Skip to Main content Skip to Navigation
Theses

Une approche de retour d’expérience basée sur l’analyse multicritère et l’extraction de connaissances : Application au domaine humanitaire

Abstract : Because of its critical impacts on performance and competitivity, organizations’ knowledge is today considered to be an invaluable asset. In this context, the development of methods and frameworks aiming at improving knowledge preservation and exploitation is of major interest. Within Lessons Learned framework – which proposes relevant methods to tackle these challenges –, we propose to work on an approach mixing Knowledge Representation, Multiple-Criteria Decision Analysis and Inductive Reasoning for inferring general learnings by analyzing past experiences. The proposed approach, which is founded on a specific case-based reasoning, intends to study the similarities of past experiences – shared features, patterns – and their potential influence on the overall success of cases through the identification of a set of criteria having a major contribution on this success. For the purpose of highlighting this potential causal link to infer general learnings, we envisage relying on inductive reasoning techniques. The considered work will be developed and validated through the scope of a humanitarian organization, Médecins Sans Frontières, with a focus on the logistical response in emergency situations
Document type :
Theses
Complete list of metadatas

Cited literature [329 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02976885
Contributor : Abes Star :  Contact
Submitted on : Friday, October 23, 2020 - 5:00:17 PM
Last modification on : Friday, October 23, 2020 - 6:18:07 PM

File

82686_LHERITIER_2020_archivage...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02976885, version 1

Collections

Citation

Cécile l'Héritier. Une approche de retour d’expérience basée sur l’analyse multicritère et l’extraction de connaissances : Application au domaine humanitaire. Ingénierie assistée par ordinateur. Université de Nîmes, 2020. Français. ⟨NNT : 2020NIME0001⟩. ⟨tel-02976885⟩

Share

Metrics

Record views

133

Files downloads

41