P. D. Brown, J. G. Tokuhisa, M. Reichelt, and J. Gershenzon, Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana, Phytochemistry, vol.62, pp.471-81, 2003.

S. Brown, P. Devaux, M. D. Bergounioux, C. Petit, and P. , Flow-Cytometry -Application to analysis of plant ploidy, 1991.

J. Bruinsma, A comment on the spectrophotometric determination of chlorophyll, Biochim Biophys Acta, vol.52, pp.576-578, 1961.

S. Bruzzone, I. Moreschi, L. Guida, C. Usai, and E. Zocchi, , 2006.

, Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes, Biochem J, vol.393, pp.697-704

B. Buchanan, W. Gruissem, and R. Jones, Biochemistry & model biology of plants, Am Soc plant Physiol Rockville, p.721, 2000.

S. W. Buck, C. M. Gallo, and J. S. Smith, Diversity in the Sir2 family of protein deacetylases, J Leukoc Biol, vol.75, pp.939-50, 2004.

A. Bürkle, Poly(APD-ribosyl)ation, a DNA damage-driven protein modification and regulator of genomic instability, Cancer Lett, vol.163, pp.1-5, 2001.

F. A. Busch, T. L. Sage, A. B. Cousins, and R. F. Sage, C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2, Plant Cell Environ, vol.36, pp.200-212, 2013.

N. Bykova, A. G. Rasmusson, A. U. Igamberdiev, P. Gardeström, and I. M. Møller, Two separate transhydrogenase activities are present in plant mitochondria, Biochem Biophys Res Commun, vol.265, pp.106-117, 1999.

N. V. Bykova and I. M. Møller, Involvement of matrix NADP turnover in the oxidation of NAD-linked substrates by pea leaf mitochondria, Physiol Plant, vol.111, pp.448-456, 2001.

H. L. Cabrera-y-poch, F. Ponz, and A. Fereres, Searching for resistance in Arabidopsis thaliana to the green peach aphid Myzus persicae, Plant Sci, vol.138, pp.209-216, 1998.

P. Caiafa, T. Guastafierro, and M. Zampieri, Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns, FASEB J, vol.23, pp.672-680, 2009.

M. Calvin and A. A. Benson, The Path of Carbon in Photosynthesis IV: The Identity and Sequence of the Intermediates in Sucrose Synthesis, Science, vol.109, pp.140-142, 1949.

W. J. Campbell, L. H. Allen, and G. Bowes, Effects of CO(2) Concentration on Rubisco Activity, Amount, and Photosynthesis in Soybean Leaves, Plant Physiol, vol.88, pp.1310-1316, 1988.

K. A. Cane, M. Mayer, A. J. Lidgett, A. J. Michael, and J. D. Hamill, Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana tabacum in, 2005.

C. Chen and M. B. Dickman, Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii, Proc Natl Acad Sci U S A, vol.102, pp.3459-64, 2005.

X. Chen and A. J. Wood, Purification and Characterization of S-Adenosyl-L-Methionine Nicotinic Acid-N-Methyltransferase from Leaves of Glycine max, Biol Plant, vol.48, pp.531-535, 2004.

C. Cheniclet, W. Y. Rong, M. Causse, N. Frangne, L. Bolling et al., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol, vol.139, pp.1984-94, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02679827

E. N. Chini, C. Chini, I. Kato, S. Takasawa, and H. Okamoto, CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues, Biochem J, vol.362, pp.125-155, 2002.

E. N. Chini, D. Toledo, and F. , Nicotinic acid adenine dinucleotide phosphate: a new intracellular second messenger?, Am J Physiol Cell Physiol, vol.282, pp.1191-1199, 2002.

R. Chollet, Effect of glycidate on glycolate formation and photosynthesis in isolated spinach chloroplasts, Plant Physiol, vol.57, pp.237-277, 1976.

P. J. Chung, Y. S. Kim, S. Park, B. H. Nahm, and J. Kim, Subcellular localization of rice histone deacetylases in organelles, FEBS Lett, vol.583, pp.2249-54, 2009.

R. M. Cicchillo, L. Tu, J. A. Stromberg, L. M. Hoffart, C. Krebs et al., Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster, J Am Chem Soc, vol.127, pp.7310-7311, 2005.

R. B. Clark, Organic acids from leaves of several crop plants by gas chromatography, Crop Sci, vol.9, pp.341-343, 1969.

N. K. Clay, A. M. Adio, C. Denoux, G. Jander, and F. M. Ausubel, Glucosinolate metabolites required for an Arabidopsis innate immune response, Science, vol.323, pp.95-101, 2009.

S. J. Clough and . Bent-a-f, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-778, 1998.

M. Colinas, H. Shaw, S. Loubéry, M. Kaufmann, M. Moulin et al., A Pathway for Repair of NAD(P)H in Plants, J Biol Chem, vol.289, pp.14692-706, 2014.

, Come D (1970) Les obstacles à la germination, vol.162

A. G. Condon, R. A. Richards, G. J. Rebetzke, and G. D. Farquhar, Breeding for high water-use efficiency, J Exp Bot, vol.55, pp.2447-60, 2004.

J. Constentin and P. Delaveau, Café, thé, chocolat. Les bienfaits pour le cerveau et le corps, 2010.

L. Dever, K. Bailey, M. Lacuesta, R. Leegood, and P. Lea, The isolation and characterization of mutants of the C-4 plant Amaranthus edulis, Comptes rendus Acad. Sci. III. La Vie, vol.319, pp.951-959, 1996.

R. E. Dewey and J. Xie, Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum, Phytochemistry, vol.94, pp.10-27, 2013.

P. Dieter and D. Marmé, A Ca2+, Calmodulin-dependent NAD kinase from corn is located in the outer mitochondrial membrane, J Biol Chem, vol.259, pp.184-193, 1984.

U. K. Divi and P. Krishna, Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance, N Biotechnol, vol.26, pp.131-137, 2009.

C. Dobrota, Energy dependent plant stress acclimation, Rev Env Sci Biotechnol, vol.5, pp.243-251, 2006.

M. Dobrzanska, B. Szurmak, A. Wyslouch-cieszynska, and E. Kraszewska, Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana, J Biol Chem, vol.277, pp.50482-50488, 2002.

T. Doheny-adams, L. Hunt, P. J. Franks, D. J. Beerling, and J. E. Gray, Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient, Philos Trans R Soc Lond B Biol Sci, vol.367, pp.547-55, 2012.

S. Dong, W. Yin, G. Kong, X. Yang, D. Qutob et al., Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity, PLoS Pathog, vol.7, p.1002353, 2011.

V. Doubnerová and H. Ry?lavá, What can enzymes of C4 photosynthesis do for C3 plants under stress?, Plant Sci, vol.180, pp.575-83, 2011.

R. Douce and M. Neuburger, The Uniqueness of Plant Mitochondria, Annu Rev Plant Physiol Plant Mol Biol, vol.40, pp.371-414, 1989.

G. Doucet-chabeaud, C. Godon, C. Brutesco, G. De-murcia, and M. Kazmaier, Ionising radiation induces the expression of PARP-1 and PARP-2 genes in Arabidopsis, Mol Genet Genomics, vol.265, pp.954-63, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02371514

W. J. Dower, J. F. Miller, and C. W. Ragsdale, High efficiency transformation of E. coli by high voltage electroporation, Nucleic Acids Res, vol.16, pp.6127-6172, 1988.

W. Du, S. Ren, Q. Suo, M. Yang, D. He et al., Construction of Sirtl shRNA interfering vector and its effects on cell proliferation and apoptosis, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol.28, pp.972-977, 2011.

X. Du, W. Wang, R. Kim, H. Yakota, H. Nguyen et al., Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii, Biochemistry, vol.40, pp.14166-72, 2001.

C. Dutilleul, S. Driscoll, G. Cornic, R. De-paepe, C. H. Foyer et al., Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients, Plant Physiol, vol.131, pp.264-75, 2003.

C. Dutilleul, M. Garmier, G. Noctor, C. Mathieu, P. Chétrit et al., Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation, Plant Cell, vol.15, pp.1212-1226, 2003.

C. Dutilleul, C. Lelarge, J. Prioul, D. Paepe, R. Foyer et al., Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism, Plant Physiol, vol.139, pp.64-78, 2005.

B. Ehdaie, A. Hall, G. Farquhar, H. Nguyen, and J. Waines, Water-use efficiency and carbon isotope discrimination in wheat, Crop Sci, vol.31, pp.1282-1288, 1991.

H. Ekkehard and M. Stitt, Perturbation of photosynthesis in spinach leaf discs by low concentrations of methyl viologen : Influence of increased thylakoid energisation on ATP synthesis, electron transport, energy dissipation, lightactivation of the calvin-cycle enzymes, and contr, Planta, vol.179, pp.51-60, 1989.

H. El-maarouf-bouteau, Y. Sajjad, J. Bazin, N. Langlade, S. M. Cristescu et al., Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination, Plant Cell Environ, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01537946

M. E. Eriksson, M. Israelsson, O. Olsson, and T. Moritz, Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length, Nat Biotechnol, vol.18, pp.784-792, 2000.

M. A. Escobar, D. A. Geisler, and A. G. Rasmusson, Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate, Plant J, vol.45, pp.775-88, 2006.

V. Euler and H. , Fermentation of sugars and fermentative enzymes, Nobel Lect Nobel Foun, 1930.

L. S. Evans, M. S. Almeida, D. G. Lynn, and K. Nakanishi, Chemical characterization of a hormone that promotes cell arrest in g2 in complex tissues, Science, vol.203, pp.1122-1125, 1979.

L. S. Evans and W. A. Tramontano, Is Trigonelline a Plant Hormone?, Am J Bot, vol.68, p.1282, 1981.

M. Evenari, D. Koller, and Y. Gutteman, Effects of the environment of the mother plants on the germination by control of seed-coat permeability to water in Ononis sicula, Aust J Biol Sci, vol.19, pp.1007-1016, 1966.

C. H. Foyer and G. Noctor, Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell, vol.17, pp.1866-75, 2005.

M. Friedkin and A. L. Lehninger, Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen, J Biol Chem, vol.178, pp.611-655, 1949.

G. M. Frost, K. S. Yang, and G. R. Waller, Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L, J Biol Chem, vol.242, pp.887-895, 1967.

M. J. Fryer, L. Ball, K. Oxborough, S. Karpinski, P. M. Mullineaux et al., Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves, Plant J, vol.33, pp.691-705, 2003.

Z. Q. Fu and X. Dong, Systemic acquired resistance: turning local infection into global defense, Annu Rev Plant Biol, vol.64, pp.839-63, 2013.

E. I. Galeeva, T. Trifonova, A. A. Ponomareva, L. Viktorova, and F. Minibayeva, Nitrate reductase from Triticum aestivum leaves: regulation of activity and possible role in production of nitric oxide, Biochem Biokhimii? a, vol.77, pp.404-414, 2012.

S. Gallais, M. A. De-crescenzo, and D. L. Laval-martin, Evidence of active NADP(+) phosphatase in dormant seeds of Avena sativa L, J Exp Bot, vol.51, pp.1389-94, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02694547

S. Gallais, P. De-crescenzo, M. A. Laval-martin, and D. L. , Pyridine nucleotides and redox charges during germination of non-dormant and dormant caryopses of Avena sativa L, J Plant Physiol, vol.153, pp.663-669, 1998.

R. Galletti, C. Denoux, S. Gambetta, J. Dewdney, F. M. Ausubel et al., The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea, Plant Physiol, vol.148, pp.1695-706, 2008.

S. Gálvez, M. Lancien, and M. Hodges, Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis?, Trends Plant Sci, vol.4, pp.484-490, 1999.

G. Galvez-valdivieso, M. J. Fryer, T. Lawson, K. Slattery, T. W. Smirnoff et al., The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells, Plant Cell, vol.21, pp.2143-62, 2009.

P. Gardeström, Adenylate ratios in the cytosol, chloroplasts and mitochondria of barley leaf protoplasts during photosynthesis at different carbon dioxide concentrations, FEBS Lett, vol.212, pp.114-118, 1987.

P. R. Gardner and I. Fridovich, Quinolinate synthetase: The oxygen-sensitive site of de novo NAD(P)+ biosynthesis, Arch Biochem Biophys, vol.284, pp.106-111, 1991.

P. Gauthier, R. Bligny, E. Gout, A. Mahé, S. Nogués et al., In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus, New Phytol, vol.185, pp.988-99, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470357

X. Ge, G. Li, S. Wang, H. Zhu, T. Zhu et al., AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis, Plant Physiol, vol.145, pp.204-219, 2007.

X. Ge and Y. Xia, The role of AtNUDT7, a Nudix hydrolase, in the plant defense response, Plant Signal Behav, vol.3, pp.119-139, 2008.

P. Geigenberger and A. R. Fernie, Metabolic Control of Redox and Redox Control of Metabolism in Plants, Antioxid Redox Signal, 2014.

A. A. Genazzani, J. Bak, and A. Galione, Inhibition of cADPR-Hydrolase by ADPribose potentiates cADPR synthesis from beta-NAD+, Biochem Biophys Res Commun, vol.223, pp.502-509, 1996.

S. Y. Gerdes, O. Kurnasov, K. Shatalin, B. Polanuyer, R. Sloutsky et al., Comparative genomics of NAD biosynthesis in cyanobacteria, J Bacteriol, vol.188, pp.3012-3035, 2006.

S. W. Gibson, A. J. Conway, Z. Zheng, T. M. Uchacz, J. L. Taylor et al., Brassica carinata CIL1 mediates extracellular ROS production during auxin-and ABA-regulated lateral root development, J Plant Biol, vol.55, pp.361-372, 2012.

P. Giegé, J. L. Heazlewood, U. Roessner-tunali, A. H. Millar, A. R. Fernie et al., Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells, Plant Cell, vol.15, pp.2140-51, 2003.

J. Glazebrook, Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu Rev Phytopathol, vol.43, pp.205-232, 2005.

J. Glazebrook and F. M. Ausubel, Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens, Proc Natl Acad Sci U S A, vol.91, pp.8955-8964, 1994.

A. G. Golubev, The other side of metabolism, vol.61, pp.2018-2057, 1996.

M. Gonzalez-guzman, G. A. Pizzio, A. R. Vera-sirera, F. Merilo, E. Bassel et al., , 2012.

P. Arabidopsis and . Pyl/, RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid, Plant Cell, vol.24, pp.2483-96

S. A. Gordon, A. Fleck, and J. Bell, Optimal conditions for the estimation of ammonium by the Berthelot reaction, Ann Clin Biochem, vol.15, pp.270-275, 1978.

S. Hashida, H. Takahashi, K. Takahara, M. Kawai-yamada, K. Kitazaki et al., NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination, Mol Plant, vol.6, pp.216-241, 2013.

S. Hashida, H. Takahashi, and H. Uchimiya, The role of NAD biosynthesis in plant development and stress responses, Ann Bot, vol.103, pp.819-843, 2009.

S. Hashida, H. Takahashi, and H. Uchimiya, The role of NAD biosynthesis in plant development and stress responses, Ann Bot, vol.103, pp.819-843, 2009.

S. Hashida, M. Kawai-yamada, and H. Uchimiya, NAD+ accumulation as a metabolic off switch for orthodox pollen, Plant Signal Behav, vol.8, pp.1-3, 2013.

S. Hashida, H. Takahashi, K. Takahara, M. Kawai-yamada, K. Kitazaki et al., NAD+ Accumulation during Pollen Maturation in Arabidopsis Regulating Onset of Germination, Mol Plant, vol.6, pp.216-241, 2013.

M. Hauben, B. Haesendonckx, E. Standaert, K. Van-der-kelen, A. Azmi et al., Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield, Proc Natl Acad Sci U S A, vol.106, pp.20109-20123, 2009.

M. Havlová, P. I. Dobrev, V. Motyka, H. Storchová, J. Libus et al., The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters, Plant Cell Environ, vol.31, pp.341-53, 2008.

T. Hayakawa, T. Nakamura, F. Hattori, M. T. Ojima, K. Yamaya et al., Cellular localization of NADH-dependent glutamate-synthase protein in vascular bundles of unexpanded leaf blades and young grains of rice plants, Planta, vol.193, pp.455-60, 1994.

M. Hayashi, H. Takahashi, K. Tamura, J. Huang, L. Yu et al., Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice, Proc Natl Acad Sci U S A, vol.102, pp.7020-7025, 2005.

U. W. Heber and K. A. Santarius, Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis, Biochim Biophys Acta -Biophys Incl Photosynth, vol.109, pp.390-408, 1965.

R. Hedrich and M. I. , Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells, EMBO J, vol.12, pp.897-901, 1993.

V. Heeger, K. W. Leienbach, and W. Barz, Metabolism of nicotinic acid in plant cell suspension cultures, III: Formation and metabolism of trigonelline, 1976.

, Hoppe Seylers Z Physiol Chem, vol.357, pp.1081-1088

D. Heineke, B. Riens, H. Grosse, P. Hoferichter, U. Peter et al., Redox Transfer across the Inner Chloroplast Envelope Membrane, Plant Physiol, vol.95, pp.1131-1138, 1991.

L. M. Henderson, J. F. Someroski, D. R. Rao, P. Wu, T. Griffith et al., Lack of tryptophan-niacin relationship in corn and tobacco, J Biol Chem, vol.234, pp.93-98, 1959.

E. Heyno, G. Innocenti, S. D. Lemaire, E. Issakidis-bourguet, and A. Krieger-liszkay, Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis, Philos Trans R Soc Lond B Biol Sci, vol.369, 2014.

S. B. Hildreth, E. A. Gehman, H. Yang, R. Lu, K. C. Ritesh et al., Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism, Proc Natl Acad Sci U S A, vol.108, pp.18179-84, 2011.

Y. Hirakawa, H. Shinohara, Y. Kondo, A. Inoue, I. Nakanomyo et al., Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system, Proc Natl Acad Sci U S A, vol.105, pp.15208-15221, 2008.

B. Hirel and P. J. Lea, The biochemistry, molecular biology and genetic manipulation of primary ammonia assimilation, pp.71-92, 2002.

D. Hoagland, Optimum nutrient solutions for plants, Science (80-), vol.52, pp.193-194, 1920.

M. Holfelder, M. Steck, E. Komor, and K. Seifert, Ricinine in phloem sap of Ricinus communis, Phytochemistry, vol.47, pp.1461-1463, 1998.

C. Hollender and Z. Liu, Histone deacetylase genes in Arabidopsis development, J Integr Plant Biol, vol.50, pp.875-85, 2008.

Y. Hosokawa, E. Mitchell, and R. Gholson, Higher plants contain L-asparate oxidase, the first enzyme of the Escherichia coli quinolinate synthetase system, Biochem Biophys Res Commun, vol.111, pp.188-93, 1983.

Q. Hou and D. Bartels, Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes, Ann Bot, 2014.

R. H. Houtkooper, E. Pirinen, and J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nat Rev Mol Cell Biol, vol.13, pp.225-263, 2012.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Adv Bioinformatics, p.420747, 2008.

A. U. Igamberdiev, N. Bykova, and P. Gardeström, Involvement of cyanideresistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants, FEBS Lett, vol.412, pp.265-274, 1997.

A. U. Igamberdiev and P. Gardeström, Regulation of NAD-and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves, Biochim Biophys Acta, vol.1606, pp.117-142, 2003.

D. Ikemeyer and W. Barz, Comparison of secondary product accumulation in photoautotrophic, photomixotrophic and heterotrophic Nicotiana tabacum cell suspension cultures, Plant Cell Rep, vol.8, pp.479-82, 1989.

S. Imai, A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis, Pharmacol Res, vol.62, pp.42-49, 2010.

S. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature, vol.403, pp.795-800, 2000.

S. Imai and L. Guarente, NAD(+) and sirtuins in aging and disease, Trends Cell Biol, vol.24, pp.464-471, 2014.

J. De-ingeniis, M. D. Kazanov, K. Shatalin, M. S. Gelfand, A. L. Osterman et al., Glutamine versus ammonia utilization in the NAD synthetase family, PLoS One, vol.7, p.39115, 2012.

K. Ishikawa, K. Yoshimura, K. Harada, E. Fukusaki, T. Ogawa et al., AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling, Plant Physiol, vol.152, pp.2000-2012, 2010.

Y. Ito, I. Nakanomyo, H. Motose, K. Iwamoto, S. Sawa et al., Dodeca-CLE peptides as suppressors of plant stem cell differentiation, Science, vol.313, pp.842-847, 2006.

K. Ittersum-m-van,-cassman and P. Grassini, Yield gap analysis with local to global relevance-a review, F. Crop. Res, vol.143, pp.4-17, 2013.

B. Ivanov and S. Khorobrykh, Participation of photosynthetic electron transport in production and scavenging of reactive oxygen species, Antioxid Redox Signal, vol.5, pp.43-53, 2003.

E. Jahns, Ueber die Alkaloide des Bockshornsamens, Ber Dtsch Chem Ges, vol.18, pp.2518-2523, 1885.

A. Jamai, P. A. Salomé, S. H. Schilling, A. Weber, and C. R. Mcclung, Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase, Plant Cell, vol.21, pp.595-606, 2009.

N. Jambunathan and R. Mahalingam, Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling, Planta, vol.224, pp.1-11, 2006.

N. Jambunathan, A. Penaganti, Y. Tang, and R. Mahalingam, Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7, BMC Plant Biol, vol.10, p.173, 2010.

S. H. Janacek, S. Trenkamp, B. Palmer, N. J. Brown, K. Parsley et al., Photosynthesis in cells around veins of the C(3) plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness, Plant J, vol.59, pp.329-372, 2009.

I. Jang, P. J. Chung, H. Hemmes, C. Jung, and N. Chua, Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus, Plant Cell, vol.23, pp.459-70, 2011.

L. Jeanguenin, A. Lara-núñez, D. A. Rodionov, A. L. Osterman, N. Y. Komarova et al., Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals, Funct Integr Genomics, vol.12, pp.25-34, 2012.

R. Johnson and G. Waller, Relationship of pyridine nucleotide cycle to ricinine biosynthesis in Ricinus communis, vol.13, pp.1493-1500, 1974.

H. Jones, Stomatal control of photosynthesis and transpiration, J. Exp. Bot, vol.49, pp.387-398, 1998.

J. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-332, 2006.

M. B. Jones, E. L. Leafe, and W. Stiles, Water stress in field-grown perennial ryegrass, 1980.

, Ann Appl Biol, vol.96, pp.103-110

J. G. Joshi and P. Handler, Biosynthesis of trigonelline, J Biol Chem, vol.235, pp.2981-2984, 1960.

E. P. Journet, M. Neuburger, and R. Douce, Role of Glutamate-oxaloacetate Transaminase and Malate Dehydrogenase in the Regeneration of NAD for Glycine Oxidation by Spinach leaf Mitochondria, Plant Physiol, vol.67, pp.467-476, 1981.

W. M. Kaiser, A. Kandlbinder, M. Stoimenova, and J. Glaab, Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ, Planta, vol.210, pp.801-808, 2000.

W. M. Kaiser, M. Stoimenova, and H. Man, What limits nitrate reduction in leaves?, Photosynth Nitrogen Assim-ilation Assoc Carbon Respir Metab, vol.12, pp.63-70, 2002.

J. Kang, J. Hwang, M. Lee, Y. Kim, S. M. Assmann et al., PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid, Proc Natl Acad Sci U S A, vol.107, pp.2355-60, 2010.

M. R. Kasimova, J. Grigiene, K. Krab, P. H. Hagedorn, H. Flyvbjerg et al., The Free NADH Concentration Is Kept Constant in Plant Mitochondria under Different Metabolic Conditions, Plant Cell, vol.18, pp.688-698, 2006.

F. Katagiri, R. Thilmony, and S. Y. He, The Arabidopsis thaliana-pseudomonas syringae interaction, Arabidopsis Book, vol.1, p.39, 2002.

R. Katahira and H. Ashihara, Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.), Planta, vol.231, pp.35-45, 2009.

M. Kato and S. Lin, Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae, DNA Repair (Amst), 2014.

A. Katoh and T. Hashimoto, Molecular biology of pyridine nucleotide and nicotine biosynthesis, Front Biosci, vol.9, pp.1577-86, 2004.

A. Katoh, K. Uenohara, M. Akita, and T. Hashimoto, Early Steps in the Biosynthesis of NAD in Arabidopsis Start with Aspartate and Occur in the Plastid 1, Plant Physiol, vol.141, pp.851-857, 2006.

J. Kauny and P. Sétif, NADPH fluorescence in the cyanobacterium Synechocystis sp. PCC 6803: a versatile probe for in vivo measurements of rates, yields and pools, Biochim Biophys Acta, vol.1837, pp.792-801, 2014.

S. Kawai, S. Mori, T. Mukai, and K. Murata, Cytosolic NADP phosphatases I and II from Arthrobacter sp. strain KM: implication in regulation of NAD+/NADP+ balance, J Basic Microbiol, vol.44, pp.185-96, 2004.

S. Kawai and K. Murata, Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H), Biosci Biotechnol Biochem, vol.72, pp.919-949, 2008.

H. Kaya, R. Nakajima, M. Iwano, M. M. Kanaoka, S. Kimura et al., Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth, Plant Cell, vol.26, pp.1069-80, 2014.

R. Kebeish, M. Niessen, K. Thiruveedhi, R. Bari, H. Hirsch et al., Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana, Nat Biotechnol, vol.25, pp.593-602, 2007.

C. I. Keeling, H. Henderson, M. Li, H. K. Dullat, T. Ohnishi et al., CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles, Insect Biochem Mol Biol, vol.43, pp.1142-51, 2013.

J. Keller, M. Liersch, and H. Grunicke, Studies on the biosynthesis of NAD from nicotinamide and on the intracellular pyridine nucleotide cycle in isolated perfused rat liver, Eur J Biochem, vol.22, pp.263-70, 1971.

G. Kelly, R. David-schwartz, S. N. Moshelion, M. Levi, A. Alchanatis et al., The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar, Plant Physiol, vol.159, pp.47-51, 2012.

A. J. Keys, L. F. Bird, M. J. Cornelius, P. J. Lea, R. M. Wallsgrove et al., Photorespiratory nitrogen cycle, Nature, vol.275, pp.741-743, 1978.

T. Kiba, A. Feria-bourrellier, F. Lafouge, L. Lezhneva, S. Boutet-mercey et al., The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants, Plant Cell, vol.24, pp.245-58, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01204108

P. J. Kilfoil, S. M. Tipparaju, O. A. Barski, and A. Bhatnagar, Regulation of ion channels by pyridine nucleotides, Circ Res, vol.112, issue.4, pp.832-873, 2013.

J. Kim and C. Dang, Multifaceted roles of glycolytic enzymes, Trends Biochem Sci, vol.30, pp.142-50, 2005.

J. H. Kim and G. Jander, Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate, Plant J, vol.49, pp.1008-1027, 2007.

J. H. Kim, B. W. Lee, F. C. Schroeder, and G. Jander, Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid), Plant J, vol.54, pp.1015-1041, 2008.

S. Kim, S. Kim, S. Yoo, M. , N. Cho et al., Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis, Biochem Biophys Res Commun, vol.437, pp.502-510, 2013.

C. D. Kirk, L. Chen, H. C. Imeson, and E. A. Cossins, A 5, 10-methylenetetrahydrofolate dehydrogenase: 5. 10-methenyltetrahydrofolate cyclohydrolase protein from Pisum sativum, Phytochemistry, vol.39, pp.1309-1314, 1995.

S. Klaus, A. Wegkamp, W. Sybesma, J. Hugenholtz, J. F. Gregory et al., A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants, J Biol Chem, vol.280, pp.5274-80, 2005.

S. Kleessen, R. Laitinen, C. M. Fusari, C. Antonio, R. Sulpice et al., Metabolic efficiency underpins performance trade-offs in growth of Arabidopsis thaliana, Nat Commun, vol.5, p.3537, 2014.

D. J. Kliebenstein, J. Kroymann, and T. Mitchell-olds, The glucosinolatemyrosinase system in an ecological and evolutionary context, Curr Opin Plant Biol, vol.8, pp.264-71, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02104683

G. Kocsy, T. I. Vanková, R. Zechmann, B. Gulyás, Z. Poór et al., Redox control of plant growth and development, Plant Sci, vol.211, pp.77-91, 2013.

C. Koncz and J. Schell, The promoter of TL-DNA gene 5 controls the tissuespecific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector, MGG Mol Gen Genet, vol.204, pp.383-396, 1986.

Y. Kong, X. Liu, P. Wan, X. Shi, W. Guo et al., The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata, Insect Mol Biol, 2014.

A. König, M. Hartl, P. A. Pham, M. Laxa, P. J. Boersema et al., The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism, Plant Physiol, vol.164, pp.1401-1415, 2014.

J. König, M. Baier, F. Horling, U. Kahmann, G. Harris et al., The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux, Proc Natl Acad Sci U S A, vol.99, pp.5738-5781, 2002.

K. König, Multiphoton microscopy in life sciences, J Microsc, vol.200, pp.83-104, 2000.

A. Koornneef and C. Pieterse, Cross talk in defense signaling, Plant Physiol, vol.146, pp.839-883, 2008.

A. Kornberg, The participation of inorganic pyrophosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide, J Biol Chem, vol.176, p.1475, 1948.

S. Koster, B. Upmeier, D. Komossa, and W. Barz, Nicotinic-acid conjugation in plants and plant-cell cultures of potato (Solanum tuberosum). Zeitschrift fur Naturforsch C-A, J Biosci, vol.44, pp.623-628, 1989.

A. Kozaki and G. Takeba, Photorespiration protects C3 plants from photooxidation, Nature, vol.384, pp.557-560, 1996.

A. Krapp, L. C. David, C. Chardin, T. Girin, A. Marmagne et al., Nitrate transport and signalling in Arabidopsis, J Exp Bot, vol.65, pp.789-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204040

E. Kraszewska, The plant Nudix hydrolase family, Acta Biochim Pol, vol.55, pp.663-71, 2008.

H. A. Krebs, The role of fumarate in the respiration of Bacterium coli commune, Biochem J, vol.31, pp.2095-124, 1937.

S. Krömer and H. W. Heldt, On the Role of Mitochondrial Oxidative Phosphorylation in Photosynthesis Metabolism as Studied by the Effect of Oligomycin on Photosynthesis in Protoplasts and Leaves of Barley (Hordeum vulgare), Plant Physiol, vol.95, pp.1270-1276, 1991.

T. Kupke, J. A. Caparrós-martín, M. Salazar, K. J. , and C. Fa, Biochemical and physiological characterization of Arabidopsis thaliana AtCoAse: a Nudix CoA hydrolyzing protein that improves plant development, Physiol Plant, vol.135, pp.365-78, 2009.

S. Kuraishi, N. Arai, T. Ushijima, and T. Tazaki, Oxidized and reduced nicotinamide adenine dinucleotide phosphate levels of plants hardened and unhardened against chilling injury, Plant Physiol, vol.43, pp.238-280, 1968.

O. Kurnasov, V. Goral, K. Colabroy, S. Gerdes, S. Anantha et al., Biosynthesis : Identification of the Tryptophan to Quinolinate Pathway in Bacteria, Chem Biol, vol.10, pp.1195-1204, 2003.

O. V. Kurnasov, B. M. Polanuyer, S. Ananta, R. Sloutsky, T. A. Gerdes et al., Ribosylnicotinamide Kinase Domain of NadR Protein: Identification and Implications in NAD Biosynthesis, J Bacteriol, vol.185, pp.698-698, 2003.

J. M. Kwak, I. C. Mori, Z. Pei, N. Leonhardt, M. A. Torres et al., NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis, EMBO J, vol.22, pp.2623-2656, 2003.

X. Lacaze, Développer des plantes résistantes à la sécheresse, Ed Sci Tech, vol.16, 2006.

M. Lacuesta, L. V. Dever, A. Munoz-rueda, and P. J. Lea, A study of photorespiratory ammonia production in the C4 plant Amaranthus edulis, using mutants with altered photosynthetic capacities, Physiol Plant, vol.99, pp.447-455, 1997.

R. S. Lamb, M. Citarelli, and S. Teotia, Functions of the poly(ADP-ribose) polymerase superfamily in plants, Cell Mol Life Sci, vol.69, pp.175-89, 2012.

M. J. Laskowski, K. A. Dreher, M. A. Gehring, S. Abel, A. L. Gensler et al., FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotidebinding quinone reductase, Plant Physiol, vol.128, pp.578-90, 2002.

R. Lassig, T. Gutermuth, T. D. Bey, K. R. Konrad, and T. Romeis, Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth, Plant J, vol.78, pp.94-106, 2014.

C. Lau, C. Dölle, T. I. Gossmann, L. Agledal, M. Niere et al., Isoformspecific targeting and interaction domains in human nicotinamide mononucleotide adenylyltransferases, J Biol Chem, vol.285, pp.18868-76, 2010.

D. L. Laval-martin, I. A. Carré, S. J. Barbera, and L. N. Edmunds, Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z), Arch Biochem Biophys, vol.276, pp.433-474, 1990.

T. Lawson and M. R. Blatt, Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency, Plant Physiol, vol.164, pp.1556-70, 2014.

C. P. Leckie, M. R. Mcainsh, G. J. Allen, D. Sanders, and A. Hetherington, Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose, Proc Natl Acad Sci U S A, vol.95, pp.15837-15879, 1998.

H. C. Lee, Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization, J Biol Chem, vol.287, pp.31633-31673, 2012.

H. C. Lee and R. Aarhus, ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite, Cell Regul, vol.2, pp.203-212, 1991.

S. Lefebvre, T. Lawson, O. Zakhleniuk, J. C. Lloyd, C. A. Raines et al., Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development, Plant Physiol, vol.138, pp.451-60, 2005.

J. Lei, S. Finlayson, R. A. Salzman, L. Shan, and K. Zhu-salzman, BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT4, Plant Physiology, vol.165, pp.1657-1670, 2014.

M. Leist, B. Single, G. Künstle, C. Volbracht, H. Hentze et al., Apoptosis in the absence of poly-(ADP-ribose) polymerase, Biochem Biophys Res Commun, vol.233, pp.518-540, 1997.

G. Lemaire and P. Millard, An ecophysiological approach to modelling resource fluxes in competing plants, J Exp Bot, vol.50, pp.15-28, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02684539

J. Lherminier, T. Elmayan, J. Fromentin, K. T. Elaraqui, S. Vesa et al., NADPH oxidase-mediated reactive oxygen species production: subcellular localization and reassessment of its role in plant defense, Mol Plant Microbe Interact, vol.22, pp.868-81, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02661722

C. Li, W. Teng, Q. Shi, and F. Zhang, Multiple signals regulate nicotine synthesis in tobacco plant, Plant Signal Behav, vol.2, pp.280-281, 2007.

W. Li, X. Wang, R. Li, W. Li, and K. Chen, Genome-Wide Analysis of the NADK Gene Family in Plants, PLoS One, vol.9, pp.1-15, 2014.

X. Ma, S. Lv, C. Zhang, and C. Yang, Histone deacetylases and their functions in plants, Plant Cell Rep, vol.32, pp.465-78, 2013.

S. J. Macdonald, G. G. Lin, C. W. Russell, G. H. Thomas, and A. E. Douglas, The central role of the host cell in symbiotic nitrogen metabolism, Proc Biol Sci, vol.279, pp.2965-73, 2012.

A. P. Macho, F. Boutrot, J. P. Rathjen, and C. Zipfel, ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity, Plant Physiol, vol.159, pp.1845-56, 2012.

U. Maciejewska and A. Kacperska, Changes in the level of oxidized and reduced pyridine nucleotides during cold acclimation of winter rape plants, Physiol Plant, vol.69, pp.687-691, 1987.

G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli et al., Structure and function of nicotinamide mononucleotide adenylyltransferase, Curr Med Chem, vol.11, pp.873-85, 2004.

A. Maier, H. Fahnenstich, S. Von-caemmerer, M. Engqvist, A. Weber et al., Transgenic Introduction of a Glycolate Oxidative Cycle into A. thaliana Chloroplasts Leads to Growth Improvement, Front Plant Sci, vol.3, p.38, 2012.

S. Malonek, M. C. Rojas, P. Hedden, P. Gaskin, P. Hopkins et al., The NADPH-cytochrome P450 reductase gene from Gibberella fujikuroi is essential for gibberellin biosynthesis, J Biol Chem, vol.279, pp.25075-84, 2004.

D. F. Mann and R. U. Byerrum, Activation of the de novo pathway for pyridine nucleotide biosynthesis prior to ricinine biosynthesis in castor beans, Plant Physiol, vol.53, pp.603-612, 1974.

J. Mano, E. Belles-boix, E. Babiychuk, D. Inzé, Y. Torii et al., Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls, Plant Physiol, vol.139, pp.1773-83, 2005.

A. Y. Marbaix, G. Noël, A. M. Detroux, D. Vertommen, E. Van-schaftingen et al., Extremely conserved ATP-or ADP-dependent enzymatic system for nicotinamide nucleotide repair, J Biol Chem, vol.286, pp.41246-52, 2011.

D. Marino, C. Dunand, A. Puppo, and N. Pauly, A burst of plant NADPH oxidases, Trends Plant Sci, vol.17, pp.9-15, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02652498

I. Marinoni, S. Nonnis, C. Monteferrante, P. Heathcote, E. Härtig et al., Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis, FEBS J, vol.275, pp.5090-107, 2008.

J. P. Maroco, M. Ku, and G. E. Edwards, Oxygen sensitivity of C4 photosynthesis: evidence from gas exchange and chlorophyll fluorescence analyses with different C4 subtypes, Plant, Cell Environ, vol.20, pp.1525-1533, 1997.

D. Martino, C. Pallotta, and M. L. , Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues, Planta, vol.234, pp.657-70, 2011.

D. Martino, M. L. Fioravanti, R. Barbabella, G. Prosseda, G. Colonna et al., Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype, Int J Med Microbiol, vol.303, pp.651-61, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01044923

M. Mashimo, J. Kato, and J. Moss, ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress, Proc Natl Acad Sci U S A, vol.110, pp.18964-18973, 2013.

J. Masle, S. R. Gilmore, and G. D. Farquhar, The ERECTA gene regulates plant transpiration efficiency in Arabidopsis, Nature, vol.436, pp.866-70, 2005.

A. Matsui and H. Ashihara, Nicotinate riboside salvage in plants: presence of nicotinate riboside kinase in mungbean seedlings, Plant Physiol Biochem, vol.46, pp.104-112, 2008.

A. Matsui, Y. Yin, K. Yamanaka, M. Iwasaki, and H. Ashihara, Metabolic fate of nicotinamide in higher plants, Physiol Plant, vol.131, pp.191-200, 2007.

A. Mattevi, G. Tedeschi, L. Bacchella, A. Coda, A. Negri et al., Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family, Structure, vol.7, pp.745-56, 1999.

G. Maulucci, D. Troiani, S. Eramo, F. Paciello, M. V. Podda et al., Time evolution of noise induced oxidation in outer hair cells: role of NAD(P)H and plasma membrane fluidity, Biochim Biophys Acta, vol.1840, pp.2192-202, 2014.

L. Mcausland, P. A. Davey, N. Kanwal, N. R. Baker, and T. Lawson, A novel system for spatial and temporal imaging of intrinsic plant water use efficiency, J Exp Bot, vol.64, pp.4993-5007, 2013.

A. G. Mclennan, The Nudix hydrolase superfamily, Cell Mol Life Sci, vol.63, pp.123-166, 2006.

R. Medda, A. Padiglia, A. Lorrai, B. Murgia, A. F. Agrò et al., Purification and properties of a nucleotide pyrophosphatase from lentil seedlings, J Protein Chem, vol.19, pp.209-223, 2000.

H. Medrano, J. M. Escalona, J. Bota, J. Gulias, and J. Flexas, Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter, Ann Bot, vol.89, pp.895-905, 2002.

H. Meidner and T. Mansfield, Physiology of stomata. Book of Physiol. stomata, vol.179, p.pp, 1968.

F. J. Muñoz, E. Baroja-fernández, M. T. Morán-zorzano, A. , N. Pozueta-romero et al., Cloning, expression and characterization of a Nudix hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to starch biosynthesis in Arabidopsis thaliana, Plant Cell Physiol, vol.47, pp.926-960, 2006.

J. Mur-l-a, K. P. Lloyd, A. J. Ougham, H. Prats, and E. , The hypersensitive response; the centenary is upon us but how much do we know?, J Exp Bot, vol.59, pp.501-521, 2008.

T. Murashige and F. Skoog, A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures, Physiol Plant, vol.15, pp.473-497, 1962.

G. De-murcia, M. De-murcia, and J. , Poly(ADP-ribose) polymerase: a molecular nick-sensor, Trends Biochem Sci, vol.19, pp.172-178, 1994.

S. Nasu, F. Wicks, and R. Gholson, L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli is the B protein of Quinolinate Synthetase, Biol Chem, vol.257, pp.626-632, 1982.

L. Navazio, M. A. Bewell, A. Siddiqua, G. D. Dickinson, A. Galione et al., Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate, Proc Natl Acad Sci U S A, vol.97, pp.8693-8701, 2000.

L. Navazio, P. Mariani, and D. Sanders, Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets, Plant Physiol, vol.125, pp.2129-2167, 2001.

J. Nestler, S. Liu, T. Wen, A. Paschold, C. Marcon et al., Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase, Plant J, 2014.

M. Neuburger, D. A. Day, and R. Douce, Transport of NAD in Percoll-Purified Potato Tuber Mitochondria: Inhibition of NAD Influx and Efflux by N-4-Azido-2-nitrophenyl-4-aminobutyryl-3'-NAD, Plant Physiol, vol.78, pp.405-415, 1985.

M. Neuburger and R. Douce, Slow passive diffusion of NAD+ between intact isolated plant mitochondria and suspending medium, Biochem J, vol.216, pp.443-50, 1983.

R. J. Newton, S. Bhaskaran, J. D. Puryear, and R. H. Smith, Physiological Changes in Cultured Sorghum Cells in Response to Induced Water Stress : II. Soluble Carbohydrates and Organic Acids, Plant Physiol, vol.81, pp.626-635, 1986.

D. Ng, M. Miller, H. H. Yu, T. Huang, E. Kim et al., A Role for CHH Methylation in the Parent-of-Origin Effect on Altered Circadian Rhythms and Biomass Heterosis in Arabidopsis Intraspecific Hybrids, Plant Cell, vol.26, pp.2430-2440, 2014.

T. Ogawa, K. Yoshimura, H. Miyake, K. Ishikawa, D. Ito et al., Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis, Plant Physiol, vol.148, pp.1412-1436, 2008.

K. Ohashi, S. Kawai, and K. Murata, Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae, Eukaryot Cell, vol.12, pp.648-53, 2013.

J. Ohlrogge and J. Browse, Lipid biosynthesis, Plant Cell, vol.7, pp.957-70, 1995.

K. Olejnik and E. Kraszewska, Cloning and characterization of an Arabidopsis thaliana Nudix hydrolase homologous to the mammalian GFG protein, Biochim Biophys Acta, vol.1752, pp.133-174, 2005.

S. Ollagnier-de-choudens, L. Loiseau, Y. Sanakis, F. Barras, and M. Fontecave, Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis, FEBS Lett, vol.579, pp.3737-3780, 2005.

N. J. Oppenheimer and N. O. Kaplan, Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced beta-nicotinamide adenine dinucleotide (betaNADH). Formation of beta-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide, Biochemistry, vol.13, pp.4685-94, 1974.

K. Oracz, H. El-maarouf-bouteau, I. Kranner, R. Bogatek, F. Corbineau et al., The Mechanisms Involved in Seed Dormancy Alleviation by Hydrogen Cyanide Unravel the Role of Reactive Oxygen Species as Key Factors of Cellular Signaling during Germination, Plant Physiol, vol.150, pp.494-505, 2009.

A. Orechoff and G. Menshikoff, The alkaloids of Anabasis aphylla L, Ber, vol.64, p.266, 1931.

Y. Osakabe, K. Osakabe, K. Shinozaki, L. Tran, and . Sp, Response of plants to water stress, Front Plant Sci, vol.5, pp.1-8, 2014.

Y. Osakabe, K. Yamaguchi-shinozaki, K. Shinozaki, L. Tran, and . Sp, ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity, New Phytol, vol.202, pp.35-49, 2014.

C. Osmond and S. Grace, Perspectives on photoinhibition and photorespiration in the field: Quintessential inefficiencies of the light and dark reactions of photosynthesis, vol.46, pp.604-604, 1995.

C. E. Outten and V. C. Culotta, A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae, EMBO J, vol.22, pp.2015-2039, 2003.

C. Ozment, J. Barchue, L. J. Delucas, and D. Chattopadhyay, Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis, J Struct Biol, vol.127, pp.279-82, 1999.

F. Palmieri, B. Rieder, A. Ventrella, E. Blanco, P. T. Do et al., Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins, J Biol Chem, vol.284, pp.31249-59, 2009.

L. Pan, D. Ahn, T. Sharif, D. Clements, S. A. Gujar et al., The NAD+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) is a p53 downstream target, Cell Cycle, vol.13, pp.1041-1049, 2014.

S. Panda, G. G. Poirier, and S. A. Kay, tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the arabidopsis circadian oscillator, Dev Cell, vol.3, pp.51-61, 2002.

J. Passioura, Water-use efficiency in farmers' fields. Water Use Effic, Plant Biol, 2004.

V. Pastor, J. Gamir, G. Camañes, M. Cerezo, P. Sánchez-bel et al., Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina, Front Plant Sci, vol.5, p.231, 2014.

T. K. Pellny, O. Van-aken, C. Dutilleul, T. Wolff, K. Groten et al., Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris, Plant J, vol.54, pp.976-92, 2008.

T. K. Pellny, V. Locato, P. D. Vivancos, J. Markovic, D. Gara et al., Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture, Mol Plant, vol.2, pp.442-56, 2009.

T. Penfound and J. W. Foster, NAD-dependent DNA-binding activity of the bifunctional NadR regulator of Salmonella typhimurium, J Bacteriol, vol.181, pp.648-55, 1999.

L. Perchepied, C. Balagué, C. Riou, C. Claudel-renard, N. Rivière et al., Nitric oxide participates in the complex interplay of defenserelated signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana, Mol Plant Microbe Interact, vol.23, pp.846-60, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00697824

J. M. Pérez-ruiz, M. C. Spínola, K. Kirchsteiger, J. Moreno, M. Sahrawy et al., Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage, Plant Cell, vol.18, pp.2356-68, 2006.

B. Petrack, P. Greengard, A. Craston, and H. J. Kalinsky, Nicotinamide deamidase in rat liver and the biosynthesis of NAD, Biochem Biophys Res Commun, vol.13, pp.472-477, 1963.

P. Pétriacq, Étude de la biosynthèse du NAD chez les plantes : Conséquences physiologiques de sa manipulation chez Arabidopsis thaliana, 2011.

A. G. Rasmusson, K. L. Soole, and T. E. Elthon, Alternative NAD(P)H dehydrogenases of plant mitochondria, Annu Rev Plant Biol, vol.55, pp.23-39, 2004.

A. G. Rasmusson and S. V. Wallström, Involvement of mitochondria in the control of plant cell NAD(P)H reduction levels, Biochem Soc Trans, vol.38, pp.661-667, 2010.

N. Rawat, K. Himabindu, C. N. Neeraja, S. Nair, and J. S. Bentur, Suppressive subtraction hybridization reveals that rice gall midge attack elicits plantpathogen-like responses in rice, Plant Physiol Biochem, vol.63, pp.122-152, 2013.

A. F. Raybould and C. L. Moyes, The ecological genetics of aliphatic glucosinolates, Heredity (Edinb), vol.87, pp.383-91, 2001.

L. Rehan, K. Laszki-szcz?chor, M. Sobieszcza?ska, and D. Polak-jonkisz, SIRT1 and NAD as regulators of ageing, Life Sci, vol.105, pp.1-6, 2014.

J. Reidl, S. Schlör, A. Kraiss, J. Schmidt-brauns, G. Kemmer et al., NADP and NAD utilization in Haemophilus influenzae, Mol Microbiol, vol.35, pp.1573-81, 2000.

S. Reumann, R. Heupel, and H. Heldt, Compartimentation studies on spinach leaf peroxisomes .2. Evidence for the transfer of reductant from the cytosol to the peroxisomal compartment via a malate shuttle, Planta, vol.193, pp.167-173, 1994.

D. Rhodes, P. J. Rich, D. G. Brunk, G. C. Ju, J. C. Rhodes et al., Development of two isogenic sweet corn hybrids differing for glycinebetaine content, Plant Physiol, vol.91, pp.1112-1133, 1989.

K. Riazunnisa, L. Padmavathi, H. Bauwe, and A. S. Raghavendra, Markedly low requirement of added CO 2 for photosynthesis by mesophyll protoplasts of pea (Pisum sativum): possible roles of photorespiratory CO 2 and carbonic anhydrase, Physiol Plant, vol.128, pp.763-772, 2006.

C. Richter, NADP+ phosphatase: a novel mitochondrial enzyme, Biochem Biophys Res Commun, vol.146, pp.253-260, 1987.

A. S. Richter, E. Peter, M. Rothbart, H. Schlicke, J. Toivola et al., Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis, Plant Physiol, vol.162, pp.63-73, 2013.

S. P. Rius, P. Casati, A. A. Iglesias, and D. F. Gomez-casati, Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, Plant Physiol, vol.148, pp.1655-67, 2008.

M. Rizzi and H. Schindelin, Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis, Curr Opin Struct Biol, vol.12, pp.709-729, 2002.

L. C. Roden and R. A. Ingle, Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions, Plant Cell, vol.21, pp.2546-52, 2009.

I. A. Rodionova, B. M. Schuster, K. M. Guinn, L. Sorci, D. A. Scott et al., Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria, MBio, 2014.

C. Rousset, Etude structurale et fonctionnelle de la Quinolinate Synthase: une protéine fer-soufre cible d'agents antibactériens, 2009.

C. Rousset, M. Fontecave, O. De-choudens, and S. , The [4Fe-4S] cluster of quinolinate synthase from Escherichia coli: investigation of cluster ligands, FEBS Lett, vol.582, pp.2937-2981, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00374819

P. Roycewicz and J. E. Malamy, Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays, Philos Trans R Soc Lond B Biol Sci, vol.367, pp.1489-500, 2012.

J. M. Ruiz, E. Sánchez, P. C. Garc?á, L. R. López-lefebre, R. M. Rivero et al., Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock, Phytochemistry, vol.59, pp.473-478, 2002.

S. M. Ryan, K. A. Cane, K. D. Deboer, S. J. Sinclair, R. Brimblecombe et al., Structure and expression of the quinolinate phosphoribosyltransferase (QPT) gene family in Nicotiana, Plant Sci, vol.188, pp.102-112, 2012.

I. J. Ryrie and K. J. Scott, Nicotinate, quinolinate and nicotinamide as precursors in the biosynthesis of nicotinamide-adenine dinucleotide in barley, Biochem J, vol.115, pp.679-85, 1969.

I. J. Ryrie and K. J. Scott, Metabolic Regulation in Diseased Leaves II, Nicotinamide Nucleotide Coenzymes in Barley Leaves Infected with Powdery Mildew, vol.43, pp.687-692, 1968.

M. Sabar, R. De-paepe, and Y. De-kouchkovsky, Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris, Plant Physiol, vol.124, pp.1239-50, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00165287

K. Sadoul, J. Wang, B. Diagouraga, and S. Khochbin, The tale of protein lysine acetylation in the cytoplasm, J Biomed Biotechnol, vol.2011, pp.1-15, 2011.

M. Sagi and R. Fluhr, Production of reactive oxygen species by plant NADPH oxidases, Plant Physiol, vol.141, pp.336-376, 2006.

F. Saitoh, M. Noma, and N. Kawashima, The alkaloid contents of sixty Nicotiana species, Phytochemistry, vol.24, pp.477-480, 1985.

T. Sakamoto, Y. Morinaka, T. Ohnishi, H. Sunohara, S. Fujioka et al., Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice, Nat Biotechnol, vol.24, pp.105-114, 2006.

J. Schippers, A. Nunes-nesi, R. Apetrei, J. Hille, A. R. Fernie et al., The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing, Plant Cell, vol.20, pp.2909-2934, 2008.

U. Schlüter, M. Muschak, D. Berger, and T. Altmann, Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes, J Exp Bot, vol.54, pp.867-74, 2003.

M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar et al., A gene expression map of Arabidopsis thaliana development, Nat Genet, vol.37, pp.501-507, 2005.

I. Schomburg, A. Chang, and D. Schomburg, Standardization in enzymology-Data integration in the world???s enzyme information system BRENDA, Perspect Sci, vol.1, pp.15-23, 2014.

B. Schwessinger and C. Zipfel, News from the frontline: recent insights into PAMP-triggered immunity in plants, Curr Opin Plant Biol, vol.11, pp.389-95, 2008.

C. Sebastián, F. K. Satterstrom, M. C. Haigis, and R. Mostoslavsky, From sirtuin biology to human diseases: an update, J Biol Chem, vol.287, pp.42444-52, 2012.

J. Selinski, N. König, B. Wellmeyer, G. T. Hanke, V. Linke et al., The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds, Mol Plant, vol.7, pp.170-86, 2014.

J. Selinski, R. Scheibe, A. Sessions, E. Burke, G. Presting et al., Lack of malate valve capacities lead to improved Nassimilation and growth in transgenic A. thaliana plants, Plant Signal. Behav, vol.9, pp.2985-94, 2002.

A. T. Setterdahl, P. T. Chivers, M. Hirasawa, S. D. Lemaire, E. Keryer et al., Effect of pH on the oxidation-reduction properties of thioredoxins, vol.42, pp.14877-84, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02676480

T. D. Sharkey, J. R. Seemann, and R. W. Pearcy, Contribution of Metabolites of Photosynthesis to Postillumination CO(2) Assimilation in Response to Lightflects, Plant Physiol, vol.82, pp.1063-1071, 1986.

W. Shen, Y. Wei, M. Dauk, Y. Tan, D. C. Taylor et al., Involvement of a Glycerol-3-Phosphate Dehydrogenase in Modulating the NADH / NAD 1, 2006.

, Ratio Provides Evidence of a Mitochondrial Glycerol-3-Phosphate Shuttle in Arabidopsis, Plant Cell, vol.18, pp.422-441

W. Shen, Y. Wei, M. Dauk, Z. Zheng, and J. Zou, Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants, FEBS Lett, vol.536, pp.92-98, 2003.

Q. Shi, C. Li, and F. Zhang, Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin, J Exp Bot, vol.57, pp.2899-907, 2006.

K. Shibata and K. Murata, Blood NAd as an index of niacin nutrition, Nutr Int, vol.2, pp.177-181, 1986.

M. M. Shimizu and P. Mazzafera, A Role for Trigonelline During Imbibition and Germination of Coffee Seeds, Plant Biol, vol.2, pp.605-611, 2000.

T. Shoji and T. Hashimoto, Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco, Plant J, vol.67, pp.949-59, 2011.

T. Shoji and T. Hashimoto, Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes, Plant Cell Physiol, vol.52, pp.1117-1147, 2011.

T. Shoji and T. Hashimoto, DNA-binding and transcriptional activation properties of tobacco NIC2-locus ERF189 and related transcription factors, Plant Biotechnol, vol.29, pp.35-42, 2012.

T. Shoji and T. Hashimoto, Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco, Phytochemistry, 2014.

N. P. Shull, S. L. Spinelli, and E. M. Phizicky, A highly specific phosphatase that acts on ADP-ribose 1''-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae, Nucleic Acids Res, vol.33, pp.650-60, 2005.

C. Simon, M. Langlois-meurinne, F. Bellvert, M. Garmier, L. Didierlaurent et al., The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst, J Exp Bot, vol.61, pp.3355-3370, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508594

S. J. Sinclair, K. J. Murphy, C. D. Birch, and J. D. Hamill, Molecular characterization of quinolinate phosphoribosyltransferase (QPRtase) in Nicotiana, Plant Mol Biol, vol.44, pp.603-620, 2000.

T. Sinclair and T. Rufty, Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics, Glob. Food Sec, 2012.

V. A. Sisson and R. F. Severson, Alkaloid composition of the Nicotiana species, Beitr Tab, vol.14, pp.327-339, 1990.

L. M. Smyth, J. Bobalova, M. G. Mendoza, C. Lew, . Mutafova-yambolieva et al., Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder, J Biol Chem, vol.279, pp.48893-903, 2004.

M. Song, S. Bail, and M. Kiledjian, Multiple Nudix family proteins possess mRNA decapping activity, RNA, vol.19, pp.390-399, 2013.

L. Sorci, I. Blaby, D. Ingeniis, J. Gerdes, S. Raffaelli et al., Genomics-driven reconstruction of acinetobacter NAD metabolism: insights for antibacterial target selection, J Biol Chem, vol.285, pp.39490-39499, 2010.

E. Soriano, Y. Zhang, K. L. Colabroy, J. M. Sanders, E. C. Settembre et al., Active-site models for complexes of quinolinate synthase with substrates and intermediates, Acta Crystallogr D Biol Crystallogr, vol.69, pp.1685-96, 2013.

F. Sparla, A. Costa, L. Schiavo, F. Pupillo, P. Trost et al., Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis, Plant Physiol, vol.141, pp.840-50, 2006.

R. L. Spencer and J. Preiss, Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b, J Biol Chem, vol.242, pp.385-92, 1967.

G. Spielbauer, L. Li, L. Römisch-margl, P. T. Do, R. Fouquet et al., Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation, J Exp Bot, vol.64, pp.2231-2273, 2013.

G. Sriram, D. B. Fulton, V. Iyer, J. M. Peterson, R. Zhou et al., Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional (13)C labeling, two-dimensional [(13)C, (1)H] nuclear magnetic resonance, and comprehensive isotopomer balancing, Plant Physiol, vol.136, pp.3043-57, 2004.

G. Stanhill, Water use efficiency, Adv. Agron, 1986.

J. D. Steffen and J. M. Pascal, New players to the field of ADP-ribosylation make the final cut, EMBO J, vol.32, pp.1205-1212, 2013.

L. R. Stein and S. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends Endocrinol Metab, vol.23, pp.420-428, 2012.

M. Stitt, Limitation of Photosynthesis by Carbon Metabolism : I. Evidence for Excess Electron Transport Capacity in Leaves Carrying Out Photosynthesis in Saturating Light and CO(2), Plant Physiol, vol.81, pp.1115-1137, 1986.

M. Stitt, R. M. Lilley, and H. W. Heldt, Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts, Plant Physiol, vol.70, pp.971-978, 1982.

C. Stöhr, F. Strube, G. Marx, W. R. Ullrich, and P. Rockel, A plasma membranebound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite, Planta, vol.212, pp.835-876, 2001.

U. Stündl and B. Schneider, ) 3?-Brassinosteroid dehydrogenase activity in Arabidopsis and tomato, Phytochemistry, vol.58, pp.989-994, 2001.

R. Sulpice, Z. Nikoloski, H. Tschoep, C. Antonio, S. Kleessen et al., Impact of the carbon and nitrogen supply on relationships and connectivity between metabolism and biomass in a broad panel of Arabidopsis accessions, Plant Physiol, vol.162, pp.347-63, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01066953

R. Sunkar, D. Bartels, and H. Kirch, Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance, Plant J, vol.35, pp.452-64, 2003.

D. Swarthout, E. Harper, S. Judd, D. Gonthier, R. Shyne et al., Measures of leaf-level water-use efficiency in drought stressed endophyte infected and non-infected tall fescue grasses, Environ Exp Bot, vol.66, pp.88-93, 2009.

A. F. Swindall, J. A. Stanley, and E. S. Yang, PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?, Cancers (Basel), vol.5, pp.943-58, 2013.

B. Szal, Z. Dabrowska, G. Malmberg, P. Gardeström, and A. M. Rychter, Changes in energy status of leaf cells as a consequence of mitochondrial genome rearrangement, Planta, vol.227, pp.697-706, 2008.

B. Szurmak, A. Wys?ouch-cieszy?ska, M. Wszelaka-rylik, W. Bal, and M. Dobrza?ska, A diadenosine 5',5''-P1P4 tetraphosphate (Ap4A) hydrolase from Arabidopsis thaliana that is activated preferentially by Mn2+ ions, Acta Biochim Pol, vol.55, pp.151-60, 2008.

T. Abdul-razzak, N. Werck, and D. , Method for producing plants with increased biomass, 2006.

M. Taira, U. Valtersson, B. Burkhardt, and R. A. Ludwig, Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts, Plant Cell, vol.16, pp.2048-58, 2004.

L. Taiz and E. Zeiger, Plant Physiology. Sinauer Associates Inc, vol.782, 2008.

U. Takahama, M. Shimizu-takahama, and U. Heber, The redox state of the NADP system in illuminated chloroplasts, Biochim Biophys Acta -Bioenerg, vol.637, pp.530-539, 1981.

K. Takahara, I. Kasajima, H. Takahashi, S. Hashida, T. Itami et al., Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene, Plant Physiol, vol.152, pp.1863-73, 2010.

J. P. Wilder, J. A. Sae-lee, E. D. Mitchell, and R. K. Gholson, The L-aspartate oxidase reported to be present in higher plants is actually glutamic oxaloacetic transaminase, Biochem Biophys Res Commun, vol.123, pp.836-877, 1984.

S. Wilkinson and W. J. Davies, Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation, J Exp Bot, vol.59, pp.619-650, 2008.

U. Willeke, V. Heeger, M. Meise, H. Neuhann, I. Schindelmeiser et al., Mutually exclusive occurrence and metabolism of trigonelline and nicotinic acid arabinoside in plant cell cultures, Phytochemistry, vol.18, pp.105-110, 1979.

A. Wingler, P. J. Lea, W. P. Quick, and R. C. Leegood, Photorespiration: metabolic pathways and their role in stress protection, Philos Trans R Soc Lond B Biol Sci, vol.355, pp.1517-1546, 2000.

H. Winter, D. G. Robinson, and H. W. Heldt, Subcellular volumes and metabolite concentrations in spinach leaves, Planta, vol.193, pp.530-535, 1994.

H. Wolosker, D. 'aniello, A. Snyder, and S. , ) d-Aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release, Neuroscience, vol.100, pp.183-189, 2000.

K. C. Woo, Effect of Inhibitors on Ammonia-, 2-Oxoglutarate-, and Oxaloacetate-Dependent 02 Evolution in Illuminated Chloroplasts, Plant Physiol, vol.71, pp.112-117, 1983.

K. C. Woo, F. A. Boyle, I. U. Flugge, and H. W. Heldt, N-ammonia assimilation, 2-oxoglutarate transport, and glutamate export in spinach chloroplasts in the presence of dicarboxylates in the light, Plant Physiol, vol.85, pp.621-626, 1987.

R. Woo, R. Daniels-kush, and E. S. Horton, Regulation of energy balance, Annu Rev Nutr, vol.5, pp.411-444, 1985.

J. Wu, S. Neimanis, and U. Heber, Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition, Bot acta, vol.104, pp.283-291, 1991.

X. Wu, M. Oh, E. M. Schwarz, C. T. Larue, M. Sivaguru et al., Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis, Plant Physiol, vol.155, pp.1769-78, 2011.

Y. Wu, J. Kuzma, E. Maréchal, R. Graeff, H. C. Lee et al., Abscisic acid signaling through cyclic ADP-ribose in plants, Science, vol.278, pp.2126-2156, 1997.

X. Xia, Y. Wang, Y. Zhou, Y. Tao, W. Mao et al., Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber, Plant Physiol, vol.150, pp.801-815, 2009.

H. Yoshioka, N. Numata, K. Nakajima, S. Katou, K. Kawakita et al., Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans, Plant Cell, vol.15, pp.706-724, 2003.

B. Zagdanska, NAD kinase activity in wheat leaves under water deficit, Acta Biochim Pol, vol.37, pp.385-389, 1990.

B. Zagdanska and J. Kozdoj, Water stress-induced changes in morphology and anatomy of flag leaf of spring wheat, Acta socieatatis Bot Pol, vol.63, pp.61-66, 1994.

J. Zeier, New insights into the regulation of plant immunity by amino acid metabolic pathways, Plant Cell Environ, vol.36, pp.2085-103, 2013.

I. Zelitch, N. P. Schultes, R. B. Peterson, P. Brown, and T. P. Brutnell, High glycolate oxidase activity is required for survival of maize in normal air, Plant Physiol, vol.149, pp.195-204, 2009.

J. Zhang, F. Shao, Y. Li, H. Cui, L. Chen et al., A Pseudomonas syringae effector inactivates MAPKs to suppress PAMPinduced immunity in plants, Cell Host Microbe, vol.1, pp.175-85, 2007.

Q. Zhang, D. W. Piston, and R. H. Goodman, Regulation of corepressor function by nuclear NADH, Science, vol.295, pp.1895-1902, 2002.

S. Q. Zhang and W. H. Outlaw, Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure, Plant, Cell Environ, vol.24, pp.1045-1054, 2001.

T. Zhang, J. G. Berrocal, J. Yao, M. E. Dumond, R. Krishnakumar et al., Regulation of poly(ADP-ribose) polymerase-1-dependent gene expression through promoter-directed recruitment of a nuclear NAD+ synthase, J Biol Chem, vol.287, pp.12405-12421, 2012.

X. Zhang and Z. Mou, Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis, Plant J, vol.57, pp.302-314, 2009.

X. Zhang and Z. Mou, Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis, Mol Plant Microbe Interact, vol.25, pp.1209-1227, 2012.

X. Zhang, M. Li, M. Ruan, Y. Xia, K. Wu et al., Isolation of AtNUDT5 gene promoter and characterization of its activity in transgenic Arabidopsis thaliana, Appl Biochem Biotechnol, vol.169, pp.1557-65, 2013.

X. Zheng, E. Hayashibe, and H. Ashihara, Changes in trigonelline (Nmethylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds, J Exp Bot, vol.56, pp.1615-1638, 2005.

X. Zheng, Y. Koyama, C. Nagai, and H. Ashihara, Biosynthesis, accumulation and degradation of theobromine in developing Theobroma cacao fruits, J Plant Physiol, vol.161, pp.363-372, 2004.

X. Zheng, A. Matsui, and H. Ashihara, Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings, Phytochemistry, vol.69, pp.390-395, 2008.

X. Zhong, H. Zhang, Y. Zhao, Q. Sun, Y. Hu et al., The rice NAD(+)-dependent histone deacetylase OsSRT1 targets preferentially to stressand metabolism-related genes and transposable elements, PLoS One, vol.8, p.66807, 2013.

X. Zhu, E. De-sturler, and S. P. Long, Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm, Plant Physiol, vol.145, pp.513-539, 2007.

X. Zhu, S. P. Long, and D. R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?, Curr Opin Biotechnol, vol.19, pp.153-162, 2008.

Y. Zhu, M. A. Eiteman, R. Altman, and E. Altman, High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain, Appl Environ Microbiol, vol.74, pp.6649-55, 2008.

W. Zielinska, H. Barata, and E. N. Chini, Metabolism of cyclic ADP-ribose: Zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid, Life Sci, vol.74, pp.1781-90, 2004.

P. Zimmermann, M. Hirsch-hoffmann, L. Hennig, and W. Gruissem, GENEVESTIGATOR . Arabidopsis Microarray Database and Analysis Toolbox, vol.136, pp.2621-2632, 2004.