Skip to Main content Skip to Navigation

Caractérisation des blindages électromagnétiques des câbles et faisceaux aéronautiques

Abstract : During the last decade, the proliferation of on-board leisure activities in the new aircrafts have been growing exponentially. In the airplane like A380, each seat integrates several functions (video games, music, etc. ..) Additionally, each function must be connected using at least one electric cable. This system requires a significant number of kilometers of cables to establish all the on-board electrical connections. Furthermore, for reasons of safety and security related to mechanical, hydraulic or pneumatic functions, the wiring EMC requirements associated to the massive progressive electrification becomes considerably stricter. The coexistence of kilometer lengths of cables system in such a small space has increased the requirements in terms of electromagnetic (EM) shielding. Most of existing numerous methods for analyzing the shielding of cables and harnesses are limited in terms of computation speed, design process and in accuracies for the multiport systems analysis. Moreover, most of popular simulation and commercial tools are very expensive (for example with license cost can be more than 18K€). The use of commercial tools requires advanced skills and a lot of time to characterize the shielding of cables and harnesses. For example, with a simulation tool like HFSSR from ANSYSR , the computation time may cost approximately 3 hours to create a design model of a braided shields heath. Then, the computed results can be generated during an average simulation time of 20 minutes using a PC equipped with an Intel single-core processor RXeon RCPU E5-1620 v4 @ 3.50 GHz and 32 GB of physical RAM with 64-bit Windows 10. Most of available methods and techniques for characterizing the shielding of aeronautical cables and cable harnesses have shown their limits. For example, most of existing triaxial benches are particularly difficult to deploy for the transfer impedance measurements and they cannot operate beyond 100 MHz. The present PhD thesis aims to overcome these technical limits. Doing this, an original analytical method is developed for extracting S-parameters from multiport systems under fast computation speed and design process. An innovative methodology of EMC modelling was proposed. The knowledge of S-parameters is helpful to determine the broadband EM intrinsic parameters of the cabling as coaxial system. The developed analytical and semi-hybrid model is based on the unfamiliar formalism using tensorial analysis of networks (TAN) based on the Kron’s method. The model offers an outstanding possibility to analyze complex systems with deep knowledge of physical phenomenal behind the EM shielding. Thanks to the TAN formalism, an innovative method of circuit theory has been developed to determine the shielding efficiency (SE) of shielded cable. The feasibility of this multiport S-parameter approach was verified with the consideration of EM coupling between a nude cable constituting an internal conductor and a braided cable placed in parallel. More importantly, an advanced study of shielding efficiency (SE) with respect to the EM coupling configuration between a shielded coaxial cable and a loop probe is performed. Substantially, it was noteworthy that the TAN formalism provides an illuminating know-how on the theoretical, numerical and experimental analyses of cables and bundles EM shielding, and transfer impedances of the shielding sheath. Moreover, the TAN modelling effectiveness was confirmed with different applications with computation time which does not exceed milliseconds. Finally, the TAN model was also used to develop a SE characterization bench for tubular EM shielding structures up to 300 MHz. Emphatically, broadband SE and transfer impedance results in good correlation between 3D simulations and measurements were obtained.
Document type :
Complete list of metadatas
Contributor : Abes Star :  Contact
Submitted on : Tuesday, December 1, 2020 - 5:16:20 PM
Last modification on : Wednesday, December 2, 2020 - 3:37:21 AM


Version validated by the jury (STAR)


  • HAL Id : tel-03034434, version 1


Christel Cholachue Ngounou. Caractérisation des blindages électromagnétiques des câbles et faisceaux aéronautiques. Electronique. Normandie Université, 2020. Français. ⟨NNT : 2020NORMR025⟩. ⟨tel-03034434⟩



Record views


Files downloads