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Abstract

Visual-based Localization (VBL) consists in retrieving the location of a visual

image within a known space. VBL is involved in several present-day practical

applications, such as indoor and outdoor navigation, 3D reconstruction, etc.

The main challenge in VBL comes from the fact that the visual input to lo-

calize could have been taken at a different time than the reference database.

Visual changes may occur on the observed environment during this period of

time, especially for outdoor localization. Recent approaches use complemen-

tary information in order to address these visually challenging localization

scenarios, like geometric information or semantic information. However geo-

metric or semantic information are not always available or can be costly to

obtain. In order to get free of any extra modalities used to solve challenging

localization scenarios, we propose to use a modality transfer model capable

of reproducing the underlying scene geometry from a monocular image.

At first, we cast the localization problem as a Content-based Image Retrieval

(CBIR) problem and we train a CNN image descriptor with radiometry to

dense geometry transfer as side training objective. Once trained, our system

can be used on monocular images only to construct an expressive descriptor

for localization in challenging conditions. Secondly, we introduce a new relo-

calization pipeline to improve the localization given by our initial localization

step. In a same manner as our global image descriptor, the relocalization is

aided by the geometric information learned during an offline stage. The ex-

tra geometric information is used to constrain the final pose estimation of the

query. Through comprehensive experiments, we demonstrate the effectiveness

of our proposals for both indoor and outdoor localization.
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Résumé

La localisation basée vision consiste à déterminer l’emplacement d’une requête

visuelle par rapport à un espace de référence connu. Le principal défi de la

localisation visuelle réside dans le fait que la requête peut avoir été acquise à

un moment différent de celui de la base de données. On pourra alors observer

des changements visuels entre l’environnement actuel et celui de la base de

référence, en particulier lors d’application de localisation en extérieur. Les

approches récentes utilisent des informations complémentaires afin de répon-

dre à ces scénarios de localisation visuellement ambigus, comme la géométrie

ou la sémantique. Cependant, ces modalités auxiliaires ne sont pas tou-

jours disponibles ou peuvent être coûteuses à obtenir. Afin de s’affranchir

de l’utilisation d’une modalité supplémentaire pour faire face à ces scénarios

de localisation difficiles, nous proposons d’utiliser un modèle de transfert de

modalité capable de reproduire la géométrie d’une scène à partir d’une image

monoculaire.

Dans un premier temps, nous présentons le problème de localisation comme

un problème d’indexation d’images et nous entrainons un réseau de neurones

convolutif pour la description globale d’image, en introduisant le transfert

de modalité radiométrie vers géométrie comme objectif secondaire. Une fois

entrainé, notre modèle peut être appliqué à des images monoculaires pour

construire un descripteur efficace pour la localisation en conditions difficiles.

Dans un second temps, nous introduisons une nouvelle méthode de raffine-

ment de pose pour améliorer la localisation obtenue à la première étape.

Comme pour le descripteur d’image global, la relocalisation est facilitée par les

informations géométriques apprises lors d’une étape préalable. L’information

géométrique supplémentaire est utilisée pour contraindre l’estimation finale

xix



de la pose de la requête. Grâce à des expériences approfondies, nous démon-

trons l’efficacité de nos propositions pour la localisation en intérieur et en

extérieur.

xx



Chapter 1

Introduction

This first chapter introduce the scientific environment of the thesis. We first present the

global topic of long-term mapping followed by the introduction the overall project this

thesis is part of. Then, we focus on the localization task, as it is the main topic of this

research work.

1.1 Long-term mapping

Creating informative, accurate and detailed maps is a crucial step for many applications:

pedestrian or vehicle navigation, data valuation, visualization, land or spatial planning,

to name a few. Mobile mapping vehicles are able to collect and arrange large amount of

data in order to create rich referential. However, these maps are fixed in time. Depending

of the mapped area, the environment representation could be quickly outdated. Instead

of recreating a completely new map, which is a costly operation, another solution is to

locally update the map. This is what we called long-term mapping.

In order to include new data source to our initial representation, we need to located

these information. In other words, we have to find the position of the up-to-date data

according to the original map frame. Once we get a proper alignment between the

two sources of data, we can update our main referential. In this thesis, we focus on the

localization of visual data in the context of long-term mapping. Visual-based Localization

(VBL) is not limited to the update of outdated referential and further applications are

presented in the following. Thus, the core subject of this research is about localization

of new visual data to a fixed, potentially outdated, map.

1



1. INTRODUCTION

1.2 pLaTINUM project

This thesis is founded by the French Agence Nationale de la Recherche (ANR) and is part

of the project named Cartographie Long Terme pour la Navigation Urbaine (pLaTINUM)

(ANR-15-CE23-0010). pLaTINUM is a long-term mapping project composed of three

parts: high quality multi-sources map creation, online visual-based urban navigation

with user feedback and automatic map update for long-life usage. The first part is

an offline mapping step from multi-modal data sources collected by a mobile mapping

vehicle [31, 32, 206] that produces a high resolution textured mesh with radiometric,

geometric and semantic information. Then, this map is used as a reference for an online

visual navigation module. During the navigation, an agent sends visual feedback to the

server in order to, in a third step, update the map if changes are detected between the

reference map and the current observation. The city center of Rouen, in France, have

been chosen to carry out the project experiments.

The subject of this thesis is the initial localization of the agent over the entire map

before the start of the navigation. We detail in the next paragraphs the localization

pipeline.

Summary of the map. The online localization task within the pLaTINUM project

consists of finding the position a visual data from the agent over a summarized version of

the global map. To summarize the initial textured mesh, we render a set of radiometric

(RGB), depth (D) and semantically labeled (L) spheres at meaningful location for cov-

ering the entire area of possible navigation [252, 253, 254]. This representation contains

all the modalities and most of the information from the original map while being lighter.

Initial agent query. In order to start the visually-guided navigation of the agent,

we have to find its absolute position on the mapped area. We assume that the agent

is not equipped with any global localization equipment, such as GPS, and carry only

an embedded device to acquire visual information. This is a regular assumption in

urban area where global positional system can suffer from buildings obstruction (e.g. the

urban canyon effect that affects the GPS signal). In order to be globally located, the

agent sends from his capture device a visual request to a server. By visual request, we

regardless denote: monocular image, video sequence, pair of stereo images, semantically

annotated image or combination of these.

2
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!

VBL

Embedded
visual

acquisition
device

Agent

Visual
request

RGBDL
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Visual
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Figure 1.1: The localization task within the pLaTINUM project: we are interested
in the localization of an agent on a large outdoor urban scene. The map is succinctly
described by a set of geo-referenced RGBDL spheres. The agent sends a visual request from
a mobile device and we have to apply VBL methods to find the closest RGBDL sphere to
the agent.

Localization in a graph of spheres. Once the map has been summarized and the

agent request received, the localization task can be compiled in this question: “which

RGBDL spheres is located closest to the agent visual query?”. In order to answer this

question, we have to develop methods that can handle potentially multi-modal requests

and compare them to augmented spherical images.

We present in figure 1.1 the localization task considered within the pLaTINUM

project.

1.3 Visual-based Localization with heterogeneous data

As introduced in the previous section, with the work of this thesis, we aim to solve a

VBL problem. In the following, we introduce the general formulation of VBL and the
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1. INTRODUCTION

particularity of our problem: the heterogeneity of the visual data.

1.3.1 Visual-based Localization

VBL consists of retrieving the location of a visual request within a known space rep-

resentation [38, 333]. For instance, recovering the pose (position + orientation) of a

camera that took a given photography according to a set of geo-localized images or a

3D model is a simple illustration of such a localization system [128, 263]. VBL has been

an increasingly dynamic research subject in the last decade. This recent gain of inter-

est is due to the provision of large geo-localized images database, the multiplication of

embedded visual acquisition system (e.g. camera on smart-phone) and the limitation

of usual localization system in urban environment (e.g. GPS signal failure in cluttered

environment). Aforementioned localization problem is involved in several present-day

practical applications, such as GPS-like localization system [10], indoor [50] or outdoor

navigation [36], 3D reconstruction, models and databases update, cultural heritage [29],

consumer photography [106, 322] and augmented reality [96]. VBL is also used in robotics

Simultaneous Localization and Mapping (SLAM) for Loop Closure Detection (LCD) [91]

or to solve the «kidnapped robot» scenario [66].

VBL is a very challenging problem. The main obstacle comes from the fact that the

visual request we aim to localize have been taken at a different time than the database.

Visual changes may occur on the observed environment during this period of time, espe-

cially if we target outdoor localization [168, 265]. For outdoor VBL, the appearance of the

same scene observed from the query and the reference data can be different due to season

changes [139], day-night cycle [227], weather conditions [228], mobile objects [295] (like

cars or pedestrian) or urban evolution [251] (e.g. destruction or creation of buildings,

change of street furniture). For the indoor case [290], visual changes can be generated

by the modulation of the lightning [170], a rearrangement of a room, the people occu-

pancy, etc. Differences in the request and the reference are also observable when the

condition of the data acquisition differs. This can be due to the sensor architecture,

e.g. database and reference images acquired by different cameras [174, 184] or to differ-

ences on the pose of the agent that acquire the data, resulting on important view point

changes [158, 174, 293, 299, 312].
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1.4 Thesis outlines

It is very challenging to address these corner case with image-only VBL. However, the

use of over information, such as the scene geometry [304, 329] or a semantic understanding

of the image [321], can circumvent the limitation of mono-modal VBL.

1.3.2 Heterogeneous data in VBL

VBL involves comparing a visual data for which we seek the location, the query, to a

geo-located reference database. In conventional pipeline, the query and the reference

data are from the same modalities: e.g. an image and a collection of geo-referenced

images [4, 6] or a segment of a 3D model with semantic information to a the fully seman-

tized 3D model [272]. It exists plenty of VBL methods relying on a single-modality such

as radiometric information [162, 234], geometric information [304, 329] or semantic in-

formation [7] as well as methods based on multi-modal data: images and geometry [272],

images and semantic [5], etc. The principal challenge comes when we observe an asym-

metric representation of modalities between the request and the reference data. How

to compare, or combine, data from different nature? This is a complex question, con-

sequently, there is lack of method that benefit from heterogeneous data for the task of

localization.

In this work, we are interested in VBL with heterogeneous data, i.e. the query and

the reference data may not contain the same modalities. As mentioned in section 1.1, in

the pLaTINUM project we are interested in localization of a heterogeneous visual query

to a set of multi-modal geo-localized RGBDL spheres. That means we could encounter

missing modalities or missing data within the queries comparing to the radiometric, depth

and semantic modalities present in the reference data. We believe that heterogeneous

and asymmetric data can be used wisely for the task of Visual-based Localization to

overcome the limitation of single-modality systems. Therefore, within this thesis, we

pursue research in this direction.

1.4 Thesis outlines

This thesis presents an original research work on the development of a new VBL method

taking benefit from heterogeneous data.

An exhaustive review of existing VBL methods is presented in Chapter 2, with a

special attention paid to data heterogeneity within these methods [220]. We first enu-
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1. INTRODUCTION

merate common processing among VBL methods and then we introduce the three classes

of localization approaches. Open challenges as well as auxiliary data used to overcome

limitation of visual-only systems are discussed thereafter.

Chap. 3 presents our learned global image descriptor augmented with auxiliary modal-

ities and designed for the task of VBL in challenging conditions [223, 224]. We open the

chapter with a brief review of descriptors for localization before introducing our global

image feature extractor. The rest of the chapter is dedicated to exhaustive experiments

on multiple challenging localization tasks.

In Chapter 4, we introduce a original image pose refinement step which uses missing

geometric information to improve localization performances over our first method [221,

222]. Preliminary work and our final refinement pipeline are first presented. Then,

we show the effectiveness of our method for localization in indoor environment before

presenting furthers experiments on unsupervised auxiliary geometric learning for outdoor

pose estimation.

Finally, Chap. 5 concludes the thesis and offers avenues for prospective work.
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Chapter 2

Comprehensive study of

Visual-Based Localization methods

In this chapter, we present the Visual-based Localization (VBL) problem by firstly fo-

cusing on the computer vision methods used in this area (sections 2.1-2.2) and, secondly,

by regarding challenges in VBL (sections 2.3) and the nature of the data involved in the

localization process (sections 2.4).

Topics addressed. We mainly focus on urban VBL as it represents the most studied

end-user application in literature. This can be explained by the fact that most of the

related applications take place in non-rural environment. As an illustration, VBL as GPS

pedestrian localization system should be used when the presence of buildings disrupt the

satellite signal. Most of the augmented reality applications are also designed for indoor

or urbanized environment. Similar reasoning can be employed with robotic applications.

Nowadays principal concerns about robots are related to human assistance or supervision

and autonomous vehicles. Those services occur in indoor and outdoor man-made areas,

therefore the robot localization should be studied for these sites. The other aspect

that invites researchers to focus on urban environment is that large datasets are mainly

describing cities or road networks. Indeed, they are the most reachable places. With

the exception of airborne and satellite imageries, that are abundant all over the globe.

Regarding aerial images, use cases differ as the data are usually already well organized

and accurately geo-referenced. Finally, interest in urban VBL is motivated by the high

number of remaining open challenges: handling the large number of different object
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

classes present in the scene, dealing with visual obstruction and dynamic changes induced

by significant temporal variation, etc.

As well as VBL presents a heterogeneity about its end-user applications, methods

and data involved in the process of localizing an image are various. These methods are

divided into three categories: Content-based Image Retrieval (CBIR) for image local-

ization [2, 162, 233], 6 Degrees of Freedom (DoF) image pose estimation [33, 263] and

hierarchical localization [257]. CBIR methods used in VBL slightly differ from classi-

cal vision object-retrieval algorithm [278] on two points: the images in the query and

the database represent scenes rather than objects (e.g. street view panorama, buildings

images, indoor scenes) and the performance of such system is evaluated according to

the precision rate rather than the recall rate (i.e. a perfect VBL system should recover

in its top ranked candidates documents that display the exact location of the query).

On the other hand, pose estimation methods aim to recover instantly the 6 DoF pose

of the query data. Where Structure From Motion (SfM) or Simultaneous Localization

and Mapping (SLAM) techniques provide a relative pose of a sequence of data, VBL

tackles the problem of retrieving the absolute pose of a query data according to a known

representation. Nevertheless, this representation could have been built thanks to SfM or

SLAM mapping module. Finally, hierarchical localization, also known as coarse to fine

localization, relative pose regression or localization cascade, can be seen as a combination

of the two aforementioned methods. These methods can be divided into two steps: as a

first instance, the research scope is reduced to obtain a initial coarse query pose, then,

this result is refined by computing the correct transformation between the query location

and the first guess pose.

When designing a VBL system, the type of method is not the only parameter to con-

sider. As pointed out in [168], robustness to environment appearance changes over time

is a main concern. Data involved in the process of localization also define specifications

of the system, like area covered by the VBL method or precision of the regressed pose.

Data types are various in VBL: visual data, geometric information (provided by RGB-D

camera, LIDAR, etc.) and semantic clues. Combination of different data in VBL aims

to overcome limitation of images-only based method.

Related works. VBL is a well studied topic, and many contributions propose overviews

of this domain. Brejcha and Čadík [38] present many works on VBL and classify them
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depending on the environment for which the particular method was developed. Con-

versely, we focus our study on systems built for city-scale localization as it concerns the

most VBL applications. Moreover, we propose a comprehensive description of the three

types of methods used in VBL, and highlight the benefits of the use of heterogeneous

data in the context of localization in challenging scenarios. Zamir et al. [333] gather

recent articles to draw a large panorama of VBL, corroborating the growing importance

of this domain in current research. This assumption is comforted regarding the many

tutorials (CVPR2014, CVPR2015, CVPR2017, ECCV2018 and ICCV2019), workshops

(CVPR2015 and CVPR2019) and challenges (Google Landmark Retrieval 2018, Google

Landmark Retrieval 2019, Visual Localization Benchmark) about the Visual Localization

problem in high impact international conferences.

Visual Place Recognition is a roboticist problem, defined in the general sense in [168]

as the visual ability of a human, an animal or a robot to recognize an already visited place.

It is a main concern for navigation, especially when we consider topological mapping [88].

Despite the fact that Visual Place Recognition shares huge similarity with VBL, the two

problems differ on three major points. On the one hand, visual-based localization and

visual place recognition purposes differ; where Place Recognition decides if a given place

have already been seen, VBL produces a pose of the visual acquisition system. This

explains the difference in their respective pipeline. Visual place recognition is composed

of three main components; the data processing module, the mapping module and the

belief generation modules, while visual-based localization does not consider the mapping

module. On the other hand, the study presented here aims to consider VBL in a more

general context. Communities and applications of the reviewed methods belong to the

Computer Vision community [258], as well as the Robotics [88] community. Finally, we

consider heterogeneous visual data without restriction, including: raw colour and grey-

scale images, depth images, point cloud and 3D models, as well as semantic information

extracted from aforementioned data.

However, we advise reader to refer to the recent surveys related to Visual Place

Recognition [88, 136, 168] in order to capture a global panorama of existing approaches

involved in localization process with visual data.

The rest of this chapter is organized as follows: in section 2.1, we introduce data

representations used in VBL followed by a description of the three family of localization
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

methods in section 2.2. Section 2.3 analyses the problem of challenging association across

data variability and in section 2.4 we present an overview of the different types of data

used in VBL. Finally, in section 2.5, common datasets and trends in VBL are discussed.

2.1 Data Representation

What is the best manner for representing visual data? This central question, present

in various Computer Vision, Robotic and Photogrammetric applications, leads up to

numerous answers. The data representation, termed features, should incorporate as

much as possible discriminant information from the initial visual document and be fast to

compute and compare. We present in this section representations used in VBL. Table 2.1

summarizes the following presented features.

2.1.1 Local Features

Local features are widely used in VBL and more generally in Computer Vision. Their

description occurs at pixel level among a local neighborhood of several points in the

image. The description through local features is two-step: firstly detect salient region

(the extraction phase) and then characterize them according to their neighborhood (the

description phase).

Point features. Several criteria are taken into account for the selection of point fea-

tures: scale, orientation and illumination invariance, as well as computational cost and

descriptor vector dimension. A comprehensive list of local feature descriptors used in

topological mapping in robotics can be found in Garcia-Fidalgo and Ortiz [88] sur-

vey. Krajník et al. [139] explore in-deep many combination of detector/descriptor for

the specific task of images matching across seasons. The most used point feature in

VBL remains the Hessian-affine detector [185] combined with SIFT [166] descriptor. Im-

portant contribution from Arandjelović and Zisserman [2] introduces RootSIFT which

presents better results in matching step with minor overhead in computational load.

SURF descriptors [26], light version of SIFT, are employed when real-time performance

are required [64, 232, 285]. BRIEF descriptor rapidly computes a binary signature as-

sociated to a keypoint using pixel intensity comparisons. The advantage of binary de-

scriptors is that they can be compared efficiently using hamming distance. ORB lo-
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2.1 Data Representation

cal feature [248] counter the lake of angular invariability of BRIEF descriptor by using

orientation-aware feature detector from FAST [246]. Binary descriptors are widely used

in VBL [81, 102, 138, 139, 184, 193].

Learned local features is a well studied topic [45, 70, 71, 74, 204, 213, 330]. Features

are detected and described through Convolutional Neural Networks (CNN) trained for the

task of similar features association. Schönberger et al. [271] propose a recent comparison

of hand-crafted and learned feature proposed and show, amongst others, that traditional

local features perform the best in some scenario related to VBL. In [257], authors use

SuperPoint [71] as local features for images localization. D2-Net [74] have also been

successfully applied to VBL. Features block extracted from a CNN can also serve as

densely sampled local keypoints [324] (each keypoint is extracted along the depth of the

features block). This dense extraction of local features have been successfully used for

VBL in [221, 290]. Attention mechanism can be added to select discriminative areas from

the dense features block, as illustrated with the weakly supervised DELF [201] system

trained for large scale image localization.

Geometric features. Visual data can be described by primitive geometric shapes.

Despite the fact that geometric features are less compliant than point features, they in-

clude semantically meaningful information. For example, vertical lines are convenient

descriptor in urban environment to represent buildings [12, 189, 238]. On the basis of

this observation, Hays and Efros [106] introduce line extraction in combination with

others descriptors to describe images. Works in [52] introduce a semantic line-based de-

scriptor. The vertical lines are extracted using Canny filtering and coded into VCLH

(Vertical Corner Line Hypothesis) for meaningful building corners representation. Con-

tour extraction have also been employed by Russell et al. [250] to recover the pose of an

image in a site of archaeological excavations. In the work of Baatz et al. [16], authors

assume that skyline will be present in the data and use it as a geometric features to

describe mountain panoramas. Dehaze segmentation is used to extract the skyline that

is thereafter encoded in a curve bin descriptor.

Considering 3D data, several works use three-dimensional geometric features like

normal vectors [149] or planar surfaces [83]. Bansal and Daniilidis [23] use PointRay

(i.e. a 3D vectors aligning with an edge) extracted from a Digital Elevation Model

(DEM) to represent building corners. With recent progress of Deep Learning (DL) on 3D
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

point cloud processing [230], local learned point feature descriptors for localization have

emerged. 3DMatch [336], 3DFeat-Net [329] and PPFNet [68] are a 3D point descriptor

trained for the task of 3D points to 3D points registration and used to localize a local

laser scan within a reference point cloud.

Point features with geometric relations. The lack of geometric consistency across

the whole image is a shortcoming associated with point features. Various contributions

propose to overcome this limitation by adding local geometric information directly on

the point descriptor [16, 117] or with the geometric association of numerous points [151,

163]. SIFT features contain scale and orientation information, that have been originally

used in [117] through the Weak Geometry Consistency framework. Following the same

idea, Baatz et al. [16] encode features relative pose in the image to perform geometric

verification at matching time. Liu and Marlet [163] introduce a geometric descriptor

called Virtual Line Descriptor (VLD) by connecting two local features with each other.

The subsequent lines are used to reinforce the robustness of the matching process in VBL

scenario [174]. Li et al. [151] propose a different pairwise geometric descriptor (PGM),

showing great results on both urban and landscape scenes.

2.1.2 Global Features

Another description approach considers the image as a whole and produces one signature

with high dimensionality (usually up to 4096 elements). Compared to local descriptors,

global features are considered less robust in viewpoint changes, occlusion and local vari-

ations in the image. However, they are computationally less intensive to extract and

capture a comprehensive description of the visual data. With the recent progress on Ma-

chine Learning (ML), a new class of very efficient global descriptor computed by CNN

have emerged.

Hand-crafted features GIST descriptor introduced by Oliva and Torralba [202] is

the most used hand-crafted global descriptor in VBL [15, 106, 250]. Azzi et al. [15] use

features in a cascade scheme to first narrow the search scope with global feature GIST

and then select the good candidates with local features SIFT. The raw image can serve

as a descriptor, with systematic resizing in order to obtain thumbnail [63, 106] (poten-

tially augmented with depth information [92]). Simple descriptor computed through an
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2.1 Data Representation

histogram upon various criteria (color, texture [106] or depth [199]) also provides a fast

global information. Taking the image as a whole in a different representation space that

is more discriminant for similarity research can also be considered as global description.

For instance, Fourier Transform (FT) is used by Wan et al. [316].

Learned features Democratization of CNN in computer vision domain leads to state-

of-the-art techniques in image retrieval for urban scenes [6, 100, 132, 233]. Descriptors

created through CNN are obtained using pooling mechanism on the computed features

block [18]. We refer readers to section 3.1.1 for a detailed review on learned global image

descriptor for the task of VBL.

Similar learned approaches have been recently used for 3D point cloud global descrip-

tion [272, 304]. Schönberger et al. [272] combine 3D convolution on point cloud (the 3D

information is stocked in volumetric grid of voxels) and an self-supervised deep auto-

encoder and use the low dimensional latent representation computed by the network as

global point cloud descriptor. In [304] the PointNet [230] network is associated to a differ-

entiable Vector of Locally Aggregated Descriptors (VLAD) module, called NetVLAD [6],

to train in a supervised manner a discriminative global feature for fast localization.

2.1.3 Patch features

Patch features consider region of interest in the image, it can be interpreted as a com-

promise between local and global features. The patch could be manually extracted (with

a fixed grid on an image, or a sliding window [67]) or automatically chosen in according

to image saliency [178]. The discriminative HOG [67] descriptor has been used in VBL

for capturing architectural cues of building and landmarks [14, 180, 189, 277]. In the

work of [131, 200], MSER blob detector by Matas et al. [178] is used to extract visual

information. Morago et al. [189] use a combination of local and patch features to describe

repetitive shapes. Patch detector coupled with global descriptors are a common use in

VBL, as illustrated in [100, 131, 287, 328]. Sünderhauf et al. [287] present promising

works where the feature patches are automatically extracted with an edge boxes detec-

tor [342]. Another CNN approach is introduced to perform VBL in [100], authors use a

custom region proposal network [242] to extract regions of interest (ROI) and compute

a deep representation of the ROI.
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Figure 2.1: CBIR for localization: the location of a given request can be retrieved
by comparing the query to a pool of geolocalized candidates. After the similarity research,
the location associated to the top-ranked reference data is considered as the location of the
query. Re-ranking of the reference data can be used in order to improve the relevance of the
top-ranked candidates.

2.2 VBL methods

In the previous section, we have described data representation mostly used in VBL.

The current section is dedicated to the method built on this representation to perform

localization. As mentioned in the introduction, it exists three main family of methods:

• Content-based Image Retrieval (CBIR) for localization,

• 6 DoF camera pose estimation,

• coarse to fine localization.

2.2.1 CBIR for localization

The aim of CBIR methods is to retrieve a set of data presents in the database that

are similar to an input query. This is a problem related to instance retrieval [337].

As the visual data used in VBL are augmented with geospatial information (e.g. a

geotag associated to an image), retrieving documents comparable to the input provides

an information on the possible location of the query. This localization method is three-

step: description of the visual data, similarity association across the description vectors

previously extracted and possible candidates re-ranking. CBIR for localization pipeline

is illustrate in figure 2.1.
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

Efficient data representation for localization

As one of our main contribution in this thesis targets the design of a new learned global

image representation for long-term CBIR for localization, we do not detail data descrip-

tion in this chapter. We refer reader to the first section of Chapter 3, Sect. 3.1, for a

comprehensive review of image representation suited for localization by indexing.

For the subsequent tasks of the localization process, we assume that we are able to

produce low dimensional vectors to describe the visual data.

Similarity Research

The similarity research step involve evaluating the sameness between the request descrip-

tor (i.e. the description vector computed from the visual request we want to localize) and

the reference descriptors. At the end of this step, we obtain a list of reference candidates,

ranked accordingly to their similarity to the request.

Pre-processing. Dimension reduction of descriptor is often performed to reduce match-

ing time and memory footprint. The most used technique remains the Principal Com-

ponents Analysis (PCA). PCA is applied on high dimension vector, e.g. features block

extracted from CNN layers ([6, 100]). PCA has also been used to reduce the size of

local features aggregated vectors [131, 301] or global descriptors [199]. Gaussian Ran-

dom Projection is applied in [205, 287] and in a different work, binary locality-sensitive

hashing [286] is used instead. To reinforce data consistency, whitening could be applied

to final features before the similarity search [6, 99, 100, 115, 233, 298].

Similarity metric. For most methods, comparison between descriptors is a trivial

operation: it consists in a simple euclidean distance computation between vectors (with

L2 norm or cosine similarity – if the vectors are unitary – as usually used function).

Area correlation is another approach for computing data similarity. Simple forms of

correlation like Sum of Squared Difference (SSD) or Sum of Absolute Difference (SAD)

have been used in VBL to directly compare raw images [187, 225]. Wan et al. [316] use

PC (Phase Correlation) on images described with FT (Fourier Transform) in order to

be robust to shadow artifacts. In the work of [63], authors compare shadow invariant

grey-scale images with Zero Mean Normalized Cross-Correlation (ZNCC).
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2.2 VBL methods

Neareast Neighbor search. In some works, when the amount of data to compare

remains acceptable, linear or brute-force retrieval procedure can be employed to retrieve

the closest neighbors. Well-suited data structure (e.g. inverted-index or k-d-tree) can

be used in order to speed-up the research process. Linear NN search is used in [6, 18,

100, 233, 286, 287, 331, 332], among others, where low-dimension global image descriptor

(§2.1.2) are used to describe the data.

Exact nearest neighbors search becomes impracticable when the amount and/or di-

mensionality of the features are too large. Authors then turn to approximate nearest

neighbor search to trade efficiency for rapidity, thus accepting some errors in the re-

trieved neighbors. Approximate matching involve hashing methods [95] and quantization

frameworks [119, 200, 218]. Interested readers may see [317] for more details.

Several NN search algorithms are efficiently implemented in the FLANN library [194],

and in the new Facebook FAISS library [124].

Machine Learning matching methods. Learning the distribution of the extracted

features is an alternative to aforementioned NN search methods.

Support Vector Machines (SVM) classifiers are used in numerous works [14, 44, 160,

180, 277] to cast the similarity research as a classification task. Cao and Snavely [44]

initially cluster the database according to the resemblance of the images. On top of this

graph of similar images, they trained SVM for each cluster and at query time oppose the

input image to all classifiers. By selecting the data associated to the SVM reaching the

higher score of classification, this approach permits to quickly retrieve a pool of similar

images. In [14, 180] authors train linear classifiers on HOG descriptors to robustly retrieve

similar images that present extreme appearances changes. Aubry et al. [14] take the

advantages of Linear Discriminant Analysis (LDA) data representation in order to avoid

expensive SVM training (like hard negative mining used in [131, 277]). Similarly, Kim

et al. [131] train SVM classifier to predict the robustness of extracted descriptors. This

improves the matching process and reduces the number of features to compare against

the database.

Lu et al. [169] introduce a Multi-task Learning (MTL) layout designed for features

similarity association. Works from Torralba et al. [302] and Ni et al. [199] present VBL

methods that are able to localize an input query among a set of predefined places. Au-

thors embedded the recognition process into probabilistic framework, Gaussian Mixture

17



2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

Model (GMM) in [302] and epitome in [199], trained upon images representing different

areas. Such paradigms allow an easy integration of additional knowledge (such as depth

information [199]).

Graph matching. Stumm et al. [284] introduce an innovative method based on graph

matching. The visual vocabulary abstraction is employed and augmented with a graph

of covisibility of the visual words in images. The graph is constructed as follows: nodes

represent visual word detected in images and edges are created between two nodes if

they are seen together in a same image. This formulation permits integrating geometric

relations between the extracted features. Authors use a graph kernel for the similarity

comparison among the query graph and the database [283, 285]. Notice that graph-based

approaches are often employed when scenes are described by spatially organized semantic

clues such as office furnitures [255] or street equipments [7].

Candidates re-ranking

Data can be processed after the similarity research to improve the final result. Post-

processing methods are widely used to re-rank the candidate list, improving relevance of

retrieved data.

Generic re-ranking. Query expansion is a post-process that re-query the database

after a first retrieval step to increase the recall rate [59, 60, 297]. However, increasing

the recall rate is not the main concern of VBL indirect method [259]. Indeed, as exposed

in the introduction, a perfect VBL indirect system should retrieve at first position the

closest visual document present in the database. However, more suitable top ranked

candidates in the list of retrieved data could benefit to a subsequent pose estimation

step [281]. The VBL system presented by Cao and Snavely [44] increase the diversity

of retrieved images by introducing a probabilistic re-ranking on the assumption that the

first ranked candidate is not a good one and by maximizing the probability that the

second one is. On the other hand, geometric consistency check is often used to reject

wrong matching. Relative pose between the query and the database candidates is com-

puted by considering homography or multiple-view transformation, and candidates that

produce the most consistent pose are ranked up. Philbin et al. [218] democratize the use

of spatial verification by introducing prior on the pose of the photography by assuming a
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top-oriented view. Authors perform spatial check hierarchically to get more flexibility be-

tween time computation and retrieval precision. The geometric transformation between

the query and the candidate is usually computed with minimal solver embedded in a

Random Sample Consensus (RANSAC) [85]. There exists multiple alternatives to the

classical RANSAC algorithm. PROSAC by [58], used in [72], prioritize specific features

during the random selection step. We can also enumerate LO-RANSAC used in [218] and

AC-RANSAC in [231, 232]. Novel method F-SORT presented by Chan et al. [53] show

outstanding result both in term on matching quality and computation efficiency. Notice

that these algorithms, beside improving the relevance of the retrieved candidates, can

give information about the relative pose of the query. That is why numerous 6 DoF pose

estimation methods, presented thereafter in Sect. 2.2.2, rely also on these techniques.

Specific VBL re-ranking. Unlike conventional methods of object-retrieval, indirect

VBL can benefit from geo-localization information associated to the documents present in

the database. As discussed earlier, this information can be used to construct structured

graph for the similarity search process [44, 299] or exploited to re-rank the candidates

list [262, 331, 332]. Zamir and Shah [331] introduce this geographic re-ranking after a

classical image-retrieval algorithm to quickly remove irrelevant candidates. Authors go

one step further in [332] and embed the matching process within a Generalized Minimum

Clique Graphs scheme to retrieve consistent candidates according to the GPS tag asso-

ciated to the visual data. Sattler et al. [262] generalize the problem of visual burstiness

introduced by [118] to a geographic level, introducing the concept of geometric bursti-

ness. They improve the relevance of the ranked list of candidates using position and

popularity meta-information of database images.

2.2.2 6 DoF pose estimation

At this point, we introduce camera pose estimation methods that instantly recover the

exact 6 DoF pose of the query according to a known reference. Compared to CBIR

approaches, 6 DoF pose estimation methods provide a more accurate query pose to the

detriment of the area coverage. From this class of methods, we consider the two following

approaches:
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Figure 2.2: Structure-based VBL: reference data are used to construct a 3D model of
the environment. During localization, the query is compared to this model to determine its
6-DoF pose.

Geometric methods: this class of methods, also known as structure-based methods,

performs the global localization of the query by establishing correspondences be-

tween two-dimensional features extracted from a visual query and three-dimensional

model of the environment (see figure 2.2).

Learned approaches: the second considered family of algorithms are methods that

learns a model to directly regress from an input visual data to its corresponding

pose. We distinguish between local [276] and global [128] learned methods.

Geometric methods

A widely represented family of VBL methods aims to regress the pose of a camera based

on the analysis of a 3D point cloud reconstructed by SfM algorithms [191, 249, 270].

The principle of these methods is to establish 2D features to 3D points correspondences

(F2P or 2D-3D in short terms). In a first step, three-dimensional representation of the

environment is built thanks to many images. Triangulated points within this structure

are associated to the local features (most of the time SIFT vectors [166]) extracted

from all the images where the considered point is visible. At query time, local features

from the query are matched against the set of pre-computed 3D points. Finally, 2D-3D

correspondences permit a 6 DoF pose estimation of the acquisition system. Irschara

et al. [111] introduce the first F2P method based on SfM environment representation.

The overall pipeline of structured methods is presented in figure 2.2.
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These methods have a lot in common with CBIR for localization approaches described

in Section 2.2.1 as they share two major steps: feature extraction and data association.

Yet, the use of a geometrically structured database introduces interesting elements not

exploitable in a classical image-retrieval scheme [260].

Scalable localization. In [111], authors perform scalable VBL by registering the point

cloud into synthetic visual documents covering the entire model. Sattler et al. [258] con-

sider the original features to points correspondences scheme by [111] and introduce a

Vocabulary-based Prioritized Search (VPS) inspired by BoF matching method. Heisterk-

laus et al. [108] introduce MPEG compression for visual document in order to speed-up

the system. Works from [171, 184] tackle the problem of VBL embedded in a mobile

device with limited memory storage and computational power. To achieve real-time per-

formances, authors in [184] produce a very light 3D model to track the mobile camera

in an urban environment. They send at regular interval key-frames to a server that is

in charge of computing the global pose of the camera regarding a pre-produced point

cloud. Aligning a light relative point cloud reconstructed with SfM to a bigger one have

also been investigated in [169]. In the work described in [72], authors use the descriptor

redundancy associated to 3D points to train random ferns on the top of each points. F2P

matching time requirement is by the fact greatly reduced. Recent work by Feng et al.

[81] reduce drastically the computational power requirement by considering fast point

extractor and binary descriptors combined with an efficient similarity research. Authors

show an order of magnitude in time reduction without any pose estimation performances

deterioration.

Filtering wrong correspondences. Li et al. [153] reverse the conventional F2P pro-

cess by searching from the point cloud correspondences in the image (P2F), instead of

matching features from the image to points. This formulation causes an overhead in

computation but is correctly handled by considering a compressed version of the SfM

model and by implementing end-conditions and rejection cases in their algorithm. In

work from [154], authors augment the P2F matching with hypothesis of co-occurrence

of 3D points present in a close neighborhood. Based on similar observation, Sattler

et al. [261] consider visibility graph to reject wrong matchings. Svarm et al. [288] con-

sider the problem of VBL with F2P matching as a combinatorial optimization problem
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

and design a fast outliers rejection scheme. This promising work have been improved

through [289, 335] contributions. In [141], authors extend the image registration prob-

lem to video registration. Temporal redundancy obtained from the visual flux facilitates

the 2D-3D matching by adding smoothness constraints. Semantic filtering is also used

to enforce matching consistency between features and points [295]. In [161], the pro-

posed method achieve the best localization result on commonly used datasets without

any prior assumptions on the query pose by introducing global co-visibility constraints

with Markov network.

Pose estimation. F2P (as well as P2F) provides correspondences between 2D pixels

and 3D points. Properly redefined by Hartley and Zisserman [105], perspective-n-point

(PnP) formulation is the most common tool to recover the absolute camera pose according

to a point cloud reconstructed by SfM.

Embedded in a random consensus scheme (see §2.2.1), six correspondences between

the image and the 3D model are sufficient to retrieve the pose, if we have no information

about the intrinsic parameters of the camera [72, 108, 153, 153]. This formulation is

known as P6P and can be solved with Direct Linear Transformation (DLT [105]).

In particular cases, three correspondences between the image and the model are

sufficient (P3P pose computation problem). Especially, the pose estimation problem can

be reduced to a P3P formulation if the intrinsic parameters of the camera are known [111,

184], or if 3 or more DoF are fixed [232, 288, 289, 335]. In those particular cases, P3P

solvers Kneip and Furgale [133] are mostly used to recover the pose.

In [282], authors are interested in privacy preserving personal information in augmented-

reality consumer application. They argues that SfM point cloud can be targeted by

inversion attack to recover the original state of the mapped scene. That is why they

propose a 3D Line Cloud scene representation to replace the original point cloud and use

3D points to 3D lines association to recover the pose of a query image.

Learned methods

The last class of 6-DoF pose estimation methods cast VBL as a machine learning problem.

A model is trained with geolocalized visual data in order to be able to predict the

6-DoF pose of an unknown visual request. Key components of learned methods are

presented in figure 2.3. If the scene geometry is completely known, local method can
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Figure 2.4: Scene coordinates
repesentation: local learned-
based VBL method rely on scene
coordinates representation of the
environment to retrieve the 6-DoF
pose of a query. Model on the
right is colorized according to the
xyz position of the 3D points
mapped in RGB color space. Fig-
ure from [33].

be applied [276] (i.e. the data involved in the learning processes are local feature or

raw pixels). Otherwise, the method is global and entire images are used as input to the

model [128].

Local methods. First introduced by Shotton et al. [276], local learned method for

VBL are based on the scene coordinates representation of the environment. Scene co-

ordinates representation associates to each pixel of an image its 3-dimension coordinate

in a global scene frame. It means that we requires both image 6-DoF pose as well as

scene geometry (e.g. depth map associated to the image) to create a scene coordinates

representation. See figure 2.4 for a colorized example of scene coordinates representation.

During training, we minimize the error between predicted 3D coordinates of each pixel
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

of a training set of images with the ground truth scene coordinates. Once the model is

trained, we can use it to predict dense 3D coordinates at each pixel position of a new

image. Finally, these 2D-3D correspondences (2D position of pixels’ image and predicted

3D coordinates) are used to compute the 6-DoF of the query image. Similar algorithm

as the ones used for structure-based methods (see section 2.2.2), embedded in a random

consensus, are used in order to compute the query pose. This class of method is compact

but not scalable: it requires to train one model by scene.

In the initial works by Shotton et al. [276], authors use a regression forest to learn the

mapping from pixel to 3D scene coordinates. At query time, a handful of pixels from a

depth camera frame are processed into the regression forest. This method is fast and pre-

cise and can be used on texture-less data. However, the depth information associated to

each pixel is needed at test time. This initial method have been improved in [104], where

authors take in consideration several candidates for the final pose regression obtained by

multiple trained predictors. Valentin et al. [307] introduce mixture of Gaussian to rep-

resent the uncertainty associated with the regression forest prediction and significantly

improve the 6 DoF estimation by embedding this information within the full camera

pose regression step. The regression forest have been replaced by Neural Network (NN)

in [177], bringing slightly better result at the cost of computational overhead. Meng et al.

[182] consider only RGB images at query time. The loss in precision is compensated by a

post pose refinement step based on nearest neighbors search with sparse extracted SIFT

features (like in structured approaches, see section 2.2.2).

Duong et al. [73] introduce a patch-based approaches where area centered on keypoints

extracted from standard image detector are used instead of raw pixels. During training,

they use a CNN to predict 3D-coordinate from the extracted image patches. In major

work of Brachmann and Rother [33], the complete image is used as input to a fully-CNN.

The model predict a dense scene coordinates image and the authors perform end-to-end

training regarding the final pose prediction thanks to a differentiable version of RANSAC

(DSAC [35]). They obtain convening results using only images and they show that their

method can be applied even if we do not know the full geometry of the scene. In [152],

a new loss function is introduced to stabilize the training of fully-CNN for dense scene

coordinates prediction.

To address the scene-dependent limitation of classical methods, Glocker et al. [97]

design a system based on regression ferns to quickly associate an RGB-D image to a
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binary feature. Ferns produce descriptor according to randomly initialized binary rules,

and a look up table is maintained to directly associated image signature with 3D pose in

the scene. Presented system is less precise that the one presented by Shotton et al. [276]

but has the advantages of not relying on a heavy pre-processing step (i.e. the spawning

of the regression forest). Along the same line, promising work of Cavallari et al. [49, 50]

propose to quickly adapt a pre-trained regression forest to a new scene. This method

permit to recover the pose of a RGB-D camera frame, more precisely than Glocker et al.

[96, 97], without the costly step of complete regression forest training. Recent work in [51]

applied a variant of the precedent method with fully-CNN architecture of [33] instead

of regression forest. They fill coordinates reservoir at the end of a pretrained model

with information about a new scene to quickly obtain a precise localization system. In

a different manner in [80], authors propose to use multiple models distributed all over

the area of interest. At query time, they use a Mixture of Export (MoE) for weighting

predictions of each model, embedded in a differentiable RANSAC [34, 35] for end-to-end

training.

Global methods. Introduced in 2015 by Kendall et al. [128], the first global learned

method, PoseNet, consists of a fine-tuned CNN for the task of 6-DoF pose regression.

The network is trained upon a set of paired image/pose and directly regress the 6-DoF

pose of a camera from an image. The pose obtained through this method is not as

accurate as the pose obtained with geometric or local method [33, 81] but provides great

tolerance to changes in scale and appearance. Compared to scene coordinates-based

methods [152, 276], CNN seems more appropriate to handle large environment and does

not rely on depth information.

Recent improvement have been proposed by the original authors [126] to integrate

an uncertainty estimation in the regression process. Liu et al. [164] consider this CNN

architecture with only depth map information, acquirement with active depth sensor, for

recovering the pose of a camera in complete obscurity. The work by Walch et al. [314]

present a combination of a PoseNet [128] with a Long Short-term Memory (LSTM) units

plugged at the output of the network in order to encode stronger spatial information from

the image. This combination slightly improves the precision of the system. Authors of

[122] propose a new method to gather supplementary image/pose pairs for the network

training. They generate artificial images from a dense point cloud model obtained by SfM

25



2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

thanks to a rendering software. Computer graphics shaders effects are added on some

rendered views for simulating various illuminations. In [229], the view synthesis procedure

is extended to real images thank to the known geometry of the scene. Contreras and

Mayol-Cuevas [62] exploit this CNN architecture in order to create a fixed size map that

can be improved by adding new trajectories. Authors were able to reduce the original

size of the CNN by factor of three while maintaining similar localization performances on

indoor scenes. Recent contribution [127] investigate new loss-functions for the training

phase of the CNN, by adding constraints from multi-view geometry standards [105].

MapNet [37] introduces relative constraint between two consecutive images in order to

train the regression network with unannotated data. For this training setup, the relative

pose between two images is computed by a Visual Odometry (VO) algorithm [79, 86].

In a similar manner, VLocNet [306] benefits from relative pose information between

consecutive frames by relying on two different networks with shared representation: one

for absolute pose regression and the over one for relative pose estimation between two

images. In a subsequent work [236, 305], authors show how multitask [129, 135, 334]

learning can improve the pose estimation.

Although Posenet-like method has the advantages of being lightweight and relies on

only-images, Sattler et al. [266] show that performances of such methods are less precise

than CBIR-based pose estimation (section 2.2.1). They demonstrate that learned pose

regression method are more likely to average the pose of the training examples [300]

rather that computing a real pose based on geometric constraints. Another disadvantage

of Posenet-like methods, and more generally of learned methods, rely on the fact that a

different model has to be trained for each new scene.

Differently, recent work from Weyand et al. [322] consider the localization problem as

a classification task. They perform a worldwide training on 126M images categorized into

26k places across the globe. According to a given image a CNN, named PlaNet, estimates

the most likely location of the query over the split map. Localization of multiples photos

taken from a common album can be performed by augmenting the original network with

a LSTM layer. Vo et al. [313] push further the study of such a neural network and

conclude that the features extracted from layers of PlaNet are more discriminative to

determine the location of an input image that the CNN classifier itself. By extracting

features instead of using a classification algorithm, their contribution is closer to the

original CBIR world-wide localization method IM2GPS [106] (see section 2.2.1). Seo
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et al. [273] introduce CPlaNet and use combinatorial partitioning in order to improve

fine-grained localization. They use several models trained on different earth partitioning

in such way that the final query location can be determine by considering the overlap of

each model prediction.

2.2.3 Coarse to fine localization

The last family of VBL method we consider here are approaches called equivalently:

coarse to fine, hierarchical or cascaded localization. In a word, the localization process is

divided in two parts: initial coarse localization followed by a 6-DoF precise and relative

pose estimation on the reduced search area.

Initial localization

Initial step of the localization; its provides a coarse pose or position information or

multiple location hypothesis.

External sensors. The location prior can be obtained through extern sensors, like a

GPS that provide 3-DoF position information [8, 9, 12, 54, 225]. In order to recover the

orientation as well, magnetic compass can be used [288, 289, 335].

CBIR initial localization. Most of the hierarchical localization methods rely on

CBIR to obtain an initial localization [74, 244, 250, 256, 257, 264, 264, 281, 290, 291, 299]

(see section 2.2.1). In addition to obtain a coarse location information (from the geo-

reference information attached to the retrieved candidates), this approach provides vi-

sually similar data that can be used afterwards for the refinement step [244, 290, 291].

The most used image descriptor for retrieval in hierarchical methods is the CNN learned

global descriptor NetVLAD [6] (more information about NetVLAD can be found in next

chapter).

Pose refinement

The second localization step used the prior location information to generate a finer pose

estimation. This step often permits to obtain a full 6-DoF pose.
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Image-based refinement. Innovative contribution from Torii et al. [299] refine the

query location with a linear interpolation in the feature space domain of the closest

database images. The database is arranged with a graph representation, where images

represent the nodes and the edges encode spatial relation, i.e. images that are close to

each other (according to their GPS-tag) are connected. The exact position of the query

is guessed according to a linear combination of GPS information of the initially retrieved

database images. Although promising, this method relies on complete panorama images,

limiting its range of applications. Similar method have been used in [266] to demonstrate

that Posenet-like methods (§ 2.2.2) can only average learned pose from data instead of

reasoning on the image geometry to compute real 6-DoF pose.

Song et al. [281] introduce a purely image-based 6-DoF pose estimation after CBIR

indexing. Authors first compute relative poses of the query image regarding two re-

trieved candidates by computing the essential matrix from 2D-2D correspondences [105].

These two relative poses are used together to find the exact 6-DoF query pose. Such

approach has been extended in [339], where authors investigated the replacement of the

conventional essential matrix estimation by a direct regression through a DL model.

In [74, 290, 291], authors establish a dense correspondences between the query image

and the top-k retrieved candidates. Because the reference data are augmented with 3D

depth map information (only indoor environment are considered), 6-DoF query pose

can be retrieved from these correspondences (paragraph 2.2.2). This method, called

InLoc, have been improved in [244] by replacing the dense correspondences operation by

a CNN capable of establishing local matches between a pair of images by features block

correlation.

In [21], the relative pose estimation between two images (the request and the top-

retrieved candidates from initial CBIR) is directly computed by a two-streams CNN. As

well as absolute pose regression described earlier (§ 2.2.2), relative pose regression with

deep models is a well studied topic [78, 143, 146, 181, 251].

Model-based refinement. Arth et al. [11] present a system that recover the pose of

a smart-phone camera by confronting an image to a subset of 3D points that should be

visible in the query according to a prior pose information. This idea of local SfM model

have been extended in [247, 264], where only a subset of the reference images (the ones

retrieved in the initial step) is used to compute the 3D model. Authors of [256, 257]
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use multiple position hypothesis obtained by clustering location information initially

obtained by CBIR. The query image is registered on these different places and the most

likely final pose is selected according to inlier count (§ 2.2.2). Shi et al. [275] use a similar

approach, with the augmentation of the 3D point cloud with semantic information.

Russell et al. [250] investigate techniques to retrieve the pose of a painting or sketch

according to a photo-realistic 3D model. Given a coarse pose prior, the query location

is refined by establishing edges correspondences with the real model, followed by Itera-

tive Closest Point (ICP) like algorithm. ICP pose refinement has also been used in [16],

where authors register mountain images to a DEM. Similarly, Arth et al. [12] introduce a

method to estimate a fine pose of a mobile camera to initialize Augmented Reality (AR)

applications or SLAM systems. Authors refine the initial pose by matching geometric

features to buildings outlines extracted from a 2.5D map. This method have been ex-

tended recently with advanced geometric features extraction models [8, 9, 10]. In [272],

a local 3D point cloud augmented with semantic information is located in relation to

a larger model. After a initial retrieval step, the query point cloud is precisely located

using 3D-3D correspondences (with semantic agreement) followed by ICP.

Poglitsch et al. [225] introduce a particle filter to perform localization. The particles

are randomly generated over a 3D model from a coarse position information. Widely

spread in robotic community, particle filters have also been used to refine a coarse pose

of a mobile robot in known ground 3D space [176] or an aerial map [41, 57].

2.3 Data with Dissimilar Appearances

As pointed out by Lowry et al. [168], permanent changes occurring in our environment

is a huge concern in vision domain. In VBL, to the difference of SLAM based navigation

methods [88, 168], the environment representation (i.e. the database) is most of the time

acquired at a single date and query can be opposed to the system years after. To take into

account local changes of the environment the database needs to be updated. Depending

on the size of the covered area, database update can be a costly operation. Thus, an ideal

VBL system should be able to handle minor visual changes from various sources: daily

and season cycle, difference in viewpoint or modifications of the local geometry of the

scene. In this section we review selected VBL papers that tackle the problem of visual

changes in the environment. We dedicate the second part of the section to localization
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In [91], authors use semantically weighted keypoints to match images taken with opposite

viewpoints.

Image rectification [87] is also employed in VBL to minimize appearance changes

introduced by different viewpoints. With strong assumption on the environment where

the localization is performed (e.g. such as Manhattan world assumption [52, 195]), images

rectification ensure that facing direction of all visual data will be barely the same. With

the hypothesis of an urban scene, vanishing points can be extracted [87, 105, 145] and

images rectified to display front facing buildings [12, 52, 54, 189, 243].

Other approaches consist of filling the database with additional data to cover all the

possible viewpoints for a given environment. Milford et al. [187] generate translated

view on a database road-circuit for preventing miss-matches if the car, carrying the

acquisition system, is moving on a different traffic way than the one used to collect

the database. Notice the use of a depth from monocular images DL model to produce

synthetic shifted-views. Work from [14, 111, 301] increases the number of documents in

the database by automatic data generation to ensure that whatever the viewpoint of an

incoming query, a document displaying a similar view can be retrieved. Majdik et al.

[174] perform air-ground matching of picture taken by a Micro Air Vehicle (MAV) against

street view images. The main challenge outlined in this paper is the large difference in

angle viewpoint. Authors generate artificial view from both the database and the query

image to handle the affine transformation introduced by altitude differences (inspired by

the work of [190]). Inloc [290, 291] introduces dense pose verification with view synthesis

for indoor localization: artificial viewpoints are rendered from a 3D model at putative

query poses.

Long-term localization. As exposed in the introduction of this section, VBL meth-

ods need to be robust to visual changes present in images taken at different times.

These differences can be induced by: illumination changes across season, daily cycle,

weather conditions, or dynamic changes in the scene (see figure 2.5(a) for illustration).

Lowry et al. [168, Section VII] explore exhaustively Visual SLAM methods that perform

strong illumination invariance place recognition (e.g. SeqSLAM [186, 215, 216] or FAB-

MAP [64, 65, 212]). In [167], authors present an invariant-free image representation in

order to overcome perturbation induced by long-term localization. Rosen et al. [245]

propose a model to take in account the features persistence, decreasing the probability of
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encountering a feature that have been met for the first time a long time ago. In the work

of Porav et al. [227], authors use Generative Adversarial Network (GAN) to produce

time-shifted images before the localization task. For instance, they convert night-time

images into daytime images to improve local feature matching across the query and refer-

ences data. This method can also be used for inter-season localization. Bescos et al. [27]

handle explicitly non-sustainable visual elements, such as car or pedestrian, in order to

create invariant image representation. They detect disruptive objects in images, remove

it and finally inpaint the modified element thanks to a GAN trained on synthetic data.

In [196], a adaptive learned mask is applied on the input images. This mask aims to

remove non-persistent elements upstream of the image description.

As mentioned previously, methods based on local descriptors are prompt to handle

local changes in images due to dynamic modifications of the environment (e.g. vegetation

growing, buildings construction or annihilation, presence of pedestrians or vehicles, par-

tial occlusions, etc.). Several investigations have been led for designing robust descriptors

to local geometric changes. In [131, 160], authors train SVM classifiers to discriminate

strong and weak local features for the VBL task. This method, and its continuation [130],

shows promising results where features are more often selected when they are attached

to persistent objects, such as facades, and dismissed when they represent ephemeral or

changing elements, such as people or trees. In general terms, pretrained network for

semantic segmentation offer strong local description for long-term localization, as illus-

trated in [91, 192, 272, 275, 295].

In a more robotic-oriented-scenario, Mühlfellner et al. [193] investigate map invariance

representation when multiple instances of the same environment are available. On the

other hand, learned descriptors show good performances if trained for the specific inter-

season matching task [45]. Arandjelović et al. [6] train a CNN for global description

upon images from the Google Street View Time Machine to get diverse representation

of the same scene captured over a period of ten years. From this kind of representation

of the environment, persistent clues can be efficiently extracted [198]. Similarly, Kumar

et al. [142] proposes a CNN approach for place recognition across seasons. In Germain

et al. [93], authors use a CNN as global descriptor for localization trained with explicit

information about the outdoor condition of each example. Once trained, their descriptor

can be used for cross-condition localization, as long as external conditions (e.g. daytime,

rain, etc.) are known at query time.
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In the following we report methods focusing on one specific problem induced by long-

term localization.

Dealing with seasons & weather. Valgren and Lilienthal [309] have shown that

usual local features, like SIFT or SURF, are not well suited for similarity association

across season cycles. GRIEF local descriptor [139] (derivatives of BRIEF [42]) or ORB

feature [102] show better results for this task. Works described in [138, 139] model

seasonal-like cycle in a probabilistic framework in order to downgrade features that are

not likely to appear during a given period of time. A de-raining CNN filter is proposed

in [228] to improve localization with bad weather condition. Their model is trained with

both synthetic and real data.

Dealing with nocturnal illumination. In some application, especially for vehicle

localization, VBL has to be performed during a complete day, including overnight [180,

187] (see middle example of figure 2.5(a)). Dense descriptors’ extraction used in [301]

exhibit promising result for daytime to overnight images matching. At first glance,

artificial lights ubiquitous in urban scene can be considered as sources of disruption.

However, Nelson et al. [197] focus on this particular clues to perform localization across

only night road images. Anoosheh et al. [1], with an approach similar to [227], use a

night-to-day GAN to improve localization of night images.

Dealing with shadows. Some researches focus on the specific perturbation in-

troduced by shadow casting over images. Wan et al. [316] outline that satellite and

overhead images can change drastically in appearance depending on the relative position

of the sun during the day. Authors show that Fourier transforms can be used to create

shadow-invariant image representation. Corke et al. [63] implement the shadow suppres-

sion method presented in [84] to localize street images with important depth artefacts

projected by trees or buildings. This method still remains very sensor-dependent.

2.3.2 Cross-appearance localization

Subsequent part focus on methods that reach an extreme with change-invariance consid-

eration by creating cross-appearance algorithms for VBL. We distinguish between two

main categories of applications: cross-view VBL, where authors localize a ground-view
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image against database of aerial images, and cross-domain VBL, where the purpose is to

localize images of various nature (like ancient photographies, painting, sketching, etc.).

Cross-view Cross-view localization [48, 158, 293, 312, 325], also denoted as ultra-wide

baseline matching [25], consider the problem of ground level localization from aerial-

level set of photo shoots (see figure 2.5(b) for an illustration of data association targeted

by cross-view systems). Cross-view VBL is motivated by the fact that satellite pho-

tographies are rich sources of information, available almost all over the globe. However,

finding similarity between data acquired at a ground level and data captured with flying

devices is a hard task due to the extreme change in viewpoint. In [312, 325], authors

investigate the use of a CNN to automatically associate ground level images taken from

street view service with fine-grained overhead images. Vo and Hays [312] compare several

CNN architectures and conclude that triplet trained network provides the most suitable

descriptors for cross-view matching. Rotation invariance between ground and overhead

images is also studied through auxiliary loss and special training. Conditional GAN

are explored in [241] to generate ground level image from aerial footage (or vice versa).

Authors show that the latent representation learned by the CNN can be used as image

feature for cross-view localization.

In [24, 25, 159], authors use bird’s eye imagery to localize ground level snapshots.

Bansal et al. [24] method relies on ground level images rectification, like methods focused

on viewpoint changes (refer to §2.3.1).

Cross-domain Another field of research where the data association is very challeng-

ing is the cross-domain localization (an example of cross-domain VBL is presented in

figure 2.5(c)). Russell et al. [250] work, followed by Aubry et al. [14] contribution, focus

on the task of retrieving the pose of an old hand-drafted document (a sketch or a paint-

ing) according to a known realistic representation. In [14], hard training of HOG-based

descriptors are used to capture the global shape of the architectural scene displayed in the

documents, in the same manner as [277]. Results are impressive, but the used descriptor

is not robust to viewpoint changes. Cross-domain techniques are also used to recover the

pose of ancient photographies and to confront them with current data [19, 29]. Bhowmik

et al. [29] study a new approach for pairing various local descriptors in order to increase
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result of VBL methods in term of robustness against visual changes and precision. We

divide geometric information used in VBL on four main categories:

• Weak Geometry: basic primitives like plans or simplified geometric model,

• Point Cloud: unordered set of 3D points, triangulated from images or acquired

from lidar,

• Depth Camera: locally dense geometry obtained by active sensors,

• 3D Model: full geometric model covering the area of localization, hand-crafted or

generated from other sources.

Weak geometry. In [54, 301], authors introduce weak geometric clues that describe

principal 3D planes present in the scene. This information is then used to modify existing

images in the database: for rectification purpose [54] or to generate more images in order

to cover a larger area [301]. Cham et al. [52] use a 2D buildings outline map for VBL.

From a given image, authors extract buildings corner and match them according to the

map. Along the same line, VBL method from [8, 9, 10, 12] relies on a 2.5D city model

(schematic buildings outlines boxes from OpenStreetMap1). 2D map is also used as geo-

reference in the work from [40] (extended version in [41]) where authors produce, thanks

to a stereo-camera, a path of a vehicle that is afterwards matched against the map. The

matching process is embedded in a probabilistic framework to handle large environment.

Baatz et al. [16] introduce the use of a DEM to perform localization in mountainous

terrain [55, 237, 303]. Bansal and Daniilidis [23] extend this idea in urban localization to

perform purely geometric VBL with images as query input and city DEM as reference.

These purely geometric descriptions, also used in [57, 179, 237, 238] (see figure 2.6(a)),

permit localization independently of the illumination conditions.

Point cloud. Previous section 2.2.2 emphasizes the growing importance of colour-

ized point clouds obtained by SfM in VBL [81, 111, 153, 169, 171, 184, 258, 259, 261,

263, 288, 289, 335]. The addition of geometric relation by SfM improves retrieval per-

formances [260] and permits precise pose estimation of the query, on the contrary of

methods based on simple images collections.

1https://www.openstreetmap.org
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In addition to the structured-based methods, some works focus on the localization

of non-photogrammetric point cloud (i.e. not create from images with SfM algorithms),

for instance acquired by laser scans [68, 77, 272, 304, 329, 336]. From these methods,

we can distinguish between global [272, 304] and local [68, 77, 329, 336] point cloud

description. Fluctuation in point density is handle trough 3D automatic completion

with an autoencoder in [272] and by projection the 3D points in 2D in [77]. In order to

be more robust to view point changes, methods in [68, 329] process points in an unordered

manner. By considering only the geometric structure of the scene, such methods are prone

to handle radiometric changes present in long-term localization scenario, as illustrate

in [272, 304] (see top of figure 2.6(a)).

Depth camera. SfM reconstruction is a costly operation and laser sensor can be ex-

pensive and cumbersome for embedded VBL application. Depth cameras permit a direct

and cheap perception of the 3D geometry of the scene (e.g. stereo camera, IR pattern

projective camera, Time of Flight (ToF) camera, etc.). Raw data from those depth sen-

sor are often used to add supplementary information channel to the VBL system. Works

from [180, 199, 315] use disparity map from stereo camera. Several authors [97, 104, 276]

used active depth camera that project infra-red pattern to train regression forest for lo-

calization. Similar technology is used in [147] to perform VBL in complete obscurity. In

the work of [83], authors consider planar surfaces extracted from an RGB-D live stream

as sustainable information for localization. The plane are organized within global graph

where the pose of the camera can be retrieved quickly through sub-graph to global-graph

matching. However, depth camera are not well suited for outdoor uses, reducing the

range of applications to indoor scene.

3D model. Consistent 3D models (i.e. watertight 3D reconstruction) are also used

to perform VBL task. For indoor localization, works from [207, 276, 290, 291] use tex-

tured model reconstructed from RGB-D sensor [276] or hand-crafted with dedicated

software [207]. Salas-Moreno et al. [255] introduce Computer Aided Design (CAD) mod-

els to describe objects in an indoor environment and recover the pose of a depth camera

when the pose tracking is lost. City-scale models are used by [14, 47, 208, 209, 225] to

perform outdoor VBL.
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2.4.2 Semantic information

Robustness and precision brought by geometric information has a significant cost in term

on data acquisition, processing power and storage needs. Nevertheless, there is a good

alternative and discriminant data representation: the semantic information. In addition

to being generic regarding the original “raw” scene representation, semantic abstraction

permits a discriminative and robust description of the scene. Semantic information used

in VBL are classified between two classes: segmentation and categorization. Segmen-

tation involves local methods that recognize within a data sub-parts with a semantic

meaning (e.g. object detection in an image). On the other hand, categorization can be

seen as global descriptors that associated semantic labels to a given data (e.g. scenes

interpretation [69]).

Segmentation. In [7, 48, 57, 321], authors use object to object semantic correspon-

dences to directly recover the pose of the query (illustration on figure 2.6(b)). Weinzaepfel

et al. [321] create an object-of-interest database for localization. They demonstrate the

robustness of their method to illumination changing on a synthetic museum dataset,

where the object-of-interest are the paintings in a gallery. In [169], semantic segmenta-

tion is used to narrow the search scope by aggregating information about the detected

objects in a room.

In a different manner, Arth et al. [12] present concrete application of semantic seg-

mentation for localization by extracting building primitives to correct pose hypothesis

(the image is segmented with a SVM classifier). In following works [8, 9, 10], the image

localization is performed by segmenting principal semantic components (facades, nor-

mal to facades, corners, etc.) of a building and by optimizing the query pose based on

this segmentation and a map. They use CNN trained in a weakly supervised manner to

densely extract the architectural elements of buildings. On the other hand, several meth-

ods rely on annotated map [13, 318] or Geographic Information System (GIS) [7, 48, 231]

to guide the localization.

Works described in [5, 192] consider the re-weighting of extracted local features in

image according to the semantic class of the pixel obtained by image segmentation. Using

this information, authors reduce the influence of local features that are not semantically
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robust for VBL, like vegetation or cars. Thanks to progress in DL, specially in image se-

mantic segmentation, new methods based on CNN have been successfully used to enforce

coherence of local matching between images for localization [275, 291, 295].

Schönberger et al. [272] used latent representation computed by an autoencoder

as global features for localization. They show that incorporating semantic segmen-

tation information into the model representation improves significantly the localiza-

tion performances of their descriptor. Similar conclusion are drawn in these following

works [236, 274] In [90, 91], authors explicitly model the semantic classes of feature

associated to a given region for localization of images with extreme view-point changes.

Categorization. Scene categorization [326] is a different manner to exploit semantic

clues for VBL. High level semantic features have been popularized with the augmentation

of labelled data and the accessibility of high computation power devices (GPU, Cloud

Computing). ImageNet challenge introduced in 2009 by [69] permits the emergence of

fast and robust classification methods, like the one described in [140]. Image classification

produces a sub-sample of semantically identical images associated to a class. In VBL,

classification can be used to decimate the database in order to proceed in a subsequent

step to a more precise pose search. This method is successfully applied in [286], where

the used CNN has a dual-purpose: narrowing the search scope by semantic labelling

and producing a global descriptor by weight aggregation. In [199, 302], classical learning

methods like Gaussian Mixture Models (GMM) or epitome are employed for associating

images to a finite number of possible locations. Recent work from [89] use semantic cate-

gorization in order to establish transition probabilities from a given type of environment

to another one. Authors embed this framework in the SeqSLAM algorithm, improving

the global system accuracy. Finally, works presented in [273, 322] consider the problem

of world-wide localization as a classification task. A CNN is trained to predict, from an

raw image, its most probable location among a fixed number of Earth places.

2.4.3 Other modalities

Geometric and semantic are the principals modalities used in common with radiometric

information to improve VBL. Yet, some works rely on thermal imaging [170], infrared

sensor [30] or polarimetric cameras [239]. Thermal imaging makes possible the pose esti-

mation of a camera in challenging low-light scenario [170]. On the other hand, sun light
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waves measurement from polarimetric cameras enables attitude estimation in unknown

outdoor environment [239].

2.4.4 Cross-data localization

We have presented so far three different kinds of information that can be used for VBL:

radiometric, geometric and semantic. These types of data are commonly used together to

improve localization. In this part, we consider the scenario where all types of data are not

available at query time, for instance if the database uses more complete representation

of the environment than the query input. It is a common scenario because some data are

more difficult to acquire or required specific sensors (e.g. geometric information). In this

case, methods have to deal with asymmetric representation of the environment in term

of data type. We denote this problem cross-data VBL and classify the methods founded

in the literature in two categories: methods using a common description regardless of the

type of data and methods projecting one type of data within another data representation

space.

Common description. Features to Points (F2P) VBL (see §2.2.2) oppose 2D images

to 3D point cloud. In fact, all the features are exclusively extracted from images. On the

other hand, semantic abstraction permit cross-data comparison by considering semantic

object extracted from various types of data: images to 2D building outline map [52],

images to map [7, 41, 48, 231], RGB-D data to DEM [57], etc. Referring to a similar

physical entity, not necessary semantic, is also a manner to link information from various

types of data. Images to DEM correspondences is performed in [23] based on a method

relying on purely geometric clues extracted both in the image and the model. Recent

work from [148, 279] use joint descriptors to merge RGB and depth data into a single

feature.

Data projection. Another widely used method for combining data of different types

consists of projecting one of the engaged data into the representation space of the other.

For instance, lot of methods consider the challenging problem of registering photographies

upon 3D models [12, 16, 128, 207, 208, 209]. Similarity comparison is performed thanks to

synthetic images generated from the 3D models [14, 176, 225, 250, 290, 291]. Notice the

synthesis of skyline profiles from DEM in the work of Baatz et al. [16]. In [14, 92, 111, 301],
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special attention is paid to placement of the artificial cameras that generate virtual 2D

views.

Generative models that create auxiliary modalities from images [334] are promising

tools for cross-data localization. CNN that deduces normal direction (derivative of the

depth map) and semantic segmentation from raw images have been successfully used

in [291] for indoor localization.

2.5 Discussion

As VBL panorama is wide and varied, we first propose a review of recent datasets and

evaluation metrics used for comparing different approaches. Afterwards, we highlight

common usage and promising research avenues in VBL.

2.5.1 Datasets

Commonly used datasets in VBL are presented in table 2.2. Because of the important

difference between 6-DoF pose estimation and CBIR for localization, there exists two

kinds of datasets used in VBL: list of images (with basic position information or land-

mark/place tags) and strongly structured datasets (that can be composed of point cloud

or fine geo-referenced images). Notice the growing number of publicly available datasets

starring complete 3D scans of large cities [172, 183, 319]. As mentioned earlier, long-

term localization in changing environment is an hot topic in robotic research. We observe

therefore appearance of several datasets featuring multiple acquisitions of the same place

over long period of time [46, 137, 138, 172].

For landmarks recognition in city (used method come mainly from CBIR for local-

ization approaches), the most used dataset is the revisited version of Oxford and Paris

landmarks [235]. Concerning precise 6-DoF pose estimation under changing condition,

researchers prefer the recent benchmark from Sattler et al. [265] that compiles multiples

datasets focused on long-term localization scenario.

Coverage and consistency. All the application relying on VBL do not cover the same

area. For instance, a system design for car pose estimation should be able to localize

a vehicle in a larger area than a pedestrian VBL system should do. Thus, there exists

dataset with a coverage spreading from small indoor scenes to world-wide area.
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Visual content within a dataset can be uniform, reference and queries are from the

same sensor and captured at the same time, or inconsistent, queries have been taken

under different condition or with different sensor than the references data. In order to

reflect real-life conditions, outdoor datasets are often inconsistent, with visual dissimi-

larity between queries and references induced by acquisition sensors, dynamic changes in

the scene (cars & pedestrians), weather conditions etc. Indoor datasets use more uniform

data [276], thus targeting application like camera re-localization for robot navigation or

augmented reality.

Evaluation metrics. Authors use various types of performances criteria in order to

compare CBIR for localization methods. The recall @k, or recall @k%, is the most used

metric. It represents the percentage of queries that present a good match within the

k or k% top ranked images. A query is considered correctly localized if it lies inside

a tolerance radius from its ground truth position (from 10 to 25m, depending on the

dataset). Usually k is set to 10 or 1%. If we consider only the top 1 retrieved candidate

for evaluation, distance from the ground truth is used as the main precision criteria.

For places or landmarks recognition tasks [235], mean Average Precision (mAP) evaluate

performances of the method.

Concerning 6-DoF pose estimation methods, authors simply compute the median

(rarely the mean) of absolute position and orientation error relative to the ground truth.

Another criterion can be extracted from the inlier count obtained against a robust geo-

metric verification (for image based localization). A query is considered as successfully

matched if enough inliers are found after RANSAC. However, such a metric does not

ensure that the data is well localized according to the model [261]. Percentage of well

localized images, i.e. under a given error threshold (e.g. 5cm & 5◦ for indoor scene), is

also a current evaluation metric. Recently, Sattler et al. [265] introduce a more detailed

metric by considering multiple level of precision (from fine to coarse localization) with

different thresholds.
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

2.5.2 Trends in VBL

A quantitative comparison between all VBL systems is impossible due to the diversity in

both methods and applications. Nevertheless, we refer reader to recent papers that quan-

titatively compare specific types of state-of-the-art methods. Concerning CBIR methods,

following recent contributions [100, 233] show comprehensive comparisons. In [235], au-

thors benchmark state-of-the-art methods on the Revisited Oxford and Paris dataset.

F2P methods based on SfM are carefully compared on three papers [81, 263, 289]. A

comprehensive comparison between 6-DoF pose estimation approaches, both learned and

structured based, is presented in [266]. We refer readers to the online leader-board of

the visual localization benchmark [265] for up-to-date bests methods for pose estimation

under challenging conditions. In the following, we propose our qualitative analysis of

VBL panorama.

Method development. As discussed earlier, there is a trade-off between the area cov-

ered and the precision reached by the VBL system; the survey of Brejcha and Čadík [38]

provides a complete overview of this problem. CBIR for localization methods prioritize

the space coverage, city scale [100] to word-wide [313], whereas full pose computation

methods focus on precision and exact 6-DoF estimation [81] on reduced area.

Getting both wide area coverage and high precision of the query pose is the current

challenge of VBL. As shown in [264], coarse to find localization systems (see section 2.2.3)

are certainly a good alternative to achieve this objective. By firstly reducing the amount

of data and in a second step recovering the exact pose of the query is a clever manner to

target both pose precision and scalability. This cascaded localization pipeline is a well

studied research area [15, 182, 247, 264, 281], and more and more recent works address

the location problem in this way [94, 256, 257, 290, 291].

Benefit of heterogeneous data. All along this survey we emphasize the growing

importance of multiple types of data (radiometric, geometric and semantic information)

for the task of VBL. As discussed in section 2.4, using more sophisticate data aims to

overcome shortcoming of radiometric based systems. Geometric data improve the final

pose estimation [210, 211, 290] and are robust to radiometric changes that we encounter

in long-term localization [304]. Semantic representation also offer promising results. De-

scription at object-level is generic and compact in regard to the raw data [255] and

44



2.5 Discussion

can be used to handle local changes in scene appearance and geometry [321]. Images,

though, contain extremely explanatory clues [6] and are much more easier to collect com-

pared to semantic and geometric data. That is why, when considered as complementary

information, these three type of data offer the most effective scene representation for

VBL [272, 291].

Machine learning in VBL. VBL benefits from the recent progress in machine learn-

ing. Recent global image descriptors for localization are CNN especially trained for this

task [101, 201, 234] (see next chapter, section 3.1). End-to-end CNN for 6-DoF pose re-

gression are also a growing research subject [37, 126, 127, 128, 236, 251, 314]. Regarding

structured methods, classic gradient-based local features (e.g. SIFT) are progressively

replaced by their learned counterpart [244, 257]. DL plays also an important role in the

semantically-guided localization methods (section 2.4.2). High performances achieved

by recent dense semantic segmentation models have permitted the emergence of novel

VBL approaches [196, 272, 275, 294, 295]. VBL based on geometric information are also

beneficing from DL progress. For instance, PointNet [230] has been successfully used

to describe point cloud for large-scale localization [304]. New models capable of modal-

ity transfer, like depth from monocular images CNN [75], are well designed to handle

cross-data localization scenario. Its can be used in VBL [291], as its have been used in

autonomous navigation to improve SLAM systems [165, 292].

Runtime consideration Real-time performances and embedded architectures are con-

straints mainly present in the robotic community. In VBL, such criteria are not always

taken into account. This can be explained by the fact that recovering the localization of

an input query is a one-shoot action; i.e. it has to be performed only once compared to

tracking systems [175] or SLAM algorithms [88]. Furthermore, as described in previous

section 2.2, VBL methods are two-step: an offline and an online step. Computational

time is mainly consumed during the offline step that can be computed in advance of the

localization.

Yet, some authors manage to reduce the computational cost of their system [97, 171,

276]. For instance works from [56, 81] introduce a light version of F2P method, using

binary local descriptors, and works from [62, 128, 322] embed their localization system

in a compact CNN architecture loadable on a smart-phone. Middelberg et al. [184]
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2. REVIEW OF VISUAL-BASED LOCALIZATION METHODS

introduce a multi-scale scene representation for low-cost computation. The pose is firstly

estimated according to a local representation of the scene before a global estimation on

the full scene, computed on the cloud. Sarlin et al. [257] reduce the size of their CNN by

training it through distillation.

2.6 Conclusion

In this chapter, we have been through the principals characteristic of a VBL system.

We began by presenting common data description shared by localization method, then

we introduced the three main classes of localization methods, CBIR for localization, 6-

DoF pose estimation and coarse to fine localization, and we reviewed the principal VBL

systems within these classes. In the second part of this chapter, we described the major

challenges encountered in real-condition VBL scenarios and, in a second step, we have

shown how auxiliary information about the scene, like the geometry or the semantic, can

circumvent the limitation induced by the use of only radiometric data.

During the discussion, we have highlighted two major trends in modern localization

systems. On the application level, the main challenge concerns the long-term localization

scenario, where the queries and the reference data can be very different. From a method-

ological point of view, cascaded localization methods are providing the best trade-off

between precision and coverage. That is why we decided to focus our research on the

design of a 2-step VBL system well suited for long-term localization. In order to do

so, our method will take advantages of learned geometric clues from a modality-transfer

CNN. We have paid a particular attention at the implementation of our method. Thus,

the proposed localization system is light and do not rely on a heavy scene representation:

it is therefore suitable for embedded or robotic applications. The two following chap-

ters, chapter 3 and chapter 4, are receptively dedicated to our new image descriptor for

localization and to our pose refinement step based on learned geometry.
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Chapter 3

Side modality learning for

large-scale visual localization

In this chapter, we introduce the first step of our hierarchical localization method: a

Content-based Image Retrieval (CBIR) method tuned for localization (see section 2.2.1).

More precisely, we are interested in the design of an efficient global image descriptor for

long-term localization.

As discussed in the previous chapter, one of the main challenges of Visual-based Lo-

calization (VBL) remains the mapping of images acquired under changing conditions:

cross-season images matching [196], comparison of recent images with reference data col-

lected a long time ago [295], day to night place recognition [301], etc. Recent approaches

use complementary information in order to address these visually challenging localiza-

tion scenarios: geometric information through point cloud [265, 272] or depth maps [57]

and semantic information [7, 57, 196]. However geometric or semantic information are

not always available or can be costly to obtain, especially in robotics or mobile applica-

tions when the sensor or the computational load on the system is limited, or in cultural

heritage when the data belong to ancient collections.

In this work, we are considering a scenario where we have an offline access to multi-

modal data but only-radiometric information during the online localization step (as illus-

trated in figure 3.1). This is a realistic scenario: a mobile mapping vehicle with multiple

sensors is used once to gather initial information on the area of interest and then, agents

are sending localization request with a low computational sensor like a smart-phone cam-

era. Such setup is also in accordance with the specifications of the Cartographie Long
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

Multi-modal data available o.ine Single-modality data available online

Figure 3.1: Data partitioning within a practical localization scenario: data avail-
able offline are richer than the one used during the localization task. We consider RGB
(radiometric) + D (geometric) + R (material reflectance) as multi-modal data and only-
RGB as single modality information.

Terme pour la Navigation Urbaine (pLaTINUM) project (see section 1.2), which this

works is part of.

Based on these observations, we propose an image descriptor capable of reproducing

the underlying scene geometry from a monocular image, in order to deal with challenging

outdoor large-scale image-based localization scenarios. We introduce dense geometric

information as side training objective to make our new descriptor robust to visual changes

that occur between images taken at different times. Once trained, our system can be used

on monocular images only to construct an expressive descriptor for image retrieval. This

kind of system design is also known as side information learning [110], as it uses geometric

and radiometric information only during the training step and pure radiometric data for

image localization.

The chapter is organized as follows. In section 3.1, we first revisit recent works

related to image description for localization and side information learning approaches.

In section 3.2, we describe steps that have led to the design of strong image descriptor

trained with side depth information. In section 3.3 we give insight on our implementation

and on the dataset we used and we illustrate the effectiveness of the proposed method on

six localization scenarios in section 3.4. We discuss, in section 3.5, about the challenging

night to day image matching problem and, in section 3.6, we present a variation of our

method using dense object reflectance maps instead of depth maps. Section 3.7 finally

concludes the chapter.
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3.1 Related work

3.1 Related work

3.1.1 Image descriptor for localization.

As described in section 2.2.1 (figure 2.1), the first step of a CBIR as a localization

method is the data description. This can be done using local descriptors, aggregating

local features into a global vector or by computing a global signature from the raw image

(section 2.1). In the following we review the two type of features mainly used in the

literature:

• aggregated local descriptors,

• learned descriptors.

Aggregation of local descriptors

Local features (section 2.1.1) are prompt to produce a large number of descriptors for

one single data, making the subsequent similarity search intractable. Hence, features

aggregation is performed to reduce the dimensionality of the final descriptor vector. In

VBL, the aggregation process emphasize specific features that are more beneficial for the

localization task.

Quantization. Quantization methods have been widely adopted in image-retrieval do-

main since the pioneering contribution of Sivic and Zisserman [278]. They consider the

problem of object retrieval in an image described through local features in the same

manner as text document research. Words equivalent in image domain becomes local

features and a dictionary is build upon a large set of features extracted from visual

documents’ database. These features are clustered to reduce the size of the dictionary;

clusters’ centroids are then called visual words. For each visual word in the dictionary,

and inverted file is maintained to efficiently retrieve all the data that present this specific

visual word. The Bag of Features (BoF) associates a vector of the dimension of the

dictionary containing the visual word frequency of a specific visual document. With this

representation, data similarity can be efficiently computed by a simple inner product of

their respective visual word frequency vector.
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

BoF improvements. BoF original scheme [278] proceeds to a hard assignment from

the extracted feature to the nearest visual word in the dictionary. However, depending on

where the feature lies inside the Voronoi cell created in the clustering step, hard assign-

ment can deteriorate the representation of the visual document. Soft assignment [219]

methods have been considered by associating the features according to a linear combi-

nation of the k nearest visual words. Hamming embedding (HE), introduced by Jégou

et al. [117], subdivides Voronoi cells and associates to each feature a binary signature to

refine its position in the visual vocabulary. This method leads to excellent result in term

of accuracy and rapidity and is still used in state-of-the-art VBL [4]. Inspired by Fisher

Vector (FV) formulation [217], Jégou et al. [120] introduce Vector of Locally Aggregated

Descriptors (VLAD) representation for image-based retrieval. The difference between a

feature and its closest visual word is assigned to the final descriptor, instead of the visual

word itself. The underlying idea behind VLAD representation have inspired various VBL

methods [6, 131, 301, 328]. For instance, Kim et al. [131] introduce PBVLAD method

to locally fuse SIFT features detected inside a MSER blob. Novel features aggregation

method have been recently presented in [116].

Local features weighting. The weighting step is supposed to emphasize discrimina-

tive features regarding the similarity comparison. Original method by [278] used tf-idf

weighting, relying on the occurrence frequency of the features in the database. Jégou et al.

[118] handle the problem of intra and inter burstiness of visual words (i.e. the fact that a

feature is more likely to appear in an image if it has already been detected once) by adapt-

ing the weight of the visual words before (inter-burstiness) and during (intra-burstiness)

the query process. Torii et al. [300] tackle the problem of visual burstiness introduced

by repetitive structures (abundant in urban environment) and introduce meta-features

encompassing several similar descriptors (comparable both in their descriptor vector and

their spatial location in the image). Such improvement permits a dense extraction of

local features in images, bringing superior result in urban environment VBL [232, 301].

Another work from Morago et al. [189] also exploits the redundancy present in buildings

facades. Recently, Arandjelović and Zisserman [4] improve tf-idf scheme by considering

the descriptors’ density in feature space. With their DisLoc weighing, 7% of the less

discriminative visual words can be removed from the database without impacting the

performances of the similarity computation. Mousavian et al. [192] introduce semantic
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3.1 Related work

knowledge in the local feature weighting process, reducing the impact of features associ-

ated with non-relevant elements for localization (i.e. elements that are likely to change

or disappear, such as trees and cars).

Learned descriptors

With the recent progress of image representation through deep neural network, learned

descriptors have become a key component for numerous visual localization methods [94,

214, 256, 257, 265, 272, 287]. Therefore we decide to build on these recent advances and

use a Convolutional Neural Networks (CNN) based image descriptor as base component

of our system. We review in the following recent advances on learned representation for

localization.

Off the shelf models. One of the first method based on learned model for the task of

image retrieval have been introduced in [18]. Authors simply use pooling operation on the

features block (= neural code) extracted from a CNN to compute the image descriptor

(see figure 3.2). Although not trained for the specific task of image retrieval, such model

benefits from initial training on images classification task on a huge amount of data

(e.g. Imagenet dataset [69]). In [18, 286], authors show that the most discriminative

descriptors for the task of image-retrieval, especially applied to place recognition [286],

are extracted from mid-level convolutional layers instead of last fully-connected layers.

As shown in figure ??, convolutional layers produce features block, composed of

several activation maps stacked together. In order to capture a more discriminative

representation from these features block, several activation map pooling methods can be

applied. Maximum Activation of Convolutions (MAC) [240] reduce the features block by

aggregating the maximum of each activation maps into a vector. Instead of maximum

pooling, Sum-Pooled Convolutional Features (SPoC) [17] has shown superior results in

image retrieval. More specific pooling method, carefully designed for localization, are

presented in the next paragraph.

Learned descriptors can be combined with local or patch detectors, in order to obtain

sparse representation of the data. In this case, features extracted from the image can

be gathered into a single descriptor, like in the BoF framework. VLAD embedding is

employed in [328]. In [205], patches are sorted according to their relative position in the

image and aggregated in a Landmark Distribution Descriptor to improve the subsequent
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

Pooling
CNN

Encoder
Features block -escriptor

H !W ! ! Hf !Wf !# #"

Figure 3.2: CNN image descriptor: modern learned descriptors are composed of two
parts: a features extractor (encoder) and a descriptor pooling method. The features block
has a lower spatial resolution that the input (W ×H > Wf ×Hf ) with more channels (D "

3). The pooling method aims to reduce the size of the features block (Dd # Wf ×Hf ×D)
while keeping discriminative clues.

similarity search. Zhi et al. [338] exploit the intensity response of each patches to discard

descriptors with low intensity.

Specific architecture. Regional Maximum Activation of Convolutions (R-MAC) [298]

is an improvement of the precedent MAC method, consisting of the computation of the

MAC vector over regions of various sizes on the activation map. Gordo et al. [101]

achieve state-of-the-art performances by combining MAC representation with a custom

Region Proposal Network (RPN) that autonomously detects regions of interest on the

activation map. They also add a differentiable Principal Components Analysis (PCA)

layer (implemented with one fully connected layer) for dimension reduction. In [234], au-

thors use Generalized-Mean (GeM) pooling, a trade of between mean and max pooling

with a trainable parameter controlling the degree of spatial “focus” of the network. An

entirely trainable aggregation layer, called NetVLAD, have been proposed in [6]. Au-

thors design a differentiable architecture that aim to mimic VLAD aggregation scheme.

In [112], authors create panorama features by aggregating multiple NetVLAD descriptor

in a memory vector. Kim et al. [132] use the NetVLAD aggregation layer coupled with

an Contextual Reweighing Network (CRN) to downgrade irrelevant features according

to their local neighborhood, without the use of any manually annotated data. Along the

same lines, Noh et al. [201] propose the DELF architecture for local features extraction.

DELF relies on a self-spatial-attention mechanism to select discriminative local region

on the features block.
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CNN

CNN

CNN

Image
anchor

Positive
example

Negative
example

Triplet
loss

Desc.

Desc.

Desc.

Desc.

Figure 3.3: CNN descriptor
training with images triplets:
the triplet loss guided the training
by penalizing difference of the an-
chor and the positive embeddings
and the similarity of the anchor
and the negative embeddings (see
equation 3.2).

Training routine In recent works [6, 100, 233], authors tackle the problem of fine

tuning a pre-trained network for the specific task of similar images association for local-

ization. The shared idea is to construct images triplets composed of an anchor, a positive

example (displaying the same scene as the anchor image with small view point or illu-

mination variation) and a negative example (unrelated to the anchor image). An images

triplet is presented in figure 3.3. Then, the training signal aims to enforce similarity

between computed embedding of the anchor and the positive example and, conversely, to

make the anchor and the negative descriptors far for each other in the embedding space.

Multiple loss functions can be used to guide the descriptor training. Triplet ranking loss

is used in [6, 101] while in [201, 233], authors choose a contrastive loss. A comprehensive

evaluation of different objective functions is given by Liu et al. [162]. They also propose

a Stochastic Attraction and Repulsion Embedding (SARE) loss function, that enforces

both inter-place similarity and intra-place difference within the embedding space.

Arandjelović et al. [6] introduce a weakly supervised training approach, using the

Google Time machine engine to automatically create large database of triplets. Work

from [101, 201] make use of a large Landmark dataset for triplets creation. In [233, 234],

Structure From Motion (SfM) is used to link multiple images over a large panel of places.

The geometric verification provided by SfM allows to control the overlaps between anchors

and positives examples. In metric learning, hard examples mining is a crucial step for

creating meaningful embedding space. Hard negative mining is performed in [6, 100, 234]

by selecting negative examples that are closer to the anchor in the embedding space. Iscen

et al. [113] introduce a manifold distance to compare dataset examples. Using diffusion,

they are able to mine more effective examples compare to standard mining methods.
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

3.1.2 Learning with side information

As mentioned previously, complementary modalities useful for localization, like geometry

or semantic, may not be always available at test time. This could be due to limited

resources (e.g. with embedded system), different sensors, localization of old data, etc.

For this reason, we make available the geometric information used in this work only

during the offline training step and we rely on side information learning to benefit from

this auxiliary modality at test time. Recent work from [150] casts the side information

learning problem as a domain adaptation problem, where source domain includes multiple

modalities and the target domain is composed of a single modality. Another successful

method has been introduced in [110]: authors train a deep neural network to hallucinate

features from a depth map only presented during the training process to improve objects

detection in images. The closest work to ours, presented in [327], uses recreated thermal

images to improve pedestrian detection on standard images only. Our system, inspired

by [327], learns how to produce depth maps from images to enhance the description of

these images.

Depth from monocular image for localization. Modern neural networks archi-

tectures can provide reliable estimation of the depth associated to monocular image in

a simple and fast manner [75, 98, 173]. This ability of neural networks has been used

in [292] to recover the absolute scale in a Simultaneous Localization and Mapping (SLAM)

mapping system. Loo et al. [165] use the depth estimation produced by a CNN to im-

prove a visual odometry algorithm by reducing the incertitude related to the projected

3D points. In this work, we use the depth information obtained by a neural network

as stable features across season changes. Taira et al. [291] rely on dense surface normal

(derivative of the depth map) and semantic segmentation created by a convolutional

encoder/decoder [334] for localization of indoor low-textured images.

3.2 Model architectures and training

Motivation. As illustrated in figure 3.4, outdoor conditions drastically impact visual

appearance of a scene. It will be challenging for a descriptor relying only on the radio-

metric information to associate a similar embedding to the four images of figure 3.4. But,

if we take a look at the underlying geometry in these images (i.e. the associated depth
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3.2 Model architectures and training

Figure 3.4: Visual changes between radiometric and geometric domain: due to
outdoor conditions, visual aspect of images changes over time (top row), while, geometry of
the scene (corresponding depth maps, bottom row) remains stable.

maps, bottom of figure 3.4), this information seems more stable over time. The central

idea of our method is to use recent modality transfer network [75, 98, 173] (from images

to depth maps) to provide invariant image representation to our CNN descriptor during

training. At test time, the trained descriptor is used on images only.

3.2.1 Initial architecture

An overview of our first method can be seen in figure 3.5.

Principal descriptor. We build on recent advances in CNN image descriptor for de-

signing our system. We use standard convolution features extractor linked to a pooling

descriptor layer (figure 3.2). Formally, we denote fp the principal features vector of image

x computed by encoder Ep and descriptor Pp:

fp(x) = Pp(Ep(x)). (3.1)

We denote θp the weights of the image encoder and descriptor {Ep, Pp}. Notice that

descriptor P do not necessary contains trainable parameters (if we consider MAC pooling

method for instance).

Considering the images triplet {x, x+, x−}, as described in previous section (see fig-

ure 3.3), our CNN descriptor can be trained with the following triplet ranking loss [6]:
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Figure 3.5: Training pipeline of our preliminary solution.

Lp(x, x
+, x−) = max

(

λ+
∥

∥fp(x)− fp(x
+)

∥

∥

2
−

∥

∥fp(x)− fp(x
−)

∥

∥

2
, 0
)

, (3.2)

where λ is an hyper-parameter controlling the margin between positive and negative

examples.

Side geometry learning. In order to recover the geometric information from the

radiometric signal, we use a fully convolutional decoder Da [75]. Let {x, z} be a pair of

image and corresponding depth map, we can train our decoder to compute a depth map

from an input image with the following loss function:

Lpix(x, z) = ‖z − ẑ(x)‖1 , (3.3)

where ẑ(x) = Da(Ep(x)), is the output of the decoder. Lpix is a simple pixel loss

penalizing absolute error between the output depth map ẑ(x) and the target z.

Auxiliary descriptor. In order to take advantages of the learned depth representation

in our final descriptor, we use intermediate deep features computed by Da to create
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another descriptor fa:

fa(x) = Pa(D̄a(Ep(x))), (3.4)

where Pa is a descriptor and D̄a designs an intermediate output extracted from decoder

Da. We do not use the reconstructed depth map ẑ(x) (i.e. raw output of Da) to produce

vector fa(x) because it will be to sensitive to small viewpoint variations. Instead, we use

an intermediate output from D̄a, that should be more meaningful compared to ẑ(x) and

less sensitive to viewpoint changes. Indeed, because the decoder upsample the feature

maps, output of D̄a has a smaller spatial resolution and is deeper in comparison to ẑ(x).

We apply a triplet ranking loss La (see equation 3.2) to train weights θa of decoder Da

and descriptor Pa.

Overall training. Finally, we combine the principal and auxiliary features, fp(x) and

fa(x) in a common vector:

fp,a(x) = [fp(x), fa(x)] , (3.5)

where [·] is the concatenation operation. Combined descriptor optimization is obtained

through the last triplet ranking loss Lp,a and the final optimization is defined by:

(θp, θa) := argmin
θp,θa

[

Lp(x, x
+, x−) + La(x, x

+, x−) + Lp,a(x, x
+, x−)

+
1

3

(

Lpix(x, z) + Lpix(x
+, z+) + Lpix(x

−, z−)
)

]

. (3.6)

Our initial method requires triplets of RGB-D data to be trained.

3.2.2 Hallucination network

We compare our method of side information learning with a state-of-the-art approach

system, named hallucination network [110]. The hallucination network was originally

designed for object detection and classification in images and has never been used for

global image description. We adapt the work of Hoffman et al. [110] to create an image

descriptor system that benefits from depth map side modality during training. Our

adaptation of the hallucination network for image description is presented in figure 3.6.
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Figure 3.6: Hallucination network for image descriptors learning: we train an
hallucination network, inspired from [110], for the task of global image description. Unlike
the proposed method (see figure 3.7), hallucination network reproduces feature maps that
would have been obtained by a network trained with depth map rather than the deep map
itself.
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Principal descriptor. Similar to our proposal, the system is composed of a principal

image descriptor: encoder Ep + descriptor Pp, trained jointly through triplet ranking

loss of equation 3.2.

Auxiliary descriptor. Hallucination architecture needs an auxiliary network for train-

ing purpose, that will be discarded at test time. This auxiliary branch focus on extracting

significant information from the side modality (the depth map in our case). We design

the auxiliary network similar to our principal branch: the depth map descriptor is com-

posed of an encoder Ea linked to a descriptor Pa. The depth map descriptor is trained

with a triplet ranking loss La, where the embeddings are directly computed from the

truth depth maps:

fa(z) = Pa(Ea(z)). (3.7)

Hallucination descriptor. The key component of Hoffman et al. [110] proposal is the

hallucination network. The task of the hallucination branch is, with images as input,

to reproduce feature maps that would have been obtained by a network trained with

depth map rather than the depth map itself. The hallucination network share the same

architecture as the principal and the auxiliary branches. The hallucination descriptor is

composed of an encoder Eh and a descriptor Ph with trainable weights θh. It is trained

with triplet ranking loss Lh under the constraint of a perceptual loss [123]:

Lfeat(x, z) = ‖Eh(x)− Ea(z)‖2 . (3.8)

This constraint can be interpreted as knowledge distillation [109]. Final image descriptor

is obtained by concatenating fp(x) and fh(x).

Overall training. Training routine presented in [110] is two-step: we first optimize

weights θa of the auxiliary descriptor with loss La(z, z+, z−) and, secondly, we initialize

hallucination weights θh with pre-trained weights θa and solve the following optimization

problem:

(θp, θh) := argmin
θp,θh

[

α
[

Lp(x, x
+, x−) + Lh(x, x

+, x−) + Lp,h(x, x
+, x−)

]

+γ
[

Lfeat(x, z) + Lfeat(x
+, z+) + Lfeat(x

−, z−)
]]

, (3.9)
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where α and γ are weighting constants. During final optimization, weights θa are frozen.

Like our proposal, this method requires triplets of RGB-D data to be trained and, at

test time, the principal and hallucination descriptors are used on images only.

3.2.3 Discussion

Exploratory testing of our method has lead to unsuccessful results. During the training

step, our network failed to produce at the same time a meaningful image representation

for localization (losses Lp, La and Lp,a) and to reconstruct the scene geometry (loss

Lpix). After analyzing our architecture, we came up with the following conclusion: the

two target objectives are disrupting each other. This problem was due to the design

of our initial method: weights modification computed by the triplet ranking losses were

affecting both weights of encoder Ep and decoder Da. At the same time, modifications

induced by the loss Lpix (equation 3.3) were also correcting the same weights, making

the system unable to converge.

We do not encounter the same problem with our implementation of hallucination

network. The only loss functions that can interfere during the optimization are triplet

ranking loss Lh and perceptual loss Lfeat. Both losses lead to modification of halluci-

nation encoder Eh weights. But targeted task of the two loss function are the same:

Lh directly optimize the hallucination embedding for image retrieval and Lfeat force the

feature maps of encoder Eh to be close to the feature maps of encoder Ea, an encoder

that have been trained for image retrieval task as well.

In the next section, we propose an improved version of our initial method that solves

the aforementioned issue.

3.2.4 Final architecture

Our modified architecture, presented in figure 3.7, is composed of:

• a CNN image encoder Ep linked to a feature aggregation layer Pp that produces

the principal image descriptor,

• a CNN image decoder Da used to reconstruct the corresponding depth map ac-

cording to the monocular image,
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Figure 3.7: Image descriptors training with auxiliary depth data: two encoders
are used for extracting deep features map from the main image modality and the auxiliary
reconstructed depth map (inferred from our deep decoder). These features are used to create
intermediate descriptors that are finally concatenated in one final image descriptor.
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• a CNN depth map encoder Ea linked to a feature aggregation layer Pa that produces

an auxiliary depth map descriptor,

• a fusion module that concatenates the image and depth map descriptor.

Training routine. Principal and auxiliary descriptor, {Ep, Pp} and {Ea, Pa}, are trained

separately with triplet ranking losses Lp and La. As before, loss Lp,a is used for joint

optimization. The auxiliary descriptor {Ea, Pa} takes as input the reconstructed depth

map ẑ(x). Similar to our first architecture, decoder Da take feature maps of encoder Ep

to generate output ẑ(x). We constrain ẑ(x) to be close to ground truth depth map z

with the pixel loss defined in equation 3.3.

We designate θp weights of encoder/descriptor pair {Ep, Pp}, θa weights of encoder/de-

scriptor pair {Ea, Pa} and θg weights of decoder Da. The whole system is trained ac-

cording to the following constraints:

(θp, θa) := argmin
θp,θa

[

Lp(x, x
+, x−) + La(x, x

+, x−) + Lp,a(x, x
+, x−)

]

, (3.10)

(θg) := argmin
θg

[Lpix(x, z)] . (3.11)

We use two different optimizers: one updating θp and θa weights regarding con-

straint (3.10) and the other updating θg weights regarding constraint (3.11). Because

decoder Da relies on feature maps computed by encoder Ep, at each optimization step on

θp we need to update decoder weights θg to take in account possible changes in the image

features. We finally train our entire system, by alternating between the optimization of

weights {θp, θa} and {θg} until convergence. By removing Ep from the optimization of

the depth from monocular objective (equation 3.11) and by adding an auxiliary encoder

Ea, we get rid of the interfering tasks problem observed earlier (see § 3.2.3). Notice that

even if the encoder Ep is not especially trained for depth map reconstruction, its intern

representation is rich enough to be used by the decoder Da for depth map reconstruction.

Advantages and drawbacks. One advantage of the hallucination network over our

proposal is that it does not require a decoder network (Da), resulting in a architecture

lighter than ours. However, it needs a pre-training step, where image descriptor {Ep, Pp}

and depth map descriptor {Ea, Pa} are trained separately from each other before a final
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optimization step with the hallucination part of the system. Our system does not need

such initialization.

One advantage of our method over the hallucination approach is that we have two

unrelated objectives during training: learning an efficient image representation for local-

ization and learning how to reconstruct scene geometry from an image. It means that

we can train several parts of our system separately, with different datasets. Especially,

we can improve the scene geometry reconstruction task with non localized {image, depth

map} pairs. These weakly annotated data are easier to gather than triplets, as we only

need calibrated system capable of sensing radiometric and geometric modalities at the

same time. We will show in practice how this can be exploited to fine tune the decoder

part to deal with complex localization scenarios in the following section 3.4.2.

3.2.5 Hard mining and swapping in triplet ranking loss

Hard negative minning policy. As mentioned in the previous section, hard mining

is a crucial step in metric learning [6, 100, 113, 234]. We construct our triplets like

in [6], using the GPS-tag information provided with the data. We gather N triplets
{

x,
{

x+i
}

i∈[1,Mp]
,
{

x−i
}

i∈[1,Mn]

}

composed of one anchor, Mp positive examples and Mn

negative examples. Negative examples are easy to collect as we only have to consider all

the data located further than a given distance threshold (according to the GPS informa-

tion), resulting in a large number of negative examples (Mn ≈ 2000 in our experiment).

Because Mn is too large, exact hard mining examples is not tractable. In [6], authors

store a fixed representation of the negatives examples that is used for negative mining.

They update the representation of all negative examples as soon as the new representation

computed by their model differs to much to the stored one. We adopt a different approach

with a small overhead in term of computation but taking directly in account model

updates. At each iteration, we randomly select a subset of M sub
n negative examples from

the entire pool, and compute the truth hard negative example from this subset. This

strategy also act as regularization during training as the negative training examples are

different at each epoch.

Anchor and positive swapping. We also adopt swapping technique introduced in [20].

It simply consists in choosing the most confusing pair between {anchor, negative} and
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Figure 3.8: Influence
of the joint loss Lp,a:
we report localization results
of our method trained with
or without the joint triplet
ranking loss Lp,a. We detail
the used metrics and datasets
in section 3.3.

{positive, negative} examples:

Lswap(x, x+, x−) = max
(

λ+
∥

∥f(x)− f(x+)
∥

∥

2

−min
(
∥

∥f(x)− f(x−)
∥

∥

2
,
∥

∥f(x+)− f(x−)
∥

∥

2

)

, 0
)

, (3.12)

Multiple examples. Finally, we use all the positive examples and Mhard
n hard negative

mined examples from initial pool M sub
n of negative examples, to compute a normalized

triplet ranking loss:

Lfinal

(

x,
{

x+i
}

i∈[1,Mp]
,
{

x−i
}

i∈[1,Msub
n ]

)

=
1

MpMhard
n

Mp
∑

i=1

Mhard
n
∑

j=1

Lswap
(

x, x+i , x
−

j

)

.

(3.13)

3.2.6 Descriptors fusion and dimension reduction

Fusion policy. We try to replace our basic features fusion operator introduced in

equation 3.5 (vectors concatenation) by more advanced functions, in order to benefit as

much as possible from the complementarity of the principal and the auxiliary modalities.

We investigate: hand-tuned descriptors scalar weighting, trained scalar weighting [279],

trained modal attention mechanism at the level of descriptors and trained spatial and

modal attention mechanism at the level of the deep features [274]. We found that all

the fusion policies perform similarly. Indeed, as can be seen in figure 3.8, the modalities

fusion are learned by our system through the triplet loss Lp,a, making the system aware of

what is important and complementary in the radiometric and geometric domain, without
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Figure 3.9: Train, validation and test

zones: the green path delimits our train-
ing area, the blue trajectory the validation
zone and the red path the test region. All
the data are from the Oxford RobotCar
dataset [172].

the need of a complex fusion method. Preliminary experiment presented in figure 3.8

also demonstrates the importance of using a triplet ranking loss on the combination of

the two feature vectors fp and fa. In this preliminary experiment, we use Resnet18 as

base encoder and NetVLAD [6] as pooling layer.

Post-treatment. After L2 normalization, we reduce the dimension of the final descrip-

tor by applying PCA + whitening [6, 101, 233, 234]. After the convergence of the whole

system we reuse the images from the training dataset to compute the PCA parameters.

3.3 Implementation details

This section presents the datasets used for training and testing our method as well as

insight about our implementation and a short presentation of the competitors compared

to our proposal.

3.3.1 Datasets

We have tested our proposal on the Oxford Robotcar public dataset [172] and on the

CMU Visual localization dataset [22] from the city of Pittsburg. These are common

datasets used for image-based localization [265] and loop closure algorithm involving

neural networks training [227] under challenging conditions.

Training data. We exploit the temporal redundancy present in Oxford Robotcar

dataset to build the images triplets needed to train our CNN. We build 400 triplets

using three runs acquired at dates: 15-05-19, 15-08-28 and 15-11-10, and we select
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Figure 3.11: Examples of test images : we evaluate our proposal on 6 challenging
localization sequences. Query image samples and the closest reference images in the database
are presented from Oxford Robotcar [172] (left) and CMU season dataset [22] (right).
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• Oxford – Snow: queries have been acquired during a snowy day,

• Oxford – Night: queries have been acquired at night, resulting in radical visual

changes compared to the reference images.

For the CMU Visual localization dataset, the reference dataset is composed of 1944

images with a sunny weather and the three query sets are:

• CMU – Long-term (LT): queries have been acquired 10 months after the reference

images under similar weather conditions,

• CMU – Snow: queries have been acquired during a snowy day,

• CMU – Autumn: queries have been acquired during Autumn, featuring warm-

coloured foliage and low sunlight compare to the reference data.

Query examples are presented in figure 3.11.

Evaluation metric For a given query, the reference images are ranked according to

the cosine similarity score computed over their descriptors. To evaluate the localization

performances, we consider two evaluation metrics:

• Recall @N: we plot the percentage of well localized queries regarding the number

N of returned candidates. A query is considered well localized if one of the top N

retrieved images lies within 25m radius from the ground truth query position.

• Top-1 recall @D: we compute the distance between the top ranked returned

database image position and the query ground truth position, and report the per-

centage of queries located under a threshold D (from 15 to 50 meters), like in [332].

This metric qualifies the accuracy of the localization system.

3.3.2 Implementation

Our proposal is implemented using Pytorch as deep learning framework, ADAM stochas-

tic gradient descent algorithm for the CNN training with learning rate set to 1e-4, weight

decay to 1e-3 and λ in the triplet loss of equation 3.2 equal to 0.1. We use batch size

between 10 and 25 triplets depending of the size of the system to train, convergence

occurs rapidly and takes around 30 to 50 epochs. We perform hard negative mining
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Figure 3.12: Full back-
bone resnet versus
truncated version with
NetVLAD : we show the
importance of the spatial
resolution of the feature
maps used with NetVLAD
layer. The truncated version
of Resnet18 (Rt), two times
lighter than the complete one
(R), achieves much better
localization results.

as explained in section 3.2.5 with: Mp ∈ [1, 4], M sub
n = 25 and Mhard

n = 10. Positive

examples are chosen within a radius of 7 meters around the anchor image (according

to GPS information) and we use the orientation given by position of the sensor on the

Oxford mapping vehicle to ensure that cameras of positive examples are bearing in the

same direction as the anchor camera (the vehicle is equipped with 4 cameras dispatched

at the front, the back, the left side and the right side of the car). We set as negative

examples data located further than 700 meters to the anchor. Images and depth maps

are re-sized to 224× 224 pixels before training and testing.

Encoder architectures. We use the fully convolutional part of Alexnet [140] and

Resnet18 [107] (Resnet in short) architectures for features extraction. Weights are ini-

tialized with the pre-trained weights on ImageNet and firsts convolutional filter weights

remain fixe during training. We always use Alexnet encoder to extract features from raw

depth map, reconstructed depth map, or hallucinated depth map. Indeed the quality of

our depth map is usually very low, and we have found that using deeper network does not

significantly improve localization results. We transform the 1-channel depth map into

3-channels jet colorization depth map in order to benefit from the convolutional filters

learned on ImageNet. We do not use the 3-channels HHA depth map representation

introduced in [103] as it have been shown to perform equivalently to jet colorization [76].

Descriptor architectures. We test the two state-of-the-art image descriptors MAC [240]

and NetVLAD [6] (see section 3.1). We experimented that NetVLAD descriptor com-

bined with Resnet architecture does not perform well. NetVLAD can be view as a pooling
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method that acts on local deep features densely extracted from the input image. We ar-

gue that the spatial resolution of the features block obtained with Resnet encoder is too

low compared to the other architecture (for instance 13 × 13 for Alexnet compared to

7× 7 for Resnet for an 224× 224 input image). We propose to use a truncated version of

Resnet encoder, created by drooping the end of the network after the 13th convolutional

layer. Thus we obtain a feature block with greater spatial resolution: 256× 14× 14 com-

pared to 512× 7× 7. Results on our validation set for both architectures are presented

in figure 3.12. As the truncated version of Resnet encoder clearly dominates the full one,

we use the truncated version for the following experiments.

By combining Alexnet or Resnet encoder with MAC or NetVLAD descriptor pooling,

we obtain 4 global image descriptor variants.

Decoder architecture. The decoder used in our proposal is based on Unet architec-

ture and inspired by network generator from [114]. Details about our decoder architecture

can be found in appendix A.1. Decoder weights are initialized randomly.

3.3.3 Competitors

We compare the three following global image descriptors:

1. RGB only (RGB): simple networks composed of encoder + descriptor trained with

images only, without side depth maps information. Networks are trained as explain

in previous section, with triplet ranking loss of equation 3.2. We also train the RGB

network on the aforementioned dataset, but only with the radiometric modality.

2. Our proposal (RGB(D)): introduced in the previous section (see figure 3.7) this

architecture uses pairs of aligned image and depth map during training step and

images only at test time.

3. Hallucination network (RGB(H)): our version of the hallucination network [110]

(see figure 3.6), trained on aligned triplets of images and depth maps.

For fair comparison, as RGB(D) and RGB(H) image descriptors are obtain by con-

catenation two full-size descriptors (see section 3.2.6), we perform PCA to reduce the

size of the final descriptor of all three methods to 2048.

70



3.4 Long-term localization

Network Top-1 recall@D Recall@N

Name #Param. @15 @30 @50 @1 @5

RGB + MAC 2.5M 46.7 56.7 60.9 56.3 76.6

RGB+ + MAC 7.9M 51.0 61.0 66.7 60.1 79.3

RGB(D) + MAC 7.9M 55.9 64.4 67.8 64.0 80.5

Table 3.1: Contribution
of the depth side information
during training.

3.4 Long-term localization

As a first step, we conduct preliminary experiments to justify design choices for our

method. Then, in the second part of this section, we compare the localization perfor-

mances of the proposed image descriptors.

3.4.1 Preliminary results

Contribution of the depth information

In this paragraph, we investigate the impact on localization performances provided by the

side geometric information on our method. For a consistent comparison in terms of num-

ber of trainable parameters, we introduce RGB+ network that has the same architecture

as our proposed method. We train RGB+ with images only to compare the localization

results against our method that uses side depth information. For training RGB+, we

simply remove the pixel loss introduced in equation (3.3), and make the weights of the

decoder Da trainable when optimizing triplets losses constraints. Results on the val-

idation dataset with encoder architecture Alexnet and decoder MAC are presented in

table 3.1.

Increasing the size of the system results in a better localization (RGB+ + MAC >

RGB + MAC). However, our RGB(D) + MAC system always produces higher localization

results facing RGB+ + MAC, which shows that the side depth information provided

during training is wisely used to create the final description.

Descriptor comparison

In figure 3.13, we present the localization scores of the three different methods on the

validation set with Alexnet as backbone encoder. It clearly demonstrates the superiority

of the NetVLAD pooling layer compared to the MAC descriptor in term of precision

(recall@D). As we are more interested in precision than in recall, our concern is about

localization, we only use NetVLAD as pooling layer for the rest of the experiments (in
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Figure 3.13: Compari-
son of descriptors pooling
layer: NetVLAD [6] pool-
ing layer perform better than
MAC [240] in our prelim-
inary experiment, whatever
the tested method.

combination with Alexnet or Resnet encoder). Still, this preliminary experiment has

shown that the proposed method can be used in combination with various descriptor

pooling layers.

3.4.2 Localization results

Localization results on the six query sets are presented in figure 3.14. We also show,

in figure 3.15 (3rd, 5th and 6th columns), some examples of top-1 returned candidate

by the different descriptors. Both methods trained with auxiliary depth information

(hallucination RGB(H) and our RGB(D)) perform on average better than the RGB

baseline. This confirm our intuition: geometric clues given during the training process

can be efficiently used for CBIR for localization. In addition to that, compared to

hallucination network, our method shows better results, both in terms of recall and

precision. We report results for the hallucination network only with encoder Alexnet as

we were not able to obtain stable training when using a deeper architecture.

We obtain convincing localization results for the CMU query sets (figure 3.14 d-f). It

means that our method is able to generalize well on unseen architectural structures for

the depth map creation and the extraction of discriminative features for localization.

Our method shows the best localization improvement on the Oxford - Snow query sets

(figure 3.14-b) and CMU – Snow (for encoder Alexnet, see figure 3.14-e). Standard image

descriptors are confused by local changes caused by the snow on the scene whereas our

descriptor remains confident by reconstructing the geometric structure of the scene (see

figure 3.15, CMU-Snow 1st row). Similar results should be intended regarding Oxford –
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3.4 Long-term localization
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c) Oxford – Night
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d) CMU – LT
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f) CMU – Autumn

– Alexnet RGB – Alexnet RGB(D) (our)
– Alexnet RGB(H)

- - Resnet RGB - - Resnet RGB(D) (our)

Figure 3.14: Comparison of our method RGB(D) versus hallucination network
RGB(H) and networks trained with only images RGB: we report results for backbone
network encoder Resnet (- -) and Alexnet (–). Our method (in blue) is superior in every
scenario facing hallucination network (in magenta). It also beats, with a significant margin,
networks trained with only images (in red). All the methods failed on the very challenging
night to day scenario (b). Curves best viewed in colors.
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Figure 3.15: Comparison of top-1 retrieved images: we show top-1 retrieved candi-
date after the nearest neighbor search for the different descriptor. Red box indicates a wrong
match and green box a proper one (i.e. retrieved image lies in 25m radius from the query
ground truth position). All the descriptor use Resnet18 as backbone, excepted RGB(H).
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3.5 Night to day localization scenarios

Night query set (figure 3.14-c), however, none of the tested methods are able to perform

on this particular scenario. In the following section, we investigate why our method has

failed on the night to day localization task.

3.5 Night to day localization scenarios

As mentioned previously, at first glance our method is not well designed to perform night

to day matching. In this section, we conduct experiments in order to explain the results

previously obtained and we propose an enhanced version of our descriptor performing

much better on the night to day image matching task.

3.5.1 Night to day localization

Night to day localization [1, 121] is an extremely challenging problem: our best RGB

baseline achieves a performance less than 13% recall@1. This can be explained by the

huge difference in visual appearance between night and daytime images and also by

the poor quality of night images (motion blur), as illustrated in figure 3.11. Our system

should be able to improve the RGB baseline relying on the learned scene geometry, which

remains the same during day and night. Unfortunately, we use training data exclusively

composed of daytime images, thus making the decoder unable to reconstruct a depth

map from an image taken at night. The last line of figure 3.16 shows the poor quality

of the estimated depth maps after initial training. In order to improve the decoder’s

performances, we propose to use weakly annotated data to fine tune the decoder part

of our system. We collect 1000 pairs of image and depth map acquired at night and

retrain only decoder weights θg using the loss of equation (3.3). Figure 3.16 presents

the qualitative improvement on the inferred depth map after the fine tuning. Such post-

processing trick cannot be used to improve standard RGB image descriptors, because we

need to know the location of the night data. For instance, we use a night run from the

Robotcar dataset with a low quality GPS signal, that makes impossible the automatic

creation of triplets that are essential for training a deep image descriptor.

We show in figure 3.17-c that we are able to nearly double the localization perfor-

mances by only fine tuning a small part of our system. Our best network achieves 23%

recall@1 against 13% recall@1 for the best RGB baseline. We present some daylight im-

ages returned after the nearest neighbor search in figure 3.18. Even with blurry images,
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

Images

Ground truth
depth map

Generated depth
map after fine

tuning

Generated depth
map before fine

tuning

Figure 3.16: Effect of fine tuning with night images on decoder output:. Decoder
trained with daylight images is unable to reconstruct the scene geometry (bottom line). Fine
tuning the network with less than 1000 pairs {image, depth map} acquired by night highly
improves appearance of the generated depth maps. Maps best viewed in color.
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c) Oxford – Night
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d) CMU – LT
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f) CMU – Autumn

– Alexnet RGB(D) – Alexnet RGB(D) fine tuned
- - Resnet RGB(D) - - Resnet RGB(D) fine tuned

Figure 3.17: Results after fine tuning: we are able to drastically improve localization
performance for the Oxford – Night challenging scenario (c) by only fine tuning the decoder
part of our network with weakly annotated data. Curves best viewed in color.
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

our method is able to extract useful geometric information to improve the matching (see

figure 3.18, 3rd row).

3.5.2 Impact of fine tuning on other environments

In this section, we measure the impact of the fine tuning process on other localization

scenarios. Performances could decrease if our system “forgets” how to produce depth

map from daylight images. To prevent that, we integrate half of daylight images with

the night images in the training data used for fine tuning.

We show results of the fine-tuned network on figure 3.17. Localization accuracy

remains stable after the fine tuning. We even observe slight increase in the localization

performances for some scenarios (figure 3.17-b): thank to the fine tuning with night

images, the decoder has improved the depth map generation of dark images acquired

during daytime. The fact that fine tuning our system, to deal with hard localization

scenarios, do not negatively impact the performances on other environment makes our

new method well suited for real applications when we cannot predict what will be the

outdoor conditions.

3.6 Laser reflectance as side information

In this section we investigate the use of another modality replacing the depth map in

order to evaluate the generalization capabilities of the proposed framework. We use lidar

reflectance values as auxiliary modality for these experiments.

3.6.1 Laser reflectance

Lidar reflectance is defined by the proportion of the signal returned to the laser sensor

after hitting an object in the scene. Reflectance characterizes the material property of

an object. We use the reflectance information provided in the Robotcar dataset [172].

Reflectance values range from 0 to 1 indicating if the object has reflected from 0 to 100%

of the original laser beam. We process the sparse reflectance data in the same manner as

the depth map using inpainting algorithm from [28] to produce dense reflectance maps

(§ 3.3.1), and use exactly the same decoder architecture for the reflectance map and

the depth map. Examples of ground truth and reconstructed dense reflectance map are

presented in figure 3.19.
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3.6 Laser reflectance as side information

Image RGB(D) - R RGB(D) - A
RGB(D) - R RGB(H) - A RGB - R

query (fine tuned) (fine tuned)

Figure 3.18: Comparison of top-1 retrieved images on night dataset: we show
top-1 retrieved candidate after the challenging night to day localizations scenario. Red box
indicates a wrong match and green box a proper one (i.e. retrieved image lies in 25m radius
from the query ground truth position). -A denotes Alexnet and -R truncated Resnet18
backbone used with NetVLAD.
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

Images

Ground truth
reflectance map

Generated
reflectance map

Figure 3.19: Examples of dense reflectance map: the lighter the color, the higher
the reflection of the material. Reflectance map highlights reflective areas, like road marking,
road sign, vegetation and cars. Figure best viewed in colors.
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3.6 Laser reflectance as side information

3.6.2 Reflectance versus Depth

We report in figure 3.20 results using reflectance map during the descriptor training

(RGB(R), in gray). We also illustrate in figure 3.15 localization performances of the

different methods by comparing the top-1 retrieved candidate after similarity evaluation.

Localization accuracy is slightly worst when using the reflectance map than the results

obtained while using the depth map. Still, reflectance information is beneficial as it

increases the results over the RGB only descriptor. We can draw the conclusion that

scene geometry is more informative for long term localization than reflectance property

of observed objects.

We find that the reflectance side information signal enhances the image descriptor

by leveraging visual clues of material with particular property: low reflectance capability

(like windows, see figure 3.15, 2nd row) or inversely very high light reflecting property

(e.g. traffic signs, see figure 3.15, last row). In a different way, depth map training

supervision provides interesting building shapes understanding (see the recognized tower

building on figure 3.15, CMU - LT 2nd row).

The reflectance-augmented descriptor shows poor results on the snowy scenarios (fig-

ure 3.20 b-d). It is not surprising as the snow presents on the scene highly reflect the

light, confusing our system based on material reflectance.

3.6.3 Multi-modal complementarity of Reflectance and Depth

In this final experiment, we compare the performances of a single side modality training

descriptor and a multiple side modalities training descriptor. We slightly modify our

original system to benefit from both depth and reflectance information, by adding an

extra modal branch with refectance decoder D′

a and auxiliary encoder and descriptor

{E′

a, P
′

a}. The modified network is presented in figure 3.21. We report localization results

of the three methods, depth map as side information (RGB(D), in blue), reflectance

map as side information (RGB(R), in gray) and depth and reflectance map as side

information (RGB(DR), in green), in figure 3.20.

We do not observe systematic improvement when using both modalities. Nevertheless

we obtain best localization results for 3 out of 5 query sets (figure 3.20 b, c & e). We

observe that modality combination is beneficial only if each modal information performs

equivalently when used alone. In other words, if one modality is a lot more informative
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c) CMU – LT

20 30 40 50
D - Distance to top 1 candidate (m)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

R
e

ca
ll@

D
 (

%
)

0 5 10 15 20 25
N - Number of top database candidates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

ca
ll@

N
 (

%
)

d) CMU – Snow

20 30 40 50
D - Distance to top 1 candidate (m)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
e

ca
ll@

D
 (

%
)

0 5 10 15 20 25
N - Number of top database candidates

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

ca
ll@

N
 (

%
)

e) CMU – Autumn

— Alexnet RGB(D) — Alexnet RGB(R) — Alexnet RGB(DR)
- - Resnet RGB(D) - - Resnet RGB(R) - - Resnet RGB(DR)

Figure 3.20: Comparison of depth map and reflectance map as side information.
The geometric information (in blue) remains more informative than the reflectance map
(in gray) for the task of image description for localization. However, when combined (in
green), depth map and reflectance map can benefit from each other and produce the most
discriminative image descriptors for scenarios b, c & e. Curves best viewed in colors.
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Figure 3.21: Multi-modal training: we modify the training policy presented in fig-
ure 3.7 to handle multi-modality. Each generative modal branch (Da and Da′) can be
trained separately. Modality descriptors are trained jointly through the final triplet ranking
loss Lp,a,a′ .
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3. SIDE MODALITY LEARNING FOR LOCALIZATION

than the other on a specific dataset (for instance depth over reflectance for the query set

CMU - Snow, figure 3.20-d), the combination of the both will cancel potential benefit

given by the most informative modality. As discussed before, the reflectance informa-

tion can be source of disturbance if snow is present on the image, resulting on a worse

scene description. On figure 3.15, we can observe successful image localization on very

challenging examples: CMU - LT 1st row, where the closest reference image is highly

overexposed and on Oxford - Snow 1st row with this very confounding image query.

These preliminary results concerning the use of multiple modalities during the train-

ing process of the descriptor are encouraging. Still, additional experiments have to be

performed. In particular the behavior of the proposal according to the joint use of

these modalities indicate that we have to focus more on the final descriptor fusion;

modality-aware aggregation descriptor or more complex attention mechanism may be

considered [274].

3.7 Conclusion

We have introduced a new competitive global image descriptor designed for image-based

localization under challenging conditions. Our descriptor handle visual changes between

images by learning the geometry of the scene. Strength of our method remains in the

fact that it needs geometric information only during the learning procedure. Our trained

descriptor is then used on images only. Experiments show that our proposal is much more

efficient than state-of-the-art localization methods [6, 234], including methods based on

side information learning [110]. Our descriptor performs especially well for challeng-

ing cross-season localization scenario, therefore it can be used to solve long-term place

recognition problem. We additionally obtain encouraging results for night to day image

retrieval. Finally we show that our method can generalize to over auxiliary modality

supervision during training. We use lidar reflectance to illustrate this generalization

capability.

In the next chapter, we will show how the learned depth can be used again in a pose

refinement step.
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Chapter 4

Refining visual localisation with

learned geometric clues

Many applications in Computer Vision and Robotics require a precise initial pose estima-

tion of the visual data acquisition system: augmented reality [12], visual odometry [209],

SLAM [186] or visual servoing [175], to name a few. Coarse estimation provided from

standard geo-localization system (e.g. GPS) or Content-based Image Retrieval (CBIR)

for localization are not accurate enough for such applications, and other processing are

required to initialize the system with a suitable pose. For instance, considering a system

using pose initialization by CBIR, the reference database is never dense enough to ensure

that there is a database example located at the same pose as the query. Thus, the exact

6-Degrees of Freedom (DoF) of the query cannot be recovered.

We introduced in the previous chapter a global image descriptor for localization under

challenging condition. We are now considering the problem of pose refinement, in other

words, the second step of our hierarchical Visual-based Localization (VBL) system. In

section 2.2.3, we mentioned two main approaches for pose refinement: image-based and

model based. As our first localization step rely on image indexing, an image-based

refinement method is more logical to implement. Like in the global image descriptor

introduced previously (see section 3.2), our objective is to take advantage of an auxiliary

modality in our refinement step. We decide to use the learned depth maps to incorporate

geometric constraints in our pose refinement process.

For computing the real 6-DoF pose of a query, we first compute dense correspondences

between the query and the top retrieved images from our initial CBIR step. From these
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

correspondences, we can estimate relative pose information with geometric algorithms. In

order to obtain a position at true scale (which is not the case with traditional multi-view

methods [105]), we exploit the reconstructed depth map. We use the same neural model

to compute the global image descriptor used in CBIR, the dense matching between the

query and the retrieved image and to estimate the depth map associated to a single image.

Thanks to this multi-task design, our system is compact and lightweight and can be used

on various environment without specific retraining. Unlike model-based hierarchical VBL

methods, our proposal does not requires heavy representation of the scene geometry as

we exploit the capability of recent neural networks to learn the underlying structure of

a scene from the radiometric appearance.

For a comprehensive review of hierarchical methods for VBL, please refer to sec-

tion 2.2.3, chapter 2. The rest of this chapter is presented as follows: section 4.1 is

dedicated to the workflow explanation of our method, then we introduce the two ge-

ometric algorithms used to compute the relative pose of the query 4.2. We present

explanatory results for indoor localization on section 4.3 and we pursue more experi-

ments on indoor localization on 4.4. Before the conclusion, we investigate unsupervised

depth from monocular training as well as outdoor localization in section 4.5. We finally

conclude the chapter, after a short discussion, in section 4.7.

4.1 Method

The camera pose is estimated following this four-step algorithm:

1. we obtain the initial pose of the query image by CBIR (section 4.1.1),

2. then we find dense correspondences between the query image and the best retrieved

images (section 4.1.2),

3. meanwhile, we use a neural network to create the depth map related to the images

(section 4.1.3),

4. finally, we use the dense correspondences as well as the reconstructed depth maps

to compute relative poses from the retrieved candidates and the query image, using

geometric reasoning (section 4.2).

The two first steps of our pose refinement method are illustrated in figure 4.1.
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2D-2D
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Figure 4.1: The two first steps of our relocalization pipeline:. a) We retrieve initial
pose of an image query using CBIR. b) We make 2D dense correspondences between the
retrieve image and the query. Purple boxes are deep features blocks used for dense images
matching.

Notations. The aim of our method is to recover the exact 6 DoF camera pose hq
∈

R4×4, represented by a pose matrix in homogeneous coordinates, corresponding to an

input RGB image xq ∈ R3×H×W . We know the matrix K ∈ R3×3 of intrinsic parameters

of the camera. We assume that we know the pose {hr
i }i∈[1,N ] of a pool of N reference

images {xri }i∈[1,N ] of the scene where we want to localize the query. These poses can be

obtained by Structure From Motion (SfM) algorithms or by using external sensors. We

denote as E, respectively D, a neural network encoder, respectively decoder. P denotes

the pooling layer used to create a global image descriptor for image indexing.

4.1.1 Image retrieval

CBIR for localization are deeply detailed in the previous chapter. We provide a short

explanation in the following. We assume that the reference data are augmented with

6-DoF pose information and we cast the initial pose estimation task as a CBIR problem

like in [21]. In order to evaluate the similarity between the unknown pose query image

xq and the N reference images {xri }i∈[1,N ], we need to use a discriminative image rep-

resentation. We use deep global image descriptor for place recognition, to describe the

data by low-dimensional L2 normalized vectors. The image descriptor f(xq) is obtained
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

by concatenating the dense feature from neural network encoder E:

f(xq) = P (E(xq)). (4.1)

In the following, we write f(xq) as f q for readability.

We first compute reference descriptors {f r
i }i∈[1,N ] from the reference images. Then we

compare the query descriptor f q to the pre-computed descriptors by nearest neighbour

indexing and retrieval:

{

f sim
j

}

j∈[1,K]
= sim

(

f q, {f r
i }i∈[1,N ]

)

, (4.2)

where sim is the nearest neighbour matching function and f sim
j , j ∈ [1,K], the K ranked

closest reference descriptors to the query descriptor. We use cosine similarity to evaluate

the similarity between two descriptors and K-D tree as indexing structure. We consider

the retrieved poses hsim
j∈[1,K] as initial candidate poses of the image xq.

4.1.2 Dense correspondences

In order to refine the initial pose obtained by image retrieval, we compute correspondences

between the query image and the closest retrieved image candidates. In [201, 290, 324],

authors use the dense features extracted by a convolutional neural network in order

to compute correspondences between images. We follow the same idea and use the

latent representation already computed by the neural network encoder E to compute

correspondences between the query image and the K retrieved candidates. Since we only

consider the K nearest neighbours to our query, dense features matching is tractable.

Local image descriptors dl,m are obtained from the latent image representation by

concatenating the features at each position (l,m)WE,HE
(WE and HE are the spatial

dimensions of the features map) along the depth of the features map [290, 324]. We

subsequently L2-normalize the extracted descriptors before matching. We consider only

consistence matches by rejecting correspondences that do not respect the bidirectional

test (nearest descriptors from image 1 to image 2 have to be the same as nearest descrip-

tors from image 2 to image 1).
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4.2 Relative pose estimation

4.1.3 Depth from monocular image

2D to 2D correspondences obtained by dense features matching (section 4.1.2) do not pro-

vide enough information to compute relative pose between images at absolute scale [105].

Therefore, we propose to reconstruct the relative scene geometry from the camera to

circumvent this limitation. Various recent deep learning generative models are able to

properly reconstruct geometry associated to radiometric data, with full supervision train-

ing [75], weakly annotated data [98] or even in an unsupervized fashion [173].

We train a Convolutional Neural Networks (CNN) encoder/decoder to predict the

corresponding depth map ẑ associated to an image:

ẑ = D(E(x)). (4.3)

3D projection. With the generated depth map and the intrinsic parameters of the

camera K, we can project the 2D point in the image frame at coordinate {l,m} to the

corresponding 3D coordinate in the scene pl,m ∈ R3, relative to the camera frame:

pl,m = ẑ [l,m] ·K−1[l,m, 1]T , (4.4)

where ẑ [l,m] is the metric depth value at position {l,m} in the reconstructed depth map

ẑ.

4.2 Relative pose estimation

We propose two alternatives to compute the relative pose between the query image xq

and the most similar retrieved images xsimj , j ∈ [1,K]:

1. an ICP-based method called Iterative Closest Learned Point (ICLP),

2. a PnP-based algorithm called Perspective-n-Learned-Point (PnLP).

The main differences between these two approaches are that ICLP is iterative and rely

on the reconstructed depth map of the two densely matched images, while PnLP uses

only one depth map. In figure 4.2, our two relative pose estimation are presented, side

by side.
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

2D-2D
matches

2D-3D
matches

Depth from monocular decoder

Point proj.
according to K

(a) PnlP

3D-3D
matches

Depth from monocular decoder

Point proj.
according to K

(b) IClP

Figure 4.2: Our two method for relative pose computation: 4.2(a) we compute the
relative 6-DoF from 2D-3D correspondances using a PnP-like method. 4.2(b) we manage to
align two point clouds projected from learned depth maps to recover the realtive pose of the
two images, using an ICP-like algorithm.

7 Scenes
[276]

ICLP w/o deep
features

ICLP w/ deep
features

Chess 0.28/8.6 0.23/5.4

Fire 0.39/16.5 0.30/14.1

Heads 0.18/14.9 0.19/14.1

Office 0.41/13.4 0.36/11.3

Pumpkin 0.40/12.0 0.35/7.4

Kitchen 0.24/ 7.5 0.19/4.9

Stairs 0.57/12.2 0.48/10.3

Table 4.1: Point cloud registration: we
report median error on position and orien-
tation (m/◦) for each scene. Its shows the
importance of deep feature for point cloud
matching in our method. Global image de-
scriptors for image indexing are MAC de-
scriptor, see section 4.3 for more details
about the used datasets and our implemen-
tation.

4.2.1 Iterative Closest Learned Point

The general idea is to obtain the relative camera pose hr→q by registering the point

cloud Pq obtained by projecting in 3D the depth map (equation 4.4) ẑq of query xq to

the points cloud Psim
j from the reference depth maps ẑsimj of images xsimj , j ∈ [1,K].

One reference point cloud is evaluate at a time and we chose the final registration that

minimizes the point-to-point distance between the two point clouds.

Point matching. Refinement with ICP involves matching corresponding points be-

tween two point clouds in order to estimate a rigid transformation that minimizes the

distances between the paired points. Standard approaches only consider the Euclidean

distance between a single point and its nearest neighbours in the reference point cloud to

establish matching, making the initial alignment between the two point clouds a crucial

step to obtain correct results. We can rely on point descriptors to establish strongest
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4.2 Relative pose estimation

matches [226]. We use local descriptor dl,m introduced in section 4.1.2 and we associate

to each projected point pl,m the descriptor corresponding to the deep feature computed

by the encoder E at the same spatial position {l,m}. The matching process remains the

same as the one detailed in § 4.1.2, with the additional 3D point information added to

the local features. We present in table 4.1 results of an exploratory experiment to esti-

mate the benefit of adding the deep features for the point cloud alignment. We observe

a clear improvement at almost no cost (the deep features are extracted from the already

computed features block of the depth from monocular CNN).

Data: query point cloud to align Pq with augmented descriptors Dq and reference
point cloud Psim with associated descriptors Dsim

Result: relative pose hr→q, mean distance between matched points ‖M‖2
hr→q ← I4×4;
hit ← 14×4;
while

∥

∥hit − I4×4

∥

∥

F
≥ ε do

Pq ← hr→qPq;
M ← match_points

(

[Pq,Dq] ,
[

Psim,Dsim
])

;
hit ← relative_pose(M);
hr→q ← hithr→q;

end

Algorithm 1: Our ICLP algorithm, see section 4.1.2 for details about functions
match_points and section 4.2.1 for function relative_pose. Expression [Pq,Dq]
denote the concatenation of the point coordinates with their corresponding deep fea-
ture d, as explained in section 4.2.1

Algorithm. Relative pose hr→q is obtain thank to the iterative algorithm detailed

in 1. The relative_pose function computes the relative transformation between the

matched points that minimizes the Euclidean difference between the two point clouds.

We use classical relative pose estimation algorithm [226]:

• Rotation: we apply Singular Value Decomposition (SVD) on the matching matrix

obtained by multiplication of the zeros-centered corresponding 3D points in each

point cloud. Rotation matrix can be computed by multiplying the right-singular

vectors matrix with the transposed of the left-singular vectors matrix.

• Translation: we obtain the translation component by aligning in the same frame the

two point cloud centroids, using the rotation matrix, and evaluating the difference
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

between them.

We embed the pose computation within a Random Sample Consensus (RANSAC)

algorithm, as the point cloud may contain erroneous data because it has been generated

from image-only information by our encoder/decoder CNN. We run the algorithm for a

fixed number of iterations, for each of the top K retrieved images by the first indexing

step. We chose the final relative pose h
r→q
best

according to the minimal mean alignment

error returned by our algorithm (‖M‖2).

4.2.2 Perspective-n-learned-Points

Thanks to the generated depth map (section 4.1.3) and the equation 4.4, we can project

2D points from retrieved images into 3D coordinates. 2D-2D correspondences obtained

in section 4.1.2 can be interpreted as 2D-3D correspondences and we can use a PnP

algorithm to compute the relative transformation hr→q between the query image and the

reference image.

We embed our PnLP algorithm within a RANSAC consensus where a sub-part of

2D-3D correspondences is evaluated at a time. We use 3-points algorithm from [134],

using the authors efficient implementation [133]. As we have K reference candidates

from image retrieval step (section 4.1.1), we select the best pose h
r→q
best

as the one with

the largest proportion of inlier correspondences after the PnP optimisation. If the ratio

of inlier is below a given threshold, we simply affect the pose of the retrieved image to

the query.

4.2.3 Final pose computation

We obtain final pose of query image x
q using the relation:

h
q
= h

r
besth

r→q
best

. (4.5)

4.2.4 System design and motivation

Multi-task model. In order to make our system fast and lightweight, we use a sin-

gle encoder/decoder neural network for the three tasks needed in our pose estimation

pipeline. That means with a single image forward, we obtain a compact global image

description, dense local descriptors and a depth map corresponding to the observed scene.
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4.3 Preliminary results

Single task training policy. There are dedicated training pipeline for each of the

computer vision tasks involved in our image pose estimation framework: methods for

learning a global image descriptor [6, 101, 234], CNN designed to extract and describe

local features [203, 244, 330] and systems that produce a depth map from a monocular

image [75, 98, 173]. We decide to train our encoder/decoder network for the task of

depth from monocular estimation because estimation of erroneous depth measurement

will result in wrong estimation of the final pose. In the next section, we experimentally

show that even if our network has not been trained especially for the task of image

description or local feature matching, the latent features computed within the network

embed enough high-level semantic to perform well on these tasks [290, 334].

Generalization. Because we rely on a non-absolute representation of the scene geom-

etry (depth is estimated relatively to the camera frame), our model is not limited to

localization on one specific scene like end-to-end pose estimation networks [33, 127]. In

other words, the same trained network can be used to localize images in multiple indoor

and outdoor scenes, and even in totally unknown environments.

4.3 Preliminary results

In this section, we discuss about implementation details as well as training and testing

datasets. Afterward, we present preliminary experiments to evaluate our two relative

pose estimation methods.

4.3.1 Implementation

Dataset. We train and test our method on the 7 scenes indoor localization dataset [276].

This datasets are composed of various indoor environments scanned with RGB-D sen-

sors. 6-DoF image poses and camera calibration parameters are provided. For all the

experiments, reference images used for the initial pose estimation with VBL are taken

from the training split and query images are taken from the testing split of the respective

datasets.
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

Initial localization (CBIR) Pose refinement

Scene MAC (M) NetVLAD (V) V + ICLP V + PnLP

Chess 0.31/14.9 0.29/13.0 0.12/4.5 0.07/2.9

Fire 0.49/16.7 0.40/15.5 0.25/8.9 0.09/3.6

Heads 0.28/20.5 0.20/16.0 0.18/9.9 0.06/4.3

Office 0.46/16.4 0.38/13.0 0.22/7.3 0.06/4.3

Pumpkin 0.50/15.0 0.43/13.1 0.21/6.2 0.05/2.2

Kitchen 0.30/11.2 0.23/9.5 0.15/4.5 0.10/3.2

Stairs 0.64/16.0 0.46/14.9 0.48/12.2 0.44/10.3

Table 4.2: Methods comparison: we report mean pose error (translation and orienta-
tion, m/◦) of our two relative pose algorithms. Best results are shown in bold.

Network architecture and training. We use a U-Net like convolutional encoder/de-

coder architecture [114] with multi-scale outputs [98], see appendix A.2 for details. As

the accuracy of our methods is highly correlated to the quality of the generated depth

map, we use a more sophisticated network architecture than previously and we train

it from scratch, without using pretrained weights. During training and testing, images

are resized to 224 × 224 pixels. The generated depth map is 4 times smaller than the

image input. We use L1 pixel loss function for the fully supervised depth from monocular

training. We train our architecture with Adam optimizer, learning rate of 10−4 divided

by two every 50 epochs. Training our model using all the training sequences of the 7

scenes dataset takes approximately one day on our Nvidia Titan X GPU with a batch

size sets to 24.

Method parameters. We compare MAC [240] and NetVLAD layer [6] with 64 clusters

as global image descriptor for initial pose estimation. Deep local features are gathered

from the second convolutional layer before the Relu activation of our architecture (ap-

pendix ??), resulting in 56×56 feature vectors of dimension 64. We use this particular

features block as it has the same spatial dimension as the generated depth map (i.e. 4

times smaller than the input). Concerning the ICLP algorithm: we set the maximum

number of iteration to 100 and the threshold θ equal to 0.4. For the PnLP method, we

set the inliers ratio threshold mentioned in section 4.2.2 to 10%.

4.3.2 Methods comparison

We report in table 4.2 initial result on the 7 scenes indoor dataset, using only the top-1

retrieved candidate (for computational time saving).
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Figure 4.3: Trade of be-
tween precision/compu-
tation time: we compute
for two scenes [276] the me-
dian absolute error in posi-
tion and orientation for mul-
tiple number of k nearest
neighbours used for pose re-
finement (see section 4.2.2).

Initial localization. We observe a comparable behavior than the one observed pre-

viously (section 3.4): NetVLAD pooling layer is more efficient than MAC for initial

localization. In the following experiments, we only use the NetVLAD layer for global

image descriptor.

ICLP vs PnLP. Our PnLP pose refinement clearly outperform the ICLP approaches.

This can be explained by the fact that wrong estimations in the depth map values are

penalizing twice the ICLP approach and only once the PnLP refinement. Thus, in the

following, we use only the PnLP pose estimation for refinement.

Number of retrieved candidates. We use two scenes of the 7 scenes dataset to

evaluate the impact of the number K of retrieved candidates on the final localization.

Figure 4.3 shows improvement for 4 values of K, from 1 to 10. We found that K = 5 is

a good trade-off between pose precision and time consumption. Localizing a query takes

approximately one second using our non-optimized python code, including the image

indexing step.

4.4 Indoor localization

In this section we present more detailed results on indoor localization, by comparing our

method with state-of-the-art competitors and by evaluating our proposal on different

environments than the one used for training.
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

Scene Image retrieval PnLP refinement Relocnet [21] Posenet [127]

Chess 0.29/13.0 0.07/2.7 0.12/4.1 0.13/4.5
Fire 0.40/15.5 0.07/3.2 0.26/10.4 0.27/11.3
Heads 0.28/20.5 0.05/3.9 0.14/10.5 0.17/13.0
Office 0.38/13.0 0.09/2.9 0.18/5.3 0.19/5.6
Pumpkin 0.43/13.1 0.13/3.6 0.26/4.2 0.26/4.8
Kitchen 0.23/9.5 0.05/2.0 0.23/5.1 0.23/5.4
Stairs 0.46/14.9 0.40/9.2 0.28/7.5 0.35/12.4

Table 4.3: Results on the 7 scenes [276] dataset: we report median position/orienta-
tion error in meters/degree. We compare the first pose estimation (im. retrieval, in italics)
and, the final image localization (PnLP) of our method and two state-of-the-art approaches.
Best localisation results are shown in bold.

4.4.1 Competitors

Indoor localisation error on 7 scenes [276] dataset are presented in table 4.3. We compare

our proposal with Relocnet [229] and Posenet [127] trained with a geometric-aware loss

function. Compared to Posenet [127] our model uses the same trained network for all the

7 scenes, compared to one network by scene for Posenet. Relocnet relies on two different

networks: one trained especially to produce discriminative global image descriptors for

CBIR and the second to estimate the relative pose between two images. Our method is

lighter as it uses a single network and do not uses specific training for the task of global

image description.

4.4.2 Results

At first glance, we find that the initial pose estimation with image retrieval produces de-

cent results (first column), while the network used to produce the global image descriptor

has not been trained to this particular task. After applying our PnLP pose refinement,

our method produces the most precise localization among the presented methods.

Figures 4.4-4.5 present estimated position at different steps of our method for 4

scenes. Our method is able to recover accurate positions even if there are not previous

acquisitions close to the ground truth camera pose (see figure 4.4, top of the fire scene

or figure 4.5, right of the heads scene).

We observe a failure case of our method for the scene stairs due to a poor initial pose

estimation. This scene contains repetitive visual patterns that may confuse the CBIR

localization.
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

Scene Image retrieval PnLP

Apt1-kitchen 0.12/7.7 0.09/4.1
Apt1-living 0.12/6.8 0.08/2.9
Apt2-kitchen 0.10/6.5 0.10/3.7
Apt2-living 0.11/5.6 0.10/4.7
Apt2-bed 0.13/7.0 0.12/5.7
Apt2-luke 0.15/7.2 0.14/5.5
Office 5a 0.12/5.3 0.09/3.6
Office 5b 0.15/7.2 0.10/4.7
Lounge 0.16/7.1 0.10/3.5
Manolis 0.13/6.3 0.09/3.7
Gates362 0.13/5.9 0.10/4.7
Gates381 0.15/7.7 0.11/4.4

Table 4.4: Results on the 12
scenes [308] indoor dataset: we re-
port median absolute position/orien-
tation error in meters/degrees. Our
model has been trained on a different
dataset than the one used for testing.
Best results are in bold.

4.4.3 Generalization

We report on table 4.4 localization errors the 12 Scenes dataset [308]. The 12 scenes

dataset is used to evaluate the generalization capability of our method. For these exper-

iments, we use the same network as mentioned earlier, trained on 7 Scenes dataset [276].

We observe an average relative improvement of ×1.2/×1.5 in position/rotation from ini-

tial to refined pose, compare to ×2.8/×3.5 on the 7 scenes dataset. Even though the

pose refinement is not as effective as previously, it shows that our system can be used on

completely new indoor environments.

We show on figure 4.6 positions recovered by our method on 2 of the 12 scenes of

the dataset. Our method is able to compute new positions closer to the ground truth

positions compare to the initial image retrieval step guess.

4.5 Unsupervised training and outdoor localization

In this section, we are interested in applied our method for outdoor localization. However,

accurate dense depth map of outdoor environment for supervised depth from monocular

CNN training are not easy to obtain. Thus, we decide to train our model in a unsuper-

vised manner, i.e. without ground truth depth maps as training data. In the following,

we first compare the impact of unsupervised training for indoor localization and then we

test our proposal on outdoor scenes.
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4.5 Unsupervised training and outdoor localization

4.5.1 Unsupervised depth from monocular training

Training. To learn depth from RGB in a unsupervised manner, we follow the training

procedure of [340], using the ground truth relative pose between images and by adding

SSIM loss function for radiometric comparison as in [173]. We train the network with

Adam optimizer, learning rate of 10−4 divided by two every 5 epochs. Training takes the

same time as the supervised training, with a batch size reduced to 12.

Unsupervised depth from monocular at scale. It is not self-explanatory to claim

that the depth maps produced from our unsupervised trained network [340] are at a real

scale. In [340], authors use an auxiliary relative pose estimation network to make their

method trainable with video sequences without any pre-processing. The counterpart is

that the final CNN produces depth maps up to an unknown scale factor. Nevertheless,

in our experiment they are at truth scale as we use the absolute 6-DoF camera pose

(obtained by SfM or dense 3D fusion method [323]) to compute the relative position and

orientation of the training images. Some learned depth maps can be found in figure 4.7,

showing that unsupervised method leads to true scale depth values as long as it has been

trained with true camera pose information.
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

Image retrieval PnLP refinement
Scene supervised unsupervised supervised unsupervised

7-
S
ce

n
es

[2
76

] Chess 0.29/13.0 0.34/15.4 0.07/2.7 0.13/4.7
Fire 0.40/15.5 0.48/19.3 0.07/3.2 0.22/8.2
Heads 0.28/20.5 0.25/17.9 0.05/3.9 0.15/10.5
Office 0.38/13.0 0.50/16.1 0.09/2.9 0.23/6.3
Pumpkin 0.43/13.1 0.54/15.0 0.13/3.6 0.29/7.1
Kitchen 0.23/9.5 0.26/10.5 0.05/2.0 0.12/3.3
Stairs 0.46/14.9 0.49/15.5 0.40/9.2 0.48/12.2

12
-S

ce
n
es

[3
08

]

Apt1-kitchen 0.12/7.7 0.14/9.2 0.09/4.1 0.14/5.0
Apt1-living 0.12/6.8 0.13/6.7 0.08/2.9 0.10/3.3
Apt2-kitchen 0.10/6.5 0.10/6.6 0.10/3.7 0.10/3.9
Apt2-living 0.11/5.6 0.13/7.3 0.10/4.7 0.11/3.7
Apt2-bed 0.13/7.0 0.12/7.1 0.12/5.7 0.15/5.0
Apt2-luke 0.15/7.2 0.16/7.8 0.14/5.5 0.14/5.3
Office 5a 0.12/5.3 0.13/6.3 0.09/3.6 0.14/4.6
Office 5b 0.15/7.2 0.18/6.7 0.10/4.7 0.14/5.0
Lounge 0.16/7.1 0.19/8.3 0.10/3.5 0.13/4.7
Manolis 0.13/6.3 0.15/7.8 0.09/3.7 0.12/4.5
Gates362 0.13/5.9 0.14/6.5 0.10/4.7 0.11/3.9
Gates381 0.15/7.7 0.16/9.0 0.11/4.4 0.13/5.1

Table 4.5: Results on the 7 scenes [276] and 12 scenes [308] indoor datasets, we report
median position/orientation error in meters/degrees. Supervised (in purple) and unsuper-
vised (in blue) refer to our model trained with, respectively without, truth depth maps as
supervision signal. Best localization results are shown in bold and underlined numbers show
failure cases when the pose refinement increases the initial pose error. Table best viewed in
color.
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

4.5.2 Comparison with fully-supervised training

Localization results in indoor environments for the supervised and unsupervised training

are shown in table 4.5. We observe an average relative improvement of ×2.8/×3.5, respec-

tively ×1.8/×2.1, for the supervised, respectively unsupervised, model in position/rota-

tion from initial to PnLP refined pose. Our unsupervised-trained proposal produces com-

parable localization as Relocnet and outperform Posenet baseline (see table 4.3). These

encouraging results prove that, even without ground truth depth maps as supervision

data, we can apply our refinement algorithm successfully.

For the novel scenes of the 12 scenes dataset, we observe an average relative improve-

ment of ×1.2/×1.5, compare to ×1.1/×1.6, for the supervised, respectively unsupervised,

model in position/rotation from initial to refined pose. We also show, in figure 4.7, the

generalization capability of methods trained with or without ground truth depth maps,

from images taken in both known and unknown scenes. We notice that the poor localiza-

tion performance on the Apt2-bed scenes is closely related to the poor generated depth

map on this scene (see figure 4.7, two last columns).

4.5.3 Outdoor localization

Dataset. We use the Cambridge Landmarks [128] dataset for outdoor evaluation. This

dataset is composed of 6 scenes featuring dynamic changes (pedestrian and cars in move-

ment during the acquisition) acquired by a cell-phone camera. As no ground truth depth

maps are available for the Cambridge Landmarks scenes, we only perform outdoor ex-

periments related to the unsupervised depth from monocular training.

Network architecture and training. For the unsupervised scenario, we use a slightly

different network architecture, composed of recurrent cells (Long Short-term Memory

(LSTM)) in the decoder to capture long term dependencies [156, 311] (more details can

be found in appendix A.2). During training and testing, images are rescaled to 224×112

pixels.

Results. Outdoor localization results are presented in table 4.6. PnLP performs well

on outdoor scenes, with a mean improvement of ×1.5/×1.6 in position/rotation precision

over initial pose given by CBIR. Our method is not able to recover a proper pose for

the scene Street. As same as for the indoor failure case, this is the result of a poor
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4.6 Discussion

Scene Image retrieval PnLP Posenet [127]

Great Court 24.3/20.94 13.2/10.07 -

Kings College 5.0/5.86 2.7/3.10 0.9/1.04

Old Hospital 6.5/8.60 3.5/5.55 3.2/3.29

Shop 3.2/9.47 1.1/3.38 0.9/3.78

St Mary’s Church 5.9/12.71 2.6/5.85 1.6/3.32

Street 92.5/67.10 69.5/52.07 20.3/25.5

Table 4.6: Results on the Cambridge Landmarks [128] outdoor dataset: we report
median position/orientation error in meters/degrees. We compare our network architectures
trained in an unsupervised manner with Posenet [127]. Best localization results are shown
in bold.

initial pose estimation at the CBIR preliminary step. Compared to Posenet [127], our

method is marginally less precise but requires only one trained model compared to the

6 models needed by Posenet and can potentially be used on unknown scenes according

to the previous indoor experiments. We do not compare our method to Relocnet [229]

baseline because authors do not evaluate Relocnet on outdoor scenes and the source code

is not yet available.

4.6 Discussion

The final camera pose accuracy is highly dependent on the images returned by the CBIR

initial step. Thus, our method performances are limited by the quality of the global image

descriptor. Wrong initial pose estimation for stairs indoor scene and street outdoor

environment cannot be recovered by PnLP pose refinement. It will be interesting to

consider more discriminative image descriptors, and especially image descriptors that

can benefit from the depth map related to the image like the one presented in previous

chapter 3.

The pose refinement is also very sensitive to the quality of the generated depth map.

Artifacts present in depth map related to images of unknown scenes or wrong reconstruc-

tion, as can be seen in the last 4 columns of figure 4.7, generate outliers for the PnLP

optimization. This first work can be view as a proof of concept where we use very limited

data for training our model. We can expect better results if we take advantages of bigger

dataset, such as Megadepth dataset introduced in [155].
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4. POSE REFINEMENT WITH LEARNED DEPTH MAP

4.7 Conclusion

We have presented a new method for VBL consisting of an initial pose estimation by

CBIR followed by a new relative pose estimation method. PnLP relies on densely

matched 2D to 3D points between the query and the reference images, where the 3D

points are project thank to the reconstructed depth map from a monocular image. The

introduced method is compact and fast as all the components needed by the localization

pipeline are computed using the same neural network in a single forward pass. Because

our network learns the depth relative to the camera frame, not the absolute geometric

structure of the scene, it can be used in unknown environment without fine tuning or

specific training.

In the next chapter, we summarize our contributions on visual localization. We

conclude the manuscript presenting potential improvement applicable to our system and

discussing future works.
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Chapter 5

Conclusion

In this final chapter, we summarize the main contributions of this thesis and we propose

future research directions regarding the presented solutions.

5.1 Summary of the thesis

Throughout this thesis, we have focused on Visual-based Localization (VBL) in urban

environment. We defined the boundaries of our research in the first chapter. In chap-

ter 2, we reviewed exhaustively VBL related fields and methods, with a particular atten-

tion paid to challenges induced by long-term localization and to the data heterogeneity

presents in the localization approaches. We came out with the conclusion that they are

a lake of methods taking advantages of asymmetric data, i.e. different data modalities

in the query side and in the database used as reference map. For instance, the query is

often composed of a single modality, radiometric information, whereas the database is

composed of multiple sensors information, like scene geometry, semantic and images.

In the chapter 3, we have proposed a new trainable global image descriptor for

Content-based Image Retrieval (CBIR) for localization. Our method was built on the

powerful NetVLAD [6] image descriptor, combined with a modality transfer model ca-

pable of generating a depth map from a single image. The particularity of our method

remained in the fact that our descriptor could be trained using side modality that was not

available during the task of localization. We showed that spreading out geometric clues

within our pure radiometric descriptor improve the performances in challenging long-term

localization scenarios. We were able to improve location accuracy for various realistic
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scenarios, involving cross-season data and nocturnal images. We demonstrated that our

method can take advantages of not-only geometric information but also reflectance given

by laser scan sensor.

Chapter 4 was dedicated to our relocalization pipeline. Our method aimed to improve

the localization given by our initial localization step. Using geometric reasoning, we

refined 6-Degrees of Freedom (DoF) pose of the query to localize. In order to do so, we

established dense 2D to 2D correspondences between the query and retrieved examples

returned by our initial localization step. The matching was computed thanks to deep

features extracted from a Convolutional Neural Networks (CNN). We defined our method

to be lightweight and easily plugged after an existing CBIR for localization approach.

In a same manner as our global image descriptor, the relocalization was aided by the

geometric information learned during an offline stage. Indeed, the 2D to 2D matches

were not sufficient to recover the truth 6-DoF pose of the query and the extra geometric

information was used to constrain the final pose estimation. Through comprehensive

experiments, we showed the effectiveness of our method in both indoor and outdoor

scenes.

5.2 Scientific contributions

In the following, we summarize the major scientific contributions made during this thesis

along with the corresponding publications:

Detailed review of VBL methods: we present a large panorama of image-based lo-

calization methods [220]. We propose a simple three-categories methods classifica-

tion and we highlight common processing within the different VBL approaches. We

also present in detail current challenges in localization as well as the different data

types engaged in the localization process. We finally describe trends and common

usages in the visual localization field as well as promising avenues for VBL.

Side modality trained global image descriptor: we introduce a new global image

descriptor for VBL, trained with side geometric information [223]. By combining

state-of-the-art global image descriptor along with modality transfer model, we are

able to create discriminative image descriptors for localization in challenging con-

ditions. To demonstrate the generalization capability of our proposal, we extend
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this previous work with experiments on another dataset and we replace the geomet-

ric auxiliary modality by laser reflectance as side information during the training

process [224].

Relative pose estimation from learned depth maps: we present a pose refinement

method based on geometric alignment of learned depth map [221]. In a subsequent

work [222], we improves the seminal method with a more efficient algorithm. We

show the performances of the final method for pose refinement on indoor and out-

door environment.

5.3 Future Research

In this section, we enumerate possible improvements regarding the work presented in this

thesis, as well as potential new research topics offered by new research results, including

our contributions, and by ongoing proposal of various new datasets.

Towards an unified VBL pipeline. The two localization steps presented in this

thesis have been developed in parallel during this thesis, resulting on two independent

architectures. A straightforward improvement of this work would be the unification of

these two frameworks, in order to get a complete two stage hierarchical localization

method [257]. This unification would make possible the strict comparison of our local-

ization results with the state of the art on VBL thanks to new challenging localization

benchmarks, such as Sattler et al. [265].

Multi-task training. It will be interesting to investigate multi-task learning in order

to address all the computer vision problems involved in VBL jointly. Our localization

method involve global image description, establishments of dense correspondences be-

tween images and depth map generation from a monocular image. We only target one

specific training task for our global image descriptor and our refinement method. Op-

timizing jointly the different tasks involved in our localization pipeline would certainly

improve the overall precision of the system.
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Heterogeneity in the geometry of acquisition. In this research work, we propose

methods to deal with heterogeneity within the data modality. Indeed, we find a solution

to benefit from extra modalities present in the reference dataset but not in the query

side. Another interesting research oriented question would be: how to deal with visual

data with different acquisition geometries? To be more specific, it would be interesting

to tackle the problem of comparing perspective images with spherical ones [112, 237,

299, 331, 332]. Indeed, database coverage can be easily extended by using wide angle

or omnidirectional cameras (e.g. google street view panorama). Furthermore, recent

work have introduced a specific tool to exploit spherical geometry with deep learning:

spherical CNN [61]. This new architecture has already been successfully used to solve

a wide range of problems: room layout recovery from 360 images [82], depth estimation

from spherical panorama [341], etc. We are convinced that similar approaches can be

used to solve geometrically heterogeneous VBL problems.
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Appendix A

Network architectures

A.1 Global image descriptor network

We use Alexnet or Resnet18 as backbone encoder for our image descriptor. NetVLAD

layer is implemented as described in the original paper [6].

Our decoder is inspired by U-Net network architecture, i.e. we concatenate deep

feature from encoder to recover fine details in the final depth maps. Up-sampling is

performed through inverse convolutions and final activation is a sigmoid function, con-

straining the output depth (or reflectance) value to be in range [0, 1]. Non-linearity is

assured by LeakyReLU and we use batch normalization and input data normalization.

A.2 Multitask pose refinement network

We build our own network, taking inspiration from the architecture Pix2Pix presented

in [114]. Our encoder has 7 convolutional layers and our decoder has 5. We use skip

connections between the encoder and the decoder. We use LeakyReLU non-linearity in

our encoder and ReLu in our decoder and group normalization between layers. Final

activation is a sigmoid function. Down-sampling in our encoder is performed through

convolution operation only (using stride > 1). For up-sampling, we rely on bilinear inter-

polation followed by convolution for decoding the features maps to avoid artifact patterns

induced by inverse convolution. Our final model as approximately 20M parameters (be-

tween Resnet18 and Resnet50).
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Great Court Kings C. Old Hosp. Shop St Mary’s Street

FC 25.5/22.64 2.9/2.98 4.9/6.37 1.8/5.78 3.5/6.99 76.2/51.91

C+LSTM 13.2/10.07 2.7/3.10 3.5/5.55 1.1/3.38 2.6/5.85 69.5/52.07

Table A.1: Results on the Cambridge Landmarks [128] outdoor dataset: we
report median position/orientation error in meters/degrees. We compare our two network
architectures trained in an unsupervised manner. Best localization results are shown in
bold.

Figure A.1: Visualization of the depth map on outdoor scene: from top to bottom:
image, generated depth map from architecture FC and generated depth map from architec-
ture C+LSTM. Purple boxes show regions where C+LSTM network produces slightly better
depth map reconstruction compared to FC.

For unsupervised depth from monocular training on outdoor scene, we add recurrent

layers in our decoder to enforce spatial consistency. We replace two convolutional layers

by bidirectional recurrent layer (4 Long Short-term Memory (LSTM) units: 1 for right

to left, 1 for left to right, 1 for up to down and 1 for down to up). We design our spatial

recurrent layers as in ReNet from [311]. We denote the fully convolutional architecture

as FC and the recurrent variation as C+LSTM. We show in table A.1 the comparison

of our two methods. Figure A.1 illustrates the better reconstruction capability of the

C+LSTM architecture.
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