G. Baluais, D. Leclerc, and G. Meriguet, Dictionnaire de la filtration et des séparation solideliquide. IDEXPO, vol.9, p.11, 1986.

M. Catalina, . Cot, . Celma, and . Manich, Molecular weight separation of collagenbase biomaterials by ultrafiltration

. Np-cheremisinoff, Liquid filtration. application of filtration to wastewater treatment

. Butterworth-heinemann, R. Desai, and O. Sahu, Comparative study of polymer and regular coagulant for municipal waste water treatment, J Appl Chem, vol.2, issue.1, pp.82-91, 1998.

J. Sandrine and D. , Filtration membranaire (oi, nf, uf)-présentation des membranes et modules. Techniques de l'ingénieur Procédès de traitement des eaux potables, industrielles et urbaines, 2007.

J. Brun, Procédés de séparation par membranes: transport, techniques membranaires, applications. Masson, vol.10, p.11, 1989.

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena. 2nd, 2002.

W. Richard, . Baker, . El-cussler, . Eykamp, . Wj-koros et al., Membrane separation systems, p.11, 1991.

D. Leonard, . Tijing, Y. Woo, C. Chul, L. June-seok et al., Fouling and its control in membrane distillation a review, Journal of Membrane Science, vol.475, p.11, 2015.

M. Sheikholeslami, M. Gorji-bandpy, and D. Ganji, Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews, vol.49, issue.13, pp.444-469, 2015.

P. Verma, Various techniques for heat transfer enhancement in a heat exchanger using active and passive techniques: A, p.13, 2018.

M. Mahmood, A. Bhutta, N. Hayat, M. H. Bashir, K. Ahmer-rais-khan et al., Cfd applications in various heat exchangers design: A review, Applied Thermal Engineering, vol.32, issue.13, pp.1-12, 2012.

. Ravindra-m-ghogare, G. Vijay, . Gore, and . Shaikh, A review of passive technique used for heat transfer enhancement in heat exchanger, p.13, 2018.

M. Ghobadi and Y. S. Muzychka, A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts, Heat Transfer Engineering, vol.37, issue.10, p.83, 2016.

L. Ahmad-s-alsaadi, . Francis, L. Gary, N. Amy, and . Ghaffour, Experimental and theoretical analyses of temperature polarization effect in vacuum membrane distillation, Journal of Membrane Science, vol.471, p.14, 2014.

M. A. Wahab, Y. H. Teow, W. L. Ang, Y. T. Chung, and D. L. Oatley-radcliffe, Nanofiltration membranes review: Recent advances and future prospects, Desalination, vol.356, p.14, 2015.

. Rj-wakeman and . Williams, Additional techniques to improve microfiltration, Separation and Purification Technology, vol.26, issue.1, p.19, 2002.

G. Belfort, Fluid mechanics in membrane filtration: recent developments, Journal of Membrane science, vol.40, issue.2, p.15, 1989.

M. Darko, W. Krsti?, . Höflinger, K. András, G. Koris et al., Energy-saving potential of cross-flow ultrafiltration with inserted static mixer: Application to an oil-in-water emulsion, Separation and purification technology, vol.57, issue.1, p.16, 2007.

. Bj-bellhouse, . Costigan, . Abhinava, and . Merry, The performance of helical screw-thread inserts in tubular membranes, Separation and Purification Technology, vol.22, p.15, 2001.

K. Auddy, S. De, and S. Dasgupta, Performance prediction of turbulent promoter enhanced nanofiltration of a dye solution, Separation and purification technology, vol.43, issue.1, p.15, 2005.

G. Philip, W. H. Drazin, and . Reid, Hydrodynamic stability, p.16, 2004.

M. Julio and . Ottino, The kinematics of mixing: stretching, chaos, and transport, vol.3, p.16, 1989.

D. Abraham, . Stroock, K. W. Stephan, A. Dertinger, I. Ajdari et al.,

M. George and . Whitesides, Chaotic mixer for microchannels, Science, vol.295, issue.5555, p.16, 2002.

D. M. Hobbs and . Muzzio, The kenics static mixer: a three-dimensional chaotic flow, Chemical Engineering Journal, vol.67, issue.3, p.16, 1997.

T. Y. Chiu and . James, Effects of axial baffles in non-circular multi-channel ceramic membranes using organic feed. Separation and purification technology, vol.51, p.16, 2006.

N. Hilal, O. Oluwaseun, N. J. Ogunbiyi, and . Miles, Experimental investigation on the separation of bentonite using ceramic membranes: Effect of turbulence promoters, Separation Science and Technology, vol.43, issue.2, p.16, 2008.

Y. Gençal, P. Z. Durmaz, and . Çulfaz-emecen, Preparation of patterned microfiltration membranes and their performance in crossflow yeast filtration, Journal of Membrane Science, vol.476, p.16, 2015.

T. Sugimoto, Ultrafiltration performance of tubular membrane modules fitted with turbulent promoter: twisted tape and static mixer, Kagaku Kogaku Ronbunshu, vol.22, p.16, 1996.

S. Popovi?, N. Miodrag, and . Teki?, Twisted tapes as turbulence promoters in the microfiltration of milk, Journal of membrane science, vol.384, issue.1-2, p.16, 2011.

V. Geraldes, V. Semião, and M. N. Pinho, Hydrodynamics and concentration polarization in nf/ro spiral-wound modules with ladder-type spacers, Desalination, vol.157, issue.1-3, p.16, 2003.

Z. Jalilvand, A. Farzin-zokaee-ashtiani, H. Fouladitajar, and . Rezaei, Computational fluid dynamics modeling and experimental study of continuous and pulsatile flow in flat sheet microfiltration membranes, Journal of Membrane Science, vol.450, p.16, 2014.

. Hg-gomaa, Flux characteristics at oscillating membrane equipped with turbulent promoters, Chemical engineering journal, vol.191, p.21, 2012.

. Mmk-bhuiya, M. Chowdhury, M. T. Saha, and . Islam, Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts, International Communications in Heat and Mass Transfer, vol.46, p.17, 2013.

S. Skullong, P. Promvonge, C. Thianpong, and N. Jayranaiwachira, Thermal behaviors in a round tube equipped with quadruple perforated-delta-winglet pairs, Applied Thermal Engineering, vol.115, p.17, 2017.

W. Chingtuaythong and P. Promvonge, Heat transfer characterization in a tubular heat exchanger with v-shaped rings, Applied Thermal Engineering, vol.110, p.17, 2017.

P. Promvonge, S. Tamna, M. Pimsarn, and C. Thianpong, Thermal characterization in a circular tube fitted with inclined horseshoe baffles, Applied Thermal Engineering, vol.75, p.17, 2015.

. Mmk, . Bhuiya, . Jamal-uddin-ahamed, . Chowdhury, . Sarkar et al., Heat transfer enhancement and development of correlation for turbulent flow through a tube with triple helical tape inserts, International Communications in Heat and Mass Transfer, vol.39, issue.1, p.17, 2012.

S. Gunes, V. Ozceyhan, and O. Buyukalaca, Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts, Experimental Thermal and Fluid Science, vol.34, issue.6, p.17, 2010.

S. Eiamsa-ard, V. Kongkaitpaiboon, and K. Nanan, Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes, Chinese Journal of Chemical Engineering, vol.21, issue.6, p.17, 2013.

P. Murugesan, . Mayilsamy, P. Suresh, and . Srinivasan, Heat transfer and pressure drop characteristics in a circular tube fitted with and without v-cut twisted tape insert, International Communications in Heat and Mass Transfer, vol.38, issue.3, p.17, 2011.

B. Heinz, G. Winzeler, and . Belfort, Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities, Journal of Membrane Science, vol.80, issue.1, p.136, 1993.

L. Broussous, P. Schmitz, H. Boisson, A. Prouzet, and . Larbot, Hydrodynamic aspects of filtration antifouling by helically corrugated membranes, Chemical engineering science, vol.55, issue.21, p.18, 2000.

Y. Seung-, D. Kwak, and . Woo-ihm, Use of atomic force microscopy and solid-state nmr spectroscopy to characterize structure-property-performance correlation in high-flux reverse osmosis (ro) membranes, Journal of membrane science, vol.158, issue.1-2, p.18, 1999.

. Bn-prasad and . Saini, Effect of artificial roughness on heat transfer and friction factor in a solar air heater, Solar energy, vol.41, issue.6, p.19, 1988.

D. Gupta, J. S. Solanki, and . Saini, Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates, Solar Energy, vol.51, issue.1, p.19, 1993.

R. P. Saini and . Saini, Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element, International Journal of Heat and Mass Transfer, vol.40, issue.4, p.19, 1997.

A. Ebrahim-momin, S. C. Saini, and . Solanki, Heat transfer and friction in solar air heater duct with v-shaped rib roughness on absorber plate, International journal of heat and mass transfer, vol.45, issue.16, p.19, 2002.

. Kb-muluwork, S. C. Saini, and . Solanki, Studies on discrete rib roughened solar air heaters, Proceedings of National Solar Energy Convention, p.19, 1998.

. Jl-bhagoria, S. C. Saini, and . Solanki, Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate, Renewable Energy, vol.25, issue.3, p.19, 2002.

P. Walzel, Effects and new applications of pulsed flow, Chemical Engineering & Technology, vol.36, issue.1, p.19, 2013.

. Rk-lalrinsanga, B. Nagesh, S. Bejgam, and . Ganguly, Effect of pressure pulsing on concentration boundary layer over membrane-a numerical investigation, Asia-Pacific Journal of Chemical Engineering, vol.8, issue.4, p.20, 2013.

A. Emad and . Ajbar, Periodic control of a reverse osmosis desalination process, Journal of Process Control, vol.22, issue.1, p.20, 2012.

G. Arroyo and C. Fonade, Use of intermittent jets to enhance flux in crossflow filtration, Journal of membrane science, vol.80, issue.1, p.20, 1993.
URL : https://hal.archives-ouvertes.fr/hal-02574246

C. Maranges and C. Fonade, Flux enhancement in crossflow filtration using an unsteady jet, Journal of membrane science, vol.123, issue.1, p.20, 1997.

J. N. Kuruzovich and . Piergiovanni, Yeast cell microfiltration: optimization of backwashing for delicate membranes, Journal of membrane science, vol.112, issue.2, p.20, 1996.

. Sc-hargrove, S. Parthasarathy, and . Ilias, Flux enhancement in cross-flow membrane filtration by flow reversal: a case study on ultrafiltration of bsa. Separation science and technology, vol.38, p.20, 2003.

. Ap-reverberi, C. Vp-meshalkin, Y. Cerrato, and . Savina, Dynamics of a reverse osmosis unit with application to pulsating regimes for process optimization, Theoretical Foundations of Chemical Engineering, vol.45, issue.2, p.20, 2011.

F. Vinther and A. Jönsson, Modelling of optimal back-shock frequency in hollow fibre ultrafiltration membranes i: Computational fluid dynamics, Journal of Membrane Science, vol.506, p.20, 2016.

P. Czekaj, W. Mores, H. Robert, C. Davis, and . Güell, Infrasonic pulsing for foulant removal in crossflow microfiltration, Journal of Membrane Science, vol.180, issue.1, p.20, 2000.

R. Sondhi and R. Bhave, Role of backpulsing in fouling minimization in crossflow filtration with ceramic membranes, Journal of Membrane Science, vol.186, issue.1, p.21, 2001.

H. D. Sumihar, T. Silalahi, and . Leiknes, High frequency back-pulsing for fouling development control in ceramic microfiltration for treatment of produced water, Desalination and Water Treatment, vol.28, issue.1-3, p.20, 2011.

B. Olayiwola and P. Walzel, Effects of in-phase oscillation of retentate and filtrate in crossflow filtration at low reynolds number, Journal of Membrane Science, vol.345, issue.1-2, p.20, 2009.

. Tj-kennedy, B. J. Rl-merson, and . Mccoy, Improving permeation flux by pulsed reverse osmosis, Chemical Engineering Science, vol.29, issue.9, p.21, 1974.

P. Blanpain-avet, N. Doubrovine, C. Lafforgue, and M. Lalande, The effect of oscillatory flow on crossflow microfiltration of beer in a tubular mineral membrane system-membrane fouling resistance decrease and energetic considerations, Journal of Membrane Science, vol.152, issue.2, p.21, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02687453

. Rben-amar, M. Y. Gupta, and . Jaffrin, Apple juice clarification using mineral membranes: fouling control by backwashing and pulsating flow, Journal of food science, vol.55, issue.6, p.21, 1990.

H. Ma, N. Christopher, R. Bowman, and . Davis, Membrane fouling reduction by backpulsing and surface modification, Journal of Membrane Science, vol.173, issue.2, p.21, 2000.

T. Nishimura and S. Matsune, Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low reynolds numbers, International Journal of Heat and Fluid Flow, vol.19, issue.6, p.22, 1998.

. Dx-jin, D. Lee, and . Lee, Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel, International journal of heat and mass transfer, vol.50, p.22, 2007.

M. Jafari, M. Farhadi, and K. Sedighi, Pulsating flow effects on convection heat transfer in a corrugated channel: A lbm approach, International Communications in Heat and Mass Transfer, vol.45, p.22, 2013.

U. Akdag, S. Akcay, and D. Demiral, Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel, International Communications in Heat and Mass Transfer, vol.59, p.22, 2014.

C. Wantha, Effect and heat transfer correlations of finned tube heat exchanger under unsteady pulsating flows, International Journal of Heat and Mass Transfer, vol.99, p.22, 2016.

K. Tapas, H. Nandi, and . Chattopadhyay, Numerical investigations of simultaneously developing flow in wavy microchannels under pulsating inlet flow condition. International communications in heat and mass transfer, vol.47, p.22, 2013.

F. Selimefendigil, F. Hakan, and . Öztop, Pulsating nanofluids jet impingement cooling of a heated horizontal surface, International Journal of Heat and Mass Transfer, vol.69, p.22, 2014.

Y. Michel and . Jaffrin, Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems, Journal of Membrane Science, vol.324, issue.1-2, p.27, 2008.

G. Genkin, A. G. Td-waite, S. Fane, and . Chang, The effect of vibration and coagulant addition on the filtration performance of submerged hollow fibre membranes, Journal of membrane science, vol.281, issue.1-2, pp.726-734, 2006.

. O-al-akoum, Y. Michel, L. Jaffrin, P. Ding, C. Paullier et al., An hydrodynamic investigation of microfiltration and ultrafiltration in a vibrating membrane module, Journal of Membrane Science, vol.197, issue.1-2, pp.37-52, 2002.

M. Søren-prip-beier, A. Guerra, G. Garde, and . Jonsson, Dynamic microfiltration with a vibrating hollow fiber membrane module: filtration of yeast suspensions, Journal of membrane science, vol.281, issue.1-2, pp.281-287, 2006.

. Hoang-van-phan, M. Bulut-co?kun, G. ?e?en, A. Pandraud, T. Neild et al., Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing, Lab on a Chip, vol.15, issue.21, pp.4206-4216, 2015.

P. Huang, Y. Xie, D. Ahmed, J. Rufo, N. Nama et al., An acoustofluidic micromixer based on oscillating sidewall sharp-edges, Lab on a Chip, vol.13, issue.19, pp.3847-3852, 2013.

A. Kola, Y. Ye, A. Ho, P. Le-clech, and V. Chen, Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes, Journal of membrane science, vol.409, issue.23, pp.54-65, 2012.

. O-akoum, . Richfield, . My-jaffrin, P. Lh-ding, and . Swart, Recovery of trypsin inhibitor and soy milk protein concentration by dynamic filtration, Journal of membrane science, vol.279, issue.1-2, pp.291-300, 2006.

F. Zamani, W. K. Adrian, A. G. Law, and . Fane, Hydrodynamic analysis of vibrating hollow fibre membranes, Journal of membrane science, vol.429, issue.23, pp.304-312, 2013.

S. Slater, M. J. Savelski, P. Kostetskyy, and M. Johnson, Shear-enhanced microfiltration of microalgae in a vibrating membrane module. Clean Technologies and Environmental, Policy, vol.17, issue.7, pp.1743-1755, 2015.

. Hg-gomaa and . Rao, Flux enhancement using oscillatory motion and turbulence promoters, Journal of Membrane science, vol.381, issue.1-2, pp.64-73, 2011.

B. William, R. R. Krantz, M. E. Bilodeau, R. J. Voorhees, and . Elgas, Use of axial membrane vibrations to enhance mass transfer in a hollow tube oxygenator, Journal of membrane science, vol.124, issue.2, pp.283-299, 1997.

R. and T. Yusaf, Biofouling in ro system: mechanisms, monitoring and controlling, Desalination, vol.302, p.24, 2012.

N. Hengl, Y. Jin, . Pignon, . Baup, . Mollard et al., A new way to apply ultrasound in cross-flow ultrafiltration: Application to colloidal suspensions, Ultrasonics sonochemistry, vol.21, issue.3, pp.1018-1025, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076678

D. Liu, E. Vorobiev, R. Savoire, and J. Lanoisellé, Comparative study of ultrasound-assisted and conventional stirred dead-end microfiltration of grape pomace extracts, Ultrasonics sonochemistry, vol.20, issue.2, pp.708-714, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00985540

S. E. Shobha-muthukumaran, G. W. Kentish, M. Stevens, and . Ashokkumar, Application of ultrasound in membrane separation processes: a review, Reviews in chemical engineering, vol.22, issue.3, p.24, 2006.

C. Al-ahmad, . Lah, B. S. Ismail, and . Ooi, Membrane antifouling methods and alternatives: ultrasound approach, Separation & Purification Reviews, vol.41, issue.4, p.24, 2012.

. Hm-kyllönen, M. Pirkonen, and . Nyström, Membrane filtration enhanced by ultrasound: a review, Desalination, vol.181, issue.1-3, p.25, 2005.

. Mikko-o-lamminen, W. Harold, L. K. Walker, and . Weavers, Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes, Journal of membrane science, vol.237, issue.1-2, p.24, 2004.

H. Duriyabunleng, J. Petmunee, and C. Muangnapoh, Effects of the ultrasonic waves on microfiltration in plate and frame module, Journal of chemical engineering of Japan, vol.34, issue.8, p.24, 2001.

T. Kobayashi, N. Chai, and . Fujii, Ultrasound enhanced cross-flow membrane filtration. Separation and Purification Technology, vol.17, p.24, 1999.

T. Kobayashi, T. Kobayashi, and N. Fujii, Effect of ultrasound on enhanced permeability during membrane water treatment, Japanese Journal of Applied Physics, vol.39, issue.5S, p.24, 2000.

A. Simon, . Gondrexon, . Taha, G. Cabon, and . Dorange, Low-frequency ultrasound to improve dead-end ultrafiltration performance, Separation Science and Technology, vol.35, issue.16, p.24, 2000.

C. Zhu and G. Liu, Modeling of ultrasonic enhancement on membrane distillation, Journal of Membrane Science, vol.176, issue.1, p.24, 2000.

X. Chai, T. Kobayashi, and N. Fujii, Ultrasound effect on cross-flow filtration of polyacrylonitrile ultrafiltration membranes, Journal of membrane science, vol.148, issue.1, p.25, 1998.

S. E. Shobha-muthukumaran, M. Kentish, G. W. Ashokkumar, and . Stevens, Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration, Journal of membrane science, vol.258, issue.1-2, p.25, 2005.

K. Takahashi and K. Endoh, A new correlation method for the effect of vibration on forced-convection heat transfer, Journal of chemical engineering of Japan, vol.23, issue.1, p.25, 1990.

L. Léal, P. Miscevic, M. Lavieille, . Amokrane, F. Pigache et al., An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials, International Journal of Heat and Mass Transfer, vol.61, p.25, 2013.

D. Tt-chandratilleke, R. Jagannatha, and . Narayanaswamy, Heat transfer enhancement in microchannels with cross-flow synthetic jets, International journal of thermal sciences, vol.49, issue.3, p.25, 2010.

M. Chaudhari, B. Puranik, and A. Agrawal, Heat transfer characteristics of synthetic jet impingement cooling, International Journal of Heat and Mass Transfer, vol.53, issue.5-6, p.25, 2010.

K. W. Li and . Parker, Acoustical effects on free convective heat transfer from a horizontal wire, p.25, 1967.

J. Cai, X. Huai, R. Yan, and Y. Cheng, Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure, Applied Thermal Engineering, vol.29, issue.10, p.25, 2009.

. Gi-taylor, Stability of a viscous liquid contained between two rotating cylinders phil. trans. r. soc. lond. a january, p.26, 1923.

. David-andereck, H. Liu, and . Swinney, Flow regimes in a circular couette system with independently rotating cylinders, Journal of Fluid Mechanics, vol.164, p.26, 1986.

F. Vigo, C. Uliana, and P. Lupino, The performance of a rotating module in oily emulsions ultrafiltration, Separation Science and Technology, vol.20, issue.2-3, p.26, 1985.

G. Belfort, M. Joseph, A. Pimbley, K. Greiner, and . Chung, Diagnosis of membrane fouling using a rotating annular filter. 1. cell culture media, Journal of Membrane Science, vol.77, issue.1, p.27, 1993.

J. Y. Park, C. K. Choi, and J. J. Kim, A study on dynamic separation of silica slurry using a rotating membrane filter 1. experiments and filtrate fluxes, Journal of membrane science, vol.97, p.27, 1994.

B. Ulrich, C. Holeschovsky, and . Cooney, Quantitative description of ultrafiltration in a rotating filtration device, AIChE Journal, vol.37, issue.8, p.27, 1991.

S. Lee, M. Richard, and . Lueptow, Rotating reverse osmosis for water recovery in space: influence of operational parameters on ro performance, Desalination, vol.169, issue.2, p.27, 2004.

M. Richard, A. Lueptow, and . Hajiloo, Flow in a rotating membrane plasma separator, ASAIO journal (American Society for Artificial Internal Organs, vol.41, issue.2, p.27, 1992.

S. R. , M. Gardiner, and R. H. Sabersky, Heat transfer in an annular gap, International Journal of Heat and Mass Transfer, vol.21, issue.12, p.27, 1978.

M. Fénot, . Dorignac, and . Giret, Convective heat transfer in the entry region of an annular channel with slotted rotating inner cylinder, Applied Thermal Engineering, vol.54, issue.1, p.27, 2013.

S. Saeedreza-zeibi-shirejini, J. A. Rashidi, and . Esfahani, Recovery of drop in heat transfer rate for a rotating system by nanofluids, Journal of Molecular Liquids, vol.220, p.27, 2016.

W. Duangthongsuk and S. Wongwises, An experimental investigation of the heat transfer and pressure drop characteristics of a circular tube fitted with rotating turbine-type swirl generators. Experimental thermal and fluid science, vol.45, p.27, 2013.

E. Braak, M. Alliet, S. Schetrite, and C. Albasi, Aeration and hydrodynamics in submerged membrane bioreactors, Journal of membrane science, vol.379, issue.1-2, p.27, 2011.

Y. Sun, . Huang, X. Chen, and . Wen, A dual functional filtration/aeration membrane bioreactor for domestic wastewater treatment, Proceedings of the Water Environment-Membrane Technology Conference, p.27, 2004.

P. Le-clech, V. Chen, and T. A. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of membrane science, vol.284, issue.1, p.27, 2006.

T. Imasaka, Apparatus for membrane separation of wastewater from food industries, Japanese Patent JP63104610, p.27, 1988.

T. Imasaka, H. So, K. Matsushita, T. Furukawa, and N. Kanekuni, Application of gasndashliquid two-phase cross-flow filtration to pilot-scale methane fermentation, Drying Technology, vol.11, issue.4, p.27, 1993.

K. Zf-cui and . Wright, Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism, Journal of Membrane Science, vol.117, issue.1-2, p.28, 1996.

M. Mercier-bonin, C. Lagane, and C. Fonade, Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane, Journal of Membrane Science, vol.180, issue.1, p.28, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02686537

C. Cabassud, J. M. Laborie, and . Laine, How slug flow can improve ultrafiltration flux in organic hollow fibres, Journal of Membrane Science, vol.128, issue.1, p.28, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02318202

T. Cheng, H. Yeh, and J. Wu, Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module, Journal of membrane science, vol.158, issue.1-2, p.28, 1999.

W. Chunrui, J. Yue, C. Huayan, W. Xuan, G. Qijun et al., Study on air-bubbling strengthened membrane distillation process, Desalination and Water Treatment, vol.34, issue.1-3, p.28, 2011.

X. Fan, H. Li, P. Yang, and B. Lai, Effect of c/n ratio and aeration rate on performance of internal cycle mbr with synthetic wastewater, Desalination and Water Treatment, vol.54, issue.3, p.27, 2015.

. Tw-cheng, C. T. Cheng, and . Gau, Enhancement of permeate flux by gas slugs for crossfiow ultrafiitration in tubular membrane module. Separation science and technology, vol.33, p.27, 1998.

A. Fouladitajar, H. Farzin-zokaee-ashtiani, A. Rezaei, A. Haghmoradi, and . Kargari, Gas sparging to enhance permeate flux and reduce fouling resistances in cross flow microfiltration, Journal of Industrial and Engineering Chemistry, vol.20, issue.2, p.27, 2014.

. Qusay-f-alsalhy, M. Talib, . Albyati, and . Zablouk, A study of the effect of operating conditions on reverse osmosis membrane performance with and without air sparging technique, Chemical Engineering Communications, vol.200, issue.1, p.27, 2013.

B. Peter and . Whalley, Boiling, condensation, and gas-liquid flow, p.28, 1987.

. Zf-cui, A. G. Chang, and . Fane, The use of gas bubbling to enhance membrane processes, Journal of Membrane Science, vol.221, issue.1-2, p.29, 2003.

L. Vera, . Villarroel, S. Delgado, and . Elmaleh, Enhancing microfiltration through an inorganic tubular membrane by gas sparging, Journal of membrane Science, vol.165, issue.1, p.28, 2000.

. Sr-bellara, D. S. Cui, and . Pepper, Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes, Journal of membrane science, vol.121, issue.2, p.28, 1996.

T. Taha and . Cui, Cfd modelling of gas-sparged ultrafiltration in tubular membranes, Journal of membrane science, vol.210, issue.1, p.29, 2002.

W. Hwal, Z. Sur, and . Cui, Experimental study on the enhancement of yeast microfiltration with gas sparging, Journal of chemical technology and biotechnology, vol.76, issue.5, p.28, 2001.

. Mj-van-der-waal, J. Van-der-velden, C. A. Koning, . Smolders, and . Van-swaay, Use of fluidised beds as turbulence promotors in tubular membrane systems, Desalination, vol.22, issue.1-3, p.28, 1977.

R. Chen, C. Louis, J. E. Chow, and . Navedo, Effects of spray characteristics on critical heat flux in subcooled water spray cooling, International Journal of Heat and Mass Transfer, vol.45, issue.19, p.30, 2002.

R. Chen, C. Louis, J. E. Chow, and . Navedo, Optimal spray characteristics in water spray cooling, International Journal of Heat and Mass Transfer, vol.47, issue.23, p.30, 2004.

A. Kurt, I. Estes, and . Mudawar, Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces, International Journal of Heat and Mass Transfer, vol.38, issue.16, p.30, 1995.

. Bq-li, . Cader, . Schwarzkopf, B. Okamoto, and . Ramaprian, Spray angle effect during spray cooling of microelectronics: experimental measurements and comparison with inverse calculations, Applied thermal engineering, vol.26, issue.16, p.30, 2006.

I. Mudawar and K. Estes, Optimizing and predicting chf in spray cooling of a square surface, p.30, 1996.

W. Cheng, Q. Liu, R. Zhao, and H. Fan, Experimental investigation of parameters effect on heat transfer of spray cooling. Heat and mass transfer, vol.46, p.30, 2010.

Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime. Experimental Thermal and Fluid Science, vol.34, p.30, 2010.

R. Wiliam and . Dean, Fluid motion in a curved channel, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol.121, issue.787, p.30, 1928.

. Jn-ghogomu, J. C. Guigui, . Rouch, and . Mj-clifton, Hollow-fibre membrane module design: comparison of different curved geometries with dean vortices, Journal of Membrane Science, vol.181, issue.1, p.136, 2001.

Y. Liu, Y. Chen, Y. Zhou, D. Wang, Y. Wang et al., Experimental research on the thermal performance of pex helical coil pipes for heating the biogas digester, Applied Thermal Engineering, vol.147, p.93, 2019.

J. Gill and J. Singh, Use of artificial neural network approach for depicting mass flow rate of r134a/lpg refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system, International Journal of Refrigeration, vol.86, p.93, 2018.

I. Pioro, Handbook of generation IV nuclear reactors, vol.30, p.93, 2016.

. Mh-abdel-aziz, G. H. Mansour, and . Sedahmed, Study of the rate of liquid-solid mass transfer controlled processes in helical tubes under turbulent flow conditions, Process Intensification, vol.49, p.93, 2010.

D. Mendez, C. Lemaitre, C. Castel, M. Ferrari, H. Simonaire et al., Membrane contactors for process intensification of gas absorption into physical solvents: Impact of dean vortices, Journal of Membrane Science, vol.530, p.93, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01921414

R. Ghidossi, P. Veyret, and . Moulin, Computational fluid dynamics applied to membranes: State of the art and opportunities, Process Intensification, vol.45, p.93, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01888150

R. Moll, . Veyret, P. Charbit, and . Moulin, Dean vortices applied to membrane process: Part i. experimental approach, Journal of Membrane Science, vol.288, issue.1-2, p.136, 2007.

M. Mansour, Z. Liu, G. Janiga, D. P. Krishna, K. Nigam et al., Numerical study of liquid-liquid mixing in helical pipes, Chemical Engineering Science, vol.172, p.93, 2017.

Y. Mori and W. Nakayama, Study of forced convective heat transfer in curved pipes (2nd report, turbulent region), International journal of heat and mass transfer, vol.10, issue.1, p.31, 1967.

L. Chang, Numerical simulation of fully developed sinusoidal and pulsatile (physiological) flow in curved tubes, Journal of fluid mechanics, vol.161, p.31, 1985.

P. Moulin, F. Veyret, and . Charbit, Dean vortices: comparison of numerical simulation of shear stress and improvement of mass transfer in membrane processes at low permeation fluxes, Journal of Membrane Science, vol.183, issue.2, p.98, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01916597

. Pl-spedding, G. M. Benard, and . Mcnally, Fluid flow through 90 degree bends, Asia-Pacific Journal of Chemical Engineering, vol.12, issue.1-2, p.31, 2004.

H. Mallubhotla, E. Nunes, and G. Belfort, Microfiltration of yeast suspensions with self-cleaning spiral vortices: Possibilities for a new membrane module design, Biotechnology and bioengineering, vol.48, issue.4, p.31, 1995.

F. Schönfeld and S. Hardt, Simulation of helical flows in microchannels, AIChE Journal, vol.50, issue.4, p.31, 2004.

B. Heinz, G. Winzeler, and . Belfort, Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities, Journal of Membrane Science, vol.80, issue.1, p.33, 1993.

J. Bolinder and B. Sunden, Flow visualization and ldv measurements of laminar flow in a helical square duct with finite pitch. Experimental thermal and fluid science, vol.11, p.31, 1995.

R. Moll, . Veyret, P. Charbit, and . Moulin, Dean vortices applied to membrane process: Part i. experimental approach, Journal of membrane science, vol.288, issue.1-2, p.31, 2007.

A. Seyed-pouria-motevalian, H. Borhan, A. Zhou, and . Zydney, Twisted hollow fiber membranes for enhanced mass transfer, Journal of Membrane Science, vol.514, p.31, 2016.

P. Moulin, C. Rouch, . Serra, and . Mj-clifton, Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes, Journal of Membrane Science, vol.114, issue.2, p.82, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01916561

Y. Kun, . Chung, G. William-a-edelstein, and . Belfort, Dean vortices with wall flux in a curved channel membrane system.: 6. two dimensional magnetic resonance imaging of the velocity field in a curved impermeable slit, Journal of membrane science, vol.81, issue.1-2, p.32, 1993.

S. Vashisth, V. Kumar, and K. Nigam, A review on the potential applications of curved geometries in process industry, Industrial & Engineering Chemistry Research, vol.47, issue.10, p.32, 2008.

G. Yang, M. A. Dong, and . Ebadian, Laminar forced convection in a helicoidal pipe with finite pitch, International Journal of Heat and Mass Transfer, vol.38, issue.5, p.32, 1995.

. Rc-xin and . Ma-ebadian, The effects of prandtl numbers on local and average convective heat transfer characteristics in helical pipes, vol.32, p.68, 1997.

S. Anup-kumer-datta, T. Yanase, M. Kouchi, and . Shatat, Laminar forced convective heat transfer in helical pipe flow, International Journal of Thermal Sciences, vol.120, p.32, 2017.

L. Romeo, . Manlapaz, W. Stuart, and . Churchill, Fully developed laminar convection from a helical coil, Chemical Engineering Communications, vol.9, issue.1-6, p.68, 1981.

A. Lévêque, Les Lois de la transmission de chaleur par convection, par André Lévêque

. Dunod, , vol.33, p.101, 1928.

F. Eckehard and . Schmidt, Wärmeübergang und druckverlust in rohrschlangen, Chemie Ingenieur Technik, vol.39, issue.13, p.34, 1967.

V. Kubair and . Kuloor, Heat transfer to newtonian fluids in coiled pipes in laminar flow, International Journal of Heat and Mass Transfer, vol.9, issue.1, p.34, 1966.

K. A. Arun-nilkanth-dravid, . Smith, P. Merrill, and . Brian, Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes, AIChE Journal, vol.17, issue.5, p.80, 1971.

C. Yildiz, Y. Biçer, and D. Pehlivan, Heat transfer and pressure drop in a heat exchanger with a helical pipe containing inside springs. Energy conversion and management, vol.38, p.68, 1997.

. S-rainieri, G. Bozzoli, and . Pagliarini, Experimental investigation on the convective heat transfer in straight and coiled corrugated tubes for highly viscous fluids: Preliminary results, International Journal of Heat and Mass Transfer, vol.55, issue.1-3, p.34, 2012.

S. Liu, H. Jacob, and . Masliyah, A decoupling numerical method for fluid flow, International journal for numerical methods in fluids, vol.16, issue.8, p.34, 1993.

. Av-kirpikov, Heat transfer in helically coiled pipes, Trudi. Moscov. Inst. Khim. Mashinojtrojenija, vol.12, p.34, 1957.

. Ra-seban and . Mclaughlin, Heat transfer in tube coils with laminar and turbulent flow, International journal of heat and mass transfer, vol.6, issue.5, p.34, 1963.

M. Moawed, Experimental study of forced convection from helical coiled tubes with different parameters. Energy Conversion and Management, vol.52, p.34, 2011.

C. E. Kalb and . Seader, Heat and mass transfer phenomena for viscous flow in curved circular tubes, International Journal of Heat and Mass Transfer, vol.15, issue.4, p.34, 1972.

F. Jiang, . Ks-drese, M. Hardt, F. Küpper, and . Schönfeld, Helical flows and chaotic mixing in curved micro channels, AIChE journal, vol.50, issue.9, p.35, 2004.

M. M. Teoh, S. Bonyadi, and T. Chung, Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process, Journal of membrane science, vol.311, issue.1-2, p.33, 2008.

D. Li, R. Wang, and T. Chung, Fabrication of lab-scale hollow fiber membrane modules with high packing density. Separation and purification technology, vol.40, p.33, 2004.

W. Scott, . Jones, M. Oran, H. Thomas, and . Aref, Chaotic advection by laminar flow in a twisted pipe, Journal of Fluid Mechanics, vol.209, p.35, 1989.

B. Timité, C. Castelain, and H. Peerhossaini, Mass transfer and mixing by pulsatile three-dimensional chaotic flow in alternating curved pipes, International Journal of Heat and Mass Transfer, vol.54, p.33, 2011.

O. Abushammala, R. Hreiz, C. Lemaitre, and É. Favre, Laminar flow friction factor in highly curved helical pipes: Numerical investigation, predictive correlation and experimental validation using a 3d-printed model, Chemical Engineering Science, vol.207, p.128, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02197694

. Wo-r-dean and . Xvi, note on the motion of fluid in a curved pipe, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.4, issue.20, p.40, 1927.

. Wr-dean, Lxxii. the stream-line motion of fluid in a curved pipe (second paper). The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.5, issue.30, p.40, 1928.

P. Mishra and . Gupta, Momentum transfer in curved pipes. 1. newtonian fluids. Industrial & Engineering Chemistry Process Design and Development, vol.18, p.120, 1979.

. Cm-white, Containing Papers of a Mathematical and Physical Character, Proceedings of the Royal Society of London. Series A, vol.123, issue.792, p.42, 1929.

Y. Mori and W. Nakayama, Study of forced convective heat transfer in curved pipes (2nd report, turbulent region), International journal of heat and mass transfer, vol.10, issue.1, p.42, 1967.

F. Eckehard and . Schmidt, Wärmeübergang und druckverlust in rohrschlangen, Chemie Ingenieur Technik, vol.39, issue.13, p.68, 1967.

P. Srinivasan, S. Nandapurkar, and F. Holland, Pressure drop and heat transfer in coils, The Chem. Eng, vol.218, p.42, 1968.

S. Ali, Pressure drop correlations for flow through regular helical coil tubes. Fluid dynamics research, vol.28, p.42, 2001.

J. Hart, P. J. Ellenberger, and . Hamersma, Single-and two-phase flow through helically coiled tubes, Chemical Engineering Science, vol.43, issue.4, p.120, 1988.

S. Przyby? and P. Piera?ski, Helical close packings of ideal ropes, The European Physical Journal E, vol.4, issue.4, p.112, 2001.

. O-abushammala, C. Hreiz, E. Lemaître, and . Favre, Maximizing mass transfer using highly curved helical pipes: A cfd investigation, 6th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'19), vol.95, p.116, 1991.

D. Kaufhold, C. Kopf, S. Wolff, . Beutel, M. Hilterhaus et al., Generation of dean vortices and enhancement of oxygen transfer rates in membrane contactors for different hollow fiber geometries, Journal of membrane science, vol.423, p.110, 2012.

M. Cardone and B. Gargiulo, Design and experimental testing of a mini channel heat exchanger made in additive manufacturing, Energy Procedia, vol.148, p.44, 2018.

Z. Low, Y. T. Chua, B. M. Ray, D. Mattia, I. S. Metcalfe et al., Perspective on printing of separation membranes and comparison to related unconventional fabrication techniques, Journal of Membrane Science, vol.523, p.44, 2017.

A. Jacopo-de-amicis, . Cammi, P. M. Luigi, M. Colombo, M. E. Colombo et al., Experimental and numerical study of the laminar flow in helically coiled pipes, Progress in Nuclear Energy, vol.76, p.83, 2014.

M. Ghobadi and Y. S. Muzychka, A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts, Heat Transfer Engineering, vol.37, issue.10, p.66, 2016.

O. Abushammala, R. Hreiz, C. Lemaitre, and E. Favre, Optimal design of helical heat/mass exchangers under laminar flow: Cfd investigation and correlations for maximal transfer efficiency and process intensification performances, International Journal of Heat and Mass Transfer, vol.126, p.128, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02535753

T. Alam and M. Kim, A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications, Renewable and Sustainable Energy Reviews, vol.81, p.109, 2018.

L. Qiu, H. Deng, J. Sun, Z. Tao, and S. Tian, Pressure drop and heat transfer in rotating smooth square u-duct under high rotation numbers, International journal of heat and mass transfer, vol.66, p.64, 2013.

H. Khosravi-bizhaem, A. Abbassi, and A. Zivari-ravan, Heat transfer enhancement and pressure drop by pulsating flow through helically coiled tube: An experimental study, Applied Thermal Engineering, vol.160, p.127, 2019.

S. Jaisankar, K. N. Tk-radhakrishnan, and . Sheeba, Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes, Applied Thermal Engineering, vol.29, issue.5-6, p.64, 2009.

K. Yakut, B. Sahin, C. Celik, N. Alemdaroglu, and A. Kurnuc, Effects of tapes with double-sided delta-winglets on heat and vortex characteristics, Applied energy, vol.80, issue.1, p.64, 2005.

M. Ilyas and F. Aydogan, Steam generator performance improvements for integral small modular reactors, Nuclear Engineering and Technology, vol.49, issue.8, p.64, 2017.

R. Kong, T. Deethayat, A. Asanakham, and T. Kiatsiriroat, Heat transfer phenomena on waste heat recovery of combustion stack gas with deionized water in helical coiled heat exchanger. Case studies in thermal engineering, vol.12, p.64, 2018.

, Performance analysis of helical ground heat exchangers with different configurations, Applied Thermal Engineering, vol.154, p.64, 2019.

M. Sabelfeld and S. Geißen, Effect of helical structure on ozone mass transfer in a hollow fiber membrane contactor, Journal of membrane science, vol.574, p.66, 2019.

E. Charles, J. D. Kalb, and . Seader, Fully developed viscous-flow heat transfer in curved circular tubes with uniform wall temperature, AIChE Journal, vol.20, issue.2, p.80, 1974.

M. Ghobadi and Y. S. Muzychka, Fully developed heat transfer in mini scale coiled tubing for constant wall temperature, International Journal of Heat and Mass Transfer, vol.72, p.84, 2014.

A. Sheeba, M. Abhijith, and . Prakash, Experimental and numerical investigations on the heat transfer and flow characteristics of a helical coil heat exchanger, International Journal of Refrigeration, vol.99, p.84, 2019.

F. Kreith, . Boehm, and . Gd-raithby, Heat and mass transfer handbook, vol.70, p.95, 2000.

H. Saffari, R. Moosavi, N. Mohammad-nouri, and C. Lin, Prediction of hydrodynamic entrance length for single and two-phase flow in helical coils, Process Intensification, vol.86, p.98, 2014.

W. Nusselt, The dependence of the heat-transfer coefficient on tube length, Zeit. VDI, vol.54, p.73, 1910.

N. Jamshidi, D. Farhadi, K. Ganji, and . Sedighi, Experimental analysis of heat transfer enhancement in shell and helical tube heat exchangers, Applied Thermal Engineering, vol.51, issue.1-2, p.82, 2013.

D. Wu and J. A. Howell, Calculation of the entrance length of the concentration boundary layer in ultrafiltration and its influence on scale-up, Journal of membrane science, vol.74, issue.1-2, p.98, 1992.

. Mj-clifton, P. Abidine, V. Aptel, and . Sanchez, Growth of the polarization layer in ultrafiltration with hollow-fibre membranes, Journal of Membrane Science, vol.21, issue.3, p.98, 1984.

S. Vashisth and . Nigam, Prediction of flow profiles and interfacial phenomena for two-phase flow in coiled tubes, Process Intensification, vol.48, p.98, 2009.

R. Larry, J. D. Austin, and . Seader, Entry region for steady viscous flow in coiled circular pipes, AIChE Journal, vol.20, issue.4, p.99, 1974.

Y. Agrawal, K. Talbot, and . Gong, Laser anemometer study of flow development in curved circular pipes, Journal of Fluid Mechanics, vol.85, issue.3, p.98, 1978.

L. Yao and S. A. Berger, Entry flow in a curved pipe, Journal of Fluid Mechanics, vol.67, issue.1, p.98, 1975.

Y. Woo, S. A. Soh, and . Berger, Laminar entrance flow in a curved pipe, Journal of Fluid Mechanics, vol.148, p.99, 1984.

B. Zheng, M. A. Lin, and . Ebadian, Combined laminar forced convection and thermal radiation in a helical pipe, International journal of heat and mass transfer, vol.43, issue.7, p.99, 2000.

K. C. Cheng and M. Akiyama, Laminar forced convection heat transfer in curved rectangular channels, International Journal of heat and mass Transfer, vol.13, issue.3, p.99, 1970.

H. Shi, N. Raimondi, F. David, M. Fletcher, C. Cabassud et al., Numerical study of heat transfer in square millimetric zigzag channels in the laminar flow regime, Chemical Engineering and Processing-Process Intensification, vol.144, p.103, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02345630

S. Liu and M. Sakr, A comprehensive review on passive heat transfer enhancements in pipe exchangers, Renewable and sustainable energy reviews, vol.19, issue.109, pp.64-81, 2013.

R. Bhadouriya, A. Agrawal, and S. V. Prabhu, Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe, International Journal of Thermal Sciences, vol.94, p.109, 2015.

R. L. Webb and . Eckert, Application of rough surfaces to heat exchanger design, International Journal of Heat and Mass Transfer, vol.15, issue.9, p.110, 1972.

G. Wang, T. Dbouk, D. Wang, Y. Pei, X. Peng et al., Experimental and numerical investigation on hydraulic and thermal performance in the tube-side of helically coiled-twisted trilobal tube heat exchanger, International Journal of Thermal Sciences, vol.153, p.127, 0117.

A. Tohidi, M. Hosseinalipour, . Shokrpour, and . Mujumdar, Heat transfer enhancement utilizing chaotic advection in coiled tube heat exchangers, Applied Thermal Engineering, vol.76, p.127, 2015.

C. Jundika, . Kurnia, A. Benitta, A. Chaedir, and . Sasmito, Laminar convective heat transfer in helical tube with twisted tape insert, International Journal of Heat and Mass Transfer, vol.150, p.132, 2020.

J. Guo, A. Fan, X. Zhang, and W. Liu, A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape, International Journal of Thermal Sciences, vol.50, issue.7, p.123, 2011.

K. Wongcharee and S. Eiamsa-ard, Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes, International Communications in Heat and Mass Transfer, vol.38, issue.3, p.123, 2011.

H. Robin, . Liu, A. Mark, K. V. Stremler, . Sharp et al., Passive mixing in a three-dimensional serpentine microchannel, Journal of microelectromechanical systems, vol.9, issue.2, p.136, 2000.

Z. Zheng, F. David, B. S. Fletcher, and . Haynes, Chaotic advection in steady laminar heat transfer simulations: Periodic zigzag channels with square cross-sections, International Journal of Heat and Mass Transfer, vol.57, issue.1, p.136, 2013.

V. Kumar and . Nigam, Numerical simulation of steady flow fields in coiled flow inverter, International journal of heat and mass transfer, vol.48, p.136, 2005.

H. Peerhossaini, Y. Castelain, and . Guer, Heat exchanger design based on chaotic advection. Experimental thermal and fluid science, vol.7, p.136, 1993.