: type> _output_for_noise ;
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// MARK: Argument pars ing

cxxopts : : Options par s e r = cxxopts : : Options ( "MyGraph" ) ;
pa r s e r . add_options ( )
( "h , he lp " , "show␣ t h i s ␣ he lp ␣message␣and␣ e x i t " )
( "d , durat ion " , " s imu la t i on ␣ durat ion ␣ in ␣ seconds " , cxxopts : : value<double>())
( "asd" , " s e t ␣asd␣on␣ no i s e " , cxxopts : : value<double>())
( " input " , " input ␣ s i g n a l ␣on␣ gain " , cxxopts : : value<double>())
;

auto args = par s e r . parse ( argc , argv ) ;
i f ( args . count ( " he lp " ) ) {

std : : cout << par s e r . he lp ( ) << std : : endl ;
e x i t ( 0 ) ;

}

// MARK: Parameter ass ignement

_noise . sampling_frequency = 1 . 0 ;
_noise . downsampling = 1 ;
_noise . upsampling = 1 ;
_noise . name = " no i s e " ;
_noise . seed = 0 ;

_gain . sampling_frequency = 1 . 0 ;
_gain . downsampling = 1 ;
_gain . upsampling = 1 ;
_gain . name = " gain " ;

_sum. sampling_frequency = 1 . 0 ;
_sum. downsampling = 1 ;
_sum. upsampling = 1 ;
_sum. name = "sum" ;

_output_for_sum . sampling_frequency = 1 . 0 ;
_output_for_sum . downsampling = 1 ;
_output_for_sum . upsampling = 1 ;
_output_for_sum . name = "output_for_sum" ;
_output_for_sum . path = " . / sum . txt " ;

_output_for_noise . sampling_frequency = 1 . 0 ;
_output_for_noise . downsampling = 1 ;
_output_for_noise . upsampling = 1 ;
_output_for_noise . name = "output_for_noise " ;
_output_for_noise . path = " . / no i s e . txt " ;
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i f ( args . count ( "asd" ) ) {
_noise . asd = args [ "asd" ] . as<double>();

}

// MARK: Node prepara t ion

_noise . prepare ( ) ;
_gain . prepare ( ) ;
_sum. prepare ( ) ;
_output_for_sum . prepare ( ) ;
_output_for_noise . prepare ( ) ;

// MARK: Input ass ignement

i f ( args . count ( " input " ) ) {
_gain . input . a s s i gn (1 , args [ " input " ] . as<double>()) ;

}

// MARK: Simulat ion loop

double durat ion = 10 . 0 ;
i f ( args . count ( " durat ion " ) ) { durat ion = args [ " durat ion " ] . as<double>(); }
int nloop = c e i l ( durat ion ∗ 1 . 0 ) ;
p rogre s s_di sp lay show_progress ( nloop ) ;

for ( int i l o op = 0 ; i l o op < nloop ; i l o op += 1) {
show_progress += 1 ;

// Set 1

_noise . f i r e ( 1 . 0 ∗ i l o op + 0 ∗ 1 . 0 ) ;
_gain . f i r e ( 1 . 0 ∗ i l o op + 0 ∗ 1 . 0 ) ;

_sum. a . push_front ( _noise . r e s u l t ) ;
_output_for_noise . input . push_front ( _noise . r e s u l t ) ;
_sum. b . push_front (_gain . r e s u l t ) ;

// Set 2

_sum. f i r e ( 1 . 0 ∗ i l o op + 0 ∗ 1 . 0 ) ;
_output_for_noise . f i r e ( 1 . 0 ∗ i l o op + 0 ∗ 1 . 0 ) ;

_output_for_sum . input . push_front (_sum. r e s u l t ) ;

// Set 3
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_output_for_sum . f i r e ( 1 . 0 ∗ i l o op + 0 ∗ 1 . 0 ) ;

}

}

2.4.2 Build and Run

Once the main.cpp is generated, LISANode issues a command in the terminal to build it using
the locally-installed GCC, or clang on macOS, compiler. The product of the compilation
is an executable named after the simulation graph and linked against all atomic nodes of
the LISANode library, described in appendix B.



Chapter 3

Instrumental Model

In this chapter, I present the instrumental model implemented in the LISANode simulator.
I first give a general overview of the mission and the instrument, with a description of the
top-level simulation graphs used to simulate each spacecraft, their orbits, the propagation of
optical signals between them, and the response function of the instrument to gravitational
waves. In the second part, I present the various interferometric measurements performed
onboard the spacecraft, as well as the various noise sources which enter those measurements.
Lastly, I present how these measurements are processed by the phasemeters and the on-
board computers before they are telemetered down to Earth.

We present here the main ideas behind the instrumental models. These models correspond
to the current mission baseline, but might change since the mission is still in mid-phase A.
The complete documentation of all simulations graphs and nodes dedicated to the simula-
tion of LISA can be found in appendix C. Besides, the code itself is extensively documented,
and we invite the interested reader to look it up if the answers are not presented in this
thesis.

3.1 The LISA Mission

If not otherwise specified, the following paragraphs are mainly taken from the LISA Mission
Proposal [DASpAh+17] and the LISA Payload Definition Document [LIS18a].

The LISA mission has been accepted for a duration of 4 years, with a possible mission
extension of 10 years. Illustrated in fig. 1.11 are the three spacecraft, flying in a nearly-

59
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1 u.a.

Figure 3.1: Cartwheel motion of the LISA constellation in a plane inclined with respect to
the ecliptic plane, while its barycenter follows its heliocentric orbit.

equilateral triangular configuration. The constellation plane is inclined by around 60◦ with
respect to the ecliptic plane, and its barycenter trails the Earth on its orbit around the
Sun by about 50 million kilometers. During its yearly revolution, the constellation has
cartwheel motion. This is illustrated on fig. 3.1. The distances between the spacecraft have
an average value of 2.5 million kilometers and fluctuate along the year by plus or minus
1 % [NKDV06]. As a result, the spacecraft relative velocities are nonvanishing, and the
laser beams exchanged by the spacecraft are submitted to Doppler effect. The mission will
use a dedicated Ariane 6.4 launcher, and the transfer time will last more than a year.

Each spacecraft is equipped with two optical benches, two laser sources, and two inertial
test masses. Each inertial test mass is a cube of solid gold-platinum alloy, measuring
4.6 cm on a side and weighing almost 2 kg. Once the spacecraft have been inserted in
their correct orbits, the test masses are released inside their housings. Capacitive sensors
and interferometric systems monitor the positions and orientations of the test masses with
respect to the spacecraft. Micro-thrusters are used to steer the spacecraft so that it follows
the test masses along their translational degrees of freedom, and in particular along the
arms. Electrostatic actuators are used to apply the required forces and torques along the
remaining degrees of freedom. As a result, the test masses are kept in free fall along the line
of sight during the whole mission. Laser interferometry provides a precise measurement of
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Figure 3.2: The test-mass-to-test-mass distance is reconstructed from the two test-mass-
to-spacecraft (a), (b), and one long-baseline (c) measurements.

the test mass acceleration with respect to the optical bench, inside the spacecraft. These
measurements are performed by the so-called test-mass interferometer.

Laser beams are exchanged between all three spacecraft. Telescope assemblies are dedicated
to sending and collecting the light. The resulting long-baseline or science interferometric
measurements are used to monitor the changes in the distances between the optical benches.
Lastly, the reference interferometers measure the differences in the frequencies of the two
local laser sources. All in all, six interferometric measurements are performed onboard each
spacecraft in this split interferometry configuration (fig. 3.2). The optical frequencies of
each laser source are slightly offset, and therefore these heterodyne measurements contain a
beatnote. Offline processing of these beatnotes allows reconstructing the test-mass-to-test-
mass distances.

For this purpose, a phasemeter tracks the beatnote frequencies and converts the optical
signals to phase measurements. These phase measurements are then processed by the
onboard computers. Communication windows are scheduled once a day: all data is collected
by a single master spacecraft before it is telemetered down to Earth. The eighteen phase
signals are then combined to monitor the differential optical pathlength variations between
pairs of test masses, separated by millions of kilometers, c.f. chapter 4.

The effect of a gravitational wave is a tidal deformation of the constellation (c.f. sec-
tion 1.1.5), which appears as a modulation in time of the optical pathlength between two
test masses. These changes are small (a few pm to a few nm, c.f. section 1.2.1) with respect
to the variations due to the spacecraft orbital motions (around 10 000 km), but can be dis-
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tinguished because they occupy non-overlapping frequency ranges. Indeed, the former is at
millihertz frequencies, whereas the latter have periods of many months.

Because of the beam divergence, the collected light at the distant spacecraft is only a
fraction of the sent power. The laser sources onboard the spacecraft emit a few watts, thus
the received signal does not exceed a few hundreds of picowatt [LIS18b]. A mere reflection
is impossible, as the power received by the original spacecraft would not be sufficient to
perform interferometric measurements at the required precision. Instead, the distant laser
source has its phase locked on the incoming signal, with a given frequency offset. We use
this laser source to send a fresh beam back to the original spacecraft. Not all lasers can be
locked with each other, and several laser locking configurations are possible. However, it is
not clear at the moment, what the best choice would be [Hei18].

The phasemeter can track beatnote frequencies between 5 MHz and 25 MHz. Unfortunately,
the long-baseline beatnote frequencies vary due to the Doppler effect of the spacecraft orbital
motion. These variations are so large that no set of laser frequency offset can ensure that all
beatnote frequencies remain in the phasemeter range throughout the mission. Therefore,
these frequency offsets must be changed with time, according to what is called a frequency
plan. This frequency plan must be established so that several constraints are verified, mainly
that all beatnotes must be within the phasemeter range. Additional constraints exist, due
to potential cross-coupling when test-mass or reference beatnote frequencies cross science
beatnote frequencies. A genetic algorithm was proposed in [Bar15], but exact solutions can
be found using the geometrical approach described in [Hei18].

The LISA sensitivity is mainly limited by spurious forces and noise in the measurement of
the optical pathlength. On the one hand, non-inertial forces are exerted on the test masses,
making them deviate from their geodesic motion. The resulting stray acceleration can
mimic the effect of a gravitational wave, and degrade the measurements. This is why the
test masses are placed inside their housing, shielded from a number of these external forces.
The spacecraft is still subjected to these spurious forces, but micro-thrusters constantly
steer it so that it follows the test masses in a drag-free fashion. On the other hand, various
instrumental noise sources couple into the measurements. Some can be expressed as optical
pathlength variations, e.g. due to thermal deformation of the optical benches, or the non-
reciprocal phase shift in the optical fiber, between two adjacent optical benches. Other
noise sources are tied to the measurement processes themselves, such as the stray light on
the optical benches, the photodiode shot noise, or the errors in the sampling processes due
to imperfect onboard clocks. The various noise sources are discussed further in the next
sections, and a high-level decomposition of the sensitivity is presented in fig. 3.3.
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Figure 3.3: LISA noise budget, used to compute the sensitivity of the instrument. It is
the sum of the effect of spurious forces applied on the test masses, the measurement and
optical errors, and the effect of imperfect data processing algorithms.

Laser noise is the dominant noise source in the LISA measurement, as it appears many
orders of magnitude above the expected gravitational wave signals. Offline techniques have
been proposed to remove this noise, combining interferometric measurements at different
times to synthesize virtual photon paths that suppress laser noise [TA99, TEA02, AET02].
Similarly, clock noise can be calibrated for with dedicated algorithms [OHD12, TH18].
These data processing procedures are not perfect and introduce additional errors in the
final products of the mission. Their implementation in the simulator, as well as the study
of their performance, are the objects of the following chapters.

3.2 Simulation of the Constellation

3.2.1 Project Architecture

One top-level simulation graph constitutes the usual entry point for the simulation. The
LISA graph simulated the physics of gravitational waves, along with the response of the
instrument, the propagation of the laser beams between the spacecraft and on each optical
bench, and delivers the measurements as we expected we will receive them from telemetry.
The on-ground data processing, described in chapter 4, is performed by another independent
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top-level TDI graph to deliver L1 data.

To maintain a clean codebase, and allow for easy collaboration between multiple developers,
the instrument is divided into mostly independent subsystems, themselves divided into
smaller components matching as closely as possible the hardware subsystems. Similarly,
data processing is executed as a succession of smaller steps. This is easily expressed in the
LISANode framework, with the help of nested graphs, c.f. chapter 2.

Therefore, most of the code designed to simulate LISA specifically is organized in several
Python files, located under lisanode/lisa/. These files define a series of graphs, which
are then connected to build the entire LISA simulation. We describe here the files that are
used, along with the graphs they contain:

• config.py contains the high-level options for the simulation, which cannot be set
with command-line arguments because they change the structure of the graph.

• instrument.py defines the graphs for the main instrument systems and subsystems,
including the optical bench, interferometer, phasemeter, on-board computer, space-
craft, laser links, and most importantly, the high-level graph for LISA.

• propag.py defines the graphs used to propagate the signals between the spacecraft,
i.e. account for the finite propagation speed of light and the contribution of gravita-
tional signals with the help of the instrument response. They are used for the laser
links in instrument.py.

• noises.py defines the various instrumental noises that couple into the interferometric
measurements, used in instrument.py.

• intervar.py contains the TDI intermediary variables, used to build the main channels
in tdi.py, see chapter 4. The intermediary variables are used to remove some of the
instrumental noises, such as the optical bench displacement noise, and half of the
laser noise.

• tdivar.py defines the TDI algorithms and the graphs used to compute the main
channels, such as Michelson X, Y , and Z channels, quasi-orthogonal A, E, and T

variables, or Sagnac α, β, γ, and ξ variables, c.f. chapter 4. They are used in "tdi.py".

• tdi.py contains the high-level graphs used to compute the TDI algorithms, such as
TDI, TDIFromText, and LISAWithTDI. C.f. chapter 4.

• clockcal.py defines graphs used to correct for clock noise, which are used in tdi.py.
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• ranging.py defines nodes to model the absolute ranging estimation.

• In addition, naming.py defines functions to help maintaining consistent naming through-
out the code.

Some atomic nodes requirement for the simulation of LISA are defined in lisanode/
toolbox/nodes/lisa/. We mainly have

• The nodes used to compute the instrumental response of one LISA arm to a gravita-
tional signal, such as LinkResponse.

• The nodes used to compute the spacecraft positions and velocities, and deduce the
light travel times along each link, such as KeplerianOrbits, ArbitraryOrbits and TravelTime.

• The nodes used to compute the gravitational waveforms for various sources, such as
GalacticBinary or read them from files.

3.2.2 Constellation Model

We consistently use the indexing conventions illustrated in fig. 3.4 to develop and imple-
ment our instrumental models. They match the conventions used in [Ott15, OHD12, Pet08,
PAH+08, BLPH19]. The spacecraft are indexed clockwise from 1 to 3; nevertheless, these
indices run from 0 to 2 to be consistent with Python and C++ standards. The Movable
Optical Sub-Assemblys (MOSAs), laser sources, optical benches, and test masses are in-
dexed according to the associated spacecraft. MOSAs pointing clockwise have their indices
primed, and the same rule applies for any system hosted by the MOSA, such as optical
benches, telescopes, laser sources, or test masses.

We call an arm the path between two MOSAs and label them with the index of the opposite
spacecraft. They are three arms in the LISA constellation. The six LISA links are the
oriented paths between all pairs of MOSAs. They are indexed according to the associated
arm, with primed numbers for links pointing clockwise. The length of a link is called
armlength and is denoted Li, where i = 1, 1′, 2, 2′, 3, 3′.

The LISA graph is the entry point for the instrumental simulation, as it represents the entire
LISA constellation. It generates the interferometric measurements, as we expect to receive
them from the instrument through telemetry, as well as the ranging estimates. A detailed
documentation can be found in appendix C, while the interferometric measurements are
described in section 3.4.



66 CHAPTER 3. INSTRUMENTAL MODEL

L1

L3

L2
L’1 L’2

L’3

3
33’

2 2’

2

11

1’

Figure 3.4: Conventions for labeling spacecraft, MOSAs, lasers, optical benches and arm-
lengths. Primed indices are used for arms pointing clockwise, and for MOSAs and optical
benches receiving light clockwise.
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Figure 3.5: Schematics of the top-level LISA graph. It is used to simulate three spacecraft,
which exchange laser beams and delivers the interferometric measurements, as well as an
estimate of the light travel times along each link.

The LISA graph composed of three independent Spacecraft, which exchange laser beams
with each other and deliver the interferometric measurements. The beams are propagated
between the spacecraft by a LaserLinks node, which is also responsible for computing the
orbit of each spacecraft, as well as the contributions of the different gravitational wave
sources on each optical link. Lastly, AbsoluteRanging models the estimation of the light travel
time between the spacecraft, which is telemetered to Earth alongside the interferometric
measurements. This structure is represented in fig. 3.5.

LaserLinks has three main objectives. First, it computes the orbits or reads them from files,
delivering the spacecraft positions and velocities, c.f. section 3.2.3. Secondly, it computes
the light travel times and propagates the laser beams along each link, c.f. section 3.2.4.
Lastly, this is where the gravitational wave response is computed, and their contributions
are added to the propagating laser beams, as described in section 3.2.6. The structure of
LaserLinks is represented in fig. 3.6.
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Figure 3.6: Schematics of the LaserLinks graph. It is used to compute orbits, travel times, and
propagate the signals between the spacecraft. The nodes used to compute the instrument
response to gravitational waves are not here represented.
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3.2.3 Orbit Simulation

The three LISA spacecraft will be placed in heliocentric orbits, to minimize the relative
spacecraft velocities (and thus the associated Doppler shifts) while remaining close enough
to the Earth for a good data transmission quality. Analytic studies [DNKV05, NKDV06] of
the two-body problem in the Keplerian framework have been conducted. They have shown
that the previous conditions are fulfilled for a nearly-equilateral triangular constellation,
trailing the Earth by about 20 deg in a heliocentric orbit. This is illustrated in fig. 3.1. The
plane of the constellation has an angle of about 60 deg with the plane of the ecliptic1, and
the three spacecraft have a cartwheel motion around the constellation barycenter within
this plane.

Keplerian Orbits

In the following paragraphs, we present the results obtained by Nayak, Rajesh, Koshti, Dhu-
randhar, and Vinet in [NKDV06]. We follow the conventions and notations from [CRVP05].

It had been showed previously that a triangular constellation, whose plane is tilted by π/3
with respect to the plane of the ecliptic, satisfies the aforementioned conditions [DNKV05].
In the article, the orbits are expanded to second order of α = l/(2R) ≈ 1/60, where R ≈ 1 au

is the distance between the constellation barycenter and the Sun, and l ≈ 2.5× 106 km is
the mean distance between the spacecraft. The authors show that there is a rather large
residual variation of the armlengths, as well as important relative spacecraft velocities.
This orbital motion is called constellation flexing, and at the origin of Doppler shifts in the
received laser frequencies. As a conclusion, a set of optimized orbits are proposed, leading
to armlength changes of 10 000 km, and a peak variation of the spacecraft relative velocity
of about 5 m s−1.

We used these results to implement the KeplerianOrbits node, documented in appendix C.
The node is used in LaserLinks if the configuration options ORBIT_TYPE is set to keplerian

in config.py.

The tilt angle between the constellation and ecliptic planes is set to

ν =
π

3
+ δα . (3.1)

Here, δ is a small perturbation to the tilt angle, in units of the characteristic ratio α2. This
1The plane of the ecliptic is the plane that supports the Earth orbit around the Sun.
2The reader will be careful not to mix the total tilt perturbation δα, denoted δ in [NKDV06], with the
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is the parameter used during the optimization procedure. The optimized set of orbits was
found for δ = 5/8, which is the default value set on the node.

The orbit of the first spacecraft is an ellipse with an inclination angle µ and eccentricity e.
Geometrical considerations yield the exact relationship between α both these parameters,

e =

√
1 +

4α cos ν√
3

+
4α2

3
− 1, tanµ =

α sin ν

sin(π/3) + α cos ν
. (3.2)

To second order in α, these equations become

e ≈ α√
3

+

(
1

2
− δ
)
α2, µ ≈ α− δ − 1√

3
α2 . (3.3)

The eccentric anomaly Ψk for the k-th spacecraft, where k = 1, 2, 3, is implicitly given by

Ψk − e sin Ψk = Ωt− (k − 1)
2π

3
+ φ0 = φk(t) , (3.4)

where t is the time, φ0 is the initial constellation rotation, and Ω = 2π/1 yr is the average
angular velocity. This equation can be solved iteratively to second order in α. We then
have

Ψk(t) ≈ φk +
sinφk√

3
α+

3− 6δ + 2 cosφk
6

sinφkα
2 . (3.5)

Using the shorthand notation θk = (k− 1)2π/3, we can now write the positions of the k-th
spacecraft

xk(t) = R
[
(cos Ψk − e) cosµ cosσk −

√
1− e2 sin Ψk sinσk

]
, (3.6)

yk(t) = R
[
(cos Ψk − e) cosµ sinσk +

√
1− e2 sin Ψk cosσk

]
, (3.7)

zk(t) = −R(cos Ψk − e) sinµ . (3.8)

Taking the time derivative of eq. (3.4), we find that the derivative of the eccentric anomaly
for the k-th spacecraft can be written as

dΨk

dt
(t) =

Ω

1− e cos Ψk(t)
. (3.9)

tilt perturbation in units of the characteristic ratio, here denoted δ, but defined as δ/α in [NKDV06]. These
parameters have no name in [CRVP05], where the authors only define the total tilt angle ν.
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Figure 3.7: Spacecraft positions along the z-axis, using Keplerian orbits.

Using this result, and taking the time derivatives of the spacecraft position equations, one
finds that the spacecraft velocity reads

vxk(t) = R
dΨk

dt

[
− sin Ψk cosµ cosσk −

√
1− e2 cos Ψk sinσk

]
, (3.10)

vyk(t) = R
dΨk

dt

[
− sin Ψk cosµ sinσk +

√
1− e2 cos Ψk cosσk

]
, (3.11)

vzk(t) = R
dΨk

dt
sin Ψk sinµ . (3.12)

The positions along the z-axis of the three spacecraft, computed according to the Keplerian
orbits, are plotted in fig. 3.7. We can see that the spacecraft are phase-shifted by a third
of a year, and oscillate around the plane of the ecliptic.

Arbitrary Orbits

To study the effects of the constellation deformation, it is also possible to use ad-hoc orbits,
deduced from the armlength time series, given as inputs. In particular, the LISA graph can
be configured to have linearly-varying armlengths by setting the ORBIT_TYPE parameter
to linear_armlengths in config.py.

Arbitrary orbits are computed by the node ArbitraryOrbits, which replaces KeplerianOrbits in
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Figure 3.8: Schematics of the constellation, when using arbitrary orbits.

the LaserLinks graph. The armlengths L1(t), L2(t), and L3(t) are given as inputs, and we
use the configuration given in fig. 3.8.

Assuming that the armlengths verify the triangular inequalities, the angle α between arms
1 and 3, illustrated in fig. 3.8, is first computed with

cosα(t) =
L1(t)2 + L3(t)2 − L2(t)2

2L1(t)L3(t)
. (3.13)

Then the spacecraft positions are given by

x1(t) = L3(t) , y1(t) = 0 , z1(t) = 0 , (3.14)

x2(t) = 0 , y2(t) = 0 , z2(t) = 0 , (3.15)

x3(t) = L1(t) cosα(t) , y3(t) = L1(t) sinα(t) , z3(t) = 0 . (3.16)

The spacecraft velocities are estimated using a first-order difference equation.

Orbits from File

The real orbits will be computed using ESA’s dedicated tools, to account for the gravita-
tional effects of other bodies, such as the Earth, the Moon, Jupiter, etc. Moreover, real
orbits are also chosen to optimize other mission parameters, such as the fuel required for
the spacecraft to be installed on their orbits.

LISANode can be interfaced with such dedicated tools, and read orbit data files instead of
using a simple model to compute the spacecraft positions and velocities. If ORBIT_TYPE



3.2. SIMULATION OF THE CONSTELLATION 73

is set to from_file in config.py, the graph LaserLinks uses ReadText nodes to read and parse
an orbit data files.

3.2.4 Light Travel Times

Accurate knowledge of the light times of flight along the six links is necessary to implement
a realistic model of the instrument. Indeed, these times of flight are used to simulate
the propagation of the laser beams between the spacecraft. On the other hand, these
propagation delays are used in the data processing algorithms described in chapter 4. The
delay time series must be computed with a precision high enough to match the requirements
of the data processing algorithms, around the nanosecond. This is why we use the full
relativistic treatment proposed by B. Chauvineau, T. Regimbau, J. Y. Vinet, and S. Pireaux
in [CRVP05]. The model presented below, and implemented in the node TravelTimes, are
taken from their work.

The light travel time τAB between spacecraft A and B is deduced by matching the geodesic
equations of both spacecraft, with the null geodesic of a photon emitted by A and received
by B. The spacecraft positions and velocities are immediately given by the orbits, as the
spacecraft must follow the free-falling test masses that they host to measure gravitational
waves. As we saw in the previous section, and even for a set of optimized orbits, there is
an irreducible constellation flexing. In other words, the light travel times along each link
vary with time.

The atomic node TravelTimes takes as inputs the position and velocities of each spacecraft
and computes the six light travel times. Due to the orbital motion of the spacecraft, these
travel times are different for photons traveling in opposite directions. Therefore, one must
be careful to specify the link, and not only the arm, along which the light travel time is
devised. Please note that a complete description of the TravelTime node’s interface can be
found in appendix C.

The model uses an expansion of the null geodesic equation from A to B, and the motion
of spacecraft B, in powers of the parameter

ε =
GM�
rc2

=
RSchw

2r
, (3.17)

where M� is the mass of the Sun, c is the speed of light, RSchw the Sun Schwarzschild
radius, and r the distance of the considered spacecraft from the Sun.

One of the main conclusions of [CRVP05] is that one only needs to expand the light travel
times to the first order in ε to reach the required precision. Then, the light travel time τAB
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can be computed as a sum of the various orders,

τAB = tB − tA ≈ τ (0)
AB + τ

(1/2)
AB + τ

(1)
AB . (3.18)

Note that the time of flight of the photon is computed as a function of its arrival time tB,
and not its time of emission tA. As a consequence, all values will be implicitly evaluated at
arrival time tB, and in particular we define in the Solar-System Barycenter (SSB)

• The respective positions rA and rB, of spacecraft A and B.

• Their respective velocities vA and vB.

• The separation vector rAB = rB − rA.

• The link unit vector n̂ = rAB/‖rAB‖, always taken at order zero in ε in the following.

Order zero corresponds to a flat spacetime, and a fixed constellation with spacecraft at rest.
We trivially find

τ
(0)
AB =

‖rAB‖
c

. (3.19)

The next order accounts for the classical spacecraft motion, and aberration corrections,

τ
(1/2)
AB = τ

(0)
AB ×

vB · n̂

c
. (3.20)

It is interesting to note that this term is changed under a permutation of spacecraft. This
means that the 1/2-order contribution is different for photons traveling in opposite direc-
tions along the same arm. This is the well-know Sagnac effect, named after the French
physicist Georges Sagnac, and it is due to the rotational motion of the constellation illus-
trated in fig. 3.1. We find that

τ
(1/2)
AB − τ (1/2)

BA = τ
(0)
AB × n̂ · vA + vB

c
6= 0 . (3.21)

The last term τ
(1)
AB includes relativistic corrections. In particular, the Shapiro time-delay

effect. We have

τ
(1)
AB =

τ
(0)
AB

2c2

[
‖vB‖2 + (vB · n̂)2

]
−
c(τ

(0)
AB)2RSchw × rB · n̂

4‖rb‖3

+ (1 + γ)
RSchw

2c2
ln

rA · n̂ + ‖rAB‖+
√
‖rA‖2 − (rA · n̂)2 + (rA · n̂ + ‖rAB‖)2

n̂ · rA + ‖rA‖

 .

(3.22)
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Figure 3.9: Light travel times along each LISA link. The yearly variation is due to the
constellation flexing, while the difference between the time of flight in opposite directions
is due to the Sagnac effect.

We represent in fig. 3.9 the light travel times along each LISA link, using the Keplerian
orbits, as described in section 3.2.3.

3.2.5 Absolute Ranging

The computation of realistic light travel times along each LISA link is necessary to simulate
the propagation of signals between the spacecraft, as described in the previous section.
However, in reality, one does not have access to these god-given information. The inter-
spacecraft distance, or absolute ranging, is estimated by modulating the exchanged laser
beams with a pseudo-random code. The local and distant codes are then correlated to
deduce the light time of flight between the spacecraft.

Because the clocks onboard each spacecraft are not actively synchronized, they can drift
with respect to each other. Consequently, offline processing using Kalman-like filters must
be applied, to correct for the clock drifts and provide correct light times of flight [Wan17].
This technique combines knowledge of the constellation orbits, the clock jitter Power Spec-
tral Densitys (PSDs), and the pseudo-random codes to continuously calculate the optimal
ranging estimates and clock jitters, in the least-square error sense. Simulations have shown
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Figure 3.10: Schematic of the AbsoluteRanging graph. In reality, six instances of
RangingEstimation are used, one for each link.

that it is possible to determine absolute ranging at the nanosecond precision [WHD14].

In our simulation, we model the imperfections of these algorithms by adding an error ri in
the ranging estimates along the six links i. This error contains a systematic bias rsystematic

3,
identical for all links, and an uncorrelated stochastic error rerror,i,

ri = rsystematic + rerror,i . (3.23)

The stochastic error is a Gaussian white noise with a pessimistic Amplitude Spectral Density
(ASD) of 3× 10−9 s, while we assume a vanishing systematic bias.

The node AbsoluteRanging, presented in fig. 3.10, contains an instance of RangingEstimate for
each link. The latter makes use of RangingError nodes to generate the ranging error time
series, and add them to the god-given light travel times computed from the orbits. This is
illustrated in fig. 3.11. Please refer to appendix C for a complete documentation of these
graphs.

3.2.6 Gravitational-Wave Response

In this section, I present the model used to compute the instrument response to gravi-
tational waves. We follow the conventions proposed by the LISA Data Challenge (LDC)
Manual [LIS19a].

3Such a systematic bias in the ranging estimates can be corrected for using Time-Delay Interferometry
Ranging (TDIR) methods. More details are given in chapter 4.
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Figure 3.11: Schematic of the RangingEstimation graph.
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Figure 3.12: Source reference frame. Taken from [LIS19a].

Source Reference Frame

We describe the dynamics of the gravitational-wave source in the so-called source frame,
defined by its Cartesian basis (xS ,yS , zS). We also define the associated spherical basis
vector (eSr , e

S
θ , e

S
φ) as presented fig. 3.12.

The unit vector k points towards LISA, i.e. it matches the gravitational wave propagation
direction. Its coordinates are given in the source spherical coordinated (θS , φS), so that

k = eSr . (3.24)

We call inclination the angle ι0 = θS and observer phase the angle ϕ = φS .
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We introduce the polarization basis (p,q)4,

p = eSθ =
∂eSr
∂θS

, and q = eSφ =
1

sin θS

∂eSr
∂φS

. (3.25)

Together with the propagation direction vector k, they form the wave frame (p,q,k), such
that p = q×k. The gravitational waveforms are almost always expressed in the transverse-
traceless gauge, c.f. section 1.1.4. We define the polarization tensors as

e+ = (p⊗ p− q⊗ q) and e× = (p⊗ q + q⊗ p) , (3.26)

so that we have
h = h+e+ + h×e× . (3.27)

Detector Reference Frame

LISA is described in the SSB frame (x,y, z), aligned with the plane of the ecliptic. We in-
troduce the spherical coordinates (θ, φ), based on the orthonormal basis vectors (er, eθ, eφ).
This is illustrated in fig. 3.13.

The source localization is parametrized by the ecliptic latitude β = π/2− θ and the ecliptic
longitude λ = φ. In the SSB, the propagation vector is now

k = −er = (− cosβ cosλ,− cosβ sinλ,− sinβ) . (3.28)

We can similarly express eθ and eφ in the SSB Cartesian coordinates.

We define the reference polarization vectors

u = −eφ and v = −eθ , (3.29)

so that (u,v,k) is a direct orthonormal basis. The relationship between the polarization
basis and the reference polarization vectors is given by a rotation around the line of sight
k by an angle ψ. We call this angle the polarization angle, and we have

p = cos(ψ)u + sin(ψ)v and q = − sin(ψ)u + cos(ψ)v . (3.30)

Similarly to the source polarization tensors, let us define the reference polarization tensors

ε+ = (u⊗ u− v ⊗ v) and ε× = (u⊗ v + v ⊗ u) . (3.31)
4The projection of those vectors on the Cartesian basis can be found in [LIS19a].
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Figure 3.13: SSB frame. Taken from [LIS19a].

We can re-express the gravitational-wave strain from eq. (3.27) using the relation between
(u,v) and (p,q),

hSSB = hSSB+ ε+ + hSSB× e× , (3.32)

if we define

hSSB+ = h+ cos 2ψ − h× sin 2ψ , (3.33)

hSSB× = h+ sin 2ψ + h× cos 2ψ . (3.34)

Response Function

Let us express the deformation H(t) induced on one LISA link. This can be computed by
projecting the gravitational-wave strain on the link unit vector n̂, all expressed in the SSB.
One gets

H(t) = hSSB+ ξ+(u,v,n) + hSSB× ξ×(u,v,n) , (3.35)

if the antenna pattern functions are defined such that

ξ+(u,v,n) = (u · n̂)2 − (v · n̂)2 , (3.36)

ξ×(u,v,n) = 2(u · n̂)(v · n̂) . (3.37)

Using eqs. (3.33) and (3.34), we can now write the link deformation as a function of the
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gravitational-wave strain in the source frame,

H(t) = (h+ cos 2ψ − h× sin 2ψ)ξ+(u,v,n)

+ (h+ sin 2ψ + h× cos 2ψ)ξ×(u,v,n) .
(3.38)

Now we use a reasoning similar that exposed in section 1.2.3, but relax the assumption
stating that the gravitational wavelength is far larger than a LISA armlength. Using the
link deformation H(x, t), eq. (1.35) reads

t1 ≈ t0 +
L

c
− 1

2c

∫ L

0
H(x(x), t(x)) dx . (3.39)

We now account for the wave propagation, using the first-order approximation t(x) =

t0 + x/c. Also, let us parametrize x(x) = x0(t0) + xn̂, where x0(t0) is the emitter position
at emission time. One obtains

H(x(x), t(x)) = H

(
t(x)− k · x(x)

c

)
= H

(
t0 −

k · x0(t0)

c
+

1− k · n̂

c
x

)
. (3.40)

Combining eqs. (3.39) and (3.40) yields

t1 ≈ t0 +
L

c
− 1

2c

∫ L

0
H

(
t0 −

k · x0(t0)

c
+

1− k · n̂

c
x

)
dx , (3.41)

which can be differentiated to give the fractional frequency deviation5 yGW of a photon
traveling along the LISA link,

yGW(t0) ≈ 1

2(k · n̂)

[
H

(
t0 −

k · x0(t0)

c

)
−H

(
t0 −

k · x1

c
+
L

c

)]
. (3.42)

Here, we have introduced the receiver position at reception time x1(t1) = x0(t0) + Ln̂.

The instrument response is here given as a function of the emission time, whereas in our
model, we need it at reception time. Using t1 = t0 + L/c, we find

yGW(t1) ≈ 1

2(k · n̂)

[
H

(
t1 −

L

c
− k · x0(t0)

c

)
−H

(
t1 −

k · x1(t1)

c

)]
. (3.43)

The expression of H(t) is given by eq. (3.38).

5The fractional frequency deviation is defined in section 3.4.2.
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Implementation

We implement eqs. (3.38) and (3.43) in LISANode. Spacecraft motion is very slow with
respect to the light time of flight along a LISA link, i.e. about 8 s. Therefore, we make the
following assumption:

Assumption 1 In our model, we assume that the emitter spacecraft position is the same
at emission or reception time, i.e. x0(t0) ≈ x0(t1).

As a consequence, x0 and x1 are computed at reception time t1. Equation (3.43) reads,
with explicit time dependence,

yGW(t1) ≈ 1

2(k · n̂(t1))

[
H

(
t1 −

L(t1)

c
− k · x0(t1)

c

)
−H

(
t1 −

k · x1(t1)

c

)]
. (3.44)

Inside the LaserLinks graph, GravitationalContributions adds gravitational-wave contributions
for all links after the beams have been propagated by the SingleSignalPropagation nodes,
c.f. section 3.2.4.

GravitationalContributions takes as parameters the intrinsic properties of a compact binary
system: the gravitation-wave amplitude, its frequency f0 and derivative df0/dt , and the
source sky localization λ, β. It also takes as parameter the extrinsic parameters: the ob-
server phase ϕ, the inclination angle ι0, and the polarization angle ψ.

For each link, an instance of SingleLinkGravitationalContribution is used. This graph is rep-
resented in fig. 3.14 and contains several nodes: GalacticBinary generates the gravitational
waveform h+(t) and h×(t) in the source frame, while SolarSystemBarycenterFrame converts the
gravitational strains to the SSB according to eqs. (3.33) and (3.34) (the source inclination
and polarization are given as parameters). Then, LinkResponse computes the light fractional
frequency deviation due to the gravitational wave along one link, following eq. (3.43) (the
sky localization of the source is given as parameter). Finally, Addition inserts the previously-
computed effect in the propagating beam.

Complete documentation of these graphs and nodes can be found in C.
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Figure 3.14: Schematic of the SingleLinkGravitationalContribution graph.

3.3 Simulation of Instrumental Noises

3.3.1 Noise Nodes

As for all measuring instruments, several noise sources must be accounted for to simulate
realistic data. In this section, we give details about how the various noise sources are
generated in LISANode, and the model chosen for each of them. Their couplings in the
various interferometric measurements are given in section 3.4.

In our simulation, each noise time series is generated by a specific noise node defined
in lisanode/lisa/noise.py. To allow an easy comparison with the legacy simulator
LISACode, we implement the following procedure, also used in LISACode,

1. We first generate a white noise xn, i.e. a stochastic signal with a constant PSD over
a given frequency range. This is realized by drawing random samples from a zero-
mean normal distribution, whose standard deviation σx is a function of the sampling
frequency fs and the PSD Sx,

σ2
x =

Sxfs
2

, (3.45)

The LISANode library provides the WhiteNoise node, documented in appendix B.

2. For colored noises, we filter the samples xn so that the resulting signal yn possesses
the desired spectral shape. The LISANode library provides a number of digital filter
nodes: Filter , EllipticFilter , PinkFilter, KaiserFilter, documented in appendix B.

3. An on/off switch, in the form of a on_off parameter on WhiteNoise, is used to enable
or disable the noise generation. This is useful to study the individual impacts of
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instrumental artifacts, and most of these switches are available at the top-level graphs,
see appendix C.

This first implementation must be completed in a near future with other noise generation
techniques. As an example, Franklin noise generator [Fra65] is extensively used in LISA
Technology Package Data Analysis (LTPDA) and has the advantage of not requiring any
warm-up time.

3.3.2 Laser Noise

The current mission baseline is to use standard Nd:YAG laser sources, with a wavelength
of 1064 nm and an optical frequency of 282 THz. Such a choice exhibits some advantages.
To begin with, we know how to build such lasers at the required power, and with frequency
stability. Nd:YAG lasers are indeed a well-managed, reliable, and already space-qualified
technology6. Also, the interaction with the space environment is negligible at this frequency
as there are no bright sources in the sky. Beyond the visible spectrum, and below thermal
radiations, this limits the risk of stray light in the photodetectors.

The current mission baseline is to use one pre-stabilized master laser source and lock the
five other lasers on the master. Laser locking configurations are discussed in more details
in section 3.5.4.

Assumption 2 In our instrumental model, we neglect laser locking. As a consequence, we
assume that all six lasers are free-running. However, we account for the different beatnote
frequencies, c.f. section 3.5.4.

Although such free-running laser sources are very stable, one must account for the intrinsic
frequency jitter. Indeed, this laser frequency noise is carried by the beam, down to the
photodiode, where it couples into the measurements. We therefore attach independent
laser noises pi(t) and p1′(t) to both laser sources onboard spacecraft i.

Assumption 3 We model the laser frequency noise by a white noise with a PSD of Sp =

10−26 Hz−1 in fractional frequency deviation (c.f. section 3.4.2). This is the state-of-the-art
performance for a space-qualified laser source [TFD+11], and corresponds to an absolute
frequency stability of √

Sp = 28.8 Hz Hz−1/2 . (3.46)
6For instance, such laser sources were successfully flown onboard LISA Pathfinder.
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Laser noise will most certainly be more complex than white noise, and this model is des-
tined to evolve as the requirements become more precise. Meanwhile, it is a good enough
approximation for our studies. Implementation details are given in appendix C.

If 10−13 Hz−1/2 is a small value, let us keep in mind that we expect gravitational signals
with amplitudes of the order of 10−21. Laser noise is, therefore, the dominant noise in LISA,
many orders of magnitude above our signals of interest. To solve this issue and reduce laser
noise, we use data processing techniques, and in particular, TDI, presented in chapter 4
and studied in chapter 5.

3.3.3 Test-Mass Acceleration Noise

LISA Pathfinder results [AAB+18] showed that, in reality, the six LISA test masses are
not perfectly free-falling. External spurious forces push them out of their geodesics, which
results in non-inertial residual accelerations. Among such forces, we can cite [LIS18b]:

• Masses onboard each spacecraft are placed to balance the gravity field in the vicinity
of the test masses. Residual local gravity gradients result in inertial forces that can
mimic tidal accelerations from gravitational waves.

• Although the test-mass housings are continuously vented to space, a few molecules
are present around the test masses. Its thermal agitation exerts a Brownian force,
and therefore, a noise on the test masses.

• Cosmic charged particles are deposited in the test masses, which suffer spurious elec-
trostatic forces. Note that a discharging system based on the photoelectric effect is
regularly employed to reduce this noise.

• The electrostatic forces used to constrain various test masses’ degrees of freedom suffer
imperfections and cross-couplings. This gives rise to actuation noise.

The test-mass acceleration noise PSD Sδ is expressed in acceleration units in the Error
Budget and Performance Model Document [LIS18b]. It reads

Sδ(f) =
(
2.4× 10−15

)2[
1 +

(
0.4× 10−3 Hz

f

)2
][

1 +

(
f

8× 10−3 Hz

)4
]

m2 s−4 Hz−1 ,

(3.47)
and is the sum four independent noises obeying simple power laws.
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Assumption 4 In our model, we neglect components in f2 and f4. Indeed, they contribute
significantly only at high frequencies, where they are below other instrumental noise sources,
such as optical-bench displacement noise. The test-mass acceleration then reads

Sδ(f) ≈
(

2.4× 10−15 m s−2 Hz−1/2
)2
[

1 +

(
0.4× 10−3 Hz

f

)2
]
. (3.48)

In LISANode, we express the noise as an equivalent optical path change. As illustrated
in fig. 3.16, the laser beam bounces on the test mass and travels twice the distance. As a
result, we add a factor 2 in amplitude. Besides, the noise must be converted to fractional
frequency deviations by adding an extra 1/(2πc) factor, c.f. section 3.4.2.

The implementation details are given in appendix C.

3.3.4 Optical Bench Acceleration Noise

In our model, we consider that the optical benches are solidly attached to the spacecraft
structure. At any moment, the Drag-Free Attitude Control System (DFACS) steers the
spacecraft to follow the test masses on their geodesic motions. The actuation7 and the
controller are not perfect, and much like the test masses, optical benches experience erratic
spurious accelerations with respect to a local inertial frame.

We will see in chapter 4 that on-ground data processing reduces this optical-bench accel-
eration noise to a negligible level. Consequently, we decide not to implement this noise in
our model for now.

Assumption 5 In our model, we disregard optical bench acceleration noise, as we assume
it will completely be removed by on-ground data processing.

However, this is something that one might want to integrate soon in the simulations. In
particular, a study of the noise-reduction performance is expected. This is why we keep the
optical-bench displacement noise terms in our equations throughout this chapter. Special
care will be taken as where this noise appears if we consider the action of the DFACS.

7Indeed, the thrusters and the capacitive actuators have imperfections.
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3.3.5 OMS Displacement Noise

We gather, under the umbrella term Optical Metrology System (OMS) displacement noise,
all other instrumental artifacts that change the effective optical path of the laser beams.
The OMS displacement noise gathers different contributions in the science, sideband, test-
mass, and reference interferometers (described in section 3.4). We base our model on the
official LISA Performance Model [LIS18b], so that

SNOMS
s

(f) =
(

6.35× 10−12 m Hz−1/2
)2

, (3.49)

SNOMS
sb

(f) =
(

1.51× 10−11 m Hz−1/2
)2

, (3.50)

SNOMS
ε

(f) =
(

1.42× 10−12 m Hz−1/2
)2

, (3.51)

SNOMS
τ

(f) =
(

3.32× 10−12 m Hz−1/2
)2

. (3.52)

Because in our model, all signals are expressed as fractional frequency deviations (c.f. sec-
tion 3.4.2), the PSDs given above as displacements pick up extra factors 2πf/c. This is
implemented in the OMSDisplacementNoise node, extensively documented in appendix C.

The main effect in the science and sideband interferometers is shot noise, or photon counting
noise. Because of the quantum nature of light, the precision when counting the photons
reaching the photodiode is intrinsically limited. In particular, its PSD SN is constant and
inversely proportional to the power of both interfering beams and the power fraction used
for the interference ε,

SN ∝
1

εP1P2
. (3.53)

Note that the level of this shot noise depends on the armlength as the power of the distant
beam is inversely proportional to the squared distance it travels, Pdistant = Plocal/(4πL

2).

Shot-noise levels used in our model correspond to the Long-Arm Noise allocation in the
Performance Model [LIS18b]. For the sideband interferometer, we rescale the science-
interferometer value by 0.85/0.15 to account for the smaller power in the sideband. The
contributions of the OMS displacement noise in the test-mass and reference interferometer
respectively match the Test-Mass IFO Noise and Reference IFO Noise allocations of the
Performance Model [LIS18b].

We gather in the UnallocatedNoise node other noise sources, which all are white noise when
expressed in displacement. As an example, the unallocated noise in the science and side-
band interferometers contains thermo-mechanical coupling: when temperature changes, the
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mechanical structures of the optical bench, its components, and the telescope undergo ther-
moelastic distortion. As a result, the optical path changes as well. The unallocated noise
in the test-mass interferometer gathers all couplings related to the motion of the spacecraft
with respect to the test mass. One must keep in mind, though, that the current performance
model does not capture correlations that might exist between noises.

We give here the PSDs for the unallocated noise in the various interferometers, expressed
as displacements:

SNunalloc
s

(f) =
(

5× 10−12 m Hz−1/2
)2

, (3.54)

SNunalloc
sb

(f) = SNunalloc
s

(f) , (3.55)

SNunalloc
ε

(f) =
(

4.24× 10−12 m Hz−1/2
)2

, (3.56)

SNunalloc
τ

(f) =
(

2× 10−12 m Hz−1/2
)2

. (3.57)

Again, these PSDs are implemented as fractional frequency deviations in UnallocatedNoise by
adding the conversion factor 2πf/c. Please refer to appendix C for more information.

As the name suggests, the model for this noise needs to be refined. In particular, one might
want to follow the nomenclature proposed in the Performance Model and use different noises
for each effect.

3.3.6 Clock Noise

In the current mission design, an Ultra-Stable Oscillator (USO) serves as the frequency
reference for all events onboard one spacecraft. Although such oscillators exhibit very good
stability, one must account for their residual timing jitter. The latter is often characterized
using Allan deviation, related to the timing jitter Root Mean Square (RMS). Because they
are not actively synchronized, the three USOs can also drift independently with respect to
each other. At long time scales, the Allan deviation is thus dominated by a linear drift
of the oscillator frequency. The state-of-the-art specifications of the space-qualified USOs
used for the GRAIL mission [WGR10] yield a linear frequency drift of 5× 10−26 s−1. Over
a 10 yr mission, we estimate that the maximum time deviation is around 25 s.

Consequently, clock error couples to various elements in the measurement chain:

• The USO signal is used to trigger the Analog-to-Digital Converters (ADCs), which
are used to sample the analog electric signals of the photodiodes. These samples are
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then fed to the phasemeter. If the samples are not recorded at the correct times, the
phasemeter misinterpret the data and this yields an error in the phase measurements.
This issue is discussed in section 3.5.1.

• The USO signals are used to timestamp the phase measurements. The latter is used
in off-line processing algorithms (c.f. chapter 4), which assume that data is regularly
and consistently sampled. Therefore, clock error degrades the performance of data
processing.

• As discussed in section 3.2.5, we estimate absolute ranging by exchanging pseudo-
random code between spacecraft. The comparison of the transmitted code with the
local time reference then yields a preliminary ranging estimate. These preliminary
estimates are then decoupled from the clock drifts by using Kalman-like filters.

For the needs of our model, we express the USO noise as a fractional frequency deviation
series qi(t), normalized by the nominal laser frequency ν0 = 282 THz (c.f. section 3.3.2).
It is modeled ad-hoc as the sum of a deterministic frequency drift with time fdrift,i, and a
stochastic flicker noise ni(t):

qi(t) = fdrift,i × t+ ni(t) , (3.58)

The flicker noise PSD reads [WGR10]

Sq(f) =
(

6.7× 10−27 Hz−1/2
)2
f−1 . (3.59)

Assumption 6 In our model, we assume that the clock frequency drifts are deterministic.
Indeed, they are given as parameters at the beginning of the simulation.

This model is implemented in the ClockNoise node, documented in appendix C.

3.3.7 Backlink Noise

The two local beams in a spacecraft must be delivered to the adjacent optical bench, to
form the test-mass and reference signals, c.f. section 3.4.7. Because the MOSAs can rotate
relative to each other, the optical backlink must be flexible. Two techniques are considered:
free-beams or optical fibers. In the latter case, the two optical benches are connected by
an optical fiber, in which the beams are exchanged. Today, this is the mission baseline.
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This solution has an important drawback: the beams undergo non-reciprocal phase changes
when they circulate in the backlink. This translates as different optical path lengths for
beams circulating from the primed to the unprimed optical benches, and vice-versa. The
current allocation for this backlink noise [LIS18b] is

Sµ =
(

3× 10−12 m Hz−1/2
)2
[

1 +

(
2× 10−3 Hz

f

)4
]
. (3.60)

Assumption 7 In our model, we disregard this noise.

In the near future, one might want to add and study the effect of this noise in the model.

3.4 Simulation of Optical Signals

3.4.1 Spacecraft and Optical Bench

As described in section 3.1, each spacecraft contains one USO, a phasemeter, an onboard
computer, two laser sources, and two MOSA units. Each of these MOSA units contains
an optical bench, where the interferometric measurement is performed, a telescope, used to
collect and send light from and to distant optical benches, and a Gravitational Reference
System (GRS), containing the test mass. This instrumental configuration is illustrated in
figs. 3.15 and 3.16.

In our instrumental model, we follow this configuration but decided to move the laser
sources inside the OpticalBenches. As a result, the Spacecraft node contains

• Two instances of the MOSA graph, which makes use of the incoming and local laser
beams to form the beatnote signals. These signals then fed to the phasemeter. The
same MOSA nodes also produces the outgoing laser beams, which are transmitted to
the distant optical benches.

• A ClockNoise node generating the clock timing jitter, used to model the coupling of
the clock noise in the phasemeter, c.f. section 3.5.1).

• A Phasemeter node, used to add the measurement errors, such as the aforementioned
clock noise. The phasemeter sends all the beatnote signals, including their errors, to
the onboard computer.
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Figure 3.15: Illustration of one spacecraft (a). Two MOSA units gather each one laser
source (b) and (b’), an optical bench (c) and (c’), a test mass (d) and (d’), a telescope
that collects and sends light from and to the distant optical benches (e) and (e’), and a
phasemeter and an onboard computer (g). An optical fiber (f) connects the two MOSAs.
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(b)

(a)
(c)

(d)

𝛅
𝚫

Figure 3.16: Current baseline for the optical configuration of a MOSA, used in the instru-
mental model. The test mass (a) is displaced by δ with respect to a local inertial frame. It is
localized behind the optical bench (b), whose displacement is denoted ∆, and the telescope
(c). The sensitive axis is aligned with these three components, and goes on towards the
distant spacecraft (d).

• An OnboardComputer node, used to filter and downsample the measurement signals
before they are sent to Earth, see section 3.5.5.

A schematics of the node is given in fig. 3.17.

Each MOSA node only contains a single instance of OpticalBench, illustrated in fig. 3.18. The
latter forms four interferometric signals, which are the four beatnotes of the OMS described
in section 3.4.6, section 3.5.2, and section 3.4.7. This is implemented using four instances
of SingleSignalOMS, and a number of noise sources. In the following sections, we describe
these noise sources, and how they couple into the measurements.

3.4.2 Laser Beam Model

Let us consider a laser beam; the information it carries is encoded in the complex ampli-
tude of the associated Electromagnetic (EM) field. Taken at a given point in space, this
amplitude is a function of time which reads

E(t) = E0(t)ejΦ(t) = E0(t)ej(2πν0t+φ(t)) . (3.61)

Here, j is the unit imaginary number, E0(t) is the possibly time-varying field real amplitude,
Φ(t) the instantaneous total phase in radian, ν0 the laser nominal frequency in Hertz, and
φ(t) the instantaneous phase deviation from the nominal phase ω0t, expressed in radian.
The information content of the beam is encoded precisely in this last term.
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Figure 3.17: Schematics of the Spacecraft graph.

Alternatively, one can also use the instantaneous frequency,

ν(t) =
1

2π

dΦ

dt
= ν0 +

1

2π

dφ

dt
, (3.62)

to write the EM field as

E(t) = E0(t) exp

(
j2π

∫ t

t0

ν(τ) dτ

)
. (3.63)

Let us define the timing jitter x(t) in seconds, and the dimensionless fractional frequency
deviation8 y(t), by

x(t) =
φ(t)

2πνo
and y(t) =

ν(t)− ν0

ν0
=

dx

dt
, (3.64)

so that
Φ(t) = 2πν0(t+ x(t)) and ν(t) = ν0(1 + y(t)) . (3.65)

Assumption 8 In our instrumental model, a laser beam and the information it carries is
represented by its fractional frequency deviation time series y(t).

A back-of-the-envelop estimate of the dynamic range associated with such fractional fre-
quency deviation time series shows that it is possible to implement them with the double-
precision floating-point format. Indeed, the typical gravitational wave strain is around

8In the literature, y(t) is also called relative frequency deviation, fractional frequency shift, relative
frequency shift, or Doppler variable.
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Figure 3.18: Schematics of the OpticalBench graph.
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10−20, c.f. section 1.3. The equivalent fractional frequency deviation is of the same order
of magnitude, as discussed in section 1.1.5. The simulator should be able to track sub-
dominant instrumental noises, many orders of magnitude below. As a result, the required
resolution is around 10−26. Conversely, laser noise is the dominant noise source, with an
ASD of 10−13 (section 3.4.6). Therefore, we require a precision of about 10−8, well within
that of the double-precision floating-point format, εdouble = 2−53 − 1 ≈ 10−16.

We will see in the next sections that the carrier frequencies, around 282 THz, and the all
effects affecting this value (Doppler shifts or frequency offsets) are not simulated. C.f. sec-
tions 3.4.3, 3.4.5 and 3.5.4.

3.4.3 Beam Propagation

Let us here express the fractional frequency deviation yB(t) of a laser beam when it is
collected by a distant spacecraft B, as a function of the same beam’s fractional frequency
deviation yA(t) at the time it is sent from the local spacecraft A. The emitted beam’s EM
field reads

EA(t) = E0(t)ej[2πνAt+φA(t)] . (3.66)

We assume a perfect pointing, a light travel time τAB between both spacecraft, and that
the received power is a fraction ρ of the sent power. Then the received beam’s field reads

EB(t) = ρEA(t− τAB) . (3.67)

Combining both expressions, we find that

EB(t) = ρE0(t− τAB) ej[2πνAt+φA(t−τAB)−2πνAτAB ] . (3.68)

The nominal laser frequencies are equal9, and νA = νB. The instantaneous phase deviation
of the propagated beam φB(t) = φA(t−τAB)−2πτAB is that of the outgoing beam, delayed
by the light travel time along the arm. An additional term accounts for the additional phase
due to the light travel time.

Applying the definition of the fractional frequency deviation from eq. (3.64), we find that10

yA(t) =
1

2πνA

dφA
dt

and yB(t) =
1

2πνB

dφB
dt

. (3.69)

9Again, we neglect here the frequency offsets given by the frequency plan, as well as the Doppler shifts.
10In the following, and unless otherwise specified, all the derivatives are taken at time t.
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Substituting the expressions of νB and φB(t), and keeping in mind that τAB(t) depends on
time, we have

yB(t) =
1

2πνA

dφA
dt

(t− τAB)−
(

1 +
1

2πνA

dφA
dt

(t− τAB)

)
dτAB

dt
. (3.70)

The first term matches exactly the fractional frequency deviation yA(t), delayed by the
light travel time along the considered arm. The second term, due to the light travel time
variations, is the famous Doppler effect described in section 3.1. It is important to keep
in mind that Doppler effect does not introduce new terms when beams are expressed as
instantaneous phases or phase deviations, but is contained in the time-varying delay that
we apply. Conversely, additional terms appear when beams are expressed as frequencies or
fractional frequency deviations.

We limit the computation to order 1/2 and adopt the notations of section 3.2.4. We have

yB(t) = yA(t− τAB)− 1 + yA(t− τAB)

c

d‖rAB‖
dt

. (3.71)

The spacecraft velocities are very small with respect to the speed of light, and so is the
Doppler factor |d‖rAB‖/dt |/c ≈ 3× 10−9 m s−1 � 1. Since yA(t) � 1, we neglect this
term when it is in front of the Doppler factor. Expressing d‖rAB‖/dt as a function of the
spacecraft velocities vA and bB, as well as the link unit vector n̂AB, the previous equations
can be written as

yB(t) = yA(t− τAB)− n̂ · vB − vA
c

. (3.72)

Assumption 9 In our instrumental model, we neglect the Doppler factor that affects the
fractional frequency deviation of a propagated beam and take

yB(t) ≈ yA(t− τAB) . (3.73)

This justifies the model presented in section 3.2.4. In reality, these Doppler shifts must be
accounted for, in particular for the GHz sidebands, c.f. section 3.5.2.

3.4.4 Delay Operators

In this thesis, we denote the delay operators related with the propagation of signals along
the link i as Di. Combining eqs. (3.18) and (3.73) and denoting AB the link connecting
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t 

yA

tt - 𝜏

Figure 3.19: Lagrange interpolation scheme. The signal yA(t) must be delayed by τ . Past
samples around the interpolation time t − τ are used to build the Lagrange polynomials
(in light blue). They are then evaluated at the interpolation time, yielding the interpolated
sample, in red.

spacecraft A to spacecraft B,

yB(t) ≈ DAB yA(t) = yA(t− τAB) . (3.74)

Because the light time of flight τAB does not match an integer number of samples, we use
fractional delay filters. In signal processing, a few filter designs, mostly Finite Impulse
Response (FIR) filters, are used depending on the problem’s requirements.

We choose to use Lagrange interpolating polynomials in our model. The idea, shown in
fig. 3.19, is the following:

1. At all times, we store in memory past samples of the propagating signal. We use the
circular buffers used to implement inputs on each node, c.f. section 2.2.2.

2. At each timestep, we select the input samples symmetrically around the interpolation
time. The number of samples depends on the interpolation order, as discussed below.

3. We compute the Lagrange polynomials and evaluate them at the desired interpolation
time. This yields our interpolated sample.

Because the light times of flight are time-varying, we cannot pre-compute the Lagrange
polynomial coefficient as they change for each timestep. This time-varying fraction delay
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operators are implemented by the VariableFractionalDelay atomic node. Details of implemen-
tation are described in great details in appendix C.

Lagrange interpolation exhibits the interesting property of being maximally flat at low
frequencies. This means that at 0 Hz, the gain is unity, and the shift in phase is vanishing.
This property holds as well for the n first derivative in frequency, if n is the interpolation
order. However, in the vicinity of half the sampling frequency, or Nyquist frequency, the
gain drops, and the phase shift becomes larger.

We nevertheless choose this method, because it remains flexible. One can choose a high
interpolation order to improve the precision at high frequency, see [Hal18]. Of course, a
higher interpolation order increases the computation time as well, so that the chosen value
is the result of a tradeoff. In our instrumental model, we use interpolation orders of 31, i.e.
32 samples around the interpolation time. This value provides sufficient precision for the
needs of the simulation while enabling reasonable computation times.

3.4.5 Interferometric Measurements

Let’s derive the expression of the interferometric beatnote between two beams, as a function
of the respective nominal frequencies ν1 and ν2 and relative frequency deviations φ1(t) and
φ2(t).

The first and second beam’s EM fields read

E1(t) = E1,0(t)ej(2πν1t+φ1(t)) and E2(t) = E2,0(t)ej(2πν2t+φ2(t)) . (3.75)

The power measured at the photodiode is

P (t) ∝
∣∣∣E1(t)ejπ/2 + E2(t)

∣∣∣2 , (3.76)

where the extra phase of π is picked up when the first beam is reflected on the beam splitter.
Substituting in this equation the expressions of the two beams yields

P (t) = |E1|2 + |E2|2 + 2 Im(E1
∗E2) (3.77)

=
(
|E1|2 + |E2|2

)(
1− 2E1,0E2,0

|E1|2 + |E2|2
sin[2π(ν1 − ν2)t+ φ1(t)− φ2(t)]

)
. (3.78)

We have here denoted the complex conjugate of a signal with an asterisk.

We can write this last equation as

P (t) ∝ 1 + κ sin[2πν12t+ φ12(t)] , (3.79)
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where we have defined the nominal heterodyne beatnote frequency ν12 = ν1 − ν2, the
beatnote phase deviation φ12(t) = φ1(t)−φ2(t), and the contrast κ = −2E1,0E2,0/(|E1|2 +

|E2|2).

The phasemeter always outputs the instantaneous beatnote frequency as a positive value.
If the beatnote sign, or beatnote polarity, is denoted by

θ12 = sign(ν1 − ν2) = ±1 , (3.80)

then the phasemeter really sees

P (t) ∝ 1 + κ cos[2πθ12ν12t+ θ12φ12(t)] , (3.81)

where θ12ν12 = |ν12| is always positive, and is called the measured nominal heterodyne
beatnote frequency.

By definition, ν1 = ν2 + ν12 = ν2(1 + ν12/ν2). The nominal laser frequencies ν1 and ν2 are
of the order of the terahertz, while the nominal beatnote frequency always remains below
25 MHz and thus is far smaller. Therefore ν12/ν2 � 1.

Assumption 10 In our model, we consider that the nominal laser frequencies of both in-
terfering beams are equal, i.e. ν1 ≈ ν2 = ν0. However we consider non-vanishing nominal
heterodyne beatnote frequencies ν12 when necessary, e.g. for the coupling of clock noise in
the phasemeter, c.f. section 3.5.2. The nominal beatnote frequencies are given as inputs for
each interferometer, see appendix C.

In other words, we neglect the Doppler shifts and the frequency offsets given by the fre-
quency plan, c.f. section 3.5.4. The underlying assumption here is that this frequency
planning does not significantly modify the results we present in chapters 5 to 7. One will
need to implement in LISANode the various laser frequencies and account for the Doppler
shifts and frequency planning in order to validate this hypothesis. This is the object of an
important study that must be conducted in a near future.

Assumption 11 In our model, the interferometric measurements y12(t) are expressed as
dimensionless frequency deviations normalized by the nominal laser frequencies. Since the
latter is assumed to be equal to ν0, we have

y12(t) ≈ θ12

2πν0

dφ12

dt
≈ θ12[y1(t)− y2(t)] . (3.82)

The interferometric signal is therefore deduced from the two laser beams using a simple dif-
ference, and a factor accounting for the beatnote polarity. This justifies the implementation
of the Interferometer node, described in appendix C.
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(b)(a)

Figure 3.20: Optical schematics of the science interferometer. The local beam interferes
on the photodiode (a) with the distant beam. This distant beam collects the gravitational
wave contribution (b) during its propagation along the link.

3.4.6 Science Signals

In the following sections, we study the four interferometric measurements performed on
each optical bench: the science, sideband, test-mass, and reference signals. In particular,
we give the contribution of the various instrumental noises to each of these signals. We give
the expressions for the optical bench 1 and 1′; the remaining expressions can be deduced
by a circular permutation of the indices 1→ 2→ 3→ 1.

The science signals s1(t) and s1′(t) correspond to the beatnotes between the distant and
the local beams. The distant beam has traveled along one link of the constellation before
it reaches the photodiode. An optical schematics of the science interferometer is presented
in fig. 3.20.

Accounting for the relevant noise sources, discussed in section 3.3, and using eq. (3.82), we
can express the science signal s1 as the sum of:

• The gravitational wave contribution H1, projected on the LISA arm and expressed
as fractional frequency deviations. We use the instrumental response derived in sec-
tion 3.2.6.

• The local laser p1 and distant laser D2′p2′ noise. The latter is taken with the delay
corresponding to the propagation of the noise along the LISA link, as discussed in
section 3.4.3.

• All OMS displacement noise sources, including shot noise, thermo-mechanical noise,
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electronic noise, etc. are subsumed in N s
1 .

• The fractional frequency deviation due to the distant and local optical-bench dis-
placement. Let us write them D3φ∆2′ − φ∆1 when they are expressed as an optical
path change, in meters. If we denote the optical-bench displacement vectors as ∆2′

and ∆1 (see fig. 3.16), and the link unit vectors as n̂3 and n̂3′ ,

D3φ∆2′ − φ∆1 = −2πν0

c
[D3n̂3 · D3∆2′ + n̂3′ · ∆1] . (3.83)

We use eq. (3.64) to convert the previous expression to a fractional frequency devia-
tion, and get

1

2πν0

d(D3φ∆2′ − φ∆1)

dt
= −1

c

[
D3n̂3 · D3

d∆2′

dt
+ n̂3′ ·

d∆1

dt

]
. (3.84)

In the following, we assume that the link direction does not change as light propagates
along an arm (about 8 s). Therefore, D3n̂3 ≈ n̂3. If we denote the optical bench
velocities v∆2′ = d∆2′/dt and v∆1 = d∆1/dt , the noise now reads −(n̂3 ·D3v∆2′/c+

n̂3′ · v∆1/c).

The previous discussion relies on another assumption:

Assumption 12 In our model, we neglect the light propagation time for signals remaining
inside one spacecraft.

As discussed in section 3.4.5, we must also account for the beatnote polarity. Let us denote
them θs1 and θs1′ , such that

θs1 = sign(ν2′ − ν1) and θs1′ = sign(ν3 − ν1′) . (3.85)

The science signals finally read

s1 = θs1

[
H1 + D3p2′ − p1 −

(
n̂3 · D3

v∆2′

c
+ n̂3′ ·

v∆1

c

)]
+N s

1 , (3.86)

s1′ = θs1′
[
H1′ + D2′p3 − p1′ −

(
n̂2′ · D2′

v∆3

c
+ n̂2 ·

v∆1′

c

)]
+N s

1′ . (3.87)

3.4.7 Test-Mass and Reference Signals

Similarly, the test-mass signals ε1(t) and ε1′(t) are formed by the beatnotes between the
adjacent and local beams, after the former has bounced on the local test mass. Figure 3.21
is a schematic of this interferometer.

We express the test-mass signal ε1 as the sum of:
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(a)

(b)

(c)𝛅

Figure 3.21: Optical schematics of the test-mass interferometer. The local beam interferes
on the photodiode (a) with the adjacent beam. This adjacent beam collects noise from the
backlink, or optical fiber (b), and the test-mass displacement noise δ when it is bounced
onto the test mass (c).

• The local laser p1 and adjacent laser p1′ noise.

• The extra optical path length φδ1 due to the test-mass and optical bench displace-
ments. The factor 2 accounts for the return trip of light after it has bounced on
the test mass. If δ1 is the test-mass displacement vector, and ∆1 that of the optical
bench, as illustrated in fig. 3.1611,

φδ1 = 2
2πν0

c
n̂3′ · (∆1 − δ1) . (3.88)

We use eq. (3.64) to convert the previous expression to a fractional frequency devia-
tion, and get

1

2πν0

dφδ1
dt

= 2n̂3′ ·
(v∆1

c
− vδ1

c

)
. (3.89)

In the previous expression, we denote the test-mass (respectively the optical bench)
velocity vδ1 = dδ1

dt (resp. v∆1 = d∆1
dt ).

• The backlink noise µ1′ , expressed as a fractional frequency deviation, c.f. section 3.3.7.
11In [Ott15], the signs are flipped. It is now believed that this is an error given the current optical design

from fig. 3.16.
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(a)

(b)

Figure 3.22: Optical schematics of the reference interferometer. The local beam interferes
on the photodiode (a) with the adjacent beam. This adjacent beam collects noise from the
backlink, or optical fiber (b).

• All OMS displacement noise sources, as discussed in section 3.3.5, subsumed in N ε
1.

Accounting for the beatnote polarity, which we denote

θτ1 = sign(ν1′ − ν1) and θτ1′ = sign(ν1 − ν1′) = −θτ1 , (3.90)

the test-mass signals read

ε1 = θτ1

[
p1′ − p1 + 2n̂3′ ·

(v∆1

c
− vδ1

c

)
+ µ1′

]
+N ε

1 , (3.91)

ε1′ = θτ1′
[
p1 − p1′ + 2n̂2 ·

(v∆1′

c
−

vδ1′
c

)
+ µ1

]
+N ε

1′ . (3.92)

The reference signals are formed by the beatnote between the adjacent and local beams,
without any bouncing on the test mass. Figure 3.21 is a schematic of this interferometer.

We express the reference signal τ1 as the sum of:

• The local laser p1 and adjacent laser p1′ noise.

• The backlink noise µ1′ , expressed as a fractional frequency deviation, c.f. section 3.3.7.

• All OMS displacement noise sources, as discussed in section 3.3.5, subsumed in N τ
1 .

The nominal beatnotes are identical to those of the test-mass signals. As a result, so are
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the beatnote polarities, and the reference signals onboard the first spacecraft read

τ1 = θτ1 [p1′ − p1 + µ1′ ] +N τ
1 , (3.93)

τ1′ = θτ1′ [p1 − p1′ + µ1] +N τ
1′ . (3.94)

3.5 On-Board Data Processing

3.5.1 Clock Noise in the Phasemeter

As discussed in sections 3.1 and 3.3.6, the onboard USO provides the time reference used
to trigger the ADC, which, in turn, sample the photodiode signal. The latter is used
by the phasemeter’s Digital Phase-Locked Loop (DPLL) to determine the beatnote phase
deviations.

Unfortunately, the ADC does not record the samples at the times it is triggered by the clock
and introduces additional noise. This noise already violates the LISA requirements [Bar15]
and it is intrinsically local. Hence, it cannot be removed with off-line data processing
similar to TDI, discussed in chapter 4. Instead, ADC jitter noise is reduced online by the
so-called pilot-tone correction. A known reference signal, or pilot tone, is generated by
the USO and sampled by the ADC. Any distortion on the sampled pilot tone, due to the
ADC timing jitter, can be identified by comparing it with the reference signal. The inverse
transformation is then applied to the sampled photodiode signal. We obtain a sampled
signal free of the ADC timing jitter. Because the pilot tone is generated from the USO
signal, clock noise entering the latter also affects the photodiode signal.

Assumption 13 In our model, we assume that pilot-tone correction removes completely
the ADC timing jitter. As a result, the sampled photodiode signals are only affected by the
USO noise, as it remains present in the pilot tone.

In this thesis, the signed science interferometer beatnote frequencies12 are defined as

a1 = ν2′ − ν1 and a1′ = ν3 − ν1′ . (3.96)
12As discussed in assumption 9, we neglect Doppler effect so that the distant laser beam has not its

frequency shifted. Accounting for Doppler effect,

a1 =

(
1− dτ3

dt

)
ν2′ − ν1 and a1′ =

(
1− dτ2′

dt

)
ν3 − ν1′ . (3.95)
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The signed test-mass and reference interferometer beatnote frequencies are equal and de-
fined as

b1 = ν1′ − ν1 and b1′ = −b1 = ν1 − ν1′ . (3.97)

This residual clock noise appears in the interferometric measurements, given in eqs. (3.86),
(3.87) and (3.91) to (3.94), as the USO noise13 qi(t) scaled by the relevant beatnote fre-
quency (as measured, i.e. as a positive frequency). In the science signal s1(t), the extra
term reads −|a1|q1(t) = −θs1a1q1(t). In the test-mass and reference signals ε1(t) and τ1(t),
it reads −θτ1b1q1(t). The signs are flipped relative to the expressions that once can find
in [Ott15]. This is due to an error that is corrected in this thesis.

We obtain the following expressions:

s1 = θs1

[
H1 + D3p2′ − p1 −

(
n̂3 · D3

v∆2′

c
+ n̂3′ ·

v∆1

c

)
− a1q1

]
+N s

1 , (3.98)

s1′ = θs1′
[
H1′ + D2′p3 − p1′ −

(
n̂2′ · D2′

v∆3

c
+ n̂2 ·

v∆1′

c

)
− a1′q1

]
+N s

1′ , (3.99)

ε1 = θτ1

[
p1′ − p1 + 2n̂3′ ·

(v∆1

c
− vδ1

c

)
+ µ1′ − b1q1

]
+N ε

1 , (3.100)

ε1′ = θτ1′
[
p1 − p1′ + 2n̂2 ·

(v∆1′

c
−

vδ1′
c

)
+ µ1 − b1′q1

]
+N ε

1′ , (3.101)

τ1 = θτ1 [p1′ − p1 + µ1′ − b1q1] +N τ
1 , (3.102)

τ1′ = θτ1′ [p1 − p1′ + µ1 − b1′q1] +N τ
1′ . (3.103)

3.5.2 Sideband Modulation

We have seen in the previous section that clock noise enters into the measurements as
additional terms. To correct for this noise, one must transfer clock information from one
spacecraft to another with a technique called clock tone transfer.

The local clock noise, e.g. q1(t), is first amplified with a large integer, say m1 ≈ 32. Then,
it is imprinted on the local beam as phase modulation, creating two sidebands as shown
in fig. 3.23. Indeed, if the modulation index km

14 is small enough, the EM field of the
modulated local beam reads

E1,mod(t) = E1(t)(1 + km cos[2πνm1t+m1q1(t)]) , (3.104)

13As presented in section 3.3.6, clock noise qi(t) is expressed as fractional frequency deviations normalized
by the laser frequency ν0 = 282 THz.

14The modulation index is foreseen to be around km = 0.15, such that 15 % of the beam power is used
for the sideband signal.
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where νm1 is the modulation frequency, and E1(t) the EM field associated with the unmod-
ulated local beam. Using eq. (3.61) and expanding, the previous expression can be written
as

E1,mod(t) = E1,0(t)ej(2πν1t+φ1(t)) +
km
2
ej(2π[ν1+νm1 ]t+[φ1(t)+m1q1(t)])

+
km
2
ej(2π[ν1−νm1 ]t+[φ1(t)−m1q1(t)]) .

(3.105)

In reality, the upper and lower modulation frequencies are a bit different, and we denote
them as ν+

m1
≈ 2.4 GHz and ν−m1

≈ 2.401 GHz15. Therefore, we have

E1,mod(t) = E1,0(t)ej(2πν1t+φ1(t)) +
km
2
ej(2π[ν1+ν+

m1
]t+[φ1(t)+m1q1(t)])

+
km
2
ej(2π[ν1−ν−m1

]t+[φ1(t)−m1q1(t)]) .
(3.106)

This beam is sent to the distant spacecraft.

Similarly, the local beam is modulated on optical bench 2’ and sent to spacecraft 1. As
discussed in section 3.4.3, the previous expression is received with a delay D3,

E2′,mod(t) = E2′,0(t)ej(2πν2′ t+D3φ2′ (t)) +
km
2
e
j
(

2π[ν2′+ν
+
m2′

]t+D3[φ2′ (t)+m2′q2(t)]
)

+
km
2
e
j
(

2π[ν2′−ν
−
m2′

]t+D3[φ2′ (t)−m2′q2(t)]
)
.

(3.107)

Both modulated beams then interfere on optical bench 1. Following section 3.4.5, we find
that the photodiode signals contains several terms: a time-independent part, numerous
terms with frequencies outside of the phasemeter range, and three beatnotes presented in
fig. 3.23:

• The carrier-carrier beatnote a1 = ν2′ − ν1.

• The upper sideband-upper sideband beatnote c1 = (ν2′ + ν+
m2′

) − (ν1 + ν+
m1

) = a1 +

(ν+
m2′
− ν+

m1
).

• The lower sideband-lower sideband beatnote (ν2′ − ν−m2′
)− (ν1− ν−m1

) = a1− (ν−m2′
−

ν−m1
), a bit different from the upper sideband-upper sideband beatnote frequency c1.

These three beatnotes are tracked by dedicated DPLL in the phasemeter. Consequently,
they are part of the interferometric signals that one must simulate.

15These values are proposed in [Hei18]. For a certain set of laser locking configuration (c.f. section 3.5.4),
these values can be used in all spacecraft and kept constant in time.
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science signal upper sidebandlower sideband

f

Figure 3.23: Frequency spectrum of the science interferometer. Three beatnote frequencies
are within the phasemeter, and followed by dedicated DPLL. In dark red and dark yellow,
are represented the gravitational wave contributions to lasers’ frequency spectra.

Assumption 14 As the lower and upper sidebands carry the same information, we only
consider the upper sideband in our model.

We call sideband signal the beatnote formed by the interference of the local and distant
upper sidebands.

Following section 3.4.2, the sideband signals are expressed as fractional frequency devia-
tions. They read

ssb1 = θs1

[
H1 + D3p2′ − p1 + D3m2′q2 −m1q1 −

(
n̂3 · D3

v∆2′

c
+ n̂3′ ·

v∆1

c

)
− c1q1

]
+N sb

1 ,
(3.108)

ssb1′ = θs1′
[
H1′ + D2′p3 − p1′ + D2′m3q3 −m1′q1 −

(
n̂2′ · D2′

v∆3

c
+ n̂2 ·

v∆1′

c

)
− c1′q1

]
+N sb

1′ ,
(3.109)

Note that in general ci 6= ai, due to the small difference in the modulation frequencies.
Moreover, the sidebands have lower power than the main carrier signal. As a result, the
science and sideband signals have different optical bench and OMS displacement noise.
However, these differences are small with respect to the noise level.

Assumption 15 In our model, science and related sideband signals share the same optical
bench and OMS displacement noise.
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3.5.3 Timestamping Errors

As mentioned in section 3.3.6, the clocks onboard each spacecraft are not actively synchro-
nized. As a result, they drift relative to each other over time. Since measurement signals
from all spacecraft are combined as part of data processing, any timestamping error de-
grades the performance of the instrument. In section 3.5.1, we studied the local effect of
one USO’s timing jitter on the interferometric measurements. In this section, we focus on
the effect of clock drifting.

Simulating three drifting clocks is not a trivial task. In particular, one must make sure
that the simulation structure remains flexible enough to allow control loops onboard each
spacecraft, as well as the propagation of the beams between the spacecraft.

As the current LISANode’s structure does not allow to simulate such effects, I have worked
in collaboration with O. Hartwig (AEI Hannover, Germany) to study potential solutions. In
particular, we have narrowed down the issues associated with the simulation of differential
clock noise and proposed two main solutions. Appendix A summaries this work.

Assumption 16 In our model, we disregard timestamping errors in the interferometric
measurements. A simple model of the ranging estimate errors after they have been calibrated
is described and implemented in section 3.2.5.

3.5.4 Beatnote Frequency Management

The phasemeter is capable of tracking beatnote frequencies between 5 MHz to 25 MHz.
Each laser source is assigned a different optical frequency so that all the heterodyne signals
fall inside the phasemeter range.

Unfortunately, these optical frequencies are submitted to changing Doppler shifts as the
constellation flexes. Using eq. (3.72), Doppler shifts ∆νi can be expressed as

∆ν1

ν0
=

dτ3

dt
and

∆ν1′

ν0
=

dτ2′

dt
. (3.110)

Using the analytic Keplerian orbits introduced section 3.2.3, and ν0 = 282 THz, one find
Doppler shifts at the megahertz level, c.f. fig. 3.24. Using more realistic orbits from by
ESA, one can show [Hei18] that the received laser frequencies can vary by ±8 Mhz. As a
result, the beatnote vary with time and extend beyond the authorized frequency range.

A laser locking scheme and a frequency plan are needed to keep the beatnote in-band
throughout the mission. A master laser is locked to a stable frequency using a resonant
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Figure 3.24: Doppler shifts computed with analytic Keplerian orbits presented in sec-
tion 3.2.3.

cavity, while the remaining slave lasers are locked on each other. The phase-locking is
performed by adding an adaptable frequency offset δν to the received beam frequency. Many
different locking configurations are possible; they have been extensively studied in [Hei18]
but none stands out with clear advantages. An example of such a laser locking scheme is
given in fig. 3.25.

If five beatnotes are locked, i.e. directly determined by the frequency offsets, four are non-
locking. Frequency planning aims to switch regularly the frequency offsets such that all
beatnotes remain in-band at all times. A situation where frequency offsets vary continuously
with time is also possible and proposed in [Hei18].

As stated in assumption 2, we do not simulate the locking of the lasers, as we assume that
they are all free-running. Consequently, we do not fully incorporate frequency planning in
our instrumental model. However, we account for the various beatnote frequencies when
computing the clock-noise coupling in the phasemeter, c.f. section 3.5.1.

3.5.5 Antialiasing Filters

Phase measurements are delivered at high frequency (30 Hz) by the onboard phasemeter.
The available passband for telemetry does not allow to downlink such an amount of data.
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1

33’

2’

2 1’

Figure 3.25: Example of laser locking scheme. Laser 1 is the master, while others are
phase-locked on each other, with frequency offsets δνi.
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It must, therefore, be decimated by the on-board computers. To prevent power-folding
onto the useful frequency band, the on-board computers apply antialiasing filters before
carrying out a decimation. In this document, we assume that all filters are identical and
can be represented by the filter operator F . The precise filter design characteristic is given
in chapter 5.

Filters are applied at the end of the measurement chain. As a result, filter operators apply
to whole signal expressions. Taking signals derived in eqs. (3.86), (3.87) and (3.91) to (3.94),
one obtain

s1 = F
{
θs1

[
H1 + D3p2′ − p1 −

(
n̂3 · D3

v∆2′

c
+ n̂3′ ·

v∆1

c

)
− a1q1

]
+N s

1

}
(3.111)

s1′ = F
{
θs1′
[
H1′ + D2′p3 − p1′ −

(
n̂2′ · D2′

v∆3

c
+ n̂2 ·

v∆1′

c

)
− a1′q1

]
+N s

1′

}
(3.112)

ε1 = F
{
θτ1

[
p1′ − p1 + 2n̂3′ ·

(v∆1

c
− vδ1

c

)
+ µ1′ − b1q1

]
+N ε

1

}
(3.113)

ε1′ = F
{
θτ1′
[
p1 − p1′ + 2n̂2 ·

(v∆1′

c
−

vδ1′
c

)
+ µ1 − b1′q1

]
+N ε

1′

}
(3.114)

τ1 = F{θτ1 [p1′ − p1 + µ1′ − b1q1] +N τ
1 } (3.115)

τ1′ = F{θτ1′ [p1 − p1′ + µ1 − b1′q1] +N τ
1′} (3.116)

Similarly, the sideband measurements are also filtered and read

ssb1 = F
{
θs1

[
H1 + D3p2′ − p1 + D3m2′q2 −m1q1 −

(
n̂3 · D3

v∆2′

c
+ n̂3′ ·

v∆1

c

)
− c1q1

]
+N sb

1

}
,

(3.117)

ssb1′ = F
{
θs1′
[
H1′ + D2′p3 − p1′ + D2′m3q3 −m1′q1 −

(
n̂2′ · D2′

v∆3

c
+ n̂2 ·

v∆1′

c

)
]

− c1′q1

]
+N sb

1′

}
,

(3.118)



Chapter 4

Time-Delay Interferometry

As discussed in the previous chapter, various noise sources enter the interferometric mea-
surements of LISA. In particular, laser noise is expected at many orders of magnitude above
the gravitational signals of interest. A method to reduce this noise, alongside others, must
be devised before science studies.

In this chapter, I present the main data processing algorithms foreseen for LISA. In par-
ticular, I propose an intuitive, geometrical approach of laser noise-reducing TDI based
on [Val05a]. Then, I give an updated formulation of these algorithms before I study the
propagation of the main noise sources. Finally, I discuss the implementation of these algo-
rithms in LISANode.

4.1 An Intuitive Approach

4.1.1 Problem Statement

As discussed in section 3.1, LISA will be able to detect gravitational waves by performing
micro-radian interferometric measurements. Among the instrumental noise sources entering
these interferometric signals, described in section 3.3, laser noise is dominant. In fact, it
will be 8 orders of magnitude above the expected gravitational-wave signals1. The relative
PSDs of laser and secondary noises are shown in fig. 4.1.

1Indeed, our model assumes a constant PSD of 30 Hz Hz−1/2, or 10−13 Hz−1/2, to be compared with the
typical gravitational-wave amplitude of 10−21.

111
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Figure 4.1: Laser noise level in s1 signal, expressed as fractional frequency deviations. Here,
the noise requirements match the level of all secondary noises.

Progress in laser technologies allowing to bridge the gap before launch is nor expected nei-
ther realistic. Therefore, a numerical method to reduce laser noise below the requirements
is essential for the mission. TDI is such a method first proposed in [TA99, VN02, TEA02,
AET02]. It is an offline technique that combines the interferometric signals so that laser
noise is strongly suppressed under the assumption that the constellation does not flex. The
method was later extended to account for time-varying armlengths in [STEA03, CH03,
TEA04], giving birth to the so-called second-generation combinations. An algebraic study
of TDI can be found in [AET02], while a nice geometrical interpretation was proposed
in [Val05a]. We follow this last point of view in this chapter.

The existence of a laser noise-reducing algorithm does not guarantee the viability of the
mission. Because the scientific analyses are performed on the TDI combinations, one must
also study the method’s response to gravitational waves. Similarly, understanding how
instrumental noise couples in the TDI variables is essential to build a noise budget. These
studies are presented at the end of this chapter.
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Figure 4.2: Lasers hosted in the same spacecraft appear as pairs in the reference signals.

4.1.2 Combining One-Way Measurements

TDI is based on the fact that the same laser noise appears in different interferometric
measurements. This is obvious when looking at eqs. (3.86), (3.87) and (3.91) to (3.94).
In particular, both lasers hosted by the same spacecraft appear in the reference signals
(fig. 4.2). One can use these signals to reduce the number of free-running lasers to three,
c.f. section 4.2.2. Consequently, in the following paragraphs, I assume that each spacecraft
hosts a single laser source, shared by both optical benches.

Science signals have a different structure, as they contain laser noises from difference space-
craft. They represent the six one-way interferometric measurements, between one local and
one remote clock noise. Note that the latter is delayed by the corresponding armlength.
These one-way measurements are illustrated in fig. 4.3 and given by

s1 = D3p2 − p1, s1′ = D2′p3 − p1 , (4.1)

s2 = D1p3 − p2, s2′ = D3′p1 − p2 , (4.2)

s3 = D2p1 − p3, s3′ = D1′p2 − p3 . (4.3)

From these building blocks, we can apply the reasoning outlined in [Val05a] to synthesize
arbitrary virtual interferences of the form

Dinin−1...i1pA − pB , (4.4)

where the link indices i1, i2, . . . in correspond to a valid path connecting spacecraft A to B.
Formally, this means that

• The spacecraft pointed to by the link ik should be the starting point of link ik+1.
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Figure 4.3: On-way measurements of laser noise in the science signals.

• The first link i1 should start from spacecraft A.

• The last link in should point to spacecraft B.

As an example, s3 + D2s1 = (D2p1− p3) + D2(D3p2− p1) = D23p2− p3 is the interference
between photons carrying local laser noise p3, and laser noise p2 after it traveled along links
3 and 2. This is represented on the left panel of fig. 4.4.

4.1.3 Synthesizing Virtual Interference

Therefore, if the path described in eq. (4.4) is a round-trip, a single laser noise term appears.
A simple example is the two-way measurement illustrated in the middle panel of fig. 4.4,

s1 + D3s2′ = D3p2 − p1 + D3(D3′p1 − p2) = D33′p1 − p1 . (4.5)

The formal condition, using the notations of eq. (4.4), is that A = B.

It is possible to combine such expressions to form virtual interferences between photons
that have both traveled arbitrary paths. The only requirement is that the emitter and
receiver spacecraft are identical for both expressions and that the signs agree. An example
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(a) (b) (c)

Figure 4.4: Examples of virtual interferences. For (a), s3 + D2s1 = D23p2 − p3. For (b),
s1 +D3s2′ = D33′p1−p1. For (c), (s1 +D2s1)−(s1′+D2′s3′+D1′2′s2′) = (D33′−D1′2′3′)p1.

is given on the right of fig. 4.4:

(s1 + D3s2′)− (s1′ + D2′s3′ + D1′2′s2′) = (D33′p1 − p1)− (D1′2′3′p1 − p1) (4.6)

= (D33′ −D1′2′3′)p1 , (4.7)

The idea behind TDI is now to find pairs of photon round-trip paths with equal delays. In
that case, the delay operators cancel out, and so does laser noise. As stated above, both
path must start and end at the same spacecraft.

Under the assumption that all armlengths are equal and constant, it is sufficient to check
that the numbers of links involved in both photon paths are identical. An example is
given by the left panel of fig. 4.5. To account for different armlengths, the photons must
travel along the same links, but not necessarily in the same order. Two examples of such
combinations are given in the central and right panels of fig. 4.5. It can be shown that
these combinations do not cancel gravitational-wave signals.

4.1.4 Second-Generation Combinations

However, we saw in section 3.2.4 that the travel times of a photon along a LISA link is
time-dependent. As a result, two photons traveling along the same links but in different
orders do not have the same times of flight. Formally, delay operators do not commute.
Indeed, if x(t) is a time-dependent signal, we have from eq. (5.3),

Dijx(t) = Dix(t− τj [t]) = x(t− τi[t]− τj [t− τi(t)]) , (4.8)
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(a) (b) (c)

Figure 4.5: Examples of laser noise-calling virtual interferences. Panel (a) cancel laser
noise under the assumption that armlengths are equal and constant. The first-generation
Michelson X1 and Sagnac α1 are represented, respectively, in panels (b) and (c).

and

Djix(t) = Djx(t− τi[t]) = x(t− τj [t]− τi[t− τj(t)]) , (4.9)

so that, in general,

Dij 6= Dji . (4.10)

Consequently, the previous combinations do not suppress laser noise.

As an example, the Michelson variable X1 (defined in section 4.2.4) has a non-vanishing
laser-noise residual that can be expressed as a function of a delay operator commutator,

X1 = (D2′233′ −D33′2′2)p1 = [D2′2,D33′ ]p1 . (4.11)

New combinations, based on the former ones, were proposed in [STEA03, CH03, TEA04]
to overcome this problem. They are the so-called second-generation TDI. It is important
to note that second-generation combinations do not cancel exactly laser noise, but suppress
it up to first order in the travel time derivatives dτi/dt .

Multiple second-generation combinations can be used to suppress laser noise down to the
required level. A systematic study can be found in [Val05a]. In section 4.2, we give the
expressions for the main TDI combinations.
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Figure 4.6: LISA calibration chain, from level-0 to level-1 data.

4.1.5 Calibration Chain

Before the main TDI combinations are formed, intermediary variables are computed to
remove some instrumental noises. In particular, optical-bench displacement noise is mea-
sured by both test-mass and reference interferometers, c.f. section 3.4.7. This allows us
to construct ξi variables where this noise does not appear, while gravitational signals are
kept untouched. Similarly, it is possible to combine the reference signals such as to isolate
the noise of primed laser sources. One can then subtract these expressions to reduce the
number of free-running lasers to three. These are the ηi variables.

Only then, the main TDI combinations presented in the previous sections can be formed.
Because precise absolute ranging estimates are necessary, clocks must be synchronized be-
fore and measurements must be aligned on a common sampling grid. Refer to section 3.2.5
for more details on absolute ranging. Once laser noise is suppressed to the required level,
one has still to calibrate the results for clock noise. Sections 3.5.1 and 3.5.2 describe how
clock noise enters the measurements and how clock tone is used to build sideband signals.
Here, these sidebands are used to build calibrated clock noise-free variables, denoted with
a c exponent for clock-calibrated. We present in detail the clock-calibration algorithms and
their limiting noises in chapter 6.

Schematics of the rather complex calibration chain, going from level-0 to level-1 data, is
presented in fig. 4.6. Dedicated algorithms are then used to extract gravitational signals
in the level-1 data and estimate the parameters of the sources. Lastly, these analyses are
used to build the final product of the mission, or level-3 data: a gravitational-wave source
catalog.
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4.2 Current Formulation

In this section, we present the current expressions for the on-ground calibration algorithms.
Intermediary variables first remove the optical-bench displacement noise and reduce the
number of free-running lasers to three. Then, we form the main TDI combinations to
reduce laser noise. Finally, we correct these TDI variables for clock noise by using clock-
calibrating expressions.

These expressions make use of offline delay operators. The delays themselves match the
constellation armlengths, i.e. the ranging estimates described in section 3.2.5. Fractional
delays are implemented using similar techniques to those discussed in section 3.4.3, such
as Lagrange polynomials. This is a sensitive operation, as we only have access to low-
frequency, filtered, and telemetered samples of the interferometric measurements. We track
the effect of this noise source by denoting differently the offline delay operators Di 6= Di.
We introduce the nested delay notation,

Di1,i2...in ≡ Di1Di2 . . .Din . (4.12)

In the following, we present the equations for the first spacecraft. The remaining expressions
are deduced by a circular permutation of the indices.

4.2.1 Removal of Optical-Bench Displacement Noise

The first step is to remove the optical-bench displacement noise, discussed in section 3.3.4.
Because it is measured independently by test-mass and reference interferometers, we can
isolate it and subtract it from the science signals,

ξ1 = s1 + θs1θ
τ
1

ε1 − τ1

2
+ θs1θ

τ
2′
D3(ε2′ − τ2′)

2
, (4.13)

ξ1′ = s1′ + θs1′θ
τ
1′
ε1′ − τ1′

2
+ θs1′θ

τ
3

D2′(ε3 − τ3)

2
. (4.14)

If we disregard filters and assume that we have perfect knowledge of the absolute ranging,
i.e. if Di ≈ Di, then ξ1 and ξ1′ are free of optical-bench displacement noise. Otherwise, we
are left with non-vanishing residuals reading

ξ∆
1 = θs1(FD3 −D3F)(n̂3 · v∆2′ ) , (4.15)

ξ∆
1′ = θs1′(D2′F − FD2′)(n̂2′ · v∆3) . (4.16)
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If we neglect the ranging errors, the residuals can be expressed as the commutator of a
delay and filter operators,

ξ∆
1 ≈ θs1[F ,D3](n̂3 · v∆2′ ) , (4.17)

ξ∆
1′ ≈ −θs1′ [F ,D2′ ](n̂2′ · v∆3) . (4.18)

In chapter 5, we describe this effect as the flexing-filtering coupling. If S∆i(ω) is the PSD
of the i-th optical-bench displacement noise and we make use of all notations introduced in
section 5.4.4, the PSD of the residual noise in ξi reads

Sξ∆
1

(ω) ≈ ω2KF (ω)L̇2
3S∆2′ (ω) , (4.19)

Sξ∆
1′

(ω) ≈ ω2KF (ω)L̇2
2′S∆3(ω) . (4.20)

4.2.2 Reduction to Three Lasers

The second intermediary variables are defined by

η1 = θs1ξ1 +
θτ2′D3(τ2′ + τ2)

2
, (4.21)

η1′ = θs1′ξ1′ +
θτ1(τ1′ + τ1)

2
. (4.22)

If we assume perfect ranging and neglect the filters once again, η1 and η1′ are free of primed
laser noises. Indeed, they read

η1 ≈ D3p2 − p1 , (4.23)

η1′ ≈ D2′p3 − p1 . (4.24)

If we account for ranging imperfections and filtering, we are left with the non-vanishing
primed laser-noise residuals

ηp1 = (FD3 −D3F)p2′ +D3Fp2 −Fp1 , (4.25)

ηp1′ = FD2′p3 −Fp1 . (4.26)

The dominant effect is the flexing-filtering coupling in η1, preventing the exact cancellation
of p2′ . Using section 5.4.4 and the associated notations, the residual’s PSD can be estimated
to

S
η
p2′
1

(ω) ≈ ω2KF (ω)L̇2
3Sp(ω) . (4.27)
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4.2.3 Reduction of Clock Noise

As discussed in section 3.5.1, clock noise couples into the interferometric measurements.
Intermediary variables that aim to remove this noise were proposed in [OHD12]. Unfor-
tunately, the algorithm, based on the assumption that q1 can be disregarded, was shown
to be incorrect in [TH18]. New approximate clock-calibration algorithms were proposed in
the same article. They are no longer intermediary variables but are applied after the final
TDI combinations are formed. They are given in chapter 6.

Unfortunately, they do not remove exactly laser noise if one accounts for the constellation
flexing and filtering. In chapter 6, we propose an algorithm to devise exact clock noise-
calibrating expressions for most of TDI combinations. In particular, we give the results for
the Michelson and Sagnac combinations (c.f. next section). Then, we study the limiting
factors to propose a realistic noise budget regarding clock noise.

4.2.4 Laser Noise Reduction

Several combinations reduce the laser noise contributions in the interferometric signals, as
discussed in section 4.1.4. We present in this section the main ones.

First-Generation Michelson Combinations

First-generation Michelson variables X1, Y1, Z1 synthesize equal-arm interferometers. It
represents the interference of two photons that circulate in opposite directions along both
arms each, back to the emitting optical bench. This is illustrated by the left panel of fig. 4.5.

All TDI combinations are defined up to a sign, which varies in the literature. We follow
here the conventions adopted by [Ott15]2. The factored and expanded expressions for the
first-generation Michelson variable read

X1 = (η1′ +D2′η3) +D2′2(η1 +D3η2′)− [(η1 +D3η2′) +D33′(η1′ +D2′η3)] , (4.28)

X1 = η1′ +D2′η3 +D2′2η1 −D2′23η2′ − η1 −D3η2′ −D33′η1′ −D33′2′η3 . (4.29)

Substituting in eq. (4.29) the expressions of the intermediary variables given in eqs. (4.25)
and (4.26) yields laser-noise residuals in the Michelson variables. They can be expressed as

2The signs are flipped with respect to [PAH+08, Pet08].
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Figure 4.7: Second-generation Michelson variable X2.

functions of the laser noises and filters,

X1 = (D2′2D3FD3′ −D3D3′D2′2F)p1

+D3(D3′F − FD3′)p1 + (D2′ −D33′2′)(FD2 −D2F)p1′

+ (1−D2′2)(D3F − FD3)p2′ + (1−D33′)(D2′F − FD2′)p3 .

(4.30)

If we neglect ranging errors, the underlying structure of these residuals is best revealed
when expressed with commutators,

X1 ≈ ([D2′2,D3]FD3′ +D32′2[F ,D3′ ] +D3[D2′2,D3′ ]F)p1

+D3[D3′ ,F ]p1 + (D2′ −D33′2′)[F ,D2]p1′

+ (1−D2′2)[D3,F ]p2′ + (1−D33′)[D2′ ,F ]p3 .

(4.31)

We can distinguish two main contributions to these residuals. On one hand, the con-
stellation flexing is responsible for the time variation of light travel times and appears as
delay-delay commutators. On the other hand, filters couples to the flexing and yield the
delay-filter commutators. This effect, dubbed flexing-filtering coupling, is presented and
discussed in more details in chapter 5.

If we now neglect the filters and only account for the flexing of the constellation,

X1 ≈ ([D2′2,D3]D3′ +D3[D2′2,D3′ ])p1 . (4.32)

Only by assuming that the armlengths are constant, we obtain X1 = 0.

Second-Generation Michelson Combinations

We have seen that X1 cancels the laser noise only if we consider constant armlengths. If
we expand the light travel times and account for a first time-derivative τ̇i, we can devise
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second-generation expressions X2, Y2, and Z2 that cancel laser noise to first order in τ̇i. In
X2, two photons sense each link twice as they circulate back and forth, as illustrated in
fig. 4.7. The combination is given by

X2 = (D2′233′ − 1)([η1 +D3η2′ ] +D33′ [η1′ +D2′η3])

− (D33′2′2 − 1)([η1′ +D2′η3] +D2′2[η1 +D3η2′ ]) ,
(4.33)

X2 = η1′ +D2′η3 +D2′2η1 −D2′23η2′ +D2′233′η1

+D2′233′3η2′ +D2′233′33′η1′ +D2′233′33′2′η3

− η1 −D3η2′ −D33′η1′ −D33′2′η3 −D33′2′2η1′

−D33′2′22′η3 −D33′2′22′2η1 −D33′2′22′23η2′ .

(4.34)

The laser-noise residuals in X2 read

X2 = (D2′2D33′D3D3′D2′2F −D33′D2′2D2′2D3FD3′)Fp1

+ (1−D2′2 −D2′233′)D3(D3′F − FD3′)p1

+ (1−D33′ −D33′2′2 +D2′233′33′)D2′(FD2 −D2F)p1′

+ (1−D33′ −D2′233′ +D33′2′22′2)(D3F − FD3)p2′

+ (1−D33′ −D33′2′2 +D2′233′33′)(FD2′ −D2′F)p3 ,

(4.35)

and assuming perfect ranging, they reduce to

X2 ≈ ([D2′2,D33′ ]D33′2′2F +D33′2′2[D33′ ,D2′2]F +D33′2′22′23[D3′ ,F ])Fp1

+ (1−D2′2 −D2′233′)D3[D3′ ,F ]p1

+ (1−D33′ −D33′2′2 +D2′233′33′)D2′ [F ,D2]p1′

+ (1−D33′ −D2′233′ +D33′2′22′2)[D3,F ]p2′

+ (1−D33′ −D33′2′2 +D2′233′33′)[F ,D2′ ]p3 .

(4.36)

Disregarding filters and only accounting for the constellation flexing, we have

X2 ≈ ([D2′2,D33′ ]D33′2′2 −D33′2′2[D2′2,D33′ ])p1 = [[D2′2,D33′ ],D33′2′2]p1 . (4.37)

As opposed to eq. (4.32), the residuals are here expressed as the commutator of a com-
mutator. Therefore, we can understand that this is a next-to-leading order effect and that
laser noise is better suppressed than in X1. This is discussed in more details in chapter 5,
where we estimate the PSD of such delay-delay commutators.
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Quasi-Orthogonal Combination

By construction, instrumental noises enter the Michelson variables correlated. This makes
the source parameter estimation a hard task, as most of the existing algorithms work best
with decoupled noise sources. Therefore, optimal combinations built from the Michelson
variables to minimize the instrumental noise cross-correlation [ATL02]. They were named
after TDI inventors Armstrong (Ai,), Estabrook Ei, and Tinto Ti. One can show that they
synthesize signals from a perpendicular-arm interferometer.

The following equations3 are valid for any generation n:

An =
1√
2

(Zn −Xn), En =
1√
6

(Xn − 2Yn + Zn), Tn =
1√
3

(Xn + Yn + Zn) (4.38)

Sagnac Combinations

The three Sagnac variables αi, βi, and γi were proposed in [TEA02]. They synthesize
the interference of photons circulating clockwise and counterclockwise the constellation, as
shown in the right panel of fig. 4.5.

First-generation α1 reads

α1 = η1 +D3η2 +D31η3 − [η1′ +D2′1′η2′ +D2′η3′ ] , (4.39)

while second-generation α2 is given by

α2 = (1−D2′1′3′)η1 + (1−D2′1′3′)D3η2 + (1−D2′1′3′)D31η3

− [(1−D312)η1′ + (1−D312)D2′1′η2′ + (1−D312)D2′η3′ ] .
(4.40)

In the latter, both virtual photons go twice around the constellation, c.f. fig. 4.8.

Fully Symmetric Combination

The first-generation fully symmetric combination ζ1 senses the constellation rotation, and
combine all interferometric signals with exactly one delay. The combination is given
by [Ott15]

ζ1 = D1′η1′ +D2′η2′ +D3′η3′ − [D1η1 +D2η2 +D3η3] . (4.41)

3Here, we follow the equations from the original paper [ATL02] and those of the LDC manual [LIS19a].
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Figure 4.8: Second-generation Sagnac variable α2.

Its second-generation counterpart ζ2 reads

ζ2 = (D1′1 −D321)η1 + (D12 −D3′2′2)η2 + (D1′3′ −D323′)η3

− [(D11′ −D3′2′1′)η1′ + (D12 −D3′2′2)η2′ + (D1′3′ −D323′)η3′ ] .
(4.42)

Beacon, Monitor, and Relay Combinations

The beacon (Pi, Qi, and Ri), monitor (Ei, Fi, and Gi), and relay (Ui, Vi, and Wi) combi-
nations can be used in the case of the failure of a link. Their first-generation expressions
read

P1 = (D12 −D2′)η2 + (D2′ −D1′12′)η2′ + (D1′13 −D3)η3 + (D3 −D2′1′)η3′ , (4.43)

E1 = −(1−D11′)η1 + (1−D1′1)η1′ − (D3′ −D21)η2 + (D2 −D3′1′)η3′ , (4.44)

U1 = D11′3′η1′ +D11′η2′ +D1η3′ + η2 − (D3′2′1′η2 +D3′2′η3′ +D3′η1′ + η2′) . (4.45)

4.3 Time-Delay Interferometry Simulation

In this section, we discuss the implementation of the LISA calibration chain presented in
section 4.1.5 in LISANode. We then give some results and discuss the level of the residual
noise in the main TDI combinations.

4.3.1 Implementation

The top-level graph TDI is the main entry point to simulate the LISA on-ground data
processing. It implements the TDI algorithms, including the computation of intermediary
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Figure 4.9: Schematics of the top-level TDI graph.

variables and laser noise-suppressing combinations, as well as the clock noise calibration.
The content of the graph is represented in fig. 4.9.

As discussed in section 3.5.3, clocks must be synchronized before intermediary variables can
be computed. As we disregard timestamping errors in the measurements (assumption 16),
only ranging signals are affected in our model by clock noise. Kalman-like filters are ex-
pected to reduce these errors to an acceptable level and provide reliable ranging estimates.
In our model, we implement the residual clock errors in the ranging estimates after clocks
have been synchronized as a systematic bias and a stochastic error. The model is available
in AbsoluteRanging and discussed in section 3.2.5.

Ranging estimates are then time-shifted by the antialiasing filter group delay. This ensures
that the flexing-filtering coupling, described in chapter 5, is highly suppressed. Only then,
TDI performance fulfills the requirements.

Next, these time-shifted ranging estimates are used to compute the intermediary vari-
ables ξi and ηi as formulated in sections 4.2.1 and 4.2.2. This is implemented by the
IntermediaryVariables graph. Then, the requested laser noise-suppressing combinations are
formed. Currently, first and second-generation Michelson (Xi, Yi, and Zi), Sagnac (αi, βi,
γi, and the fully symmetric ζi), and quasi-orthogonal (Ai, Ei, and Ti) combinations are im-
plemented. The user chooses the desired combinations using the corresponding simulation
configuration options described in appendix C.6.

Lastly, clock calibration algorithms from chapter 6 are executed. They make use of the beat-



126 CHAPTER 4. TIME-DELAY INTERFEROMETRY

note frequencies and the sideband signals and can apply to Michelson or quasi-orthogonal
combinations. Appendix C.6 describes available options.

4.3.2 Nested Delay Operators

We call nested delays the chaining of multiple delay operators, as described in eq. (4.12).
Because the light travel time along one LISA link varies with time, delay operators have an
effect on each other. Indeed, if x(t) is a signal,

Dijx(t) = Dix(t− τj(t)) = x(t− τj(t− τi)− τi) . (4.46)

More generally, define the signal x(t) delayed n times,

yn(t) = Di1,i2,...inx(t) . (4.47)

By a simple recursive proof, we can show that yn can be written as

yn(t) = x

(
t−

n∑
k=1

zk(t)

)
, (4.48)

with

z1 = τi1 and zn(t) = τin

(
t−

n−1∑
k=1

zk(t)

)
. (4.49)

Here, the original signal x(t) is delayed only once. As a result, errors due to the imperfect
delay operators, implemented as Lagrange polynomials (c.f. section 3.4.3), are limited.
Light travel times are themselves time-shifted repeatedly, in a recursive manner. We use
this formulation in the NestedDelays graph, documented in appendix C.

4.3.3 Simulation Results and Limitations

In figs. 4.10 and 4.11, one can compare the instrumental noise in the s1 interferometric
measurement and the residual noise in some first and second-generation TDI combinations.
These simulations use a simple instrumental setup, where antialiasing filters have been
disabled and interferometric signals are not downsampled. As a result, all measurements
are taken at a frequency of 3 Hz. The light travel times are computed from the set of
Keplerian orbits presented in section 3.2.3. Clock noise and ranging errors are disregarded
in these simulations, so we can highlight the TDI reduction of laser and optical-bench
displacement noise.
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Figure 4.10: Instrumental noise in the s1 interferometric signal, compared with the residual
noise in the first-generation TDI X1, A1, α1, and ζ1 combinations.
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Figure 4.11: Instrumental noise in the s1 interferometric signal, compared with the residual
noise in the second-generation TDI X2, A2, α2, and ζ2 combinations.
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Figure 4.12: Instrumental noise in the s1 interferometric signal, compared with the residual
noise in the second-generation TDI X2, A2, α2, and ζ2 combinations.

As expected, both generations reduce the loudest instrumental noise (laser and optical-
bench displacement noises) to below the LISA requirements, i.e. a level that allows for the
detection of gravitational-wave signals. In figs. 4.10 and 4.11, this level is represented by
that of the secondary noises, which are not suppressed but only modulated by TDI.

However, these results do not account for a number of effects which degrade the noise-
reduction performance. Indeed, in a more realistic setup, the residual noise in the TDI
combinations is notably higher than one would naively expect. First, the ranging estimates
used to delay the interferometric measurements appearing in the TDI combinations are
imperfect. As discussed in section 3.2.5, those estimates contain an error. Therefore, they
do not match the real propagation times and the residual level increases. Figure 4.12 shows
the effect of such ranging errors in second-generation Michelson X2 combination.

Time-Delay Interferometry Ranging (TDIR) was proposed in [TVA05] to mitigate the effect
of a constant bias in the ranging signals. It is a minimization algorithm that works together
with the absolute ranging to minimize the residual noise in TDI combinations over long
time periods. However, this technique has not been experimentally confirmed.

Also, the fractional delay operators cannot be exact as we only use a finite number of samples
(i.e. a finite interpolation order in the case of Lagrange polynomials, c.f. section 3.4.3). As
a result, numerical errors are introduced each time a delayed interferometric measurement
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appears in the TDI combination. Results are even worse when delay operators are nested,
as these numerical errors tend to accumulate. Noise-reduction performance is thus directly
connected to the quality of the interpolation, and this justifies why we use high-order
interpolation in our simulations. In particular, the increase of residual laser noise at high
frequencies in fig. 4.12 is the signature of Lagrange interpolation. These issues are discussed
in detail in [SWSV04].

As mentioned in the previous sections, the flexing of the constellation is responsible for the
non-commutation of delay operators. Such commutators yield a non-vanishing contribution
to the noise residuals. Moreover, the antialiasing filters described in section 3.5.5 can couple
to the delay operators and leave substantial residuals as well. These two effects are studied
and discussed in detail in chapter 5.

Lastly, clock noise couples at various points in the measurement chain, c.f. section 3.3.6.
In particular, it introduces errors in the measurements provided by the phasemeters that
must be corrected for. In chapter 6, we propose an exact calibration algorithm and discuss
the limiting noise sources. In conclusion, we show that it is possible to reduce this clock
noise to the required levels.
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Chapter 5

Flexing-Filtering Effect

This chapter is an re-arranged and augmented reproduction of an article [BLPH19] pub-
lished in Physical Review D, 2019. This paper is the result of a work conducted in collabo-
ration with M. Lilley, M. Petiteau, and H. Halloin.

5.1 Introduction

We have seen in chapter 3 that, among the multiple sources of noise which enter the
measurements made by LISA, laser frequency noise is dominant. In chapter 4, we introduced
TDI, an algorithm that aims to reduce the laser frequency noise by 8 orders of magnitude,
bringing it below secondary noises and gravitational wave signals. Indeed, one synthesizes
virtual equal-arm interferometric measurements by combining time-shifted measurements
from LISA.

Laboratory experiments have been performed to study whether TDI can be applied cor-
rectly and whether its performance meets mission requirements, in various setups. A first
demonstrator was designed at the Jet Propulsion Lab [DWM+10] to reproduce noise cou-
plings and measure TDI noise reduction in a fixed two-arm configuration. It was shown
that the laser frequency noise could be reduced to the desired level. The Hexagon interfer-
ometer [SBP+19] is a metrology test bed developed at the Albert Einstein Institute, and
consists of three locked lasers. It was used both to test the performance and feasibility
of TDI for heterodyne interferometry and to test phasemeter prototypes. LISA-On-Table
(LOT) is an electro-optical simulator developed at AstroParticule et Cosmologie Labora-
tory (APC) [LHB+17, GHP+15]. The results show that in the case of two static unequal

131
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arms, first-generation TDI cancels the laser frequency noise as expected. The University
of Florida LISA Simulator (UFLIS) uses electronic phase delay units to simulate the time
variation of the armlengths. First-generation TDI was successfully tested, reaching the re-
quired performance, while TDI 2.0 results were limited by the noise of the electronic phase
delay units [CTHM06]. To date, however, no realistic demonstrator using time-varying
armlengths was successful in measuring the performance of TDI 2.0. Computer simula-
tions have also been used to check the performance of the laser frequency noise removal
performed by TDI. They are described in chapter 2.

In this chapter, we have developed an analytic model that describes both LISA and TDI
for a realistic setup in order to determine which instrumental factors play an important
role in the laser frequency noise reduction performance. This model reproduces the results
of both LISANode and LISACode with great precision. We include the effect of the so-
called flexing, i.e. time-varying armlengths, and that of the antialiasing filtering applied
before the high-frequency measurements are downsampled and telemetered to Earth. The
agreement between our theoretical model and our simulations demonstrates that LISACode
and LISANode are implemented correctly. Our work also shows that a coupling between
the flexing of the constellation and the antialiasing filters can degrade significantly TDI’s
performance. We show that the effect of this coupling is mitigated with well-designed
filters and a specific offline treatment. The remaining laser frequency noise can then be
maintained below mission requirements in the frequency band between 10−4 and 10−1 Hz,
for second-generation TDI.

We first present the LISA mission setup that was modeled analytically and simulated nu-
merically in section 5.2, and the TDI algorithm that was used in section 5.3. In section 5.4,
we derive the corresponding analytic model for TDI 1.5 and 2.0. In section 5.5 we describe
LISACode and LISANode, and give details about the configuration used to generate the
data. Finally, in section 5.6, we compare and discuss the results of the simulators and of
the analytic approach. In particular, we study the effect of different types of filters and
discuss their potential implementations.

5.2 Instrumental Setup

LISA is a constellation of three spacecraft forming a nearly equilateral triangle. The
constellation’s center of mass trails the Earth in its orbit around the Sun by around 20
deg. [DASpAh+17]. Each spacecraft emits and receives a laser beam along each of the two
arms connecting it to its companion spacecraft. All spacecraft host two MOSAs, an on-
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board computer, a phasemeter, and two laser sources. A MOSA is composed of a telescope
and an optical bench. The telescope sends an outgoing laser beam to its companion space-
craft and collects incoming light. Various conventions are used in the literature to denote
the spacecraft, optical benches and arms. In this chapter, we number these components
according to fig. 3.4.

The Fourier Transform of a signal x(t) is denoted x̃(ω) and defined here by

x̃(ω) =

∫ ∞
−∞

x(t)e−jωt dt , (5.1)

and the Inverse Fourier Transform follows

x(t) =

∫ ∞
−∞

x̃(ω)ejωt dω , (5.2)

where j2 = −1 is the unit imaginary number.

Usual properties, such as linearity, follow from these definitions.

In this chapter, we consider the latest optical design, often called split interferometry. It
is extensively described in [OHD12]. Three interferometric measurements are performed
on each optical bench i: the science si (respectively, reference τi) signal is the beatnote
between the distant (respectively, adjacent) and local beams without any reflection on the
test masses. The test mass signal εi corresponds to the beatnote formed by the local and
adjacent beams after reflection onto the local test mass.

For simplicity, we neglect all secondary noise sources, such as the read-out noise, the optical
path noise, and the test mass acceleration noise. The clocks on board each spacecraft are
assumed to be perfect and we neglect both the clock noise and the sideband measurements
that are used to remove parts of this noise [TH18, OHD12]. We therefore only study laser
frequency noise, denoted pi(t) and p′i(t), where i is the spacecraft index. For simplicity, we
model it here as a white noise with a power spectral density (PSD) of 10−26 Hz/Hz, c.f. sec-
tion 3.3.2. We disregard laser locking and therefore assume that lasers are free-running
with independent noise series. Under those assumptions, split interferometry reduces to
the legacy design described in [Pet08].

The interferometric measurements, defined in eqs. (5.4) and (5.5), are delivered by the
phasemeter to the on-board computer at 20 Hz. Due to limitations in the telemetry pass-
band, they must be downsampled to 2 Hz before they are transmitted to Earth [DASpAh+17].
Antialiasing filters are used to prevent power folding in the band of interest during decima-
tion. These filters are assumed to be identical on board all spacecraft, and consist of a convo-
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lution with a filter kernel f(t). We define the filter operator F , such that Fx(t) = (f ∗ x)(t)

for any signal x(t).

We model all signals as Doppler observables, i.e. as the ratio of the instantaneous frequency
deviation from the nominal carrier frequency [ν(t)− ν0]/ν0 [Val05b] over that nominal car-
rier frequency. We neglect frequency planning [Bar15] and Doppler shifts due to the relative
motion of the spacecraft. Therefore, In this chapter, the carrier nominal frequency remains
constant and equal for all beams, and interferometric signals are obtained by forming the
difference of two incoming Doppler observables.

The propagation of laser beams between two spacecraft is modeled by applying time-varying
delays. These delays correspond to the sum of all delays in the optical, analog and digital
signal chains, though the main contribution remains the light travel times between the
spacecraft. Therefore we suppose here that they are given by the armlengths and the speed
of light in vacuum. We denote Di the operator associated with traveling along arm i, of
length c × Li(t). For example, the laser frequency noise received by optical bench 2′ from
laser 1, after it has traveled along arm 3, is given by

D3p1(t) = p1(t− L3(t)) . (5.3)

We give the expressions of the measurement signals for the spacecraft 1; others are obtained
by circular permutation of the indices. The science signals read

s1 = FD3p
′
2 −Fp1 ,

s′1 = FD2′p3 −Fp′1 .
(5.4)

In the absence of secondary noise sources, the expressions for the test mass and reference
signals are equal and given by

ε1 = τ1 = Fp′1 −Fp1 ,

ε′1 = τ ′1 = Fp1 −Fp′1 .
(5.5)

5.3 Time-Delay Interferometry

TDI is a multi-staged algorithm [Ott15] which is performed off-line, before astrophysical
and cosmological source parameters are extracted, cf. fig. 2.1. It is mainly conceived to
reduce reduce laser frequency noise, but intermediary steps also cancel other instrumental
sources of noise. We shall only consider laser frequency noise, but will nevertheless use the
full TDI expressions in this section, for consistency with the literature.
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One first uses the measurement signals to form the intermediary variables ξi, then Qi and
then finally ηi. These combinations, respectively, cancel out the optical bench displacement
noise (here set to zero), reduce the signals to one free-running laser per spacecraft and
suppress clock noise (here set to zero). Note that the test mass acceleration and optical
measurement system noises, also set to zero in this study, are not suppressed by these
combinations. ξ, Q, and η are defined in [Ott15] and can be written under our assumptions
as

ξi = si −
Dkε′j −Dkτ ′j

2
,

ξ′i = s′i −
Dj′εk −Dj′τk

2
,

Qi = ξi +
Dkτ ′j −Dkτj

2
,

Q′i = ξ′i +
τ ′i − τi

2
,

ηi = Qi ,

η′i = Q′i .

(5.6)

Next, TDI synthesizes virtual equal-arm interferometric measurements in order to reduce
laser frequency noise. This is done by applying one of the appropriate sets of nested delays
to the ηi variables, and by combining the resulting terms. In this chapter, we focus on
the Michelson variables X,Y and Z, which synthesize pairwise independent Michelson-like
interferometers. There exist several generations of Michelson variables, which depend on
the complexity of the spacecraft motion. TDI version 1.0 applies to a static configuration.
Version 1.5 applies to a rigid but rotating configuration. Finally, TDI version 2.0 applies to
a rotating configuration with armlengths varying linearly in time. In this chapter we focus
on versions 1.5 and 2.0 of TDI.

The expressions for the X variable for generations 1.5 and 2.0 [VN02] are given by

X1 = η1′ +D2′η3 +D2′2η1 −D2′23η2′ − (η1 +D3η2′ +D33′η1′ +D33′2′η3) , (5.7)

X2 = X1 +D2′233′η1 +D2′233′3η2′ +D2′233′33′η1′ +D2′233′33′2′η3

− (D33′2′2η1′ +D33′2′22′η3 +D33′2′22′2η1 +D33′2′22′23η2′) ,
(5.8)

where we have used the nested delay notation Di1i2...in ≡ Di1Di2 . . .Din . The remaining
Michelson variables Y and Z can be obtained by circular permutation of the indices.

Substituting in eqs. (5.7) and (5.8) the values for η and η′, given by eq. (5.6), yields
expressions which depend on laser frequency noises only. Let us first neglect the filters,
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i.e. we set F = 1. Because we are dealing with time-varying armlengths, the Michelson
variables can be expressed with nonvanishing delay commutators [A,B] = AB −BA,

X1 = ([D2′2,D3]D3′ +D3[D2′2,D3′ ])p1 , (5.9)

X2 = ([D2′2,D33′ ]D33′2′2 −D33′2′2[D2′2,D33′ ])p1 . (5.10)

If we now include the effect of the filter, delay-filter commutators appear. Indeed, delay
operators are used in the definition of these filters, which therefore do not commute with
the time-varying delays used by TDI. The residual laser frequency noise now reads

X1 = ([D2′2,D3]FD3′ +D3[D2′2,D3′ ]F)p1

+D3(1−D2′2)[D3′ ,F ]p1 + (1−D33′)D2′ [F ,D2]p1′

+ (1−D2′2)[D3,F ]p2′ + (1−D33′)[D2′ ,F ]p3 ,

(5.11)

X2 = ([D2′2,D33′ ]D33′2′2F +D33′2′2[D33′ ,D2′2]F)p1

+ (1−D2′2 −D2′233′ +D33′2′22′2)D3[D3′ ,F ]p1

+ (1−D33′ −D33′2′2 +D2′233′33′)D2′ [F ,D2]p1′

+ (1−D33′ −D2′233′ +D33′2′22′2)[D3,F ]p2′

+ (1−D33′ −D33′2′2 +D2′233′33′)[F ,D2′ ]p3 .

(5.12)

In the next section, we use these expressions to derive an analytic model for the residual
laser frequency noise after application of TDI. In section 5.5, we numerically simulate the
measurement signals, generate the X, Y , and Z variables, and estimate their PSDs.

5.4 Analytic modeling for linear armlengths

5.4.1 Modeling Armlengths

For realistic spacecraft orbits computed using Kepler’s laws [DNKV05, NKDV06], LISA
armlengths are not constant, but modulated with a characteristic time scale of a year. In
this section, we expand these armlengths to first order in time. This is a good approximation
of the true orbits on a scale of several weeks, i.e. to a frequency of the order of 10−5 Hz,
while the lowest frequency in LISA’s band of interest is 2× 10−5 Hz [LIS19b]. Therefore,
deviations are expected to appear only at low frequencies.

We define the armlengths, in meters, as c× Li(t) = c× Li + c× L̇i t, where Li and L̇i are
constant. The delay operators Di applied to the laser frequency noise p(t) is now a pure
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delay and a time rescaling. It reads

Dip(t) = p
[(

1− L̇i
)
t− Li)

]
. (5.13)

The Fourier Transform of a signal x(at + b), which is delayed by −b and whose time is
rescaled by a, can be expressed as a function of the original signal using a change of
variable. The computations follow

˜x(at+ b)(ω) =

∫ ∞
−∞

x(at+ b)e−jωt dt =

∫ ∞
−∞

x(τ)e−jω
τ−b
a

dt

|a|
=
ejωb/a

|a|
x̃
(ω
a

)
. (5.14)

We can apply this result to eq. (5.13), with a = 1− L̇i and b = −Li. Since L̇i � 1, we can
get rid of the absolute value and use the simple result

D̃ix(ω) =
1

1− L̇i
exp

(
−jω Li

1− L̇i

)
x̃

(
ω

1− L̇i

)
. (5.15)

5.4.2 Nested Delays

Successive applications of delay operators are called nested delays. In the case of two delays,
it follows easily from eq. (5.13) that

Dijx(t) = Dix([1− L̇j ]t− Lj) = x([1− L̇i][1− L̇j ]t− [1− L̇i]Lj − Li) , (5.16)

while, if we apply the same delays in the reverse order we obtain

Djix(t) = Djx([1− L̇i]t− Li) = x([1− L̇j ][1− L̇i]t− [1− L̇j ]Li − Lj) . (5.17)

One can note that the time rescaling is, in both cases, identical. Nevertheless, the pure de-
lays are different. This is a good illustration of the non commutation of our delay operators,
and we have

Dij 6= Dji . (5.18)

Let us now consider the general nested delays Di1i2...in applied to a signal x(t), denoted y(t).
If we apply recursively eq. (5.13) we obtain the compact expression in the time domain

y(t) = Di1i2...inx(t) = x

(
Snt−

n∑
k=1

Sk−1Lik

)
, (5.19)
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where we have defined

Sk =

k∏
p=1

(
1− L̇ip

)
, (5.20)

for k > 0 and S0 = 1.

Indeed, eq. (5.19) is trivially valid for a single delay, i.e. when n = 1 because we have
y(t) = Di1x(t) = x([1− L̇i1 ]t−Li1) = x(S1t− S0Li1). If we assume that the formula holds
for n delays, we can apply another delay and find the corresponding version of eq. (5.19).
This proves the general formula by mathematical induction.

Applying eq. (5.14) to eq. (5.19), we can derive the Fourier Transform for nested delays as
they appear in the TDI residuals, with the same definition of Sk,

ỹ(ω) =
1

Sn
exp

(
−jω

n∑
k=1

Lik
Sk

)
x̃

(
ω

Sn

)
. (5.21)

The previous equation is not invariant by swapping of delay operators. Indeed, this non-
commutation is caused by the terms Sk inside the exponential function. As it is clear in
eq. (5.20), these terms are highly dependent on the delay order. As an example, we see in
the next section that the commutator of n delays does not vanish.

5.4.3 Delay Commutators

Analytic Development

Let us consider the commutator of n delay operators, be they propagation or offline delays.
We denote its application on a signal x(t)

y(t) =
[
Di1i2...im ,Dim+1...in

]
x(t) = (Di1...in −Dj1...jn)x(t) , (5.22)

where we have defined the jk indices such that{
jk = ik+m for 1 ≤ k ≤ n−m ,

jk = ik−n+m for n−m < k ≤ n .
(5.23)

Note that, because we only applied an index permutation to obtain the j’s from the i’s, we
have the set equality

{ik}1≤k≤n = {jk}1≤k≤n . (5.24)
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Using eq. (5.19), we have in time domain

y(t) = x

(
Snt−

n∑
k=1

Sik−1Lik

)
− x

(
Snt−

n∑
k=1

Sjk−1Ljk

)
, (5.25)

where Sik =
∏k
p=1

(
1− L̇ip

)
and Sjk =

∏k
p=1

(
1− L̇jp

)
for k > 0, and Si0 = Sj0 = 1. Note

that we have Sin = Sjn = Sn because of the set equality eq. (5.24). The difference does not
vanish because the two sums use different indices and therefore are not identical. This is
the mathematical translation of the non-commutation of our delay operators.

We can massage this equation by trying to write all terms expressed with the j’s indices as
functions of the i’s indices only. We first split the sum

∑n
k=1 S

j
k−1Ljk into two parts.

• The first one is
∑n−m

k=1 Sjk−1Ljk = Lim+1 +
∑n−m

k=2 Sjk−1Ljk . In this sum, we focus on
the factors Sjk−1, where 1 ≤ k − 1 ≤ n−m− 1. Using eq. (5.23), we can write

Sjk−1 =

k−1∏
p=1

(
1− L̇ip+m

)
=

k+m−1∏
p=m+1

(
1− L̇p

)
=
Sik+m−1

Sim
. (5.26)

Therefore the term of interest reads

Lim+1 +
1

Sim

n−m∑
k=2

Sik+m−1Lik+m
= Lim+1 +

1

Sim

n∑
k=m+2

Sik−1Lik =
1

Sim

n∑
k=m+1

Sik−1Lik .

(5.27)

• The second part is
∑n

k=n−m+1 S
j
k−1Ljk = Sjn−mLi1+

∑n
k=n−m−2 S

j
k−1Ljk . Once again,

we focus on the factors Sjk−1, where n−m < k− 1 ≤ n− 1. Using eq. (5.23), we can
write

Sjk−1 =
n−m∏
p=1

(
1− L̇ip+m

) k−1∏
p=n−m+1

(
1− L̇ip−n+m

)
=
Sin
Sim

Sik−n+m−1 . (5.28)

Similarly, for the extra factor we have

Sjn−m =

n−m∏
p=1

(
1− L̇ip+m

)
=

n∏
p=m+1

(
1− L̇ip

)
=
Sin
Sim

. (5.29)

Therefore the second term of interest reads

Sin
Sim

(
Li1 +

n∑
k=n−m+2

Sik−n+m−1Lik−n+m

)
=
Sin
Sim

m∑
k=1

Sik−1Lik . (5.30)
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Using these results we now have

y(t) = x

(
Snt−

n∑
k=1

Sik−1Lik

)
− x

(
Snt−

Sin
Sim

m∑
k=1

Sik−1Lik −
1

Sim

n∑
k=m+1

Sik−1Lik

)
. (5.31)

which we can Taylor-expand.

If we focus on the first order in powers of the armlength derivatives, Sik ≈ 1 −
∑k

p=1 L̇ip ,
1/Sik ≈ 1 +

∑k
p=1 L̇ip and Sin/Sim ≈ 1−

∑n
p=m+1 L̇ip . Plugging these approximations in the

expression of y(t), and denoting Σ =
∑n

k=1 Lik the armlength sum, yields

y(t) ≈

[(
n∑
k=1

Lik

)(
m∑
k=1

L̇ik

)
−

(
m∑
k=1

Lik

)(
n∑
k=1

L̇ik

)]
dx

dt
. (5.32)

Assuming now that all armlengths at t = 0 are almost equal, i.e. Li ≈ L for all i, we can
simplifiy eq. (5.32) to

y(t) ≈ L

[
(n−m)

(
m∑
k=1

L̇ik

)
−m

(
n∑

k=m+1

L̇ik

)]
dx

dt
. (5.33)

The corresponding Fourier transform ỹ(ω) is

ỹ(ω) ≈ −jωLe−jωnL
[

(n−m)

(
m∑
k=1

L̇ik

)
−m

(
n∑

k=m+1

L̇ik

)]
x̃(ω) , (5.34)

and the associated PSD writes

Sy(ω) ≈ ω2L2

[
(n−m)

(
m∑
k=1

L̇ik

)
−m

(
n∑

k=m+1

L̇ik

)]2

Sx(ω) . (5.35)

Simulations

Using eq. (5.33), the commutator [Di,Dj ] applied to a signal x(t) is approximately, to
leading order in the derivative of x and in the powers of the armlength derivatives, and if
we assume that armlengths are equal,

[Di,Dj ]x(t) ≈ L
(
L̇i − L̇j

) dx

dt
(t− 2L) . (5.36)

Using LISANode, we compute this simple delay commutator using Li = Lj = L = 100 s,
and L̇i = −L̇j = 10−2 s/s. The input signal x(t) is a simple sinus of amplitude 1, and
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Figure 5.1: Simulated and theoretical time series for a simple delay commutator [Di,Dj ]
applied to a sinus signal. Parameters used in the simulation are described in the related
section.
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Figure 5.2: Simulated and theoretical PSDs for a simple delay commutator [Di,Dj ] applied
to a white noise. Parameters used in the simulation are described in the related section.

arbitrary frequency and phase. Figure 5.1 shows a very good match between the simulated
data and the theoretical model eq. (5.36).

In the Fourier domain, we use eq. (5.35) to derive the commuator PSD

S[Di,Dj ]x(ω) ≈ ω2L2
(
L̇i − L̇j

)2
Sx(ω) . (5.37)

Using LISANode, we compute this delay commutator using L = 100 s and L̇i = −L̇j =

L̇ = 10−5 s/s but generate x(t) as a white noise of unit PSD, with an arbitrary sam-
pling frequency. We therefore have the simplified expression for the commutator PSD
˜[Di,Dj ]x(ω) ≈ 4ω2L2L̇2Sx. Figure 5.2 shows that the approximated model matches with

good precision the simulated data.
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5.4.4 Delay-Filter Commutators

Analytic Development

The application of the filter operator F on a signal x(t) is formally written as a convolution
of the filter kernel and the signal itself. In the frequency domain, this translates to a simple
product of the signal and filter kernel Fourier Transforms

F̃x(ω) = F̃(ω)× x̃(ω) . (5.38)

When delay operators are applied before, i.e. when they appear at the right of the F
operator, we simply use eqs. (5.21) and (5.38) and still have a simple product in the Fourier
domain. If we define y(t) = FDi1 . . .Dinx(t), then

ỹ(ω) =
1

Sn
exp

(
−jω

n∑
k=1

Lik
Sk

)
x̃

(
ω

Sn

)
F̃(ω) . (5.39)

When delay operators are applied after the filter, i.e. when they appear at the left of the
F operator, we have to apply the frequency rescaling; if y(t) = Di1 . . .DinFx(t), we have

ỹ(ω) =
1

Sn
exp

(
−jω

n∑
k=1

Lik
Sk

)
x̃

(
ω

Sn

)
F̃
(
ω

Sn

)
. (5.40)

We can now easily work out the Fourier Transform of the commutator for nested delays
and a filter. Let’s define, in general,

y(t) = [Di1 . . .Din ,F ]x(t) = (Di1 . . .DinF − FDi1 . . .Din)x(t) , (5.41)

Using the two previous equations, we have in Fourier domain

ỹ(ω) =
1

Sn
exp

(
−jω

n∑
k=1

Lik
Sk

)
x̃

(
ω

Sn

)[
F̃
(
ω

Sn

)
− F̃(ω)

]
. (5.42)

Let us expand this last expression to leading order in the armlength derivatives. We use
the first order approximation 1/Sn ≈ 1 +

∑n
k=1 L̇k, so that eq. (5.42) becomes

ỹ(ω) ≈ ω exp

(
−jω

n∑
k=1

Lik

)(
n∑
k=1

L̇ik

)
dF̃
dω

x̃(ω) . (5.43)
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One can note the linear dependency on the angular frequency, and the rather small factor∑n
k=1 L̇ik . The factor of interest is dF̃

dω , which depends on the filter characteristics. If we

denote its square modulus KF (ω) ≡
∣∣∣dF̃dω ∣∣∣2, the corresponding filter commutator PSD can

be written as

Sy(ω) ≈ ω2KF (ω)

(
n∑
k=1

L̇ik

)2

Sx(ω) . (5.44)

Simulations

As an example of eq. (5.43), the PSD of a commutator [Di,F ] of a single delay and a filter,
applied to a signal x(t) writes

S[Di,F ](ω) ≈ ω2KF (ω)L̇2
iSx(ω) . (5.45)

Using LISANode, we compute this commutator using Li = 100 s, and L̇i = 10−3 s/s. The
input signal x(t) is a white noise of unit PSD Sx = 1 and we use a sampling period T =

1/33 s. We use a simple moving average filter, whose difference equation yn = 1
2(xn+xn+1)

gives

S[Di,F ](ω) ≈ ω2Sx
4

(
T L̇i

)2
. (5.46)

A good match between our approximated model and the simulated data is shown by fig. 5.3.

5.4.5 Residual Laser Noise

First, let us neglect the filters; i.e. we set F = 1. We substitute in eq. (5.9) the first-order
expression for the delay commutator given in eq. (5.34). This yields the approximated
Fourier transform of the residual laser noise for X1.

As expected, first-order terms vanish for TDI 2.0. We expand eq. (5.10) to second order,
using the exact expression of the delay commutator given in eq. (5.34). This yields the
approximated Fourier transform of the residual laser noise for X2.

The corresponding PSDs are obtained by taking the squared modulus and the ensemble
average of the Fourier transforms. We use the fact that the laser noises have zero mean,
i.e. 〈p̃i(ω)〉 = 0 for all i. In addition, we assume that different laser noises are uncorrelated,
i.e. 〈p̃i(ω1)p̃j(ω2)〉 = 0 if i 6= j. They all are white noises with the same constant PSD,
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Figure 5.3: Simulated and theoretical time series for a simple filter-delay commutator [Di,F ]

applied to a white noise signal. Parameters used in the simulation are described in the
related section.
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denoted Sp. We have

SX1(ω) ≈ 16Sp ω
2L2
(
L̇2 − L̇3

)2
, (5.47)

SX2(ω) ≈ 64Sp ω
2L2
(
L̇2

2 − L̇3
2
)2

. (5.48)

As expected, the residual laser noise scales with the laser frequency noise Sp, and vanishes
if L̇1 = L̇2, i.e. if the constellation undergoes a homothetic transformation.

We now introduce the effect of the filters. Using eqs. (5.11) and (5.43), we find that the
first-order expansion of the laser noise residuals in X1 is given by

SX1(ω) ≈ 8Spω
2
[
2L2

(
L̇2 − L̇3

)2
Sf (ω)− LL̇3

(
L̇2 − L̇3

)
DF (ω)

+ sin2(ωL)
(
L̇2

2 + L̇2
3

)
KF (ω)

]
,

(5.49)

where we have defined the squared modulus of the filter transfer function Sf (ω) =
∣∣∣f̃(ω)

∣∣∣2,
the filter term KF (ω) =

∣∣∣ df̃
dω

∣∣∣2, and DF (ω) = Im
{(

1− e−j2Lω
)
f̃(ω)df̃∗

dω

}
can be expressed

as

DF (ω) = [1− cos(2Lω)] Im

{
f̃(ω)

df̃∗

dω

}
− sin(2Lω) Re

{
f̃(ω)

df̃∗

dω

}
. (5.50)

Comparing this expression with eq. (5.47), we see that an extra term of the same order
appears. It corresponds to a coupling between the antialiasing filters and the time-varying
armlengths, with a dependance on the filter characteristics expressed by the filter term
KF (ω) and DF (ω), discussed below. This flexing-filtering coupling is however smaller than
the previous term by a factor of 1/L, and eq. (5.47) still gives a good estimate for the
residual laser noise in X1.

Similarly, we substitute eq. (5.43) in eq. (5.12) to obtain the approximated expression for
the laser noise residuals in X2, which reads

SX2(ω) ≈ 32Spω
2 sin2(ωL) sin2(2ωL)

(
L̇2

2
+ L̇3

2
)
KF (ω) . (5.51)

We see that the flexing-filtering coupling is dominant for second-generation TDI. The level
of residual laser frequency noise in X2 is therefore strongly dependent on the filter design.
We study various filters in the next paragraphs.

5.4.6 Filter Term KF(ω)

In the current baseline, all antialiasing filters are identical and correspond to a causal
symmetrical FIR filter. Its corner frequencies are slightly below 1 Hz, and a high attenuation
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must be reached for frequencies higher than 2 Hz.

We can write the filter output yn as a function of the past input samples xn−k and 2N + 1

coefficients αk

yn =
2N∑
k=0

αkxn−k . (5.52)

Its transfer function reads

f̃(ω) =
2N∑
k=0

αke
−jkω/fs , (5.53)

fs is the sampling frequency. Taking its derivative with respect to the angular frequency ω
immediately yields the associated filter term

Kcausal
F (ω) = f−2

s

∣∣∣∣∣
2N∑
k=1

kαke
−jkω/fs

∣∣∣∣∣
2

. (5.54)

This causal filter has a nonvanishing group delay of Nf−1
s , which is responsible for the non-

vanishing zeroth-order term Kcausal
F (ω) ≈ f−2

s

∣∣∣∑2N
k=1 kαk

∣∣∣2, for ω � 2πfs. This filter group
delay plays the same role as a pure delay operator, such as those described in section 5.4.3,
and which cannot commute with each other.

Noncausal FIR filters are similar to causal filters presented above, but the use of future
samples xn+k, for k > 0, is allowed. We can therefore center the coefficients around the
current sample xn, so that the group delay vanishes. We therefore obtain the following
relationship between the causal and noncausal coefficients αn and βn of the same filter,

βn = αN+n, −N ≤ n ≤ N . (5.55)

The filter term associated with a noncausal filter, whose characteristics are identical to its
causal version presented above, reads

Knoncausal
F (ω) = f−2

s

∣∣∣∣∣
N∑

k=−N
kβke

−jωkT

∣∣∣∣∣
2

= f−2
s

∣∣∣∣∣
N∑
k=0

kβk(e
−jωkT − ejωkT )

∣∣∣∣∣
2

, (5.56)

which can be put in the simple form

Knoncausal
F (ω) = 4f−2

s

∣∣∣∣∣
N∑
k=1

kαN+k sin

(
kω

fs

)∣∣∣∣∣
2

. (5.57)
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Figure 5.4: Levels for different filter terms KF . Dotted lines correspond to leading-order
expansions.

We are now left with a second-order term in ω/2πfs, andKnoncausal
F (ω) ≈ 4ω2f−4

s

∣∣∣∑N
k=1 k

2αN+k

∣∣∣2.
We therefore expect smaller laser noise residuals for noncausal filters in the LISA frequency
band of interest, i.e. below 1 Hz.

We numerically compute and plot the Kcausal
F (ω) and Knoncausal

F (ω) terms to compare the
causal and noncausal versions of the same realistic filter, used in simulations and described
in section 5.5. Results are given in fig. 5.4. We first observe that the approximated expres-
sions at leading order in the low frequency regime are good for a rough estimate. Moreover,
we clearly see that the filter term of the noncausal version has a far lower amplitude, which
leads to lower residuals, and therefore better performance.

For reference, we also plotted the filter term for an Infinite Impulse Response (IIR), i.e. re-
cursive) elliptic filter with the same characteristics1. We see that it is larger than that of

1The elliptic filter has 6 second-order recursive cells, corner frequencies of f1 = 0.1 × fmeas =

0.2 Hz and f2 = 0.45 × fmeas = 0.9 Hz, maximum passband ripples of 0.1 dB and an at-
tenuation of at least 240 dB in the stopband. Coefficients of the elliptic filter are as fol-
low. First cell: α = 4.882× 10−4, 7.239× 10−5, 4.882× 10−4, β = −1.969, 9.697× 10−1. Sec-
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the noncausal FIR filters, which leads to larger residual noise.

5.5 Simulations for Keplerian orbits

LISACode is the simulator currently used by the LISA community to generate realistic data
while LISANode is the baseline prototype for an end-to-end mission performance simulator.
They both perform computations in time domain and produce time series for any choice of
TDI variables. In the following, we only consider the Michelson variables X, Y , and Z.

Two sampling frequencies are used in our simulations. The physical sampling frequency
applies to the physical subsystems in the simulators: generation of instrumental noise, beam
propagation, and optical measurements. It is taken to be equal to fphy = 20 Hz in both
simulators. The interferometric signals si, εi and τi are downsampled to the measurement
frequency fmeas = 2 Hz by means of a decimation algorithm. All preprocessing steps,
including TDI, are therefore carried out at this measurement frequency. All signals are
implemented as doubles (64-bit floating-point numbers).

In both simulators, we use a symmetric FIR antialiasing filter of order 253, designed with a
Kaiser window. The coefficients2 are calculated such that the signal is attenuated by 240 dB

ond cell: α = 9.765× 10−4,−1.487× 10−3, 9.765× 10−4, β = −1.971, 9.719× 10−1. Third
cell: α = 3.125× 10−2,−5.997× 10−2, 3.125× 10−2, β = −1.992, 9.961× 10−1. Fourth
cell: α = 7.812× 10−3,−1.402× 10−2, 7.812× 10−3, β = −1.974, 9.761× 10−1. Fifth cell:
α = 1.562× 10−2,−2.980× 10−2, 1.562× 10−2, β = −1.985, 9.886× 10−1. Sixth cell: α =

1.866× 102,−3.501× 102, 1.866× 102, β = −1.979, 9.818× 10−1. .
2The second half of the filter’s coefficients are given by: 0.022 503, 0.022 470 8, 0.022 374 4,

0.022 214 6, 0.021 992 6, 0.021 710 1, 0.021 369 2, 0.020 972 6, 0.020 523 3, 0.020 024 6, 0.019 480 1,
0.018 893 9, 0.018 270 1, 0.017 613, 0.016 927 3, 0.016 217 5, 0.015 488 4, 0.014 744 4, 0.013 990 4, 0.013 230 8,
0.012 469 9, 0.011 712 1, 0.010 961 3, 0.010 221 3, 0.009 495 56, 0.008 787 36, 0.008 099 6, 0.007 434 85,
0.006 795 39, 0.006 183 13, 0.005 599 67, 0.005 046 27, 0.004 523 85, 0.004 033 05, 0.003 574 19, 0.003 147 3,
0.002 752 16, 0.002 388 3, 0.002 055 05, 0.001 751 52, 0.001 476 65, 0.001 229 27, 0.001 008 04, 0.000 811 548,
0.000 638 312, 0.000 486 79, 0.000 355 413, 0.000 242 603, 0.000 146 789, 6.642 34× 10−5, −3.068 36× 10−19,
−5.393 77× 10−5, −9.678 36× 10−5, −0.000 129 861, −0.000 154 416, −0.000 171 611, −0.000 182 522,
−0.000 188 139, −0.000 189 361, −0.000 187, −0.000 181 782, −0.000 174 349, −0.000 165 266, −0.000 155 02,
−0.000 144 028, −0.000 132 644, −0.000 121 158, −0.000 109 81, −9.878 85× 10−5, −8.823 97× 10−5,
−7.827 13× 10−5, −6.895 86× 10−5, −6.034 83× 10−5, −5.246 36× 10−5, −4.530 84× 10−5,
−3.887 03× 10−5, −3.312 51× 10−5, −2.803 88× 10−5, −2.357 08× 10−5, −1.967 58× 10−5,
−1.630 62× 10−5, −1.341 32× 10−5, −1.094 83× 10−5, −8.864 23× 10−6, −7.116 08× 10−6,
−5.661 47× 10−6, −4.461 13× 10−6, −3.479 14× 10−6, −2.682 98× 10−6, −2.043 59× 10−6,
−1.535 25× 10−6, −1.135 43× 10−6, −8.246 23× 10−7, −5.860 81× 10−7, −4.055 89× 10−7,
−2.711 98× 10−7, −1.729 76× 10−7, −1.027 53× 10−7, −5.388 86× 10−8, −2.104 73× 10−8,
1.670 89× 10−22, 1.256 02× 10−8, 1.917 93× 10−8, 2.178 35× 10−8, 2.180 24× 10−8, 2.027 19× 10−8,
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between 0.2 Hz and 0.9 Hz, and we authorize a maximum ripple of 0.1 dB below 0.2 Hz. We
implement filters using a direct form I and therefore, account group delays when they are
not vanishing.

The propagation of the laser beams between the spacecraft is implemented using time-
varying delays. Those delays are computed from the relative positions of the spacecraft,
themselves deduced from their Keplerian orbits presented in [NKDV06]. These orbits in-
clude the Sagnac effect, as well as first order relativistic corrections.

All delay operators are implemented using Lagrange interpolating polynomials of order 31.
This choice is the result of a trade-off: it allows for good precision and limits execution
time and numerical errors. As seen above, the TDI algorithm requires the application of
multiple delay operators to the interference measurements for the calculation of the Michel-
son variables X, Y , and Z. In order to minimize the error introduced by the associated
interpolations, we use a nested delay algorithm in which a single interpolation is necessary.

5.5.1 LISACode

LISACode is based on the original optical design, equivalent, under our assumptions, to the
split interferometry design described in section 5.2. Each of the three spacecraft of the LISA
constellation contains two independent lasers and two optical benches. Each optical bench
holds a science and a reference interferometer; the corresponding beatnotes are filtered and
decimated to produce the respective measurement signals si(t) and τi(t), as presented in
fig. 5.5.

The LISACode results use a 107 s time series generated with version 2.12.

5.5.2 LISANode

LISANode implements the newest split interferometry optical setup described in section 5.2,
and presented in fig. 5.6. Three interferometric measurements si, τi and εi (respectively,
the science, test mass, and reference signals) are formed and relevant sources of noise are
added to the measurements. These signals are then transmitted to the on-board computer,
which contains the antialiasing filter and decimation nodes. The results of these operations

1.792 19× 10−8, 1.524 89× 10−8, 1.257 38× 10−8, 1.008 99× 10−8, 7.899 63× 10−9, 6.043 16× 10−9,
4.520 36× 10−9, 3.306 67× 10−9, 2.364 59× 10−9, 1.651 59× 10−9, 1.125 23× 10−9, 7.463 54× 10−10,
4.807 13× 10−10, 2.996 03× 10−10, 1.798 33× 10−10, 1.032 79× 10−10, 5.622 01× 10−11, 2.859 93× 10−11,
1.328 41× 10−11, 5.3973× 10−12, 1.737 05× 10−12 .
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Figure 5.5: Original optical design used in LISACode simulations. Four interferometric
measurements per spacecraft are performed: the science signals si and s′i, along with the
reference signals τi and τ ′i .

are used to form the TDI Michelson variables X, Y and Z.

The results use a 107 s time series generated with LISANode version 1.1.

5.6 Results and discussion

5.6.1 Results

In figs. 5.7 and 5.8, we present the PSDs of the residual laser frequency noise for the TDI
Michelson variables X1 and X2. We show the results of LISANode simulations for both the
causal and the noncausal versions of the same filter, as described in section 5.5 (light and
dark blue curves). We plot the results of LISACode simulations for the causal filter only, in
order to validate the new simulator (light orange curve). The models derived in section 5.4
are superimposed (dashed light and dark green curves).

For reference, the red solid curves show the residual secondary noises in both X1 and X2

channels, simulated using LISANode and the noncausal antialiasing filter. To generate
those signals, we did not change the simulation parameters. However, laser frequency noise
is set to zero while the test mass acceleration (TM), optical read-out (RO) and optical path
(OP) noise amplitudes were given their nominal LISA instrument noise budget values. The
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Figure 5.6: New split interferometry optical design used in LISANode simulations. Six
interferometric measurements per spacecraft are performed: the science signals si and s′i,
the test mass signals εi and ε′i, along with the reference signals τi and τ ′i .

spectral shapes of these three secondary sources of noise are given in [LL18], and read

STM =
(
2.4× 10−15

)2 (5.58)

×

[
1 +

(
4× 10−4

f

)2
]

m2s−4Hz−1 , (5.59)

SRO + SOP = 1× 10−24 m2Hz−1 . (5.60)

Because TDI does not suppress those secondary noises, but only modulates their spectra,
they are used as a benchmark.

We use Welch’s method to estimate the spectra, implemented with standard Python tools
included in the scipy.signal module, version 1.1.0. We use segments of 40 000 samples
and a Nutall4 window function. The results are presented for the frequency band from
10−4 Hz to 1 Hz.

We can see that the results of both simulators are in very good agreement. The fact
that both simulators give similar results, although they use different implementations, in-
creases our confidence in the results they produce. Note that at frequencies greater than
4× 10−1 Hz, one observes a slight discrepancy between LISANode and LISACode. This
discrepancy is due to different implementations of the Lagrange interpolating polynomials
in the two simulators.

We can also observe that our analytic models match the simulated data with exquisite
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Figure 5.7: Power spectral density of the residual laser frequency noise in the Michelson X1

channel. The LISACode and LISANode simulations use realistic Keplerian orbits, while the
theoretical model uses armlengths varying linearly with time. Secondary noises are shown
in red and indicate the target level of laser frequency noise suppression.
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Figure 5.8: Power spectral density of the residual laser frequency noise in the Michelson X2

channel. The LISACode and LISANode simulations use realistic Keplerian orbits, while the
theoretical model uses armlengths varying linearly with time. Secondary noises are shown
in red and indicate the target level of laser frequency noise suppression.
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precision in most of the LISA band. At high frequencies, the model is no longer valid,
since it does not include the errors from Lagrange interpolations. These errors, visible in
the simulated data, manifest themselves by an increased level of residual laser frequency
noise around 6× 10−1 Hz. It can be shown that varying the interpolation order changes
the amplitude of this effect. At lower frequencies, the simulated data deviate away from
the analytic model. This is because assuming that the armlengths are varying linearly in
time is only valid for frequencies higher than 1 mHz. However, we see that at these lower
frequencies the residual laser noise is in any case well below mission noise level requirements.

It is also very clear that using a noncausal filter decreases significantly the residual laser
noise. This effect is particularly obvious at low frequencies, as the leading-order expansion
of the filter term is constant for the causal filter, while being proportional to ω2 for its
noncausal version; see section 5.4.

The fig. 5.7 shows that first-generation Michelson variables reduce the laser frequency noise
down to the required level, but only marginally. This is especially true with causal filters.
On the contrary, fig. 5.8 shows that second-generation Michelson variables can reduce the
laser frequency noise up to 3 orders of magnitude below the secondary noises over the entire
frequency range, if we use noncausal filters.

In the case of time varying orbits, and in the presence of antialiasing filters, TDI 2.0 is
therefore necessary and sufficient to suppress laser frequency noise levels down to mission
requirements [DASpAh+17]. Moreover, using noncausal filters allows for comfortable mar-
gins.

5.6.2 Filter group delay

TDI uses as inputs the interferometric signals from the six optical benches [si(t), τi(t) and
εi(t)], and the ranging estimates Li(t) for all six links. A causal filter has a nonvanishing
group delay N/fs; since it is only applied on the interferometric signals, the latter will be
time-shifted while ranging estimates are left untouched. Let us denote the filter group delay
operator DF . As part of the TDI algorithm, one computes terms of the type DiDFp(t) =

p(t − N/fs − Li(t)) when one really wants DFDip(t) = p(t − N/fs − Li(t − N/fs)), or,
equivalently, p(t− Li(t)).

We recognize here an extra noise proportional to the commutator [DF ,Di]p(t) ≈ L̇i(N/fs)dp
dt ;

see eq. (5.33). It is non vanishing in the case of time-varying armlengths, which explains
this flexing-filtering coupling.
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5.6.3 Implementation of a Noncausal Filter

We can relate the transfer function f̃noncausal(ω) of a noncausal filter to that of its causal
version f̃ causal(ω),

f̃noncausal(ω) = ejωN f̃ causal(ω) . (5.61)

The coefficients of these two versions of the same filter only differ by an integer delay of N
samples. We can therefore deduce the output samples of the noncausal filter using future
output samples of the causal version,

ynoncausaln = ycausaln+N . (5.62)

We explore in the following paragraphs solutions to implement, or synthesize offline, such
a noncausal version of the antialiasing filter.

Online Re-Timestamping

The first solution is to mimic a noncausal antialiasing filter on board. This is achieved by
using an actual causal filter, and then re-timestamp the data samples to make up for the
corresponding filter group delay, in our case Nf−1

s . The re-timestamped data samples are
then decimated and transmitted down to Earth.

Although this solution is simple and elegant, it modifies the on-board processing, and
applies a transformation to the data before we receive it on Earth, therefore forbidding the
access to raw data.

Offline Re-Timestamping

We propose in this solution to leave the on-board processing untouched, and only relabel
the decimated data once it has been transmitted to Earth.

One caveat is that we might need to use interpolation, and therefore introduce errors in
the data, to apply the relevant delay Nf−1

s . Indeed, the filter group delay ought not be
a multiple of the sampling period after data has been downsampled and telemetered to
Earth. Simulations show that good interpolators, such as Lagrange interpolating polyno-
mials of order 15, are good enough for our purpose. Carefully choosing the filter order, or,
equivalently, its group delay, so that the downsampled sampling period divides the filter
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group delay, may spare us the need to interpolate the data. This is a very light constraint,
which must nevertheless be taken into account when designing the on-board filters.

In the simulations presented in sections 5.5 and 5.6, we used the latter solution.

5.7 Conclusion

This chapter adapted from [BLPH19] addresses the problem of modeling and simulating
the residual laser frequency noise, after TDI has been applied, in a realistic instrumental
setup. We have focused our analysis on the first and second-generation Michelson X, Y
and Z variables, and have included the effect of time-varying armlengths, as well as the
effects of the on-board antialiasing filters. In our LISACode and LISANode simulations, the
armlengths vary according to Keplerian orbits. In the analytic expressions of the residual
laser frequency noise spectrum we derive, armlengths vary linearly with time. This is a
very good approximation of Keplerian orbits on the time scales of interest. The resulting
expressions are functions of both the varying armlengths and of the filter coefficients, and
show at leading-order that a new flexing-filtering coupling noise enters the measurements,
degrading the expected TDI performance.

We showed that the simulated data match the analytic model with exquisite precision over
a large fraction of the LISA frequency band. As a benchmark for the performance of TDI,
we used LISANode simulations that include secondary noise only. In the case of time-
varying armlengths, TDI 1.5 is shown not be able to achieve sufficient laser frequency noise
reduction over the entire frequency range of interest. On the other hand, TDI 2.0 reduces
laser frequency noise to well below the secondary noise level, for the case of a standard
finite-impulse response filter. TDI 2.0 is therefore the minimal viable TDI generation for
LISA.

As demonstrated In this chapter, our analytic model and simulations help gain insight into
TDI and the various parameters that play a key role in its performance. In particular,
we were able to demonstrate that a noncausal filter improves TDI performance and helps
reduce further the residual laser noise down to 3 extra orders of magnitude in the middle
of LISA frequency band. This noncausal filter can be synthesized using its causal version
on board and adapt the TDI algorithm by time-shifting the interferometric signals with
respect to the ranging estimates. This concept was demonstrated by our simulations.

One could also use the analytic model developed in this study to optimize the filter coef-
ficients, so that the useful frequency band for data analysis (i.e. the frequency band over
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which the gravitational signal is not attenuated) is maximized, while the residual laser
frequency noise level remains below the secondary noise level. Finally, the effect of other
instrumental imperfections and artifacts, such as the errors in the absolute ranging or in
the interpolation scheme, or even clock noises, remain to be included in both our model
and simulations.



Chapter 6

Clock-Noise Calibration

This chapter is a draft version of an article that will be submitted to Physical Review D. It
is the result of a work conducted in collaboration with O. Hartwig.

6.1 Introduction

The dominant source of noise in LISA is laser frequency noise, which couples into the mea-
surements many orders of magnitude above the expected gravitational wave signals. TDI
is an offline technique used to suppress this laser noise and described in chapter 4. It uses
time-shifted combinations of the interferometric signals to synthesize virtual laser-noise-free
Michelson-like interferometers. The so-called first generation algorithm assumes that the
armlengths are constant in time. A second generation has been proposed, to account for
flexing of the constellation, i.e. time-varying armlengths. Analytic and numerical studies,
as well as laboratory experiments have shown that the second-generation TDI is sufficient
to reduce laser noise far below the level of secondary readout noises.

In addition to laser frequency noise, other secondary noise sources are also above the re-
quirements and need to be suppressed as part of the TDI algorithm. In particular, this is
envisioned for timing fluctuations of the USOs on-board each spacecraft. An USO provides
a unique time reference used to drive all systems of the measurement chain. This clock
drives in particular the ADC, the phasemeter, and the on-board computer. It is also used
to timestamp the measurement signals at 3 Hz, which are then telemetered down to Earth.
To prevent aliasing below 1 Hz [LL18], we filter the signals before they are downsampled.

159
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State-of-the-art oscillators qualified for space typically have an Allan standard deviation of
about 10−13 for averaging times above 1 s [WGR10]. No online synchronization between
the three clocks is foreseen, which drift independently over large periods of time. The
timestamps of measurements from different spacecraft are therefore inconsistent with each
other. The drifting of the clocks also affect the pseudo-ranging measurements used to
estimate the absolute distance between the spacecraft, themselves used to produce the
TDI variables. In this study, we assume that an on-ground algorithm can synchronize the
measurements onto a common time grid and remove the clock offsets from the ranging
measurement, such that we can ignore this effect on TDI [Wan17].

In addition to timing and ranging errors due to drifts over large timescales, clock jitter
in the measurement band also needs to be considered. The noise introduced into the
measurements by three independent oscillators is much higher than the tolerable level to
achieve the science objectives. In order to suppress it, we imprint the USO noise onto the
laser beam in form of modulation sidebands. This allows an independent measurement of
the differential clock noise, which can be used to calibrate it out of the TDI Michelson
variables. Technical details on the sideband generation can be found in [Bar15].

A first version of such a calibration algorithm for first-generation TDI was presented
in [TA99], which perfectly cancels clock noise assuming constant armlengths. In [TH18],
it was shown that this algorithm can be extended for second-generation TDI, where it
reduces the USO noise to far below other secondary noises. However, the cancellation is
no longer exact for time-varying armlengths. In this article, we propose a new calibration
algorithm for both generations, allowing for perfect cancellation of clock noise in the case
of time-varying armlengths. We estimate the residual noise from the flexing-filtering effect
first described in [BLPH19], as well as the level of other secondary noises and show that
numerical simulations match our analytic expressions to a very good precision.

In section 6.2, we introduce the notations and conventions used in this chapter. Then,
in section 6.3, we give the equations for the interferometric measurements, and study how
clock noise appear in the TDI variables. This allows us to propose a calibration algorithm in
section 6.4, and compute the levels of the secondary noises in the clock-calibrated variables.
We then present our simulation setup in section 6.6, before discussing the main results in
section 6.7.
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6.2 Notations and Conventions

Various conventions are used in the literature to label the spacecraft, optical benches and
light travel times along the links. In this paper, we number these components accord-
ing to fig. 3.4. We consider the so-called split-interferometry optical layout, described
in [BLPH19]. Therefore six interferometric measurements are formed on each spacecraft.
They are indexed according to associated optical bench. We give here equations for the
first spacecraft. The remaining expressions can be deduced by the circular permutation of
indices 1→ 2→ 3→ 1.

In the following, all signals are expressed in terms of frequency deviations from the carrier
frequency of the associated beam. Differences in the carrier frequencies are only considered
for the calculation of the heterodyne beatnote frequencies, which we assume to be constant.
They are given by

a1 = ν2′ − ν1 and a1′ = ν3 − ν1′ , (6.1)

b1 = ν1′ − ν1 and b1′ = ν1 − ν1′ = −b1 , (6.2)

c1 = (ν2′ + νm2′ )− (ν1 + νm1 ) = a1 + (νm2′ − νm1 ) , (6.3)

c1′ = (ν3 + νm3 )− (ν1′ + νm1′ ) = a1′ + (νm3 − νm1′ ) , (6.4)

with νi ≈ 282 THz as the laser frequencies, and νmi ≈ 2.5 GHz as the modulation frequencies
used for the clock sideband generation. We only consider the upper sidebands for this study,
and neglect the effects of Doppler shifts.

These frequencies are used as coupling coefficients of the USO fluctuations and to determine
the sign of the phasemeter measurements. The science and reference beatnote frequencies
are denoted by ai and bi, and their signs are defined as θsi and θτi , respectively. Note that
the reference and test-mass interferometers use the same beams, hence they use the same
coupling coefficients.

We define Li(t) as the light travel time along link i, in seconds. The propagation of
laser beams along this link is modeled using the time-varying delay operator Di, such
that Dix(t) = x(t − Li(t)) for any time-dependent function x(t). Multiple delays use the
short-hand notation

Di1Di2 . . .Din ≡ Di1i2...in . (6.5)

Since the delays Li(t) are themselves not constant, delay operators do not commute.

Anti-aliasing filters are used on board to downsample the data. They consist of a convolu-
tion of the signal with the filter kernel f(t). We can define the filter operator F , such that
Fx(t) ≡ (f ∗ x)(t).
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We define
[F ,Di]x(t) = FDix(t)−DiFx(t) . (6.6)

as the commutator of the filter operator with a delay. In [BLPH19], it is shown that these
terms are non-vanishing and contribute to the residual noise.

If x(t) is a function of time, we denote its Fourier transform x̃(ω) and its PSD Sx(ω), both
functions of the angular frequency ω = 2πf . For indexed quantities like e.g. clock noise, we
assume that their PSDs are equal, and denote them by Sq(ω).

6.3 Measurement Equations and TDI

For this study, we only include noises which are relevant to the performance of the clock
calibration algorithm. These are readout noises N s

i , N
sb
i , N ε

i , N
τ
i , and N sb,τ

i , sideband
modulation errors Mi, and clock noise qi. Clock noise is defined in terms of fractional
frequency deviations, such that it couples into the measurements scaled by the absolute
value of the beatnote frequency.

We assume that a pilot tone is used as phase reference on board each spacecraft [Bar15]. In
particular, this pilot tone is used to remove any additional clock jitters due to the ADC. As
such, qi are the fractional frequency deviations of that pilot tone and the Mi are additional
deviations present in the sidebands relative to that same pilot tone, e.g. due to noise added
by the fibre amplifiers. Any residual clock jitter due to imperfections in the pilot tone
correction is absorbed into the readout noise terms.

All noise signals depend on time, but this time dependency is not stated explicitly in this
article, for readability’s sake.

6.3.1 Interferometric Measurements

The science interferometric measurements s1 and s1′ are defined as the beatnotes between
the distant and local beams, on spacecraft i. They are given by

s1 = F [−a1θ
s
1q1 +N s

1 ] , (6.7)

s1′ = F [−a1′θ
s
1′q1 +N s

1′ ] . (6.8)

The test-mass measurements εi and εi′ are the beatnotes between the adjacent beam after
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it has bounced onto the local test mass, and the local beam, on spacecraft i. They read

ε1 = F [−b1θτ1q1 +N ε
1] , (6.9)

ε1′ = F [−b1′θτ1′q1 +N ε
1′ ] . (6.10)

Similarly, the reference measurements τi and τi′ are formed by the beatnote between the
adjacent and local beams, without any bouncing on the test mass. They read

τ1 = F [−b1θτ1q1 +N τ
1 ] , (6.11)

τ1′ = F [−b1′θτ1′q1 +N τ
1′ ] . (6.12)

The sideband measurements are defined as the beatnote between the distant and local upper
sidebands. Their expressions read

ssb1 = F
[
θs1(νm2′D3(q2 +M2′)− νm1 (q1 +M1)− c1q1) +N sb

1

]
, (6.13)

ssb1′ = F
[
θs1′(ν

m
3 D2′(q3 +M3)− νm1′ (q1 +M1′)− c1′q1) +N sb

1′
]
. (6.14)

There is also a sideband beatnote present in each reference interferometer, between the
sidebands of the adjacent optical benches,

τ sb1 = F
[
θτ1(νm1′ (M1′ + q1)− νm1 (M1 + q1)− (b1 + νm1 − νm1′ )q1) +N sb,τ

1

]
, (6.15)

τ sb1′ = F
[
θτ1′(ν

m
1 (M1 + q1)− νm1′ (M1′ + q1)− (b1′ + νm1′ − νm1 )q1) +N sb,τ

1′

]
. (6.16)

6.3.2 TDI Variables

TDI intermediary variables ξ and η are constructed to remove primed laser noise, and
optical bench displacement noise (here set to zero), respectively. They read [Ott15]

ξ1 = s1 + θs1θ
τ
1

ε1 − τ1

2
+ θs1θ

τ
2′
D3(ε2′ − τ2′)

2
, (6.17)

ξ1′ = s1′ + θs1′θ
τ
1′
ε1′ − τ1′

2
+ θs1′θ

τ
3

D2′(ε3 − τ3)

2
. (6.18)

and

η1 = θs1ξ1 +
D3(θτ2′τ2′ − θτ2τ2)

2
, (6.19)

η1′ = θs1′ξ1′ −
θτ1′τ1′ − θτ1τ1

2
. (6.20)
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Inserting eqs. (6.7) and (6.12) into these expressions yields

η1 = −b2′D3Fq2 − a1Fq1 + θs1FN s
1 + θτ1′

F(N τ
1 −N ε

1)

2
+ θτ2′

D3F(N τ
2 +N ε

2′)

2
, (6.21)

η1′ = (b1′ − a1′)Fq1 + θs1′FN s
1′ − θτ1′FN τ

1′ − θτ1′
F(N τ

1 −N ε
1′)

2
+ θτ3′

D2′F(N τ
3 −N ε

3)

2
.

(6.22)

From these intermediary variables, we can built laser noise-free TDI variables. They can
be expressed as polynomials of delay operators Pi and Pi′ , in form

TDI =
∑

i=1,2,3

(Piηi + Pi′ηi′) . (6.23)

In section 4.2, we give the expressions for the most common TDI variables. In the following,
we will focus on first and second-generation Michelson variables X1 and X2 (and their
circular permutations Y and Z), and first and second-generation Sagnac variables α1 and
α2 (and their circular permutations β and γ).

6.3.3 Clock Noise Residuals

Inserting eqs. (6.21) and (6.22) and keeping only clock noise, we observe that the clock
residual in the variable reads

TDIq = −
3∑
i=1

(aiPi + ai′Pi′ + bi′ [Pi′ − Pi−1Di+1])qi . (6.24)

In this section, we assume that all armlengths are equal and constant1. Also, we sup-
pose that all clock noises are uncorrelated but have the same PSD Sq(ω). Under these
assumptions, the clock noise residuals PSD is given by

STDIq(ω) ≈ Sq(ω)
3∑
i=1

∣∣∣aiP̃i(ω) + ai′P̃i′(ω) + bi′ [P̃i′(ω)− P̃i−1(ω)D̃i+1(ω)]
∣∣∣2 . (6.25)

Here, D̃i is the Fourier transform of a delay operator, see [BLPH19] for further information.

In the following paragraphs, we apply this formula to give an estimate of the clock noise
residuals in the case of the Michelson and Sagnac variables.

1Therefore, we can commute delay operators with each other, as well as delay and filter operators. As
shown in [BLPH19], these commutators only yield multiplicative terms � 1.
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Michelson Combinations

Using eq. (6.25), we can work out the clock noise residuals in the Michelson variables.
Before calibration, their PSD read

SXq
1
(ω) ≈ 4 sin2(ωL)

[
(a1 − a1′)

2 + a2
2′ + a2

3

+ 4b1′(a1 − a1′ + b1′) sin2(ωL)
]
Sf (ω)Sq(ω) .

(6.26)

Here, Sf (ω) is the transfer function of the anti-aliasing filter.

Because we assume that armlengths are constant, the delays commute and the second-
generation Michelson combination X2 has a very simple relationship to the first-generation
combination X1,

X2 ≈ (D2′233′ − I)X1 . (6.27)

In particular, for clock noise residuals,

SXq
2
(ω) ≈ 4 sin2(2ωL)SXq

1
(ω) . (6.28)

Observe that this is only valid if the noise in question is not suppressed by TDI, such that
additional terms due to delay commutators can be neglected. This approximation does not
hold for laser noise, for example, as shown in [BLPH19].

Sagnac Combinations

Following the same technique and using the same assumptions, we can work out the residual
clock noise in the both generations of the Sagnac variables,

Sαq1(ω) =
[
(a1 + b1′)

2 + (a2 + b2′)
2 + (a3 + b3′)

2

+ (a1′ − b1′)2 + (a2′ − b2′)2 + (a3′ − b3′)2 − 2a1a1′

− 2((a2′ − b2′)(a2 + b2′) + (a3′ − b3′)(a3 + b3′)) cos(ωL)

+ 2b1′(a1 − a1′ + b1′) cos(3ωL)
]
Sf (ω)Sq(ω) ,

(6.29)

Again, there exists a simple relationship between the first and second-generation clock noise
residuals for the Sagnac variables,

Sαq2(ω) = 4 sin2

(
3ωL

2

)
Sαq1(ω) (6.30)
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6.4 Clock Noise Calibration

6.4.1 Sideband Measurements

The sideband measurements are used to construct an independent measurement of the
differential clock noise between two spacecraft,

r1 = θs1
s1 − ssb1
νm2′

, (6.31)

r1′ = θs1′
s1′ − ssb1′
νm3

. (6.32)

By inserting eqs. (6.7), (6.8), (6.13) and (6.14) into these expressions, we get

r1 = F
(
q1 +

νm1
νm2′

M1

)
−FD3(q2 +M2′) +

θs1
νm2′
F(N s

1 −N sb
1 ) , (6.33)

r1′ = F
(
q1 +

νm1′

νm3
M1′

)
−FD2′(q3 +M3) +

θs1′

νm3
F(N s

1′ −N sb
1′ ) . (6.34)

If we again neglect everything but clock noise, we see that

r1 ≈ Fq1 −FD3q2 , (6.35)

r1′ ≈ Fq1 −FD2′q3 . (6.36)

These terms will be used in section section 6.4.4 to construct calibration expressions, which
suppress clock noise.

6.4.2 Removal of Primed Modulation Noises

In LISA, the Electro-Optic Modulators (EOMs) on the primed optical benches are running
at 2.401 GHz, while the ones on the unprimed optical benches use a modulation frequency
of 2.4 GHz. The frequency distribution system ensures that the pilot tone used as phase
reference for all phase measurements and the 2.4 GHz signal have a very stable phase
relationship. The 2.401 GHz signal, on the other hand, is generated independently and
thus contains additional noise compared to the pilot tone.

In our model, this corresponds to a higher value of the Mi′ compared to the Mi. We can
remove the primed optical noises by using the sideband-sideband beatnote in the reference
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interferometers2. Let us define

∆M1 = θτ1′

[
τ sb1 − τ1

2
+
τ sb1′ − τ1′

2

]
. (6.37)

Keeping only modulation error terms, we have

∆M1 ≈ F(νm1 M1 − νm1′M1′) . (6.38)

We can remove the primed optical bench EOM noise at the expense of adding more readout
noise to the calibration variables,

rc1 = r1 −
D3∆M2

νm2′
, (6.39)

rc1′ = r1′ +
∆M1

νm3
. (6.40)

If we assume that the modulation frequencies are almost identical on all optical benches
νmi = νmi′ = νm, we can estimate the residual noise in the calibration variables,

rc1 ≈ F(M1 + q1) +D3F(M2′ −M2)−FD3(M2′ + q2)

+ θs1
F(N s

1 −N sb
1 )

νm
+ θτ2′

D3F(N τ
2 −N

sb,τ
2 +N τ

2′ −N
sb,τ
2′ )

2νm
,

(6.41)

rc1′ ≈ F(M1 + q1)−FD2′(M3 + q3)

+ θs1′
F(N s

1′ −N sb
1′ )

νm
− θτ1′

D3F(N τ
1 −N

sb,τ
1 +N τ

1′ −N
sb,τ
1′ )

2νm
.

(6.42)

Primed modulation terms do not show up in rc1′ , but in rc1, M2′ appears multiplied by a
delay-filter commutator. These commutators have a magnitude proportional to the arm-
length rate of change L̇ ≈ 1× 10−8 [BLPH19]. Neglecting them in the previous expression
leads to an approximate calibrating variable, where the primed modulation term M2′ has
disappeared,

rc1 ≈ F(M1 + q1)−D3F(M2 + q2)

+ θs1
F(N s

1 − nsb1 )

νm
+ θτ2′

D3F(N τ
2 −N

sb,τ
2 +N τ

2′ −N
sb,τ
2′ )

2νm

(6.43)

2Another option would be to use an electronic beatnote between the two modulation signals.



168 CHAPTER 6. CLOCK-NOISE CALIBRATION

6.4.3 Former Calibration Expressions

Michelson Combinations

A calibration expression for the first-generation Michelson combination X1 was proposed
in [Hel01], and reads

KX1 =
b1′

2
[(1−D33′)(r1′ +D2′r3) + (1−D2′2)(r1 +D3r2′)]

+ a1(r1′ +D2′r3)− a1′(r1 +D3r2′) + a2′ [r1′ − (1−D2′2)r1 +D2′r3]

− a3[r1 − (1−D33′)r1′ +D3r2′ ] ,

(6.44)

such that clock noise is strongly suppressed in Xc
1 = X1 −KX1 . In [TH18], it was adapted

for second generation under the assumption that delays commute, such that

Xc
2 = X2 −KX2 = X2 − (1−D33′2′2)KX1 . (6.45)

If we account for time-varying armlengths, these calibration expressions have non-vanishing
clock noise residuals for both generations. For the first-generation calibrated X1, and
ignoring the filters, these residuals read

Xc,q
1 =

b1′

2
[D33′ ,D2′2]q1 , (6.46)

while those for the second generation are

Xc,q
2 = b1′

(
1

2
[D33′ ,D2′2](1 +D33′2′2) +

1

2
[D33′2′2,D2′233′ ]− [D33′ ,D2′2]D33′

)
q1

+ (a1′ [D33′ ,D2′2]D33′ + a1[D33′ ,D2′2])q1

+ a2′ [D33′ ,D2′2]D3q2 + a3[D33′ ,D2′2]D33′2′q3 .

(6.47)

Sagnac Combination

Similar to the Michelson combinations, the calibration expression for the first-generation
Sagnac combination α1 was first proposed in [Hel01], and reads

Kα1 =
b1′

2
[(r1 +D3r2 +D31r3) + (r1′ +D2′r3′ +D2′1′r2′)]

+ (b2′ + a2)r1 + (b3′ + a3)(r1 +D3r2)

+ (b3′ − a3′)r1′ + (b2′ − a2′)(r1′ +D2′r3′) ,

(6.48)
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such that αc1 = α1−Kα1 is almost free of clock noise. In [TH18], it was adapted for second
generation, such that

αc2 = α2 −Kα2 = α2 − (1−D312)Kα1 . (6.49)

These calibrated expressions also have non-vanishing clock noise residuals for both gener-
ations, if we account for time-varying armlengths. The residuals for the first-generation
calibrated α1 are, if one neglects the filters,

αc,q1 =
b1′

2
(D312 −D2′1′3′)q1 , (6.50)

while those for the second generation read

αc,q2 =
b1′

2
([D2′1′3′ ,D312] + [D2′1′3′ −D312]D312)]q1 +

b1′ + 2a1

2
(D2′1′3′ −D312)q1

+ (b2′ + a2)(D2′1′3′ −D312)D3q2 + (b3′ + a3)(D2′1′3′ −D312)D31q3

(6.51)

Here, we used that

a1 + a2 + a3 − a1′ − a2′ − a3′ + 2b1′ + 2b2′ + 2b3′ = 0 , (6.52)

which is not exact, but a good approximation even when Doppler shifts are included in the
beatnote definition [TH18].

6.4.4 Exact calibration expressions

Principle

We recognize that the clock noise terms enter eqs. (6.35) and (6.36) with the same structure
as the laser noises in the ηi variables. They indeed represent the six one-way interferometric
measurements, each containing one local clock noise and one remote clock noise, delayed
by the corresponding armlength. From these building blocks, we can apply the reasoning
outlined in [Val05a] to synthesize arbitrary virtual photon paths of the form

qB −Dinin−1...i1qA , (6.53)

where the indices i1 . . . in correspond to a valid path connecting spacecraft A to B. Follow-
ing our indexing convention in fig. 3.4, this means formally that

• The spacecraft pointed to by the link ik should be the starting point of link ik+1, for
any k < n.
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• The first link i1 should start from S/C A.

• The last link in should point to S/C B.

By combining multiple such expressions, we can construct polynomials of delay operators
of the form ∑

i

Piqi , (6.54)

where the delays in the polynomials Pi pairwise correspond to photon paths.

If the polynomials Pi, Pi′ in eq. (6.24) are also of this form, we can construct six calibration
expressions Ri, Ri′ out of the ri, ri′ variables such that

Ri = Piqi, Ri′ = Pi′qi . (6.55)

Thus, we find a general expression for exact clock calibration for any TDI variable satisfying
the above condition3

TDIc = TDI−

(
3∑
i=1

b(i+1)′Pir
c
i − (ai + b(i+1)′)Ri − (ai′ − bi′)Ri′

)
. (6.56)

In the following, we use this principle to find exact calibration expressions for both first and
second-generation Michelson variables, as well as the second-generation Sagnac variables.
As a counterexample, the first-generation Sagnac variable can’t be factored as described
above, and thus exact calibration by this method is impossible.

Michelson Combinations

We recognize that the delay polynomials for the Michelson combinations in eqs. (4.29)
and (4.34) correspond to photon paths. As such, we can derive exact calibration expressions,

3Here, we used that Pi−1Di+1qi = Ri−1 − Pi−1r
c
i−1. This is an immediate consequence of eqs. (6.35)

and (6.55).
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which can be written as

Xc,e
1 = X1 −

[
a3(1−D33′)r

c
1′ − a2′(1−D2′2)rc1 − (a1′ + a3)(rc1 +D3r

c
2′)

+ (a1 + a2′ + b1′(1−D33′))(r
c
1′ +D2′r

c
3)
]
,

(6.57)

Xc,e
2 = X2 −

[
a3(1−D33′ −D33′2′2 +D2′233′33′)r

c
1′

− a2′(1−D2′2 −D2′233′ +D33′2′22′2)rc1

− (a1 + a2′ + a1′ + a3)(1−D2′2)(rc1 +D3r
c
2′)

+ (a1 + a2′ + a1′ + a3)(1−D33′)(r
c
1′ +D2′r

c
3)

− (a1′ + a3)(1−D2′233′)(r
c
1 +D3r

c
2′)

+ (a1 + a2′)(1−D33′2′2)(rc1′ +D2′r
c
3)

+ b1′(1−D33′ −D33′2′2 +D2′233′33′))(r
c
1′ +D2′r

c
3)
]
.

(6.58)

Compared to the calibration in [TH18], the calibration expressions that we propose exactly
cancel clock noise, even if we account for time-varying armlengths. Besides, they have a
reduced number of correction terms. In section 6.5, we study the secondary noises which
enter the calibrated expressions and limit the performance of the new algorithm.

Sagnac Combinations

In [TH18], it is claimed that an exact calibration of clock noise is impossible for second-
generation Sagnac combinations. The argument states is that second-generation Sagnac
combinations can be related to their first-generation counterparts under the assumptions
that delays commute and that Sagnac effect can be neglected for clock noise. Because an
exact cancellation of clock noise for first-generation Sagnac variables [Hel01], it was thought
that such a calibration is also impossible for the second generation. In this section, we show
that an exact calibration for second-generation Sagnac variables is possible and propose a
calibration expression.

If we factor the Sagnac variable according to eq. (6.23), we recognize that the delay poly-
nomials correspond to valid photon paths. Thus, we can derive the exact calibration ex-
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pression,

αc2 = α2 −
[
(a2 + a3 + a1′ + a2′ + a3′)r

c
1

− (a1 + a2 + a3 + a2′ + a3′ + b1′)r
c
1′

+ (a3 + a1′ + a2′ + a3′ − b2′)D3r
c
2

− (a1 + a2 + a3 + a2′ + b1′ + b3′)D2′r
c
3′

+ (a1′ + a2′ + a3′ − b2′ − b3′)D31r
c
3

− (a1 + a2 + a3 + b1′ + b2′ + b3′)D2′1′r
c
2′

+ (a2′ + a3′ − b2′ − b3′)D312r
c
1′

− (a2 + a3 + b1′ + b2′ + b3′)D2′1′3′r
c
1

+ (a2′ − b2′)D3122′r
c
3′ − (a3 + b1′ + b3′)D2′1′3′3r

c
2

− b1′D2′1′3′31r
c
3

]
.

(6.59)

6.5 Residual Noise in Calibrated Variables

6.5.1 Flexing-Filtering Noise

When deriving the exact clock calibration terms, we have neglected the filter-delay commu-
tators in the ri and ri′ variables (c.f. eqs. (6.33) and (6.34)). They contribute to the flexing-
filtering effect in the calibrated Michelson variables presented in eqs. (6.57) and (6.58). Sum-
ming these filter-delay commutators, we find the flexing-filtering coupling in the calibrated
Michelson combinations XF ,c1 and XF ,c2 . They are presented in eqs. (6.60) and (6.61).
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X
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Following the methods used in [BLPH19] to estimate the flexing-filtering for the residual
laser noise in the Michelson X1 combination, we find that the flexing-filtering coupling
associated with clock noise reads, at first order in powers of the armlength derivatives,

S
Xc,F

1
(ω) ≈ 2ω2KF (ω)Sq(ω)

[
(A1 −B1 cos 2ωL)L̇2

2 + ((C1 −D1 cos 2ωL)L̇2
3

− (E1 − F1 cos 2ωL)L̇2L̇3 .
]
,

(6.62)

where we have defined

A1 = (a1 + a3)(a1 + a3 + 2b1′ + a2′) + (a2′ + b1′)
2 + b21′ + a1a2′ , (6.63)

B1 = (a1 + a3 + a2′)(a3 + 2b1′) + b21′ , (6.64)

C1 = a2′(a3 + a1′ + a2′) + (a3 + a1′)
2 , (6.65)

D1 = a2′(a3 + a1′ + a2′) , (6.66)

E1 = (a3 + a1′)(a1 + a2′ + b1′) , (6.67)

F1 = b1′(a3 + a1′) . (6.68)

Similarly, we find for second-generation Michelson combination X2,

S
Xc,F

1
(ω) ≈ 2ω2KF (ω)Sq(ω)[A2 + b2 cos(2ωL) + C2 cos(4ωL)] , (6.69)

with

A2 = 2(a2
1 + a2

1′ + a2
3 + a2

2′) + 2b1′(a1 − 2a2′) + 3b22′ , (6.70)

B2 = 4(a1 + b1′)(a1′ + b1′) , (6.71)

C2 = b1′(b1′ + 2a1) . (6.72)

6.5.2 Readout Noise

The readout noise entering the calibration variables appears scaled by the modulation
frequency νm = 2.4 GHz in eqs. (6.41) and (6.42). Conversely, the calibration terms used in
eqs. (6.57) and (6.58) are scaled by the beatnote frequencies ai, bi, which are all controlled
to be smaller than 25 MHz. As such, the additional readout noise due to the calibration
step is strongly suppressed by the factors ai/m or bi/m and can be neglected. This is also
visible in simulations, where the overall noise level after applying the clock calibration is
equal to the readout noise in the case that all other noises are turned off.
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6.6 Simulation

We present here the simulations that are used to generate realistic LISA measurement
signals, process them using the TDI algorithm introduced in the previous sections, and
calibrate them so as to reduce clock noise. Details about the LISANode simulator and the
instrumental model are given below. More details can be found in the dedicated chapters
of this thesis, chapters 2 and 3.

6.6.1 LISANode

LISANode is the baseline prototype for an end-to-end mission performance simulator. It
is a flexible tool that performs computations in the time domain to produce time-series of
realistic measurement signals that one expects from LISA, along with raw and corrected
TDI Michelson combinations.

It is based on high-level simulation graphs defined in Python scripts. These graphs are
composed of atomic computation units chained together, called nodes and written in C++
for computational efficiency. A scheduler triggers the node execution in a specific order and
pushes data from one node to the next. In this manner, the execution time is optimized
and data flow is synchronized.

All signals are represented as relative frequency deviations, or Doppler variables δν/ν0,
where ν0 is the laser frequency. They are implemented as doubles (64-bit floating-point
numbers).

Two different sampling frequencies are used in our simulations. The physical sampling
frequency is used to simulate all physical processes, such as generation of instrumental noise,
propagation of laser beams, and optical measurements. It is here set to fphy = 30 Hz. The
measurement signals are si, ssbi , εi and τi are downsampled to the measurement frequency
fmeas = 3 Hz by means of a decimation of a factor fphy/fmeas = 10. All pre-processing steps,
including TDI and clock noise calibration, are therefore carried out at this measurement
frequency.

6.6.2 Instrumental modelling

The three spacecraft of the LISA constellation are simulated. Signals imprinted on laser
beams are exchanged between the spacecraft. We use time-varying delays to model the
propagation of these signals, implemented as Lagrange interpolating polynomials of order
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Figure 6.1: Optical design used in LISANode simulations. Eight interferometric measure-
ments are performed for each spacecraft: two science signals si and si′ , two side-band signals
ssbi and ssbi′ , two test-mass signals εi and εi′ , along with two reference signals, τi and τi′ .

31. They allow both for good precision and limited execution time and numerical errors.

The Keplerian orbits presented in section 3.2.3 are used in this study. We then deduce the
light travel times along each arm from the relative positions and velocities of the spacecraft.
These light travel times include contributions from the Sagnac effect, related to the rotation
of the constellation, as well as first order relativistic corrections.

Each spacecraft contains two optical benches, a clock, a phasemeter and an on-board com-
puter. Each optical bench implements the latest split-interferometry optical setup described
in section 6.3.1 and represented in fig. 6.1: four interferometric measurements si, ssbi , εi
and τi (respectively the science, side-band, test-mass and reference signals) are formed.
Relevant sources of noise, such as test-mass acceleration noise, optical path noise, readout
noise or laser frequency noise are added to the measurements.

These interferometric measurements are then transmitted to the phasemeter, where we add
clock noise, in the form of the USO noise scaled by the laser beat note frequency. We model
the fractional frequency deviation of each USO by a flicker noise with a power spectrum
of Sy(f) = 6.7× 10−27/f , which is generated using a variant of the infinite RC model,
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c.f. section 3.3.6. We add to this flicker noise a linear frequency deviation to account for
the clock frequency drift.

The other noise sources included in the simulation, as well as the spectral properties that
were used to model them, are discussed in great details in section 3.3.

The signals are then fed to the on-board computer, which decimates all signals down to
3 Hz. To prevent power folding, we use a symmetric FIR anti-aliasing filter of order 253,
implemented using a direct form I. Its coefficients are computed such that the signal is
attenuated by 240 dB in the transition region between 0.2 Hz and 0.9 Hz. The results of
these operations are the measurement signals that one can expect from LISA.

6.6.3 Pre-processing and Calibration

These measurements are used to form TDI intermediary variables and then Michelson
variables X, Y and Z. The clock noise calibration algorithm presented in Sec. 6.4 is used
to reduce the clock noise in the TDI channels. We finally obtain the clock-calibrated
Michelson variables Xc, Y c, and Zc.

Similarly to what is done to model the propagation of signals between two spacecraft, pre-
processing delays are implemented using Lagrange interpolating polynomials of order 31. To
form Michelson variables, one must apply multiple delays to the interference measurements
for the calculation of the Michelson variables X, Y , and Z. In order to minimize the
error introduced by these interpolations, we use a nested delay algorithm in which a single
interpolation is necessary.

6.7 Results and Discussion

We represent in figs. 6.2 and 6.3 the residual noise in both generations of the Michelson
combinations X1 and X2, as well as in the associated clock-calibrated combinations Xc

1 and
Xc

2. Similarly, we show in figs. 6.4 and 6.5 the residual noise in Sagnac combinations α1

and α2, as well as the associated clock-calibrated combinations αc1 and αc2. All of these
figures show the results of LISANode simulations (c.f. section 6.6.1) in the form of PSDs.

We represent the uncalibrated laser noise-free combinations (blue curve) as well as their
clock-calibrated counterpart (orange curve) when both laser noise and clock noise are in-
cluded. We compare these results with the uncalibrated results that one obtains when laser
noise is the only noise source included (green curve).
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Figure 6.2: Power spectral density of the residual laser frequency noise in the Michelson
X1 and clock-calibrated Xc

1 channels.
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Figure 6.3: Power spectral density of the residual laser frequency noise in the Michelson
X2 and clock-calibrated Xc

2 channels.
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Figure 6.4: Power spectral density of the residual laser frequency noise in the Sagnac α1

and clock-calibrated αc1 channels.
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Figure 6.5: Power spectral density of the residual laser frequency noise in the Sagnac α2

and clock-calibrated αc2 channels.
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For reference, the red curves show the residual secondary noises in laser noise-free channels
simulated with LISANode. To generate those signals, we did not change the simulation
parameters. However, laser frequency noise is set to zero while the test mass acceleration
(TM), optical read-out (RO) and optical path (OP) noise amplitudes were given their
nominal LISA instrument noise budget values. The spectral shapes of these three secondary
sources of noise are given in [?], and read

STM =
(
2.4× 10−15

)2 (6.73)

×

[
1 +

(
4× 10−4

f

)2
]

m2s−4Hz−1 , (6.74)

SRO + SOP = 1× 10−24 m2Hz−1 . (6.75)

Because TDI does not suppress those secondary noises but only modulates their spectra,
they are used as a benchmark.

We use Welch’s method to estimate the spectra, implemented with standard Python tools
included in the scipy.signal module, version 1.1.0. We use segments of 25 000 samples
and a Nutall4 window function. The results are presented for the frequency band from
5× 10−4 Hz to 1 Hz.

We can see that the uncalibrated combinations (blue curves) are above the requirements
(red curves). Because of the clock noise model, this is especially true below 10−2 Hz.
This confirm that one must calibrate for clock noise in order to reach the required LISA
sensitivity.

It is also clear that calibration expressions proposed in this chapter removes clock noise,
as the clock-calibrated channels (orange curves) are significantly superimposed with the
uncalibrated channels in the case where clock noise is not included in the simulations (green
curves). This enables us to validate the calibration procedure and reduce clock noise to
below the requirements, as figs. 6.3 and 6.5 show that the calibrated combinations lie at
least three orders of magnitude below the secondary noises (red curves).



Chapter 7

Transient Signal Discrimination

In this chapter, we assess the possibility of using machine-learning techniques to discrim-
inate short-lived signals in LISA measurements. The first part of this chapter aims to
describe how transient instrumental artifacts, or glitches, enter the various interferometric
measurements and the TDI combinations. We show these glitches’ signatures are differ-
ent from that of bursts gravitational-wave signals, such as cosmic string cusps or kinks
(c.f. section 1.3.7). In the second part of this chapter, we evaluate the performance of
various neuronal-network configurations to discriminate between glitches and bursts. For
simple models of signals, we show that some can learn the differences in the way they appear
in the Michelson and quasi-orthogonal TDI combinations (c.f. section 4.2.4).

This preliminary study has been conducted in collaboration with C. Simpson.

7.1 Propagation of Glitches and Bursts

7.1.1 Framework

In this section, we use the conventions described in chapter 3. In particular, spacecraft are
labeled clockwise from 1 to 3 and links are indexed according to the opposite spacecraft,
with primed numbers for links pointing clockwise. Optical benches are denoted by the
same index as their host spacecraft, with primed numbers for optical benches receiving light
clockwise. Fig. 3.4 illustrates these labelling conventions. Interferometric measurements are
labeled accordingly to the optical bench on which they are performed.

183
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The optical-bench design is that of the current mission baseline with telescopes pointing to
the distant spacecraft. Test masses are displaced by δi with respect to the optical bench.
Sensitive axes are denoted ni.

All signals are expressed as fractional frequency deviations from the nominal carrier fre-
quency, see section 3.4.2. In this study, we neglect any ranging error, c.f. section 3.2.5.
Therefore, both TDI and propagation delay operators are equal,

Di ≈ Di . (7.1)

We present equations for signals associated with the first spacecraft, i.e. related to the
optical benches 1 and 1’. Other expressions can be obtained by a circular permutation of
indices 1→ 2→ 3→ 1.

7.1.2 Interferometric Signals

We only consider the following contributions to the interferometric signals described in
sections 3.4.6 and 3.4.7:

• Gravitational signals H1 and H1′ entering science signals.

• Test-mass displacement noise, expressed using the test-mass velocity vectors vδ1 and
vδ1′ projected on the sensitive axis unit vectors n̂3′ and n̂2.

• Readout noise sources Nα
1 and Nα

1′ . They enter each interferometric measurement α
including the science signals s, the reference signals τ , and the test-mass signals ε.
We suppose they are uncorrelated.

These noise sources are described in more detail in section 3.3.

The science signals correspond to the beatnote between the distant and local beams, c.f. sec-
tion 3.4.6. They contain the gravitational-wave response of one arm and the readout noise.
Using eqs. (3.86) and (3.87), we find

s1 = θs1H1 +N s
1 , (7.2)

s1′ = θs1′H1′ +N s
1′ . (7.3)

The test-mass and reference signals are the beatnotes between the local and adjacent beams,
c.f. section 3.4.7. In the case of the test-mass signals, the adjacent beam is bounced onto the
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local test mass. Therefore, they contain the test-mass displacement noise and the readout
noise. The reference signals only contain the latter noise.

ε1 = −2θτ1

(
n̂3′ ·

vδ1
c

)
+N ε

1 , (7.4)

ε1′ = −2θτ1′
(
n̂2 ·

vδ1′
c

)
+N ε

1′ , (7.5)

τ1 = N τ
1 , (7.6)

τ1′ = N τ
1′ . (7.7)

7.1.3 Intermediary Variables

Inserting eqs. (7.2) to (7.7) in eqs. (4.13) and (4.14) yields the optical-bench noise-free
variables

ξ1 = θs1H1 − θs1
[
n̂3′ ·

vδ1
c

+D3

(
n̂3 ·

vδ2′
c

)]
+N s

1

+ θs1θ
τ
1

N ε
1 −N τ

1

2
+ θs1θ

τ
2′
D3(N ε

2′ −N τ
2′)

2
.

(7.8)

ξ1′ = θs1′H1′ − θs1′
[
n̂2 ·

vδ1′
c

+D2′

(
n̂2′ ·

vδ3
c

)]
+N s

1′

+ θs1′θ
τ
1′
N ε

1′ −N τ
1′

2
+ θs1′θ

τ
3

D2′(N
ε
3 −N τ

3 )

2
.

(7.9)

Using these equations in eqs. (4.21) and (4.22), we obtain the ηi variables. They reduce the
number of free-running lasers to three, and read

η1 = H1 −
[
n̂3′ ·

vδ1
c

+D3

(
n̂3 ·

vδ2′
c

)]
+ θs1N

s
1

+ θτ1
N ε

1 −N τ
1

2
+ θτ2′

D3(N ε
2′ +N τ

2 )

2
,

(7.10)

η1′ = H1′ −
[
n̂2 ·

vδ1′
c

+D2′

(
n̂2′ ·

vδ3
c

)]
+ θs1′N

s
1′

+ θτ1′
N ε

1′ − 2N τ
1′ −N τ

1

2
+ θτ3

D2′(N
ε
3 −N τ

3 )

2
.

(7.11)

7.1.4 Michelson Combinations

Michelson combinations are given in section 4.2.4. They synthesize three Michelson-like
equal-arm interferometers X, Y and Z, out of which only two are independent. Geometri-
cally, they correspond to the beatnotes of two photons traveling along both arms in opposite
directions, as shown in fig. 4.7.
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Different generations account for increasing complexity in the armlength fluctuations. First-
generation combinations are given in eqs. (4.28) and (4.29). They assume that armlengths
are unequal but constant in time, i.e. that the constellation is not flexing. Their second-
generation counterparts account for linearly-varying armlengths to first order in the arm-
length time derivatives. They are given in eqs. (4.33) and (4.34). Because the latter is the
baseline, we use it here. Nevertheless, we study first-generation combinations as well, as
they allow to understand the results.

Gravitational Signals

The gravitational signals in first-generation Michelson combination X1 are given by

XH
1 = (1−D33′)(H1′ +D2′H3)− (1−D2′2)(H1 +D3H2′) . (7.12)

For second-generation X2, we obtain

XH
2 = (1−D33′ −D33′2′2 +D2′233′33′)(H1′ +D2′H3)

− (1−D2′2 −D2′233′ +D33′2′22′2)(H1 +D3H2′) .
(7.13)

We observe that gravitational signals appear multiple times and with various delays in the
Michelson combinations. We call these repeated appearances echos.

We saw in section 3.2.4 that the light travel time along the six links are not equal because
of the constellation’s flexing. If these differences matter for data processing, they remain
however smaller than 34 ms. In the following study, we consider transient signals with
durations of the order 1 s � 34 ms. Therefore, we can simplify the previous expression by
considering delays of a given number n of unspecified links DnL. We have for first-generation
X1,

XH
1 ≈ (1−D2L)[(H1′ −H1) +D1L(H3 −H2′)] . (7.14)

Similarly, for second-generation X2,

XH
2 ≈ (1−D2L −D4L +D6L)[(H1′ −H1) +D1L(H3 −H2′)] . (7.15)

Here, the various echos and the associated delays are clearly visible.

Test-Mass Glitches

We now only consider glitches in the test-mass displacement. For clarity, let us denote this
contribution δi = n̂(i+2)′ · vδ1/c. We have

Xδ
1 = (1−D2′2)[(1 +D33′)δ1 + 2D3δ2′ ]− (1−D33′)[(1 +D2′2)δ1′ + 2D2′δ3] . (7.16)
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Under the assumption that all armlengths are equal, we have

Xδ
1 ≈ (1−D4L)(δ1 − δ1′) + 2D1L(1−D2L)(δ2′ − δ3) . (7.17)

A glitch in a single test mass will have two echoes in a Michelson combination. Note that in
the case of a distant test mass, we have four echos; however, they disappear if one considers
that armlengths are equal.

Conducting the same study for second-generation variables yields

Xδ
2 = (1−D2′2 −D2′233′ +D33′2′22′2)[(1 +D33′)δ1 + 2D3δ2′ ]

− (1−D33′ −D33′2′2 +D2′233′33′)[(1 +D2′2)δ1′ + 2D2′δ3] ,
(7.18)

and, in the case of equal armlengths,

Xδ
2 ≈ (1− 2D4L +D8L)(δ1 − δ1′)− 2D1L(1−D2L −D4L +D6L)(δ2′ − δ3) . (7.19)

We see here that a glitch in a single local test mass has three echoes, while a glitch in a
distant test mass has four of them.

Optical Glitches

We call optical glitch a spurious signal in one of the 18 readout systems of the instrument.
In each spacecraft, there are two science, two test-mass, and two reference readout systems.
We respectively denote the associated glitchesN s

i , N
ε
i , andN

τ
i . In the following paragraphs,

we consider only the propagation of such signals, one after the other.

We observe in eqs. (7.10) and (7.11) that optical glitches in the science interferometers
propagate identically to gravitational waves. Therefore, we immediately have

XNs

1 = (1−D33′)(θ
s
1′N

s
1′ + θs3D2′N

s
3 )− (1−D2′2)(θs1N

s
1 + θs2′D3N

s
2′) , (7.20)

XNs

2 = (1−D33′ −D33′2′2 +D2′233′33′)(θ
s
1′N

s
1′ + θs3D2′N

s
3 )

− (1−D2′2 −D2′233′ +D33′2′22′2)(θs1N
s
1 + θs2′D3N

s
2′) .

(7.21)

If we suppose that light travel times along all links are equal,

XNs

1 ≈ (1−D2L)[θs1′(N
s
1′ −N s

1 ) +D1L(θs3N
s
3 − θs2′N s

2′)] , (7.22)

XNs

2 ≈ (1−D2L −D4L +D6L)[θs1′(N
s
1′ −N s

1 ) +D1L(θs3N
s
3 − θs2′N s

2′)] . (7.23)
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One cannot disentangle glitches in the science interferometers and short-lived gravitational
signals by simply studying their echo patterns in the various interferometric signals. The
analysis must account for the consistency in the projection of the gravitational signal on
the arms, c.f. section 3.2.6. As a simple analysis, one could check that H1(t) = H1′(t− τ),
where τ is the difference in the light travel time in both directions due to the Sagnac effect
(c.f. section 3.2.4).

Optical glitches in the test-mass interferometers propagate similarly to the test-mass glitches.
They pick up an addition factor −1/2 as well as a beatnote polarity, yielding the following
equations

XNε

1 = (1−D33′)

[
1

2
(1 +D2′2)θτ1′N

ε
1′ +D2′θ

τ
3N

ε
3

]
− (1−D2′2)

[
1

2
(1 +D33′)θ

τ
1N

ε
1 +D3θ

τ
2′N

ε
2′

]
,

(7.24)

XNε

2 =
1

2
(1−D33′ −D33′2′2 +D2′233′33′)

[
1

2
(1 +D2′2)θτ1′N

ε
1′ +D2′θ

τ
3N

ε
3

]
− 1

2
(1−D2′2 −D2′233′ +D33′2′22′2)

[
1

2
(1 +D33′)θ

τ
1N

ε
1 +D3θ

τ
2′N

ε
2′

]
,

(7.25)

If we suppose that light travel times are equal along all links,

XNε

1 ≈ 1

2
(1−D4L)θτ1′(N

ε
1′ +N ε

1) +D1L(1−D2L)(θτ3N
ε
3 − θτ2′N ε

2′) , (7.26)

XNε

2 ≈ 1

2
(1− 2D4L +D8L)θτ1′(N

ε
1′ +N ε

1)

+D1L(1−D2L −D4L +D6L)(θτ3N
ε
3 − θτ2′N ε

2′) .
(7.27)

Therefore one cannot distinguish between a test-mass glitch and an optical glitch in the
test-mass interferometers, as both will appear in the measurements with the same echo
pattern.

Optical glitches in the reference interferometer appear in the first and second-generation
Michelson combinations with a specific echo pattern, given by

XNτ

1 = (1−D2′2)(θτ1N
τ
1 +D3θ

τ
2′N

τ
2′)

− (1−D33′)(θ
τ
1′N

τ
1′ +D2′θ

τ
3N

τ
3 ) +

1

2
θτ1 [D2′2,D33′ ]N

τ
1 ,

(7.28)

XNτ

2 = (1−D2′2 −D2′233′ +D33′2′22′2)(θτ1N
τ
1 +D3θ

τ
2′N

τ
2′)

− (1−D33′ −D33′2′2 +D2′233′33′)(θ
τ
1′N

τ
1′ +D2′θ

τ
3N

τ
3 )

+
1

2
θτ1 [D33′2′2,D2′233′ ]N

τ
1 .

(7.29)
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Comparing these equations with eqs. (7.12) and (7.13), we see that optical glitches in refer-
ence interferometers propagate almost like gravitational signals. Extra delay commutators
allow us to distinguish between the two. If we assume that light travel times along all links
are equal, these commutators vanish et we are left with eqs. (7.14) and (7.15),

XNτ

1 ≈ (1−D2L)[(θτ1N
τ
1 − θτ1′N τ

1′) +D1L(θτ2′N
τ
2′ − θτ3N τ

3 )] , (7.30)

XNτ

2 ≈ (1−D2L −D4L +D6L)[(θτ1N
τ
1 − θτ1′N τ

1′) +D1L(θτ2′N
τ
2′ − θτ3N τ

3 )] . (7.31)

7.1.5 Quasi-Orthogonal Combinations

As discussed in section 4.2.4, it is possible to form TDI combinations from Michelson
variables, in which instrumental noises and gravitational signals are strongly decoupled.
These quasi-orthogonal combinations Ai, Ei, and Ti are given by eq. (4.38).

7.2 Discrimination with Neural Networks

7.2.1 Motivation

We expect LISA to have glitches because its proof-of-concept mission LISA Pathfinder expe-
rienced glitches. Their rate was estimated at 0.78±0.02 per day [AAB+18], with durations
of minutes and occasionally hours. The cause of these glitches is still unclear and LISA
could be prone to at least as many glitches, including glitches caused by solar flares, stray
electromagnetic fields, and collisions with space debris. Unfortunately, these instrumental
artifacts can mimic potential gravitational signals of great interest, c.f. section 1.2.1. As a
result, one cannot dismiss all short-lived signals.

This work aims to build a neural network that can discriminate burst signals from glitches in
LISA data. Because we cannot predict all the types of glitches that will appear, and we want
to be able to detect gravitational-wave burst sources of all kinds, we cannot rely on specific
signal shapes. Instead, the method needs to classify glitches and bursts based on how they
interact with the detector. In the previous sections, we saw that gravitational bursts, test-
mass glitches, and some optical glitches propagate differently in the TDI variables. These
differences can be exploited to teach a neural network.

We are also interested in differentiating between glitches at different positions in the detector
as well. There are three different beam types on each of LISA’s optical benches and the
same injected signal looks slightly different for each of them, so we have included multiple
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glitch categories in every dataset and classification task. It is useful because grouping
LISA’s glitches by their origins will help us to model them and reduce their impact on the
parameter estimates of all the gravitational-wave sources we see in LISA.

If the classifiers can perform well on a dataset of many injection shapes or even on shapes
they have never seen before, that indicates that they are learning the patterns we want
them to.

7.2.2 Generation of Training Samples

I use LISANode (c.f. chapter 2) to generate training data. All datasets contain 5000 sam-
ples, each one a multi-channel time series with 400 s-worth of data sampled at 3 Hz. The
channels correspond to second-generation Michelson combinations X2, Y2, and Z2, as well
as the associated quasi-orthogonal A2, E2, and T2 combinations described above.

In all datasets used in this study, we inject exactly one signal per sample – either a
gravitational-wave burst or a glitch. We use rectangular injections, parametrized by an
amplitude A, a duration τ , and an initial time t0 = 65 s1. We show in fig. 7.1 examples of
such training samples.

1. The first datasets are created using rectangles of identical durations τ ≈ 20 s for both
gravitational-wave bursts and glitches. Instrumental noise is disabled and we choose
high amplitudes for all signals so that the neural network can learn about the echo
patterns. We also assumed a fixed sky localization for all gravitational burst sources
θ = 0 deg, φ = 0 deg.

2. This model is refined in a second set of training samples, as signal durations and
amplitudes are now drawn from random normal distributions. Glitches amplitudes
and durations are respectively chosen centered around 10 pm s−1 and 2 s [AAB+18].
We choose similar amplitudes for gravitational-wave bursts while we expect smaller
durations of around 10 ms. Instrumental noise remains disabled and burst source sky
localization is still fixed.

3. In a third dataset, instrumental noise is turned on while other parameters are kept
identical to the second dataset.

4. In a third dataset, instrumental noise is turned off but we randomly and uniformly
localize the gravitational-wave burst sources in the sky.

1We choose a fixed initial time so that all signals are injected at the same time in the training samples
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CNN FCN Resnet
Layers 3 5 11
Convolutions 2 3 9
Pooling Average None None
Feature Conv GAP GAP
Activation Sigmoid ReLU ReLU
Optimizer Adam Adam Adam
Batch Size 16 16 16
Learning Rate 0.001 0.001 0.001
Loss MSE Entropy Entropy

Table 7.1: Details of the hyper-parameters and optimization of CNN, FCN, and ResNet.

The goal in producing these datasets is not to mimic typical burst events for LISA, but
instead to create the most adversarial situations possible by simulating bursts and glitches
that look very similar.

7.2.3 Results and Discussion

With the help of C. Simpson, three deep neural networks were trained with different ar-
chitectures on the increasingly complicated datasets described in section 7.2.2. Table 7.1
show the hyper-parameters used for these three architectures of neural networks. A more
detailed description of the neural network architectures used in this study can be found
in [FFW+19].

We report in fig. 7.2 the evolution of the loss function as the training samples are fed to
the various types of neural networks. Figure 7.3 presents the confusion matrices for the
validation data, in the four cases and for the same three deep neural networks.
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Figure 7.1: Example of training samples for a gravitational-wave burst, a test-mass glitch,
an optical glitch in the science interferometer, and an optical glitch in the reference in-
terferometer. Note that in the three last cases, we inject the glitches in the first optical
bench.
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CNN and ResNet were able to achieve near-perfect classification on all of the datasets. FCN
failed to differentiate between glitch types for short bursts and completely failed to differ-
entiate gravitational-wave bursts from glitches when we added noise. CNN’s training and
validation loss converged to zero after tens of epochs, whereas ResNet converged after hun-
dreds of epochs. This makes sense because ResNet is much deeper and therefore has many
more parameters to fit. However, if CNN is adequate and the problem does not need that
many parameters, then we should not use a classifier with an excessive number of layers
because it encourages overfitting the network.

7.2.4 Future Tasks

We have demonstrated in section 7.2.3 that some neural network architectures can discrim-
inate between the various types of injected signals. Therefore, the first short-term task is
now to validate our hypothesis, which is to check that the neural network learns about the
signal patterns in the TDI combinations and not about the shapes of the signals. A solu-
tion is to work with training datasets containing mixed-shaped injections or validate our
results with unseen shapes at all sky positions. Sin-Gaussian bursts or LISA Pathfinder-
like glitches could be used. The loss function can also be adapted to favor false-positive
gravitational-wave bursts over false negatives.

A more long-term plan would be to create an event trigger and a selection procedure that cut
out short-lived excesses of power in the LISA continuous data streams. A similar procedure
has already been used in LISA Pathfinder data to exclude instrumental glitches from the
scientific analyses. Overlapping glitches and signals must also be handled correctly.
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Chapter 8

Conclusion and Perspectives

Already with the recent first detections, gravitational-wave astronomy has opened a new
and exciting observational window on the Universe. As more ground-based detectors will
join LIGO and Virgo, many more detections are to come in the coming years. With them,
many questions related to astrophysics, cosmology, and fundamental physics will be ad-
dressed. Unfortunately, ground-based detectors are limited to high-frequency gravitational
waves. One must rely on other types of observatories to access the low-frequency part of the
gravitational spectrum. The space-borne LISA mission is one of such observatories as it will
allow us to detect and characterize gravitational-wave sources located at cosmological dis-
tances. This includes a large variety of astrophysical objects, from coalescing supermassive
black holes, merging black-hole, neutron-star, or white-dwarf binary systems, to EMRIs or
cosmological backgrounds.

At first sight, the working principle behind LISA is simple: light interferometry is used
to monitor the pico-metric distance changes due to gravitational waves. Therefore, laser
beams are exchanged by the three spacecraft of the constellation, bounced onto free-falling
test masses, and then interfered on optical benches where readout systems and onboard
computers record phase variations. A closer look at the mission specifications reveals a
much more complex measurement chain and complicated interplays between the various
subsystems. In particular, signals and noises appear strongly correlated in the measurement
channels. Non-trivial online and offline processing techniques, such as TDI, must be used
to produce data that can then be analyzed.

Such a highly-integrated mission requires a new type of scientific simulator, flexible enough
to be easily adapted as the mission specifications evolve and more refined physical mod-
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els are to be included. As part of my Ph.D. work, we developed LISANode, a numerical
simulator that aims to address these issues. Its modular architecture allows us to imple-
ment up-to-date instrumental and noise models so that we obtain realistic simulated data.
LISANode is capable of executing the required data processing and calibration steps as
well, and in particular, it is used to compute the laser noise-free TDI combinations and
their clock-calibrated counterparts.

Based on such a simulation tool, a performance study of the laser-noise reduction algorithms
was conducted. An analytic study revealed that the mission-baseline second-generation TDI
combinations contain extra noise terms due to the coupling between the antialiasing filters
and the flexing of the constellation. This flexing-filtering was quantified and a technique
to mitigate the effects of the coupling was proposed, so that laser noise is reduced to below
the requirements. LISANode simulations were used to validate these results.

Similarly, a study of the clock-noise calibration was conducted. A closer look at state-of-the-
art approximate algorithms revealed that it is possible to remove entirely clock noise from
most of the TDI combinations. A procedure to derive such exact calibrating expressions
was proposed in this thesis, along with a study of the remaining limiting couplings and
noises in the Michelson and Sagnac channels. Again, simulations are used to orient and
validate these results and we showed that the residual clock noise is reduced to below the
requirements.

Besides, LISANode was used to generate realistic data in the context of a pilot study
using neural networks for the discrimination of short-lived gravitational-wave signals and
instrumental glitches. We showed that both types of signals couple differently in the TDI
combinations and that some deep neural networks can learn to distinguish between them.

In the near future, more instrumental effects remain to be implemented in LISANode. In
particular, beatnote frequency management (encompassing frequency planning, Doppler
shifts due to spacecraft relative motion, and laser locking), absolute ranging errors, tilt-
to-length coupling, timestamping errors, and test-mass and spacecraft dynamics should
be included in our instrumental model. Also, a study of their propagation in the TDI
combinations is necessary to assess their impact on science performance. Note that some
of these effects are already being investigated; this is the case of the beatnote frequency
management, the ranging errors, and the timestamping errors. Opportunity studies, such
as the discrimination of short-lived signals using deep neural networks, should be continued
and encouraged. The integration of LISANode in the LDC simulation pipeline is also an
important step to promote this tool in the LISA community.



Appendix A

Clock Noise Simulation

A.1 Conventions

We give here the formal definitions and notations for the main entities that we will ma-
nipulate in this chapter. This includes time coordinate systems, clock ticks, and clock
noise.

A.1.1 Time Coordinate Systems

Times are measured and expressed with respect to a time coordinate system. In the context
of LISA, we distinguish three different types of coordinate systems.

Barycentric Coordinate Time (TCB) Coordinate System The TCB (denoted TCB)
is defined as the proper time of a perfect clock which would be at rest with respect to the
barycenter of the solar system, but not subject to the gravitational time shift caused by the
Sun and the rest of the system. Times expressed in TCB coordinates are also often called
god-given, perfect or natural times.

Spacecraft Coordinate Systems Spacecraft Coordinate Systems 1, 2 and 3 (denoted SCi)
are defined as the proper time of perfect clocks which would be at rest with respect to the
barycenters of corresponding spacecraft. They are subject to the gravitational time shifts
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relative to the TCB1. This is the time that one could read on a perfect clock aboard each
spacecraft.

Clock Coordinate Systems Clock Coordinate Systems 1, 2 and 3 (denoted Ci) are
attached to the USO on board each spacecraft. Relative to the spacecraft coordinate
systems, they include the instrumental imperfections (timing jitter and offset).

Notations If e is an event, we respectively denote eTCB, eSCi , and eCi its time coordinate
in the TCB, spacecraft i, and clock i coordinate systems.

Transformation Operator The transformation operator converts times from one coor-
dinate system A to another coordinate system B. It is denoted CA→B. We therefore have
the following identity

CA→B
(
eA
)

= eB . (A.1)

In practice, if two coordinate systems are realized by discrete samples in a simulation, the
application of this transformation requires an interpolation.

A.1.2 Sampling Ticks

The times at which the ADC samples a continuous signal to produce one digital value are
important events. One must unambiguously designate those events. We call them ticks and
express them in seconds in a given coordinate system. They are associated with an index:
the first tick is indexed 0, the second 1, etc.

Clock Ticks The ADC is driven by the onboard clocks. Therefore, ticks (denoted Ti[n])
are equally spaced when expressed in the associated clock coordinate systems. In the TCB
and spacecraft coordinate systems, clock ticks are irregularly spaced.

Spacecraft Ticks They are imaginary ticks for a perfect clock that would regularly tick
(denoted θi[n]) in the associated spacecraft i coordinate system. They have no physical
reality but are useful for modeling.

1We can derive the time deviation due to the gravitational potential of the Sun ∆t =
2GM�
c2d20

εTmission ≈
50 ms, after a mission of Tmission = 10 yr. Special relativity clock shift can be neglected because it is of the
order of 1× 10−7 s after the same mission duration.
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TCB Ticks They are imaginary ticks (denoted τ [n]) for a perfect clock that would reg-
ularly tick in the TCB coordinate system. They are regularly spaced when expressed in
TCB coordinates. These ticks are used when gravitational clock shifts are neglected and
clocks are assumed to be flawless.

Proper Coordinate Systems The sampling ticks expressed in their proper coordinate
systems are multiples of the sampling period Ts = 1/fs,

τ [n]TCB = nTs ,θi[n]SCi = nTs ,Ti[n]Ci = nTs . (A.2)

For convenience, ticks are expressed in their proper coordinate systems when not otherwise
denoted, i.e. τ [n] = τ [n]TCB. Similar notations are used for all the other types of ticks.

Decimated Ticks In reality, different sampling frequencies will occur on the same space-
craft. The phasemeter runs at 80 MHz to retrieve the phase information of all signals. These
phase values are provided at a lower rate of 100 Hz for use in the control loops and onboard
processing. Eventually, they get further downsampled to 3 Hz before they are telemetered
to Earth.

While sampling rates are different, all of these ticks are derived from the same clock signal
and thus share the same timing jitter. Therefore, it makes sense to speak of sampling ticks
at a certain frequency, e.g. high frequency ticks for processing and low frequency ticks for
telemetry. In this example, there is a decimation factor k such that the low-frequency ticks
can be expressed as a function of the high-frequency ticks

τ [n]low = τ [kn]high . (A.3)

A.2 Simulation Schemes

LISANode aims to simulate realistic measurement signals that we expect from the instru-
ment. The most straightforward way to include clock jitter would be to simulate physical
behaviour for all three spacecraft using one set of TCB ticks and then interpolate the asso-
ciated values to the corresponding set of clock ticks. A problem arises when we require an
instantaneous feedback from samples associated with clock ticks back to physics simulation,
associated with TCB ticks.

Indeed, to compute an order-n interpolated value at a given time t, samples of times kTs +

t, 2k ∈ [−n,+n] are required (where Ts is the sampling period). Therefore the feedback
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loop can only affect samples at times t′ > t+nTs. Currently we use n ≈ 31 and Ts = 0.05 s,
which yields an unacceptable delay of ≈ 0.8 s in our controllers. Since this delay depends on
the sampling rate used for the physical simulation, we can hope to reduce it by increasing
the sampling rate. Depending on the final sampling rate required for the control loop, this
might allow to simulate timestamping errors with this simple scheme.

An obvious solution would be to replace the interpolation by another method, which must
be able to generate samples at a any time using past samples only, i.e. an extrapolation
technique. Other solutions consists in keeping the current interpolation technique, but push
the feedback loops entirely to one or the other coordinate system.

In this section, the real measurement chain is presented, along with the current simulation
scheme available in LISANode to this date. We then propose three different implemen-
tations that might allow to simulate the effects of imperfect clocks on the measurement
signals.

A.2.1 Reality

Physics
(continuous)

Phasemeter Meas.
(80 MHz)

Digital Processing
(100 Hz)

Telemetry
(3 Hz)

sampling decim. decim.

Controller
(100 Hz)

In reality, we sample continuous functions of time describing the physical behaviour of the
system to produce phasemeter measurements at high frequency (80 MHz). Those measure-
ments are used to drive the control loop (e.g. the DFACS at 100 Hz), which itself influences
back the physical behaviour of the system. Controller have therefore no intrinsic delay
other than that associated with its sampling rate and electronics.

A.2.2 Current State

Physics
(30 Hz, TCB ticks)

Telemetry
(3 Hz, TCB ticks)

decim.
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LISANode currently uses one set of TCB ticks sampled at a high frequency sampling rate
of 30 Hz to generate the orbits, produce the gravitational waveforms, simulate physics in-
cluding the propagation of signals between the spacecraft and all digital processes on board
each spacecraft. No control loop is yet implemented in this model.

A low frequency sampling rate of 3 Hz is used to deliver telemetry data. The two sampling
rates are related by a simple decimation of factor 10. Additional interfaces to external files
for orbits and waveforms can have their own decimated versions of TCB ticks.

This model does not account for clock imperfections and relativistic effects (see appendix A.1.1).

A.2.3 Extrapolation

Physics
(30 Hz, TCB ticks)

Digital Processing
(30 Hz, 3 clock ticks)

Telemetry
(3 Hz)

ADC errors decim.

Controller
(30 Hz)

Lagrange interpolation method, used to re-sample the data from TCB to clock ticks, is here
replaced by an extrapolation technique. Extrapolation does not need future samples and
therefore does not introduce any delay in the feedback loops. In this mode, they are left
untouched and the measurement chain is kept as close as possible as they are in reality.

Extrapolation is subjected to a greater uncertainty than interpolation methods. For un-
constrained functions, such as the noisy signals that we want to simulate here, polynomial
extrapolations are often used, and implemented by means of Lagrange polynomials or New-
ton series that fit previous samples. Unfortunately the uncertainty grows unbounded with
the polynomial order, related to Runge’s phenomenon near the end of the equally-spaced
interpolation points.

We could use extrapolation only in places where interpolation raises issues, i.e. when we
need the re-sampled values as feedback loop inputs.
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A.2.4 Sampling First

Physics & Digital Processing
(30 Hz, 3 clock ticks)

Laser Propagation
(3 clock ticks in TCB coord.)

Orbits & Waveforms
(low freq., TCB ticks)

Telemetry
(3 Hz, 3 clock ticks)

decim.

interpolation

synchro.

Controller
(30 Hz, 3 clock ticks)

In the sampling first scheme, the simulation of both physics and digital processing on board
each spacecraft uses the corresponding clock ticks. Almost of the simulation is therefore
performed on three different sets of ticks, and only communicate when signals are exchanged.
Control loops on board each spacecraft can be implemented without delays, and relativistic
effects could also be easily incorporated in this model.

The three sets of clock ticks aforementioned are offset relative to each other, and their
frequencies drift with time. When laser beams are propagated from one spacecraft to
another, and the effect of passing gravitational waves is accounted for, a synchronization
mechanism must take care of transforming the signals from one set of clock ticks (where they
were generated) to TCB ticks (where orbits and waveforms are defined), back to another
set of clock ticks (where the signals are received and handled). A detailed discussion can
be found in appendix A.3.9.

Most physical effects, such as noise generation, are treated as if they were on an equally
sampled grid in TCB time.

This scheme requires a change to LISANode’s current structure and scheduling algorithms,
as we might need to fire nodes associated to one spacecraft multiples times, while nodes
associated to other spacecraft are not fired. Indeed, the synchronization mechanism must
ensure that all clock ticks are correctly ordered when expressed in TCB coordinates. This
can be achieved using three different sets of simulation ticks, c.f. appendix A.3.9.



A.3. AFFECTED SUBSYSTEMS 205

A.2.5 Sampling Last

Physics
(30 Hz, TCB ticks)

Model for sampling errors

decim.
Digital Processing

(30 Hz, 3 clock ticks)
Telemetry

(3 Hz, 3 clock ticks)

Controller
(30 Hz, TCB)

ADC errors

Orbits & Waveforms
(low freq., TCB ticks)

interpolation

In the sampling last scheme, physics simulation, including the propagation of signals be-
tween spacecraft, as well as control loops use one unique set of TCB ticks. Any effect
sampling errors might have on the control loop must therefore be modeled independently,
e.g. as an additional noise.

Digital processing simulation and all downstream nodes are bound to the corresponding set
of clock ticks. Thus we must interpolate physical variables, associated with TCB ticks, to
measurements, expressed at clock ticks. Of course, interpolation requires the availability
of input samples at future times. Since there can be no loop between digitally processed
measurements and physics simulation, we are able to shift the time origin of the nodes
downstream of ADC errors, see appendix A.3.10. The same simulation ticks can then be
used for both the TCB ticks and all three sets of clock ticks; times associated to each
simulation tick are either τ [n] or Ti[n], depending on the node.

This simulation scheme would not require big changes in LISANode’s current structure and
scheduling algorithms.

A.3 Affected Subsystems

In this section, we review each simulated subsystem that might be affected by the choosing
either one of the two last simulation schemes. In particular, we describe the coordinate
system in which each process really takes place, and then estimate the order of magnitude
of the error that we make in both models.
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Further studies must be carried out by the corresponding Work Packages, in order to
validate the simulation requirements and the rough error estimation.

The control loop, as we understand it now, runs through the spacecraft and test-mass
dynamics (appendix A.3.5), the optical simulation (appendix A.3.7), the digital processing
(appendix A.3.10) and the controller itself (appendix A.3.6).

In the following study, we neglect relativistic effects, such that the TCB and spacecraft
coordinate systems are indistinguishable. We also assume that sample-to-sample time jitter
is negligible for most applications, and will be modeled independently if it is not (as is the
case for the main phasemeter measurement).

A.3.1 Orbits

Orbits are either read from a file generated by an external tool, or computed on-the-fly from
an analytic model. The required precision on the positions and velocities of the spacecraft
and the characteristic time of their evolutions allows for a low-frequency computation of
expensive trigonometric formulae (about 5× 10−5 Hz, i.e. every 6 h). In both schemes we
therefore need an interpolation to provide spacecraft positions and velocities at the required
times in any case.

It is important that enough values are computed ahead of the rest of the simulation so that
it is possible to perform the interpolation. One solution is to shift the time origin of this
node, w.r.t. all other downstream nodes.

Orbits are naturally computed in the TCB coordinate system; in both simulation schemes
we interpolate them to TCB or clock ticks. Thus we make similar interpolation errors.
Therefore no simulation scheme is preferred.

A.3.2 Gravitational Waveforms

Similarly to the orbits, waveforms are either read from existing files or generated on-the-fly
using an analytic model. They are always expressed, and this is a convention, in the TCB
coordinate system. A low frequency (about 5 mHz, i.e. every 15 s) is usually used, and
one must interpolate between the available values to retrieve samples at the required times
expressed in TCB coordinates.

Therefore the only error is that of the interpolation, and no simulation scheme is pre-
ferred.
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A.3.3 Arm Response

This system must compute the relative frequency deviation due to passing gravitational
waves through each of the arms. It therefore takes as inputs the waveforms (appendix A.3.2),
the position of the source and the spacecraft orbits (appendix A.3.1).

As described in the corresponding aforementioned subsections, waveforms and orbits must
in any case be interpolated, whether their values are required at clock or TCB ticks. Again,
we only make an interpolation error, and no simulation scheme is preferred. It is
important though that the low-frequency orbit and waveform samples be equally
spaced in the TCB coordinate system so that simple interpolation techniques can
easily be used here.

A.3.4 Instrumental Noise Generation

Stochastic instrumental noises are generated from a white noises, which are filtered to
reproduce the expected spectral shapes. Regularly-spaced white noise samples are drawn
from a Gaussian distribution, whose mean and standard deviation are computed as functions
of the PSD and the sampling frequency

PSD = 2σ2/fs . (A.4)

This really means that the generated noise samples are bound to a coordinate system in
which they are regularly spaced.

Since instrumental noises are the results of physical processes, noise samples should be
associated with TCB ticks, which are equally spaced in the TCB coordinate system. The
sampling last simulation scheme follows this prescription (see appendix A.2.5). We therefore
make no error in this scheme.

Problems arise in the sampling first model, where downstream physical processes are bound
to clock ticks. Two solutions can be considered:

• We can either interpolate between the filtered noise samples, attached to TCB ticks,
so that they become bound to clock ticks, and can therefore be used by downstream
nodes.

• We treat the noises samples as if they were bound to TCB ticks, even though they are
really bound to clock ticks when they are generated. In that case, we make an error
because TCB and clock ticks do not share the same TCB coordinates (the first ones
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are equally spaced while the others are not). The dominant effects are the offsets and
the drifts in frequency with respect to TCB ticks, denoted here δf(t).

After a time t we compute the PSD of a generated white noise PSD(t) = 2σ2/(f0 +

δf(t)) ≈ PSD0(1− δf(t)/f0). The noise was generated using a constant variance, i.e.
at PSD0. We therefore make a relative error in the PSD estimation, after ten years,
of

∆PSD
PSD0

=
δf(10 yr)

f0
≈ 1× 10−7 . (A.5)

This can be considered negligible, and we might not need to interpolate.

Another issue is that of the filters used to give the noise its desired spectral shape.
Just like white noise generators, it assumes that the ticks are equally spaced, which is
not the case for the TCB ticks in clock coordinate systems. This is probably negligible
because the jitter is less than a nanosecond, but this is to be checked.

Another problem comes from clock tick frequency offset and drift. Indeed, digital
filters are build using a given value for the sampling period. If the clock tick frequency
is offset or shifted along the mission, the nominal and actual sampling periods are
not equal, and the filter specifications are no longer correct. The resulting error is
hard to estimate since it depends on the filter specifications, but it can be assumed
negligible because the relative frequency deviation after a 10-year mission is very
small. If needed, one can write a filter node which takes a time-varying sampling
period as input.

We conclude that if our assumptions hold, the sampling first simulation scheme produce
acceptable approximations. However, the sampling last scheme is preferred here, as
the model yields exact results.

A.3.5 Spacecraft and Test-mass Dynamics

Dynamics is usually expressed in an inertial frame of reference, i.e. in the TCB coordinate
system here. It takes as inputs the orbits (appendix A.3.1) and the controller commands
(appendix A.3.6) to produce the position and velocities of test-masses and spacecraft. It
consists mainly in integrating differential equations, which almost certainly do not depend
on absolute values of time. Therefore only time intervals between samples, expressed in
TCB coordinates, matter.

Differential equations are really filters. We fall back to the arguments given in appendix A.3.4.
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An additional argument is that controllers are specifically designed to produce very stable
systems, mostly insensitive to small perturbations of their inputs. Unfortunately, we most
certainly want to study the system out-of-loop, and therefore without the stability provided
by the controller. One might wonder whether the argument still holds in that case. Further
inputs from the dynamics work package is required here.

Therefore the sampling last simulation scheme is again preferred in this case
because we do not need any approximation or interpolation. The sampling first scheme
could also produce good approximated results if our assumptions are valid.

A.3.6 Controllers and Control Loops

On-board controllers are digital and driven by the clock:imperfections must therefore be
included, i.e. samples must be bound to clock ticks. This is naturally the case in the
sampling first simulation scheme.

For “sampling last“, the argument used in appendix A.3.4 and appendix A.3.5 applies to
integration of the controller laws: small changes in inputs should not have significant effects,
given that the controller are designed for stability. This is an assumption that should
be checked, and we can fall back to modeling any effects independently as an additional
noise in the commanded forces delivered by the controller, similarly to what we do for the
phasemeter.

Therefore we have inverted the situation studied in appendix A.3.5: the sampling first
simulation scheme is preferred because clock noise is already included. The sampling
last scheme could produce valid results if clock noise can be neglected for the controllers,
or if we can model it by an additional noise.

A.3.7 Optical Simulation

We gather under the terms Optical Simulation all computations to compute the relative
beatnote frequency deviations of the various beams on the optical benches, mix the different
noises, and compute the signal delivered by the photodiodes. It is composed of basic
mathematical operations (addition, subtraction, etc.), as well as derivatives and integrals.

All basic mathematical operations require that the operands are attached to the same ticks,
so that the results are correctly computed and clearly attached to the same set of ticks.
This is the case in both simulation schemes.
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Time-derivation operators that simulate physical processes use the tick frequency computed
in the TCB coordinate system, and assume, in the current state of the simulator, that it is
constant. This is correct in the sampling last scheme, since samples are attached to TCB
ticks which are indeed equally spaced in the TCP coordinate system. This is wrong in the
sampling first scheme, as the TCB frequency of clock ticks drifts with time. Therefore after
t, we estimate the time-derivative of a signal x̃′n = (xn − xn−1)f0 when in fact the true
derivative is really x′n = (xn − xn−1)(f0 + δf(t)). The relative error on the time-derivative
estimate that we make after 10 years is therefore

∆x′n
x′n

=
δf(t)

f0
≈ 1× 10−7 . (A.6)

If we assume that this is negligible, we can then safely use the sampling first simulation
scheme. If not, we might want to write a node to estimate time-derivatives with a variable
sampling frequency, i.e. a node with the sampling frequency as input and not as parameter.

For integral operators, we again make an accumulated error in the sampling first simulation
scheme. Estimating its magnitude is not as straight forward as that of derivatives, as the
result depends on the integrand. In any case, it could again be circumvented by using a
node which takes the current sampling frequency f(t) as input, and use it to compute the
integral: yn = yn−1 + xn/f(t).

To get a rough estimate of the error, we can look at the special case of integrating a constant
function over the mission duration. The error becomes proportional to the accumulated
timing error over 10 years, which was estimated to be up to 25 seconds given a relative
frequency drift of ≈ 1× 10−16. Compared to 10 years, this again gives a relative error
of ≈ 1× 10−7. Therefore the sampling last simulation scheme is preferred here,
although the sampling first could be viable under some assumptions.

A.3.8 Non Stationarities and Systematics

We consider here all the noises that are not purely stochastic, or whose statistical properties
vary with time or are functions of other parameters. Environmental effects, thermo-elastic
couplings, etc. are examples of such non-stationary noises. They most probably have
characteristic times much bigger than a few dozens of seconds, and clock errors, even
accumulated over 10 yr, probably do not matter.

The argument developed here are similar to those in appendix A.3.7, but a clear list of
requirements from the non stationarity work package is required.
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A.3.9 Laser Propagation

Light travel times along each arm are computed from the position and velocities of the
spacecraft, themselves computed from the orbits. They are thus associated to TCB ticks.
Outgoing beam signals are originally bound to a given set of ticks; they must be delayed
and attached to a potentially different set of ticks, which correspond to that of the receiving
spacecraft. Therefore the samples must be buffered in memory and timestamped using a
common coordinate system. We naturally choose the TCB coordinate system.

Sampling Last

In the sampling last simulation scheme, outgoing beam signals on each spacecraft are all
bound to TCB ticks, which is common to all spacecraft. Moreover the incoming beam
signals in the receiving spacecraft are expected to be bound to the same set of TCB ticks.
There is no synchronization problem and we can safely use the common TCB coordinate
system, in which TCB ticks are regularly spaced. Interpolation between regularly spaced
samples, to random times (depending here on the light travel times) also expressed in TCB
coordinates, is easy to implement. One must yet ensure that (n+ 1)/2 ≈ 16� Lfs ≈ 160,
where n is the interpolation order and L the order of magnitude of the light travel time.
This seems to be verified given the current baseline values that we are aware of.

T
C
B

 C
oord.

outgoing from SC1

incoming in SC2

light travel time

interpolation order 7

Clock Jitter

In the sampling first simulation scheme, outgoing and incoming beam signals are bound
to different sets of clock ticks Ti[n] and Tj [n]. A conversion system must play the role
of the transformation operators CTCB→Ci and CCj→TCB (see appendix A.1.1), and retrieve
the TCB coordinates associated with clock ticks Ti[n]TCB and Tj [n]TCB. One must here
consider several effects of clock noise.

Clock jitter results in irregularly-spaced clock ticks when they are expressed in TCB coor-



212 APPENDIX A. CLOCK NOISE SIMULATION

dinates. This effect is very small (less than a nanosecond) and we make the assumptions
that is can be neglected in the interpolation process, i.e. we perform a simple interpolation
scheme with regularly sampled inputs. The figure below shows in black the real clock ticks,
and in blue the time coordinates that the interpolation scheme assumes to compute the
incoming beam signal.
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incoming in SC2

light travel time

interpolation order 7

Clock Offset

The absolute time showed by the clocks might be have a significant offset w.r.t. each other.
This offset must be accounted for when converting between clock and TCB coordinates.
Problems arise when this offset ∆t0 is such that L < ∆t0 + (n + 1)/2. In this case,
interpolation becomes impossible, c.f. figure below.
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incoming in SC2

light travel time

clock offset
interpolation order 7

not computed

Clock offsets should be drawn from a to-be-defined random distribution before simulation
begins. A synchronization mechanism must ensure that the offset is compensated by a shift
in the time origin of the relevant nodes. This is illustrated on the figure below.
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Frequency Offset and Drift

A last effect is the offset and the drift with time of the three clock tick frequencies, as mea-
sured in the TCB coordinate system. We already encountered this issue in appendix A.3.4
and in appendix A.3.7. In this case, one cannot easily estimate the error as it depends
on the signal, the sampling frequency, the interpolation order, and the value of the delay.
However, if this error cannot be neglected, one can write a new interpolation node that
takes the time-varying sampling frequency as an input.

This different clock tick frequencies, as measured in TCB coordinates, can have a last effect
that must be accounted for. With time, they can significantly offset the ticks w.r.t each
other, i.e.

∣∣∣Ti[n]TCB − Tj [n]TCB
∣∣∣ can become very big for n big enough. The problems

described in appendix A.3.9 arise again, and one cannot know this stochastic relative offset
when the simulation begins. Therefore the synchronization mechanism must be adapted so
that it runs continuously during the simulation, in order to keep all clocks synchronized.
More precisely, the scheduler must make sure that the executions of the nodes bound to
one of the three sets of clock ticks are ordered accordingly to the TCB coordinates of those
clock ticks. This is of course a major change in the current LISANode’s structure and
scheduling algorithms.

Conclusion

Laser propagation is a major issue when simulating clock noise errors. This is indeed the
contact point of the three spacecraft, and therefore where three potentially different sets
of ticks interact. The sampling last simulation scheme is largely preferred since it
would not require any change in the current LISANode’s structure. Conversely, the sampling
first scheme would require major additions and changes to the scheduling algorithms, so
that conversion and synchronization can occur during the simulation. The last section of
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this document attempt to give an example of such a synchronization algorithm.

A.3.10 Digital Processing

Digital processing includes all operations of the digital measurement chain: phasemeter,
ADCs, onboard computer (filtering or decimation), etc. These processes are driven by the
onboard clocks, and are therefore submitted to clock noise. The real measurement chain
on board a single spacecraft is represented in the figure below. Dotted lines represents
measurements submitted to clock noise.

Optical
Bench

Photodiode ADCs Phasemeters
On Board 
Computers

Controllers

No issue is foreseen with the sampling first simulation scheme, as all inputs (clocks, beams,
etc.) are computed for clock ticks. They can be used as-is to generate outputs attached to
the same expected clock ticks.

The measurement chain in the sampling last scheme is represented in the figure below.
Again, dotted lines represents measurements submitted to clock noise, i.e. bound to clock
ticks. In this simulation scheme, the optical bench, the phasemeter and the controllers
are all bound to TCB ticks. To simulate the effects of the ADC, and go to clock ticks,
we interpolate the phasemeter measurements at high frequency. Then we apply the anti-
aliasing filters and the decimation, which are subjected to clock errors, as expected. The
results are passed on to telemetry, see appendix A.3.11.

Optical
Bench

Photodiode ADCsPhasemeters
On Board 
Computers

Controllers
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Interpolation mut be carried out at high frequency, so that clock effects are included in the
filtering and decimation processes. Although it is computationally expensive, interpolating
at high frequency introduces artifacts in the high-frequency part of the spectrum that are
suppressed later on by the anti-aliasing filters. If we were to interpolate at lower frequency,
these artifact would appear in a lower-frequency part of the spectrum and would not be
removed when filtering.

Interpolating from TCB to clock ticks requires input samples at future times, since there is
no big delay to apply. This is not a problem here, since we can adjust the time origins of the
downstream nodes by a big enough value, so that interpolation remains possible during the
whole simulation. These time origins should be greater than the maximum expected clock
shift w.r.t. TCB at the end of the mission, plus the required offset for the interpolation
(n+ 1)Ts/2, where n is the interpolation order.

In conclusion, sampling first simulation scheme is here preferred, as no interpolation
is required and it naturally uses clock ticks driving the digital computation units. The
alternative sampling last scheme can also be used with a bit more work, but no changes in
LISANode’s current structure is expected.

A.3.11 Telemetry

We focus here on the handling of gaps or errors in the transmission of data, as well as
Doppler shifts of the radio signals that we might want to simulate, since they might be
used to estimate the satellite positions. We have to get precise requirements from the
associated Work Package.

In both schemes, the samples are attached to the clock ticks and therefore no simulation
scheme is preferred. Gaps or Doppler might be transformed from TCB to clock ticks,
though.

A.3.12 Relativistic Effects

At first sight, the sampling first simulation scheme and its associated synchronization mech-
anism would allow for an easy implementation of relativistic effects. Indeed, each spacecraft
already uses its own clock ticks for all computations. Further study should be carried out
to check whether sampling last scheme can be used as well.
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A.4 Clock Noise Implementation

A.4.1 Simulation Ticks

The time coordinate systems defined in subsection A.1.1 describe a continuum of values. In
a simulation, we can only use discrete time steps to simulate physical events, i.e. LISANode
computes discrete samples for the measurement signals. We keep track of these time steps
with the counters used to iterate through the simulation.

We call simulation ticks the events associated with incrementing one of these counters.
Each node i has an associated timestamp Ti[n] for each simulation tick n, which can be
expressed in any coordinate system. In practice, physical simulations are usually attached
to TCB or spacecraft ticks, whereas digital processing uses clock ticks. Some nodes need to
have knowledge of the absolute timestamps associated with a given simulation tick, in some
coordinate system2. It is the responsibility of these nodes to use the required timestamps.

A.4.2 Current Implementation

Currently, there is only one counter for all nodes, denoted n. We still allow nodes to have
different sampling rates fs, but they must all be on the same time grid. The node sampling
rates must be chosen such that they all divide the simulation sampling rate fs. It is defined
as the Least Common Multiple (LCM) of all node sampling rates, and is the highest of the
them if they are all multiples of each other.

Example: In the current version, we have two sets of nodes in the simulation, one at a
high-frequency sampling rate of 30 Hz and one at a low-frequency rate of 3 Hz. The high-
frequency nodes are executed each tick n, with associated times τ [n], n ∈ {0, 1, 2, . . . }.

The low-frequency nodes are only executed every tenth tick, such that the associated times
are still τ [n], but with n ∈ {0, 10, 20, . . . }. Since we assume all clocks to be perfect in the
current version, the times associated to the high-frequency and low-frequency nodes are
identical to the physical clock ticks down-sampled to 30 Hz and 3 Hz, respectively.

A.4.3 Different Clocks in Sampling Last

If we have three different clocks taking samples at clock times Ti[n], we could also use a
single counter n to iterate through all of them. The associated physical times, Ti[n]TCB,

2Nodes that generate waveforms, or which write data to file are examples of such nodes.
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would no longer be multiples of any sampling rate. If we only want a single counter n in our
simulation, we also need to use it for the physical simulation corresponding to time steps
at τ [n] (assuming we still want to simulate physics on an equal grid). Define the differences
∆Ti[n] = Ti[n]TCB − τ [n] and ∆T ji [n] = Ti[n]TCB − Tj [n]TCB.

In the sampling last simulation scheme, there is no interaction of nodes associated to dif-
ferent ticks after the initial sampling. Therefore, offsets between different clocks described
by ∆T ji [n] are not a problem.

If ∆Ti[n] > 0, the physical time associated with the n’th simulation tick of the clock-
associated nodes is larger than the corresponding time of the physics nodes. This is a
problem since the clock-associated nodes need the physical measurements as input, as de-
scribed in subsection A.3.10. Since we need to interpolate, we actually need ∆Ti[n] < Tint,
where Tint is a constant depending on the interpolation order. This problem can be reme-
died by adding a large constant offset to the clock-associated nodes, e.g. by replacing Ti[n]

with Ti[n]′ = Ti[n− k] , such that ∆Ti[n]′ < Tint ∀n. Again, this is possible in sampling
last, since the clock-associated nodes can simply wait for the physical simulation; there is
no loop back.

A.4.4 Different Clocks in Sampling First

In the sampling first scheme, the situation is different. Physical simulation on board a
single spacecraft is done using the corresponding clock ticks, i.e. there are no TCB ticks.
Thus, ∆Ti[n] is not a problem.

If we would only use a single counter n, ∆T ji [n] could potentially become too large to allow
for interpolation required for laser propagation, as explained in subsection A.3.9. We need
‖∆T ji [n]‖ < Tlight travel + Tint ≈ 8 s. Initial offsets could again be removed by shifting the
time origins of the clock-associated nodes such that ‖∆T ji [0]‖ ≈ 0 ∀i, j.

This does not work if the clocks are allowed to drift in time with a rate that is large enough
to reach ≈ 8 s over the course of the simulation. Realistic parameters measured for USOs
for the GRAIL mission (which should be comparable in quality to once used for LISA)
suggest that they can have an average fractional frequency drift of yd ≈ 5× 10−16 s−1,
which corresponds to 25 s after 10 yr.

One possible algorithm to keep the physical times of all nodes synchronized is outlined
in the following. It relies on having different counters ni for all three spacecraft (using a
sampling rate of fs,i in the corresponding clock frame) as well as one counter n to iterate



218 APPENDIX A. CLOCK NOISE SIMULATION

through physical time at a potentially different rate fs in the TCB frame. The main idea is
to check at each physical time step n if each of the clocks has reached its next time step. If
it has, execute all associated nodes and increment the clock counter ni. This is continued
until Ti[ni]TCB > τ [n] for all clocks, at which point n is incremented and the loop continues.
ni ← 0

for n = 0 to Tend do . Main simulation loop
for i = 1, 2, 3 do . Iterate through all clocks

while τ [n] > Ti[ni]
TCB do . While last clock tick happened

Execute all nodes associated to time Ti[n]TCB

ni ← ni + 1

end while
end for

end for

By choosing fs > fs,i, we could make sure that for each physical tick n there can be at
most one clock tick ni. This would reduce the inner while loop in the above algorithm to
an if statement.

A.4.5 USO and Clock Nodes

The current version of LISANode models clock errors as a simple additive phase error in
the phasemeter measurements and neglects any other effect it has on the measurement
times. There is one USO node per spacecraft providing a noise series, which represents
the USO fractional frequency variations, including a deterministic frequency drift. This
noise series is subtracted from all phasemeter measurements (scaled by the corresponding
beatnote frequency) and added to the sideband laser beams frequency deviations (scaled
by the modulation frequency).

This USO noise series must also be utilized in a clock node to calculate the time shown by
the local clock at a given TCB tick. In order to simulate imperfect sampling times, such a
clock node needs to provide the inverse of the clock times, i.e. Ti[ni]TCB. This can either
be achieved by an analytical estimate of the inverse or by first generating a series of clock
times at TCB ticks and then interpolating this series to a desired clock tick value.

In the sampling last scheme, the times provided by this clock node can then be used in the
phasemeter node to interpolate all measurements to the correct sampling times.

In the sampling first scheme, Ti[ni]TCB is already required for the synchronization algorithm
outlined above. Thus, clock noise needs to be treated differently from other noises in this
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scheme.

A.5 Conclusion

A.5.1 Summary

We presented in this document the main issues associated with the simulation of LISA’s
measurement chain, including clock errors. We proposed three simulations schemes circum-
venting the problems associated with the simulation of different time grids in LISANode.
Two make use of interpolation while one replaces it by extrapolation. We then studied the
impact of these different models on the simulation of the different subsystems, along with
the amount of structural changes they imply for LISANode.

Preliminary analysis indicates that both schemes using interpolation could be valid. Further
study is required to evaluate extrapolation as an alternative. One should note that the
sampling last scheme would be much easier to implement in the current framework since it
does not imply any changes of the scheduling algorithms. It also impacts fewer subsystems,
thus making the task of estimating the associated errors more manageable.

A.5.2 Recommendations

It is therefore our recommendation to use the sampling last scheme for the
moment. Any feedback from other work packages on subsystem requirements
that would favor one of the schemes would be highly appreciated and might
help refine this recommendation.
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Appendix B

LISANode Library

We give here the list of atomic nodes provided as part of the LISANode library. Atomic
nodes are defined as header-only C++ subclasses of Node, and placed in their own file.
Atomic nodes provided in the LISANode library are located under lisanode/toolbox/
nodes/ and organized by category.

B.1 Math

This category defines elementary mathematical operations.

B.1.1 Addition<T>

Compute the sum of two signals.

Model
resultn = an + bn . (B.1)

Inputs

• a (T), first signal.

• b (T), second signal.

Outputs

221
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• result (T), sum of the two signals.

B.1.2 Sum<T>

Compute the sum of an arbitrary number of signals.

Model

resultn =

input_count∑
k=1

inputs[k]n . (B.2)

Parameters

• input_count (int), number of inputs.

Inputs

• inputs (vector<T>), vector of inputs.

Outputs

• result (T), sum of signals.

B.1.3 LinearCombination<T>

Compute a linear combination of an arbitrary number of signals.

Model

resultn =

input_count∑
k=1

coeffs [k]n × inputs[k]n . (B.3)

Parameters

• input_count (int), number of inputs.

Inputs

• inputs (vector<T>), vector of inputs.
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• coeffs (std :: vector<double>), vector of coefficients.

Outputs

• result (T), linear combination of all inputs.

B.1.4 Difference<T>

Compute the sum of two signals.

Model
resultn = an − bn . (B.4)

Inputs

• a (T), first signal.

• b (T), second signal.

Outputs

• result (T), difference of the two signals.

B.1.5 Constant<T>

Return a constant value.

This node can be used to convert a parameter to a signal.

Model
resultn = value . (B.5)

Parameters

• value (T), constant value.

Outputs

• result (T), constant value.
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B.1.6 Sign<T>

Return the signal of a signal.

The C++ function copysign(), defined in <cmath>, is used.

Model

resultn = sign(inputn) . (B.6)

Inputs

• input (T), input signal.

Outputs

• result (T), sign of input as +1 or −1.

B.1.7 Gain<T>

Multiply a signal by a constant gain.

Model

resultn = gain× inputn . (B.7)

Parameters

• gain (double), constant gain or multiplication factor.

Inputs

• input (T), input signal.

Outputs

• result (T), gained input.
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B.1.8 Abs<T>

Return the absolute value of a signal.

The C++ function abs(), defined in <cmath>, is used.

Model
resultn = |inputn| . (B.8)

Inputs

• input (T), input signal.

Outputs

• result (T), absolute value of input.

B.1.9 Product<T>

Compute the product of two signals.

Model
resultn = an × bn . (B.9)

Inputs

• a (T), first signal.

• b (T), second signal.

Outputs

• result (T), product of the signals.

B.1.10 Power<T>

Compute the mathematical power of a signal.

Model
resultn = inputn

exponent . (B.10)
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The C++ function pow(), defined in <cmath>, is used here.

Parameters

• exponent (double), constant exponent.

Inputs

• input (T), input signal.

Outputs

• result (T), power of the input.

B.1.11 VariablePower<T>

Compute the integer and variable power of a signal.

Model
resultn = inputn

exponentn . (B.11)

The C++ function pow(), defined in <cmath>, is used here.

Inputs

• input (T), input signal.

• exponent (int), constant exponent.

Outputs

• result (T), power of the input.

B.1.12 Expression<T>

Parse and compute a mathematical expression with multiple inputs.

This node takes as parameter a number of input names and a mathematical expression,
which is function of these inputs and the current time t. The expression is parsed using the
library exprtk and the result is computed.
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Refer to http://www.partow.net/programming/exprtk/index.html for more info.

Model

resultn = expression(input_name[0]n, . . . , input_name[input_name.size()]n) . (B.12)

Parameters

• expression (std :: string), mathematical expression.

• input_names (vector<string>), vector of input names.

Inputs

• inputs (map<string, T>), dictionary of inputs.

Outputs

• result (T), result of mathematical expression.

B.1.13 Clip<T>

Clip signal between a minimum and maximum values.

Model
resultn = max(min,min(max, inputn)) . (B.13)

Parameters

• min (T), minimal value.

• max (T), maximal value.

Inputs

• input (T), input signal.

Outputs

• result (T), clipped signal.

http://www.partow.net/programming/exprtk/index.html
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B.2 Logic

This category defines elementary logical operations.

B.2.1 Not

Compute logical negation (not).

Model

resultn = ¬inputn . (B.14)

Inputs

• input (bool), input signal.

Outputs

• result (bool), negated input signal.

B.2.2 And

Compute logical conjunction (and).

Model

resultn = an ∧ bn . (B.15)

Inputs

• a (bool), first signal.

• b (bool), second signal.

Outputs

• result (bool), conjunction of two signals.
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B.2.3 Or

Compute logical disjunction (or).

Model
resultn = an ∨ bn . (B.16)

Inputs

• a (bool), first signal.

• b (bool), second signal.

Outputs

• result (bool), disjunction of two signals.

B.2.4 Xor

Compute logical exclusive disjunction (xor).

Model
resultn = an ⊕ bn . (B.17)

Inputs

• a (bool), first signal.

• b (bool), second signal.

Outputs

• result (bool), exclusive disjunction of two signals.

B.3 Sampling

This category defines nodes used to adjust or modify the sampling frequency of downstream
nodes.
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B.3.1 Dummy<T>

Does not change the signal, passthrough no-operation node.

This node is used in the former FPGA-like scheduling algorithm to increase latency of some
nodes during graph analysis. Dummy nodes were automatically inserted in the simulation
graph during graph analysis, and more specifically during latency balancing.

Model
resultn = inputn . (B.18)

Inputs

• input (T), input signal.

Outputs

• result (T), output signal.

B.3.2 Decimation<T>

RESAmple a signal using decimation.

Decimation takes only one sample every n samples, where n is the downsampling factor.

Model
resultn = inputn . (B.19)

Inputs

• input (T), input signal.

Outputs

• result (T), decimated signal.

B.3.3 HoldValue<T>

Upsample a signal holding previous known value.
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Model
resultn = inputn . (B.20)

Inputs

• input (T), input signal.

Outputs

• result (T), hold value.

B.3.4 LastSamples<T>

Offer a way to access a number of last samples of a signal.

Model
samples[k]n = inputn+sample_count−(k+1) . (B.21)

Parameters

• sample_count (int), number of samples to remember.

Inputs

• input (T), input signal.

Outputs

• samples (vector<T>), vector of last samples, most recent at the end.

B.3.5 SlidingAverage<T>

Compute a moving average on a arbitrary number of last samples.

Model

resultn =
1

sample_count

sample_count − 1∑
k=0

inputn−k . (B.22)

Parameters
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• sample_count (int), number of samples to average.

Inputs

• input (T), input signal.

Outputs

• result (T), average of last samples.

B.4 Delays

This category defines nodes that are used to delay a signal.

B.4.1 IntegerDelay<T>

Delay a signal by a constant integer number of samples.

Model
resultn = inputn−delay . (B.23)

Parameters

• delay (int), number of samples used as delay. Must be a positive integer.

Inputs

• input (T), input signal.

Outputs

• result (T), delayed signal.

B.4.2 VariableIntegerDelay<T>

Delay a signal by a varying integer number of samples.
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Model
resultn = inputn−delayn . (B.24)

Parameters

• max_delay (int), maximum delay, in number of samples. Must be a positive integer.

Inputs

• input (T), input signal.

• delay (int), delay, in number of samples. Must be a positive integer less than max_delay.

Outputs

• result (T), delayed signal.

B.4.3 FractionalDelay<T>

Delay a signal by an arbitrary but constant delay using Lagrange interpolation.

We use the centered Lagrange interpolating polynomials, applied on past samples of the
input signal, to compute a new value between two past samples. A high interpolation order
increase the quality of the interpolation and allows to keep the high-frequency content of
the signal, but simultaneously increase the computation time, and the minimum authorized
delay.

The minimum authorized delay is defined by the number of input samples required in the
Lagrange polynomials, at the right of the desired new sample. These input samples must
exist, i.e. they must be at times smaller than the current time. Therefore, the minimum
authorized delay is defined by

min_delay =
order + 1

2sampling_frequency
. (B.25)

The expression for the Lagrange polynomials are extracted from [Hal18], equation (56), and
are given in the model below.

Model
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We first define the half point count p = order+1
2 , which is a positive integer, the integer

part of the delay d = ceil(delay ∗ sampling_frequency)− 1, and the fractional part of the delay
ε = 1 + d− delay ∗ sampling_frequency.

We can then define the following variables,

A =
1

h

h−1∏
i=1

(1 +
ε

i
)(1 +

1− ε
i

) , (B.26)

B = 1− ε , (B.27)

C = ε , (B.28)

D = ε(1− ε) , (B.29)

E[j] = (−1)j
(p− 1)!

(p− 1− j)!
p!

(p+ j)!
, (B.30)

F[j ] = j + ε , (B.31)

G[j] = j + (1− ε) . (B.32)

Then the model reads

resultn = A

B inputd+1 + C inputd + D

p−1∑
j=1

E[j ]

(
inputd+1+j

F[j ]
+

inputd−j
G[j]

) . (B.33)

Parameters

• delay (double), delay, in seconds. Must be greater than the minimum authorized delay
min_delay.

• order (int), order of interpolation. Must be an odd positive integer.

Inputs

• input (T), input signal.

Outputs

• result (T), delayed signal.
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B.4.4 VariableFractionalDelay<T>

Delay a signal by an arbitrary and time-varying delay using Lagrange interpolation.

We use the centered Lagrange interpolating polynomials, applied on past samples of the
input signal, to compute a new value between two past samples. A high interpolation order
increase the quality of the interpolation and allows to keep the high-frequency content of
the signal, but simultaneously increase the computation time, and the minimum authorized
delay.

The Lagrange polynomial coefficients must be recalculated at each step, because the delays
are time-varying. If you wish yo delay your signal by an arbitrary but constant delay, use
the dedicated VariableDelay<T> node instead.

You must specify the maximum delay that will be used to clip the delay signal during the
simulation. A high value allows for a larger dynamical range for the delays, but increase the
memory usage. The minimum authorized delay is defined by the number of input samples
required in the Lagrange polynomials, at the right of the desired new sample. These input
samples must exist, i.e. they must be at times smaller than the current time. Therefore,
the minimum authorized delay is defined by

min_delay =
order + 1

2× sampling_frequency
. (B.34)

The delay signal is always clipped to the minimum and maximum authorized delays, in
which case a warning is issued.

The expression for the Lagrange polynomials are extracted from [Hal18], equation (56), and
are given in the model below.

Model We first define the half point count p = order+1
2 , which is a positive integer, the

integer part of the delay d = ceil(delay ∗ sampling_frequency) − 1, and the fractional part of
the delay ε = 1 + d− delay ∗ sampling_frequency.
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We can then define the following variables,

A =
1

h

h−1∏
i=1

(1 +
ε

i
)(1 +

1− ε
i

) , (B.35)

B = 1− ε , (B.36)

C = ε , (B.37)

D = ε(1− ε) , (B.38)

E[j] = (−1)j
(p− 1)!

(p− 1− j)!
p!

(p+ j)!
, (B.39)

F[j ] = j + ε , (B.40)

G[j] = j + (1− ε) . (B.41)

Then the model reads

resultn = A

B inputd+1 + C inputd + D

p−1∑
j=1

E[j ]

(
inputd+1+j

F[j ]
+

inputd−j
G[j]

) . (B.42)

Parameters

• max_delay (double), maximum delay, in seconds. Must be greater than the minimum
authorized delay min_delay.

• order (int), order of interpolation. Must be an odd positive integer.

Inputs

• input (T), input signal.

• delay (double), delay, in seconds. Clipped to within [min_delay,max_delay].

Outputs

• result (T), delayed signal.
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B.4.5 FarrowFractionalDelay<T>

B.4.6 FarrowVariableFractionalDelay<T>

B.5 Calculus

This category defines nodes that compute the time derivative and the integral of signals.

B.5.1 Derivator<T>

Compute the time derivative of a signal using first-order difference equation.

Model
resultn = sampling_frequency(inputn − inputn−1) . (B.43)

Inputs

• input (T), input signal.

Outputs

• result (T), derivative of signal.

B.5.2 Derivator<T>

Integrate a signal using first-order difference equation.

Model

resultn = init_value +
1

sampling_frequency

n∑
k=0

inputk . (B.44)

Parameters

• init_value (T), initial value.

Inputs

• input (T), input signal.



238 APPENDIX B. LISANODE LIBRARY

Outputs

• result (T), integral of signal.

B.6 Generators

This category defines nodes that are used to generate deterministic signals.

B.6.1 Sinus

Generate sinus signal.

Model

resultn = offset + amplitude× sin

(
2π

period
t+ phase

)
. (B.45)

Parameters

• period (double), sinus period, in seconds.

• phase (double), initial phase, in radians.

• amplitude (double), wave amplitude.

• offset (double), wave offset.

Outputs

• result (double), generated sinus wave.

B.6.2 Ramp

Generate a linear function.

Model
resultn = b + a× t . (B.46)

Parameters



B.6. GENERATORS 239

• a (double), ramp slope, in s−1.

• b (double), initial value at t = 0 s.

Outputs

• result (double), generated ramp.

B.6.3 Step

Generate a step, or Heavyside function.

Model
resultn = amplitude×Θ(t) . (B.47)

Parameters

• amplitude (double), amplitude of the step.

Outputs

• result (double), generated step.

B.6.4 Pulse

Generate a pulse signal, or Dirac delta function.

Model
resultn = amplitude× δ(t) . (B.48)

Parameters

• amplitude (double), amplitude of the pulse.

Outputs

• result (double), generated pulse.
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B.6.5 LogicalOscillator

Generate a logical signal oscillating between 0 and 1.

Model

Parameters

• period (int), period of oscillation, in number of samples.

Outputs

• result (bool), oscillating logical signal.

B.6.6 CurrentTime

Return current time.

Model
resultn = t . (B.49)

Outputs

• result (double), current time, in seconds.

B.7 Random

This category gathers random number generators.

B.7.1 NormalGenerator

Draw random numbers from a normal (Gaussian) distribution.

The standard library std ::mt19937 class is used to generate random numbers.

Model

prob( resultn) =
1√

2πstandard_deviation
exp

(
− ( resultn − mean)2

2standard_deviation2

)
. (B.50)

Parameters
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• mean (double), mean of the distribution.

• standard_deviation (double), standard deviation of the distribution.

• seed (int), random seed for reproducible results. Note that you must set random_seed

to false for the seed to be taken into account.

• random_seed (bool), use random seed. If set to true the seed will be overridden by a
random number.

Outputs

• result (double), generated number.

B.7.2 UniformGenerator

Draw random numbers from a uniform distribution.

The standard library std ::mt19937 class is used to generate random numbers.

Model

prob( resultn) =
1

max− min
. (B.51)

Parameters

• min (double), minimum of the distribution.

• max (double), maximum of the distribution.

• seed (int), random seed for reproducible results. Note that you must set random_seed

to false for the seed to be taken into account.

• random_seed (bool), use random seed. If set to true the seed will be overridden by a
random number.

Outputs

• result (double), generated number.
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B.7.3 WhiteNoise

Generate a Gaussian white noise.

This node generates a Gaussian white noise for a given amplitude spectral density and
sampling frequency. The noise samples are drawn from a zero-mean Gaussian distribution,
such that the energy is evenly distributed in each frequency bin.

The standard library std ::mt19937 class is used to generate random numbers.

Model

The amplitude spectral density is used to compute the standard deviation of the normal
distribution

σ = asd

√
sampling_frequency

2
, (B.52)

and we have the following statistical model for the noise, if enabled is true,

prob( resultn) =
1√
2πσ

exp

(
− result2

n

2σ2

)
. (B.53)

If enabled is false, then resultn = 0.

Parameters

• enabled (bool), on-off switch for the noise.

• asd (double), amplitude spectral density, in Hz−1.

• seed (int), seed used to initialize the sequence of random numbers. If the seed is set
to its default value 0, a random seed is drawn instead. Setting it to another value
allows for reproducible results.

Outputs

• result (double), generated noise.

B.7.4 NonStationaryWhiteNoise

Generate a non-stationary Gaussian white noise.

This node generates a Gaussian white noise for a time-varying amplitude spectral den-
sity and sampling frequency. Because the generated signal is non-stationary, one cannot
compute its spectral density.
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The standard library std ::mt19937 class is used to generate random numbers.

Model

The amplitude spectral density is used to compute the standard deviation of the normal
distribution. Here, it is time-dependent so that we define a time series

σn = asdn

√
sampling_frequency

2
, (B.54)

and we have the following statistical model for the noise, if enabled is true,

prob( resultn) =
1√

2πσn
exp

(
− result2

n

2σ2
n

)
. (B.55)

If enabled is false, then resultn = 0.

Parameters

• enabled (bool), on-off switch for the noise.

• seed (int), seed used to initialize the sequence of random numbers. If the seed is set
to its default value 0, a random seed is drawn instead. Setting it to another value
allows for reproducible results.

Inputs

• asd (double), time-dependent amplitude spectral density, in Hz−1.

Outputs

• result (double), generated noise.

B.8 Filters

This category defines digital filters.

B.8.1 Filter<T>

Implement a digital filter.
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Use an empty vector for feedback coefficients to implement a finite-impulse response (FIR)
filter.

Model

resultn =

direct_coeffs . size ()∑
k=0

direct_coeffs [k] × inputn−k−
feedback_coeffs. size ()∑

k=0

feedback_coeffs[k] × inputn−k−1 .

(B.56)

Note the minus sign in front of the recursive (feedback) terms, and the fact that the first
feedback coefficient is associated with inputn−1, and not inputn. This is because the associ-
ated discrete transfer function is

H(z) =

∑direct_coeffs . size ()
k=0 direct_coeffs [k] z−k

1 +
∑feedback_coeffs. size ()

k=0 feedback_coeffs[k] z−k−1
. (B.57)

Parameters

• direct_coeffs (std :: vector<double>), vector of direct coefficients.

• feedback_coeffs (std :: vector<double>), vector of recursive coefficients.

Inputs

• input (T), input signal.

Outputs

• result (T), filtered signal.

B.8.2 EllipticFilter

B.8.3 PinkFilter

B.8.4 KaiserFilter

B.9 I/O

This category defines nodes that can read or write data. They enable an interface between
LISANode and other external tools.
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B.9.1 WriteText<T>

Write a signal to text file, using ASCII encoding.

In particular, this node is automatically added and connected by LISANode to every pub-
lished outputs, so that they are written to file as the simulation products.

Parameters

• path (std :: string), absolute or relative path to text file.

• print_time (bool), whether a first column with timestamps should be printed.

• precision (int), number of printed decimals.

Inputs

• input (T), input signal.

B.9.2 WriteStream<T>

Insert a signal into a stream, such as the standard output.

Use this node with standard output for debugging.

Parameters

• stream (std :: ostream), pointer to stream, default to standard output.

• print_name (bool), whether name of the node should be printed.

• print_time (bool), whether a first column with timestamps should be printed.

• precision (int), number of printed decimals.

Inputs

• input (T), input signal.

B.9.3 ReadText<T>

Read a signal from text file, encoded in ASCII.
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Parameters

• path (std :: string), absolute or relative path to text file.

• column_count (int), number of columns in the text file.

• header_count (int), number of header lines to be ignored.

• precision (int), number of printed decimals.

Outputs:

• data (vector<T>), read data, as a vector of columns.



Appendix C

LISA Simulation Graphs and Nodes

We give here the documentation for the LISA-specific simulation graphs and atomic nodes.

Simulation graphs are defined as Python subclasses of Graph, and placed in various files
under /lisanode/lisa/. See section 3.2.1 for more information about the architecture of
the project. Atomic nodes are defined as header-only C++ subclasses of Node, and placed
in their own file. Atomic nodes specific to LISA are located under lisanode/toolbox/
nodes/lisa/.

C.1 Instrumental Subsystems

The module instrument.py defines graphs for the main instrument systems and subsys-
tems, including the optical bench, interferometer, phasemeter, on-board computer, space-
craft, laser links, and most importantly, the high-level graph for LISA.

C.1.1 LISA

Simulate the LISA constellation.

The measurements are output at the frequency LOW_SAMPLING_FREQ (in Hz, defined in
the simulation configuration), and the physics is simulated at HIGH_SAMPLING_FREQ (in
Hz). The orbits are read or simulated depending on the configuration option ORBIT_TYPE,
at a sampling frequency of ORBIT_SAMPLING_FREQ (in Hz).

PUBLISH_MEASUREMENTS and PUBLISH_TRAVEL_TIMES configuration options are used

247
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to enable or disable respectively the publication of the all interferometric measurements
and the estimated light travel times.

Model

C.f. section 3.2.2.

Parameters

• Laser Noises

– lasernoise_on_off (int), on/off switch for laser frequency noise, must be 0 or 1.

– laser_asd1 (double), laser noise ASD of MOSA 1, in s/
√

Hz.

– laser_asd1_p (double), laser noise ASD of MOSA 1’, in s/
√

Hz.

– laser_asd2 (double), laser noise ASD of MOSA 2, in s/
√

Hz.

– laser_asd2_p (double), laser noise ASD of MOSA 2’, in s/
√

Hz.

– laser_asd3 (double), laser noise ASD of MOSA 3, in s/
√

Hz.

– laser_asd3_p (double), laser noise ASD of MOSA 3’, in s/
√

Hz.

– laser_seed1 (int), seed for generation of random samples for laser noise of MOSA
1, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed1_p (int), seed for generation of random samples for laser noise of MOSA
1’, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed2 (int), seed for generation of random samples for laser noise of MOSA
2, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed2_p (int), seed for generation of random samples for laser noise of MOSA
2’, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed3 (int), seed for generation of random samples for laser noise of MOSA
3, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed3_p (int), seed for generation of random samples for laser noise of MOSA
3’, default to 0 (a seed is randomly chosen when the simulation starts).
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• Readout Noises

– readoutnoise_on_off (int), on/off switch for readout noise, must be 0 or 1.

• Optical Noises

– opticalnoise_on_off (int), on/off switch for optical noise, must be 0 or 1.

• Test-mass Acceleration Noises in GRS

– accelnoise_on_off (int), on/off switch for test-mass acceleration noise, must be 0
or 1.

• Clock noises

– usonoise_on_off (int), on/off switch for USO frequency fluctuations and drift.

– uso_asd (double), ASD of the USO flicker noise, in fractional frequency deviation
/
√

Hz.

– uso_seed1 (int), seed for generation of random samples for USO noise for space-
craft 1, default to 0 (random seed).

– uso_seed2 (int), seed for generation of random samples for USO noise for space-
craft 2, default to 0 (random seed).

– uso_seed3 (int), seed for generation of random samples for USO noise for space-
craft 3, default to 0 (random seed).

• Absolute Ranging Errors

– rangingnoise_on_off (int), on/off switch for absolute ranging error, must be 0 or 1.

– ranging_systematic (double), constant systematic error on travel time estimation,
in s.

– ranging_asd: amplitude spectral density of the error on travel times, in s/
√

Hz.

• Linear Armlengths (only applies when using linearly-evolving armlengths, i.e. when
ORBIT_TYPE = ’linear_armlengths’)
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– L1 (double), armlength 1 at initial time, in m.

– L2 (double), armlength 2 at initial time, in m.

– L3 (double), armlength 3 at initial time, in m.

– dL1 (double), armlength 1 first time derivative, in m/s.

– dL2 (double), armlength 2 first time derivative, in m/s.

– dL3 (double), armlength 3 first time derivative, in m/s.

• Interpolations

– order (int), interpolation order for simulating beam propagation, must be an odd
integer greater or equal to 1.

Inputs

• Beatnote Frequencies

– sci_f1 (double), science beatnote frequencies in MOSA 1, in MHz.

– sci_f1_p (double), science beatnote frequencies in MOSA 1’, in MHz.

– sci_f2 (double), science beatnote frequencies in MOSA 2, in MHz.

– sci_f2_p (double), science beatnote frequencies in MOSA 2’, in MHz.

– sci_f3 (double), science beatnote frequencies in MOSA 3, in MHz.

– sci_f3_p (double), science beatnote frequencies in MOSA 3’, in MHz.

– ref_f1 (double), reference and test-mass beatnote frequencies in MOSA 1, in MHz.

– ref_f1_p (double), reference and test-mass beatnote frequencies in MOSA 1’, in
MHz.

– ref_f2 (double), reference and test-mass beatnote frequencies in MOSA 2, in MHz.

– ref_f2_p (double), reference and test-mass beatnote frequencies in MOSA 2’, in
MHz.
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– ref_f3 (double), reference and test-mass beatnote frequencies in MOSA 3, in MHz.

– ref_f3_p (double), reference and test-mass beatnote frequencies in MOSA 3’, in
MHz.

– sb_f1 (double), sideband beatnote frequencies in MOSA 1, in MHz.

– sb_f1_p (double), sideband beatnote frequencies in MOSA 1’, in MHz.

– sb_f2 (double), sideband beatnote frequencies in MOSA 2, in MHz.

– sb_f2_p (double), sideband beatnote frequencies in MOSA 2’, in MHz.

– sb_f3 (double), sideband beatnote frequencies in MOSA 3, in MHz.

– sb_f3_p (double), sideband beatnote frequencies in MOSA 3’, in MHz.

• Clock Noises

– uso_drift1 (double), fractional frequency time drift of USO onboard spacecraft 1,
in /s.

– uso_drift2 (double), fractional frequency time drift of USO onboard spacecraft 2,
in /s.

– uso_drift3 (double), fractional frequency time drift of USO onboard spacecraft 3,
in /s.

Outputs

• Measurement Channels (only applied if PUBLISH_MEASUREMENTS = True)

– s1 (double), science interferometric measurement in MOSA 1, in fractional fre-
quency deviation.

– s1_p (double), science interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– s2 (double), science interferometric measurement in MOSA 2, in fractional fre-
quency deviation.

– s2_p (double), science interferometric measurement in MOSA 2’, in fractional
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frequency deviation.

– s3 (double), science interferometric measurement in MOSA 3, in fractional fre-
quency deviation.

– s3_p (double), science interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– sb1 (double), sideband interferometric measurement in MOSA 1, in fractional
frequency deviation.

– sb1_p (double), sideband interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– sb2 (double), sideband interferometric measurement in MOSA 2, in fractional
frequency deviation.

– sb2_p (double), sideband interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– sb3 (double), sideband interferometric measurement in MOSA 3, in fractional
frequency deviation.

– sb3_p (double), sideband interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– tau1 (double), reference interferometric measurement in MOSA 1, in fractional
frequency deviation.

– tau1_p (double), reference interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– tau2 (double), reference interferometric measurement in MOSA 2, in fractional
frequency deviation.

– tau2_p (double), reference interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– tau3 (double), reference interferometric measurement in MOSA 3, in fractional
frequency deviation.

– tau3_p (double), reference interferometric measurement in MOSA 3’, in fractional



C.1. INSTRUMENTAL SUBSYSTEMS 253

frequency deviation.

– epsilon1 (double), test-mass interferometric measurement in MOSA 1, in fractional
frequency deviation.

– epsilon1_p (double), test-mass interferometric measurement in MOSA 1’, in frac-
tional frequency deviation.

– epsilon2 (double), test-mass interferometric measurement in MOSA 2, in fractional
frequency deviation.

– epsilon2_p (double), test-mass interferometric measurement in MOSA 2’, in frac-
tional frequency deviation.

– epsilon3 (double), test-mass interferometric measurement in MOSA 3, in fractional
frequency deviation.

– epsilon3_p (double), test-mass interferometric measurement in MOSA 3’, in frac-
tional frequency deviation.

• Absolute Ranging Estimates (only applies if PUBLISH_TRAVEL_TIMES = True)

– tt1 (double), estimated travel times along link 1, in s.

– tt1_p (double), estimated travel times along link 1’, in s.

– tt2 (double), estimated travel times along link 2, in s.

– tt2_p (double), estimated travel times along link 2’, in s.

– tt3 (double), estimated travel times along link 3, in s.

– tt3_p (double), estimated travel times along link 3’, in s.

C.1.2 Spacecraft

Contains two MOSA units, as USO, a phasemeter, and an onboard computer. See sec-
tion 3.2.2.

The measurements are output at the frequency LOW_SAMPLING_FREQ (in Hz, defined in
the simulation configuration), and the physics is simulated at HIGH_SAMPLING_FREQ (in
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Hz).

Model

C.f. section 3.2.2 and section 3.4.1.

Parameters

• Laser Noises

– lasernoise_on_off (int), on/off switch for laser frequency noise, must be 0 or 1.

– laser_asd (double), laser noise ASD of unprimed MOSA, in s/
√

Hz.

– laser_asd_p (double), laser noise ASD of primed MOSA, in s/
√

Hz.

– laser_seed (int), seed for generation of random samples for laser noise of unprimed
MOSA, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed_p (int), seed for generation of random samples for laser noise of primed
MOSA, default to 0 (a seed is randomly chosen when the simulation starts).

• Readout Noises

– readoutnoise_on_off (int), on/off switch for readout noise, must be 0 or 1.

• Optical Noises

– opticalnoise_on_off (int), on/off switch for optical noise, must be 0 or 1.

• Test-mass Acceleration Noises in GRS

– accelnoise_on_off (int), on/off switch for test-mass acceleration noise, must be 0
or 1.

• Clock noises

– usonoise_on_off (int), on/off switch for USO frequency fluctuations and drift.

– uso_asd (double), ASD of the USO flicker noise, in fractional frequency deviation
/
√

Hz.
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– uso_seed (int), seed for generation of random samples for USO noise, default to
0 (random seed).

Inputs

• Incoming Laser Beams

– incoming_laser (double), main signal from distant spacecraft to unprimed MOSA,
in fractional frequency deviations.

– incoming_laser_p (double), main signal from distant spacecraft to primed MOSA,
in fractional frequency deviations.

– incoming_sb (double), sideband signal from distant spacecraft to unprimed MOSA,
in fractional frequency deviations.

– incoming_sb_p (double), sideband signal from distant spacecraft to primed MOSA,
in fractional frequency deviations.

• Beatnote Frequencies

– sci_f (double), science beatnote frequencies in unprimed MOSA, in MHz.

– sci_f_p (double), science beatnote frequencies in primed MOSA, in MHz.

– sb_f (double), sideband beatnote frequencies in unprimed MOSA, in MHz.

– sb_f_p (double), sideband beatnote frequencies in primed MOSA, in MHz.

– tm_f (double), test-mass beatnote frequencies in unprimed MOSA, in MHz.

– tm_f_p (double), test-mass beatnote frequencies in primed MOSA, in MHz.

– ref_f (double), reference beatnote frequencies in unprimed MOSA, in MHz.

– ref_f_p (double), reference beatnote frequencies in primed MOSA, in MHz.

• Clock Noises

– uso_drift (double), USO fractional frequency drift with time, in /s.

Outputs
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• Measurement Channels

– s (double), science interferometric measurement in unprimed MOSA, in fractional
frequency deviation.

– s_p (double), science interferometric measurement in primed MOSA, in fractional
frequency deviation.

– sb (double), sideband interferometric measurement in unprimed MOSA, in frac-
tional frequency deviation.

– sb_p (double), sideband interferometric measurement in primed MOSA, in frac-
tional frequency deviation.

– tau (double), reference interferometric measurement in unprimed MOSA, in frac-
tional frequency deviation.

– tau_p (double), reference interferometric measurement in primed MOSA, in frac-
tional frequency deviation.

– epsilon (double), test-mass interferometric measurement in unprimed MOSA, in
fractional frequency deviation.

– epsilon_p (double), test-mass interferometric measurement in primed MOSA, in
fractional frequency deviation.

• Outgoing Laser Beams

– outgoing_laser (double), main signal from unprimed MOSA to distance spacecraft,
in fractional frequency deviations.

– outgoing_laser_p (double), main signal from primed MOSA to distance spacecraft,
in fractional frequency deviations.

– outgoing_sb (double), sideband signal from unprimed MOSA to distance space-
craft, in fractional frequency deviations.

– outgoing_sb_p (double), sideband signal from primed MOSA to distance space-
craft, in fractional frequency deviations.
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C.1.3 MOSA

Movable optical sub-assembly. Only hosts one optical bench, receives laser beams from the
distant and adjacent MOSAs, and send the local laser beam to the distant MOSA.

The measurements are output at the frequency LOW_SAMPLING_FREQ (in Hz, defined in
the simulation configuration), and the physics is simulated at HIGH_SAMPLING_FREQ (in
Hz).

Model

C.f. section 3.4.1.

Parameters

• Laser Noises

– lasernoise_on_off (int), on/off switch for laser frequency noise, must be 0 or 1.

– laser_asd (double), laser noise ASD, in s/
√

Hz.

– laser_seed (int), seed for generation of random samples for laser noise, default to
0 (a seed is randomly chosen when the simulation starts).

• Other Noises

– readoutnoise_on_off (int), on/off switch for readout noise, must be 0 or 1.

– opticalnoise_on_off (int), on/off switch for optical noise, must be 0 or 1.

– accelnoise_on_off (int), on/off switch for test-mass acceleration noise, must be 0
or 1.

Inputs

• Incoming Laser Beams

– distant_beam (double), main signal from distant optical bench, in fractional fre-
quency deviations.

– distant_sb (double), sideband signal from distant optical bench, in fractional fre-
quency deviations.
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– adjacent_beam (double), main signal from twin optical bench hosted in the same
spacecraft, in fractional frequency deviations.

• Beatnote Frequencies

– sci_f (double), beatnote frequency for the science interferometer, in MHz.

– sb_f (double), beatnote frequency for the sideband interferometer, in MHz.

– tm_f (double), beatnote frequency for the test-mass interferometer, in MHz.

– ref_f (double), beatnote frequency for the reference interferometer, in MHz.

• Clock Noises

– modulation_factor (int), sideband scaling for the sideband.

– uso_noise (double), USO noise used for the sideband, in normalized fractional
frequency deviation.

Outputs

• Measurement Channels

– s (double), data from science interferometer, in fractional frequency deviation.

– sb (double), data from sideband interferometer, in fractional frequency deviation.

– tau (double), data from reference interferometer, in fractional frequency deviation.

– epsilon (double), data from test-mass interferometer, in fractional frequency devi-
ation.

• Outgoing Laser Beams

– beam_to_distant (double), main signal from local laser to distant optical bench, in
fractional frequency deviations.

– sb_to_distant (double), sideband signal from local laser to distant optical bench,
in fractional frequency deviations.
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– beam_to_adjacent (double), main signal from local laser to adjacent optical bench.

C.1.4 OpticalBench

LISA optical bench. The optical bench defines a local laser, and feed four interferometers
with the beam from the local laser, the adjacent and the remote optical benches. The
fourth interferometer use the sideband signal from the distant optical bench and the local
clock.

The physics is simulated at HIGH_SAMPLING_FREQ (in Hz).

Model

C.f. section 3.4.1.

Parameters

• Laser Noises

– lasernoise_on_off (int), on/off switch for laser frequency noise, must be 0 or 1.

– laser_asd (double), laser noise ASD, in s/
√

Hz.

– laser_seed (int), seed for generation of random samples for laser noise, default to
0 (a seed is randomly chosen when the simulation starts).

• Other Noises

– readoutnoise_on_off (int), on/off switch for readout noise, must be 0 or 1.

– opticalnoise_on_off (int), on/off switch for optical noise, must be 0 or 1.

– accelnoise_on_off (int), on/off switch for test-mass acceleration noise, must be 0
or 1.

Inputs

• Incoming Laser Beams

– distant_beam (double), main signal from distant optical bench, in fractional fre-
quency deviations.
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– distant_sb (double), sideband signal from distant optical bench, in fractional fre-
quency deviations.

– adjacent_beam (double), main signal from twin optical bench hosted in the same
spacecraft, in fractional frequency deviations.

• Beatnote Frequencies

– sci_f (double), beatnote frequency for the science interferometer, in MHz.

– sb_f (double), beatnote frequency for the sideband interferometer, in MHz.

– tm_f (double), beatnote frequency for the test-mass interferometer, in MHz.

– ref_f (double), beatnote frequency for the reference interferometer, in MHz.

• Clock Noises

– modulation_factor (int), sideband scaling for the sideband.

– uso_noise (double), USO noise used for the sideband, in normalized fractional
frequency deviation.

Outputs

• Interferometric Optical Signals

– s (double), data from science interferometer, in fractional frequency deviation.

– sb (double), data from sideband interferometer, in fractional frequency deviation.

– tau (double), data from reference interferometer, in fractional frequency deviation.

– epsilon (double), data from test-mass interferometer, in fractional frequency devi-
ation.

• Outgoing Laser Beams

– beam_to_distant (double), main signal from local laser to distant optical bench, in
fractional frequency deviations.
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– sb_to_distant (double), sideband signal from local laser to distant optical bench,
in fractional frequency deviations.

– beam_to_adjacent (double), main signal from local laser to adjacent optical bench.

C.1.5 SingleSignalOMS

Add the optical metrology system noise contributions for a single signal.

This node contains an interferometer, and sums to add noises to both incoming beams,
as well as the resulting beatnote signal. It also contains an OMSDisplacementNoise, adding
contributions such as shot noise after the beatnote has been formed.

The physics is simulated at HIGH_SAMPLING_FREQ (in Hz).

Model

C.f. section 3.4.

Parameters

• omsnoise_on_off (int), on/off switch for OMS noise, must be 0 or 1.

Inputs

• beam1 (double), first beam, in fractional frequency deviation.

• beam2 (double), second beam, in fractional frequency deviation.

• unallocated_noise (double), different noise contributions from [LIS18b], see documenta-
tion for UnallocatedNoise graph, in fractional frequency deviation.

• f (double), signed beatnote frequency, in MHz.

• Acceleration, for test-mass interferometer only

– accel_noise (double), test-mass acceleration noise, in fractional frequency devia-
tion.

Outputs

• result (double), beatnote, in fractional frequency variations
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C.1.6 Interferometer

Define a simple interferometer. This interferometer computes the measured normalized
heterodyne beatnote frequency from the fractional frequency deviations of the two input
signals, adjusting the sign according to the beatnote polarity.

This node contains an interferometer, and sums to add noises to both incoming beams,
as well as the resulting beatnote signal. It also contains an OMSDisplacementNoise, adding
contributions such as shot noise after the beatnote has been formed.

The physics is simulated at HIGH_SAMPLING_FREQ (in Hz).

Model

C.f. section 3.4.2.
result = sign(f)× (a− b) . (C.1)

Inputs

• f (double), signed beatnote frequency, in MHz.

• a (double), first optical signal, in relative relative frequency shift.

• b (double),second optical signal, in relative relative frequency shift.

Outputs

• result (double), signed beatnote, in fractional frequency variations

C.1.7 Phasemeter

Model timing error in the measurements by interpolation to times provided by clock noise.
It currently only adds to the optical signals an error due to USO noise, scaled by beatnote
frequency. This yields the high frequency measurement signals.

The physics is simulated at HIGH_SAMPLING_FREQ (in Hz).

Model

C.f. section 3.5.1 and chapter 6.

Inputs
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• Interferometric Optical Signals

– sci_ifo (double), science interferometric measurement from unprimed MOSA, in
fractional frequency deviation.

– sci_ifo_p (double), science interferometric measurement from primed MOSA, in
fractional frequency deviation.

– sb_ifo (double), sideband interferometric measurement from unprimed MOSA, in
fractional frequency deviation.

– sb_ifo_p (double), sideband interferometric measurement from primed MOSA, in
fractional frequency deviation.

– ref_ifo (double), reference interferometric measurement from unprimed MOSA, in
fractional frequency deviation.

– ref_ifo_p (double), reference interferometric measurement from primed MOSA, in
fractional frequency deviation.

– tm_ifo (double), test-mass interferometric measurement from unprimed MOSA,
in fractional frequency deviation.

– tm_ifo_p (double), test-mass interferometric measurement from primed MOSA,
in fractional frequency deviation.

• Beatnote Frequencies

– sci_f (double), science beatnote frequencies in unprimed MOSA, in MHz.

– sci_f_p (double), science beatnote frequencies in primed MOSA, in MHz.

– sb_f (double), sideband beatnote frequencies in unprimed MOSA, in MHz.

– sb_f_p (double), sideband beatnote frequencies in primed MOSA, in MHz.

– tm_f (double), test-mass beatnote frequencies in unprimed MOSA, in MHz.

– tm_f_p (double), test-mass beatnote frequencies in primed MOSA, in MHz.

– ref_f (double), reference beatnote frequencies in unprimed MOSA, in MHz.
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– ref_f_p (double), reference beatnote frequencies in primed MOSA, in MHz.

• Clock Noises

– uso_noise (double), USO noise, in normalized fractional frequency deviation.

Outputs

• High Frequency Measurement Channels

– hf_sci (double), high frequency science signal, in fractional frequency deviation.

– hf_sci_p (double), high frequency science signal, in fractional frequency deviation.

– hf_sb (double), high frequency sideband signal, in fractional frequency deviation.

– hf_sb_p (double), high frequency sideband signal, in fractional frequency devia-
tion.

– hf_ref (double), high frequency reference signal, in fractional frequency deviation.

– hf_ref_p (double), high frequency reference signal, in fractional frequency devia-
tion.

– hf_tm (double), high frequency test-mass signal, in fractional frequency deviation.

– hf_tm_p (double), high frequency test-mass signal, in fractional frequency devia-
tion.

C.1.8 OnboardComputer

Define a simple onboard computer. This version takes in the measurement signals from the
phasemeter, applies an antialiasing filter, and downsamples each of these signals.

The measurements generated by the phasemeter have the sampling frequency of HIGH_SAMPLING_FREQ

(in Hz, defined in the simulation configuration), and are downsampled to HIGH_SAMPLING_FREQ

(in Hz).

Model

C.f. section 3.5.5.
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Inputs

• High Frequency Measurement Channels

– hf_sci (double), high frequency science signal, in fractional frequency deviation.

– hf_sci_p (double), high frequency science signal, in fractional frequency deviation.

– hf_sb (double), high frequency sideband signal, in fractional frequency deviation.

– hf_sb_p (double), high frequency sideband signal, in fractional frequency devia-
tion.

– hf_ref (double), high frequency reference signal, in fractional frequency deviation.

– hf_ref_p (double), high frequency reference signal, in fractional frequency devia-
tion.

– hf_tm (double), high frequency test-mass signal, in fractional frequency deviation.

– hf_tm_p (double), high frequency test-mass signal, in fractional frequency devia-
tion.

Outputs

• Measurement Channels

– s (double), low frequency science signal, in fractional frequency deviation.

– s_p (double), low frequency science signal, in fractional frequency deviation.

– sb (double), low frequency sideband signal, in fractional frequency deviation.

– sb_p (double), low frequency sideband signal, in fractional frequency deviation.

– tau (double), low frequency reference signal, in fractional frequency deviation.

– tau_p (double), low frequency reference signal, in fractional frequency deviation.

– epsilon (double), low frequency test-mass signal, in fractional frequency deviation.

– epsilon_p (double), low frequency test-mass signal, in fractional frequency devia-
tion.
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C.1.9 AntiAliasingDecimation

Filter and decimate a single measurement signal.

We filter the signal using a finite impulse response filter, designed using a Kaiser window
and the following specifications: corner frequencies at 10 % and 45 % the decimated (low)
sampling frequency, a minimum attenuation in the stopband of 240 dB, and a maximum
attenuation of 0.1 dB in the passband. Then the signal is downsampled using a simple
decimation process.

The measurements generated by the phasemeter have the sampling frequency of HIGH_SAMPLING_FREQ

(in Hz, defined in the simulation configuration), and are downsampled to HIGH_SAMPLING_FREQ

(in Hz).

Model

C.f. section 3.5.5

Inputs

• input (double), input signal, in relative frequency deviation.

Outputs

• result (double), filtered and decimated signal, in relative frequency deviation.

C.1.10 LaserNoise

C.2 Noise Sources

The module noises.py defines graphs for the instrumental noise sources. These graphs
generate the samples for the each noise time series used for the instrumental simulation.

C.2.1 LaserNoise

Simulate a noisy laser beam.

Generates a white noise series using an amplitude spectral density of 10−13 /
√

Hz, which
corresponds to 28.2 Hz/

√
Hz in terms of absolute frequency stability. This is the state-of-

the-art performance for a space-qualified laser source [?].
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The noise samples are generated at a sampling frequency of HIGH_SAMPLING_FREQ (in
Hz, defined in the simulation configuration).

Model

White noise with an amplitude spectral density of 10−13 /
√

Hz.

Parameters

• on_off (int), on/off switch for laser frequency noise, must be 0 or 1.

• asd (double), amplitude spectral density for laser frequency shift noise, in /
√

Hz.

• seed (int), seed for generation of random samples, default to 0 (a seed is randomly
chosen when the simulation starts).

Outputs

• beam (double), relative frequency deviation of the laser beam.

C.2.2 TestMassAccelerationNoise

Test-mass acceleration noise.

The acceleration noise is built from two white noise signals and infinite impulse response
filters.

The noise samples are generated at a sampling frequency of HIGH_SAMPLING_FREQ (in
Hz, defined in the simulation configuration).

Model

The test-mass acceleration noise is given by its PSD

S result (f) = A2

[
1 +

(
fknee
f

)2
]
. (C.2)

The values of A and fknee are taken from [LIS18b],

A = 2.4× 10−15 m/s2/
√

Hz, fknee = 0.4× 10−3 Hz . (C.3)

The generated noise accounts for the beam reflection onto the test mass. Thus, it is scaled
by another factor of 2 compared to the definition above.
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We whiten the noise at below fsat = 10−14 Hz, to prevent numerical overflows. We neglect
the high-frequency components given in [LIS18b], because they are far smaller than the
optical metrology displacement noise.

Parameters

• on_off (int), on/off switch for test-mass acceleration noise, must be 0 or 1.

Outputs

• result (double), test-mass acceleration noise, in relative frequency deviation.

C.2.3 UnallocatedNoise

Sum of different noise contributions from [LIS18b].

Its amplitude corresponds to the sum of various noise contributions in [LIS18b], such as
thermo-mechanical coupling, spacecraft-IFO coupling, and unallocated noises.

A clear naming and definition of these noises remains to be found. Some of them need
better, dedicated models.

The noise samples are generated at a sampling frequency of HIGH_SAMPLING_FREQ (in
Hz, defined in the simulation configuration).

Model

This is a white noise which in displacement (in meters), with a constant amplitude spec-
tral density denoted ASDm. Therefore, the amplitude spectral density ASDy of the noise
expressed as a relative frequency deviation (dimensionless) is proportional to f , and given
by

ASDy(f) =
2π

c
×ASDm × f . (C.4)

The various contributions, and therefore the level of this noise, depends on the type of
interferometer. The type of interferometer is passed as an argument when one creates an
instance of this graph:

• sci for the science and sideband interferometers, contains thermo-mechanical noise,
and TDI errors in a single link (to be removed), so that ASDm = 5× 10−12 m.
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• tm for the test-mass interferometer, contains spacecraft-interferometer cross-coupling
noise, so that ASDm = 4.24× 10−12 m.

• ref for the reference interferometer, contains the unallocated OMS contingency, so
that ASDm = 2× 10−12 m.

Parameters

• on_off (int), on/off switch for unallocated noise, must be 0 or 1.

Outputs

• result (double), unallocated noise, in relative frequency deviation.

C.2.4 OMSDisplacementNoise

Optical metrology displacement noise at photodiode.

Its amplitude corresponds to the overall allocation for the LISA OMS displacement noise
in [LIS18b], at each of the interferometers.

The noise samples are generated at a sampling frequency of HIGH_SAMPLING_FREQ (in
Hz, defined in the simulation configuration).

Model

This is a white noise which in displacement (in meters), with a constant amplitude spec-
tral density denoted ASDm. Therefore, the amplitude spectral density ASDy of the noise
expressed as a relative frequency deviation (dimensionless) is proportional to f , and given
by

ASDy(f) =
2π

c
×ASDm × f . (C.5)

The type of interferometer is passed as an argument when one creates an instance of this
graph:

• sci for the science interferometer, contains the long-arm noise, so that ASDm =

6.35× 10−12 m.

• sb for the sideband interferometer, contains the long-arm noise rescaled by
√

0.85/0.15

to account for different beam powers, so that ASDm = 1.51× 10−12 m.
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• tm for the test-mass interferometer, contains test-mass IFO noise, so that ASDm =

1.42× 10−12 m.

• ref for the reference interferometer, contains the reference IFO noise, so that ASDm =

3.32× 10−12 m.

Parameters

• on_off (int), on/off switch for OMS displacement noise, must be 0 or 1.

Outputs

• result (double), OMS displacement noise, in relative frequency deviation.

C.2.5 ClockNoise

Provides a noise series for the onboard reference ultra stable oscillator (USO).

The noise samples are generated at a sampling frequency of HIGH_SAMPLING_FREQ (in
Hz, defined in the simulation configuration).

Model

The USO noise is expressed in fractional frequency deviations, normalized by the nominal
laser frequency in MHz (which defaults here to 2.818× 108 MHz).

The noise is the sum of a deterministic frequency drift with time, and a stochastic flicker
noise whose power spectrum is in the form of A2/f , where A is the amplitude spectral
density of the clock flicker noise. Cutoff frequencies at 1× 10−5 Hz and Nyquist frequency
are used to prevent numerical issues.

resultn =
flicker n + tn × driftn

laser_frequencyn
. (C.6)

This is an ad-hoc model, based on [Spe17].

Parameters

• on_off (int), on/off switch for USO noise, must be 0 or 1.

• asd (double), ASD of the USO flicker noise, in fractional frequency deviation /
√

Hz.
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• seed (int), seed for generation of random samples for USO noise, default to 0 (random
seed).

Inputs

• drift (double), fractional frequency drift with time, in /s.

• laser_frequency (double), nominal laser frequency, in MHz.

Outputs

• uso_noise (double), USO noise, in normalized fractional frequency deviation.

C.2.6 RangingError

Model ranging estimation errors for a single link.

Absolute ranging is determined off-line using Kalman filters. We model the imperfection
of these algorithms as noise on the estimated travel times. More specifically, we model the
ranging errors by a constant systematic bias plus zero-mean stochastic white noise.

Model
resultn = stochasticn + systematicn . (C.7)

Parameters

• asd (double), stochastic error amplitude spectral density, in s/
√

Hz.

Inputs

• on_off (int), on/off switch for ranging errors, must be 0 or 1.

• systematic (double), systematic bias on travel times, in s.

Outputs

• result (double), ranging error, in s.
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C.3 Absolute Ranging Estimation

The module ranging.py defines graphs for absolute ranging estimation with Kalman filters.
This is currently achieved by using the god-given ranging information, and adding a noise
to account for imperfection of the algorithms.

C.3.1 AbsoluteRanging

Model absolute the ranging estimation and its errors.

Absolute ranging is determined off-line using Kalman filters. We model the errors of these
algorithms for each link, by adding the ranging errors generated by the node RangingError

to the god-given ranging data.

Parameters

• on_off (int), on/off switch for ranging errors, must be 0 or 1.

• systematic (double), systematic bias on travel times, in s.

• asd (double), stochastic error amplitude spectral density, in s/
√

Hz.

Inputs

• tt1 (double), god-given travel times along link 1, in s.

• tt1_p (double), god-given travel times along link 1’, in s.

• tt2 (double), god-given travel times along link 2, in s.

• tt2_p (double), god-given travel times along link 2’, in s.

• tt3 (double), god-given travel times along link 3, in s.

• tt3_p (double), god-given travel times along link 3’, in s.

Outputs

• tt1 (double), estimated travel times along link 1, in s.

• tt1_p (double), estimated travel times along link 1’, in s.
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• tt2 (double), estimated travel times along link 2, in s.

• tt2_p (double), estimated travel times along link 2’, in s.

• tt3 (double), estimated travel times along link 3, in s.

• tt3_p (double), estimated travel times along link 3’, in s.

C.3.2 RangingEstimation

Model absolute ranging estimation for a single link.

This nodes adds the ranging error generated by RangingError nodes to the god-given ranging
information, to produce the ranging estimates. Cf. AbsoluteRanging graph documentation.

Parameters

• asd (double), stochastic error amplitude spectral density, in s/
√

Hz.

Inputs

• tt (double), god-given travel times, in s.

• on_off (int), on/off switch for ranging errors, must be 0 or 1.

• systematic (double), systematic bias on travel times, in s.

Outputs

• result (double), estimated travel times, in s.

C.4 Propagation and Instrument Response

The module propag.py defines graphs for propagating beams between LISA spacecraft.
This includes the computation of the orbits, the addition of the gravitational waves effect,
the delaying of the beams to account for the limited speed of light and Doppler effect.

In this section, we also document the nodes that are used for the simulation of the or-
bits. The corresponding header files are located under lisanode/toolbox/lisa/orbits/.
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Similarly, nodes used to simulate waveforms and compute the instrument response are lo-
cated, respectively, under lisanode/toolbox/lisa/waveforms/ and lisanode/toolbox/
lisa/response.

C.4.1 LaserLinks

Simulate the six laser links between the LISA spacecraft, and propagate all laser beams
along them.

This graph takes as inputs all signals that are exchanged between the three LISA space-
craft, and propagate them along the six laser links, using SingleSignalPropagation nodes. The
propagation is performed by delaying signals, with delays matching the light travel times
between the spacecraft.

The type of orbits is determined by the configuration option ORBIT_TYPE, which can be

• keplerian for analytic Keplerian orbits (see node KeplerianOrbits, and section 3.2.3).

• linear_armlengths to simulate armlengths evolving linearly with time.

• from_file to read the orbits from an external file.

This graph is instantiated with a list of signals which must be propagated, laser or sideband.

Model

C.f. section 3.2.3.

Parameters

• Linear Armlengths (only applies when using linearly-evolving armlengths, i.e. when
ORBIT_TYPE = ’linear_armlengths’)

– L1 (double), armlength 1 at initial time, in m.

– L2 (double), armlength 2 at initial time, in m.

– L3 (double), armlength 3 at initial time, in m.

– dL1 (double), armlength 1 first time derivative, in m/s.

– dL2 (double), armlength 2 first time derivative, in m/s.



C.4. PROPAGATION AND INSTRUMENT RESPONSE 275

– dL3 (double), armlength 3 first time derivative, in m/s.

• Interpolations

– order (int), interpolation order for simulating beam propagation, must be an odd
integer greater or equal to 1.

– max_tt (double), maximum accepted travel times, in s.

Inputs

• Main Signals

– laser_in_from_1_to_2 (double), main signal propagating from spacecraft 1 to 2, in
fractional frequency deviation.

– laser_in_from_1_to_3 (double), main signal propagating from spacecraft 1 to 3, in
fractional frequency deviation.

– laser_in_from_2_to_1 (double), main signal propagating from spacecraft 2 to 1, in
fractional frequency deviation.

– laser_in_from_2_to_3 (double), main signal propagating from spacecraft 2 to 3, in
fractional frequency deviation.

– laser_in_from_3_to_1 (double), main signal propagating from spacecraft 3 to 1, in
fractional frequency deviation.

– laser_in_from_3_to_2 (double), main signal propagating from spacecraft 3 to 2, in
fractional frequency deviation.

• Sideband Signals

– sideband_in_from_1_to_2 (double), sideband signal propagating from spacecraft 1
to 2, in fractional frequency deviation.

– sideband_in_from_1_to_3 (double), sideband signal propagating from spacecraft 1
to 3, in fractional frequency deviation.

– sideband_in_from_2_to_1 (double), sideband signal propagating from spacecraft 2
to 1, in fractional frequency deviation.
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– sideband_in_from_2_to_3 (double), sideband signal propagating from spacecraft 2
to 3, in fractional frequency deviation.

– sideband_in_from_3_to_1 (double), sideband signal propagating from spacecraft 3
to 1, in fractional frequency deviation.

– sideband_in_from_3_to_2 (double), sideband signal propagating from spacecraft 3
to 2, in fractional frequency deviation.

Outputs

• Main Signals

– laser_out_from_1_to_2 (double), main signal propagated from spacecraft 1 to 2,
in fractional frequency deviation.

– laser_out_from_1_to_3 (double), main signal propagated from spacecraft 1 to 3,
in fractional frequency deviation.

– laser_out_from_2_to_1 (double), main signal propagated from spacecraft 2 to 1,
in fractional frequency deviation.

– laser_out_from_2_to_3 (double), main signal propagated from spacecraft 2 to 3,
in fractional frequency deviation.

– laser_out_from_3_to_1 (double), main signal propagated from spacecraft 3 to 1,
in fractional frequency deviation.

– laser_out_from_3_to_2 (double), main signal propagated from spacecraft 3 to 2,
in fractional frequency deviation.

• Sideband Signals

– sideband_out_from_1_to_2 (double), sideband signal propagated from spacecraft 1
to 2, in fractional frequency deviation.

– sideband_out_from_1_to_3 (double), sideband signal propagated from spacecraft 1
to 3, out fractional frequency deviation.

– sideband_out_from_2_to_1 (double), sideband signal propagated from spacecraft 2
to 1, in fractional frequency deviation.
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– sideband_out_from_2_to_3 (double), sideband signal propagated from spacecraft 2
to 3, in fractional frequency deviation.

– sideband_out_from_3_to_1 (double), sideband signal propagated from spacecraft 3
to 1, in fractional frequency deviation.

– sideband_out_from_3_to_2 (double), sideband signal propagated from spacecraft 3
to 2, in fractional frequency deviation.

• Absolute Ranging Estimates

– tt1 (double), estimated travel times along link 1, in s.

– tt1_p (double), estimated travel times along link 1’, in s.

– tt2 (double), estimated travel times along link 2, in s.

– tt2_p (double), estimated travel times along link 2’, in s.

– tt3 (double), estimated travel times along link 3, in s.

– tt3_p (double), estimated travel times along link 3’, in s.

C.4.2 SingleSignalPropagation

Propagate a single signal across all laser links, i.e. between all spacecraft.

This graph is internally used in LaserLinks, itself used in LISA.

The graph delays signals exchanged by spacecraft. The estimated travel times, or absolute
ranging, used are published as inputs. Note that a single SingleSignalPropagation handles the
propagation of one signal signal along all six laser links of the constellation.

Model

C.f. section 3.2.3.

Parameters

• order (int), interpolation order for simulating beam propagation, must be an odd
integer greater or equal to 1.

• max_tt (double), maximum accepted travel times, in s.
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Inputs

• Signals

– in_from_1_to_2 (double), signal propagating from spacecraft 1 to 2, in fractional
frequency deviation.

– in_from_1_to_3 (double), signal propagating from spacecraft 1 to 3, in fractional
frequency deviation.

– in_from_2_to_1 (double), signal propagating from spacecraft 2 to 1, in fractional
frequency deviation.

– in_from_2_to_3 (double), signal propagating from spacecraft 2 to 3, in fractional
frequency deviation.

– in_from_3_to_1 (double), signal propagating from spacecraft 3 to 1, in fractional
frequency deviation.

– in_from_3_to_2 (double), signal propagating from spacecraft 3 to 2, in fractional
frequency deviation.

• Delays

– delay_from_1_to_2 (double), delay to be applied on signal propagating from space-
craft 1 to 2, in s.

– delay_from_1_to_3 (double), delay to be applied on signal propagating from space-
craft 1 to 3, in s.

– delay_from_2_to_1 (double), delay to be applied on signal propagating from space-
craft 2 to 1, in s.

– delay_from_2_to_3 (double), delay to be applied on signal propagating from space-
craft 2 to 3, in s.

– delay_from_3_to_1 (double), delay to be applied on signal propagating from space-
craft 3 to 1, in s.

– delay_from_3_to_2 (double), delay to be applied on signal propagating from space-
craft 3 to 2, in s.
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Outputs

• out_from_1_to_2 (double), signal propagated from spacecraft 1 to 2, in fractional fre-
quency deviation.

• out_from_1_to_3 (double), signal propagated from spacecraft 1 to 3, in fractional fre-
quency deviation.

• out_from_2_to_1 (double), signal propagated from spacecraft 2 to 1, in fractional fre-
quency deviation.

• out_from_2_to_3 (double), signal propagated from spacecraft 2 to 3, in fractional fre-
quency deviation.

• out_from_3_to_1 (double), signal propagated from spacecraft 3 to 1, in fractional fre-
quency deviation.

• out_from_3_to_2 (double), signal propagated from spacecraft 3 to 2, in fractional fre-
quency deviation.

C.4.3 KeplerianOrbits

Compute Keplerian orbits for a LISA three-spacecraft constellation.

Keplerian orbits for a constellation of three spacecraft based on [NKDV06], for a LISA
stable flight formation that reduced flexing, to second order in the characteristic ration.
C.f. section 3.2.3.

Model

We compute the characteristic ration α, the constellation plane inclination µ, and the orbit
eccentricity e when the node is prepared,

α =
spacecraft_separation

2× distance_to_sun
, (C.8)

e =
α√
3

+

(
1

2
− tilt_perturbation

)
α2 , (C.9)

µ = α− tilt_perturbation− 1√
3

α2 . (C.10)

At each timestep, we loop on the spacecraft index k, for k = 0, 1, 2. We first compute the
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sinus and cosinus of the eccentric anomaly, using the formula

anomaly[k]n = rotation [k]n −
α sin(rotation [k]n)√

3

+
6tilt_perturbation− 3 + 2 cos(rotation [k]n)

6
sin(rotation [k]n)α2 ,

(C.11)

where the k-th time-dependent spacecraft rotation is given by

rotationn = Ω× tn − k× 2π

3
+ initial_rotation . (C.12)

The intermediary variables

inter_x[k]n = distance_to_sun× [cos(anomaly[k]n)− eccentricity ]

× cos( inclination ) ,
(C.13)

inter_y[k]n = distance_to_sun×
√

1− eccentricity 2 × sin(anomaly[k]n) , (C.14)

inter_z[k]n = −distance_to_sun× [cos(anomaly[k]n)− eccentricity ]

× sin( inclination ) ,
(C.15)

let us easily compute the spacecraft position

x[k]n = inter_x[k]n × cos(rotation [k])− inter_y[k]n × sin(rotation [k]) , (C.16)

y[k]n = inter_x[k]n × sin(rotation [k]) + inter_y[k]n × cos(rotation [k]) , (C.17)

z[k]n = inter_z[k]n , (C.18)

where the k-th spacecraft initial rotation is

rotation [k] = k× 2π

3
+ initial_rotation . (C.19)

The derivative of the eccentric anomaly for the k-th spacecraft reads

anomaly_derivative[k]n =
Ω

1− eccentricity cos(anomaly[k])
. (C.20)

The intermediary variables

inter_vx[k]n = −distance_to_sun× anomaly_derivative[k]n

× cos( inclination )× sin(anomaly[k]n) ,
(C.21)

inter_vy[k]n = distance_to_sun× anomaly_derivative[k]n

×
√

1− eccentricity 2 × cos(anomaly[k]n) ,
(C.22)

inter_vz[k]n = distance_to_sun× anomaly_derivative[k]n

× sin( inclination )× sin(anomaly[k]n) ,
(C.23)
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let us easily compute the spacecraft velocity

vx[k]n = bary_vx[k]n × cos(rotation [k])− bary_vy[k]n × sin(rotation [k]) , (C.24)

vy[k]n = bary_vx[k]n × sin(rotation [k]) + bary_vy[k]n × cos(rotation [k]) , (C.25)

vz[k]n = bary_vz[k]n , (C.26)

where the k-th spacecraft initial rotation is

rotation [k] = k× 2π

3
+ initial_rotation . (C.27)

Parameters

• distance_to_sun (double), mean distance between the Sun and constellation barycenter,
in m (default to 1 a u ).

• spacecraft_separation (double), mean distance between spacecraft, in m (default to 2.9× 106 km).

• initial_rotation (double), initial constellation rotation angle, in rad (default to 0).

• tilt_perturbation (double), small perturbation to LISA plane tilt, in rad (default to the
optimal value of 5/8 to reduce the flexing of the constellation).

Outputs

• x (std :: array<double, 3>), spacecraft positions along X, in m.

• y (std :: array<double, 3>), spacecraft positions along Y , in m.

• z (std :: array<double, 3>), spacecraft positions along Z, in m.

• vx (std :: array<double, 3>), spacecraft velocities along X, in m/s.

• vy (std :: array<double, 3>), spacecraft velocities along Y , in m/s.

• vz (std :: array<double, 3>), spacecraft velocities along Z, in m/s.

C.4.4 ArbitraryOrbits

Orbits for a fixed constellation but arbitrary armlengths evolving with time.
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Armlengths are given as inputs, and must satisfy the triangular inequalities. Then the
node deduces one set of spacecraft positions and velocities matching these armlengths.
C.f. section 3.2.3.

Model

We use the constellation configuration and parametrization illustrated in fig. 3.8.

The following triangular inequalities must be verified at all times,

L1n > L2n + L3n, L2n > L3n + L1n, L3n > L1n + L2n . (C.28)

We define the angle αn, such as

cosαn =
L12
n + L32

n − L22
n

2× L1n × L3n
, (C.29)

and we have

x[0]n = L3n , y[0]n = 0 , z [0]n = 0 , (C.30)

x[1]n = 0 , y[1]n = 0 , z [1]n = 0 , (C.31)

x[2]n = L1n × cosαn , y[2]n = L1n × sinαn , z [2]n = 0 . (C.32)

Most velocities are identically zero. The non-vanishing spacecraft velocities are computed
using a first-order backward Newton difference equation,

vx[0]n =
(
x[0]n − x[0]n−1

)
fs , (C.33)

vx[2]n =
(
x[2]n − x[2]n−1

)
fs , (C.34)

vy[2]n =
(
y[2]n − y[2]n−1

)
fs . (C.35)

Inputs

• L1 (double), armlength between spacecraft 2 and 3, in m.

• L2 (double), armlength between spacecraft 1 and 3, in m.

• L3 (double), armlength between spacecraft 1 and 2, in m.

Outputs

• x (std :: array<double, 3>), spacecraft positions along X, in m.
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• y (std :: array<double, 3>), spacecraft positions along Y , in m.

• z (std :: array<double, 3>), spacecraft positions along Z, in m.

• vx (std :: array<double, 3>), spacecraft velocities along X, in m/s.

• vy (std :: array<double, 3>), spacecraft velocities along Y , in m/s.

• vz (std :: array<double, 3>), spacecraft velocities along Z, in m/s.

C.4.5 TravelTimes

Compute the light travel times between each pair of spacecraft of the LISA constellation.

This nodes computes the travel times of light between each spacecraft of the three-spacecraft
LISA constellation, at a given order of computation.

Model

See section 3.2.3, section 3.2.4, and section 3.2.5.

Parameters

• order (int), order of computation. Choose 0 for no effect, 1 to include Sagnac effect,
and 2 to include in addition relativistic effects of first order (default to 0 for no effect).

Inputs

• x (std :: array<double, 3>), spacecraft positions along X, in m.

• y (std :: array<double, 3>), spacecraft positions along Y , in m.

• z (std :: array<double, 3>), spacecraft positions along Z, in m.

• vx (std :: array<double, 3>), spacecraft velocities along X, in m/s.

• vy (std :: array<double, 3>), spacecraft velocities along Y , in m/s.

• vz (std :: array<double, 3>), spacecraft velocities along Z, in m/s.

Outputs

• travel_times (std :: array<array<double, 3>, 3>), matrix of travel times, in s.
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C.4.6 GravitationalContributions

Add the gravitational contribution of a compact binary to all links.

This graph uses SingleLinkGravitationalContribution nodes to add the gravitational contribution
to each beam propagating along each link. It is used in LaserLinks.

Model

See section 3.2.6.

Parameters

• amplitude (double), gravitational-wave strain amplitude.

• frequency (double), gravitational-wave frequency f0, in Hz.

• dot_freq (double), time derivative of the gravitational-wave frequency df0/dt , in Hz/s.

• init_phase (double), observer initial phase ϕ, in rad.

• inclination (double), inclination angle ι0, in rad.

• polarization (double), polarization angle ι0, in rad.

• position_lambda (double), source ecliptic longitude λ, un rad.

• position_beta (double), source ecliptic latitude β, un rad.

• order (int), interpolation order for the gravitational waveform at emission, must be an
odd integer greater or equal to 1.

• max_tt (double), maximum accepted travel times, in s.

Inputs

• Signals

– in_from_1_to_2 (double), signal propagating from spacecraft 1 to 2, in fractional
frequency deviation.

– in_from_1_to_3 (double), signal propagating from spacecraft 1 to 3, in fractional
frequency deviation.
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– in_from_2_to_1 (double), signal propagating from spacecraft 2 to 1, in fractional
frequency deviation.

– in_from_2_to_3 (double), signal propagating from spacecraft 2 to 3, in fractional
frequency deviation.

– in_from_3_to_1 (double), signal propagating from spacecraft 3 to 1, in fractional
frequency deviation.

– in_from_3_to_2 (double), signal propagating from spacecraft 3 to 2, in fractional
frequency deviation.

• Spacecraft 1 Position

– x1 (double), spacecraft 1 position along the x-axis, in m.

– y1 (double), spacecraft 1 position along the y-axis, in m.

– z1 (double), spacecraft 1 position along the z-axis, in m.

• Spacecraft 2 Position

– x2 (double), spacecraft 2 position along the x-axis, in m.

– y2 (double), spacecraft 2 position along the y-axis, in m.

– z2 (double), spacecraft 2 position along the z-axis, in m.

• Spacecraft 3 Position

– x3 (double), spacecraft 3 position along the x-axis, in m.

– y3 (double), spacecraft 3 position along the y-axis, in m.

– z3 (double), spacecraft 3 position along the z-axis, in m.

• Light Travel Times

– tt1 (double), light travel time between spacecraft 3 to 2, in s.

– tt2 (double), light travel time between spacecraft 1 to 3, in s.
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– tt3 (double), light travel time between spacecraft 2 to 3, in s.

– tt1_p (double), light travel time between spacecraft 2 to 3, in s.

– tt2_p (double), light travel time between spacecraft 3 to 1, in s.

– tt3_p (double), light travel time between spacecraft 3 to 2, in s.

Outputs

• out_from_1_to_2 (double), signal propagated from spacecraft 1 to 2, in fractional fre-
quency deviation.

• out_from_1_to_3 (double), signal propagated from spacecraft 1 to 3, in fractional fre-
quency deviation.

• out_from_2_to_1 (double), signal propagated from spacecraft 2 to 1, in fractional fre-
quency deviation.

• out_from_2_to_3 (double), signal propagated from spacecraft 2 to 3, in fractional fre-
quency deviation.

• out_from_3_to_1 (double), signal propagated from spacecraft 3 to 1, in fractional fre-
quency deviation.

• out_from_3_to_2 (double), signal propagated from spacecraft 3 to 2, in fractional fre-
quency deviation.

C.4.7 SingleLinkGravitationalContribution

Add the gravitational contribution of a compact binary to a single link. This graph is used
in GravitationalContributions.

Model

See section 3.2.6.

Parameters

• amplitude (double), gravitational-wave strain amplitude.

• frequency (double), gravitational-wave frequency f0, in Hz.
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• dot_freq (double), time derivative of the gravitational-wave frequency df0/dt , in Hz/s.

• init_phase (double), observer initial phase ϕ, in rad.

• inclination (double), inclination angle ι0, in rad.

• polarization (double), polarization angle ι0, in rad.

• position_lambda (double), source ecliptic longitude λ, un rad.

• position_beta (double), source ecliptic latitude β, un rad.

• order (int), interpolation order for the gravitational waveform at emission, must be an
odd integer greater or equal to 1.

• max_tt (double), maximum accepted travel times, in s.

Inputs

• input (double), propagating laser beam, in fractional frequency deviation.

• Emitter Position

– emitter_x (double), emitter spacecraft position along the x-axis at reception time,
in m.

– emitter_y (double), emitter spacecraft position along the y-axis at reception time,
in m.

– emitter_z (double), emitter spacecraft position along the z-axis at reception time,
in m.

• Receiver Position

– receiver_x (double), receiver spacecraft position along the x-axis at reception time,
in m.

– receiver_y (double), receiver spacecraft position along the y-axis at reception time,
in m.

– receiver_z (double), receiver spacecraft position along the z-axis at reception time,
in m.
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• travel_time (double), light travel time between emitter and receiver, in s.

Outputs

• result (double), propagating laser beam with gravitational contribution, in fractional
frequency deviation.

C.4.8 LinkResponse

Compute the response of one LISA link to a gravitational signal given by its time series.

This node computes the contribution of one gravitational signal for one of the six LISA
arms. The gravitational signal is an input of the node, and is internally interpolated back
in time using Lagrange interpolating polynomials.

Model

The function of single arm response is given in [LIS19a] by

resultn =
1

2(k · n̂)

[
H

(
t− travel_time− k · x0(t)

c

)
−H

(
t− k · x1(t)

c

)]
, (C.36)

where n̂ = (x1 − x0)/‖x1 − x0‖ is the link unit vector, k is the wave propagation direc-
tion unit vector, x0(t) the emitter position, x1(t) the receiver position, and H(t) is the
gravitational deformation in the link direction.

We define the spacecraft position vectors with the coordinates

x0 = (emitter_xn, emitter_yn, emitter_zn) , (C.37)

x1 = (receiver_xn, receiver_yn, receiver_zn) . (C.38)

This deformation is given by

H(t) = hSSB_plus× ξ+(u,v,n) + hSSB_cross× ξ×(u,v,n) , (C.39)

where we define the antenna pattern functions

ξ+(u,v,n) = (u · n̂)2 − (v · n̂)2 , (C.40)

ξ×(u,v,n) = 2(u · n̂)(v · n̂) . (C.41)
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Here, (u,v,k) is a direct orthonormal basis obtained from the source sky localization (β, λ),

k = (− cos(position_beta) cos(position_lambda),− cos(position_beta) sin(position_lambda),− sin(position_beta)) ,
(C.42)

u = (sin(position_lambda),− cos(position_lambda), 0) , (C.43)

v = (− sin(position_beta) cos(position_lambda),− sin(position_beta) sin(position_lambda), cos(position_beta)) .
(C.44)

See section 3.2.6 for details.

Parameters

• position_lambda (double), source ecliptic longitude λ, un rad.

• position_beta (double), source ecliptic latitude β, un rad.

• order (int), interpolation order for the gravitational waveform at emission, must be an
odd integer greater or equal to 1.

• max_tt (double), maximum accepted travel times, in s.

Inputs

• Gravitational Waveform

– hSSB_plus (double), plus-polarized strain amplitude in the SSB frame.

– hSSB_cross (double), cross-polarized strain amplitude in the SSB frame.

• Emitter Position

– emitter_x (double), emitter spacecraft position along the x-axis at reception time,
in m.

– emitter_y (double), emitter spacecraft position along the y-axis at reception time,
in m.

– emitter_z (double), emitter spacecraft position along the z-axis at reception time,
in m.

• Receiver Position
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– receiver_x (double), receiver spacecraft position along the x-axis at reception time,
in m.

– receiver_y (double), receiver spacecraft position along the y-axis at reception time,
in m.

– receiver_z (double), receiver spacecraft position along the z-axis at reception time,
in m.

• travel_time (double), light travel time between emitter and receiver, in s.

Outputs

• result (double), gravitational contribution to the fractional frequency deviation of the
beam.

C.4.9 AnalyticLinkResponse

Compute the response of one LISA link to a gravitational signal given by its analytic
expression.

This node computes the contribution of one gravitational signal for one of the six LISA
arms. The gravitational signal must be given as an explicit function of time, for the plus
and cross polarizations.

Model

C.f. documentation of AnalyticLink.

Parameters

• hSSB_plus (std :: string), expression of plus-polarized strain amplitude in the SSB frame.

• hSSB_cross (std :: string), expression of cross-polarized strain amplitude in the SSB
frame.

• inclination (double), inclination angle, in rad.

• polarization (double), polarization angle, in rad.

• position_lambda (double), source ecliptic longitude λ, un rad.
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• position_beta (double), source ecliptic latitude β, un rad.

Inputs

• Emitter Position

– emitter_x (double), emitter spacecraft position along the x-axis at reception time,
in m.

– emitter_y (double), emitter spacecraft position along the y-axis at reception time,
in m.

– emitter_z (double), emitter spacecraft position along the z-axis at reception time,
in m.

• Receiver Position

– receiver_x (double), receiver spacecraft position along the x-axis at reception time,
in m.

– receiver_y (double), receiver spacecraft position along the y-axis at reception time,
in m.

– receiver_z (double), receiver spacecraft position along the z-axis at reception time,
in m.

• travel_time (double), light travel time between emitter and receiver, in s.

Outputs

• result (double), gravitational contribution to the fractional frequency deviation of the
beam.

C.4.10 SolarSystemBarycenterFrame

Convert the gravitational-wave strain from the source frame to the SSB frame, c.f. sec-
tion 3.2.6.

Model
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First, the gravitational-wave signal in source frame is projected onto the observational plane
via

hS_plusn = [1 + cos2( inclination )]× h_plusn , (C.45)

hS_crossn = −2 cos( inclination )× h_crossn . (C.46)

Then, it is rotated in the observational plane to get the gravitational wave strain in the
SSB frame:

hSSB_plusn = −hS_plusn × cos(2× polarization)− hS_crossn × sin(2× polarization) , (C.47)

hSSB_crossn = hS_plusn × sin(2× polarization)− hS_crossn × cos(2× polarization) . (C.48)

Parameters

• inclination (double), inclination angle, in rad.

• polarization (double), polarization angle, in rad.

Inputs

• h_plus (double), plus-polarization strain amplitude in source frame.

• h_cross (double), cross-polarization strain amplitude in source frame.

Outputs

• h_plus (double), plus-polarization strain amplitude in source frame.

• h_cross (double), cross-polarization strain amplitude in source frame.

C.4.11 GalacticBinary

Generate gravitational wave strain for a chirping galactic binary.

Model

The gravitational wave signal computed in the source frame [LIS19a], as

h_plusn = amplitude cos
(
2π × frequency× tn + π × frequency_derivative× t2n + initial_phase

)
,

(C.49)

h_crossn = amplitude sin
(
2π × frequency× tn + π × frequency_derivative× t2n + initial_phase

)
.

(C.50)
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Parameters

• amplitude (double), gravitational-wave strain amplitude.

• frequency (double), gravitational-wave frequency f0, in Hz.

• frequency_derivative (double), time derivative of the gravitational-wave frequency df0/dt ,
in Hz/s.

• initial_phase (double), observer initial phase ϕ, in rad.

Outputs

• h_plus (double), plus-polarization strain amplitude.

• h_cross (double), cross-polarization strain amplitude.

C.5 Calibration Chain

The module tdi.py gathers the top-level and convenience TDI-related graphs. In intervar.
py, graphs are defined, that computes the intermediary variables described in sections 4.2.1
and 4.2.2. In tdivar.py, graphs that form the laser noise-suppressing combinations are
defined. Lastly, clock noise-calibrated combinations are computed in clockcal.py.

C.5.1 TDI

Standalone TDI intermediary variables and laser noise-suppressing combinations.

Most of the users may want to use the off-the-shelf LISAWithTDI or TDIFromText graphs,
which embed this graph and connect it to either LISA or ReadText nodes.

Model

C.f. sections 4.2 and 4.3.

Parameters

• Synthesizing Acausal Filter

– ttshift (double), time-shift for travel times, must match filter group delay, in s.
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– ttshift_order (int), interpolation order to time-shift travel times, must be an odd
integer greater or equal to 1.

• Interpolations

– tdi_order (int), interpolation order for TDI delays, must be an odd integer greater
or equal to 1.

– max_delay (double), maximum accepted delays for TDI, in s.

Inputs

• Measurement Channels

– s1 (double), science interferometric measurement in MOSA 1, in fractional fre-
quency deviation.

– s1_p (double), science interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– s2 (double), science interferometric measurement in MOSA 2, in fractional fre-
quency deviation.

– s2_p (double), science interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– s3 (double), science interferometric measurement in MOSA 3, in fractional fre-
quency deviation.

– s3_p (double), science interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– sb1 (double), sideband interferometric measurement in MOSA 1, in fractional
frequency deviation.

– sb1_p (double), sideband interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– sb2 (double), sideband interferometric measurement in MOSA 2, in fractional
frequency deviation.
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– sb2_p (double), sideband interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– sb3 (double), sideband interferometric measurement in MOSA 3, in fractional
frequency deviation.

– sb3_p (double), sideband interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– tau1 (double), reference interferometric measurement in MOSA 1, in fractional
frequency deviation.

– tau1_p (double), reference interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– tau2 (double), reference interferometric measurement in MOSA 2, in fractional
frequency deviation.

– tau2_p (double), reference interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– tau3 (double), reference interferometric measurement in MOSA 3, in fractional
frequency deviation.

– tau3_p (double), reference interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– epsilon1 (double), test-mass interferometric measurement in MOSA 1, in fractional
frequency deviation.

– epsilon1_p (double), test-mass interferometric measurement in MOSA 1’, in frac-
tional frequency deviation.

– epsilon2 (double), test-mass interferometric measurement in MOSA 2, in fractional
frequency deviation.

– epsilon2_p (double), test-mass interferometric measurement in MOSA 2’, in frac-
tional frequency deviation.

– epsilon3 (double), test-mass interferometric measurement in MOSA 3, in fractional
frequency deviation.
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– epsilon3_p (double), test-mass interferometric measurement in MOSA 3’, in frac-
tional frequency deviation.

• Absolute Ranging Estimates

– tt1 (double), estimated travel times along link 1, in s.

– tt1_p (double), estimated travel times along link 1’, in s.

– tt2 (double), estimated travel times along link 2, in s.

– tt2_p (double), estimated travel times along link 2’, in s.

– tt3 (double), estimated travel times along link 3, in s.

– tt3_p (double), estimated travel times along link 3’, in s.

• Beatnote Frequencies

– sci_f1 (double), science beatnote frequencies in MOSA 1, in MHz.

– sci_f1_p (double), science beatnote frequencies in MOSA 1’, in MHz.

– sci_f2 (double), science beatnote frequencies in MOSA 2, in MHz.

– sci_f2_p (double), science beatnote frequencies in MOSA 2’, in MHz.

– sci_f3 (double), science beatnote frequencies in MOSA 3, in MHz.

– sci_f3_p (double), science beatnote frequencies in MOSA 3’, in MHz.

– ref_f1 (double), reference and test-mass beatnote frequencies in MOSA 1, in MHz.

– ref_f1_p (double), reference and test-mass beatnote frequencies in MOSA 1’, in
MHz.

– ref_f2 (double), reference and test-mass beatnote frequencies in MOSA 2, in MHz.

– ref_f2_p (double), reference and test-mass beatnote frequencies in MOSA 2’, in
MHz.

– ref_f3 (double), reference and test-mass beatnote frequencies in MOSA 3, in MHz.
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– ref_f3_p (double), reference and test-mass beatnote frequencies in MOSA 3’, in
MHz.

– sb_f1 (double), sideband beatnote frequencies in MOSA 1, in MHz.

– sb_f1_p (double), sideband beatnote frequencies in MOSA 1’, in MHz.

– sb_f2 (double), sideband beatnote frequencies in MOSA 2, in MHz.

– sb_f2_p (double), sideband beatnote frequencies in MOSA 2’, in MHz.

– sb_f3 (double), sideband beatnote frequencies in MOSA 3, in MHz.

– sb_f3_p (double), sideband beatnote frequencies in MOSA 3’, in MHz.

Outputs

• Michelson Combinations (generation i is defined in simulation configuration)

– X (double), Michelson Xi combination.

– Y (double), Michelson Yi combination.

– Z (double), Michelson Zi combination.

– Xc (double), clock noise-calibrated Michelson Xi combination.

– Yc (double), clock noise-calibrated Michelson Yi combination.

– Zc (double), clock noise-calibrated Michelson Zi combination.

• Quasi-Orthogonal Combinations (generation i is defined in simulation configuration)

– A (double), Michelson Ai combination.

– E (double), Michelson Ei combination.

– T (double), Michelson Ti combination.

– Ac (double), clock noise-calibrated Michelson Ai combination.

– Ec (double), clock noise-calibrated Michelson Ei combination.
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– Tc (double), clock noise-calibrated Michelson Ti combination.

• Sagnac Combinations (generation i is defined in simulation configuration)

– alpha (double), Sagnac αi combination.

– beta (double), Sagnac βi combination.

– gamma (double), Sagnac γi combination.

– zeta (double), fully symmetric ζ Sagnac combination for first generation.

– zeta1 (double), first permutation of fully symmetric ζ combination for second
generation.

– zeta2 (double), second permutation of fully symmetric ζ combination for second
generation.

– zeta3 (double), third permutation of fully symmetric ζ combination for second
generation.

• Intermediary Variables

– xi1 (double), intermediary variable for optical-bench displacement noise removal
ξ1.

– xi2 (double), intermediary variable for optical-bench displacement noise removal
ξ2.

– xi3 (double), intermediary variable for optical-bench displacement noise removal
ξ3.

– xi1_p (double), intermediary variable for optical-bench displacement noise removal
ξ1′ .

– xi2_p (double), intermediary variable for optical-bench displacement noise removal
ξ2′ .

– xi3_p (double), intermediary variable for optical-bench displacement noise removal
ξ3′ .

– eta1 (double), intermediary variable to reduce the number of free-running lasers
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to three η1.

– eta2 (double), intermediary variable to reduce the number of free-running lasers
to three η2.

– eta3 (double), intermediary variable to reduce the number of free-running lasers
to three η3.

– eta1_p (double), intermediary variable to reduce the number of free-running lasers
to three η1′ .

– eta2_p (double), intermediary variable to reduce the number of free-running lasers
to three η2′ .

– eta3_p (double), intermediary variable to reduce the number of free-running lasers
to three η3′ .

– R1 (double), clock noise-calibrating expression rc1.

– R2 (double), clock noise-calibrating expression rc2.

– R3 (double), clock noise-calibrating expression rc3.

– R1_p (double), clock noise-calibrating expression rc1′ .

– R2_p (double), clock noise-calibrating expression rc2′ .

– R3_p (double), clock noise-calibrating expression rc3′ .

• Time-Shifted Ranging Estimates

– shift_tt1 (double), time-shifted travel times along link 1, in s.

– shift_tt1_p (double), time-shifted travel times along link 1’, in s.

– shift_tt2 (double), time-shifted travel times along link 2, in s.

– shift_tt2_p (double), time-shifted travel times along link 2’, in s.

– shift_tt3 (double), time-shifted travel times along link 3, in s.

– shift_tt3_p (double), time-shifted travel times along link 3’, in s.
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C.5.2 TDIFromText

TDI algorithms with inputs read from text files.

This graph reads all inputs from text files, and compute the TDI combinations. You must
therefore generate the data with LISA or LISAWithTDI and make sure that PUBLISH_MEASUREMENTS

and PUBLISH_TRAVEL_TIMES are set to True in config.py.

Model

C.f. sections 4.2 and 4.3.

Parameters

• Input File Basepath

– basepath (str), basepath for input text files.

• Synthesizing Acausal Filter

– ttshift (double), time-shift for travel times, must match filter group delay, in s.

– ttshift_order (int), interpolation order to time-shift travel times, must be an odd
integer greater or equal to 1.

• Interpolations

– tdi_order (int), interpolation order for TDI delays, must be an odd integer greater
or equal to 1.

– max_delay (double), maximum accepted delays for TDI, in s.

Inputs

• Beatnote Frequencies

– sci_f1 (double), science beatnote frequencies in MOSA 1, in MHz.

– sci_f1_p (double), science beatnote frequencies in MOSA 1’, in MHz.

– sci_f2 (double), science beatnote frequencies in MOSA 2, in MHz.
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– sci_f2_p (double), science beatnote frequencies in MOSA 2’, in MHz.

– sci_f3 (double), science beatnote frequencies in MOSA 3, in MHz.

– sci_f3_p (double), science beatnote frequencies in MOSA 3’, in MHz.

– ref_f1 (double), reference and test-mass beatnote frequencies in MOSA 1, in MHz.

– ref_f1_p (double), reference and test-mass beatnote frequencies in MOSA 1’, in
MHz.

– ref_f2 (double), reference and test-mass beatnote frequencies in MOSA 2, in MHz.

– ref_f2_p (double), reference and test-mass beatnote frequencies in MOSA 2’, in
MHz.

– ref_f3 (double), reference and test-mass beatnote frequencies in MOSA 3, in MHz.

– ref_f3_p (double), reference and test-mass beatnote frequencies in MOSA 3’, in
MHz.

– sb_f1 (double), sideband beatnote frequencies in MOSA 1, in MHz.

– sb_f1_p (double), sideband beatnote frequencies in MOSA 1’, in MHz.

– sb_f2 (double), sideband beatnote frequencies in MOSA 2, in MHz.

– sb_f2_p (double), sideband beatnote frequencies in MOSA 2’, in MHz.

– sb_f3 (double), sideband beatnote frequencies in MOSA 3, in MHz.

– sb_f3_p (double), sideband beatnote frequencies in MOSA 3’, in MHz.

Outputs

• Michelson Combinations (generation i is defined in simulation configuration)

– X (double), Michelson Xi combination.

– Y (double), Michelson Yi combination.

– Z (double), Michelson Zi combination.

– Xc (double), clock noise-calibrated Michelson Xi combination.
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– Yc (double), clock noise-calibrated Michelson Yi combination.

– Zc (double), clock noise-calibrated Michelson Zi combination.

• Quasi-Orthogonal Combinations (generation i is defined in simulation configuration)

– A (double), Michelson Ai combination.

– E (double), Michelson Ei combination.

– T (double), Michelson Ti combination.

– Ac (double), clock noise-calibrated Michelson Ai combination.

– Ec (double), clock noise-calibrated Michelson Ei combination.

– Tc (double), clock noise-calibrated Michelson Ti combination.

• Sagnac Combinations (generation i is defined in simulation configuration)

– alpha (double), Sagnac αi combination.

– beta (double), Sagnac βi combination.

– gamma (double), Sagnac γi combination.

– zeta (double), fully symmetric ζ Sagnac combination for first generation.

– zeta1 (double), first permutation of fully symmetric ζ combination for second
generation.

– zeta2 (double), second permutation of fully symmetric ζ combination for second
generation.

– zeta3 (double), third permutation of fully symmetric ζ combination for second
generation.

• Intermediary Variables

– xi1 (double), intermediary variable for optical-bench displacement noise removal
ξ1.



C.5. CALIBRATION CHAIN 303

– xi2 (double), intermediary variable for optical-bench displacement noise removal
ξ2.

– xi3 (double), intermediary variable for optical-bench displacement noise removal
ξ3.

– xi1_p (double), intermediary variable for optical-bench displacement noise removal
ξ1′ .

– xi2_p (double), intermediary variable for optical-bench displacement noise removal
ξ2′ .

– xi3_p (double), intermediary variable for optical-bench displacement noise removal
ξ3′ .

– eta1 (double), intermediary variable to reduce the number of free-running lasers
to three η1.

– eta2 (double), intermediary variable to reduce the number of free-running lasers
to three η2.

– eta3 (double), intermediary variable to reduce the number of free-running lasers
to three η3.

– eta1_p (double), intermediary variable to reduce the number of free-running lasers
to three η1′ .

– eta2_p (double), intermediary variable to reduce the number of free-running lasers
to three η2′ .

– eta3_p (double), intermediary variable to reduce the number of free-running lasers
to three η3′ .

– R1 (double), clock noise-calibrating expression rc1.

– R2 (double), clock noise-calibrating expression rc2.

– R3 (double), clock noise-calibrating expression rc3.

– R1_p (double), clock noise-calibrating expression rc1′ .

– R2_p (double), clock noise-calibrating expression rc2′ .
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– R3_p (double), clock noise-calibrating expression rc3′ .

• Time-Shifted Ranging Estimates

– shift_tt1 (double), time-shifted travel times along link 1, in s.

– shift_tt1_p (double), time-shifted travel times along link 1’, in s.

– shift_tt2 (double), time-shifted travel times along link 2, in s.

– shift_tt2_p (double), time-shifted travel times along link 2’, in s.

– shift_tt3 (double), time-shifted travel times along link 3, in s.

– shift_tt3_p (double), time-shifted travel times along link 3’, in s.

C.5.3 LISAWithTDI

Simulation of the LISA instrument with TDI algorithms.

This graph produces the interferometric measurements and ranging estimates as they are
generated and transmitted from LISA, and feed them to the TDI graph.

Model

C.f. sections 3.2, 4.2 and 4.3.

Parameters

• Laser Noises

– lasernoise_on_off (int), on/off switch for laser frequency noise, must be 0 or 1.

– laser_asd1 (double), laser noise ASD of MOSA 1, in s/
√

Hz.

– laser_asd1_p (double), laser noise ASD of MOSA 1’, in s/
√

Hz.

– laser_asd2 (double), laser noise ASD of MOSA 2, in s/
√

Hz.

– laser_asd2_p (double), laser noise ASD of MOSA 2’, in s/
√

Hz.

– laser_asd3 (double), laser noise ASD of MOSA 3, in s/
√

Hz.
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– laser_asd3_p (double), laser noise ASD of MOSA 3’, in s/
√

Hz.

– laser_seed1 (int), seed for generation of random samples for laser noise of MOSA
1, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed1_p (int), seed for generation of random samples for laser noise of MOSA
1’, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed2 (int), seed for generation of random samples for laser noise of MOSA
2, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed2_p (int), seed for generation of random samples for laser noise of MOSA
2’, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed3 (int), seed for generation of random samples for laser noise of MOSA
3, default to 0 (a seed is randomly chosen when the simulation starts).

– laser_seed3_p (int), seed for generation of random samples for laser noise of MOSA
3’, default to 0 (a seed is randomly chosen when the simulation starts).

• Readout Noises

– readoutnoise_on_off (int), on/off switch for readout noise, must be 0 or 1.

• Optical Noises

– opticalnoise_on_off (int), on/off switch for optical noise, must be 0 or 1.

• Test-mass Acceleration Noises in GRS

– accelnoise_on_off (int), on/off switch for test-mass acceleration noise, must be 0
or 1.

• Clock noises

– usonoise_on_off (int), on/off switch for USO frequency fluctuations and drift.

– uso_asd (double), ASD of the USO flicker noise, in fractional frequency deviation
/
√

Hz.
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– uso_seed1 (int), seed for generation of random samples for USO noise for space-
craft 1, default to 0 (random seed).

– uso_seed2 (int), seed for generation of random samples for USO noise for space-
craft 2, default to 0 (random seed).

– uso_seed3 (int), seed for generation of random samples for USO noise for space-
craft 3, default to 0 (random seed).

• Absolute Ranging Errors

– rangingnoise_on_off (int), on/off switch for absolute ranging error, must be 0 or 1.

– ranging_systematic (double), constant systematic error on travel time estimation,
in s.

– ranging_asd: amplitude spectral density of the error on travel times, in s/
√

Hz.

• Synthesizing Acausal Filter

– ttshift (double), time-shift for travel times, must match filter group delay, in s.

– ttshift_order (int), interpolation order to time-shift travel times, must be an odd
integer greater or equal to 1.

• Linear Armlengths (only applies when using linearly-evolving armlengths, i.e. when
ORBIT_TYPE = ’linear_armlengths’)

– L1 (double), armlength 1 at initial time, in m.

– L2 (double), armlength 2 at initial time, in m.

– L3 (double), armlength 3 at initial time, in m.

– dL1 (double), armlength 1 first time derivative, in m/s.

– dL2 (double), armlength 2 first time derivative, in m/s.

– dL3 (double), armlength 3 first time derivative, in m/s.

• Interpolations
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– lisa_order (int), interpolation order for simulating beam propagation in LISA,
must be an odd integer greater or equal to 1.

– tdi_order (int), interpolation order for TDI delays, must be an odd integer greater
or equal to 1.

– max_delay (double), maximum accepted delays for TDI, in s.

Inputs

• Beatnote Frequencies

– sci_f1 (double), science beatnote frequencies in MOSA 1, in MHz.

– sci_f1_p (double), science beatnote frequencies in MOSA 1’, in MHz.

– sci_f2 (double), science beatnote frequencies in MOSA 2, in MHz.

– sci_f2_p (double), science beatnote frequencies in MOSA 2’, in MHz.

– sci_f3 (double), science beatnote frequencies in MOSA 3, in MHz.

– sci_f3_p (double), science beatnote frequencies in MOSA 3’, in MHz.

– ref_f1 (double), reference and test-mass beatnote frequencies in MOSA 1, in MHz.

– ref_f1_p (double), reference and test-mass beatnote frequencies in MOSA 1’, in
MHz.

– ref_f2 (double), reference and test-mass beatnote frequencies in MOSA 2, in MHz.

– ref_f2_p (double), reference and test-mass beatnote frequencies in MOSA 2’, in
MHz.

– ref_f3 (double), reference and test-mass beatnote frequencies in MOSA 3, in MHz.

– ref_f3_p (double), reference and test-mass beatnote frequencies in MOSA 3’, in
MHz.

– sb_f1 (double), sideband beatnote frequencies in MOSA 1, in MHz.

– sb_f1_p (double), sideband beatnote frequencies in MOSA 1’, in MHz.
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– sb_f2 (double), sideband beatnote frequencies in MOSA 2, in MHz.

– sb_f2_p (double), sideband beatnote frequencies in MOSA 2’, in MHz.

– sb_f3 (double), sideband beatnote frequencies in MOSA 3, in MHz.

– sb_f3_p (double), sideband beatnote frequencies in MOSA 3’, in MHz.

• Clock Noises

– uso_drift1 (double), fractional frequency time drift of USO onboard spacecraft 1,
in /s.

– uso_drift2 (double), fractional frequency time drift of USO onboard spacecraft 2,
in /s.

– uso_drift3 (double), fractional frequency time drift of USO onboard spacecraft 3,
in /s.

Outputs

• Michelson Combinations (generation i is defined in simulation configuration)

– X (double), Michelson Xi combination.

– Y (double), Michelson Yi combination.

– Z (double), Michelson Zi combination.

– Xc (double), clock noise-calibrated Michelson Xi combination.

– Yc (double), clock noise-calibrated Michelson Yi combination.

– Zc (double), clock noise-calibrated Michelson Zi combination.

• Quasi-Orthogonal Combinations (generation i is defined in simulation configuration)

– A (double), Michelson Ai combination.

– E (double), Michelson Ei combination.

– T (double), Michelson Ti combination.
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– Ac (double), clock noise-calibrated Michelson Ai combination.

– Ec (double), clock noise-calibrated Michelson Ei combination.

– Tc (double), clock noise-calibrated Michelson Ti combination.

• Sagnac Combinations (generation i is defined in simulation configuration)

– alpha (double), Sagnac αi combination.

– beta (double), Sagnac βi combination.

– gamma (double), Sagnac γi combination.

– zeta (double), fully symmetric ζ Sagnac combination for first generation.

– zeta1 (double), first permutation of fully symmetric ζ combination for second
generation.

– zeta2 (double), second permutation of fully symmetric ζ combination for second
generation.

– zeta3 (double), third permutation of fully symmetric ζ combination for second
generation.

• Intermediary Variables

– xi1 (double), intermediary variable for optical-bench displacement noise removal
ξ1.

– xi2 (double), intermediary variable for optical-bench displacement noise removal
ξ2.

– xi3 (double), intermediary variable for optical-bench displacement noise removal
ξ3.

– xi1_p (double), intermediary variable for optical-bench displacement noise removal
ξ1′ .

– xi2_p (double), intermediary variable for optical-bench displacement noise removal
ξ2′ .
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– xi3_p (double), intermediary variable for optical-bench displacement noise removal
ξ3′ .

– eta1 (double), intermediary variable to reduce the number of free-running lasers
to three η1.

– eta2 (double), intermediary variable to reduce the number of free-running lasers
to three η2.

– eta3 (double), intermediary variable to reduce the number of free-running lasers
to three η3.

– eta1_p (double), intermediary variable to reduce the number of free-running lasers
to three η1′ .

– eta2_p (double), intermediary variable to reduce the number of free-running lasers
to three η2′ .

– eta3_p (double), intermediary variable to reduce the number of free-running lasers
to three η3′ .

– R1 (double), clock noise-calibrating expression rc1.

– R2 (double), clock noise-calibrating expression rc2.

– R3 (double), clock noise-calibrating expression rc3.

– R1_p (double), clock noise-calibrating expression rc1′ .

– R2_p (double), clock noise-calibrating expression rc2′ .

– R3_p (double), clock noise-calibrating expression rc3′ .

• Time-Shifted Ranging Estimates

– tt1 (double), estimated travel times along link 1, in s.

– tt1_p (double), estimated travel times along link 1’, in s.

– tt2 (double), estimated travel times along link 2, in s.

– tt2_p (double), estimated travel times along link 2’, in s.
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– tt3 (double), estimated travel times along link 3, in s.

– tt3_p (double), time-shifted travel times along link 3’, in s.

– shift_tt1 (double), time-shifted travel times along link 1, in s.

– shift_tt1_p (double), time-shifted travel times along link 1’, in s.

– shift_tt2 (double), time-shifted travel times along link 2, in s.

– shift_tt2_p (double), time-shifted travel times along link 2’, in s.

– shift_tt3 (double), time-shifted travel times along link 3, in s.

– shift_tt3_p (double), time-shifted travel times along link 3’, in s.

C.5.4 TravelTimeShift

Time-shift the travel times by a constant fractional delay to synthesize an acausal filter.

Causal anti-aliasing filters are used on board the spacecraft to prevent power folding be-
fore interferometric measurement are decimated and telemetered down to Earth. These
filters have a non-vanishing group delay, which decreases TDI’s ability to reduce laser
noise [BLPH19]. This effect can be mitigated by synthesizing an offline non-causal filter,
i.e. by time-shifting the ranging estimates with respect to the interferometric measurements
by exactly the same filter group delay. This node is used to apply this constant time-shift.

C.f. section 4.3.

Model

shift_tt1(tn) = tt1(tn − delayn) , (C.51)

shift_tt2(tn) = tt2(tn − delayn) , (C.52)

shift_tt3(tn) = tt3(tn − delayn) , (C.53)

shift_tt1_p(tn) = tt1_p(tn − delayn) , (C.54)

shift_tt2_p(tn) = tt2_p(tn − delayn) , (C.55)

shift_tt3_p(tn) = tt3_p(tn − delayn) . (C.56)

Parameters
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• order (int), interpolation order to time-shift travel times, must be an odd integer
greater or equal to 1.

• delay (double), antialiasing filter group delay, in s.

Inputs

• tt1 (double), estimated travel times along link 1, in s.

• tt1_p (double), estimated travel times along link 1’, in s.

• tt2 (double), estimated travel times along link 2, in s.

• tt2_p (double), estimated travel times along link 2’, in s.

• tt3 (double), estimated travel times along link 3, in s.

• tt3_p (double), estimated travel times along link 3’, in s.

Outputs

• shift_tt1 (double), time-shifted travel times along link 1, in s.

• shift_tt1_p (double), time-shifted travel times along link 1’, in s.

• shift_tt2 (double), time-shifted travel times along link 2, in s.

• shift_tt2_p (double), time-shifted travel times along link 2’, in s.

• shift_tt3 (double), time-shifted travel times along link 3, in s.

• shift_tt3_p (double), time-shifted travel times along link 3’, in s.

C.5.5 Xi

Compute ξ intermediary variables for unprimed optical benches.

Model
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The ξ variable removes the optical-bench displacement noise, and is given in [Ott15] by

resultn = s1n + theta1sn × theta1taun ×
epsilon1n − tau1n

2

+ theta1sn × theta2_ptaun ×
epsilon2_p(tn − tt3n)− tau2_p(tn − tt3n)

2
.

(C.57)

The names of inputs and outputs match the ξ1 variable, but the node can be used to
form ξ2 and ξ3 by simply connecting the correct inputs. They are obtained by a circular
permutation of indices.

Parameters

• max_delay (double), max delay, in s.

• order (int), interpolation order for delays, must be an odd integer greater or equal to
1.

Inputs

• s1 (double), science signal on optical bench 1.

• epsilon1 (double), test-mass signal on optical bench 1.

• tau1 (double), reference signal on optical bench 1.

• epsilon2_p (double), test-mass signal on optical bench 2’.

• tau2_p (double), reference signal on optical bench 2’.

• theta1s (double), science beatnote polarity on optical bench 1, is +/- 1.

• theta1tau (double), reference beatnote polarity on optical bench 1, is +/- 1.

• theta2_ptau (double), reference beatnote polarity on optical bench 2’, is +/- 1.

• lambda1_p (double), laser frequency on optical bench 1’, in Hz.

• lambda2_p (double), laser frequency on optical bench 2’, in Hz.

• lambda2 (double), laser frequency on optical bench 2, in Hz.

• tt3 (double), light travel time along link 3, in s.
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Outputs

• result (double), ξ1 intermediary variable.

C.5.6 Xi_p

Compute ξ intermediary variables for primed optical benches.

Model

The ξ variable removes the optical-bench displacement noise, and is given in [Ott15] by

resultn = s1_pn + theta1_psn × theta1_ptaun ×
epsilon1_pn − tau1_pn

2

+ theta1_psn × theta3taun ×
epsilon3(tn − tt2_pn)− tau3(tn − tt2_pn)

2
.

(C.58)

The names of inputs and outputs match the ξ1′ variable, but the node can be used to
form ξ2′ and ξ3′ by simply connecting the correct inputs. They are obtained by a circular
permutation of indices.

Parameters

• max_delay (double), max delay, in s.

• order (int), interpolation order for delays, must be an odd integer greater or equal to
1.

Inputs

• s1_p (double), science signal on optical bench 1’.

• epsilon1_p (double), test-mass signal on optical bench 1’.

• tau1_p (double), reference signal on optical bench 1’.

• epsilon2_p (double), test-mass signal on optical bench 2’.

• tau2_p (double), reference signal on optical bench 2’.

• theta1_ps (double), science beatnote polarity on optical bench 1’, is +/- 1.

• theta1_ptau (double), reference beatnote polarity on optical bench 1’, is +/- 1.
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• theta3tau (double), reference beatnote polarity on optical bench 3, is +/- 1.

• lambda1 (double), laser frequency on optical bench 1, in Hz.

• lambda3 (double), laser frequency on optical bench 3, in Hz.

• lambda3_p (double), laser frequency on optical bench 3’, in Hz.

• tt2_p (double), light travel time along link 2’, in s.

Outputs

• result (double), ξ1′ intermediary variable.

C.5.7 Eta

Compute η intermediary variables for unprimed optical benches.

Model

The η variable reduces the number of free-running lasers to three, and is given in [Ott15]
by

resultn = theta1sn × xi1n + theta2_ptau× tau2_p(tn − tt3n) + tau2(tn − tt3n)

2
. (C.59)

The names of inputs and outputs match the η1 variable, but the node can be used to
form η2 and η3 by simply connecting the correct inputs. They are obtained by a circular
permutation of indices.

Parameters

• max_delay (double), max delay, in s.

• order (int), interpolation order for delays, must be an odd integer greater or equal to
1.

Inputs

• xi1 (double), ξ1 intermediary variable.

• tau2 (double), reference signal on optical bench 2.
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• tau2_p (double), reference signal on optical bench 2’.

• theta1s (double), science beatnote polarity on optical bench 1, is +/- 1.

• theta2_ptau (double), reference beatnote polarity on optical bench 2’, is +/- 1.

• tt3 (double), light travel time along link 3, in s.

Outputs

• result (double), η1 intermediary variable.

C.5.8 Eta_p

Compute η intermediary variables for primed optical benches.

Model

The η variable reduces the number of free-running lasers to three, and is given in [Ott15]
by

resultn = theta1_psn × xi1_pn + theta1_ptau× tau1_pn + tau1n
2

. (C.60)

The names of inputs and outputs match the η1′ variable, but the node can be used to
form η2′ and η3′ by simply connecting the correct inputs. They are obtained by a circular
permutation of indices.

Parameters

• max_delay (double), max delay, in s.

• order (int), interpolation order for delays, must be an odd integer greater or equal to
1.

Inputs

• xi1_p (double), ξ1′ intermediary variable.

• tau1 (double), reference signal on optical bench 1.

• tau1_p (double), reference signal on optical bench 1’.



C.5. CALIBRATION CHAIN 317

• theta1_ps (double), science beatnote polarity on optical bench 1’, is +/- 1.

• theta1_ptau (double), reference beatnote polarity on optical bench 1’, is +/- 1.

Outputs

• result (double), η1′ intermediary variable.

C.5.9 IntermediaryVariables

Build ξ’s and η’s intermediary variables for all optical benches.

Model

This graph embeds three instances of Xi, Xi_p, Eta, and Eta_p. Refer to the documentation
of these graphs for further information.

Parameters

• max_delay (double), max delay, in s.

• order (int), interpolation order for delays, must be an odd integer greater or equal to
1.

Inputs

• Measurement Channels

– s1 (double), science interferometric measurement in MOSA 1, in fractional fre-
quency deviation.

– s1_p (double), science interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– s2 (double), science interferometric measurement in MOSA 2, in fractional fre-
quency deviation.

– s2_p (double), science interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– s3 (double), science interferometric measurement in MOSA 3, in fractional fre-
quency deviation.
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– s3_p (double), science interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– tau1 (double), reference interferometric measurement in MOSA 1, in fractional
frequency deviation.

– tau1_p (double), reference interferometric measurement in MOSA 1’, in fractional
frequency deviation.

– tau2 (double), reference interferometric measurement in MOSA 2, in fractional
frequency deviation.

– tau2_p (double), reference interferometric measurement in MOSA 2’, in fractional
frequency deviation.

– tau3 (double), reference interferometric measurement in MOSA 3, in fractional
frequency deviation.

– tau3_p (double), reference interferometric measurement in MOSA 3’, in fractional
frequency deviation.

– epsilon1 (double), test-mass interferometric measurement in MOSA 1, in fractional
frequency deviation.

– epsilon1_p (double), test-mass interferometric measurement in MOSA 1’, in frac-
tional frequency deviation.

– epsilon2 (double), test-mass interferometric measurement in MOSA 2, in fractional
frequency deviation.

– epsilon2_p (double), test-mass interferometric measurement in MOSA 2’, in frac-
tional frequency deviation.

– epsilon3 (double), test-mass interferometric measurement in MOSA 3, in fractional
frequency deviation.

– epsilon3_p (double), test-mass interferometric measurement in MOSA 3’, in frac-
tional frequency deviation.

• Light Travel Times
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– tt1 (double), light travel times along link 1, in s.

– tt1_p (double), light travel times along link 1’, in s.

– tt2 (double), light travel times along link 2, in s.

– tt2_p (double), light travel times along link 2’, in s.

– tt3 (double), light travel times along link 3, in s.

– tt3_p (double), light travel times along link 3’, in s.

• Beatnote Frequencies

– sci_f1 (double), science beatnote frequencies in MOSA 1, in MHz.

– sci_f1_p (double), science beatnote frequencies in MOSA 1’, in MHz.

– sci_f2 (double), science beatnote frequencies in MOSA 2, in MHz.

– sci_f2_p (double), science beatnote frequencies in MOSA 2’, in MHz.

– sci_f3 (double), science beatnote frequencies in MOSA 3, in MHz.

– sci_f3_p (double), science beatnote frequencies in MOSA 3’, in MHz.

– ref_f1 (double), reference and test-mass beatnote frequencies in MOSA 1, in MHz.

– ref_f1_p (double), reference and test-mass beatnote frequencies in MOSA 1’, in
MHz.

– ref_f2 (double), reference and test-mass beatnote frequencies in MOSA 2, in MHz.

– ref_f2_p (double), reference and test-mass beatnote frequencies in MOSA 2’, in
MHz.

– ref_f3 (double), reference and test-mass beatnote frequencies in MOSA 3, in MHz.

– ref_f3_p (double), reference and test-mass beatnote frequencies in MOSA 3’, in
MHz.

Outputs
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• xi1 (double), ξ1 intermediary variable.

• xi2 (double), ξ2 intermediary variable.

• xi3 (double), ξ3 intermediary variable.

• xi1_p (double), ξ1′ intermediary variable.

• xi2_p (double), ξ2′ intermediary variable.

• xi3_p (double), ξ3′ intermediary variable.

• eta1 (double), η1 intermediary variable.

• eta2 (double), η2 intermediary variable.

• eta3 (double), η3 intermediary variable.

• eta1_p (double), η1′ intermediary variable.

• eta2_p (double), η2′ intermediary variable.

• eta3_p (double), η3′ intermediary variable.

C.6 Simulation Configuration

The simulation can be configured in config.py. In this section, we document the various
configuration options.

• Sampling Frequencies

– LOW_SAMPLING_FREQ (float ), sampling frequency at which interferometric mea-
surements are delivered by the onboard computer, in Hz. The current default
value is 3 Hz.

– DOWNSAMPLING (int), downsampling rate to go from HIGH_SAMPLING_FREQ

to LOW_SAMPLING_FREQ. This downsampling rate must be an integer, since
signals are decimated by the onboard computer. The current default value is 10.

– HIGH_SAMPLING_FREQ (float , read-only), sampling frequency used to simulate
all physical behaviour as well as the interferometric measurements before they
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are downsampled by the onboard computer, in Hz. This parameter is deduced
from LOW_SAMPLING_FREQ and DOWNSAMPLING, and defaults to 10 Hz.

– ORBIT_UPSAMPLING (int), upsampling rate use to compute the orbits. The
spacecraft positions and velocities can be modeled, or read from a file, at a
sampling frequency lower than HIGH_SAMPLING_FREQ. This defaults to 1.

– ORBIT_SAMPLING_FREQ (float , read-only), very low sampling frequency, used
for the orbits, in Hz. This parameter is deduced from HIGH_SAMPLING_FREQ

and ORBIT_UPSAMPLING, and default to 30 Hz.

• Orbits and TDI Generation

– ORBIT_TYPE (str), defines the type of orbits used to compute the spacecraft po-
sitions and velocities in the graph LaserLinks. Its value must be one of the follow-
ing: keplerian for analytic Keplerian orbits (c.f. KeplerianOrbits and section 3.2.3),
linear_armlengths to simulate armlengths evolving linearly with time (c.f. sec-
tion 3.2.3), or from_file to read the orbits from an external file (c.f. section 3.2.3).
Please note that this option does not set the TDI generation. The default value
is keplerian.

– TDI_GENERATION (int), TDI generation used in TDI. Must be 1.5 or 2, defaults
to 2.

• Publication of Outputs

– PUBLISH_MEASUREMENTS (bool), whether interferometric measurements should
be published, defaults to True.

– PUBLISH_TRAVEL_TIMES (bool), whether the estimated light travel times along
the arms should be published, defaults to True.

– PUBLISH_INTERVAR (bool), whether the TDI intermediary variables should be
published (c.f. chapter 4), defaults to True.

– PUBLISH_MICHELSON (bool), whether TDI Michelson X, Y , and Z variables
should be published (c.f. chapter 4), defaults to True.

– PUBLISH_ORTHVAR (bool), whether TDI quasi-orthogonal A, E, and T variables
should be published (c.f. chapter 4), defaults to True.
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– PUBLISH_SAGNAC (bool), whether TDI Sagnac α, β, and γ variables should be
published (c.f. chapter 4), defaults to False.

– CLOCKCAL_MICHELSON (bool), whether clock calibration should be carried out
on Michelson variables (c.f. chapter 6), defaults to True.

– CLOCKCAL_ORTHVAR (bool), whether clock calibration should be carried out on
quasi-orthogonal variables (c.f. chapter 6), defaults to True.
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