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Abstract

Opetopes are shapes (akin to globules, cubes, simplices, dendrices, etc.) intro-
duced by Baez and Dolan to describe laws and coherence cells in higher-dimensional
categories. In a nutshell, they are trees of trees of trees of trees of... These shapes are
attractive because of their simple nature and easy to find “in nature”, but their highly
inductive definition makes them difficult to manipulate efficiently.

This thesis develops the theory of opetopes along three main axes. First, we give
it clean and robust foundations by carefully detailing the approach of Kock–Joyal–
Batanin–Mascari, based on polynomial monads and trees. Starting with the identity
functor on sets, and repeatedly applying the Baez–Dolan construction, we obtain a
sequence of polynomial monads whose operations are trees over previous monads. This
process generates opetopes and captures their recursive nature. We then introduce the
important formalism of higher addresses, which allows to “walk” through opetopes
and all their lower-dimensional faces simultaneously, in order to reach a given node
or edge. This allows a more thorough investigation of the structure of the generating
polynomial monads, and gives us important insights on the tree calculi they encode,
in this case the natural operations on opetopes, such as grafting and substitution.

The second part of this thesis deals with computerized manipulation of opeto-
pes. We introduce two syntactical approaches to opetopes and opetopic sets. In each,
opetopes are represented as syntactical constructs whose well-formation conditions
are enforced by corresponding sequent calculi. In the first one, called the named ap-
proach, we express the compositional nature of opetopes using a specifically crafted
kind of term. In the second, called unnamed approach, we just give a syntactical ac-
count of the tree structure of opetopes using higher addresses. This latter approach
is closer to the definition of the first part of this thesis, whereas the former is more
human-friendly.

Lastly, in the third part of this thesis, we focus on the algebraic structures that
can naturally be described by opetopes. So-called opetopic algebras include categories,
planar operads, and Loday’s combinads over planar trees. We start by extending
the generating polynomial monads to categories of truncated opetopic sets, and let
opetopic algebras be simply algebras over these extensions. Later, we introduce the
category of opetopic shapes, and using the theory of parametric right adjoint monads
of Weber, we show that opetopic algebras can also be understood as presheaves over
opetopic shapes having the unique lifting property against a certain set of maps. We
then turn our attention to the notion of weak opetopic algebras and their homotopy
theory. Following the literature in the simplicial and dendroidal cases, we introduce
three models: ∞-opetopic algebras, complete Segal spaces, and homotopy-coherent
opetopic algebras. We show that classical results of Rezk, Joyal–Tierney, and Horel
(for ∞-categories), and Cisinski–Moerdijk (for ∞-operads) can be reformulated and
generalized in our setting. In particular, these models are equivalent.

Keywords. Opetope, opetopic set, polynomial monad, polynomial tree, Baez–Dolan
construction, sequent calculus, opetopic category, opetopic algebra, operad, combinad.



Résumé

Les opétopes sont des formes (tout comme les globes, les cubes, les simplex, les
dendrex, etc.) inventées par Baez et Dolan afin de pouvoir décrire les cellules de co-
hérence des catégories supérieures faibles. Informellement, ce sont des arbres d’arbres
d’arbres d’arbres... Ces formes sont séduisantes car elles sont intrinsèquement simples
et apparaissent fréquemment en pratique. Cependant, leur nature inductive les rend
difficile à manipuler efficacement.

Cette thèse développe la théorie des opétopes selon trois axes. Premièrement, nous
formulons une définition propre et robuste, en suivant minutieusement l’approche de
Kock–Joyal–Batanin–Mascari, basée sur la théorie des monades et des arbres poly-
nomiaux. En itérant la construction de Baez–Dolan sur le foncteur identité sur la
catégorie des ensembles, nous obtenons une suite de monades polynomiales, et leurs
opérations sont des arbres sur des monades précédentes. Ce processus génère les opé-
topes et cerne leur structure récursive. Ensuite, nous présentons la notion d’adresse
supérieure, qui nous permettent de “naviguer” dans les opétopes et leurs faces afin
d’atteindre un nœud ou une arrête donné. Ce formalisme permet une étude plus
poussée de la structure des monades polynomiales et des opérations sur les arbres
qu’elles encapsulent. Dans notre cas, il s’agit des opérations naturelles sur les opé-
topes, par exemple les greffes et les substitutions.

Ensuite, nous introduisons deux systèmes syntaxiques pour décrire les opétopes et
les ensembles opétopiques, avec pour objectif leur implémentation informatique. Dans
chacune de ces deux approches, les opétopes sont encodés par des expressions dont
la validité est assurée par des calculs des séquents correspondants. Dans la première,
appelée approche nommée, nous décrivons la structure compositionnelle des opétopes
en utilisant un certain type de terme. La seconde, appelée approche anonyme, se con-
centre sur une représentation syntaxique simple des arbres sous jacents aux opétopes.
Bien que plus proche de la définition polynomiale, sa syntaxe est moins facile à lire
que celle de l’approche nommée.

Enfin, dans la dernière partie de cette thèse, nous étudions les structures al-
gébriques que les opétopes décrivent. Ces structures, que nous appelons algèbres opé-
topiques, généralisent les catégories, les opérades planaires, et les combinades des
arbres planaires de Loday. Nous commençons pas étendre les monades génératrices à
des catégories d’ensemble opétopiques tronqués, de sorte à ce que les algèbres opé-
topiques ne soient simplement que des algèbres sur ces extensions. Nous introduisons
la catégories des formes opétopiques, et en mettant à contribution la théorie des ad-
joints à droite paramétriques de Weber, nous montrons que les algèbres opétopiques
peuvent se comprendre comme des préfaisceaux satisfaisant certaines conditions de
relèvement unique. Nous nous intéressons ensuite à la notion l’algèbre faible. En se
basant sur les théories existantes dans le cas simplicial et dendroïdal, nous en don-
nons trois interprétations: les ∞-algèbres opétopiques, les espaces de Segal complets,
et les algèbres opétopiques à homotopies cohérentes près. Nous montrons que certains
résultats classiques de Rezk, Joyal–Tierney, et Horel (pour les ∞-catégories), et de
Cisinski–Moerdijk (pour les ∞-opérades) peuvent être reformulés et généralisés dans
ce cadre. En particulier, ces trois modèles sont équivalents.

Mots-clefs. Opétope, ensemble opétopique, monade polynomiale, arbre polynomial,
construction de Baez–Dolan, calcul de séquent, catégorie opétopique, algèbre opé-
topique, opérade, combinade.
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Introduction

H
igher structures appear increasingly in a variety of contexts, such as mathemat-
ical physics, algebraic topology, knot theory, and representation theory, with
the aim of providing finer and finer invariants for the objects under study, like

spaces or groups. They arise naturally when weakening structures, for example relaxing
a binary operation that is associative (typically, a category) into one where associativ-
ity holds only up to homotopy (typically, a bicategory). One then needs to consider the
homotopies between homotopies etc., and what coherence laws need to be enforced.

This thesis takes place in one of the formalisms that have been proposed to define
such higher structures: the opetopes and opetopic sets of Baez and Dolan [BD98], further
studied by Cheng [Che03a] [Che04b], Leinster [Lei04], Kock et. al. [KJBM10], and others.
Opetopes are shapes (akin to cubes, globules, simplices, etc.) originally introduced to
describe laws and coherence in higher category theory. Their name reflects the fact that
they encode the possible shapes for higher-dimensional operations: they are operation
polytopes. More concretely, while commutative diagrams (e.g. commutative squares) are
a convenient representation of relations in 1-categories, and commutative squares with
2-cells for 2-categories, opetopes provide a formal account of pasting diagrams of cells in
every dimension.

TOWARDS HIGHER STRUCTURES

Let us take a leisurely dive into a classical example of higher structure. Let X be a
topological space. The problem at hand is to construct an algebraic structure that fully
captures the homotopical data of X, i.e. its structure up to continuous deformation.

Let us start by defining its fundamental groupoid Π1X. As a first attempt, the objects
are the points of X, and if x, y ∈ X, a 1-cell u ∶ x Ð→ y is a path from x to y, i.e. a
continuous map u ∶ [0,1]Ð→X such that u(0) = x and u(1) = y. If we are given two paths
f ∶ xÐ→ y and g ∶ y Ð→ z, then we can concatenate (or compose) them to form a new path
g ○0 f ∶ xÐ→ z by means of the formula

(g ○
0
f)(t) ∶=

⎧⎪⎪⎨⎪⎪⎩

f(2t) if 0 ≤ t ≤ 1
2 ,

g(2t − 1) if 1
2 ≤ t ≤ 1.

We shall abbreviate gf ∶= g ○0 f . Graphically, this is represented by the diagram

f g
.
0

.
1
2

.
1

v
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Unfortunately, concatenation is not associative, in that if we have yet another path e ∶
w Ð→ x, then g(fe) ≠ (gf)e, as showed by the following formulas

(g(fe))(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e(4t) if 0 ≤ t ≤ 1
4 ,

f(4t − 1) if 1
4 ≤ t ≤

1
2 ,

g(2t − 1) if 1
2 ≤ t ≤ 1,

((gf)e)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e(2t) if 0 ≤ t ≤ 1
2 ,

f(4t − 2) if 1
2 ≤ t ≤

3
4 ,

g(4t − 3) if 3
4 ≤ t ≤ 1.

Graphically,

e f g
.
0

.
1
4

.
1
2

.
1

≠ e f g
.
0

.
1
2

.
3
4

.
1

Although g(fe) and (gf)e have the same image in X, the “speed” at which they go
through it is not the same. This can be mediated by the means of a homotopy Ae,f,g ∶
g(fe) Ð→ (gf)e, called coherence cell (or simply coherence), which in essence “readjusts
the speed”:

Ae,f,g(t, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e((4 − 2u)t) if 0 ≤ t ≤ 1+u
4 ,

f(4t − 1 − u) if 1+u
4 ≤ t ≤

2+u
4 ,

g((2 + 2u)t − 1 − 2u) if 2+u
4 ≤ t ≤ 1.

e f g
.

(0,0)
.

( 14 ,0)
.

( 12 ,0)
.

(1,0)

e f g
.(0,1) .

( 12 ,1) .
( 34 ,1) .(1,1)

In the right diagram, t and u are represented in the horizontal and vertical coordi-
nates respectively. The vertical and slanted lines represents the points (t, u) for which
Ae,f,g(t, u) = e(0), f(0), g(0), or g(1), respectively. As such, Ae,f,g witnesses the weak
associativity of the concatenation. Since we are studying associativity of concatenation,
coherences are also called associators.

One would be tempted to “collapse” all these homotopies, i.e. consider homotopy
classes of paths instead of individual paths. So we improve our attempt to define Π1X,
and now, if x, y ∈X, then

Π1X(x, y) ∶= {u ∶ [0,1]Ð→X ∣ u(0) = x,u(1) = y} /≃

where ≃ is the homotopy relation. In this setting, the concatenation is strictly associative,
as Ae,f,g witnesses the fact that g(fe) and (gf)e are in the same homotopy class. One
can also show that the constant path 1x ∶ [0,1] Ð→ X given by 1x(t) = x for all t ∈ [0,1]
is a neutral element, and that given u ∶ [0,1] Ð→ X, the path ū such that ū(t) = u(1 − t)
is a two sided inverse of u. Thus, Π1X is a (1-)groupoid that encodes the 1-dimensional
homotopical data of X. For example, if x ∈ X, then Π1(x,x) is the usual fundamental
group π1(X,x) of X based at x. Formally, we have the following result:

Theorem 0.0.1 (Homotopy hypothesis for groupoids). 1-groupoids model homotopy 1-
types. More precisely, if hoGpd1 is the category of 1-groupoids localized at the equivalences
of categories, and if hoTop1 is the category of topological spaces whose n-homotopy groups
are trivial for all n ≥ 2, localized at the weak homotopy equivalences, then Π1 is an
equivalence of categories hoTop1 Ð→ hoGpd1.
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This means that Π1 completely and faithfully captures the 1-dimensional homotopical
data of X. However, since we collapsed all higher homotopies, tremendous information is
lost. For example, if Sm is the Euclidean m-sphere, then Π1Sm is a contractible groupoid
whenever m ≥ 2, and thus Π1 cannot distinguish higher-dimensional spheres.

In order to capture higher-dimensional information about the space X, let us instead
construct its fundamental 2-groupoid Π2X. As for Π1X, its objects are the points of X,
its morphisms are the paths, but this time, we do not collapse homotopies between paths,
and instead consider them as 2-cells. Formally, as a first attempt, if u and v are two paths
with the same endpoints, and if H is an endpoint-preserving homotopy from u to v, then
we have a corresponding 2-cell u Ð→ v in Π2X. As previously stated, the composition of
paths is not associative, but holds “up to homotopy”1: for e, f , and g as above, we have
g(fe) ≃ (gf)e. There is a canonical witness of that homotopy, denoted by Ae,f,g, which
we constructed above. Note that there is infinitely many such witnesses g(fe) Ð→ (gf)e,
for example

e f g
.

(0,0)
.

( 14 ,0)
.

( 12 ,0)
.

(1,0)

e f g
.(0,1) .

( 12 ,1) .
( 34 ,1) .(1,1)

but the construction of Ae,f,g stands as the most natural, and more importantly, can be
specified independently of e, f and g. Much like paths, homotopies can be concatenated,
but yet again, this operation is not associative. It can be made so by collapsing all the
homotopies above dimension 2, and the 2-cells of Π2X should in fact be homotopy classes
of 2-cells. This certainly seems like a reasonable definition, but in order to improve the-
orem 0.0.1, we need to define the kind of abstract structure Π2X is. A natural attempt
would be:

Definition 0.0.2 (Weak 2-groupoid, tentative). A weak 2-groupoid2 G is made of
Data.

(1) a set G0 of objects (or 0-cells);
(2) for x, y ∈ G0, a 1-groupoid G(x, y), whose objects are called 1-cells, and

morphisms are called 2-cells; if f is an object in G(x, y), we write f ∶ xÐ→ y;
composition in G(x, y) is denoted by ○1, but omitted if the context allows;

Operations. for x, y, z ∈ G0,
(1) a functor −○0 − ∶ G(y, z) × G(x, y) Ð→ G(x, z) such that for all 2-cells A, B,

C, and D, we have (A ○1B) ○0(C ○1D) ≅ (A ○0C) ○1(B ○0D), provided that
all composites are well-defined;

(2) a distinguished 1-cell idx ∶ xÐ→ x, called the identity of x;
(3) a functor (−)−1 ∶ G(x, y)Ð→ G(y, x);

1In fact, unitality and invertibility only hold up to homotopy too, but we shall restrict our attention
to associativity.

2The model we have chosen here is that of bigroupoids [HKK01], see also [Rob16].
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Coherence cells. for e ∶ w Ð→ x, f ∶ xÐ→ y, and g ∶ y Ð→ z,
(1) an isomorphism Ae,f,g ∶ g(fe) Ð→ (gf)e natural in all variables, called

associator;
(2) isomorphisms f ○0 idx Ð→ f and idy ○0 f Ð→ f , natural in all variables,

called unitors;
(3) isomorphisms f ○0 f−1 Ð→ idy and f−1 ○0 f Ð→ idx, natural in all variables,

called reversors.

Unfortunately, this definition of 2-groupoid does not model homotopy 2-types, as there
are crucial properties, called coherence laws, that all the Π2X have, but which are not
consequences of the axioms of definition 0.0.2. Consider a sequence of four concatenable
paths:

d e f g
. . . . .

Using the homotopies Ae,f,g defined above, there are two natural ways to go from g(f(ed))
to ((gf)e)d, written in left diagram, called Mac Lane’s pentagon3 [ML98, paragraph VII.1]:

g(f(ed))

g((fe)d))

(g(fe))d ((gf)e)d

(gf)(ed)

Ad,e,f

Ad,fe,g

Ae,f,g

Aed,f,g

Ad,e,gf

g(f(ed))

g((fe)d))

(g(fe))d ((gf)e)d

(gf)(ed)

Ad,e,f

Ad,fe,g

Ae,f,g

Aed,f,g

Ad,e,gf

Pd,e,f,g

These two homotopies g(f(ed)) Ð→ ((gf)e)d are not equal, but there is a canonical
homotopy Pd,e,f,g ∶ Aed,f,gAd,e,fg Ð→ Ae,f,gAd,fe,gAd,e,f (the formula of which is pretty
long), thus “filling” the pentagon as on the right above. Therefore, in our definition 0.0.2
of weak 2-groupoid, the associators need to be chosen so that Mac Lane’s pentagon above
commutes. Likewise, identities and inverses need their own coherence laws, which are fairly
easy to find in the 2-dimensional case [HKK01, definitions 1.1 and 1.2]. It turns out that
this is the only missing part of our definition, and the following result holds:

Theorem 0.0.3 (Homotopy hypothesis for 2-groupoids [CHR12, theorem 7.1]). Weak
2-groupoids model homotopy 2-types.

If one wants to consider 3-groupoids (called Azumaya tricategory in [GPS95, chapter
2]), then the Pd,e,f,g’s above need to become part of the structure, and adequate coherence

3Whiskering of homotopies have been omitted for simplicity.
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conditions have to be found, such as the K5 associahedron4:

A
d
,e

,f

A
c,d,feAdc

,fe
,g

A
e
,f

,g

A
c
,d

,(
g
f
)
e

A
d,e,gf Aed

,f,
g

A
c
,f
(e

d
),
gAd,fe,g

A
c
,d

,g(
f
e)

A
e
,f
,g

A
c
,(
f
e
)d

,g

A
d
,e
,f

. g((f(ed))c)

. g(((fe)d)c)

.g((fe)(dc))

.(g(fe))(dc)

.((gf)e)(dc)

.(((gf)e)d)c

.
((gf)(ed))c

. (g(f(ed)))c

.((g(fe))d)c . (g((fe)d))c
.

. .

.

Pc,d,fe,g

Pd,e,f,g

As the value of n increases, the process goes on:
(1) in each dimension, we have coherence cells, i.e. canonical witnesses of the weak

associativity of the concatenation operation (the A’s, P ’s, etc.);
(2) using those coherences, we find that more complex “associativity problems” have

natural but different solutions (akin to Mac Lane’s pentagon and K5);
(3) those different solutions can be mediated with even higher coherences.

The challenge is to find a general definition of n-groupoid and even ∞-groupoid, i.e. to
find all these coherence cells and coherence conditions, or at least a tractable description
thereof.

This approach stems from an intuitive idea but its complexity quickly becomes unman-
ageable. Other works use entirely different structures to model homotopy (n- or∞-)types.
For example, Kan complexes (which are simplicial sets that satisfy some lifting condition)
are known to be models [GJ09, theorem 11.4]. The use of presheaves, using the underlying
category as a description of “cell shapes”, dates back to Grothendieck’s Pursuing Stacks
[Gro83] and the notion of test category. This program and the study of test categories has
been largely pursued (!) since, see e.g. [Cis06] [Jar06] [Mal09] [CM11a] [Ara12] [ACM19].

More generally, one would like a definition of weak higher categories (i.e. where cells are
not necessarily invertible) that encompasses the idea of higher groupoids. The approach
we exposed, whereby a weak (n + 1)-category is some sort of 1-category that is “weakly
enriched” over weak n-categories, has been investigated and found applications for small
values of n, see e.g. [B6́7] [Pow89] for n = 2, [GPS95] [Gur06] for n = 3, and [Tri06] for
n = 4. Quasi-categories [BV73] [Joy08] [Lur09] are by far the most popular, and have been
shown to be adequate models for (∞,1)-categories, i.e. categories whose cells of dimension
≥ 2 are weakly invertible. Reviews of the various approaches to higher categories can be
found in [CL04] [CG07] [CG11].

4The back of the associahedron is represented by the dashed arrows, but not labeled for clarity.
The pentagon faces are instances of the P coherence cells, and the diamond faces are just exchanges of
independent instances of A (or the canonical witness thereof).
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OPETOPES

We now present a different perspective on the coherence problems above, that will lead us
to opetopes. First, let us represent a homotopy H ∶ u Ð→ v between two paths with the
same endpoints as follows:

. .⇓H
u

v

In the same manner, if g and f are concatenable, and if gf and v have the same endpoints,
then a homotopy H ∶ gf Ð→ v can be represented as

. .

.

⇓H
gf

v

This diagram can be read as “H is a homotopy from a concatenation of g and f to v”,
although we do not choose an actual representative of the concatenation gf . Similarly, for
suitable paths g, f , e, and v, one may consider a homotopy

. .

. .
⇓H g

f

e

v

going from a concatenation of g, f , and e, to v. But what is a good candidate for gfe?
We shall say that v is a concatenation of g, f , and e, if the homotopy H above (or rather,
if there exists a homotopy like H that) meets a certain universality criterion. Intuitively,
for H to be a concatenator, i.e. a witness of the fact that v is a concatenation of g, f ,
and e, it should be weakly initial among all homotopies starting from g, f , and e. So if
G ∶ gfe Ð→ v′ is any homotopy, then there exists a C ∶ v Ð→ v′ (itself satisfying some
universality criteria) such that G is a concatenation of C and H:

G ≃ CH.

To summarize, in this approach, rather than trying to define concatenations directly (which
as we saw gives rise to many candidates for the same problem, which all need to be medi-
ated by higher coherences), we define them by universal property. This is what Hermida
calls “coherence via universality” [Her01]. Note that in the equation above, we require that
G is a concatenation of C and H, which according to the new definition of concatenation,
means that there exists a witness Γ ∶ CH Ð→ G which is itself universal. The definitions
of concatenation and universal cell are thus mutually coinductive.

This process can be generalized to arbitrary dimensions. For example, a good notion
of associator of e, f , and g can be retrieved as a concatenator Υ of the pasting diagram
on the left:

e

f

g
⇓F
⇓G

.

. .

.
e

f

g
⇓F
⇓G

.

. .

.

Υ⇛ e

f

g⇓H
.

. .

.
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where F and G are both universal. With a more precise statement of this theory, one could
prove that H is also universal, i.e. a concatenator of e, f , and g. So rather than having
an associator A ∶ g(fe) Ð→ (gf)e, we instead obtain a scheme to construct a universal
cell Υ ∶ g(fe) Ð→ gfe, and similarly, Υ′ ∶ (gf)e Ð→ gfe. Note that Υ and Υ′ cannot be
concatenated, and the Mac Lane pentagon (along with the associahedra) cannot appear as
a result of competing solutions to universal problems. However, universal cells mediating
the two do occur, and have to be studied. This method of producing coherence cells has
two important properties:

(1) higher coherence cells are parametrized by pasting diagrams of lower coherence
cells;

(2) all coherence cells are many-to-one, meaning that their codomain is always formed
of a single lower cell.

Opetopes serve as combinatorial devices that describe the shape of those pasting diagrams
of higher coherence cells. In other words, they are generic pasting diagrams. Here is an
example of a 2-dimensional and 3-dimensional opetope, respectively:

.

. .

.
⇓

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

In this thesis, we study the theory of opetopes: their subtle combinatorics, ways to describe
and formalize them, the algebraic structures they encode, as well as related questions in
homotopy theory.

PLAN

This work is divided in three parts. Each has its own introductory chapter, so we keep
this overview short.

Part I: Opetopes. We begin in chapter 2 with some results regarding polynomial trees,
polynomial monads, and the Baez–Dolan construction. Then, in chapter 3, we present the
approach of Kock et. al. [KJBM10], which gives a very concise definition of opetopes, albeit
a dreadfully inductive one. We also introduce the category O of opetopes, whose generating
morphisms correspond to geometrical face embeddings. The formalism of higher addresses
(section 3.3, which relies on notations and definitions introduced in chapter 2) allows us
to transcribe this intuition in an elegant way. We make use of this in chapter 4, where
we provide an alternative proof of the equivalence between opetopic sets and many-to-one
polygraphs. Not only does it validate the geometrical intuition behind our definition of O,
but it is a first compelling application of this framework. The proof itself is not immediate,
but significantly shorter than in the previous state of the art [HMP00] [HMZ02] [Che04b]
[HMZ08].

Part II: Syntax. This thesis intends to promote opetopes as a convenient foundation
for higher category theory. In particular, a representation which is adapted to computer
manipulations and proofs is desirable. In the second part, we study syntactical descriptions
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of opetopes. The dichotomy between pasting diagrams and trees, discussed in chapter 3,
gives rise to two very different approaches.

(1) In the named approach (chapters 6 and 7), we use the former point of view, and
represent opetopes and cells in opetopic sets as well-typed terms (in some context).
The well-typedness is enforced by the sequent calculus Opt! for opetopes, and
OptSet! for opetopic sets.

(2) In the unnamed approach (chapters 8 and 9), we leverage the tree-like structure of
opetopes, rather than considering them as pasting diagrams. Akin to the named
approach, opetopes and cells of opetopic sets are represented by syntactical con-
structs we call preopetopes, that are constrained by the corresponding derivation
systems: Opt? for opetopes, and OptSet? for opetopic sets. In this setting, we
also describe those universality conditions mentioned earlier, by translating the
rules of Baez–Dolan [BD98] and Finster [Fin16] in our syntax (see section 9.4).

Part III: Algebras. In the third part of this thesis, we demonstrate that the theory of
opetopes is suitable for the study of higher structures. We start by introducing opetopic
algebras in chapter 11, which are algebraic structures whose operations have higher di-
mensional tree-like arities, and whose underlying generators and relations are encoded by
opetopic sets. This encoding is formalized by the means of a reflective adjunction

h ∶ Psh(O)Ð→←Ð Alg ∶M

between opetopic sets and the category Alg = Algk,n of k-colored n-dimensional opetopic
algebras. In particular, it exhibits Alg as a localization of Psh(O) (or equivalently, as a
projective sketch over O). This is the nerve theorem for O (see theorem 11.2.33). If k = n = 1
we recover the “free 1-category” adjunction (−)∗ ∶ Graph Ð→←Ð Cat ∶ U . However, when it
comes to presheaf models of categories, simplicial sets are more adequate than graphs.
Likewise, in the opetopic setting, we define the category Λ = Λk,n of opetopic shapes, which
turns out to be a more appropriate shape theory. The category Psh(Λ) also enjoys a nerve
theorem:

τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N.

As promised, we recover simplicial sets in the case k = n = 1, i.e. Λ1,1 = ∆.
We then turn our attention to weak opetopic algebra, where associativity and unitality

only hold up to coherent homotopy (in this case, coherent higher cells). In chapter 13, we
construct a model structure à la Cisinski [Cis06] on the category Psh(Λ), which subsumes
Joyal’s model structure for quasi-categories [Joy08] [Ber18] and Cisinski–Moerdijk model
structure for ∞-operads [CM11b] in the planar case. We then show in chapter 15 that
those coherent homotopies can be modeled by simplicial methods, i.e. that if k = 1, then
there is a Quillen equivalence

Psh(Λ)∞
∼Ð→←Ð Sp(Λ)Rezk

between the model structure of chapter 13 and the Rezk structure on the category Sp(Λ)
of simplicial presheaves over Λ. This generalizes the results of Joyal and Tierney [JT07]
for quasi-categories, and of Cisinski and Moerdijk [CM13] for planar operads. Lastly, in
chapter 16, we provide another model for∞-algebras. Following the work of Horel [Hor15],
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it is based on the category IAlg of opetopic algebras internal to simplicial sets, instead of
simplicial presheaves. We generalize the methods of this article in order to construct the
Horel structure IAlgHorel, that we then localize it to obtain the desired model IAlgRezk. It
is related to Psh(Λ)∞ via a zig-zag of Quillen equivalences.
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Chapter Zero

Preliminaries in category theory

I
n this first chapter, we recall some notions and results in category theory, which
shall be used implicitly most of the time. We assume that the reader is familiar
with elementary category theory. Good references on the matter can be found

in [ML98] [Awo10] [Bor94a] [Rie17].

0.1 GENERALITIES

Notation 0.1.1. We write Cat for the (large) category of small categories, i.e. that in
which the class of objects and morphisms is a set, and Cat for the large (in some uni-
verse) category of (smaller) categories. Let C and D be categories (of any size), and write
DC ∶=Cat(C,D) for the category of functors from C to D, and natural transformations.

Notation 0.1.2. For n ∈ N, let [n] be the linear order on n+1 elements, seen as a category:

[n] ∶= (0Ð→ 1Ð→ 2Ð→ ⋯Ð→ n) .

In particular, if C ∈ Cat, then C[1] is the arrow category of C, whose objects are the
morphisms of C, and morphisms are commutative squares.

Definition 0.1.3 (Comma category). Consider two functors F ∶ AÐ→ C and G ∶ BÐ→ C.
The comma category F /G (also denoted by (F ↓ G) in the literature) is defined as the
pullback

F /G C[1]

A ×B C × C,

⌟
∂

F×G

where ∂ maps a morphism m ∶ c Ð→ d to the tuple (c, d). If A = C and F is the identity
functor, then we write F /G = C/G. If F is constant at an object c ∈ C, then we write
F /G = c/G. In particular, if F = idC and G is constant at c, then F /G = C/c is the
usual slice category. Those notations transpose to the case where G is an identity or F is
constant.

Definition 0.1.4 (3-for-2). Let C be a category. We say that a class of morphisms K ⊆ C[1]
has the 3-for-2 property if for any pair (f, g) of composable morphisms, if two among f ,
g, and gf are in K, then so is the third.

Definition 0.1.5 (Cell complex). Let K be a class of morphisms of C. A relative K-cell
complex is a transfinite composition of pushouts of morphisms of K. We write CellK for

1



the class of relative K-cell complexes. If C has an initial object ∅, then a K-cell complex is
an object X ∈ C such that the initial map ∅Ð→X is a relative cell complex.

Definition 0.1.6 (Localization). Let C be a category, and K ⊆ C[1] be a class of morphisms
of C. The localization, if it exists, is a category K−1C equipped with a functor γ ∶ CÐ→ K−1C

mapping all morphisms of K to isomorphisms, and which is initial for this property, i.e.
if F ∶ C Ð→ D also maps morphisms of K to isomorphisms, then there exists a unique F̄
making the following triangle commute:

C D

K−1C.

F

γ
F̄

0.2 LIFTING PROPERTIES

Definition 0.2.1 (Lifting property). Let C be a category, and l, r ∈ C[1]. We say that l has
the left lifting property against r (equivalently, r has the right lifting property against l),
written l ⋔ r, if for any solid commutative square as follows, there exists a (non necessarily
unique) dashed arrow making the two triangles commute:

⋅ ⋅

⋅ ⋅
l r (0.2.2)

Notation 0.2.3. Let c ∈ C and f ∈ C[1]. If C has a terminal object 1, then we write f ⋔ c for
f ⋔ (cÐ→ 1). Dually, if C has an initial object 0, we write c ⋔ f for (0Ð→ c) ⋔ f .

Let L and R be two classes of morphisms of C. We write L ⋔ R if for all l ∈ L and r ∈ R
we have l ⋔ r. The class of all morphisms r (resp. l) such that L ⋔ r (resp. l ⋔ R) is denoted
L⋔ (resp. ⋔R). We also write L⋔ (resp. ⋔R) for the category spanned by objects c ∈ C such
that L ⋔ c (resp. c ⋔ R) and morphisms f such that L ⋔ f (resp. f ⋔ R), and although this
is ambiguous, the context shall always make it clear.

Definition 0.2.4 (Saturated class). We say that the class of morphisms K is saturated if
K = ⋔(K⋔). The saturation of K is the smallest saturated class containing K, i.e. ⋔(K⋔).

Lemma 0.2.5. If K ⊆ C[1] is a class of morphisms, then (⋔(K⋔))⋔ = K⋔ and ⋔((⋔K)⋔) = ⋔K.

Definition 0.2.6 (Orthogonality). We say that l is left orthogonal to r (equivalently, r
is right orthogonal to l), written l ⊥ r, if for any solid commutative square as in equa-
tion (0.2.2), there exists a unique dashed arrow making the two triangles commute. The
relation ⊥ is also known as the unique lifting property. The notations for ⋔ presented above,
e.g. L⋔, still make sense when ⋔ is replaced by ⊥.

Lemma 0.2.7. If L ∶ C Ð→←Ð D ∶ R is an adjunction, f ∈ C[1], and g ∈ D[1], then Lf ⋔ g if
and only if f ⋔ Rg. Likewise, Lf ⊥ g if and only if f ⊥ Rg.

Definition 0.2.8 (Local isomorphism). Let K be a class of morphisms of C. A morphism
f ∈ C[1] is a K-local isomorphism if for all c ∈ C such that K ⊥ c, we have f ⊥ c. Note that
the class of K-local isomorphism is not ⊥(K⊥).



0.3 PRESHEAVES

Notation 0.3.1. Let C be a small category, and let Psh(C) ∶=SetCop be the category of (Set-
valued) presheaves over C. The Yoneda embedding will be denoted by yC ∶ C Ð→ Psh(C),
or just y is the context is clear. Recall that, as the name suggests, it is an embedding,
and that it exhibits Psh(C) as the free cocompletion of C. As such, if c ∈ C, we sometimes
write c instead of yc.

Definition 0.3.2 (Cell counting function). If X ∈ Psh(C) is a presheaf over a small
category C, let #X be the cardinality of the sum ∑c∈CXc. As a shorthand, we write
#c ∶=#yc, for c ∈ C.

Definition 0.3.3 (Shape). Let X ∈ Psh(C). An element x ∈ Xc for some c ∈ C is called a
cell of X of shape c, which we write x♮ = c.

Definition 0.3.4 (Category of elements). For f ∶ c Ð→ d a morphism in C, we write
f ∶ Xd Ð→ Xc instead of Xf or f∗. The category of elements C/X (also denoted by ∫CX)
of X has objects all the cells of X, and a morphism f ∶ x Ð→ y in C/X is a morphism
f ∶ y♮ Ð→ x♮ in C such that f(x) = y. Note that for all c ∈ C, the category of elements of yc
is simply the slice C/c.

Remark 0.3.5. In the literature, C/X is rather defined as the comma category yC/X (see
definition 0.1.3), i.e. as the category of pairs (x, c) where c ∈ C and x ∈ Xc. Here, we
consider that the shape c of x is an intrinsic data that can be retrieved using (−)♮.

Proposition 0.3.6 ([Lei04, proposition 1.1.7]). There is an equivalence of categories

Ψ ∶ Psh(C)/X ≃Ð→ Psh(C/X)

where if p ∶ Y Ð→X is a presheaf over X, and x ∈ C/X, then ΨYx = p−1(x).

Definition 0.3.7 (The category of simplices). Let ∆, the category of simplices, be the
full subcategory of Cat spanned by categories of the form [n], where n ranges over N.
It admits a well-known presentation [Jar06, section 1.1] [Hov99, section 3.1], where the
generators, respectively called coface and codegeneracy, are denoted by di ∶ [n− 1]Ð→ [n]
and si ∶ [n + 1] Ð→ [n], where 0 ≤ i ≤ n. Specifically, di is the unique increasing map that
does not have i ∈ [n + 1] in its image, while si has it twice.

Definition 0.3.8 (Lifting problem). Let C be a small category, c ∈ C, x ∶ X ↪Ð→ c be a
subpresheaf of the representable c, and Y ∈ Psh(C). An x-lifting problem of Y is simply a
morphism f ∶X Ð→ Y . It is solved is there exists a f̄ ∶ cÐ→ Y (called a solution) extending
f :

X Y

c

f

x
f̄

It is unsolved if such an f̄ does not exist.



Definition 0.3.9. Let C be a small category, and D be a category with coproducts. There
is a functor − ⊠ − ∶ Psh(C) ×D Ð→ DCop , called the box product induced by the coproducts
of D, where for X ∈ Psh(C), c ∈ C, and d ∈D,

(X ⊠ d)c ∶= ∑
Xc

d.

Note that if C = [0] is the discrete category with one object, then this construction gives
a functor Set ×DÐ→D, where for X ∈ Set and d ∈D, we have X ⊠ d = ∑X d.

Dually, if D has all products, then there is a natural exponentiation functor Psh(C)op

×DÐ→DCop , where for X ∶ CÐ→ Set, c ∈ C, and d ∈D,

(dX)c ∶=∏
Xc

d.

It C = [0], then this construction gives rise to a functor Setop×DÐ→D, where for X ∈ Set
and d ∈D we have dX =∏X d.

Example 0.3.10 (Simplicial set). A presheaf X ∈ Psh(∆) is called a simplicial set. We
write Xn instead of X[n], and ∆[n] instead of y[n].

Let ∂∆[n], the boundary of [n], be the maximal subpresheaf of ∆[n] not containing
id[n] ∈∆[n]n. It is the smallest subpresheaf of ∆[n] containing the cofaces

([n − 1] diÐ→ [n]) ∈ ∆[n]n−1

for 0 ≤ i ≤ n. We also say that it is spanned by the di’s. Write bn ∶ ∂∆[n]Ð→∆[n] for the
natural boundary inclusion, and B for the set of all boundary inclusions.

For 0 ≤ k ≤ n, the k-horn Λk[n] is the maximal subpresheaf of ∂∆[n] not containing
dk. Let hkn ∶ Λk[n] Ð→ ∆[n] be the natural horn inclusion, and denote by H the set of all
horn inclusions. If 0 < k < n, the horn is called inner, and let Hinner be the set of inner
horn inclusions.

Definition 0.3.11 (Anodyne extension). Let An ∶= ⋔(H⋔) be the saturation of the set of
horn inclusions. An element of An is called an anodyne extension. Similarly, let Aninner,
the class of inner anodyne extensions, be the saturation of Hinner.

Definition 0.3.12. A simplicial set X ∈ Psh(∆) is a quasi-category [BV73] (or inner Kan
complex) if Hinner ⋔X, i.e. all inner horn lifting problems of X are solved.

0.4 KAN EXTENSIONS

Theorem 0.4.1. (1) [ML98, proposition IX.5.1] If D is complete, then every functor
F ∶ Cop × CÐ→D has an end. Dually, if D is cocomplete, then every such F has a
coend.

(2) [Lor19, theorem 1.4.1] Let F,G ∶ C Ð→ D be two functors, where D has all limits.
We have

DC(F,G) ≅ ∫
c∈C

D(Fc,Gc).



(3) [Lor19, proposition 2.2.1] (density formula) Let C be a small category, and X ∈
Psh(C). We have

X ≅ ∫
c∈C

Xc ⊠ yc

where − ⊠ − ∶ Set ×Psh(C)Ð→ Psh(C) is defined in definition 0.3.9.

Notation 0.4.2. Let C be a small category, X ∶ Cop Ð→ Set, and Y ∶ C Ð→ Set. The coend
∫
c
Xc × Y c admits the following simple description as a quotient in Set:

∫
c∈C

Xc × Y c = ∑c∈CXc × Y c
∼

where for f ∶ cÐ→ d, x ∈Xd, y ∈ Y c, we have an identification

(x,Y f(y)) ∼ (Xf(x), y) .

The class of a pair (u, v) ∈Xc×Y c will be denoted by u⊗v. Abusing notations a little bit,
the equivalence relation ∼ above then translates to the very familiar identity x ⊗ f(y) =
f(x)⊗ y.

Definition 0.4.3 (Left Kan extensions [ML98, section X.5]). Consider a diagram of ca-
tegories

C D

E

F

K

where D is cocomplete. The (pointwise) left Kan extension LanK F of F along K is the
functor EÐ→D given by

LanK F (e) ∶= colim
Ka→e

Fa = ∫
a∈C

E(Ka, e) ⊠ Fa, (0.4.4)

where ⊠ is defined in definition 0.3.9. Using notation 0.4.2, LanK F (e) is the set of tensors
f ⊗ x, where f ∶KaÐ→ e and x ∈ Fa, subject to the identity

(g ⋅Kϕ)⊗ y = g ⊗ (Kϕ)(y),

where g ∶ Kb Ð→ e, y ∈ Fa, and ϕ ∶ a Ð→ b. The left Kan extension of F comes with a
natural transformation α ∶ F Ð→ (LanK F ) ⋅K which is initial among all natural trans-
formations of the form F Ð→ G ⋅K, where G ∶ E Ð→ D. Dually, if D is complete, the
(pointwise) right Kan extension RanK F of F along K is the functor EÐ→D given by

RanK F (e) ∶= lim
e→Ka

Fa = ∫
a∈C

FaE(e,Ka), (0.4.5)

where the exponentiation is defined in definition 0.3.9. The right Kan extension of F comes
with a natural transformation β ∶ (RanK F ) ⋅K Ð→ F which is terminal among all natural
transformations of the form GK Ð→ F , where G ∶ EÐ→D.

Proposition 0.4.6 ([ML98, corollary X.3]). Consider a diagram of categories

C D

E

F

K



where K is fully faithful. If D is cocomplete, then the universal natural transformation
α ∶ F Ð→ (LanK F ) ⋅ K is a natural isomorphism. Dually, if D is complete, then the
universal natural transformation β ∶ (RanK F ) ⋅K Ð→ F is a natural isomorphism.

Remark 0.4.7. Throughout this thesis, we shall mainly consider left Kan extensions along
the Yoneda embedding. Given

C D

Psh(C)

F

yC

and X ∈ Psh(C), the coend of equation (0.4.4) becomes

LanyC F (X) = ∫
c∈C

Xc ⊠ Fc. (0.4.8)

Since yC is dense, by proposition 0.4.6, there is an isomorphism Fc ≅ LanyC F (yCc) natural
in c ∈ C.

Definition 0.4.9 (Nerve of a functor). A functor F ∶ CÐ→D induces a nerve NF ∶DÐ→
Psh(C), mapping d ∈D to the presheaf D(F−, d) ∈ Psh(C).

Definition 0.4.10 (Dense functor [ML98, section X.6]). A functor G ∶ A Ð→ B is dense
if for all b ∈ B we have

b ≅ colim
Ga→b

Ga.

Equivalently, G is dense if LanGG ≅ idB.

Proposition 0.4.11. (1) The nerve NF is fully faithful if and only if F is dense.
(2) If D is cocomplete, we have an adjunction Lany F ∶ Psh(C)Ð→←ÐD ∶ NF .

Notation 0.4.12 (The classical setting). Let F ∶ A Ð→ B be a functor. Using Kan exten-
sions, we obtain two adjunctions

F! ∶ Psh(A)Ð→←Ð Psh(B) ∶ F ∗, F ∗ ∶ Psh(B)Ð→←Ð Psh(A) ∶ F∗,

where F! (resp. F∗) is the left (resp. the right) Kan extension of A
FÐ→ B

yBÐ→ Psh(B)
along the Yoneda embedding yA, and F ∗ = NyB⋅F is the precomposition by F .

Unfolding definitions, for X ∈ Psh(A) and b ∈ B, we have

F!Xb = ∫
a∈A

Xa ×B(b,Fa), (0.4.13)

and for Y ∈ Psh(B) and a ∈ A, we have F ∗Ya = YFa. Therefore,

F!F
∗Yb = ∫

a∈A
YFa ×B(b,Fa)

and the counit εY ∶ F!F
∗Y Ð→ Y of the adjunction F! ⊣ F ∗ simply maps a tensor y⊗ f to

f(y), where y ∈ YFa and f ∶ bÐ→ Fa.

Lemma 0.4.14 ([SGA72, exposé I, proposition 5.6]). If any among F , F!, and F∗ is fully
faithful, then so are the other two.



0.5 LOCALLY PRESENTABLE CATEGORIES

definition

Definition 0.5.1 (Filtered category). For κ a regular cardinal, a small category J is κ-
filtered if every diagram of less than κ morphisms has a cocone. We say that J is filtered
if it is ℵ0-filtered. A κ-filtered colimit is a colimit whose domain category is a κ-filtered
category. A functor is finitary if it preserves filtered colimits.

Definition 0.5.2 (Presentable object [AR94, definition 1.13]). Let κ be a regular cardinal.
An object c ∈ C is κ-presentable if C(c,−) preserves κ-filtered colimits. Equivalently, if
F ∶ J Ð→ C is a functor, where J is κ-filtered, then a morphism c Ð→ colimF factors
essentially uniquely through a Fj, for some j ∈ J. We say that c is presentable if it is
κ-presentable, for some regular cardinal κ, and finitely presentable if it is ℵ0-presentable.

Example 0.5.3. In Set, the finitely presentable sets are exactly the finite sets. Indeed,
let X be a finite set, F ∶ JÐ→ Set be a filtered diagram, and take a map f ∶X Ð→ colimF .
For each x ∈ X, there exists a jx ∈ J such that f(x) ∈ Fjx. The discrete subcategory
of J spanned by the jx’s is finite (since X is finite), thus has a cocone, say leading to
an object j ∈ J. Then f factors through Fj. More generally, κ-presentable sets are those
whose cardinality is less than κ.

Definition 0.5.4 (Locally presentable category [AR94, definition 1.17]). Let C be a ca-
tegory. We say that C is locally κ-presentable if it has all colimits, and if there exists a set
of κ-presentable objects that generate C under κ-filtered colimits. It is locally presentable
if it is locally κ-presentable, for some regular cardinal κ, and finitely presentable if it is
ℵ0-presentable. In the latter case, we write Cfin for the full subcategory spanned by finitely
presentable objects.

Example 0.5.5. (1) In Set, a set X is the union of its finite subsets, i.e. the colimit
of the canonical diagram Setfin/X. Since finite unions of finite sets are still finite,
this diagram is filtered. Thus the category Set is locally finitely presentable. The
set of generating finitely presentable object can be taken to be any skeleton Setfin.

(2) More generally, the category Psh(C) of presheaves over a small category C is locally
finitely presentable, and the finitely presentable objects are the finite colimits of
representable presheaves. Note that a finitely presentable presheaf X ∈ Psh(C)fin
need not be finite in the sense that #X < ℵ0. For instance, no nonempty simplicial
set has finitely many cells. However, if C is locally finite (i.e. all its slices C/c have
finitely many morphisms), then Psh(C)fin is exactly the category spanned by the
presheaves with finitely many cells.

the gabriel–ulmer duality

Theorem 0.5.6 (Gabriel–Ulmer duality [GU71] [LP09, theorem 8]). Let Lex be the 2-
category of finitely complete small categories and finitely continuous functors, and Lfp
be the 2-category of locally finitely presentable categories and finitary right adjoints. Then
the functor Lex(−,Set) ∶ Lexop Ð→ Lfp is an equivalence of 2-categories. Consider the



functor T ∶ Lfp Ð→ Lex, that maps a locally finitely presentable category C to a skeleton
of Cop

fin. Then T is an inverse to Lex(−,Set) up to natural equivalence.

Corollary 0.5.7 ([LP09, theorem 10]). If C a finitely locally presentable category, then
C ≃ Lex(Cop

fin,Set).

the representation theorem

Definition 0.5.8 (Orthogonality class [AR94, definitions 1.32 and 1.35]). Let C be a
category, and κ be a regular cardinal. A subcategory D is a κ-orthogonality class if there
exists a class K of morphisms of C whose domains and codomains are κ-presentable, such
that D is the full subcategory spanned by those objects c ∈ C satisfying K ⊥ c. We say
that D is a small κ-orthogonality class if K is a set; it is an orthogonality class if it is a
λ-orthogonality class for some regular cardinal λ.

Example 0.5.9. Let n ∈ N. The spine S[n] ⊆∆[n] is the colimit of the following diagram
in Psh(∆):

∆[1] ∆[1] ∆[1] ⋯ ∆[1] ∆[1]

∆[0] ∆[0] ∆[0] ∆[0],

d1 d1d0 d1d0 d1d0

where there are n instances of ∆[1]. In other words, it is a chain of n copies of ∆[1] glued
end to end. Let S ∶={S[n]↪Ð→∆[n] ∣ n ∈ N} be the set of spine inclusions. A simplicial
set X ∈ Psh(∆) such that S ⊥ X is said to satisfy the Segal condition. It is well-known
that nerves of categories are exactly those simplicial sets that satisfy the Segal condition
[Seg68]. Therefore, Cat is equivalent to the orthogonality class of Psh(∆) induced by S.
Since domains and codomains of morphisms of S are finitely presentable, it is an ℵ0-
orthogonality class.

Proposition 0.5.10 ([GZ67, proposition 1.3]). Let F ∶ CÐ→←ÐD ∶ U be an adjunction. The
following are equivalent:

(1) the counit ε ∶ FU Ð→ idD is a natural isomorphism;
(2) the right adjoint U is fully faithful;
(3) for K ∶={f ∈ C[1] ∣ Ff is an iso.} the class of maps that F maps to isomorphisms,

the canonical factorization F̄ ∶ K−1CÐ→D is an equivalence of categories.

Theorem 0.5.11 ([GU71, theorem 8.5]). Let C be a small category, and D be a small
κ-orthogonality class of Psh(C) induced by a set K of maps.

(1) The inclusion U ∶DÐ→ Psh(C) preserves κ-filtered colimits and has a left adjoint1.
(2) The class of K-local isomorphisms is the smallest class of morphisms that contains

K, satisfies 3-for-2, and is closed under colimits (in Psh(C)[1]). Further, if F is the
left adjoint of U , then a morphism f ∈ Psh(C)[1] is a K-local isomorphism if and
only if Ff is an isomorphism.

1In [AR94, section 1.37], the left adjoint is called the orthogonal-reflection construction. Much in the
spirit of Quillen’s small object argument [Hov99, theorem 2.1.14], it takes a presheaf X ∈ Psh(A) and
iteratively adds and collapses cells, forming a sequence X = X(0) Ð→ X(1) Ð→ ⋯ Ð→ X(α) Ð→ ⋯ that
converges in κ steps to a presheaf orthogonal to K.



Corollary 0.5.12. With C, D, and K as in theorem 0.5.11, and writing F ∶ Psh(C)Ð→D

for the left adjoint of U , the canonical factorization F̄ ∶ K−1Psh(C)Ð→D is an equivalence
of categories.

Proof. Follows from proposition 0.5.10 and theorem 0.5.11.

Definition 0.5.13 (Projective sketch [AR94, paragraph 1.49]). A projective sketch (also
called a limit sketch) is the datum of a category S, a class of distinguished diagrams
Di ∶ Ji Ð→ S, and to each such diagram, a choice of a cone γi ∶ ci Ð→ Di over it (where
ci ∈ S is considered as a constand functor Ji Ð→ S). A projective sketch is small if there is
only a set of distinguished diagrams.

Let E be a category with all limits. A model of S in E is a functor M ∶ S Ð→ E that
maps each cone γi to a limit cone of MDi. A morphism of models is simply a natural
transformation. If the category E is omitted, it is assumed to be Set.

Example 0.5.14. Lawvere theories [Law04] [HP07, definition 2.2] are projective sketches,
where the distinguished diagrams are finite and discrete, and where the cones are product
cones (although not all such projective sketches are Lawvere theories).

Theorem 0.5.15 (Representation theorem [AR94, theorem 1.46, corollary 1.52]). Let C

be a category and κ be a regular cardinal. The following are equivalent:
(1) C is locally κ-presentable;
(2) C is equivalent to a κ-orthogonality class2 in Psh(A) for some small category A;
(3) C is equivalent to an accessibly embedded full reflective subcategory of Psh(A) for

some small category A, i.e. C is a full subcategory of Psh(A) closed under κ-filtered
colimits, the embedding C ↪Ð→ Psh(A) preserves κ-filtered colimits, and has a left
adjoint;

(4) C is equivalent to a category of models over a small projective sketch whose distin-
guished diagrams have less than κ morphisms.

Proof (sketch). (1) Ô⇒ (3) Let Cκ be the full subcategory spanned by a chosen set
of κ-presentable objects generating C under κ-filtered colimits. For i ∶ Cκ ↪Ð→ C

the inclusion, the adjunction Lany i ∶ Psh(Cκ) Ð→←Ð C ∶ Ni satisfies the required
properties.

(3) Ô⇒ (1) Up to equivalence, we have a reflective adjunction F ∶ Psh(A) Ð→←Ð C ∶ U
where A is a small category, and one can check that the set {Fa ∣ a ∈ A} generates
C by filtered colimits.

(2) Ô⇒ (3) This is theorem 0.5.11.
(3) Ô⇒ (4) Let i ∶ C ↪Ð→ Psh(A) be the embedding, L be its left adjoint. Let K ⊆

Psh(A)[1] be the set of all morphisms f ∶ X Ð→ a such that a ∈ A and Lf is an
isomorphism. For such an f , let Df be the forgetful functor A/X Ð→ Psh(A), and
γf be the obvious cocone from Df to a. Then Aop endowed with all the cones γf ,
where f ranges over K, forms a small projective sketch, and the associated category
of models is equivalent to C.

2In a locally presentable category, a κ-orthogonality class is necessarily a small orthogonality class.
Conversely, a small orthogonality class is a κ-orthogonality class for some regular cardinal κ.



(4) Ô⇒ (2) Assume that C is the category of models of the small projective sketch
S, with distinguished diagrams Di ∶ Ji Ð→ S and cones γi ∶ di Ð→ Di. In Psh(Sop),
consider the canonical morphisms

γ̄i ∶ ydi Ð→ lim(Ji
DiÐ→ S

y
Ð→ Psh(S))

and let Γ be the set of all the γ̄i’s. Then domains and codomains of maps in Γ are
κ-small, and C is equivalent to the orthogonality class induced by Γ 3.

Example 0.5.16. Many classical algebraic structures, such as monoids, groups, abelian
groups, rings, modules over a fixed ring, etc. are models of Lawvere theories, and in
particular, models of projective sketches. Thus, those categories are all locally finitely
presentable.

3Intuitively, we identify models of S (those functors mapping the γi’s to limit cones) to presheaves over
Sop that “see” the canonical morphisms di Ð→ limDi as isomorphisms.



Part I

Opetopes





Chapter One

Introduction

T
his first part is dedicated to laying the foundations of opetope theory. Over the
recent years, they have been the subject of many efforts towards providing a good
definition that would allow exploring their combinatorics [Che03a] [HMP00]

[Lei04]. In this thesis, we follow the approach of Kock–Joyal–Batanin–Mascari [KJBM10].
It is based on polynomial functors and polynomial monads, which we present in chapter 2.
Polynomial functors are categorifications of classical polynomial functions, and have found
important applications in type theory (where they are also called containers or container
functors) [AAG05] [AGS12] [Koc12] and more recently in operad theory [Web14] [GHK17].
Here, they are relevant as polynomial functors that are also monads (a.k.a. polynomial
monads) encapsulate the idea of “tree calculus”. As we will see, opetopes are essentially
trees, which makes this formalism especially adequate throughout this thesis.

In chapter 3, we present the definition of opetopes of [KJBM10]. Informally, an opetope
is a higher dimensional geometrical shape that looks like this

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

A crucial feature is that all the cells (in any dimension) are many-to-one, i.e. have many
inputs but a single output. In fact, the source of an opetope (on the left of the triple arrow
above) is a well-formed pasting scheme of lower dimensional opetopes, which already hints
that the definition is very inductive. Let us survey low dimensional cases.

Dimension 0. By convention, there is a unique 0-dimensional opetope, called the point,
denoted by ⧫, and graphically represented by

.

Dimension 1. Still by convention, there is a unique 1-dimensional opetope, called the
arrow, denoted by ◾, which can be represented as follows:

. .

Dimension 2. Now, the induction starts. A 2-opetope is essentially a well-formed past-
ing diagram (or rather, a filler thereof) of 1-dimensional opetopes, i.e. a gluing of
several instances of the arrow, glued end-to-end along the point. Examples include
the following:

3 =
.

. .

.
⇓ 2 =

. .

.

⇓ 1 =
. .⇓
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n =

.

. . .

.
(n)

(n − 1)

(1)⇓
0 =

.
⇓

In the last one, the pasting diagram of arrows contains 0 arrows, which is perfectly
valid.

Dimension 3. Likewise, a 3-opetope is completely determined by a pasting diagram of
2-opetopes:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

. .
⇓ ⇓ ⇛

. .

⇓

Inspecting the 3-dimensional case more closely reveals that 3-opetopes are essentially trees
whose nodes are decorated by 2-opetopes, and edges by 1-opetopes:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

1 2

◾

◾ ◾ ◾

◾ ◾ ◾

The tree on the right is essentially the Poincaré dual of the pasting diagram on the left of
the triple arrow:

(1) the 2-cells become nodes, and the number of input faces of these 2-cells match the
number of input edges of the corresponding nodes;

(2) the edges are decorated by the corresponding 1-dimensional cells of the pasting
diagram; in this case, they are all arrows.

This is where the theory of polynomial functors and trees becomes relevant. By defining
opetopes as trees, the theory presented in chapter 2 allows us to formally generate and
conveniently manipulate them.

As the graphical representation suggests, opetopes carry a very geometrical notion of
“face embedding”. For example, the 2-opetope on the left (denoted by 3) naturally embeds
as a face of the 3-opetope on the right:

.

. .

.
⇓

source emb.ÐÐÐÐÐÐ→

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

With the tree representation above, it just means that 3 decorates a node of the opetope
on the right. Moreover, the face on the right of the triple arrow, which we call the target,
is a geometrical feature as well, and has a corresponding embedding of a 2-opetope. For
example:

.

. .

.
⇓

target emb.
ÐÐÐÐÐÐ→

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓



Opetopes and these formal embeddings fit naturally in a category O, and the language of
polynomial functors gives us tools to write down the necessary relations. In this chapter,
we also investigate presheaves over O, called opetopic sets, and state preliminary results
about their structure. The material of chapters 2 and 3 is present in various amount
of details throughout the author’s previous works [Ho 18b, CHM19b, CHM19a, HL19,
HL20a, HL20b].

Lastly, in chapter 4, we “validate” the geometrical intuition behind the definition of
the category O by relating them to many-to-one polygraphs. A polygraph (also called
computad) is a strict ∞-category that is freely generated in every dimension; it is many-
to-one if the target of a generating cell is also a generating cell. It is known that the
category of all polygraphs is not a presheaf category [CJ04] [MZ08] [Che13], but that the
subcategory Polmto of many-to-one polygraphs is [Hen19]. Here, we construct an adjoint
equivalence

∣ − ∣ ∶ Psh(O)
∼Ð→←Ð Polmto ∶ N,

providing an explicit description of the underlying shape theory of many-to-one poly-
graphs. Although this adjunction comes from the left Kan extension of a functor O Ð→
Polmto, it is more enlightening to describe what the right adjoint N does. We call it
the opetopic nerve, and informally, it strips a polygraph P ∈ Polmto from its structure
of ω-category, only retaining data about the adjacency relations among generators. For
example, if the source of a generator x ∈ Pn is

sx = b ○
n−1

a,

where a, b ∈ Pn−1, then NP encodes the fact that a and b occur in the source of x, and that
a is “below” b. Since the generators of P are many-to-one, those compositions schemes
are in fact composition trees, and thus opetopic sets are a natural structure to store this
data. The equivalence between opetopic sets and many-to-one polygraphs was already
known from [HMP00] [HMZ02] [Che04b] [HMZ08], however the proof there is indirect
and spans over multiple articles. Our clean formalism allows us to proceed directly. The
recent work of Henry [Hen19] showed that the category of many-to-one polygraphs (among
many others) is a presheaf category, but left the equivalence between “opetopic plexes”
(serving as shapes for many-to-one polygraphs) and opetopes open. We establish this in
our present work. The material of this chapter has been significantly reworked from its
first appearance in [Ho 18b].





Chapter Two

Polynomial functors

T
his chapter exposes elements of the theory of polynomial functors, trees, and
monads. In a nutshell, a polynomial functor P has a set of “operations” B, and
each b ∈ B has a set of “inputs” E(b) and one “output”. Further, the inputs and

the output of b are typed in some input set I and output set J . This data can concisely
be summarized in a diagram in Set:

I E B Js p t

where E = ∑b∈B E(b), where s maps an input of some operation to its type, where p

maps an input to the corresponding operation (i.e. an element of E(b) to b), and where t
specifies the output type.

The theory of polynomial functors provides a very convenient formalism to talk about
trees and “decorated trees”. Instead of considering a tree as a set of nodes and vertices
satisfying the classical connectivity and acyclicity condition, a polynomial tree T is a
finite polynomial endofunctor (i.e. I = J), where its types are understood as edges, and
operations as nodes. The maps s and t then describe the adjacencies between nodes and
edges, and the graph-theoretical tree conditions are implemented by requiring that all the
operations of T fit together in a unique way: if i ∈ I is an edge that is neither a leaf nor the
root, then there exists a unique node a ∈ B such that t(a) = i, and there exists a unique
b ∈ B and e ∈ E(b) such that s(e) = i. Graphically, this means that there is exactly one
node (here a) that has this edge as output edge, and exactly one node (here b) that has
it as input edge.

There are two elementary operations that can be performed on trees: grafting and
substitution. If T and U are two polynomial trees with the same set of types I, l is a leaf
of T (i.e. an edge that is not the output of any node), such that the type of l and the
type of the root edge of U are the same, then we may graft U onto T to form a bigger
tree T ○lU , which is just T where U has been glued onto leaf l. For example, if T and U

are as on the left and middle, respectively, and assuming that the type of leaf l and root
edge l′ match, then the grafting T ○lU of T and U is depicted on the right:

l

○
l

= l

Substitution is more tricky. Given two trees T and U again, a node b of T , and a
bijection between the input edges of b and the leaves of U (which can be understood
as “rewiring instructions”), we may replace b by the whole tree U inside T , to form the
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substitution T ◽bU . For example if T and U are as on the left and middle, and with the
obvious rewiring, the substitution T ◽bU is depicted on the right:

b
◽
b

=

Grafting and substitution are examples of operations with “tree shaped arities”. In
binary form, such an operation, say ∧, takes two arguments x and y, and a parameter e
which is an “input” of x, subject to well-formedness conditions. In the case of grafting
(resp. substitution), x and y are trees, and the inputs of x are its leaves (resp. its nodes).
Given all those parameters, we can evaluate the expression x∧e y. Now, consider a tree of
arguments, where arguments are represented as nodes, and inputs of arguments as input
edges:

T =

b1

b2 b3

b4

e1

e2 e3

e4

e5 e6

l1 l2

In the case of grafting and substitution, each bi would itself be a tree. If ∧ satisfies adequate
associativity and unitality conditions, we may consider the evaluation

T∧ ∶= (b1 ∧
e2
(b2 ∧

e4
b4)) ∧

e3
b3

described by this tree. So in essence, ∧ can take trees of arguments as parameters. This
idea of operation with tree shaped arity is encapsulated in the notion of polynomial monad,
which shall also be surveyed in this chapter.

2.1 POLYNOMIAL FUNCTORS

Definition 2.1.1 (Polynomial functor [GK13, paragraph 1.4]). A polynomial functor P
is a diagram in Set of the form

I E B J.s p t (2.1.2)

We say that P is a polynomial endofunctor if I = J . In this case, we also say that P is a
polynomial endofunctor over I. We say that P is finitary if the fibres of p ∶ E Ð→ B are
all finite sets. We will always assume polynomial functors and endofunctors to be finitary.

We use the following terminology for a polynomial functor P as in diagram diagram
(2.1.2), which is motivated by the intuition that a polynomial functor encodes a multi-
sorted signature of function symbols. The elements of B are called the nodes or operations



of P , and for every node b, the elements of the fibre E(b) ∶=p−1(b) are called the input of
b. The elements of I are called the input colors or input sorts of P , and the elements of
J are output colors or output sort. For every input e of a node b, we denote its color by
se(b) ∶= s(e).

b

se1(b) sek(b)⋯

t(b)

e
1 ek

Definition 2.1.3 (Morphism of polynomial functors). A morphism f from a polynomial
functor P over I (on the first row) to a polynomial functor P ′ over I ′ (on the second row)
is a commutative diagram of the form

I E B I

I ′ E′ B′ I ′

f0
⌟

p

f2

s t

f1 f0

p′s′ t′

where the middle square is cartesian1. If P and P ′ are both polynomial functors over I,
then a morphism from P to P ′ over I is a commutative diagram as above, but where f0 is
required to be the identity [Koc11, paragraph 0.1.3] [KJBM10, section 2.5]. Let PolyEnd

denote the category of polynomial functors and morphisms of polynomial functors, and
PolyEnd(I) the category of polynomial functors over I and morphisms of polynomial
functors over I.

Remark 2.1.4 (Polynomial functors really are functors). If P is as in diagram (2.1.2), then
it induces a functor

Set/I s∗Ð→ Set/E
p∗Ð→ Set/B t!Ð→ Set/J.

Explicitly, for (Xi ∣ i ∈ I) ∈ Set/I, P (X) is given by the “polynomial”

PX =
⎛
⎝ ∑b∈B(j)

∏
e∈E(b)

Xs(e) ∣ j ∈ I
⎞
⎠
, (2.1.5)

where B(i) ∶= t−1(i) and E(b) ∶=p−1(b). Visually, elements of PXi are nodes b ∈ B such
that t(b) = i, and whose inputs are decorated by elements of (Xi ∣ i ∈ I) in a manner
compatible with their colors:

b

x1 xk⋯

i

e
1 ek

with xj ∈ Xsej (b) for 1 ≤ j ≤ k. Moreover, the endofunctor P ∶ Set/I Ð→ Set/I preserves
connected limits since s∗ and p∗ preserve all limits (as right adjoints), and t! preserves
and reflects connected limits.

1This condition states that an operation b ∈ B and its image f1(b) have the same number of inputs,
i.e. that f2 restricts and corestricts as a bijection E(b)Ð→ E′(f1(b)).



Remark 2.1.6. Note that if P is finitary polynomial functor (in the sense of defini-
tion 2.1.1) as in diagram (2.1.2), then the products of equation (2.1.5) are finite, and
thus P ∶ Set/I Ð→ Set/J preserves filtered colimits, i.e. is finitary in the sense of defini-
tion 0.5.1.

Example 2.1.7. (1) [GK13, example 1.6 (i)] The identity functor id ∶ Set/I Ð→ Set/I
is polynomial, and given by

I I I I.id id id

(2) [GK13, example 1.9] The free monoid monad M on Set = Set/1 maps a set X to
MX = ∑i∈NXi, and using equation (2.1.5), it is easy to see that M can be written
down as the following polynomial functor:

1 N< N 1,
p

where N< ∶={(a, b) ∈ N ×N ∣ a < b}, and p(a, b) ∶= b.
(3) [GK13, section 1.11] If P and P ′ are as in

I E B J,s t J F C K,u v

then the composite functor P ′P ∶ Set/I Ð→ Set/K is also polynomial. Its underlying
diagram is given by

I G D K,x y

where
D ∶= {(a, (be ∣ e ∈ F (a))) ∣ a ∈ C, be ∈ B, t(be) = ue(a)} ,

G (a, (be ∣ e)) ∶= ∑
e∈F (a)

E(be),

where y maps (a, (be ∣ e)) ∈ D to v(a) ∈ K, and if f ∈ E(be), then xf maps
(a, (be ∣ e)) to sf(be). Intuitively, D is just the set of “trees with two levels”

a

be1 bek
⋯

e
1 ek

⋯ ⋯

The set of inputs of such a tree is the set of all the inputs of all of the bei ’s.

Remark 2.1.8. The construction of remark 2.1.4 defines a fully faithful functor

PolyEnd(I)Ð→ Cart(Set/I),

the latter being the category of endofunctors of Set/I and cartesian natural transforma-
tions2. In fact, the image of this full embedding consists precisely in those endofunctors
that preserve connected limits [GK13, section 1.18]. The composition of endofunctors
gives Cart(Set/I) the structure of a monoidal category, and PolyEnd(I) is stable under
this monoidal product [GK13, proposition 1.12]. The identity functor is also in PolyEnd(I)
(see example 2.1.7 (1)), thus PolyEnd(I) is a monoidal subcategory of Cart(Set/I).

2We recall that a natural transformation is cartesian if all its naturality squares are cartesian.



2.2 TREES

In this section, we refine the notion of polynomial endofunctor of definition 2.1.1 to intro-
duce polynomial trees. Briefly, a polynomial tree is a polynomial functors whose operations
have very specific adjacencies (by the means of input and output types) which essentially
implements the familiar connectivity and acyclicity conditions from graph theory, see e.g.
[Die17, section 1.5].

Definition 2.2.1 (Polynomial tree [Koc11, section 1.0.3]). A polynomial functor T given
by

T0 T2 T1 T0
s p t

is a polynomial tree (or just tree) if
(1) the sets T0, T1 and T2 are finite (in particular, each node has finitely many inputs);

by convention we assume T0 ≠ ∅;
(2) the map t is injective;
(3) the map s is injective, and the complement of its image T0 − im s has a single

element, called the root;
(4) write T0 ≅ T2 + {r}, with r the root, and define the walk-to-root function σ by

σ(r) ∶= r, and otherwise σ(e) ∶= tp(e); then we ask that for all x ∈ T0, there exists
k ∈ N such that σk(x) = r.

We call the colors of a tree its edges and the inputs of a node the input edges of that node.
Let Tree be the full subcategory of PolyEnd whose objects are trees. Note that it

is the category of symmetric or non-planar trees (the automorphism group of a tree is
in general non-trivial) and that its morphisms correspond to inclusions of non-planar
subtrees. An elementary tree is a tree with at most one node, and we write Treeelem for
the full subcategory of Tree spanned by elementary trees.

Remark 2.2.2. Let us unfold definition 2.2.1 a little bit. Condition (1) asserts that a tree is
made of finitely many nodes and edges, and that nodes have finitely many inputs (in fact,
this follows from finiteness of T0 and condition (3)). Condition (2) states that different
nodes have different output edges. Condition (3) states that an edge is an input edge of
exactly one node, except for a unique edge, called the root, which is not an input. In
condition (4), we define the walk-to-root function σ as follows:

(1) for r the root, let σ(r) ∶= r;
(2) if an edge e is not the root, then it is the input edge of a unique node, say b, and let

σ(e) be the output edge of b. Informally, σ(e) is edge directly “below” e, and the
sequence e, σ(e), σ2(e), . . . is a sequence of consecutively adjacent edges. Condition
(4) states that this sequence eventually reaches the root edge, and stabilizes there.



Example 2.2.3. Consider the following graphical tree:

b1

b2 b3

b4

b5 b6

e1

e2 e3

e4

e5 e6

l1 l2

l3

This corresponds to the polynomial tree T

T0 T2 T1 T0
s p t

with
(1) T0 ∶={e1, e2, e3, e4, e5, e6, l1, l2, l3},
(2) T1 ∶={b1, b2, b3, b4, b5, b6},
(3) T2(b1) ∶={e2, e3, l1}, T2(b2) ∶={e4}, T2(b3) ∶={l2}, T2(b4) ∶={e5, e6},

T2(b5) ∶=∅, T2(b6) ∶={l3},
(4) t(b1) ∶= e1, t(b2) ∶= e2, t(b3) ∶= e3, t(b4) ∶= e4, t(b5) ∶= e5, t(b6) ∶= e6,

and thus, where the walk-to-root function is given by σ(e2) = e1, σ(e3) = e1, σ(e4) = e2,
σ(e5) = e4, σ(l1) = e1, σ(l2) = e3, σ(l3) = e6. Note that s is injective, that that the unique
element not in its image is e1, the root edge.

Definition 2.2.4 (Category of elements). For P ∈ PolyEnd, its category of elements3

eltP is the slice category Treeelem/P . It describes the adjacencies between the colors and
operations of P . Explicitly, for P as in

I E B I,s p t (2.2.5)

the set of objects of eltP is I+B, and for each b ∈ B, there is a morphism t ∶ t(b)Ð→ b, and
a morphism se ∶ se(b)Ð→ b for each e ∈ E(b). Note that there is no non-trivial composition
of arrows in eltP .

The terminology is motivated by the following result.

Proposition 2.2.6 ([Koc11, proposition 2.1.3]). Similar to proposition 0.3.6, there is an
equivalence of categories Psh(eltP ) ≃ PolyEnd/P .

Proof. For X ∈ Psh(eltP ), construct the following polynomial functor over P :

∑i∈I Xi EX ∑b∈BXb ∑i∈I Xi

I E B I,

⌟

3Not to be confused with the category of elements of a presheaf, see definition 0.3.4.



where EX Ð→ ∑i∈I Xi is given by the maps se ∶Xb Ð→Xse b, for b ∈ B and e ∈ E(b). In the
other direction, let f ∶ P ′ Ð→ P be a morphism of polynomial endofunctors, and write it
down as

I ′ E′ B′ I ′

I E B I.

f0
⌟
p′

f2

s′ t′

f1 f0

ps t

We define a corresponding presheaf Y ∶ (eltP )op Ð→ Set as follows. On objects, if i ∈ I, let
Yi ∶= f−10 (i), and if b ∈ B, let Yb ∶= f−11 (b). On morphisms, let x ∈ Yb = f−11 (b), and simply
define tx ∶= t′(x) ∈ Yt(b). For e ∈ E(b), since the middle square is cartesian, there exists a
unique e′ ∈ E′(x) such that f2(e′) = e, and let se x ∶= s′(e′) ∈ Ys(e).

Finally, the two constructions are easily seen to define mutually inverse equivalences
of categories.

Definition 2.2.7 (P -tree). For P ∈ PolyEnd, the category trP of P -trees is the slice
Tree/P . If f ∶ P Ð→ Q is a morphism of polynomial functors, then it induces a natural
functor f∗ ∶ trP Ð→ trQ by postcomposition.

Remark 2.2.8. A fundamental difference between Tree and trP is that the latter is always
rigid i.e. it has no non-trivial automorphisms [Koc11, proposition 1.2.3]. In particular, this
implies that PolyEnd does not have a terminal object. For example, the automorphism
group of the following tree is S2 ×S2:

Notation 2.2.9. A P -tree T ∈ trP is a morphism from a polynomial tree, which we shall
denote by ⟨T ⟩, to P , as in T ∶ ⟨T ⟩Ð→ P . We point out that ⟨T ⟩1 is the set of nodes of the
P -tree T , while T1 ∶ ⟨T ⟩1 Ð→ P1 provides a decoration of the nodes of ⟨T ⟩ by operations
of P , and likewise for edges.

Example 2.2.10. Consider the following polynomial endofunctor P

{∗} E { , , , } {∗}p

where #E( ) = 1 (i.e. has one input), #E( ) = 2, #E( ) = 2, and #E( ) = 3. Then
the tree T represented by

b1

b2 b3

b4



can be made into a P -tree by the means of the morphism T Ð→ P mapping b1, b2, b3 and
b4 to , , , and respectively, which is represented on the left.

b1

b2 b3

b4

b1

b2 b3

b4

An alternative decoration, and so a different P -tree, is given on the right. Here, decoration
of edges is trivial, as P0 is a singleton. Note that the decoration of b2 and b4 must be ,
since it is the unique operation of P with 1 input, while no node of T can be decorated
by , since it has 3 inputs. For the same reason, if a tree U has a node with 0 or more
than 3 inputs, then it cannot be the underlying tree of a P -tree.

Consider now a more complicated polynomial endofunctor Q given by

{ , , } E′ { , , , } { , , }s p t

where t( ) = , E′( ) = {i1, i2}, si1( ) = , and si2( ) = , which can be represented as

Similarly, the other operations of Q are represented as

Then the polynomial tree above can be made into a Q-tree as follows:

b1

b2 b3

b4

This is just the operations , , , of Q, seen as corollas, assembled into a well-typed
tree. Note that this time, decorating b1 by is not possible, as b3 would have to be
decorated by a binary operation outputting , which Q does not have.

Definition 2.2.11 (Address). Let T ∈ Tree be a polynomial tree and σ be its walk-to-
root function (definition 2.2.1). We define the address function & on edges inductively as
follows:

(1) if r is the root edge, let & r ∶=[],
(2) if i ∈ T0 − {r} and if &σ(i) = [x], define & i ∶=[xe], where e ∈ T2 is the unique

element such that s(e) = i.
Thus an address is a sequence of elements of T2, enclosed by brackets. Informally, & e gives
“walking instructions” to go from the root edge to e (see example 2.2.12). The address
of a node b ∈ T1 is simply & b ∶=& t(b). Note that this function is injective since t is. Let



T ● be the set of node addresses of T , and let T∣ be the set of addresses of leaf edges, i.e.
those edges not in the image of t.

Assume now that U ∶ ⟨U⟩ Ð→ P is a P -tree. If b ∈ ⟨U⟩1 has address & b = [p], write
s[p]U ∶=U1(b) ∈ B for the decoration of the node at address [p]. For convenience, we let
U● ∶=⟨U⟩●, and U∣ ∶=⟨U⟩∣.

The formalism of addresses is a useful bookkeeping syntax for the operations of grafting
and substitution on trees. The syntax of addresses will extend to the category of opetopes
and will allow us to give a precise description of the composition of morphisms in the
category of opetopes (see definition 3.4.2) as well as certain constructions on opetopic
sets.

Example 2.2.12. Consider the tree of example 2.2.3:

b1

b2 b3

b4

b5 b6

e1

e2 e3

e4

e5 e6

l1 l2

l3

The addresses of the nodes are given by: & b1 = [] since b1 is the root node, & b2 = [e2] since
to get to b2 from the root node b1, one only needs to walk along the edge e2, & b3 = [e3],
& b4 = [e2e4] since to get to b4 from the root node b1, one needs to walk along the edge
e2, then e4, & b5 = [e2e4e5], and & b6 = [e2e4e6]. Therefore,

T ● = {[], [e2], [e3], [e2e4], [e2e4e5], [e2e4e6]} ,
T∣ = {[l1], [e3l2], [e2e4e6l3]} .

Definition 2.2.13 (Prefix). Let T be a tree and [p], [q] ∈ T ●. We say that [p] is a prefix
of [q], denoted by [p] ⊑ [q], if the sequence p is a prefix of q. We call ⊑ be the prefix order.
This definition transposes to T∣ mutadis mutandis.

Notation 2.2.14. We denote by tr∣ P the set of P -trees with a marked leaf, i.e. endowed
with the address of one of its leaves. Similarly, we denote by tr● P the set of P -trees with
a marked node.

Definition 2.2.15 (Elementary P -trees). Let P be a polynomial endofunctor as in equa-
tion equation (2.2.5). For i ∈ I, define Ii ∈ trP as having underlying tree

{i} ∅ ∅ {i}, (2.2.16)

along with the obvious morphism to P , that which maps i to i ∈ I. This corresponds to
a tree with no nodes and a unique edge, decorated by i. Given an operation b ∈ B, define
Yb ∈ trP , the corolla at b, as having underlying tree

s(E(b)) + {∗} E(b) {b} s(E(b)) + {∗},s (2.2.17)



where the right map sends b to ∗, and where the morphism Yb Ð→ P is the identity on
s(E(b)) ⊆ I, maps ∗ to t(b) ∈ I, is the identity on E(b) ⊆ E, and maps b to b ∈ B. This
corresponds to a P -tree with a unique node, decorated by b. Observe that for T ∈ trP ,
giving a morphism Ii Ð→ T is equivalent to specifying the address [p] of an edge of T
decorated by i. Likewise, morphisms of the form Yb Ð→ T are in bijection with addresses
of nodes of T decorated by b.

Remark 2.2.18. Let P be a polynomial endofunctor as in equation (2.2.5).
(1) Let i ∈ I be a color of P . Since Ii does not have any node, the set I●i of node

addresses is empty. On the other hand, the set of its leaf addresses is I∣i = {[]},
since the unique leaf is the root edge.

(2) Let b ∈ B be an operation of P . Then Y●b = {[]} since the only node is the one above
the root edge. For leaves, we have Y∣b = {[e] ∣ e ∈ E(b)}.

Definition 2.2.19 (Grafting). For S,T ∈ trP , [l] ∈ S∣ such that the leaf of S at [l] and
the root edge of T are decorated by the same i ∈ I, define the grafting S ○[l] T of S and T
on [l] by the following pushout (in trP ):

Ii T

S S ○[l] T.
⌜

[]

[l] (2.2.20)

In particular,

(S ○
[l]
T )● ≅ S● + {[lp] ∣ [p] ∈ T ●} ,

(S ○
[l]
T )∣ ≅ S∣ − {[l]} + {[lp] ∣ [p] ∈ T∣} .

In particular Ii ○[] T ≅ T and S ○[l] Ii ≅ S. We assume, by convention, that the grafting
operator ○ associates to the right.

Example 2.2.21. Consider S and T two P -trees (where the decorations are omitted from
the picture) as on the left and the middle, respectively.

e4

e2 ○
[e2e4]

=
e4

e2

Assuming that the decorations of e4 and the root edge of T match, we can define the
grafting S ○[e2e4] T , which is given on the right.

Proposition 2.2.22 ([Koc11, proposition 1.1.21]). Every P -tree is either of the form Ii,
for some i ∈ I, or obtained by iterated graftings of corollas (i.e. P -trees of the form Yb for
b ∈ B).

Proof. This can easily be proved by induction on the number of nodes.



Notation 2.2.23 (Total grafting). Let T,U1, . . . , Uk ∈ trP , write T∣ = {[l1], . . . , [lk]}, and
assume the grafting T ○[li]Ui is defined for all i. Then the total grafting will be denoted
concisely by

T◯
[li]

Ui = (⋯(T ○
[l1]

U1) ○
[l2]

U2⋯) ○
[lk]

Uk. (2.2.24)

It is easy to see that the result does not depend on the order in which the graftings are
performed.

Definition 2.2.25 (Substitution). Let T be a P -tree, [p] ∈ T ●, and b = s[p] T . Then T can
be decomposed so as to isolate the node of T at address [p]:

T = A ○
[p]

Yb◯
[ei]

Bi, (2.2.26)

where E(b) = {e1, . . . , ek}, and A,B1, . . . ,Bk ∈ trP . Graphically:

T

b

⋯

A

B1 Bk

b

⋯

For U a P -tree with a bijection ℘ ∶ U∣ Ð→ E(b) over I, we define the substitution T ◽[p]U
(leaving ℘ implicit) as

T ◽
[p]
U ∶= A ○

[p]
U ◯
℘−1 ei

Bi. (2.2.27)

In other words, the node at address [p] in T has been replaced by U , and the map ℘
provided “rewiring instructions” to connect the leaves of U to the rest of T :

A

B1 Bk

b

⋯

A

B1 Bk

U
⋯

Example 2.2.28. Consider T and U two P -trees (where the decorations are omitted from
the picture) as on the left and middle, respectively.

b′1

◽
b′1

=

Assume that T0(e′1) = U0(e1), i.e. that the decoration of edges e′1 and e1 match, and
similarly, that T0(e′5) = U0(e5), T0(e′6) = U0(e6), T0(l′1) = U0(l1), T0(l′2) = U0(l2). Then
the obvious bijection ℘ ∶ U∣ Ð→ T2(b′1) that maps e5 to e′5 etc. allow us to compute the
substitution T ◽[]U , which is given on the right.



2.3 POLYNOMIAL MONADS

We now discuss polynomial monads, which are polynomial functors with a structure of
cartesian monad. Recall from example 2.1.7 that if P ∈ PolyEnd, then PP is a polyno-
mial endofunctor. Thus, if P is a monoid object, then it induces a monad over Set/I.
In this section, we show how one may reason on polynomial monads in terms of devices
that “compose operations” in an adequate way. This idea is formalized in theorems 2.3.5
and 2.3.10, which presents polynomial monads as “compositors of tree-shaped arity”, and
refined in theorem 2.3.6, which discusses the biased vs. unbiased dichotomy.

Definition 2.3.1 (Polynomial monad, classical definition). A polynomial monad over I
is a monoid in PolyEnd(I). Let PolyMnd(I) be the category of polynomial monads over
I and morphisms of polynomial functors over I that are also monad morphisms.

Remark 2.3.2. A polynomial monad over I is necessarily a cartesian monad on Set/I, i.e.
its underlying endofunctor preserves pullbacks and its unit and multiplication are cartesian
natural transformations.

Definition 2.3.3 ((−)⋆ construction). Given a polynomial endofunctor P as in equa-
tion (2.2.5), we define a new polynomial endofunctor P ⋆ as

I tr∣ P trP Is p t (2.3.4)

where s maps a P -tree with a marked leaf to the decoration of that leaf, p forgets the
marking, and t maps a P -tree to the decoration of its root. Remark that for T ∈ trP we
have p−1(T ) ≅ T∣. Clearly, there is an inclusion P Ð→ P ⋆, mapping b ∈ B to Yb ∈ trP , and
e ∈ E(b) to [e] ∈ Y∣b (see remark 2.2.18).

Theorem 2.3.5 ([Koc11, proposition 1.2.8]). The polynomial functor P ⋆ has a canonical
structure of polynomial monad. Further, the functor (−)⋆ is left adjoint to the forgetful
functor PolyMnd(I) Ð→ PolyEnd(I). In other words, P ⋆ is the free polynomial monad
over P .

Proof (sketch). (1) By definition, operations of P ⋆ are P -trees, thus operations of
P ⋆P ⋆ are trees of P -trees, of uniform height 2, i.e. of the form

YT ◯
[[li]]

YSi

where [li] ranges over T∣. There is a natural law µ ∶ P ⋆P ⋆ Ð→ P ⋆ such that

µ1
⎛
⎝
YT ◯
[[li]]

YSi
⎞
⎠
= T◯

[li]
Si.

It implements the fact that a tree of P -tree (where the input edges of YT are in
bijective correspondence with T∣) can simply be seen as a P -tree.

(2) For the adjunction, let f ∶ P Ð→ M be a morphism in PolyEnd(I), where P and
M are given by

I E B I,s t I F C I,u v



and where M is a polynomial monad with laws η ∶ id Ð→M and µ ∶MM Ð→M .
The morphism f maps operations of P to operations of M , so we can extend it
by mapping trees of operations of P , i.e. P -trees, to M -trees, and then reduce
those M -trees using the monad laws of M . Formally, we define f̄ ∶ P ⋆ Ð→ M by
induction (see proposition 2.2.22) as follows. If i ∈ I, then f̄1 (Ii) ∶=η1(i). If b ∈ B,
then f̄1 (Yb) = f1(b). Consider now a P -tree with at least two nodes

T = Yb◯
[e]
e∈X

Ue,

where b ∈ B, ∅ ≠ X ⊆ E(b), and Ue is a P -tree with at least one node. First, we
“complete” T by considering

T ′ ∶= Yb ◯
[e]

e∈E(b)

Ue,

where if e ∈ E(b)−X, we let Ue ∶=Yη1(s(e)). By induction, f̄1 is defined on the Ue’s,
and the tree

T ′′ ∶= Yf1(b) ◯
[f2(e)]
e∈E(b)

f̄1(Ue)

is an M -tree of uniform height 2. Let then f̄1(T ) ∶=µ1(T ′′). This gives a morphism
f̄ ∶ P ⋆ Ð→ M extending f . It is easy to check that it is a monad morphism, and
unique for this property.

We abuse notation and let (−)⋆ be the “free polynomial monad” monad on PolyEnd(I).

Theorem 2.3.6 ((−)⋆-algebras via partial laws). Let P be a polynomial endofunctor, say

I E B I.s p t

A (−)⋆-algebra structure on P is equivalent to the following data:
(Unit) a map η ∶ I Ð→ B;
(Partial multiplication) a map ∧ ∶ E ×I B Ð→ B, where for (e, b) ∈ E ×I B and

a ∶=p(e) we write a∧e b instead of ∧(e, b), and say that a∧e b is an admissible
expression (or just admissible);

(Partial readdressing) for a∧e b an admissible expression, a bijective map ρa∧e b ∶
E(a) +E(b) − {e}Ð→ E(a∧e b) over I;

such that the following conditions are satisfied:
(Trivial) for i ∈ I, we have t(η(i)) = i, and E(η(i)) is a singleton whose unique

element e is such that s(e) = i;
(Left unit) for i ∈ I, b ∈ B, and e the unique element of E(η(i)), we have η(i)∧e b = b,

and ρη(i)∧e b ∶ E(b)Ð→ E(b) is the identity;
(Right unit) for i ∈ I, b ∈ B, and e ∈ E(b), we have b∧e η(i) = b, and ρb∧e η(i) is given

by

E(b) +E(η(i)) − {e}Ð→ E(b)
x ∈ E(b) − {e}z→ x

y ∈ E(η(i))z→ e;



(Disjoint multiplication) for a∧e b and a∧f c admissible, where e ≠ f , we have

(a∧
e
b) ∧

f ′
c = (a∧

f
c)∧

e′
b,

where f ′ ∶=ρa∧e b(f) and e′ ∶=ρa∧f c(e), and the following coherence diagram com-
mutes:

E(a) +E(b) +E(c) − {e, f} E(a∧e b) +E(c) − {f}

E(a∧f c) +E(b) − {e} E((a∧e b)∧f ′ c);

ρa∧e b

ρa∧f c
ρ(a∧f c)∧e′ b

ρ(a∧e b)∧f ′ c

(2.3.7)

(Nested multiplication) for a∧e b and b∧f c admissible, we have

(a∧
e
b) ∧

f ′
c = a∧

e
(b∧

f
c),

where f ′ ∶=ρa∧e b(f), and the following coherence diagram commutes:

E(a) +E(b) +E(c) − {e, f} E(a∧e b) +E(c) − {f}

E(a∧f c) +E(b) − {e} E((a∧e b)∧f ′ c).

ρa∧e b

ρb∧f c
ρa∧e(b∧f c)

ρ(a∧e b)∧f ′ c

(2.3.8)

Moreover with the data above, the components of the structure map P ⋆ Ð→ P as in

I tr∣ P trP I

I E B I

⌟℘ t

are inductively given by:
(1) for i ∈ I, t Ii = η(i); for b ∈ B, tYb = b; for T ∈ trP , [l] ∈ T ∣, and b ∈ B such that

the grafting T ○[l]Yb is defined:

t(T ○
[l]
Yb) = (tT ) ∧

℘T [l]
b, (2.3.9)

where ℘T is defined next;
(2) for i ∈ I,

℘Ii ∶ I
∣
i = {[]}Ð→ E(η(i))

[]z→ e,

where e is the unique element of E(η(i)) (see (Trivial)); for b ∈ B,

℘Yb ∶ Y
∣
b Ð→ E(b)
[e]z→ e;

for T ∈ trP , [l] ∈ T∣, b ∈ B such that the grafting T ○[l]Yb is defined, and letting
c ∶=(tT )∧℘T [l] b, the readdressing ℘T○[l]Yb is given by

(T ○
[l]
Yb)∣ ≅ T∣ +Y∣b − {[l]}Ð→ E((tT ) ∧

℘T [l]
b)

[p] ∈ T∣ − {[l]}z→ ρc(℘T [l])
[e] ∈ Y∣b z→ ρc(e).



Proof. (1) Assume that P is a (−)⋆-algebra, and write m ∶ P ⋆ Ð→ P for its structure
map. Let the function η of (Unit) map i ∈ I to m1(Ii) ∈ B. For (e, b) ∈ E ×I B and
a ∶=p(e), let T ∶=Ya ○[e]Yb, and a∧e b ∶=m1(T ). Note that

T ∣ = {[f] ∣ f ∈ E(a), f ≠ e} ∪ {[ef] ∣ f ∈ E(b)} .

From there, the partial readdressing is simply given by

ρa∧e b ∶ E(a) +E(b) − {e}Ð→ E(a∧
e
b)

f ∈ E(a) − {e}z→ ℘T [f]
f ∈ E(b)z→ ℘T [ef].

Conditions (Trivial), to (Nested multiplication) hold since P is a (−)⋆-algebra.
(2) Assume that P is a polynomial functor endowed with a unit, a partial multiplica-

tion, and a partial readdressing map as in the statement of the theorem. Then it
is straightforward to check that the construction of m ∶ P ⋆ Ð→ P at the end of the
statement gives a (−)⋆-algebra structure to P .

Theorem 2.3.10. The forgetful functor PolyMnd(I)Ð→ PolyEnd(I) is monadic.

Proof. We show that every polynomial monad is canonically a (−)⋆-algebra. Let M be a
polynomial monad whose underlying polynomial endofunctor is

I E B I,s p t

and η ∶ id Ð→ M and µ ∶ MM Ð→ M be its monad laws. We define a structure map
(−)⋆-algebra by the means of partial laws (theorem 2.3.6) as follows.

(1) The unit map is simply the map η1 ∶ I Ð→ B induced by η on operations.
(2) Recall that operations of MM are M -trees of uniform height 2 (see example 2.1.7).

Let (e, b) ∈ E ×I B, write a ∶=p(e), and let

a∧
e
b ∶= µ1 (Ta∧e b) , Ta∧e b ∶= (Ya ○[e]

Yb) ◯
[f]

f∈E(b)−{e}

Yη1(sf (a))

In other words, Ta∧e b is the tree of uniform height 2, where Yb has been grafted
onto Ya at the leaf corresponding to e, and “completed with unit corollas” (much
like in the proof of theorem 2.3.5) provided by η1 ∶ I Ð→ B. Note that for i ∈ I, the
set E(η1(i)) is a singleton, thus

T∣a∧e b ≅ Y∣b + ∑
f∈E(b)−{e}

Y∣η1(sf (a))

≅ E(b) + ∑
f∈E(b)−{e}

E(sf(a))

≅ E(a) +E(b) − {e}.

(3) For a∧e b an admissible expression as above, the partial readdressing map is given
by

E(a) +E(b) − {e} ≅Ð→ T ∣a∧e b
µ2Ð→ E(a∧

e
b).



From fact that M is a polynomial monad, it is straightforward to check that the conditions
of theorem 2.3.6 hold.

Definition 2.3.11 (Target and readdressing map). Let M be a polynomial monad as in

I E B I.s p t

By theorem 2.3.10, M is a (−)⋆-algebra, and we will write its structure map M⋆ Ð→ M

as
I tr∣M trM I

I E B I.

⌟℘ t (2.3.12)

For T ∈ trM , we call ℘T ∶ T∣
≅Ð→ E(tT ) the readdressing function of T , and tT ∈ B

is called the target4 of T . If we think of an element b ∈ B as the corolla Yb, then the
target map t “contracts” (see remark 2.3.13) a tree to a corolla, and since the middle
square is a pullback, the number of leaf is preserved. The map ℘T establishes a coherent
correspondence between the set T∣ of leaf addresses of a tree T and the elements of E(tT ).

Remark 2.3.13. Let M be a polynomial monad as in

{ , , } E′ { , , , } { , , }s p t

where its operations are represented as

The target map of definition 2.3.11 associates to every M -tree T its target tT , which we
think of as the contraction of all inner edges of T :

b1

b2 b3

b4
tz→ tT

In theorem 2.3.6, we focus on contractions of trees with two nodes, which are called
admissible expressions:

a

b
e z→ a ∧e b

What this result asserts is that inner edge contractions of T can be performed one by one,
and in any order:

b1

b2 b3

b4
z→

b1 ∧ b3

b2

b4
z→

b1 ∧ b3

b2 ∧ b4

4This terminology will become meaningful when we deal with opetopes in chapter 3.



z→ tT

Remark that in both cases, the leaves of the trees are in bijective correspondence with the
inputs of the targets, and that correspondence preserves the types.

Proposition 2.3.14 (Contraction associativity formula). Let M be a polynomial monad
as in equation (2.3.12), let t and ℘ be as in definition 2.3.11, and write u ∶ id Ð→M for
its unit law.

(1) If i ∈ I, then t Ii = u(i), and ℘Ii maps the only leaf address [] of the tree Ii to the
only element of E(u(i)).

(2) If b ∈ B, then tYb = b. Recall from remark 2.2.18 that the set of leaf address of Yb
is simply {[e] ∣ e ∈ E(b)}, and ℘Yb maps [e] to e.

(3) If we have a grafting T ○[l]U if M -trees, then

t(T ○
[l]
U) = t(YtT ○

[℘T [l]]
YtU). (2.3.15)

Further, for [r] ∈ U∣, we have a leaf [l] ⋅ [r] = [lr] ∈ (T ○[l]U)
∣, and writing

V ∶=YtT ○[℘T [l]]YtU , we have

℘T ○[l] U [lr] = ℘V (℘T [l] ⋅ ℘U [r]) . (2.3.16)

Proof. Since M is an algebra over the monad (−)⋆, the following two diagrams commute:

M M⋆

M,

η

m

M⋆⋆ M⋆

M⋆ M,

m⋆

µ m

m

where m ∶M⋆ Ð→M is the structure map of M .

Remark 2.3.17. Let M be a polynomial monad with partial multiplication ∧ ∶ E×IB Ð→ B.
Combining equations (2.3.9) and (2.3.15), we have that for a well-defined grafting of M -
tree T ○[l]U ,

t(T ○
[l]
U) = (tT ) ∧

℘T [l]
(tU).

More generally,

t
⎛
⎝
T◯
[li]

Ui
⎞
⎠
= t((T ○

[l1]
U1) ○

[l2]
U2⋯) = ((tT ) ∧

[p1]
(tU1)) ∧

[p2]
(tU2)⋯

but computing each [pi] can be a daunting task. Just with 2 graftings, the result becomes

t
⎛
⎝
T◯
[li]

Ui
⎞
⎠
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((tT ) ∧
℘T [l1]

(tU1)) ∧
℘T [l1]⋅℘−1U1

[p]⋅[q]
(tU2)

if ℘T [l1] ⊑ ℘T [l2], say ℘T [l2] = ℘T [l1] ⋅ [[p]q]
((tT ) ∧

℘T [l1]
(tU1)) ∧

℘T [l2]
(tU2)

if ℘T [l1] /⊑ ℘T [l2].



With definition 2.3.18, we will simply write

t
⎛
⎝
T◯
[li]

Ui
⎞
⎠
= (tT ) ⋀

℘T [li]
(tUi).

Definition 2.3.18. Let M be a polynomial monad as in

I E B I,s p t

with partial multiplication ∧ ∶ E ×I B Ð→ B. Let b ∈ B, and for each e ∈ E(b), let ce ∈ B
be such that t(ce) = se(b). Define

b ⋀
e∈E(b)

ce ∶= t
⎛
⎝
Yb◯
[e]

Yce
⎞
⎠

2.4 THE BAEZ–DOLAN CONSTRUCTION

As we saw in section 2.3, for P ∈ PolyEnd, the polynomial monad P ⋆ is the algebraic
structure describing graftings of P -trees (definition 2.3.3). In this section, we present a
polynomial monad that describes substitutions of P -trees.

Definition 2.4.1 (Baez–Dolan (−)+ construction). Let M be a polynomial monad as in
equation (2.2.5), and define its Baez–Dolan construction M+ to be the polynomial functor

B tr●M trM Bs p t (2.4.2)

where s maps an M -tree with a marked node to the decoration of that node, p forgets the
marking, and t is the target map of definition 2.3.11. If T ∈ trM , remark that p−1T = T ●
is the set of node addresses of T .

Example 2.4.3. Recall that a P -tree is simply a polynomial tree whose nodes are deco-
rated by operations of P , and edges by colors of P (see example 2.2.10 for examples). In
the case P =M+, those operations are now M -trees, so a M+-tree is a tree of M -trees. For
example, let M be

{ , , } E { , , , } { , , }s p t

where, in the same fashion as example 2.2.10, its operations are represented as

Assume further that M has a structure of polynomial monad where

t

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= t

⎛
⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟
⎠

=



Then the following is a valid M+-tree:

where the inputs of the root node correspond to the and nodes of the decorating tree,
respectively.

Remark 2.4.4 (Nested addresses). Let M be a polynomial monad, and T ∈ trM+. Then
the nodes of T are decorated in M -trees, and its edges by operations of M . Assume that
U ∈ trM decorates some node of T , say U = s[p] T for some node address [p] ∈ T ●.

(1) The input edges of that node are in bijection with U●. In particular, the address
of those input edges are of the form [p[q]], where [q] ranges over U●. This really
motivates enclosing addresses in brackets.

(2) On the other hand, the output edge of that node is decorated by tU (where t is
defined in definition 2.3.11).

Notation 2.4.5. Let M be a polynomial monad, and T ∈ trM+. For [a] the addresses of
an edge of T , let e[a] T be the color of M+ (i.e. operation of M) decorating that edge.
Explicitly, if [a] = [], then e[] T ∶= t s[] T . Otherwise, [a] = [p[q]] for some [p] ∈ T ● (the
node below the edge) and [q] ∈ (s[p] T )●, and let e[p[q]] T ∶= s[q] s[p] T .

Theorem 2.4.6 ([KJBM10, section 3.2]). The polynomial functor M+ has a canonical
structure of a polynomial monad. Using the definition by partial laws (theorem 2.3.6):

(Unit) the unit B Ð→ trM maps b to Yb;
(Partial multiplication) the partial multiplication ∧ ∶ tr●M ×B trM Ð→ trM is

given by substitution of trees (see definition 2.2.25), i.e. for U ∧[p] T an admissible
expression,

U ∧
[p]
T ∶= U ◽

[p]
T ;

(Partial readdressing) for U ◽[p] T admissible, define ρU ◽[p] T by (see remark 2.4.10
for a graphical explanation)

U● + T ● − {[p]}Ð→ (U ◽
[p]
T )●

[q] ∈ T ● z→ [pq] (2.4.7)
[p[e]p′] ∈ U● z→ [p] ⋅ ℘−1T (e) ⋅ [p

′] (2.4.8)
[q] ∈ U● z→ [q] if [p] /⊑ [q]. (2.4.9)



Remark 2.4.10. Let T and U be M+-trees as below (we omit the decorations for simplicity),
and [p] ∈ U● the address of a node of U , say b2, written in blue on the right:

c1

c2

b1

b2 b3

b4

b5

[p]

Assuming tT = s[p]U , the expression U ◽[p] T is admissible, and its evaluation gives

c1

c2 ◽
[p]

b1

b2 b3

b4

b5

[p]
=

b1

c1

c2

b3

b4

b5

[p]

The map ρU ◽[p] T establishes a bijection between U● + T ● − {[p]} and the set of node
addresses of U ◽[p] T . Its definition is based on three cases.

Equation (2.4.7). If [q] ∈ T ●, then the address of the corresponding node in U ◽[p] T is
simply [pq]. This reflects that the tree T has been inserted in U at address [p].

c1

c2 [q] ◽
[p]

b1

b2 b3

b4

b5

[p]
=

b1

c1

c2

b3

b4

b5

[p]

[pq]

Equation (2.4.8). If a node d of U is located “above” the node that will be replaced
by T , i.e. if [p] ⋤ &d, then &d necessarily decomposes as &d = [p[e]p′], where
[e] ∈ (s[p]U)●. In the example below, d = b4, so that [p′] = []. On the other hand,
there is a bijection ℘T between the leaves of T and the input edges of b2. Assuming



℘−1T [e] = [l], the new address of b4 in U ◽[p] T is [p] ⋅ ℘−1T (e) ⋅ [p′] = [plp′].

c1

c2

[l]

◽
[p]

b1

b2 b3

b4

b5

[p]

[p[e]]
=

b1

c1

c2

b3

b4

b5

[p]

[pl]

Equation (2.4.9). The last case concerns nodes of U that are not located above b2, and
states that their address does not change.

c1

c2 ◽
[p]

b1

b2 b3

b4

b5

[p] [x]
=

b1

c1

c2

b3

b4

b5

[p] [x]

Proof theorem 2.4.6, (Trivial). For b ∈ B we have tYb = b. On the other hand, Y●b = {[]}
and s[]Yb = b.

Proof of (Left unit). Let b ∈ B and T ∈ trM be such that Yb ◽[] T is admissible. Then,
by definition, Yb ◽[] T = T . Then, Y●b + T ● − {[]} = T ●, and ρYb ◽[] T maps [q] ∈ T ● to [q], so
it is indeed the identity.

Proof of (Right unit). Let b ∈ B, T ∈ trM , and [p] ∈ T ● be such that T ◽[p]Yb is admis-
sible. By definition, T ◽[p]Yb = T . Then, ρT ◽[p] Yb is given by

T ● + {[]} − {[p]}Ð→ T ●

[p[e]p′] ∈ T ● − {[p]}z→ [p] ⋅ ρ−1Yb e ⋅ [p
′] = [pep′]

[p′] ∈ T ● − {[p]} not as abovez→ [p′]
[] ∈ Y●b z→ [p]

as indeed ρYb maps [e] ∈ (Yb)∣ to e ∈ E(b).

Proof of (Disjoint multiplication). Let A ◽[e]B and A ◽[f]C be two admissible expres-
sions, where [e] ≠ [f]. Without loss of generality, we distinguish two cases: one where
[e] ⊑ [f], and one where [e] and [f] are ⊑-incomparable.

(1) Assume [e] ⊑ [f], so that [f] = [eqr] for some e and r, and decompose A as

A = X ○
[e]

YtB ○
[[q]]

Y ○
[r]

YtC ◯
[[vi]]

Zi,



where q ∈ E(tB) and {vi}i ⊆ E(tC). Then

A ◽
[e]
B = X ○

[e]
B ○
ρ−1B [q]

Y ○
[r]

YtC ◯
[[vi]]

Zi,

and ρA ◽[e]B[f] = ρA ◽[e]B[e[q]r] = [e] ⋅ ρ
−1
B [q] ⋅ [r]. Thus,

(A ◽
[e]
B) ◽
[e]⋅ρ−1B [q]⋅[r]

C = X ○
[e]
B ○
ρ−1B [q]

Y ○
[r]
C ◯
ρ−1C [vi]

Zi,

and the reindexing ρ(A ◽[e]B) ◽ρA ◽[e]B[f]C
ρA ◽[e]B is given by

[p] ∈ B● z→ [ep] z→ [ep]
[p] ∈ C● z→ [e] ⋅ ρ−1B [q] ⋅ [rp]

[eqs] ⋤ [f] z→ [e] ⋅ ρ−1B [q] ⋅ [s] z→ [e] ⋅ ρ−1B [q] ⋅ [s]
[fvis] z→ [e] ⋅ ρ−1B [q] ⋅ [r] ⋅ [vis] z→ [e] ⋅ ρ−1B [q] ⋅ [r] ⋅ ρ

−1
C [vi] ⋅ [s]

[p] ∈ A● n.a.a. z→ [p] z→ [p]

(n.a.a. is an acronym for “not as above”). On the other hand, we have

A ◽
[f]
C = X ○

[e]
YtB ○

[q]
Y ○
[r]
C ◯
ρ−1C [vi]

Zi.

The reindexing gives ρA ◽[f]C[e] = [e], and

(A ◽
[f]
C) ◽
[e]
B = X ○

[e]
B ○
ρ−1B [q]

Y ○
[r]
C ◯
ρ−1C [vi]

Zi

= (A ◽
[e]
B) ◽
[e]⋅ρ−1B [q]⋅[r]

C.

The reindexing ρ(A ◽[f]C) ◽[e]B ρA ◽[f]C is given by

[p] ∈ B● z→ [ep]
[p] ∈ C● z→ [fp] z→ [e] ⋅ ρ−1B [q] ⋅ [rp]
[eqs] ⋤ [f] z→ [eqs] z→ [e] ⋅ ρ−1B [q] ⋅ [s]
[fvis] z→ [f] ⋅ ρ−1C [vi] ⋅ [s] z→ [e] ⋅ ρ−1B [q] ⋅ [r] ⋅ ρ

−1
C [vi] ⋅ [s]

[p] ∈ A● n.a.a. z→ [p] z→ [p]

We see that the square equation (2.3.7) commutes in the case [e] ⊑ [f].
(2) Assume [e] and [f] are ⊑-incomparable, and write A as

A = (X ○
[e]

YtB◯
[vi]

Yi) ○
[f]

YtC ◯
[wj]

Zj .

Then
A ◽
[e]
B = (X ○

[e]
B ◯
ρ−1B [vi]

Yi) ○
[f]

YtC ◯
[wj]

Zj ,

the reindexing gives ρA ◽[e]B[f] = [f],

(A ◽
[e]
B) ◽
[f]
C = (X ○

[e]
B ◯
ρ−1B [vi]

Yi) ○
[f]
C ◯
ρ−1C [wj]

Zj ,

and the complete reindexing ρ(A ◽[e]B) ◽[f]C ρA ◽[e]B is given by

[p] ∈ B● z→ [ep] z→ [ep]
[p] ∈ C● z→ [fp]

[evis] z→ [e] ⋅ ρ−1B [vi] ⋅ [s] z→ [e] ⋅ ρ−1B [vi] ⋅ [s]
[fwjs] z→ [fwjs] z→ [f] ⋅ ρ−1C [wj] ⋅ [s]
[p] ∈ A● n.a.a. z→ [p] z→ [p]



On the other hand,

A ◽
[f]
C = (X ○

[e]
YtB◯

[vi]
Yi) ○

[f]
C ◯
ρ−1C [wj]

Zj ,

we have ρA ◽[f]C[e] = [e],

(A ◽
[f]
C) ◽
[e]
B = (X ○

[e]
B ◯
ρ−1B [vi]

Yi) ○
[f]
C ◯
ρ−1C [wj]

Zj

= (A ◽
[e]
B) ◽
[f]
C,

and further

[p] ∈ B● z→ [ep]
[p] ∈ C● z→ [fp] z→ [fp]
[evis] z→ [evis] z→ [e] ⋅ ρ−1B [vi] ⋅ [s]
[fwjs] z→ [f] ⋅ ρ−1C [wj] ⋅ [s] z→ [f] ⋅ ρ−1C [wj] ⋅ [s]
[p] ∈ A● n.a.a. z→ [p] z→ [p]

so that the square equation (2.3.7) commutes in the case where [e] and [f] are ⊑-
incomparable too. Finally, the monad structure of M+ satisfies condition (Disjoint
multiplication) of theorem 2.3.6.

Proof of (Nested multiplication). Let A,B,C ∈ trM , [e] ∈ A●, [f] ∈ B●, such that
AA ◽[e]B and B ◽[f]C are admissible. Write A and B as:

A = (X ○
[e]

YtB◯
[vi]

Yi), B = Z ○
[f]

YtC ◯
[wj]

Tj .

Then,
A ◽
[e]
B = X ○

[e]
B ◯
ρ−1B [vi]

Yi,

we have ρA ◽[e]B[f] = [ef], and

(A ◽
[e]
B) ◽
[ef]

C = X ○
[e]
(Z ○
[f]

YtC ◯
[wj]

Tj) ◯
α(ρ−1B [vi])

Yi,

where

α(ρ−1B [vi]) =
⎧⎪⎪⎨⎪⎪⎩

[f] ⋅ ρ−1C [wj] ⋅ [r] if ρ−1B [vi] of the form [fwjr],
ρ−1B [vi] otherwise.

Remark that α(ρ−1B [vi]) = ρ−1B ◽[f]C vi. The reindexing ρ(A ◽[e]B) ◽[ef]C ρA ◽[e]B is given by:

[p] ∈ C● z→ [efp]
[fwjr] ∈ B● z→ [efwjr] z→ [ef] ⋅ ρ−1C [wj] ⋅ [r]
[p] ∈ B●, [f] ⋤ [p] z→ [ep] z→ [ep]
[evir] ∈ A● z→ [e] ⋅ ρ−1B vi ⋅ [r] z→ [e] ⋅ ρ−1B ◽[f]C vi ⋅ [r]

On the other hand, we have

B ◽
[f]
C = Z ○

[f]
C ◯
ρ−1C [wj]

Tj ,



A ◽
[e]
(B ◽
[f]
C) = X ○

[e]
(Z ○
[f]

YtC ◯
[wj]

Tj) ◯
ρ−1B ◽[f]C

vi

Yi

= (A ◽
[e]
B) ◽
[ef]

C

and the reindexing is given by

[p] ∈ C● z→ [fp] z→ [efp]
[fwjr] ∈ B● z→ [f] ⋅ ρ−1C [wj] ⋅ [r] z→ [ef] ⋅ ρ−1C [wj] ⋅ [r]
[p] ∈ B●, [f] ⋤ [p] z→ [p] z→ [ep]

[evir] ∈ A● z→ [e] ⋅ ρ−1B ◽[f]C[vi] ⋅ [r]

We thus see that the square equation (2.3.8) commutes, and that the monad structure of
M+ satisfies condition (Nested multiplication).

This completes the proof of theorem 2.4.6, endowing M+ with a canonical monad
structure, whose partial law is given by substitution of M -trees.

Example 2.4.11. Consider the M+-tree T of example example 2.4.3 on the left below,
where the inputs of the root node correspond to the and nodes of the decorating tree,
respectively.

tz→

According to the monad law on M+ of theorem 2.4.6, the target tT ∈ trM on the right
is the substitution of the lower decorating M -tree by the two upper decorating M -trees,
following the scheme of the outer thick tree. Since M is itself a polynomial monad, we
may compute the iterated target t tT , which would be an operation of M .

Definition 2.4.12 (Simultaneous substitution). We specify definition 2.3.18 in the case
of M+. Let T ∈ trM , and for each [p] ∈ T ●, let U[p] ∈ trM be such that tU[p] = s[p] T .
Define the simultaneous substitution

T◻
[p]
U[p] ∶= t

⎛
⎝
YT ◯
[[p]]

YU[p]
⎞
⎠
.

Intuitively, it consists of simultaneously substituting the U[p]’s in T , and writing it down
this way spares the tedious case analysis of remark 2.3.17.

The following fact is at the heart of the Baez–Dolan construction. Indeed, it is even
the original definition of the construction, see [BD98, definition 15].



Proposition 2.4.13. For M ∈ PolyMnd(I) a polynomial monad, there is an equivalence
of categories Alg(M+) ≃ PolyMnd(I)/M .

Proof. We construct mutually weakly inverse equivalences between the two categories.
First, write M as

I E B I.s p t

Let x ∶ X Ð→ B be a set over B, and m ∶M+X Ð→ X be an M+-algebra strucure on X.
Let EX be the pullback on the left, and define ΦX ∈ PolyEnd(I)/M as the morphisms of
polynomial functors on the right:

EX X

E B,

⌟
π2

π1 x

p

I EX X I

I E B I.

⌟
sπ1

π1

π2 tx

x

s p t

There is an evident bijection trΦX ≅ M+X in Set/I, and the structure map m extends
by pullback along EX Ð→ X to a map (ΦX)⋆ Ð→ ΦX in PolyEnd(I). It is easy to verify
that this determines a (−)⋆-algebra structure on ΦX, and that the map ΦX Ð→ M in
PolyEnd(I) is a morphism of (−)⋆-algebras. Conversely, given an N ∈ PolyMnd(I)/M
whose underlying polynomial functor is

I E′ B′ I,

then the bijection trN ≅ M+B′ in Set/I and the (−)⋆-algebra map N⋆ Ð→ N provide
a map M+B′

ΨNÐÐ→ B′ in Set/I. It is easy to verify that ΨN is the structure map of a
M+-algebra and that the constructions Φ and Ψ are functorial and mutually inverse.





Chapter Three

Opetopes and opetopic sets

T
his chapter deals with the main notion of this thesis: opetopes. Opetopes were
first introduced by Baez and Dolan in order to formulate a definition of weak
ω-categories [BD98]. Their name reflects the fact that they encode the possible

shapes for higher-dimensional operations: they are operation polytopes. Informally, an
opetope is either a point, or a tree of opetopes of lower dimension, i.e. a tree of trees of
trees of...

Over the recent years, they have been the subject of many efforts to provide a good
definition that would allow exploring their combinatorics. The original definition of [BD98]
relies on an operadic version of the (−)+ construction of section 2.4. A notion of opetopic
set is also introduced, but not as presheaves over a category of opetopes. This gap is
filled in [Che03a], where Cheng reformulates the definition of Baez and Dolan in terms of
symmetric multicategories and slicing (an analogue to the (−)+ construction, see propo-
sition 2.4.13), and using this more explicit formalism, introduces a category of opetopes.
Non symmetrical approaches have also been explored. In [Lei04, chapter 7], Leinster pro-
poses a definition based on the T -operads of Burroni [Bur71]. Here, the (−)+ construction
corresponds to the “free T -operad” monad. Cheng proved that this definition is equivalent
to the symmetric one [Che04a, corollary 2.6].

In this thesis, we shall rely on the approach of Kock et. al. [KJBM10]. There, the
authors tackle the subtle tree-like structure of opetopes directly, using the formalism
of polynomial functors and trees, presented in chapter 2. Note that this definition is
equivalent to all the above ones [KJBM10, theorem 3.16].

It is worthwile to mention that the formalism of [KJBM10] has been used for yet
another approach to opetopes by Steiner [Ste12], where trees are replaced by opetopic
chain complexes, a combinatorial device encoding the internal structure of opetopes.

3.1 DEFINITION

In this section, we formulate the definition of opetopes using the formalism of polynomial
functors, monads and trees, surveyed in chapter 2.

Definition 3.1.1 (The Zn monad). Let Z0 be the identity polynomial monad on Set,
which has one color and one operation with one input (see example 2.1.7). We write it as

{⧫} {∗} {◾} {⧫}.

For n ≥ 1, let Zn ∶=(Zn−1)+ (see definition 2.4.1), and write it as Zn as

On En+1 On+1 On,
s p t (3.1.2)
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i.e. for all n ∈ N, On is the set of colors of Zn (or equivalently, the set of operations of Zn−1
if n ≥ 1).

Definition 3.1.3 (Opetope). An n-dimensional opetope (or n-opetope for short) ω is
simply an element of On, and we write dimω = n. If n ≥ 2, then by definitions 2.4.1
and 3.1.1, n-opetopes are exactly the Zn−2-trees. In this case, an opetope ω ∈ On is called
degenerate if its underlying tree has no nodes (and thus consists of a unique edge), so that
ω = Iϕ for some ϕ ∈ On−2. We say that ω it is an endotope it its underlying tree has exactly
one node, i.e. ω = Yψ for some ψ ∈ On−1.

Following equation (2.3.12), for n ≥ 2 and ω ∈ On, the structure of polynomial monad
(Zn−2)⋆ Ð→ Zn−2 gives a bijection ℘ω ∶ ω∣ Ð→ (tω)● between the leaves of ω and the nodes
of tω, preserving the decoration by (n − 2)-opetopes.

Example 3.1.4. (1) The unique 0-opetope is denoted by ⧫ and called the point.
(2) The unique 1-opetope is denoted by ◾ and called the arrow.
(3) If n ≥ 2, then ω ∈ On is a Zn−2-tree, i.e. a tree whose nodes are labeled in (n − 1)-

opetopes, and edges are labeled in (n − 2)-opetopes. In particular, 2-opetopes are
Z0-trees, i.e. linear trees, and thus in bijection with N. We will refer to them as
opetopic integers, and write n for the 2-opetope having exactly n nodes.

(4) A 3-opetope is a Z1-tree, i.e. a planar tree.
(5) A 4-opetope is a Z2-tree. Unfolding definitions, if ω ∶ ⟨ω⟩ Ð→ Z2, then nodes of ω

are decorated by elements of O3, i.e. planar trees. Further, if x ∈ ⟨ω⟩1 is a node
of ω, then ω2 exhibits a bijection between the input edges of x and the nodes of
ω1(x) ∈ O3.

Proposition 3.1.5. For small values of n, the category Alg0,n of Zn-algebras (the first
index shall become relevant in chapter 11) is given by the following table

n 0 1 2 3

Alg0,n Set Mon Op CombPT

where Mon is the category of monoids, Op of non colored planar operads, and CombPT of
combinads over the combinatorial pattern of planar trees [Lod12].

Proof (sketch). (1) If n = 0, then Z0 is by definition the identity functor on Set/O0 =
Set, thus Z0-algebras bear no structure, and are simply sets.

(2) The polynomial monad Z1 = (Z0)+ is isomorphic to

{◾} N< N {◾}s t

where for m ∈ N, N<(m) ∶={0,1, . . . ,m − 1}, and this case is already treated in
example 2.1.7.

(3) The functor Z2 ∶ Set/N Ð→ Set/N maps a signature X = (Xm ∣ m ∈ N) ∈ Set/N to
the set of trees whose nodes are adequately decorated by elements of X, i.e. it is
the free planar operad monad.

(4) A Z4-algebra is a set of “planar trees” (i.e. an element of Set/O3) with an suit-
able notion of substitution, which is structure encapsulated in the notion of PT-
combinad.



Proposition 3.1.6. Let ω ∈ On with n ≥ 2. We have the following.
(1) If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−2, then tω = Yϕ, and ℘ω ∶ ω∣ =
{[]}Ð→ Y●ϕ = {[]} obviously maps [] to [].

(2) If ω is an endotope, say ω = Yψ for some ψ ∈ On−1, then tω = ψ. Further, ω∣ =
{[[q]] ∣ [q] ∈ ψ●}, and ℘ω maps [[q]] to [q].

(3) Otherwise, ω decomposes as ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣,
and

tω = (tν) ◽
℘ν[l]

ψ.

The readdressing function ℘ω ∶ ω∣ Ð→ (tω)● is given as follows. Let [j] ∈ ω∣.
a) If [l] ⊑ [j], then [j] = [l[q]] for some [q] ∈ ψ●, and ℘ω[l[q]] = (℘ν[l]) ⋅ [q].
b) If [l] /⊑ [j], then [j] ∈ ν∣. Assume ℘ν[l] ⊑ ℘ν[j]. Then ℘ν[j] = (℘ν[l]) ⋅ [[q]] ⋅
[a], for some [q] ∈ (s℘ν[l] tν)

● = (tψ)●, and let ℘ω[j] = (℘ν[l]) ⋅(℘−1ψ [q]) ⋅[a].
c) If ℘ν[l] /⊑ ℘ν[j], then ℘ω[j] = ℘ν[j].

Proof. Direct consequence of proposition 2.3.14 and theorem 2.4.6.

Definition 3.1.7 (Partition of opetopes). Let O(2)n+2 be the set of (n + 2)-opetopes of
uniform height 2, i.e. of the form

Yα ◯
[[p]]

Yβ[p] ,

with α,β[p] ∈ On+1 and [p] ranging over α●. If ξ ∈ O(2)n+2 is as above, and ν = t ξ = α◻[p] β[p],
then the β[p]’s are disjoint subtrees of ν, which jointly cover ν. Thus, ξ exhibits a partition
of ν into subtrees.

3.2 OPETOPES VS. PASTING DIAGRAMS

Opetopes are closely related to the notion of pasting diagram commonly used in higher
category theory to describe composition of higher cells. Informally, a pasting diagram1 of
dimension n is a tree whose nodes are decorated with n-cells, edges with (n−1)-cells, and
where the output edge of a node corresponds to its target, and the input edges to the cells
in its source. For instance, the figure on the left below is a graphical representation of a
2-pasting diagram, and the corresponding decorated tree is drawn on the right:

.

. .

.

.

⇓ ⇓

⇓

3

1 2

◾

◾ ◾ ◾

◾ ◾ ◾

If we consider the k-cells as k-opetopes for all k, then an n-pasting diagram P with n ≥ 1
induces a Zn−1-tree, i.e. a (n + 1)-opetope, say ω. We say that P is the source pasting
diagram of ω. The opetope ω also has a target tω ∈ On−1, and in the sequel, graphical

1In this thesis, we only consider many-to-one pasting diagrams, i.e. those whose output consist of a
single cell.



representations of opetopes include both the source pasting diagram and the target. For
instance, if P is the pasting diagram above, then ω is represented by

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

The dichotomy between pasting diagrams and opetopes can lead to ambiguities. For ex-
ample,

.

. .

.
⇓

represents a 2-opetope (the opetopic integer 3), but also a 2-pasting diagram having a
unique 2-cell. In this work, such ambiguities shall be resolved by the surrounding context.

3.3 HIGHER ADDRESSES

By definition, an opetope ω of dimension n ≥ 2 is a Zn−2-tree, and thus the formalism of
tree addresses (definition 2.2.11 and remark 2.4.4) can be applied to reference nodes of
ω, also called its source faces or simply sources. In this section, we iterate this formalism
into the concept of higher dimensional address.

Definition 3.3.1 (Higher address). The set An of n-addresses is defined as follows. The
unique 0-address is ∗ (also written [] by convention), while an (n+1)-address is a sequence
of n-addresses, enclosed by brackets. Note that the address [], associated to the empty
sequence, is in An for all n ≥ 0. However, the surrounding context will almost always make
the notation unambiguous.

Example 3.3.2. Since the unique element of A0 is ∗, the set of 1-addresses is

A1 = {[∗ ∗⋯∗´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
k

] ∣ k ∈ N}.

A 1-address [∗ ∗ ⋯∗] where ∗ occurs k times will be more concisely written [∗k]. The
following are higher addresses2:

[[][∗][]] ∈ A2, [[[][∗][∗∗]][[∗ ∗ ∗]]] ∈ A3, [[[[∗]]]] ∈ A4.

The expression [∗[∗]] is not a valid higher address, as ∗ and [∗] do not have the same
dimension.

For ω ∈ O an opetope, nodes of ω can be specified uniquely using higher addresses, as
we now show. Recall that En−1 is the set of inputs of Zn−2 (equation (3.1.2)). In Z0, set
E1(◾) = {∗}, so that the unique “node address”3 of ◾ is ∗ ∈ A0.

2Ambiguity with the dimension of addresses could be lifted altogether by indicating the dimension
as e.g. []1 ∈ A1, [∗ ∗ ∗∗]1 ∈ A1, [[]1[∗]1[]1]2 ∈ A2, [[[[∗]1]2]3]4 ∈ A4. However, this makes notations
significantly heavier, so we avoid using this convention.

3Of course, ◾ is not a tree, but this abuse of terminology allows to talk about higher addresses and
opetopes in a uniform manner.



For n ≥ 2, recall that an opetope ω ∈ On is a Zn−2-tree ω ∶ ⟨ω⟩Ð→ Zn−2 (definition 2.2.7),
and write ⟨ω⟩ as

Iω Eω Bω Iω.

A node b ∈ Bω has an address & b = [e1 ⋯ ek] which is a list of elements of Eω. By
ω2 ∶ Eω Ð→ En−1, it corresponds to a list [p] ∶=[ω2(e1)⋯ ω2(ek)] of elements of En−1, and
since by induction elements of En−1 are (n−2)-addresses, [p] ∈ An−1. We now identify the
nodes of ω to their addresses, which completes the induction process. In particular, for
[p] ∈ ω● a node address of ω, we make use of the notation s[p] ω of section 2.2 to refer to
the decoration of the node at address [p], which is an (n − 1)-opetope.

Example 3.3.3. Consider the 2-opetope on the left, called 3:

.

. .

.
⇓

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

Its underlying pasting diagram consists of 3 arrows ◾ grafted linearly. Since the only node
address of ◾ is ∗ ∈ A0, the underlying tree of 3 can be depicted as on the right. On the
left of that tree are the decorations: nodes are decorated with ◾ ∈ O1, while edges are
decorated with ⧫ ∈ O0. For each node in the tree, the set of input edges of that node is
in bijective correspondence with the node addresses of the decorating opetope, written on
the right of each edge. In this low dimensional example, those addresses can only be ∗.
Finally, on the right of each node of the tree is its 1-address, which is just a sequence of
0-addresses giving “walking instructions” to get from the root to that node.

The 2-opetope 3 can then be seen as a corolla in some 3-opetope as follows:

3
◾

◾ ◾ ◾
[∗∗] [∗]

[]

[]

As previously mentioned, the set of input edges is in bijective correspondence with the
set of node addresses of 3. Here is now an example of a 3-opetope (already studied in
section 3.2), with its annotated underlying tree on the right (the 2-opetopes 1 and 2 are
analogous to 3):

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

1 2

◾

◾ ◾ ◾

◾ ◾ ◾

[]

[[∗∗]] [[∗]][∗∗]
[∗] []

[]
[∗]

[]

Further, the leaf addresses of this opetope are [[]], [[∗][]], [[∗][∗]], and [[∗∗][]].



Definition 3.3.4. (1) If [p1], [p2] ∈ An, then their concatenation is [p1] ⋅ [p2] ∶=[p1p2].
In particular, [p1] ⋅ [] = [] ⋅ [p1] = [p1].

(2) Let ⊑ be the prefix order on An, i.e. [p1] ⊑ [p2] if and only if there exists [p3] ∈ An
such that [p1] ⋅ [p3] = [p2].

(3) Let ⪯ be the lexicographical order on An. It is trivial on A0, given by the prefix
order on A1, and on An, it is induced by lexicographical order on An−1.

Example 3.3.5. Consider the 3-opetope of example 3.3.3:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

1 2

◾

◾ ◾ ◾

◾ ◾ ◾

[]

[[∗∗]] [[∗]][∗∗]
[∗] []

[]
[∗]

[]

On nodes, we have the ordering [] ≺ [[∗]] ≺ [[∗∗]], and on edges, [] ≺ [[]] ≺ [[∗]] ≺
[[∗][]] ≺ [[∗][∗]] ≺ [[∗∗]] ≺ [[∗∗][]]. In particular, leaves are ordered as [[]] ≺ [[∗][]] ≺
[[∗][∗]] ≺ [[∗∗][]].

3.4 THE CATEGORY OF OPETOPES

In this section we define the category O of opetopes by generators and relations, akin to
the works of Hermida–Makkai–Power [HMP02, section 2] and Cheng [Che03a].

Lemma 3.4.1 (Opetopic identities). Let ω ∈ On with n ≥ 2.
Inner edge. For an inner edge [p[q]] ∈ ω● (the fact that ω has an inner edge implies

that it is non degenerate), we have t s[p[q]] ω = s[q] s[p] ω.
Globularity 1. If ω is non degenerate, we have t s[] ω = t tω.
Globularity 2. If ω is non degenerate, and [p[q]] ∈ ω∣, we have s[q] s[p] ω = s℘ω[p[q]] tω.
Degeneracy. If ω is degenerate, we have s[] tω = t tω.

Proof. Inner edge. By definition of a Zn−2-tree.
Globularity 1 and 2. By theorem 2.3.10, the monad structure on Zn−2 amounts to a

structure map (Zn−2)⋆ Ð→ Zn−2, which, taking the notations of definition 2.3.11,
is written as

On−2 tr∣ Zn−2 trZn−2 On−2

On−2 O●n−1 On−1 On−2.

⌟
p

℘

e e[]

t

ps t

The claims follow from the commutativity of the right and left square respectively.
Degeneracy. Let ω = Iϕ, for ϕ ∈ On−2. By proposition 3.1.6, t tω = tYϕ = ϕ, and clearly,

ϕ = s[]Yϕ = s[] tω.

Definition 3.4.2 (The category O of opetopes). With the identities of lemma 3.4.1, we
define the category O of opetopes by generators and relations as follows.



Objects. We set obO = ∑n∈NOn.
Generating morphisms. Let ω ∈ On with n ≥ 1. We introduce a generator t ∶ tω Ð→ ω,

called the target embedding. If [p] ∈ ω●, then we introduce a generator s[p] ∶ s[p] ω Ð→
ω, called a source embedding. An elementary face embedding is either a source or
the target embedding.

Relations. We impose 4 relations described by the following commutative squares,
which just enforce the identities of lemma 3.4.1. Let ω ∈ On with n ≥ 2.

(Inner) For [p[q]] ∈ ω● (forcing ω to be non degenerate), the following square
must commute:

s[q] s[p] ω s[p] ω

s[p[q]] ω ω

s[q]

t s[p]
s[p[q]]

(Glob1) If ω is non degenerate, the following square must commute:

t tω tω

s[] ω ω.

t

t t
s[]

(Glob2) If ω is non degenerate, and for [p[q]] ∈ ω∣, the following square must
commute:

s℘ω[p[q]] tω tω

s[p] ω ω.

s℘ω[p[q]]

s[q] t
s[p]

(Degen) If ω is degenerate, the following square must commute:

t tω tω

tω ω.

t

s[] t

t

Remark 3.4.3. It is immediate from the definition that O is a direct category (i.e. a Reedy
category where the only decreasing morphisms are identities, see definition 12.1.21) and
rigid.
Remark 3.4.4. Let us explain this definition a little more. Opetopes are trees whose nodes
(and edges) are decorated by opetopes. The decoration is now interpreted as a geometrical
feature, namely as an embedding of a lower dimensional opetope. Further, the target of
an opetope, while not an intrinsic data, is also represented as an embedding. The relations
can be understood as follows.

(Inner) The inner edge at [p[q]] ∈ ω● is decorated by the target of the decoration of
the node “above” it (here s[p[q]] ω), and in the [q]-source of the node “below” it
(here s[p] ω). By construction, those two decorations match, and this relation makes
the two corresponding embeddings s[q] s[p] ω Ð→ ω match as well. On the left is an
informal diagram about ω as a tree (reversed gray triangle), and on the right is an



example of pasting diagram represented by an opetope, with the relevant features
of the (Inner) relation colored or thickened.

t s
[p
[q
]]
ω

s [
q
]
s [
p
]
ω

s[p] ω

s[p[q]] ωω

.

. .

.
⇓

⇓ ⇛
.

. .

.
⇓

(Glob1-2) If we consider the underlying tree of ω as its “geometrical source”, and the
corolla Ytω as its “geometrical target”, then they should be parallel. The relation
(Glob1) expresses this idea by “gluing” the root edges of ω and Ytω together,
while (Glob2) glues the leaves according to ℘ω.

t
s[]
ω

⋯

ω
s[] ω t

t
ω

⋯

tω

.

. .

.
⇓

⇓ ⇛
.

. .

.
⇓

⋯
s[q] s[p

] ω

ω
s[p] ω

⋯

s℘
ω
[p
[q]] t

ω

tω
.

. .

.
⇓

⇓ ⇛
.

. .

.
⇓

(Degen) If ω is a degenerate opetope, depicted as on the right, then its target should
be a “loop”, i.e. its only source and its target should be glued together.

s[]
t
ωω

s[]
t
ω

t
t
ω

tω
●
⇓

Notation 3.4.5. For n ∈ N, let O≤n be the full subcategory of O spanned by opetopes of
dimension at most n. We define O<n, O≥n, and O>n similarly. For m ≤ n, let Om,n ∶=O≥m∩
O≤n. We will tacitly consider the set On as a discrete category.
Remark 3.4.6 (Symmetric opetopes). In [BD98] [Che04b] [Che03a], opetopes and the ca-
tegory of opetopes are defined following a different approach. There, polynomial monads
are replaced by symmetric multicategories (simply called C-operads in [BD98]), and the
(−)+ construction of definition 2.4.1 is replaced by the slice construction. The idea is the
same: if M is a symmetric multicategory, then the objects of its slice M+ are the multimor-
phisms of M. The opetopes defined in this way admit a natural action of the symmetric
group on their source faces, inherited from the symmetric multicategories at play. Thus,
the resulting category Osym of symmetric opetopes has non-trivial isomorphism classes,
unlike O. However, like O, the category Osym is rigid, which hints an equivalence between
the symmetric approach and that of [KJBM10] (used in this thesis, and equivalent to
Leinster’s opetopes [Lei04]). This is formally proved in [Che04a].



3.5 OPETOPIC SETS

Recall that Psh(O) is the category of presheaves over O, which we call opetopic sets. In
this section, we expose some definitions and technical results about them.

Definition 3.5.1 (Remarkable opetopic sets). (1) The representable presheaf at ω ∈
On is denoted O[ω], or if it is not ambiguous, just ω. Its cells are morphisms of O
of the form f ∶ ψ Ð→ ω, for f a sequence of elementary face embeddings, which we
write fω ∈ O[ω]ψ for short. For instance, the cell of maximal dimension is simply ω
(as the corresponding sequence of face embeddings is empty), its (n − 1)-cells are
{s[p] ω ∣ [p] ∈ ω●} ∪ {tω}.

(2) The boundary ∂O[ω] of ω is the maximal subpresheaf of O[ω] not containing the
maximal cell ω. We write bω ∶ ∂O[ω] ↪Ð→ O[ω] for the boundary inclusion of ω.
The set of boundary inclusions is denoted by B.

(3) The spine S[ω] is the maximal subpresheaf of ∂O[ω] not containing the cell tω.
We write sω ∶ S[ω] ↪Ð→ O[ω] for the spine inclusion. The set of spine inclusions is
denoted by S.

Remark 3.5.2. Recall from definition 3.4.2 that O is a direct category (i.e. does not have
“degeneracy maps”). Therefore, the representable opetopic set O[ω] of an opetope ω ∈ On

is empty in dimension > n. Similarly, the boundary ∂O[ω] of ω is equal to O[ω] in
dimension < n, and empty otherwise:

∂O[ω]ψ =
⎧⎪⎪⎨⎪⎪⎩

∅ if dimψ ≥ n,
O[ω]ψ if dimψ < n.

The spine S[ω] can be described similarly:

S[ω]ψ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ if dimψ ≥ n,
O[ω]ψ − {tω} if dimψ = n − 1,
O[ω]ψ if dimψ < n − 1.

Example 3.5.3. Consider the opetopic integer 3 of example 3.1.4. Graphically, we have

O[3] =
.

. .

.
⇓ ∂O[3] =

.

. .

.
S[3] =

.

. .

.

Notation 3.5.4. Let F ∶ OÐ→ C[1] be a function that maps opetopes to morphisms in some
category C, and M the set {F (ω) ∣ ω ∈ O}. Then for n ∈ N, let M≥n ∶={F (ω) ∣ ω ∈ O≥n}, and
similarly for M>n, M≤n, M<n, and M=n. For convenience, the latter is abbreviated Mn. If
m ≤ n, we also let Mm,n = M≥m ∩M≤n. By convention, M≤n = ∅ if n < 0. For example,
S≥2 = {sω ∣ ω ∈ O≥2}, and Sn,n+1 = Sn ∪ Sn+1.

Lemma 3.5.5. Let X ∈ Psh(O) be a finite opetopic set. Then it is the quotient of a sum
of finitely many opetopic sets, i.e. there is an epimorphism

∑
i∈I
O[ωi]Ð→X

where I is a finite set.



Proof. Since O is directed and well-founded, all its slices are finite. Thus, X has finitely
many cells, say {x1, . . . , xk}. Simply consider the following quotient (recall the (−)♮ nota-
tion from definition 0.3.3)

∑
i

O[x♮i]
x♮iz→xiÐÐÐÐ→X.

Lemma 3.5.6. For ω ∈ O, with dimω ≥ 1 the following square is a pushout and a pullback,
where all arrows are canonical inclusions:

∂O[tω] S[ω]

O[tω] ∂O[ω].

i

btω

Proof. Let n ∶=dimω, and consider the pushout

∂O[tω] S[ω]

O[tω] P.

i

btω

In dimension < n − 1 the boundary inclusion btω is an identity, hence for all ϕ ∈ O<n−1,
Pϕ = S[ω]ϕ = ∂O[ω]ϕ. In dimension (n − 1), the boundary ∂O[tω] is empty, hence for all
ψ ∈ On−1, Pψ = O[tω]ψ +S[ω]ψ = ∂O[ω]ψ. Finally, in dimension ≥ n, all involved opetopic
sets are empty. In conclusion, P = ∂O[ω].

The category Psh(O) is a topos, and by [Lac11, theorem 3.1], it is an adhesive category.
So by [Lac11, proposition 2.1], pushout squares of monomorphisms (in this case btω along
i) are also pullback squares.

Example 3.5.7. With ω = 3, the square of lemma 3.5.6 becomes

⎛
⎝ ● ●

⎞
⎠

⎛
⎝ ●

. .

●
⎞
⎠

⎛
⎝ ● ●

⎞
⎠

⎛
⎝ ●

. .

●
⎞
⎠

b◾

Lemma 3.5.8. Let n ≥ 1, ν ∈ On, [l] ∈ ν∣, and ψ ∈ On−1 be such that e[l] ν = tψ, so that
the grafting ν ○[l]Yψ is well-defined. Then the following square is a pushout and a pullback:

O[e[l] ν] O[ψ]

S[ν] S[ν ○[l]Yψ].

t

e[l] s[l]

Proof. Similar to the proof of lemma 3.5.6.



Example 3.5.9. With ν = 2, ψ = ◾, and [l] = [∗∗], we have ν ○[∗∗]Y◾ = 3, and the square
of lemma 3.5.8 becomes

⎛
⎝

● ⎞
⎠

⎛
⎝ .

● ⎞
⎠

⎛
⎝

● .

.

⎞
⎠

⎛
⎝ .

● .

.

⎞
⎠

e[∗∗]

t

s[∗∗]

Lemma 3.5.10. Let X ∈ Psh(O) be an opetopic set.
(1) If Sn,n+1 ⊥X, then Bn+1 ⊥X. In particular, every morphism in B≥n+1 is an S≥n-local

isomorphism.
(2) If Sn,n+1 ⊥ X and Bn+2 ⊥ X, then Sn+2 ⊥ X. In particular, if Sn,n+1 ⊥ X and

B≥n+2 ⊥X, then S≥n ⊥X.

Proof. (1) Let ω ∈ On+1. Note that the following triangle commutes

S[ω] ∂O[ω]

O[ω].

i

sω
bω

Since the class of maps ⊥X has the 3-for-2 property, in order to show that bω ⊥X,
it is enough to show that i ⊥ X. Take a morphism f ∶ S[ω] Ð→ X. The existence
of a lift ∂O[ω]Ð→X follows from the existence of a lift O[ω]Ð→X, since sω ⊥X.
For unicity, consider two lifts g, h ∶ ∂O[ω]Ð→X of f . By lemma 3.5.6, in order to
show that they are equal, it suffices to show that they coincide on O[tω]. But since
they coincide on S[ω] (as they extend f), they must coincide on the subpresheaf
S[tω] ⊆ S[ω]. Since Sn ⊥X, g and h coincide on O[tω], and are thus equal.

(2) Let ω ∈ On+2 and f ∶ S[ω] Ð→ X. By assumption, the restriction f ∣S[tω] of f to
S[tω] extends to a unique g ∶ O[tω]Ð→X. We now show that the following square
commutes:

∂O[tω] S[ω]

O[tω] X.

f

g

By lemma 3.5.6, it suffices to show that f and g coincide on S[tω] and on O[t tω].
The former is tautological, and the latter follows from the hypothesis that st tω ⊥
X and that f and g coincide on S[t tω] ⊆ S[tω]. Therefore, the square above
commutes, and by lemma 3.5.6 again, f and g extend to a morphism h ∶ ∂O[ω]Ð→
X, which in turn extends to a morphism i ∶ O[ω] Ð→ X, since by assumption
Bn+2 ⊥X.
For unicity, consider two lifts i, i′ ∶ O[ω]Ð→X of f . By lemma 3.5.6, they are equal
if and only if their restriction g, g′ ∶ O[tω]Ð→X are equal. Since g∣S[tω] = f ∣S[tω] =
g′∣S[tω], and since by assumption Sn+1 ⊥X, we have g = g′, and thus i = i′.



Corollary 3.5.11. Let X be an opetopic set such that Sn,n+1 ⊥ X. Then S≥n ⊥ X if and
only if B≥n+2 ⊥X.

Proof. Direct consequence of lemma 3.5.10.

Lemma 3.5.12. Let n ∈ N, and ω ∈ On+2. Then the inclusion S[tω]↪Ð→ S[ω] is a relative
Sn+1-cell complex.

Proof. We show that the morphism S[tω]↪Ð→ S[ω] is a composite of pushouts of elements
of Sn+1. If ω is degenerate, say ω = Iϕ for some ϕ ∈ On, then S[tω] = S[Yϕ] = O[ϕ] = S[ω],
so the result trivially holds.

Assume that ω is not degenerate, let X(0) ∶=S[tω], and [p1] ≻ ⋯ ≻ [pk] be the node
addresses of ω, sorted in reverse lexicographical order. By induction, assume that X(i−1)
is a subpresheaf of S[ω] containing the (n + 1)-cells s[p1] ω, . . . , s[pi−1] ω ∈ S[ω]. Clearly,
this holds when i = 1, as S[tω] does not contain any (n + 1)-cell.

Take [q] ∈ (s[pi] ω)●. By induction, and since [pi[q]] ≻ [pi], the (n + 1)-cell s[pi[q]] ω is
in X(i−1). Further, the n-cell s[q] s[pi] ω is present in X(i−1), since by (Inner), s[q] s[pi] ω =
t s[pi[q]] ω. Therefore, we have an inclusion ui ∶ S[s[pi] ω] Ð→ X(i−1) mapping s[q] s[pi] ω to
s[q] s[pi] ω, and let X(i) be the pushout

S[s[pi] ω] X(i−1)

O[s[pi] ω] X(i)
⌜

ui

ss[pi]
ω

Clearly, X(i) is a subpresheaf of S[ω] containing the (n + 1)-cell s[pj] ω for 1 ≤ j ≤ i, and
the induction hypothesis is satisfied.

Finally, X(k) ⊆ S[ω] contains all the (n + 1)-cells of S[ω], whence X(k) = S[ω]. By
construction, the chain of inclusions S[tω] = X(0) ↪Ð→ X(1) ↪Ð→ ⋯ ↪Ð→ X(k) = S[ω] is a
relative Sn+1-cell complex.

Corollary 3.5.13. Let n ∈ N, and ω ∈ On+2. Then the target embedding tω Ð→ ω of ω is
an Sn+1,n+2-local isomorphism.

Proof. In the square below
S[tω] O[tω]

S[ω] O[ω]

stω

r t

sω

the map r is an Sn+1-local isomorphism by lemma 3.5.12, and the horizontal maps are in
Sn+1,n+2. The result follows by 3-for-2.

Corollary 3.5.14. Let ψ ∈ On.
(1) The morphism t t = s[] t ∶ O[ψ]Ð→ O[Iψ] is in Sn+2. 4

(2) The morphisms s[], t ∶ O[ψ]Ð→ O[Yψ] are Sn+1,n+2-local isomorphisms.

Proof. (1) This is clear, since the only (n + 1)-cell of O[Iψ] is t Iψ.
4This improves corollary 3.5.13, where it was shown only to be a Sn,n+2-local isomorphism.



(2) The source embedding s[] ∶ O[ψ] Ð→ O[Yψ] is precisely the spine inclusion sYψ of
the (n+1)-opetope Yψ. The target embedding t ∶ O[ψ]Ð→ O[Yψ] is the morphism
t ∶ O[t t Iψ]Ð→ O[t Iψ] and is the vertical arrow in the diagram below.

ψ = S[Iψ]

Yψ = t Iψ Iψ.

t

sIψ

t

The bottom arrow is an Sn+1,n+2-local isomorphism by corollary 3.5.13 and the
diagonal arrow is in Sn+2 by point (1). The result follows by 3-for-2.

Definition 3.5.15. Let O ∶={∅↪Ð→ O[ω] ∣ ω ∈ O}.

Definition 3.5.16 (Truncation and extension). (1) Consider the inclusion ι≥m ∶ Om,n

Ð→ O≥m. It induces a truncation functor (−)m,n ∶ Psh(O≥m) Ð→ Psh(Om,n) that
has both a left adjoint ι≥m! and a right adjoint ι≥m∗ . Explicitly, for X ∈ Psh(Om,n),
the presheaf ι≥m! X is the “extension by 0”, i.e. (ι≥m! X)m,n = X, and (ι≥m! X)ψ = ∅
for all ψ ∈ O>n. On the other hand, ι≥m∗ X is the “canonical extension” of X into
a presheaf over O≥m: we have (ι≥m∗ X)m,n = X, and B>n ⊥ ι≥m∗ X, which uniquely
determines ι≥m∗ X.

(2) Likewise, precomposing by ι≤n gives a functor Psh(O≤n) Ð→ Psh(Om,n), also de-
noted by (−)m,n and again called truncation, that has both a left adjoint ι≤n! and
a right adjoint ι≤n∗ . Explicitly, for X ∈ Psh(Om,n), the presheaf ι≤n! X is

ι≤n! X = colim
O[ψ]m,n→X

O[ψ].

On the other hand, ι≤n∗ X is the “terminal extension” of X in that (ι≤n∗ X)m,n =X,
and (ι≤n∗ X)ψ is a singleton, for all ψ ∈ O<m. Note that O<m ⊥ ι≤n∗ X, and that it is
uniquely determined by this property.

Notation 3.5.17. For n <∞, we write (−)≤n ∶ Psh(O≥0) = Psh(O)Ð→ Psh(O≤n) instead of
(−)0,n, and let (−)<n ∶=(−)≤n−1 if n ≥ 0. Similarly, we write (−)≥m instead of (−)m,∞, and
let (−)>m ∶=(−)≥m+1.

Proposition 3.5.18. The functors ι≥m! , ι≥m∗ , ι≤n! , and ι≤n∗ are fully faithful.

Proof. Note that ι≥m and ι≤n are fully faithful, and apply lemma 0.4.14.

Proposition 3.5.19. Let X ∈ Psh(O) be an opetopic set.
(1) The presheaf X is in the essential image of ι≥0! ∶ Psh(O≤n)Ð→ Psh(O) if and only

if X>n = ∅.
(2) The presheaf X is in the essential image of ι≥0∗ ∶ Psh(O≤n)Ð→ Psh(O) if and only

if B>n ⊥X.
(3) The presheaf X is in the essential image of ι≤n∗ ∶ Psh(O≥m)Ð→ Psh(O) if and only

if O<m ⊥X.
(4) Consider ι≤n∗ ι≥m∗ , the right adjoint to the truncation (−)m,n ∶ Psh(O)Ð→ Psh(Om,n)

Then X is in the essential image of ι≤n∗ ι≥m∗ if and only of (O<m ∪B>n) ⊥ X. In
particular, (−)m,n is the localization with at O<m ∪B>n.



Proof. Points (1) to (3) are straightforward verifications. The first claim of point (4)
follows from (2) and (3), and the second claim is an application of corollary 0.5.12.

Convention 3.5.20. To ease notations, we often leave truncations implicit, e.g. point (3)
of last proposition can be reworded as: a presheaf X ∈ Psh(O≥m) is in the essential image
of ι≥m∗ if and only if B>m ⊥X.



Chapter Four

Opetopic sets and many-to-one polygraphs

P
olygraphs where originally introduced by Street [Str76, section 2] under the
name of computad. They are to (strict) ω-categories what graphs are to 1-
categories: a combinatorial device that freely generates them. However, unlike

graphs, the category Pol of polygraphs fails to be a presheaf category [CJ04] [MZ08]
[Che13]. The obstruction for it to be the case is an unpleasant corollary of the exchange
law: if f and g are endomorphisms of an identity cell, then fg = gf .

. .⇓f. .
⇓g

. .⇓f . .
⇓g

. ⇓f . .⇓g

. .
⇓f

. .⇓g . .⇓g. .
⇓f

Nonetheless, the recent work of Henry [Hen19] characterized many subcategories of Pol

to be presheaf categories. Among them, the category Polmto of many-to-one polygraphs,
in which the target (or codomain) of generating cells are themselves generating cells. In
this chapter, we relate opetopes and many-to-one polygraphs in a formal way. Namely,
we construct an equivalence of categories ∣ − ∣ ∶ Psh(O) Ð→ Polmto, called polygraphic
realization.

Recall from [BD86, theorem 1] that if A and B are two Cauchy-complete categories such
that Psh(A) ≃ Psh(B), then A ≃ B (see theorem 4.3.27 for more details). In particular, any
Cauchy-complete category A that acts as a “shape theory for many-to-one polygraphs”,
i.e. such that Psh(A) ≃ Polmto, is equivalent to O (since it doesn’t have any non-identity
endomorphism, it is Cauchy-complete). This shows that the geometrical intuition behind
the definition of O (remark 3.4.4) is essentially the unique way to faithfully implement the
combinatorics of pasting diagrams.

The fact that many-to-one polygraphs are equivalent to opetopic sets was already
known from [HMP00] [HMZ02] [Che04b] [HMZ08], however the proof there is indirect and
spanned over multiple articles. The formalism we developed so far allows us to establish
this result directly.
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4.1 STRICT HIGHER CATEGORIES

Definition 4.1.1 (ω-category). An ω-category C (also called strict ∞-category) is the
datum of a diagram of sets

C0 C1 ⋯ Cn ⋯
id

s,t

id

s,t

id

s,t

id

s,t

with composition maps ○k ∶ Cn,k Ð→ Cn, where k < n and Cn,k is the pullback

Cn,k Cn

Cn Ck,

⌟
tn−k

sn−k

such that the following conditions hold:
(1) for all k < n, the diagram

Ck Cn

idn−k

sn−k,tn−k

with the composition map ○k ∶ Cn,k Ð→ Cn is a 1-category;
(2) for all l < k < n, the diagram

Cl Ck Cn

idk−l

sk−l,tk−l

idn−k

sn−k,tn−k

with the composition maps ○l ∶ Ck,l Ð→ Ck, ○l ∶ Cn,l Ð→ Cn and ○k ∶ Cn,k Ð→ Cn is a
strict 2-category.

The maps s and t are called source and target maps, respectively, and if x ∈ Ck, then
idx ∶= id(x) is the identity cell of x. Note that by definition, the following equalities hold:

s sx = s tx, t sx = t tx, s idx = x = t idx .

The first two are called the globular identities. Still be definition, for 0 ≤ l < k < n and
w,x, y, z ∈ Cn the following exchange law holds:

(w ○
k
x) ○

l
(y ○

k
z) = (w ○

l
y) ○

k
(x ○

l
z),

assuming both sides are well-defined. Note that a strict n-category C is simply an ω-
category where Cm only has identities for all m > n. Given an ω-category C, we write C≤n
for the underlying strict n-category

C0 C1 ⋯ Cn.

id

s,t

id

s,t

id

s,t

An ω-functor f ∶ B Ð→ C between two ω-categories is just a sequence of maps fn ∶
Bn Ð→ Cn that induces a n-functor f≤n ∶ B≤n Ð→ C≤n for all n ∈ N. If the context is clear,
we simply write f for fn ∶ Bn Ð→ Cn.



Definition 4.1.2 (Parallel cells [M0́3]). Let D be a strict ω-category, n ∈ N. Two n-cells
x, y ∈Dn are parallel, denoted by x ∥ y, if sx = s y and tx = t y. By convention, 0-cells are
pairwise parallel.

Definition 4.1.3 (Cellular extension). Let D be a strict (n − 1)-category. A cellular
extension of D consists in a set X and two maps s, t ∶ X Ð→ Dn−1 such that the globular
identities hold, i.e. for all x ∈X, we have sx ∥ tx. We also denote such a cellular extension
by

D
s,t
←ÐX.

Definition 4.1.4 (Free n-category). Let D be a strict (n − 1)-category and D
s,t
←Ð X be

a cellular extension of D. The free strict n-category generated by this cellular extension is
the strict n-category D[X] such that

(1) as strict (n − 1)-categories, D =D[X]≤n−1;
(2) there is an inclusion X ↪Ð→D[X]n, and the following diagrams commute:

X

Dn−1 D[X]n,

s

s

X

Dn−1 D[X]n;

t

t

(3) if E is a strict n-category, f ∶ D Ð→ E≤n−1 is an (n − 1)-functor, and fn ∶ X Ð→ En

is a map such that for all x ∈ X, f(sx) = s fn(x) and f(tx) = t fn(x), then f and
fn extend uniquely to an n-functor D[X]Ð→ E.

The free extension D[X] always exists and is unique up to isomorphism, see [HMZ08,
section 1].

For the rest of this section, let D be a strict (n − 1)-category, D s,t
←Ð X be a cellular

extension of D, and E ∶=D[X] be the n-category freely generated by the cellular extension.

Definition 4.1.5 (Counting function). Define an n-category N(n) by

{0}
s,t
←Ð {0}

s,t
←Ð ⋯

s,t
←Ð {0}

s,t
←Ð N,

where all compositions correspond to the addition of integers. For x ∈X, define a counting
function #x ∶ X Ð→ N that maps x to 1, and all other elements of X to 0. This extends
to a n-functor E Ð→ N(n). Similarly, let # ∶ X Ð→ N be the map sending all elements to
1, and extend it as # ∶ EÐ→ N(n).

Definition 4.1.6 (Context [GM09, definition 2.1.1]). Consider another cellular extension

D
s,t
←Ð (X + {◻})

of D, where s◻ and t◻ are chosen arbitrarily. A n-context of E is a cell C ∈ D[X + {◻}]n
such that #◻C = 1. One may think of C as a cell of En with a “hole”, and we sometime
write C = C[◻]. If u ∈ En is parallel to ◻ in D[X + {◻}], let C[u], be C[◻] where ◻ has
been replaced by u.



Definition 4.1.7 (Category of contexts [GM09, definition 2.1.2]). The category CtxnE of
n-contexts of E has objects the n-cells of E, and a morphism C ∶ x Ð→ y is an n-context
C = C[◻] such that C[x] = y. If D ∶ y Ð→ z is another context, then the composite of C
and D is DC ∶=D[C[◻]] ∶ xÐ→ z, as indeed, D[C[x]] =D[y] = z.

Definition 4.1.8 (Primitive context). A context is primitive over a cell y ∈ En if it is of
the form C ∶ xÐ→ y with x ∈X.

4.2 MANY-TO-ONE POLYGRAPHS

polygraphs

Definition 4.2.1 (Polygraph [HMZ08, definition 7.1]). A polygraph (also called a com-
putad) P consists of a small ω-category C and sets Pn ⊆ Cn for all n ∈ N, such that P0 = C0,
and such that C≤n+1 = C≤n[Pn+1], i.e. the underlying (n + 1)-category of C is freely gener-
ated by Pn+1 over its underlying n-category. We usually write P∗ instead of C. A polygraph
P is an n-polygraph if Pk = ∅ whenever k > n. A morphism of polygraphs is an ω-functor
mapping generators to generators. Let Pol be the category of polygraphs and morphisms
between them.

Example 4.2.2. A 1-polygraph P is simply a free 1-category generated by the graph
P0

s,t
←Ð P1.

Proposition 4.2.3. The category Pol is cocomplete. If F ∶ J Ð→ Pol is diagram, and
n ∈ N, then (colimi∈J Fi)n ≅ colimi∈J(Fi)n.

Notation 4.2.4. If P ∈ Pol, we write CtxnP instead of CtxnP≤n−1[Pn] (see definition 4.1.7).

Proposition 4.2.5 ([GM09, proposition 2.1.3]). Let P be a polygraph, and C ∈ CtxnP.
Then C decomposes as

C = dn ○
n−1
(dn−1 ○

n−2
⋯ (d1 ○

0
◻○

0
e1)⋯ ○

n−2
en−1) ○

n−1
en,

where dn, en ∈ P∗n, and for 1 ≤ i < n, di and ei are identities of i-cells.

Definition 4.2.6 (Whisker [GM09, paragraph 2.1.4]). Let P be a polygraph. an n-whisker
of P is an n-context of the form dn−1 ○n−2⋯(d1 ○0 ◻○0 e1)⋯○n−2 en−1, where for 1 ≤ i ≤ n−1,
di and ei are identities of i-cells.

Remark 4.2.7. If C is an (n − 1)-context, then by proposition 4.2.5, it decomposes as
C[◻] = dn−1 ○n−2⋯ (d1 ○0 ◻○0 e1)⋯○n−2 en−1, and it induces an n-whisker

iddn−1 ○
n−2
⋯ (idd1 ○

0
◻○

0
ide1)⋯ ○

n−2
iden−1

which we shall also denote by C.

Proposition 4.2.8 ([GM09, proposition 2.1.5]). Let P be a polygraph, u ∈ P∗n, k ∶=#u,
and assume k ≥ 1. Then u decomposes as

u = C1[x1] ○
n−1

C2[x2] ○
n−1
⋯ ○
n−1

Ck[xk],

where all of the Ci’s are n-whiskers, and x1, . . . , xk ∈ Pn.



Definition 4.2.9 (Partial composition [HMZ08, definition 3.8]). Let P be a polygraph,
x, y ∈ P∗n be n-cells, and C ∶ t y Ð→ sx be a context. The partial composition (called placed
composition in [HMZ08, definition 3.8]) x ○C y is defined as

x ○
C
y ∶= x ○

n−1
C[y],

where the notation C[y] follows remark 4.2.7. Note that this decomposition is in general
not unique.

Lemma 4.2.10. With x, y, and C as in definition 4.2.9, we have s(x ○C y) = C[s y] and
t(x ○C y) = tx.

Proof. We have t(x ○C y) = t(x ○n−1C[y]) = tx. On the other hand, s(x ○C y) = sC[y]. By
proposition 4.2.5 and remark 4.2.7, C[y] decomposes as

C[y] = iddn−1 ○
n−2
⋯ (idd1 ○

0
y ○
0
ide1)⋯ ○

n−2
iden−1 ,

where for 1 ≤ k ≤ n, dk and ek are identities of k-cells. Thus,

sC[y] = dn−1 ○
n−2
⋯ (d1 ○

0
(s y) ○

0
e1)⋯ ○

n−2
en−1 = C[s y].

many-to-one polygraphs

Definition 4.2.11 (Many-to-one polygraph [HMZ08, definition 7.4]). Let P ∈ Pol be a
polygraph. For n ≥ 1, an n-cell x ∈ P∗n is said many-to-one if tx ∈ Pn−1, and we write Pmto

n

for the set of many-to-one n-cells of P. By convention, all 0-cells are many-to-one. In turn,
the polygraph P is called many-to-one (or opetopic) if all its generators are many-to-one.
Let Polmto be the full subcategory of Pol spanned by many-to-one polygraphs.

Lemma 4.2.12. Let u ∈ P∗n be such that #u ≥ 1. By proposition 4.2.8, it decomposes as

u = C1[x1] ○
n−1

C2[x2] ○
n−1
⋯ ○
n−1

Ck[xk],

where k ∶=#u, where all of the Ci’s are n-whiskers, and x1, . . . , xk ∈ Pn. Then u is a
many-to-one cell if and only if C1 = ◻, i.e. if C1 is the trivial context.

Proof. First, note that tu = tC1[x1]. Write C1 as

C1[◻] = dn−1 ○
n−2
⋯ (d1 ○

0
◻○

0
e1)⋯ ○

n−2
en−1,

where for 1 ≤ i ≤ n − 1, di and ei are identities of i-cells (see definition 4.2.6). We have

tu = tC1[x1] = (tdn−1) ○
n−2
⋯ ((td1) ○

0
(tx1) ○

0
(t e1))⋯ ○

n−2
(t en−1).

Thus, tu is a generator if and only if tdi and t ei are identities, for all 0 ≤ i ≤ n− 1. In this
case, di and ei are identity cells of (i − 1)-cells, thus C1 = ◻. Conversely, if C1 = ◻, then
tu = tx1 is a generator since P is a many-to-one polygraph, thus u is a many-to-one cell.



The following result comes as a polygraphic analogue to proposition 2.2.22.

Proposition 4.2.13. A many-to-one n-cell of P is of either of the following forms:
(1) ida for a ∈ Pn−1,
(2) x ∈ Pn,
(3) v ○C x = v ○n−1C[x], for some v ∈ Pmto

n with #v ≥ 1, x ∈ Pn, and C ∶ txÐ→ s v.

Proof. Let u ∈ Pmto
n . If #u = 0, then u = ida for some a ∈ P ∗n−1. Further, a = tu ∈ Pn.

If #u = 1, then u is necessarily a generator. If #u = k ≥ 2, then by proposition 4.2.8, u
decomposes as

u = C1[x1] ○
n−1

C2[x2] ○
n−1
⋯ ○
n−1

Ck[xk],

where all of the Ci’s are n-whiskers, and x1, . . . , xk ∈ Pn. Let

v ∶= C1[x1] ○
n−1

C2[x2] ○
n−1
⋯ ○
n−1

Ck−1[xk−1].

Then Ck is a context txk Ð→ s v, and u = v ○Ck xk. By lemma 4.2.12, and since u is many-
to-one, C1 = ◻. By lemma 4.2.12 again, v is many-to-one, and #v = k − 1 ≥ 1, finishing the
proof.

Notation 4.2.14. For P ∈ Polmto, let Ctxmto
n P be the full subcategory of CtxnP generated

by many-to-one n-cells. In other words, an n-context C ∶ u Ð→ v is in Ctxmto
n P if u, v ∈

Pmto
n . Necessarily, such a context is itself a many-to-one cell, as tC[◻] = tC[u] = t v is a

generator.

Definition 4.2.15. We now define a polygraph T ∈ Polmto. First, set T0 ∶={⧫}, and
inductively, let Tn+1 ∶={(u, v) ∈ Tmto

n × Tn ∣ u ∥ v} (see definitions 4.1.2 and 4.2.11) with
s(u, v) ∶=u and t(u, v) ∶= v.

Proposition 4.2.16. The polygraph T is terminal in Polmto.

Proof. For P ∈ Polmto, we show that there exists a unique morphism f ∶ PÐ→ T.
Existence. If x ∈ P0, let f(x) ∶= ⧫, and if x ∈ Pn with n ≥ 1, let f(x) = (f(sx), f(tx)).

The source and target compatibility is trivial.
Uniqueness. Let g ∶ PÐ→ T be a morphism different from f defined above. Necessarily

g0 = f0 as T0 is a singleton. Let x ∈ Pn be such that g(x) ≠ f(x), with n minimal.
Necessarily, n ≥ 1, and we have

f(x) = (f(sx), f(tx)) by definition of f
= (g(sx), g(tx)) by minimality of n
= (s g(x), t g(x))
= g(x) see definition 4.2.15,

a contradiction.

Notation 4.2.17. If P is a many-to-one polygraph, we write ! ∶ P Ð→ T for the terminal
map.

Definition 4.2.18. (1) An effective category is a category C equipped with a functor
F ∶ CÐ→ Set. For example:



a) if A is a small category, then Psh(A) (or any subcategory thereof) is nat-
urally an effective category with the functor Psh(A) Ð→ Set mapping a
presheaf X to ∑a∈AXa;

b) Pol (or any subcategory thereof) is an effective category, where the functor
PolÐ→ Set maps a polygraph P to ∑n∈NPn.

(2) A category C is an effective presheaf category if it is effective, and equivalent, as an
effective category, to a presheaf category.

(3) A functor F ∶ C Ð→ Set is familially representable if F ≅ ∑i∈I C(ci,−) for some
family {ci ∣ i ∈ I} of objects of C.

Theorem 4.2.19. (1) [Hen19, corollary 2.4.9] The category Polmto is a good class of
polygraphs [Hen19, definition 2.2.2], and in particular

a) it is an effective presheaf category;
b) for all n ∈ N, the functor (−)∗n ∶ Polmto Ð→ Set that maps a polygraph P ∈

Polmto to its set P∗n of n-cells is familially representable, and the representing
objects are called the opetopic n-polyplexes (or just n-polyplexes):

P∗n ≅ ∑
ω is an opetopic

n-polyplex

Polmto(ω,P).

(2) [Hen19, proposition 2.2.6] The opetopic n-polyplexes are in bijective correspondence
with T∗n. Isomorphic polyplexes are equal. If u ∈ T∗n, let u be the associated polyplex
(refer to [Hen19, section 2.3] for the precise construction). The isomorphism above
can be reformulated as

P∗n ≅ ∑
u∈T∗n

Polmto(u,P).

More precisely, a cell v ∈ P∗n corresponds to a unique morphism of the form uÐ→ P,
and u = ! v (see notation 4.2.17).

(3) [Hen19, lemma 2.4.4, corollary 2.3.13] Let 0 ≤ k < n, a ∈ T∗k , and u, v ∈ T∗n be such
that tn−k v = a = sn−k u. Then we have natural maps sn−k ∶ aÐ→ u and tn−k ∶ aÐ→ v,
and u ○k v is obtained as the pushout

a v

u u ○k v.
⌜

tn−k

sn−k ιv

ιu

Furthermore, the maps ιu and ιv are injective on (n − 1)- and n-cells.

Example 4.2.20. By definition 4.2.15, T has a unique 0-cell ⧫, and the corresponding
polyplex ⧫ is simply the polygraph with a single 0-generator. Indeed, Polmto(⧫,−) maps a
polygraph P ∈ Polmto to its set of 0-cells P0.

If we write ◾ ∶=(⧫, ⧫) for the unique 1-generator of T, then

T∗1 = { id⧫, ◾, ◾ ○
0
◾, ◾ ○

0
◾ ○
0
◾, ◾ ○

0
◾ ○
0
◾ ○
0
◾, . . . } .

Write l0 ∶= id⧫, and lk for the composite ◾ ○0⋯○0 ◾ of k instances of ◾. Then the polyplex
l0 is simply ⧫, and lk the free category on the linear graph with k vertices:

●Ð→ ●Ð→ ●Ð→ ⋯Ð→ ●



Indeed, let P ∈ Polmto. Then a 1-cell u of P is either
(1) an identity of a 0-cell;
(2) a sequence of k composable 1-generators of P.

If u = ida for some a ∈ P0, then it is uniquely identified (as a 1-cell) by a morphism l0 Ð→ P

mapping the unique 0-cell of l0 to a. If u is a composite of k generators, then uniquely
identified (as a 1-cell) by a morphism lk Ð→ P. In conclusion,

P∗1 ≅ ∑
k∈N

Polmto(lk,P) = ∑
v∈T∗1

Polmto(v,P).

Remark 4.2.21. If u is an n-polyplex, then under the isomorphism of theorem 4.2.19 (2),
the identity morphism u Ð→ u corresponds to an n-cell, which we call the fundamental
cell of u, and following [Hen19], denote by u. If P is a many-to-one polygraph, v ∈ P∗, and
u = ! v, then the map uÐ→ P corresponding to v maps the fundamental cell u to v.

Lemma 4.2.22 ([Hen19, lemma 2.4.5]). Let n ≥ 1, u be an n-polyplex, and u be its
fundamental cell. For a ∈ un−1, exactly one of the following two possibilities happens:

(1) a occurs in su;
(2) a is the target of a n-generator of u.

Furthermore, in the second case, the n-generator in question is unique.

Lemma 4.2.23 ([Hen19, remark 2.2.9, corollary 2.2.13]). Let f ∶ P Ð→ Q a morphism
of many-to-one polygraphs, and recall from definition 4.1.1 that P∗n,k = P∗n ×P∗k P

∗
n. The

following square is cartesian
P∗n,k P∗n

Q∗n,k Q∗n.

○k

f f

○k

In other words, for u1, u2, v1, v2 ∈ P∗n, if u1 ○k v1 = u2 ○k v2, f(u1) = f(u2), and f(v1) =
f(v2), then u1 = u2 and v1 = v2.

Proof (sketch). Let us first consider the case Q = T, and let u, v ∈ P∗n be such that tn−k v =
sn−k u = a. In particular, pair (u, v) is in P∗n,k. We have a series of correspondences

A tuple (u, v) ∈ P∗n,k theorem 4.2.19 (2)A map !u∐!a ! v Ð→ P
theorem 4.2.19 (3)A map !(u ○k v)Ð→ P with a decomposition of !(u ○k v) as x ○k y
theorem 4.2.19 (2)An element u ○k v ∈ P∗n with a decomposition of !(u ○k v) as x ○k y.

In other words, the following square is a pullback

P∗n,k P∗n

T∗n,k T∗n.

○k

! !

○k



For the general case, note that in the following diagram, the lower and outer squares are
cartesian, and by the pasting lemma, so is the upper one:

P∗n,k P∗n

Q∗n,k Q∗n

T∗n,k T∗n.

○k

f

!

f

!

⌟

○k

! !

○k

composition trees

Let P ∈ Polmto and v ∈ Pmto
n . Then v is a composition of n-generators of P, which are

many-to-one, so intuitively, v is a “tree of n-generators”. In this section, we make this idea
formal. We first define a polynomial functor ∇nP whose operations are the n-generators
of P (definition 4.2.24), and then construct the composition T ○ ∈ Pmto

n of a ∇nP-tree T . In
proposition 4.2.31, we show that this construction is bijective.

Definition 4.2.24 (The ∇ construction). For P ∈ Polmto and n ≥ 1, let ∇nP be the
following polynomial endofunctor:

Pn−1 P●n Pn Pn−1,
s p t

where for x ∈ Pn, the fiber P●n(x) is the set of primitive contexts over sx, and for C ∶ aÐ→
sx in P●n(x), s(C) ∶=a, p(C) ∶=x, and t is the target map of P.

Lemma 4.2.25. Let P,Q ∈ Polmto, and f ∶ P Ð→ Q. For v ∈ Pmto
n , write E(v) for the set

of primitive contexts over v, and likewise for many-to-one cells of Q. Then f induces a
bijection E(v)Ð→ E(f(v)).

Proof. We proceed by induction on v (see proposition 4.2.13).
(1) If v is an identity (resp. a generator), then so is f(v), thus E(v) and E(f(v)) are

both empty (resp. singletons). Trivially, f ∶ E(v)Ð→ E(f(v)) is a bijection.
(2) Assume that v decomposes as v = w ○C x with #w ≥ 1 and x ∈ Pn, and C ∶ tx Ð→

sw. Then a primitive context over v is either w ○C ◻ or of the form D[◻] ○C x
for D ∈ E(w), and E(v) ≅ 1 + E(w). Likewise, E(f(v)) ≅ 1 + E(f(w)), and it is
straightforward to check that f ∶ E(v)Ð→ E(f(v)) is indeed a bijection.

Proposition 4.2.26. Let f ∶ P Ð→ Q be a morphism of many-to-one polygraphs. For
all n ≥ 1, it induces a morphism of polynomial functors ∇nf ∶ ∇nP Ð→ ∇nQ, where
(∇nf)1 = fn ∶ Pn Ð→ Qn.

Proof. Consider
Pn−1 P●n Pn Pn−1

Qn−1 Q●n Qn Qn−1

f

p

f●

s t

f f

ps t



where f●n maps a context C ∶ a Ð→ sx to f(C) ∶ f(a) Ð→ f(sx). Clearly, all squares
commute, and by lemma 4.2.25, the middle one is cartesian.

Definition 4.2.27 (Composition). We define the composition operation (−)○ ∶ tr∇nPÐ→
Pmto
n . At the same time, we establish a bijection between T∣ and the primitive contexts

over sT ○, where T ∈ tr∇nP.
(1) If a ∈ Pn−1, then (Ia)○ ∶= ida. Note that the only primitive context over s ida is
◻ ∶ aÐ→ a, and let C[] ∶=◻.

(2) If x ∈ Pn, then (Yx)○ ∶=x. Note that by definition of ∇nP (definition 4.2.24) we have
Y∣x = {[D] ∣D ∈ x●} (see remark 2.2.18), and let C[D] ∶=D.

(3) Consider a tree of the form S = T ○[l]Yx, with T ∈ tr∇nP having at least one node,
[l] ∈ T∣ and x ∈ Pn. By induction, the leaf [l] corresponds to a primitive context
C[l] ∶ a Ð→ sT ○, and moreover, a = tx. Let S○ ∶=T ○ ○C[l] x. Let [l′] ∈ S∣. If [l′] is of
the form [lD], for some [D] ∈ Y∣x , let C[l′] ∶=C[l][D]. Otherwise, [l′] is a leaf of T ,
and so C[l′] is already defined.

Definition 4.2.28 (Composition tree). A composition tree is simply a ∇nP-tree. If v ∈
Pmto
n and T is a composition tree such that T ○ = v, then we say that T is a composition

tree of v.

The following result generalizes lemma 4.2.23.

Proposition 4.2.29. Let f ∶ PÐ→ Q a morphism of many-to-one polygraphs. The follow-
ing square is cartesian

tr∇nP Pmto
n

tr∇nQ Qmto
n .

(−)○

f f

(−)○

Proof. This amounts to showing that if v ∈ Pmto
n , then f establishes a bijective correspon-

dence between the composition trees of v and f(v). This is clear if #v ≤ 1, so let us assume
#v ≥ 2, and let T be a composition tree of v. Then T decomposes as

T = Ya◯
[C]

TC ,

where a ∈ Qn, C ranges over the primitive contexts over sa, and TC ∈ tr∇nQ. Then, by
lemma 4.2.23, there exists a unique b ∈ Pn such that f(b) = a, and unique vC ’s such that
f(vC) = T ○C . Further, f exhibits a bijection between the primitive contexts over a and
over b. Note that #vC <#v, so by induction, there exists a unique SC ∈ tr∇nP such that
f(SC) = TC . Finally,

S ∶= Yb◯
[D]

Sf(D)

is the unique tree such that f(S) = T .

Lemma 4.2.30. Let u be a polyplex. The fundamental cell u ∈ un has at most one
composition tree.



Proof. Assume that S and T are two composition trees of u. Necessarily, e[] S = tu = e[] T ,
i.e. the root edge of S and T are both decorated by the target of u. By lemma 4.2.22,
exactly one of the following two possibilities happens.

(1) If tu occurs in su, then u is an identity cell, and S = Itu = T . We are done.
(2) Otherwise tu is the target of a unique n-generator of u, say x. Since t s[] S = e[] S =

x, we have s[] S = x, in other words, the root node of S is decorated by x. Likewise,
s[] T = x.
Let a be an (n − 1)-generator occurring in sx. It decorates an input edge of the
root node of S and of T . If a occurs in su, then by lemma 4.2.22 again, there is
no n-generator whose target is a. So in S and T , there cannot be a node above
the corresponding edges, i.e. these edges are leaves. Otherwise, a is the target of
a unique n-generator y, and necessarily, s[a] S = y = s[a] T . Applying lemma 4.2.22
repeatedly, we show that S = T .

Proposition 4.2.31. The composition map (−)○ ∶ tr∇nPÐ→ Pmto
n is a bijection.

Proof. Surjectivity. This clearly holds if n ≤ 1. Assume n ≥ 2 and let v ∈ Pmto
n . If

v = ida for some a ∈ Pn−1, then v = I○a. If v ∈ Pn, then v = Y○v. Otherwise, by
proposition 4.2.13, v decomposes as w ○C x, where w ∈ Pmto

n , x ∈ Pn, and C ∶
tx Ð→ sw is a context. By induction, there exist T ∈ tr∇nP such that T ○ = w.
By construction, C corresponds to a unique leaf address [l] ∈ T ∣. Finally, v =
(T ○[l]Yx)

○.
Injectivity. Let v ∈ Pmto

n , u ∶= ! v, and f ∶ y Ð→ P map the fundamental cell u to v. By
proposition 4.2.29, the following square is cartesian

tr∇nu umto
n

tr∇nP Pmto
n ,

⌟

(−)○

f f

(−)○

and in particular, f induces a bijection between the composition trees of u ∈ umto
n

and v ∈ Pmto
n . By lemma 4.2.30 and the previous point, u has exactly one compo-

sition tree, and thus, so does v.

Notation 4.2.32. Let the composition tree operation ct ∶ Pmto
n Ð→ tr∇nP be the inverse of

the composition operation (−)○ of definition 4.2.27.

Corollary 4.2.33. Let P ∈ Polmto and v ∈ Pmto
n with #v ≥ 1. Then v uniquely decomposes

as
v = x◯

C

vC

where x ∈ Pn, C ranges over the primitive contexts over sx, and vC ∈ Pmto
n .

Proof. The composition tree of v decomposes uniquely as

ct v = Yx◯
[C]

TC ,

and applying back (−)○ gives the desired decomposition of v.



Corollary 4.2.34. Let P ∈ Polmto. A many-to-one context C ∈ Ctxmto
n P decomposes

uniquely as
C = C[◻] = x ○

D
◻◯

E

vE

where x, vE ∈ Pmto
n .

Proof. We proceed by induction on #C. Since #◻C = 1 (i.e. C has only one occurrence of
◻, see definition 4.1.5), we have #C ≥ 1. By corollary 4.2.33, C uniquely decomposes as

C = y◯
F

uF .

Either one of two cases occur.
(1) If y = ◻, then consider

C = idt◻ ○⊡◻◯F
uF ,

where ⊡ is the trivial context t◻Ð→ t◻.
(2) Otherwise, there exists a unique F ∈ y● such that #◻uF = 1. By induction, uF

decomposes as on the left, and consider the decomposition of C as on the right:

uF = z ○
G
◻◯

H

wH , C = (y ○
F
z ◯
G≠F

uG) ○
F
◻◯

H

wH .

Remark 4.2.35. Given a many-to-one cell as on the left below, corollary 4.2.33 decomposes
it as on the right.

.

. . .

.
⇓

.. .

.

⇓

⇓
⇓

⇓⇓

.

. . .

.
⇓

○C1

○C2
○C3

○C4.

.
⇓

. .

. .

.

⇓

⇓⇓
. .

.

⇓
.

.

Given a context as on the left below, corollary 4.2.34 detaches ◻ from the cell “below”
and the cells “above” it:

.

. . .

.
⇓

.. .

.

⇓

⇓
⇓

⇓◻

.

. . .

.
⇓

○E1

○E2

○E3

○D

.

⇓
⇓

. .

. .

◻.

.
⇓

. .

.

⇓
.

.



Remark 4.2.36. Let C ∶ x Ð→ y be an n-context of P ∈ Polmto between many-to-one cells.
In particular, C is a many-to-one cell in the extended category Q of definition 4.1.6, so by
virtue of corollary 4.2.34, it uniquely decomposes as

C = z ○
D
◻◯

E

vE .

where z, vE ∈ P∗n. Since C[x] = y, we have

y = z ○
D
x◯
E

vE .

Conversely, any decomposition of y of the form above induces a context C ∶ x Ð→ y. In
particular, the number of primitive contexts over y is #y, and ∇nP is finitary.

Definition 4.2.37. We now extend (−)○ and ct to functors between tr∇nP and Ctxmto
n P.

On object, they are respectively defined in definitions 4.2.27 and 4.2.28.
(1) Let f ∶ T Ð→ S be a morphism in tr∇nP. It corresponds to a decomposition of S

as on the left, and let f○ be the context T ○ Ð→ S○ on the right:

S = U ○
[p]
T◯
[l]
V[l], f○ ∶= U○ ○

C[p]
◻◯
C[l]

V ○[l],

where [l] ranges over T∣.
(2) Let C ∶ xÐ→ y be an n-context. By corollary 4.2.34, it decomposes uniquely as on

the left, and let ctC correspond to the decomposition of ct y on the right:

C[◻] = z ○
D
◻◯

E

tE , ct y = (ct z) ○
[lD]
(ctx)◯

[lE]
(ct tE),

where E ranges over all primitive contexts over sx.

One readily checks the following:

Proposition 4.2.38 (Composition tree duality). The functors (−)○ and ct are mutually
inverse isomorphisms of categories.

Corollary 4.2.39. For n ≥ 2 and x ∈ Pn, the functor ct induces a natural bijection

P●n(x) ≅ ∑
a∈Pn−1

(tr∇n−1P)(Ya, ct sx).

Proof. Direct consequence of proposition 4.2.38.

Notation 4.2.40. If x ∈ Pn and [p] ∈ (ct sx)●, then we write s[p] x instead of s[p] ct sx ∈ Pn−1.

4.3 THE EQUIVALENCE

We now aim at proving that the category of opetopic sets, i.e. Set-presheaves over the
category O defined previously, is equivalent to the category of many-to-one polygraphs
Polmto. We achieve this by first constructing the polygraphic realization functor ∣− ∣ ∶ OÐ→
Polmto. This functor “realizes” an opetope as a polygraph that freely implements all its
tree structure by the means of adequately chosen generators in each dimension. Secondly,



we consider the left Kan extension ∣ − ∣ ∶ Psh(O)Ð→ Polmto along the Yoneda embedding.
This functor has a right adjoint, the “opetopic nerve” N ∶ Polmto Ð→ Psh(O), and we
prove this adjunction to be an adjoint equivalence. This is done using the shape function,
defined in section 4.3, which to any generator x of a many-to-one polygraph P associates
an opetope x♮ along with a canonical morphism x̃ ∶ ∣x♮∣Ð→ P.

polygraphic realization

An opetope ω ∈ On, with n ≥ 1, has one target tω, and sources s[p] ω laid out in a
tree. If the sources s[p] ω happened to be generators in some polygraph, then that tree
would describe a way to compose them. With this in mind, we define a many-to-one n-
polygraph ∣ω∣, whose generators are essentially iterated faces (i.e. sources or targets) of
ω (hypothesis (PR1) below). Moreover, ∣ω∣ will be “maximally unfolded” (or “free”), in
that two (iterated) faces that are the same opetope, but located at different addresses,
will correspond to distinct generators.

The rest of this section is devoted to inductively define the realization functor ∣ − ∣ ∶
O Ð→ Polmto together with its boundary ∂∣ − ∣. We bootstrap the process with defini-
tion 4.3.1 and state our induction hypotheses in 4.3.3.

Definition 4.3.1 (Low dimensional cases). For ⧫ the unique 0-opetope, let ∂∣ ⧫ ∣ be the
empty polygraph, and ∣ ⧫ ∣ be the polygraph with a unique generator in dimension 0, which
we denote by ⧫. For ◾ the unique 1-opetope, let ∂∣ ◾ ∣ ∶= ∣ ⧫ ∣ + ∣ ⧫ ∣, and let ∣ ◾ ∣ be induced by
the cellular extension

∂∣ ◾ ∣
s,t
←Ð {◾},

where s and t map ◾ to distinct 0-generators. There are obvious functors ∣ s[] ∣, ∣ t ∣ ∶ ∣ ⧫ ∣Ð→
∣ ◾ ∣, mapping ⧫ to s ◾ and t ◾, respectively.

Definition 4.3.2 (Dimension 2). For the reader’s convenience, we construct ∂∣k∣ and ∣k∣
for every opetopic integer k, although this case already falls under the inductive definition
(see definitions 4.3.4 and 4.3.11).

(1) Let ∂∣0∣ be the 1-polygraph given by the following coequalizer:

∣ ⧫ ∣ ∣ ◾ ∣ ∂∣0∣.
s[]

t

In other words, ∂∣0∣ has one object x and one generating endomorphism f ∶ xÐ→ x.
The 2-polygraph ∣0∣ is obtained by adjoining a generating 2-cell α ∶ idx Ð→ f to
∂∣0∣.

(2) Let k ≥ 1, and consider the 1-polygraph

P ∶=
⎛
⎝
∣ ◾ ∣∐
∣ ⧫ ∣
∣ ◾ ∣∐
∣ ⧫ ∣
∣ ◾ ∣∐
∣ ⧫ ∣
⋯∐
∣ ⧫ ∣
∣ ◾ ∣
⎞
⎠
,

where there are k instances of ∣ ◾ ∣. In other words, P is generated by a chain of k
composable 1-cells, which we denote by

x0
f1Ð→ x1

f2Ð→ x2
f3Ð→ ⋯

fkÐ→ xk.



Alternatively, P is the polyplex lk of example 4.2.20. Let ∂∣k∣ be the obvious pushout

∂∣ ◾ ∣ P

∣ ◾ ∣ ∂∣k∣,
⌜

(x0,xk)

i.e., ∂∣k∣ is P with an additional generating 1-cell g ∶ x0 Ð→ xk. Finally, ∣k∣ is
obtained from ∂∣k∣ by adjoining a generating 2-cell α ∶ fk⋯f2f1 Ð→ g.

In both cases, there is a bijective correspondence between the generating cells of ∣k∣ and
the objects of O/k, and the obvious inclusions induce functors

∂∣ − ∣, ∣ − ∣ ∶ O≤2 Ð→ Polmto.

Let n ≥ 2 and assume by induction that ∂∣ − ∣ and ∣ − ∣ are defined on O<n. Assume
further that the following induction hypotheses hold (they are easily verified for n = 2).

Assumptions 4.3.3. For all ψ ∈ Ok with k < n, the following hold:
(PR1) for all j ∈ N, the set ∣ψ∣j of j-generators of ∣ψ∣ is in bijection with the set of

objects of the slice Oj/ψ, i.e. of the form (ϕ aÐ→ ψ) for ϕ ∈ Oj and a ∶ ϕ Ð→ ψ a
morphism in O;

(PR2) for (ϕ aÐ→ ψ) a generator of ∣ψ∣, its target is (tϕ tÐ→ ϕ
aÐ→ ψ);

(PR3) for l ≤ k, and for (ϕ aÐ→ ψ) a l-generator of ∣ψ∣, the composition tree of its

source ct s(ϕ aÐ→ ψ) ∈ tr∇l−1∣ψ∣ is

⟨ϕ⟩Ð→ ∇l−1∣ψ∣

[p]z→ (s[p] ϕ
s[p]ÐÐ→ ϕ

aÐ→ ψ) .

Recall that by proposition 4.2.38, this completely determines s(ϕ aÐ→ ψ) ∈ ∣ψ∣∗l−1.

We now define ∂∣ω∣ and ∣ω∣ when ω ∈ ON . Defining the former is easy, and done
in definition 4.3.4. The latter is defined in definition 4.3.11 as generated by a cellular
extension

∂∣ω∣
s,t
←Ð {ω}

of ∂∣ω∣, where the target and source of the new generator are given by (PR2) and (PR3).
Lastly, we check the inductive hypotheses in proposition 4.3.12.

Definition 4.3.4 (Inductive step for ∂∣ − ∣). For ω ∈ ON , let ∂∣ω∣ be the following many-
to-one (n − 1)-polygraph:

∂∣ω∣ ∶= colim
a∶ψ→ω
dimψ<n

∣ψ∣.

For a ∶ ψ Ð→ ω in O<n/ω, this colimit comes with a corresponding coprojection ∣a∣ ∶ ∣ψ∣↪Ð→
∂∣ω∣.



Remark 4.3.5. Let 0 ≤ k < n. By (PR1), the set of k-generators of ∂∣ω∣ is Ok/ω.

Lemma 4.3.6. For ω ∈ ON , and j < n, the set ∂∣ω∣j of j-generators of ∂∣ω∣ is the slice
Oj/ω.

Proof. Follows from the induction hypothesis (PR1) and proposition 4.2.3.

Corollary 4.3.7. For ω ∈ ON and 1 ≤ k < n, the polynomial functor ∇k∂∣ω∣ is described
as follows:

Ok−1/ω E Ok/ω Ok−1/ωs p t

where for (ψ aÐ→ ω) ∈ Ok/ω,

(1) the fiber E (ψ aÐ→ ω) is simply ψ●;

(2) for [p] ∈ E (ψ aÐ→ ω) ≅ ψ●, we have s[p] = (s[p]ψ
s[p]ÐÐ→ ψ

aÐ→ ω);

(3) t(ψ aÐ→ ω) = (tψ tÐ→ ψ
aÐ→ ω).

Proof. Direct consequence of lemma 4.3.6 and (PR1), (PR2), and (PR3).

Definition 4.3.8. For ω ∈ ON and 1 ≤ k < n, we have a morphism u ∶ ∇k∂∣ω∣Ð→ Zk−1

Ok−1/ω E Ok/ω Ok−1/ω

Ok−1 O●k Ok Ok−1

u0

p

u2

s t

u1 u0

ps t

induced by the forgetful maps Ok−1/ω Ð→ Ok−1 and Ok/ω Ð→ Ok.

Lemma 4.3.9. Let ω ∈ ON = trZn−2. The map ω ∶ ⟨ω⟩ Ð→ Zn−2 factors through u ∶
∇n−1∂∣ω∣Ð→ Zn−2 (definition 4.3.8):

∇n−1∂∣ω∣

⟨ω⟩ Zn−2.

ω̄
u

ω

Proof. Let ω̄ map a node [p] ∈ ω● to the cell (s[p] ω
s[p]ÐÐ→ ω) ∈ On−1/ω, and map an edge

[l] to the cell (e[l] ω
e[l]ÐÐ→ ω) ∈ On−2/ω (see notation 2.4.5).

Proposition 4.3.10. On the one hand, consider the tree ∇n−1∂∣ω∣-tree ω̄ of lemma 4.3.9,
and on the other hand, recall from remark 4.3.5 that there is a (n−1)-generator (tω tÐ→ ω)
of ∂∣ω∣ corresponding to the target embedding of ω. Then, in ∂∣ω∣, the composite ω̄○ (defi-
nition 4.2.27) and the generator (tω tÐ→ ω) are parallel.



Proof. If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−2, then ω̄○ = id
(ϕ

t tÐ→ω)
, while

(tω tÐ→ ω) = (Yϕ
tÐ→ ω). By (Degen), those two cells are parallel.

For the rest of the proof, we assume that ω is not degenerate. First, we have

t ω̄○ = t s[] ω̄ = t(t s[] ω
t s[]ÐÐ→ ω) = (t tω t tÐ→ ω) = t(tω tÐ→ ω) .

Then, in order to show that s ω̄○ = s(tω tÐ→ ω), we show that the (n − 2)-generators
occurring on both sides are the same, and that the way to compose them is unique.

(1) Generators in s ω̄○ are of the form (ϕ
[q]
Ð→ ψ

[p]
Ð→ ω), for [p[q]] ∈ ω∣. By (Glob2),

those are equal to (ϕ
℘ω[p[q]]ÐÐÐÐ→ tω

tÐ→ ω), which are exactly the generators in the

cell s(tω tÐ→ ω).
(2) To show that there is a unique way to compose all the (n − 2)-generators of the

form (ϕ
s[q]ÐÐ→ ψ

s[p]ÐÐ→ ω), where [p[q]] ranges over ω∣, it is enough to show that no

two have the same target. Assume (ϕi
s[qi]ÐÐ→ ψi

s[pi]ÐÐ→ ω), with i = 1,2, are (n − 2)-
generators occuring in s ω̄○ with the same target. Consider the following diagram:

ϕ1 ψ1

ρ tω ω

ϕ2 ψ2

s[q1]

s[r1]

s[p1]t

t

t

s[q2]

s[r2]
s[p2]

where [ri] ∶=℘ω[pi[qi]] ∈ tω●. The outer hexagon commutes by assumption, the two
squares on the right are instances of (Glob2), and the left square commutes as
t ∶ tω Ð→ ω is a monomorphism, since ω is non degenerate. By inspection of the
opetopic identities (see definition 3.4.2), the only way for the left square to commute
is the trivial way, i.e. [r1] = [r2]. Since ℘ω is a bijection, we have [p1[q1]] = [p2[q2]],
thus [p1] = [p2] and [q1] = [q2].

Definition 4.3.11 (Inductive step for ∣ − ∣). For ω ∈ ON , let ∣ω∣ be the cellular extension

∂∣ω∣
s,t
←Ð {ω} ,

where t maps ω to the (n−1)-generator (tω tÐ→ ω), and where the composition tree of sω

is ω̄ (lemma 4.3.9). For consistency, we also write (ω idÐ→ ω) for the unique n-generator of
∣ω∣. This is well-defined by proposition 4.3.10, and gives a functor ∣ − ∣ ∶ O≤n Ð→ Pol.

Proposition 4.3.12. For ω ∈ ON , the polygraphs ∂∣ω∣ (definition 4.3.4) and ∣ω∣ (defini-
tion 4.3.11) satisfy the assumptions 4.3.3.



Proof. (PR1) For j < n, by lemma 4.3.6, we already have ∣ω∣j = ∂∣ω∣j = Oj/ω. In
dimension n, the only element of ON/ω is id ∶ ω Ð→ ω, which corresponds to the
unique n-generator of ∣ω∣. If j > n, then both Oj/ω and ∣ω∣j are empty.

(PR2) and (PR3) By definition, those hypotheses hold for the unique n-generator
(ω idÐ→ ω) of ∣ω∣. By induction, they also hold on the other generators.

To conclude, we have defined a functor ∣ − ∣ ∶ O Ð→ Polmto which satisfies the assump-
tions 4.3.3 for all n ∈ N.

the shape function

This subsection is devoted to the definition of the shape function (−)♮. We first sketch
the idea. Take P ∈ Polmto and define (−)♮ ∶ Pn Ð→ On by induction. The cases n = 0,1

are trivial, since there is a unique 0-opetope and a unique 1-opetope. Assume n ≥ 2, and
take x ∈ Pn. Then the composition tree of sx is a coherent tree whose nodes are (n − 1)-
generators, and edges are (n−2)-generators. Replacing those (n−1) and (n−2)-generators
by their respective shape, we obtain a coherent tree whose nodes are (n−1)-opetopes, and
edges are (n−2)-opetopes, in other words, we obtain an n-opetope, which we shall denote
by x♮.

g1

g2

g3

g4

e1

e2

e3 e4

e5

e6 e7

x
z→

g♮1

g♮2

g♮3

g♮4

e♮1

e♮2

e♮3 e♮4

e♮5

e♮6 e♮7

x♮

The fact that x♮ corresponds to the intuitive notion of “shape” of x is justified by theo-
rem 4.3.16. If P is the set of all the generators of P, then the shape function (−)♮ ∶ P Ð→ O
makes it into a set over O. We shall see that P can be further promoted to an opetopic set,
and that it completely determines P. Furthermore, the notation (−)♮ will then coincide
with definition 0.3.3.

Lemma 4.3.13. If x, y ∈ Tn are two parallel generators, then they are equal.

Proof. We have x = (sx, tx) = (s y, t y) = y.

Proposition 4.3.14. For x ∈ Tn there exists a unique x♮ ∈ On such that the terminal
morphism ! ∶ ∣x♮∣ Ð→ T maps x♮ (the unique n-generator of ∣x♮∣) to x. In particular, the
map (−)♮ ∶ Tn Ð→ On is a bijection.

Proof. Uniqueness. Assume that there exists two distinct opetopes ϕ,ϕ′ ∈ Ok such that
!ϕ = !ϕ′, with k minimal for this property. Then necessarily, k ≥ 2. On the one hand,
we have ⟨ϕ⟩ = ⟨ct sϕ⟩ = ⟨ct sϕ′⟩ = ⟨ϕ′⟩. On the other hand, for [p] ∈ ϕ● = (ϕ′)●, we
have

! s[p] ϕ = ! s[p] ϕ since ! is also ∣ s[p] ϕ∣↪ ∣ϕ∣→ T

= s[p] !ϕ since ! is a morphism of polygraphs
= s[p] !ϕ

′ by assumption



= ! s[p] ϕ
′ since ! is a morphism of polygraphs

= ! s[p] ϕ
′ since ! is also ∣ s[p] ϕ′∣↪ ∣ϕ′∣→ T,

and by minimality of k, we have s[p] ϕ = s[p] ϕ′, for any address [p]. Consequently,
ϕ = ϕ′, a contradiction.

Existence. The cases n = 0,1 are trivial, so assume n ≥ 2, and that by induction, the
result holds for all k < n, i.e. that for g ∈ Pk, there is a unique opetope g♮ ∈ Ok such
that !(g♮) = g. In particular the following two triangles commute:

∣ s[p] g♮∣ ∣g♮∣

P,

∣ s[p] ∣

!
!

∣ t g♮∣ ∣g♮∣

P,

∣ t ∣

!
!

where [p] ∈ (g♮)●. Consequently, (s[p] g)♮ = s[p](g♮) and (t g)♮ = t(g♮), and the
following displays an isomorphism ∇n−1T Ð→ Zn−2:

Tn−2 T●n−1 Tn−1 Tn−2

On−2 O●n−1 On−1 On−2.

(−)♮

ps t

(−)♮ (−)♮

ps t

Hence, the composite ⟨ct sx⟩ ct sxÐÐ→ ∇n−1T
(−)♮
ÐÐ→ Zn−2 defines an n-opetope x♮ with

⟨x♮⟩ = ⟨ct sx⟩. We claim that !(x♮) = x. We first show that ! s(x♮) = sx. We have

⟨ct sx⟩ = ⟨x♮⟩ by definition
= ⟨ct s(x♮)⟩ by (PR3)
= ⟨ct ! s(x♮)⟩ since ! is a morphism of polygraphs.

Then, for any address [p] in ⟨ct sx⟩, we have

s[p] x = !((s[p] x)♮) by induction
= ! s[p](x♮) by definition of x♮

= s[p] !(x♮) since ! is a morphism of polygraphs,

and therefore, by proposition 4.2.38, sx = s !(x♮). Next,

t !(x♮) = ! t(x♮) by induction
∥ ! s(x♮) since s(x♮) ∥ t(x♮)
= sx showed above
∥ tx,

and therefore, t !(x♮) = tx. Finally, !(x♮) ∥ x, and by lemma 4.3.13, !(x♮) = x.

Notation 4.3.15. In the light of proposition 4.3.14, we identify Tn with On. This identifi-
cation is compatible with faces, i.e. s[p] and t. Then, ! ∶ ∣ω∣Ð→ T maps a generator (ϕ→ ω)
to ϕ.



Theorem 4.3.16. For P ∈ Polmto and x ∈ Pn, there exists a unique pair1

(x♮, ∣x♮∣ x̃Ð→ P) ∈ ∣ − ∣/P

(see definition 0.1.3) such that x̃n(x♮) = x. Further, the shape function (−)♮ ∶ Pn Ð→ On

maps an n-generator x to x♮ = !x, where ! is the terminal morphism PÐ→ T, and the map

(̃−) ∶ Pn Ð→ ∑
ω∈On

Polmto(∣ω∣,P) (4.3.17)

is a bijection2.

Proof. Uniqueness. Assume ∣ω∣ f
Ð→ P

f ′

←Ð ∣ω′∣ are different morphisms such that f(ω) =
x = f ′(ω′). Then !ω = ! f(ω) = ! f ′(ω′) = !ω′, and by proposition 4.3.14, ω = ω′. Let
(ϕ aÐ→ ω) ∈ ∣ω∣k be such that f (ϕ aÐ→ ω) ≠ f ′ (ϕ aÐ→ ω), with k minimal for this
property. Then k < n (since by assumption f(ω) = x = f ′(ω′)), and a factorizes as
(ϕ

j
Ð→ ψ

bÐ→ ω), where j is a face embedding, i.e. either t or s[p] for some [p] ∈ ω●.
Then by assumption,

f (ϕ aÐ→ ω) = jf (ψ bÐ→ ω)

= jf ′ (ψ bÐ→ ω) by minimality of k

= f ′ (ϕ aÐ→ ω) ,

a contradiction.
Existence. The cases n = 0,1 are trivial, so assume n ≥ 2, and that by induction, the

result holds for all k < n. Let x♮ ∶= !x ∈ On. We wish to construct a morphism
O[x♮] x̃Ð→ P having x in its image. For (ψ j

Ð→ x♮) a face of x♮ (i.e. t or s[p] for
some [p] ∈ (x♮)●), we have (jx)♮ = ψ, so that by induction, there exists a morphism

∣ψ∣
j̃x
Ð→ P having jx in its image, providing a commutative square

∣ψ∣ P

∣x♮∣ T.

j̃x

∣j∣ !

!

To alleviate upcoming notations, write j̄ ∶= j̃x ∶ ∣ψ∣ Ð→ P. Let (ϕ aÐ→ x♮) ∈ O<n/x♮.
If a is a face embedding, define ā as before. If not, then it factors through a face
embedding as a = (ϕ j

Ð→ ψ
bÐ→ ω), and let ā ∶= b̄ ⋅ ∣j∣. Then the left square commutes,

1In [Hen19, proposition 2.2.3 (2)], x♮ is written x and called the universal cell (or top cell) of x.
2In other words, the functor Polmto Ð→ Set that maps a polygraph P to Pn is familially representable

[CJ95, definition 2.4] with {∣ω∣ ∣ ω ∈ On} as representing family.



and passing to the colimit over O<n/x♮, we obtain the right square:

∣ϕ∣ P

∣x♮∣ T,

ā

∣a∣ !

!

∂∣x♮∣ P

∣x♮∣ T.

f

!

!

We want a diagonal filler of the right square. Since ∣x♮∣ is a one-generator cellular
extension of ∂∣x♮∣ (definition 4.3.11), it is enough to check that f sx♮ = sx, and
f tx♮ = tx. The latter is clear, as f extends t̄ ∶ ∣ tx♮∣Ð→ P, and f tx♮ = t̄ tx♮ = tx by
definition. We now proceed to prove the former. First, ⟨ct sx♮⟩ = ⟨ct sx⟩ since both
are mapped to the same element of Tn. Then, for [p] a node address of ct sx♮, we
have f s[p] x♮ = s[p] s[p] x♮ = s[p] x. Hence f sx♮ = sx.

Notation 4.3.18. For P ∈ Polmto and ω ∈ On, let Pω ∶={x ∈ Pn ∣ x♮ = ω}. If f ∶ P Ð→ Q is a
morphism of polygraphs, then it restricts and corestricts as a map f ∶ Pω Ð→ Qω.

the adjoint equivalence

Definition 4.3.19 (Polygraphic realization-nerve adjunction). The polygraphic realiza-
tion functor ∣ − ∣ ∶ OÐ→ Polmto extends to a left adjoint

∣ − ∣ ∶ Psh(O)Ð→←Ð Polmto ∶ N,

by left Kan extension of ∣− ∣ ∶ OÐ→ Polmto along the Yoneda embedding y ∶ OÐ→ Psh(O).
Explicitly, the polygraphic realization of an opetopic set X ∈ Psh(O) can be computed
with the coend on the left, while the polygraphic nerve NP of a polygraph P ∈ Polmto is
given on the right:

∣X ∣ = ∫
ω∈O

Xω × ∣ω∣, NP = Polmto(∣ − ∣,P) ∶ Oop Ð→ Set.

We note η ∶ idPsh(O) Ð→ N ∣ − ∣ the unit of the adjunction, ε ∶ ∣N − ∣Ð→ idPolmto the counit,
and Φ ∶ Psh(O)(−,N)Ð→ Polmto(∣ − ∣,−) the natural hom-set isomorphism.

Notation 4.3.20. Using notation 0.4.2, the realization of an opetopic set X ∈ Psh(O) is a
polygraph whose generators are tensors of the form x⊗ g, for x ∈Xω and g = (ψ Ð→ ω) a
generator of ∣ω∣. Further, the following equality holds:

y ⊗ (ϕ fÐ→ ψ
g
Ð→ ω) = g(y)⊗ (ϕ fÐ→ ψ) ,

where y ∈ Xω, and f and g are morphisms of O. Note that all such tensors are equal to a
unique one of the form z ⊗ id.

Remark 4.3.21. Note that with the nerve functor of definition 4.3.19, the bijection of
equation (4.3.17) becomes

(̃−) ∶ Pn Ð→ ∑
ω∈On

NPω.



An n-generator x ∈ Pn then corresponds to a cell x̃ ∈ NPω, where ω ∶=x♮, in other words,
the shape function partitions the set of n-generators to form an opetopic set NP. In the
converse direction, for X ∈ Psh(O),

∣X ∣n = ∫
ω∈O

Xω × ∣ω∣n see definition 4.3.19

≅ ∫
ω∈O

Xω ×On/ω see assumptions 4.3.3, (PR1)

≅ ∫
ω∈O

Xω × ∑
ψ∈On

O(ψ,ω) by definition

≅ ∑
ψ∈On

∫
ω∈O

Xω ×O(ψ,ω)

≅ ∑
ψ∈On

Xψ by theorem 0.4.1,

so the set of n-generators of ∣X ∣ is the set of n-cells of X. In short, the polygraphic
realization-nerve adjunction of definition 4.3.19 is “a duality between cells and generators”.
Showing that it is an equivalence amounts to arguing that the cells of an opetopic set X
can act as generators of a many-to-one polygraph in a unique way, and conversely, that a
many-to-one polygraph is completely determined by its generators. Sadly this conceptual
approach to theorem 4.3.23 turns out to be longer than the “brute-force” method we have
adopted here.

Proposition 4.3.22. Take X ∈ Psh(O), P ∈ Polmto, and f ∶X Ð→ NP. The unit η at X,
the transpose Φf of f , and the counit ε at P are respectively given by:

η ∶Xω Ð→ N ∣X ∣ω Φf ∶ ∣X ∣ω Ð→ Pω ε ∶ ∣NP∣ω Ð→ Pω

xz→ x̃⊗ idω, x⊗ idω z→ f(x)(ω), x̃⊗ idω z→ x.

Proof. Unit and transpose. We have to check that the following diagram commutes

X N ∣X ∣

NP,

η

f
NΦf

and that f is unique for that property. For x ∈Xω we have

(NΦf)(η(x)) = (NΦf)(x̃⊗ idω) = (Φf) ⋅ (x̃⊗ idω),

which maps ω to f(x)(ω). Since a map ∣ω∣ Ð→ P is uniquely determined by the
image of ω, we have (NΦf)η = f . Let g ∶ X Ð→ NP be another morphism such
that (NΦg) ⋅ η = f . Then for x ∈Xω we have

f(x)(ω) = ((NΦg) ⋅ η) (x)(ω) = (NΦg)((x̃⊗ idω)(ω)) = g(x)(ω),

whence f = g.
Counit. The counit is given by ε = Φ(idNP), so that

ε(x̃⊗ idω) = (Φ(idNP))(x̃⊗ idω) = x̃(ω) = x.



Theorem 4.3.23. The unit and counit are natural isomorphisms. Consequently, the poly-
graphic realization-nerve adjunction of definition 4.3.19 is an adjoint equivalence between
Psh(O) and Polmto.

Proof. Unit. Remark that for x, y ∈Xω, if x⊗idω = y⊗idω, then x = y, which shows that
η is injective. Take f ∈ N ∣X ∣ω. Then f(ω) is of the form x ⊗ idω, hence f = η(x),
and η is surjective.

Counit. The following triangle identity shows that Nε is a natural isomorphism:

N N

N ∣N − ∣.
ηN Nε

It is easy to check that the following square commutes, and since (̃−) is a bijection
by theorem 4.3.16, ε is a natural isomorphism:

∣NP∣ P

N ∣NP∣ NP.

ε

(̃−) (̃−)
Nε

Many-to-one polygraphs have been the subject of other work [HMZ02] [HMZ08], and
proved to be equivalent to the notion of multitopic sets. This, together with theorem 4.3.23,
prove the following:

Corollary 4.3.24. The category Psh(O) of opetopic sets is equivalent to the category of
multitopic sets.

An opetopic plex is an opetopic polyplex of the form u, where u ∈ Tn (as opposed to
T∗n). In [Hen19, corollary 2.4.9 and remark 2.5.1], Henry shows that Polmto is a presheaf
category over some category Oplex of opetopic plexes, and asks wether they are the same
as opetopes. We now answer this question positively.

Definition 4.3.25 (Cauchy-complete category). An idempotent morphism e ∶ a Ð→ a

splits if it decomposes as e = ir with ri = ida. A category is Cauchy-complete if all its
idempotent morphisms split.

Example 4.3.26. (1) Let e ∶ a Ð→ a be an idempotent map of sets, and b ∶= im e ⊆ a.
Then the corestriction ē ∶ aÐ→ b of e is a retraction of the inclusion i ∶ b↪Ð→ a, and
e = iē. Therefore, the category Set is Cauchy-complete.

(2) Let F ⊆ ModZ/6Z be the full subcategory of free Z/6Z-modules. Then the map
− × 3 ∶ Z/6Z Ð→ Z/6Z is idempotent but not split, as its image Z/3Z is not free.
Therefore, F is not Cauchy-complete.

Theorem 4.3.27 ([BD86, theorem 1]). Let A and B be Cauchy-complete categories. If we
have an equivalence Psh(A) ≃Ð→ Psh(B), then restricting to the representable presheaves
gives an equivalence A

≃Ð→ B.



Corollary 4.3.28. The category Oplex of opetopic plexes is equivalent to O.

Proof. By definition, O is a directed category, and by [Hen19, proposition 2.2.3 (4)], so
is Oplex. In particular, they are both Cauchy-complete. On the other hand, Psh(O) ≃
Polmto ≃ Psh(Oplex), and we conclude using theorem 4.3.27.

In [Pal04], Palm studies another approach to weak higher-dimensional categories, based
on dendrotopic sets. In particular, he show that dendrotopic sets are equivalent to many-
to-one polygraphs. Therefore,

Corollary 4.3.29. Opetopic sets are equivalent to dendrotopic sets.

Figure 4.1: To summarize...

Opetopic sets
(à la Leinster, Kock et. al.)

Opetopic sets
(à la Baez–Dolan, Cheng)

Many-to-one
polygraphs

Multitopic sets
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Dendrotopic sets

THEOREM 4.3.23
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[Che04b]
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[HMZ02]
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Part II

Syntax





Chapter Five

Introduction

W
e now explore two syntactical representations of opetopes and opetopic sets.
Recall that opetopes are completely described by their source pasting dia-
gram. In the named approach (chapters 6 and 7), those pasting diagrams are

represented as terms describing the adjacencies of their cells. For example, the pasting
diagram on the left shall be described by the term on the right:

a

b c d

e

f

g h

i

l

j k

⇓α ⇓β⇓γ γ(j ← α, k ← β).

In the unnamed approach (chapters 8 and 9), those source pasting diagrams are treated
as trees of opetopes. In general, a decorated tree T ∈ trP for some polynomial endofunctor
P , can be represented by a map from the set of node addresses of T to the set of operations
of P (we omit the case where T is degenerate in this introduction). For example, if T ● =
{[x1], . . . , [xk]}, then T can be described as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[x1]← decoration of the node at address [x1]
⋮
[xk]← decoration of the node at address [xk].

Since an n-opetope is a tree over Zn−2, the same idea applies. Further, the operations of
Zn−2 are (n − 1)-opetopes, so this syntactical representation can be recursively applied

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[x1]← {
[y1]← ⋯
⋮

⋮
[xk]← {⋯

Our two derivation systems for opetopes, Opt! for the named approach and Opt?

for the unnamed approach, leverage proposition 2.2.22, stating that if n ≥ 2, then an n-
opetope is either of the form Iϕ for some ϕ ∈ On−2, Yψ for some ψ ∈ On−1, or a grafting
ν ○[l]Yψ for some adequate ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Graphically, this means that
opetopes are precisely all the shapes one can generate with the following operations:

Introduction of a point. There is a unique 0-opetope (the point).

point.

Shift to the next dimension. Given an n-opetope ω, we can form the (n+1)-dimensional
endotope whose source and target are ω, as illustrated below. It can geometrically
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be thought of as the “extrusion” of ω.

.
shift. .

. .
shift

. .
⇓

.

. .

.
⇓

shift

.

. .

.
⇓ ⇛

.

. .

.
⇓

Introduction of degeneracies. Given an n-opetope ω, we can build a degenerate (n+2)-
opetope whose target is the endotope at ω, as illustrated below for n = 0 and n = 1:

.
degen.

⇓

. .
degen

. . ⇛
. .
⇓

Grafting. Given an (n+ 1)-opetope ψ and an (n+ 1)-pasting diagram ω′ such that the
source of ω′ contains an n-cell of the same shape as the target of ψ, we can obtain
a new pasting diagram by grafting ψ onto ω′:

. . . .

graft. . .

.

.

.
⇓

.

. .

.
⇓
⇓

graft

.

. .

.
⇓
⇓

.
⇓

Ill-formed graftings may occur with n-pasting diagrams, for n ≥ 3, and a side condition
is necessary to rule them out. Here is an example the graft rule will not allow: we deal
with a 3-pasting diagram on the right of the dashed arrow, and the dashed arrow indicates
that we attempt to graft the 3-opetope on the left (whose target shape is a trapezoid)
onto the triangle shaped cell on the right

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

.

. .

.

.

⇓

⇓
⇛

.

. .

.

.

⇓

This is clearly not possible as the shapes on both ends of the dashed arrow do not match.
However, grafting onto the lower trapezoid of the right opetope is acceptable:

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

.

. .

.

.

⇓

⇓
⇛

.

. .

.

.

⇓

As previously mentioned, an opetope is completely determined by its source pasting
diagram, i.e. “arrangement” of source faces (the dichotomy between opetopes and pasting
diagrams is more thoroughly discussed in section 3.2). We can observe the effect of rules
shift and graft with this point of view to respectively obtain the following.



Filling of pasting diagrams. Given an n-pasting diagram, we may “fill” it by adding a
target n-cell, and a top dimensional (n + 1)-cell. We illustrate an instance of this
rule on the left, and invite the reader to compare it with the instance of shift on
the right:

.

. .

.
fill

.

. .

.
⇓

.

. .

.
⇓

shift

.

. .

.
⇓ ⇛

.

. .

.
⇓

An endotope (as on the bottom right) is completely determined by its source (as
any other opetope), but also completely determined by the source of its source.
Therefore, the fill and shift rules are equivalent, in that the effect of one can
be expressed in terms of the other.

Substitution. This consists in replacing a cell in a pasting diagram by another “parallel”
pasting diagram. We illustrate an instance of this rule on the left below. If we
consider the grafting of pasting diagrams on the right, then the substitution on the
left operates on the sources of the pasting diagrams on the right, illustrating the
motto “source of grafting is substitution of sources”.

.

.

.

.

. .

.
subst

.

. .

.

.

.

.

.
⇓

.

. .

.
⇓
⇓

graft

.

. .

.
⇓
⇓

.
⇓

However, there is a loss of information, as filling the pasting diagram on the bottom
left does not recover the pasting diagram on the bottom right. More generally, the
source of a pasting diagram does not completely describe it. Therefore, the subst
rule deals with strictly less data than graft. Here is another example of substitution

.

. .

.
⇓
⇓

.

. .

.
⇓

.
⇓

subst

.

. .

.
⇓
⇓

.
⇓

Rules point and degen deal with opetopes whose source pasting diagram is empty, so
observing the effect on these rules on sources is not very insightful.

So far we only discussed opetopes. As we will see, systems for describing finite opetopic
sets can easily be derived from the respective systems for opetopes. In the named approach,
systems OptSet! and OptSet!

m (the latter being a more convenient variant) are obtained
by adding rules to Opt!, while in the unnamed approach, OptSet? is a sequent calculus
completely parametrized by Opt?. Finally, by the Gabriel–Ulmer duality corollary 0.5.7,
all opetopic sets can be retrieved by passing to Set-models, i.e. limit-preserving functors
from the relevant category of contexts to Set.

Syntactical methods in higher category theory have been explored in the literature. For
example, a syntax for the closely related notion of multitope was proposed in [HMP02],
but unfortunately, not all the desired computations (notably that of the target of an



opetope) have been given algorithmic formulations there. The Opetopic proof assistant
[Fin16] for weak higher categories relies on the notion of higher-dimensional tree. In that
system, the notion of opetope is built-in, so that we have to trust the implementation. In
contrast, the present approach allows us to reason about the construction of opetopes. We
moreover believe that the ability to reason by induction on the proof trees, together with
the very explicit nature of our syntaxes, will allow for optimizations in the automated ma-
nipulations of opetopes. Another proof assistant for weak higher categories, called CaTT
[FM17], starts from the same idea of generating well-formed pasting schemes through in-
ference rules. However, it is based on globular shapes instead of opetopic ones, making
a comparison with the present work difficult. People have unsuccessfully tried to com-
pare the resulting respective categorical formalisms; we hope that their formulation in a
common logical language might be of help in this task. We should also mention here the
Globular proof assistant [BKV16], also based on globular shapes, which is quite popular,
notably thanks to its nice graphical interface.

The material of this part is taken from [CHM19b, CHM19a].



Chapter Six

The named approach for opetopes

I
n the named approach, we describe an opetope by naming its faces and describ-
ing their adjacencies using terms in a specifically crafted syntax. Not all such
terms are geometrically meaningful however, and we introduce the Opt! sequent

calculus to select those that are.

6.1 THE OPT! SYSTEM

syntax

In this section, we define the underlying syntax of Opt!, our named derivation system for
opetopes. As explained in the introduction, a typical pasting diagram is pictured below:

a

b c d

e

f

g h

i

l

j k

⇓α ⇓β⇓γ

We shall use the names of the cells of this picture as variables, and encode the pasting
diagram as the following expression:

γ(j ← α, k ← β).

Here, j, k, α, β, and γ are now variables, equipped with a dimension (1 for j and k, and
2 for α , β, and γ), and the notation is meant to be read as “the variable γ in which α

(resp. β) has been formally grafted on the input labeled by j (resp. k)”. Such a term will
be given a type:

i(t← h(z ← g(y ← f)))r⊸ ar⊸ ∅,

which expresses the fact that the source is the “composite” i ⋅h ⋅ g ⋅ f , and that the source
of the source is a. Since the pasting diagram is 2-dimensional, there is no further iterated
source, and we conclude the sequence by a ∅ symbol. Similarly, the degenerate pasting
diagram on the left below will be denoted by the typed term figured on the right:

.
⇓
●x

f
α

α ∶ xr⊸ xr⊸ ∅

where the term x denotes a degenerate 1-dimensional pasting diagram with x as source.
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Definition 6.1.1 (Term). We assume that we have an N-graded set V of variables. El-
ements of Vn represent n-dimensional cells. An n-term is constructed according to the
following grammar1:

T−1 ::= {∅} by convention
T0 ::= V0

Tn+1 ::= Vn | T′n+1
T′n+1 ::= Vn+1(Vn ← T′n+1, . . .)

where the expression “Vn ← T′n+1, . . .” signifies that there is 0 or more instances of the
“Vn ← T′n+1” part between the parentheses. Terms of the form u are called degenerate
terms, or empty syntactic pasting diagrams. Note that there are no degenerate 0-terms.

Example 6.1.2. If f, g ∈ V1, and a ∈ V0, then the following is an element of T1:

g(a← f())

To make notations lighter, we omit empty parentheses “()”, so the previous 1-term can
be more concisely written as g(a← f). Since f ∈ V1, the expression f is a degenerate term
in T2.

Notation 6.1.3. A term of the form g(a1 ← f1, . . . , ak ← fk) will oftentimes be abbreviated
as g(ÐÐÐÐ→ai ← fi), leaving k implicit. By convention, the sequence a1 ← f1, . . . , ak ← fk above is
always considered up to permutation, i.e. for σ a bijection of the set {1, . . . , k}, the terms
g(a1 ← f1, . . . , ak ← fk) and g(aσ(1) ← fσ(1), . . . , aσ(k) ← fσ(k)) are considered equal.

Notation 6.1.4. For t ∈ Tn, write t● for the set of n-variables occurring in t. In the previous
example, (g(a← f))● = {f, g}. Note that x ∈ x● for all x ∈ Vn.

Definition 6.1.5 (Type). An n-type T is a sequence of terms of the form

s1 r⊸ s2 r⊸ ⋯r⊸ sn r⊸ ∅, (6.1.6)

where si ∈ Tn−i. As we will see (rule shift in definition 6.1.16, and theorem 6.1.26), this
sequence of terms essentially describes a zoom complex in the sense of [KJBM10, section
1.6], which justifies the use of the r⊸ symbol.

Definition 6.1.7 (Typing). A typing of a term t ∈ Tn is an expression of the form t ∶ T ,
for T an n-type. If T is as in equation (6.1.6), then si is thought of as the i-th (iterated)
source of t. We then write s t ∶= s1, and more generally si t ∶= si. By convention, s0 t ∶= t.

Example 6.1.8. The pasting diagram on top will be described by the typing below:

a

b c

d

f

g

h
i

j

⇓α
⇓β ⇛A

a

b c

d

f

g

h

j

⇓γ

1To be concise, we use a slightly unusual set-based notation. For example, an element of T′n+1 is of the
form v(a1 ← t1, a2 ← t2, . . .), where v ∈ Vn+1, a1, a2, . . . ∈ Vn, and t1, t2, . . . ∈ T′n+1.



A ∶ β(i← α)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sA

r⊸ h(c← g(b← f))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=s2A

r⊸ a
®
=s3A

r⊸ ∅
®
=s4A

.

Remark that the term s2A = h(c ← g(b ← f)) is the source pasting diagram of the target
of A, as in s sA = s tA. Targets are not represented in this syntax, but already, we see that
the information they carry is not lost. Refer to proposition 6.2.16 for a formal account of
this observation.

Definition 6.1.9 (Context). A context Γ is a set of typings, more commonly written as
a list.

Notation 6.1.10. Write VΓ,k for the set of k-variables typed in Γ, let VΓ ∶=∑k∈NVΓ,k,
write TΓ,k for the set of k-terms whose variables (in any dimension) are in VΓ, and
TΓ ∶=∑k∈NTΓ,k.
Remark 6.1.11. As we will see (inference rules in definition 6.1.16), for a derivable context
Γ, if x occurs in the typing of a variable of Γ, then x ∈ VΓ. Note that in any context Γ,
if a variable x ∈ VΓ,k occurs in the type of y ∈ VΓ,l, then k < l. In particular, there is no
cyclic dependency among variables.

Definition 6.1.12 (Equational theory). Let Γ be a context. An equational theory E on
VΓ is a set of formal equalities between variables of Γ. We write =E for the equivalence
relation on VΓ generated by E.

Definition 6.1.13 (Sequent). A sequent is an expression of the form

E ▹ Γ ⊢ t ∶ T

where Γ is a context, E is an equational theory on VΓ, and the right hand side is a typing.
We may write ⊢n to signify that t ∈ Tn. The equivalence relation =E on VΓ extends to TΓ

in an obvious way. If x =E y and y ∈ t●, then by convention x ∈ t●, so that x and y really
are interchangeable.

Remark 6.1.14. As illustrated below, grafting degenerate terms produces identifications
of lower dimensional variables, which must be accounted for. This will be the role of the
equational theories.

a

⇓δ a b
f g

⇓β
graft

a = b ▹
a

f

g

⇓δ ⇓β

This example will be treated in details in example 6.3.5.

Definition 6.1.15 (Equivalence of sequents). If (E ▹ Γ ⊢ t ∶ T ) and (F ▹Υ ⊢ u ∶ U) are
sequents, and if there exists a bijection σ ∶ VΥ Ð→ VΓ such that

(E ▹ Γ ⊢ t ∶ T ) = (F σ ▹Υσ ⊢ uσ ∶ Uσ) ,



where (−)σ is the substitution according to σ, then we say that both sequents are α-
equivalent (or just equivalent ), denoted by

(E ▹ Γ ⊢ t ∶ T ) ≃ (F ▹Υ ⊢ u ∶ U) .

In the following, sequents are implicitly considered up to α-equivalence.

inference rules

We present the inference rules of the Opt! system in definition 6.1.16. Rule graft re-
quires the so-called graft notation and substitution operation, respectively introduced in
definitions 6.1.17 and 6.1.19.

Definition 6.1.16 (The Opt! system). Introduction of points. This rule intro-
duces 0-cells, also called points. If x ∈ V0, then

point▹x ∶ ∅ ⊢0 x ∶ ∅

Introduction of degeneracies. This rule derives empty pasting diagrams. If x ∈ Vn,
then

E ▹ Γ ⊢n x ∶ T degen
E ▹ Γ ⊢n+1 x ∶ xr⊸ T

Shift to the next dimension. This rule takes a term t and introduces a new cell x
having t as source. If x ∈ Vn+1 −VΓ, then

E ▹ Γ ⊢n t ∶ T shift
E ▹ Γ, x ∶ tr⊸ T ⊢n+1 x ∶ tr⊸ T

Grafting. This rule glues an n-cell x onto an n-term t along a variable a ∈ s●1 ∶=(s t)●.
We assume that Γ and Υ are compatible, in that for all y ∈ V, if y ∈ VΓ∩VΥ, then
the typing of y in both contexts match modulo the equational theory E ∪ F .
Further, the only variables typed in both Γ and Υ are a and the variables
occurring in the sources of a (i.e. si a, for 1 ≤ i ≤ n − 1).
If x ∈ Vn, t ∈ Tn is not degenerate, a ∈ (s t)● (which ensures that a has not
been used for grafting beforehand) is such that sa = s sx (recall that by exam-
ple 6.1.8, we can understand this condition as sa = s tx, so that x may indeed
be glued onto a), then

E ▹ Γ ⊢n t ∶ s1 r⊸ s2 r⊸ ⋯ F ▹Υ ⊢n x ∶ U graft
G ▹ Γ ∪Υ ⊢n t(a← x) ∶ s1[sx/a]r⊸ s2 r⊸ ⋯

where the notations t(a ← x) and s1[sx/a] are presented below, and where G
is the union of E and F , and potentially a set of additional equalities incurred
by the evaluation of s1[sx/a]. We also write graft-a to make explicit that we
grafted onto a.



Definition 6.1.17 (Grafting of terms). For a sequent (E ▹ Γ ⊢n t ∶ T ), a ∈ Vn−1, and
x ∈ VΥ,n, the graft notation t(a← x) of the graft rule can be simplified depending on the
structure of t, according to the following rewriting rule. For y ∈ VΓ,n,

y(ÐÐÐÐ→zi ← vi)(a← x)
⎧⎪⎪⎨⎪⎪⎩

y(
ÐÐÐÐÐÐÐÐÐ→
zi ← vi(a← x)) if a ∉ (s y)●,

y(ÐÐÐÐ→zi ← vi, a← x) if a ∈ (s y)●.
(6.1.18)

In particular, note that if a ∉ (s y)●, then y()(a← x) rewrites to y(), and with the “empty
parentheses convention”, this gives y(a← x) y.

Definition 6.1.19 (Substitution in terms). We now explain how to evaluate u[w/a] for
terms u, v ∈ Tn, where u is of the form u = y(ÐÐÐÐ→zi ← vi).

(Subst1) If w is not degenerate, then

u[w/a] ∶=
⎧⎪⎪⎨⎪⎪⎩

y(
ÐÐÐÐÐÐÐ→
zi ← vi[w/a]) if a ≠E∪F y,

w(ÐÐÐÐ→zi ← vi) if a =E∪F y.
(6.1.20)

(Subst2) If w is degenerate, say w = b for b ∈ Vn−1, Then, by the hypothesis of the
graft rule, we have b =E sa. Then, u[b/a] is defined by cases on the form of u:

(Subst2a) if u =E∪F a, i.e. u is a variable, then u[b/a] ∶= b;
(Subst2b) if u is of the form a(b← r), then u[b/a] ∶= r;
(Subst2c) if u is of the form y(. . . , z ← a, . . .), then we remove the grafting

z ← a, and we add the equality b = z to the ambient equational theory;
(Subst2d) if u is of the form2 y(. . . , z ← a(b← r), . . .), then

u[b/a] ∶= y(. . . , z ← r, . . .),

as in equation (6.1.20), and per equation (6.1.18), but we also add the
equality b = z to the ambient equational theory;

(Subst2e) otherwise, if u is of the form y(ÐÐÐÐ→zi ← vi), and if the previous cases
do not apply (i.e. a is not the front variable of u or vi for all i), then we
recursively evaluate the substitution:

u[b/a] ∶= y(
ÐÐÐÐÐÐÐ→
zi ← vi[b/a]).

Remark 6.1.21. From the formulation of system Opt!, it is clear that a sequent that
is equivalent to a derivable one is itself derivable. Let us now turn our attention to rule
shift above. It takes a term t, thought of as a pasting diagram, and creates a new variable
having t as source. One may thus think of it as a rule creating “fillers”, akin to Kan filler
condition on simplicial sets.

Example 6.1.22. Consider the term t = α(g ← β) in a suitable context Γ:

x

y z

f

g

h

i

⇓α
⇓β

2The case in which u is of the form y(. . . , z ← a(b1 ← r1, . . . , bk ← rk), . . .) with k > 1 does not happen
in valid derivations.



and two variables γ ∶ j r⊸ xr⊸ ∅ and γ′ ∶ j′ r⊸ z r⊸ ∅. We evaluate the following simple
graftings:

t(f ← γ) = α(g ← β)(f ← γ) well-def. since s sγ = x = s f
= α(f ← γ, g ← β) since f ∈ (sα)●,

t(i← γ′) = α(g ← β)(i← γ′) well-def. since s sγ′ = z = s i
= α(g ← β(i← γ′)) since i ∉ (sα)●,

t(f ← γ)(i← γ′) = α(f ← γ, g ← β)(i← γ′) as seen previously
= α(f ← γ(i← γ′), g ← β(i← γ′)) since i ∉ (sα)●

= α(f ← γ, g ← β(i← γ′)) since i ∉ (sγ)●.

They can respectively be represented as:

x

y z

f

g

h

i

⇓α
⇓βj ⇓γ

x

y z

f

g

h

i

⇓α
⇓β j′⇓γ′

x

y z

f

g

h

i

⇓α
⇓βj ⇓γ j′⇓γ′

Example 6.1.23. Consider variables α ∶ g(y ← f) r⊸ x r⊸ ∅, δx ∶ x r⊸ x r⊸ ∅, and
δy ∶ yr⊸ yr⊸ ∅. Then α, α(f ← δx), and α(g ← δy) can respectively be represented as:

x y
f g

⇓α
x

f

g

⇓δx ⇓α
x y

g

f

⇓δy⇓α

Then the sources α(f ← δx) and α(g ← δy) are respectively

g(y ← f)[x/f] = g by (Subst2c),
g(y ← f)[y/g] = f by (Subst2b),

and in the first case, the equation x = y is added to the ambient equational theory.

Remark 6.1.24. The degen rule may be replaced by the following degen-shift rule with-
out changing the set of derivable sequents of the form (E ▹ Γ ⊢ y ∶ T ) with y ∈ V: if x ∈ Vn
and d ∈ Vn+2 such that d ∉ VΓ,n+2, then

E ▹ Γ ⊢n x ∶ T degen-shift
E ▹ Γ, d ∶ xr⊸ xr⊸ T ⊢n+2 d ∶ xr⊸ xr⊸ T

However, note that sequents of the form (E ▹ Γ ⊢ y ∶ T) are then no longer derivable.

properties of derivable sequents

Let (E ▹ Γ ⊢ x ∶ X) be a derivable sequent. We prove in theorem 6.1.26 that the type
X = (sxr⊸ s sxr⊸ ⋯) is completely determined by sx and Γ. We proceed by extending
the source map s ∶ VΓ,n Ð→ TΓ,n−1 to a map s ∶ TΓ,n−1 Ð→ TΓ,n−1.



Definition 6.1.25. Define the function s as follows:

s ∶ TΓ Ð→ TΓ

xz→ sx x ∈ VΓ,

xz→ x x ∈ VΓ,

x(ÐÐÐÐ→yi ← ui)z→ (sx)[
ÐÐÐ→
sui/yi] x,Ð→yi ∈ VΓ,

Ð→ui ∈ TΓ.

Note that by definition, it agrees with s on variables.

Theorem 6.1.26. Let (E ▹ Γ ⊢ t ∶ s1 r⊸ s2 r⊸ ⋯ r⊸ sn r⊸ ∅) be a derivable sequent.
Then for 1 ≤ k ≤ n we have sk = sk t. Equivalently, for 0 ≤ i ≤ n, we have s si = si+1, where
by convention, s0 ∶= t.

Proof. We proceed by induction on the proof tree of the sequent. For readability, we omit
equational theories and contexts.

(1) If the sequent is obtained by the following proof tree:

point
x ∶ ∅ ⊢ x ∶ ∅

then sx = sx = ∅, since x ∈ V, and the result trivially holds.
(2) If the last inference of the proof tree is the following instance of degen

⋯ ⊢ s1 ∶ s2 r⊸ ⋯r⊸ sn r⊸ ∅ degen⋯ ⊢ t ∶ s1 r⊸ s2 r⊸ ⋯r⊸ sn r⊸ ∅

then s1 ∈ V and t = s1. Thus, s t = s1, while for 1 ≤ i ≤ n, the equality s si = si+1
holds by induction.

(3) If the last inference of the proof tree is the following instance of shift

⋯ ⊢ s1 ∶ s2 r⊸ ⋯r⊸ sn r⊸ ∅ shift⋯ ⊢ t ∶ s1 r⊸ s2 r⊸ ⋯r⊸ sn r⊸ ∅

then t ∈ V, so s t = s t = s1, while for 1 ≤ i ≤ n, the equality s si = si+1 holds by
induction.

(4) Assume now that the last inference of the proof tree is the following instance of
graft:

⋯ ⊢ u ∶ r1 r⊸ r2 r⊸ s3 r⊸ ⋯r⊸ sn r⊸ ∅ ⋯ ⊢ x ∶X graft-a⋯ ⊢ t ∶ s1 r⊸ s2 r⊸ ⋯r⊸ sn r⊸ ∅

with a ∈ r●1 and x ∈ V such that s sx = sa. Then t = u(a ← x), s1 = r1[sx/a], and
si = ri for 2 ≤ i ≤ n. On the one hand, we have

s t = s (u(a← x))
= (su)[sx/a]
= (su)[sx/a] since x ∈ V
= r1[sx/a] by induction
= s1 by definition.



On the other hand, write r1 = v(y ← a(ÐÐÐÐ→zi ← wi)), for some v,Ð→wi ∈ Tn−1 and y ∈ Vn−2.
This decomposition exhibits r1 as a grafting (in the sense of definition 6.1.17) of a
term a(⋯) whose head variable is a onto some term v. We then compute:

s s1 = s (r1[sx/a])
= s ( v(y ← a(ÐÐÐÐ→zi ← wi)) [sx/a] )
= s ( v (y ← (sx)(ÐÐÐÐ→zi ← wi)) )

= (s v) [ (s sx)[
ÐÐÐ→
swi/zi] /y] by definition of s

= (s v) [ (s sx)[
ÐÐÐ→
swi/zi] /y] by induction

= (s v) [ (sa)[
ÐÐÐ→
swi/zi] /y] hypothesis of graft-a

= s r1 recall r1 = v(y ← a(ÐÐÐÐ→zi ← wi))
= r2 = s2.

Finally, for 1 ≤ i ≤ n, the equality s si = si+1 holds by induction.

Corollary 6.1.27. Let (E ▹ Γ ⊢ t ∶ T ) be a derivable sequent, and x ∶ s1 r⊸ s2 r⊸ ⋯ r
⊸ sn r⊸ ∅ be a typing in Γ. Then for 1 ≤ k ≤ n we have sk = sk t, or equivalently, for
0 ≤ i ≤ n, we have s si = si+1, with s0 ∶=x.

Proof. If x ∶ s1 r⊸ s2 r⊸ ⋯r⊸ sn r⊸ ∅ is a typing in Γ, then somewhere in the proof tree
of (E ▹ Γ ⊢ t ∶ T ) appears a sequent of the form (F ▹Υ ⊢ x ∶ s1 r⊸ s2 r⊸ ⋯r⊸ sn r⊸ ∅),
which is necessarily derivable. We conclude by applying theorem 6.1.26

Remark 6.1.28. A consequence of theorem 6.1.26 and corollary 6.1.27 is that at any stage,
a context Γ may be replaced by its “meager form” Γ̄, obtained by replacing “full typings”
y ∶ Y by y ∶ s y, i.e. by removing all but the top term of the type Y . Using meager context
comes with a cost however: checking the hypothesis of rule graft requires to compute the
second source s sx of x, which is not contained in Γ̄. For clarity, we shall not make use of
meager forms throughout the rest of this work.

Convention 6.1.29. By definition, s extends s to a function TΓ Ð→ TΓ, and for convenience,
we just write it as s in the sequel, and call it the source of a term.

Example 6.1.30. Consider the term on the right, representing the pasting diagram on
the left:

x

y z

f

g

h

i

⇓α
⇓βj ⇓γ α(f ← γ, g ← β)

Then its source is computed as follows:

s (α(f ← γ, g ← β)) = (sα) [(sγ)/f, (sβ)/g] by definition
= (g(y ← f)) [(sγ)/f, (sβ)/g] since sα = g(y ← f)
= (g(y ← f)) [j/f, (sβ)/g] since sγ = j



= (g(y ← f)) [j/f, i(z ← h)/g] since sβ = i(z ← h)
= (g(y ← j)) [i(z ← h)/g] see equation (6.1.20)
= (i(z ← h)) (y ← j) see equation (6.1.20)
= i(z ← h(y ← j)) since y ∈ (sh)●.

The latter term indeed corresponds to the source of the pasting diagram, which is the
arrow composition on the top.

Lemma 6.1.31 (Unique occurrence lemma). Let (E ▹ Γ ⊢n t ∶ s1 r⊸ ⋯) be a derivable
sequent, where t ∈ Tn is not degenerate, say t = x(ÐÐÐÐ→ai ← ui),

(1) Let y ∈ t●. Then either y =E x, or y ∈ u●i for a unique i.
(2) Let b ∈ s●1. Then either b ∈ (sx)●, or b ∈ (sui)● for a unique i.

Proof. (1) By assumption of the graft rule, each n-variable of t occurs only once in t.
(2) By the first point, each (n−1)-variable of s1 occurs exactly once. By theorem 6.1.26,

s1 = (sx)[
ÐÐÐ→
sui/ai]. Thus b either occurs in sx or on sui for a unique i.

Proposition 6.1.32. Let (E ▹Γ ⊢ x ∶X) be a derivable sequent, and a ∈ VΓ be a variable
of type A. Then the sequent (E∣a ▹ Γ∣a ⊢ a ∶ A) is derivable, where E∣a (resp. Γ∣a) is the
restriction of E (resp. Γ) to a and variables occuring in A.

Proof. (1) If a is 0-dimensional, then (E∣a ▹ Γ∣a ⊢ a ∶ A) = (▹a ∶ ∅ ⊢ a ∶ ∅) can be
obtained by an instance of rule point.

(2) If a = x, then (E∣a ▹ Γ∣a ⊢ a ∶ A) = (E ▹ Γ ⊢ x ∶X) is derivable by assumption.
(3) Otherwise, a first appears in the conclusion of an instance of shift in the proof

tree of (E ▹ Γ ⊢ x ∶ X). Then (E∣a ▹ Γ∣a ⊢ a ∶ A) is the conclusion of that instance,
and is derivable.

6.2 EQUIVALENCE WITH POLYNOMIAL OPETOPES

In this section, all sequents are assumed derivable in Opt!. We show that sequents typing
a variable (up to α-equivalence) are in bijective correspondence with the “polynomial”
opetopes of definition 3.1.3. To this end, we define the polynomial coding operation ⟦−⟧n+1
that maps a sequent (E ▹ Γ ⊢n t ∶ T ) typing an n-term t ∈ Tn, to an (n + 1)-opetope
⟦E ▹ Γ ⊢n t ∶ T ⟧n+1 ∈ On+1, written ⟦t ∶ T ⟧n+1 or even ⟦t⟧n+1 for short, if no ambiguity
arises.

The idea of the polynomial coding is to map a pasting diagram described by a term
(on the left) to its underlying composition tree, and reapply the coding recursively (on
the right):

⟦α(g ← β)⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
α

βf
g

h i
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∶=
⟦α⟧

⟦β⟧⟦f⟧ ⟦g⟧

⟦h⟧ ⟦i⟧

Convention 6.2.1. A variable x ∈ Vn is in particular an n-term, thus the polynomial coding
operation gives an (n+1)-opetope ⟦x⟧n+1 ∈ On+1. However, it will be convenient to consider



x as representing an n-opetope, whose tree is described by the (n − 1)-term sx. We thus
convene on the notation ⟦x⟧n ∶= ⟦sx⟧n ∈ On. Keep in mind that for all n ∈ N, the function
⟦−⟧n always yields an n-opetope.

For t ∈ Tn and z ∈ t●, the address &t z ∈ An of z in t is an n-address (see section 3.3)
that, much like in trees (definition 2.2.11), indicates “where z is located in t”:

Definition 6.2.2 (Address in a term). Let (E ▹ Γ ⊢ ⋯) be a derivable sequent, t ∈ TΓ be
a non-degenerate term, say t = x(ÐÐÐÐ→yi ← ui).

(1) Let z ∈ t●. By lemma 6.1.31, either z =E x, or z ∈ u●i for a unique i. The address
&t z ∈ An of z in t is defined as

&t z ∶=
⎧⎪⎪⎨⎪⎪⎩

[] if z =E x,
[&sx yi] ⋅&ui z if z ∈ u●i .

If [p] = &t z, then we write v[p] t ∶= z for the variable of t at address [p]. In particular,
v[] t = x.

(2) Let a ∈ (s t)●. By lemma 6.1.31, either a ∈ (sx)●, or a ∈ (sui)● for a unique i. The
address &t a ∈ An of a in t is defined as

&t a ∶=
⎧⎪⎪⎨⎪⎪⎩

[&sx a] if a ∈ (sx)●,
[&sx yi] ⋅&ui a if a ∈ (sui)●.

Example 6.2.3. The context describing the pasting diagram:

x

y z

f

g

h

i

⇓α
⇓β

contains the following typings: x, y, z ∶ ∅, f ∶ x r⊸ ∅, g ∶ y r⊸ ∅, h ∶ y r⊸ ∅, i ∶ z r⊸ ∅,
α ∶ g(y ← f)r⊸ ar⊸ ∅, and β ∶ i(z ← h)r⊸ br⊸ ∅. Write t ∶=α(g ← β). Then,

&t α = [],
&t β = [&sα g] ⋅&β β = [[]] ⋅ [] = [[]],
&t i = [&sα g] ⋅&β i = [[]] ⋅ [&sβ i] = [[]] ⋅ [[]] = [[][]],
&t h = [&sα g] ⋅&β h = [[]] ⋅ [&sβ h] = [[]] ⋅ [[&s i z] ⋅&h h] = [[][[]]] = [[][∗]],
&t f = [&sα f] = [[&s g y] ⋅&f f] = [[∗]].

Those addresses indeed match with those of the (intuitively) corresponding opetope:

2

2

◾

◾◾

◾ ◾

[]

[[]]

[]

[∗]

[∗]
[]



Definition 6.2.4 (Polynomial coding). The polynomial coding operation ⟦−⟧n is defined
inductively by:

⟦E ▹ Γ ⊢0 x ∶ ∅⟧0 ∶= ⧫, (6.2.5)
⟦E ▹ Γ ⊢1 x ∶ ar⊸ ∅⟧1 ∶= ◾, (6.2.6)

⟦E ▹ Γ ⊢n+1 x ∶ xr⊸ ⋯⟧n+2 ∶= I⟦x⟧n , (6.2.7)
⟦E ▹ Γ ⊢n x(ÐÐÐÐ→yi ← ui) ∶ ⋯⟧n+1 ∶= Y⟦x⟧n ◯

[&sx yi]
⟦ui⟧n+1 . (6.2.8)

Note that as an immediate consequence of equation (6.2.8), if x ∈ Vn is seen as an n-term,
then ⟦x⟧n+1 = Y⟦n⟧n . If (E ▹ Γ ⊢ ⋯) is a derivable sequent, and a ∈ VΓ, then the restricted
sequent (E∣a ▹ Γ∣a ⊢ a ∶ A) is also derivable by proposition 6.1.32, and we may construct
an opetope ⟦a⟧ = ⟦E∣a ▹ Γ∣a ⊢ a ∶ A⟧.

It is clear that the coding function is well-defined in equations (6.2.5) to (6.2.7). We
now establish a series of inductive results to prove proposition 6.2.18 stating that the
graftings of equation (6.2.8) are well-defined too, i.e. that for all i, writing [pi] ∶=&sx yi,
we have

[pi] ∈ ⟦x⟧●n and s[pi] ⟦x⟧n = e[] ⟦ui⟧n+1 . (6.2.9)
The strategy is as follows.

(1) First, we investigate the set of addresses (in the sense of definition 6.2.2) of a term
t ∈ Tn. In lemma 6.2.10, we show that they are the same as its coding ⟦t⟧n+1, i.e.
that (⟦t⟧n+1)

● = {&t x ∣ x ∈ t●}, and further, in proposition 6.2.11, we show that the
coding operation is compatible with s[p] and v[p]. This already proves the left side
of (6.2.9).

(2) This compatibility is further investigated in lemmas 6.2.13 and 6.2.15, where we
show that ⟦−⟧ commutes with graftings and substitutions.

(3) Then, we show that for an n-term r, t ⟦r⟧n+1 = ⟦s r⟧n. This reflects the intuition
that the target of an (n + 1)-opetope ω is just the pasting diagram of (n − 1)-cells
described by the source of ω. In the example below, the composition of 1-cells on
top of both sides are indeed the same.

.

. .

.

.

⇓ ⇓

⇓ ⇓
⇛

.

. .

.

.

⇓

(4) Lastly, we prove the right side of (6.2.9) in proposition 6.2.18, and as an immediate
corollary, all the graftings in equation (6.2.8) are well-defined.

If n = 1, then all graftings of (n + 1)-opetopes are possible as there is a unique 1-opetope,
and equation (6.2.8) is well-defined in this case.

Lemma 6.2.10. Let (E ▹ Γ ⊢n t ∶ T ) be a sequent such that ⟦t⟧n+1 is well-defined.
Then ⟦t⟧●n+1 = {&t x ∣ x ∈ t●}, i.e. the node addresses of the opetope ⟦t⟧n+1 are exactly the
addresses of the n-variables of t.

Proof. If n = 0, or if t is degenerate, then the result trivially holds. If t = x(ÐÐÐÐ→yi ← ui) as in
equation (6.2.8), we have

⟦t⟧●n+1 = ⟦x(
ÐÐÐÐ→yi ← ui)⟧

●
n+1



=
⎛
⎝
Y⟦x⟧n ◯

[&sx yi]
⟦ui⟧n+1

⎞
⎠

●

by equation (6.2.8)

= {[]} ⋃
i

{[&sx yi] ⋅ [p] ∣ [p] ∈ (⟦ui⟧n+1)
●}

= {[]} ⋃
i

{[&sx yi] ⋅&t x ∣ x ∈ u●i } by induction

= {&t x ∣ x ∈ t●} see definition 6.2.2.

Proposition 6.2.11. Let (E▹Γ ⊢n t ∶ T ) be a derivable sequent where t is not degenerate,
say t = x(ÐÐÐÐ→yi ← ui). Assume that ⟦t⟧n+1 is well-defined. For [p] ∈ ⟦t⟧●n+1 we have s[p] ⟦t⟧n+1 =
⟦v[p] t⟧n.

Proof. If n = 0, then t is necessarily a 0-variable, so the only possible address in t is [].
Then, s[] ⟦t⟧1 = s[] ◾ = ⧫ = ⟦t⟧0 = ⟦v[] t⟧0. Assume that n ≥ 1. By definition,

⟦t⟧n+1 = Y⟦x⟧n ◯
[&sx yi]

⟦ui⟧n+1 ,

and we distinguish two cases. If z = x, then [p] = [], and the result clearly holds. Otherwise,
[p] = [&sx yj] ⋅ &uj z, where j is the unique index such that z ∈ u●j (see lemma 6.1.31).
Then,

s[p] ⟦t⟧n+1 = s[&sx yj]⋅&ui z
⎛
⎝
Y⟦x⟧n ◯

[&sx yi]
⟦ui⟧n+1

⎞
⎠

= s&uj z ⟦uj⟧n+1
= ⟦z⟧n by induction

Corollary 6.2.12. For x as in equation (6.2.8), and [pi] ∶=&sx yi we have s[pi] ⟦x⟧n =
⟦yi⟧n−1.

Proof. We simply have

s[pi] ⟦x⟧n = s[pi] ⟦sx⟧n see convention 6.2.1
= ⟦yi⟧n−1 by proposition 6.2.11.

Lemma 6.2.13. Let n ≥ 1, and consider the following instance of the graft rule:

⋯ ⊢n t ∶ T ⋯ ⊢n x ∶X graft-a
⋯ ⊢n t(a← x) ∶ R

where (⋯ ⊢n t ∶ T ) and (⋯ ⊢n x ∶X) are derivable. Writing r ∶= t(a ← x), and assuming
that ⟦r⟧n+1 is well-defined, we have ⟦r⟧n+1 = ⟦t⟧n+1 ○&t aY⟦x⟧n.



Proof. By equation (6.2.8), ⟦r⟧n+1 = ⟦t⟧n+1 ○[l]Y⟦x⟧n , for some leaf address [l]. By assump-
tion of the graft rule, t is non degenerate, and write it as t = z(ÐÐÐÐ→yi ← ui). According to
definition 6.1.17,

r = z(ÐÐÐÐ→yi ← ui)(a← x) =
⎧⎪⎪⎨⎪⎪⎩

z(ÐÐÐÐ→yi ← ui, a← x) if a ∈ (s z)●,
z(
ÐÐÐÐÐÐÐÐÐ→
yi ← ui(a← x)) if a ∉ (s z)●,

so there are two cases.
(1) If a ∈ (s z)●, then [l] = [&s z a] = &t a.
(2) If a ∉ (s z)●, then

⟦r⟧n+1 = Y⟦z⟧n ◯
[&sz yi]

⟦ui(a← x)⟧n+1 .

Let j be the unique index such that a ∈ (suj)●. By induction,

⟦uj(a← x)⟧n+1 = ⟦uj⟧n+1 ○&uj a
Y⟦x⟧n ,

thus [l] = [&s z yj] ⋅&uj a = &t a.

Lemma 6.2.14 (Named readdressing lemma). Let n ≥ 1 and (E▹Γ ⊢n r ∶ R) be a derivable
sequent such that ⟦r⟧n+1 is well-defined. For b ∈ (s r)●, we have &s r b = ℘⟦r⟧n+1 &r b (recall
the readdressing map ℘ from definition 2.3.11).

Proof. If r is a variable, then by equation (6.2.8), ⟦r⟧n+1 = Y⟦s r⟧n , and

&s r b = ℘Y⟦r⟧n [&s r b] by theorem 2.3.6

= ℘⟦r⟧n+1 &r b see definition 6.2.2.

If r is degenerate, say r = x, then the result trivially holds as s r = x only has one variable
address. Otherwise, the sequent follows from an instance of the graft rule, say

⋯ ⊢n t ∶ T ⋯ ⊢n x ∶X graft-a
⋯ ⊢n r ∶ R

where by induction, &s t a = ℘⟦t⟧n+1 &t a for all a ∈ (s t)●. Since s r = (s t)[sx/a], we have

&s r b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

&s t a ⋅&sx b if b ∈ (sx)●,
&s t a ⋅&sx c ⋅ [p] if b ∈ (s t)●,&s t a ⊑ &s t b,

say &s t b = &s t a ⋅ [&sa c] ⋅ [p],
&s t b if b ∈ (s t)●,&s t a /⊑ &s t b.

= ℘(⟦t⟧n+1 ○&t a Y⟦x⟧n)
&r b see theorem 2.4.6

= ℘⟦r⟧n+1 &r b by equation (6.2.8).

Lemma 6.2.15. Let (E ▹ Γ ⊢ ⋯) be a derivable sequent, u, v ∈ TΓ,n be n-terms, where
u is non-degenerate, say u = y(ÐÐÐÐ→ai ← wi). Let x ∈ u● be a variable such that sx = s v. In
particular, the substitution u[v/x] is well-defined. Further, assume that t ⟦v⟧n+1 = ⟦x⟧n.
Then ⟦u[v/x]⟧n+1 = ⟦u⟧n+1 ◽&u x ⟦v⟧n+1.



Proof. (1) If x =E y, then

⟦u[v/x]⟧n+1
= ⟦v(ÐÐÐÐ→ai ← wi)⟧n+1
= ⟦v⟧n+1 ◯

&v ai

⟦wi⟧n+1 ♠

=
⎛
⎜
⎝
Y⟦x⟧n ◯

[℘⟦v⟧n+1 &v ai]
⟦wi⟧n+1

⎞
⎟
⎠
◽
[]
⟦v⟧n+1 since t ⟦v⟧n+1 = ⟦x⟧n

=
⎛
⎝
Y⟦x⟧n ◯

[&sv ai]
⟦wi⟧n+1

⎞
⎠
◽
[]
⟦v⟧n+1 ♢

=
⎛
⎝
Y⟦x⟧n ◯

[&sx ai]
⟦wi⟧n+1

⎞
⎠
◽
[]
⟦v⟧n+1 by assumption

= ⟦u⟧n+1 ◽[]
⟦v⟧n+1

= ⟦u⟧n+1 ◽
&u x
⟦v⟧n+1 ♣

where ♠ is by equation (6.2.8), ♢ follows from lemma 6.2.14, and ♣ follows from
the fact that x is the head variable of u (see definition 6.2.2).

(2) If x ≠E y, then by lemma 6.1.31, there is a unique index j such that x ∈ w●j . We
have

⟦u[v/x]⟧n+1
= ⟦y(. . . , aj ← wj[v/x], . . .)⟧n+1

=
⎛
⎝
Y⟦y⟧n ◯

[&sy ai],i≠j
⟦wi⟧n+1

⎞
⎠
○

[&sy aj]
⟦wj[v/x]⟧n+1 ♠

=
⎛
⎝
Y⟦y⟧n ◯

[&sy ai],i≠j
⟦wi⟧n+1

⎞
⎠

○
[&sy aj]

(⟦wj⟧n+1 ◽
&wj x

⟦v⟧n+1) by induction

= ⟦u⟧n+1 ◽
[&sy aj]⋅&wj x

⟦v⟧n+1 ♢

= ⟦u⟧n+1 ◽
&u x
⟦v⟧n+1 ♣

where ♠ is by equation (6.2.8), ♢ is just a rearrangement of terms, and ♣ is defini-
tion 6.2.2.

Proposition 6.2.16. Let n ≥ 1 and (E ▹ Γ ⊢n r ∶ R) be a derivable sequent such that
⟦r⟧n+1 is well-defined. Then t ⟦r⟧n+1 = ⟦s r⟧n.

Proof. (1) If r ∈ Vn is a variable, then

t ⟦r⟧n+1 = tY⟦r⟧n by equation (6.2.8)
= ⟦r⟧n .



(2) If r is a degenerate term, say r = x for x ∈ Vn−1, then

t ⟦r⟧n+1 = t I⟦x⟧n−1 by equation (6.2.7)
= Y⟦x⟧n−1

= ⟦x⟧n by equation (6.2.8)
= ⟦s r⟧n see rule degen.

(3) Otherwise, the sequent follows from an instance of the graft rule, say

⋯ ⊢n t ∶ T ⋯ ⊢n x ∶X graft-a
⋯ ⊢n r ∶ R

Let [p] ∶=℘⟦t⟧n+1 &t a. We have

t ⟦r⟧n+1 = t ⟦t(a← x)⟧n+1 by definition of graft-a

= t(⟦t⟧n+1 ○
&s t a

Y⟦x⟧n) by lemma 6.2.13

= t ⟦t⟧n+1 ◽[p]
⟦x⟧n by proposition 3.1.6

= ⟦s t⟧n ◽[p]
⟦x⟧n by induction

= ⟦s t⟧n ◽
&s t a
⟦x⟧n by lemma 6.2.14

= ⟦(s t)[x/a]⟧n by lemma 6.2.15
= ⟦s r⟧n by definition of graft-a.

Corollary 6.2.17. Let n ≥ 1 and (E ▹ Γ ⊢n t ∶ T ) be a derivable sequent such that ⟦t⟧n+1
is well-defined. Then &t exhibits a bijection

(s t)● ≅Ð→ ⟦t⟧∣n+1 ,

Proof. Since the readdressing map ℘⟦t⟧n+1 is a bijection, &t can be expressed as the fol-
lowing composite:

(s t)● &tÐ→ {&t a ∣ a ∈ (s t)●}
℘⟦t⟧n+1ÐÐÐÐ→ {&s t a ∣ a ∈ (s t)●} by lemma 6.2.14
= ⟦s t⟧●n by lemma 6.2.10
= (t ⟦t⟧n+1)

● by proposition 6.2.16
℘−1⟦t⟧n+1ÐÐÐÐ→ ⟦t⟧∣n+1 .

Proposition 6.2.18. With variables as in equation (6.2.8), we have that for all i

e[] ⟦ui⟧n+1 = s&sx yi ⟦x⟧n ,

and the graftings are well-defined.



Proof. Write ui as a(ÐÐÐÐ→bj ← vj), and consider

e[] ⟦ui⟧n+1 = t s[] ⟦ui⟧n+1
= t ⟦a⟧n by proposition 6.2.11
= t ⟦sa⟧n see convention 6.2.1
= ⟦s sa⟧n−1 by proposition 6.2.16
= ⟦s yi⟧n−1 by the conditions of graft
= ⟦yi⟧n−1 see convention 6.2.1
= s&sx yi ⟦x⟧n by corollary 6.2.12.

This result concludes the proof that equations (6.2.5) to (6.2.8) of definition 6.2.4 are
well-defined. The rest of this section is dedicated to prove theorem 6.2.27 stating that
⟦−⟧n is a bijection modulo α-equivalence. We first prove surjectivity, by defining a sequent
C ! (ω) in Opt! such that ⟦C ! (ω)⟧

n
= ω, for any opetope ω ∈ On.

Definition 6.2.19. We define the named coding function C ! as follows.
(1) Trivially, C ! (⧫) is obtained by the following proof tree:

point
C ! (⧫) (6.2.20)

with an arbitrary choice of variable (different choices lead to equivalent sequents).
(2) For ϕ ∈ On−2 the sequent C ! (Iϕ) is obtained by the following proof tree:

⋮
C ! (ϕ) degen
C ! (Iϕ)

(6.2.21)

(3) For ψ ∈ On−1, the sequent C ! (Yψ) is obtained by the following proof tree:

⋮
C ! (ψ)

shift
C ! (Yψ)

(6.2.22)

with an arbitrary choice of fresh variable (different choices lead to equivalent se-
quents).

(4) Let ν ∈ On having at least one node, [l] ∈ ν∣, and ψ ∈ On−1 be such that the
grafting ν ○[l]Yψ is well-defined. Then the sequent C ! (ν ○[l]Yψ) is obtained by the
following proof tree:

⋮
C ! (ν)

⋮
C ! (ψ)

shift
C ! (Yψ) graft-a

C ! (ν ○[l]Yψ)

(6.2.23)

where C ! (ν) = (⋯ ⊢n u ∶ U), where the variable a ∈ (su)● is an (n−1)-variable such
that &su a = ℘ν[l] (see corollary 6.2.17), and where the adequate α-conversions have
been performed to fulfill the side conditions of graft.



Proposition 6.2.24. In proof tree (6.2.23), the instance of graft is well-defined.

Proof. If n = 2, then all graftings are well-defined, as there exists only one 1-opetope.
Assume that n > 2, write C ! (Yψ) = (⋯ ⊢n−1 p ∶ P ), where p ∈ Vn, and let [q] ∶=℘ν[l]. We
have

⟦sa⟧n−1 = ⟦a⟧n−1 see convention 6.2.1
= ⟦v[q] su⟧n−1 by definition of a
= s[q] ⟦su⟧n by proposition 6.2.11
= s[q] t ⟦u⟧n+1 by proposition 6.2.16
= s[q] tν by definition
= e[l] ν by (Glob2)
= tψ by assumption
= t tYψ

= t t ⟦p⟧n+1 by definition
= ⟦s sp⟧n−1 by proposition 6.2.16 twice.

By induction on n, the polynomial coding ⟦−⟧n−1 is injective modulo α-equivalence. Hence
without loss of generality, we can assume sa = s sp, and finally, the instance of the graft
rule is well-defined.

Proposition 6.2.25. Let n ≥ 2 and ω ∈ On have at least three nodes. The sequent C ! (ω)
does not depend on the decomposition of ω in corollas. Explicitly, for any two decomposi-
tions of ω, say

ω = ( ⋯ (Ys[p1] ω
○
[p2]

Ys[p2] ω
) ○
[p3]

Ys[p3] ω
⋯ ) ○

[pk]
Ys[pk] ω

= ( ⋯ (Ys[q1] ω
○
[q2]

Ys[q2] ω
) ○
[q3]

Ys[q3] ω
⋯ ) ○

[qk]
Ys[qk] ω

,

we have

C ! ((Ys[p1] ω
○
[p2]

Ys[p2] ω
) ⋯ ○

[pk]
Ys[pk] ω

) = C ! ((Ys[q1] ω
○
[q2]

Ys[q2] ω
) ⋯ ○

[qk]
Ys[qk] ω

) .

Proof. By definition, the sequence [p1], . . . , [pk] (and likewise for [q1], . . . , [qk]) has the
following property: for 1 ≤ i ≤ j ≤ k, either [pi] ⊑ [pj] or [pi] and [pj] are ⊑-incomparable
(recall that ⊑ is the prefix order on An−1, see definition 3.3.4). Further, {[p1], . . . , [pk]} =
ω● = {[q1], . . . , [qk]}, i.e. the two sequences have the same elements. Consequently, the
sequence [q1], . . . , [qk] can be obtained from [p1], . . . , [pk] by a series of transpositions of
consecutive ⊑-incomparable addresses.

It is thus enough to check the following: for ν ∈ On, two different leaf addresses [l], [l′] ∈
ν∣ (which are necessarily ⊑-incomparable), and ψ,ψ′ ∈ On−1 such that tψ = e[l] ν and
tψ′ = e[l′] ν, we have

C ! ((ν ○
[l]
Yψ) ○

[l′]
Yψ′) = C ! ((ν ○

[l′]
Yψ′) ○

[l]
Yψ) .



Write

C ! (ν) = (Eν ▹ Γν ⊢n tν ∶ sν r⊸Xν) ,
C ! (Yψ) = (Eψ ▹ Γψ ⊢n xψ ∶ sψ r⊸Xψ) ,
C ! (Y′ψ) = (Eψ′ ▹ Γψ′ ⊢n xψ′ ∶ sψ′ r⊸Xψ′) ,

with tν ∈ Tn and xψ, xψ′ ∈ Vn. Let a, a′ ∈ (sν)● be such that &s ν a = [l] and &s ν a
′ = [l′]

(see corollary 6.2.17). The sequents above are respectively obtained by the following proof
trees:

⋯ ⊢ tν ∶ sν r⊸Xν ⋯ ⊢ xψ ∶ sψ r⊸Xψ graft-a
F ▹ Γν ∪ Γψ ⊢ tν(a← xψ) ∶ sν[sψ/a]r⊸Xν ⋯ ⊢ xψ′ ∶ sψ′ r⊸Xψ′ graft-a′

G ▹ Γν ∪ Γψ ∪ Γψ′ ⊢ tν(a← xψ)(a′ ← xψ′) ∶ sν[sψ/a][sψ′/a′]r⊸Xν

⋯ ⊢ tν ∶ sν r⊸Xν ⋯ ⊢ xψ′ ∶ sψ′ r⊸Xψ′ graft-a′
F ′ ▹ Γν ∪ Γψ′ ⊢ tν(a′ ← xψ′) ∶ sν[sψ′/a′]r⊸Xν ⋯ ⊢ xψ ∶ sψ r⊸Xψ graft-a

G′ ▹ Γν ∪ Γψ′ ∪ Γψ ⊢ tν(a′ ← xψ′)(a← xψ) ∶ sν[sψ′/a′][sψ/a]r⊸Xν

It remains to prove that both those conclusions are α-equivalent.
(1) By assumption on the graft rule, a ∉ s●ψ′ and a′ ∉ s●ψ, and clearly,

tν(a← xψ)(a′ ← xψ′) = tν(a′ ← xψ′)(a← xψ).

(2) Again, since a ∉ s●ψ′ and a′ ∉ s●ψ, we have sν[sψ/a][sψ′/a′] = sν[sψ′/a′][sψ/a].
(3) Lastly, the equational theories G and G′ are the union of Eν , Eψ, and Eψ′ , and

the potential additional equalities incurred by the independent substitutions sψ/a
and sψ′/a′. Hence G = G′.

Corollary 6.2.26. For any opetope ω ∈ O, the sequent C ! (ω) is uniquely defined up to
α-equivalence.

Proof. Clearly, proof trees (6.2.20), (6.2.21), and (6.2.22) are well-defined. In proposi-
tion 6.2.24, we have shown that the same holds for proof tree equation (6.2.23). Finally, in
proposition 6.2.25, we have shown that for a non degenerate opetope ω ∈ On, the sequent
C ! (ω) does not depend on the decomposition of ω.

Theorem 6.2.27. The polynomial coding ⟦−⟧n is a bijection up to α-equivalence, whose
inverse is C ! (−) restricted to On.

Proof. The result is trivial if n = 0,1, so we assume n ≥ 2. We first show that for ω ∈ On

we have ⟦C ! (ω)⟧
n
= ω.

(1) By definition of ⟦−⟧, ⟦C ! (⧫)⟧
0
= ⧫.

(2) With the same notations as in (6.2.21), and by induction, we have

⟦C ! (Iϕ)⟧n = I⟦C!(ϕ)⟧n−2 = Iϕ.

(3) With the same notations as in (6.2.22), and by induction, we have,

⟦C ! (Yψ)⟧n = Y⟦C!(ψ)⟧n−1 = Yψ.



(4) With the same notations as in (6.2.23), and by induction, we have

⟦C ! (ν ○
[l]
Yψ)⟧

n

= ⟦C ! (ν)⟧
n
○

[&s su a]
⟦C ! (Yψ)⟧n

= ⟦C ! (ν)⟧
n
○
[l]
⟦C ! (Yψ)⟧n

= ν ○
[l]
Yψ.

Conversely, we now show that for a derivable sequent (E ▹ Γ ⊢ α ∶ T ), we have an isomor-
phism (E ▹ Γ ⊢ α ∶ T ) ≃ C ! (⟦E ▹ Γ ⊢ α ∶ T ⟧n).

(1) We have that C ! (⟦x ∶ ∅⟧0) = C ! (⧫) ≃ (▹x ∶ ∅ ⊢ x ∶ ∅).
(2) With the same notations as in equation (6.2.7), we have

C ! (⟦⋯ ⊢ δ ∶ xr⊸ xr⊸X⟧n) = C
! (I⟦x∶X⟧n)

and both sequents C ! (I⟦x∶X⟧n) and (⋯ ⊢ δ ∶ xr⊸ xr⊸X) are obtained by applying
degen to (⋯ ⊢ x ∶X). Thus C ! (⟦⋯ ⊢ δ ∶ xr⊸ xr⊸X⟧n) ≃ (⋯ ⊢ δ ∶ xr⊸ xr⊸X).

(3) Lastly, consider the sequent (⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)r⊸ T) as in equation (6.2.8). Then

C ! (⟦⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)r⊸ T ⟧
n+1) = C

! ⎛
⎝
Y⟦x⟧n ◯

[&sx yi]
⟦ui⟧n+1

⎞
⎠

≃ (⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)r⊸ T ′) .

Since T and T ′ are completely determined by x(ÐÐÐÐ→yi ← ui) (see theorem 6.1.26), we
have that T = T ′, whence

C ! (⟦⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)r⊸ T ⟧
n+1) ≃ (⋯ ⊢ α ∶ x(

ÐÐÐÐ→yi ← ui)r⊸ T) .

6.3 EXAMPLES

In this section, we showcase the derivation of some low dimensional opetopes. On a scale
of a proof tree, specifying the context at every step is redundant. Hence we allow omitting
it, only having the equational theory on the left of ⊢.

Example 6.3.1 (The arrow). The unique 1-opetope, the arrow, is given by the following
simple derivation:

point⊢0 a ∶ ∅ shift⊢1 f ∶ ar⊸ ∅

Example 6.3.2 (Opetopic integers). The opetopic integer n (example 3.1.4) is repre-
sented on the left in the case n = 0, and on the right if n ≥ 1:

a

⇓0
an

an−1

an−2
a1

fn

fn−1

f1⇓n

The derivation of 0 is



point⊢0 a ∶ ∅ degen⊢1 a ∶ ar⊸ ∅ shift⊢1 0 ∶ ar⊸ ar⊸ ∅

alternatively, we could have used the degen-shift rule (remark 6.1.24). For n ≥ 1, the
opetope n is derived as follows, where g is a shorthand for graft

⋮
⊢ f1 ∶ a1 r⊸ ∅

⋮
⊢ f2 ∶ a2 r⊸ ∅ g-a1

⊢ f1(a1 ← f2) ∶ a2 r⊸ ∅
⋮

⊢ f3 ∶ a3 r⊸ ∅ g-a2
⊢ f1(a1 ← f2(a2 ← f3)) ∶ a3 r⊸ ∅

⋮
⊢ f1(a1 ← f2(⋯an−2 ← fn−1)) ∶ an−1 r⊸ ∅

⋮
⊢ fn ∶ an r⊸ ∅ g-an−1

⊢ f1(a1 ← f2(⋯an−1 ← fn)) ∶ an r⊸ ∅ shift⊢ n ∶ f1(a1 ← f2(⋯an−1 ← fn))r⊸ an r⊸ ∅

Example 6.3.3. The 3-opetope

a

b c

f

g

h
i

⇓α
⇓β

A⇛
a

b c

f

g

h⇓

is derived as follows.

point⊢0 c ∶ ∅ shift⊢1 h ∶ cr⊸ ∅

point⊢0 a ∶ ∅ shift⊢1 i ∶ ar⊸ ∅ graft-c
⊢1 h(c← i) ∶ c[a/c]r⊸ ∅

and c[a/c] = a. Then,

⋮
⊢1 h(c← i) ∶ ar⊸ ∅

shift⊢2 β ∶ h(c← i)r⊸ ar⊸ ∅

On the other hand we have

point
⊢0 b ∶ ∅ shift⊢1 g ∶ br⊸ ∅

point⊢0 a ∶ ∅ shift⊢1 f ∶ ar⊸ ∅ graft-b
⊢1 g(b← f) ∶ b[a/b]r⊸ ∅

and b[a/b] = a. Then,

⋮
⊢2 β ∶ h(c← i)r⊸ ar⊸ ∅

⋮
⊢1 g(b← f) ∶r⊸ ∅

shift⊢2 α ∶ g(b← f)r⊸ ar⊸ ∅ graft-i
⊢2 β(i← α) ∶ h(c← i)[g(b← f)/i]r⊸ ar⊸ ∅

The last grafting is well-defined as s i = a = s sα, and h(c ← i)[g(b ← f)/i] = h(c ← g(b ←
f)). Finally



⋮
⊢2 β(i← α) ∶ h(c← g(b← f))r⊸ ar⊸ ∅

shift⊢3 A ∶ β(i← α)r⊸ h(c← g(b← f))r⊸ ar⊸ ∅

The complete proof tree is as follows, where p, s, and g are abbreviations for point, shift,
and graft, respectively

p⊢ c ∶ ∅ s⊢ h ∶ cr⊸ ∅

p⊢ a ∶ ∅ s⊢ i ∶ ar⊸ ∅ g-c
⊢ h(c← i) ∶ ar⊸ ∅ s

⊢ β ∶ h(c← i)r⊸ ar⊸ ∅

p
⊢ b ∶ ∅ s⊢ g ∶ br⊸ ∅

p⊢ a ∶ ∅ s⊢ f ∶ ar⊸ ∅ g-b
⊢ g(b← f) ∶ ar⊸ ∅ s

⊢ α ∶ g(b← f)r⊸ ar⊸ ∅ g-i
⊢ β(i← α) ∶ h(c← g(b← f))r⊸ ar⊸ ∅ s

⊢ A ∶ β(i← α)r⊸ h(c← g(b← f))r⊸ ar⊸ ∅

This proof tree can be graphically represented as follows:

p
c

s
c

h

p

a
s

a
i

g-c

a

c

h
i

s

a

c

h
i
⇓β

p
b

s
b

g

p

a
s

a

f

g-b

a

b

f

g

s

a

b

f

g

⇓α

g-i

a

b c

f

g

h
⇓α
⇓β

s

a

b c

f

g

h
i

⇓α
⇓β

A⇛
a

b c

f

g

h⇓

Example 6.3.4 (A degenerate case). The 3-opetope
a

f

⇓δ

⇓α
A⇛

a

⇓

is derived as follows:

point⊢ a ∶ ∅ shift⊢ f ∶ ar⊸ ∅
shift⊢ α ∶ f r⊸ ar⊸ ∅

point⊢ a ∶ ∅ degen
⊢ δ ∶ ar⊸ ar⊸ ∅ graft-f

⊢ α(f ← δ) ∶ ar⊸ ar⊸ ∅
shift⊢ A ∶ α(f ← δ)r⊸ ar⊸ ar⊸ ∅



Example 6.3.5 (Another degenerate case). The 3-opetope

a

f

g

⇓δ
⇓β A⇛

a
g

⇓

is derived as follows:

point
⊢ b ∶ ∅ shift⊢ g ∶ br⊸ ∅

point⊢ a ∶ ∅ shift⊢ f ∶ ar⊸ ∅ graft-b
⊢ g(b← f) ∶ ar⊸ ∅

shift⊢ β ∶ g(b← f)r⊸ ar⊸ ∅

point⊢ a ∶ ∅ degen⊢ a ∶ ar⊸ ∅
shift⊢ δ ∶ ar⊸ ar⊸ ∅
graft-f

a = b ⊢ β(f ← δ) ∶ g(b← f)[a/f]r⊸ ar⊸ ∅

and g(b← f)[a/f] = g, with the added equality a = b.

⋮
a = b ⊢ β(f ← δ) ∶ gr⊸ ar⊸ ∅

shift
a = b ⊢ A ∶ β(f ← δ)r⊸ gr⊸ ar⊸ ∅

This proof tree can be graphically represented as follows:

point
b

shift
b

g

point
a

shift
a

f

graft-b
a b

f g

shift
a b

f g

⇓β

point
a

degen
a

shift
a

⇓δ

graft-f
a

f

g

⇓δ
⇓β

shift
a

f

g

⇓δ
⇓β A⇛

a
g

⇓



Chapter Seven

The named systems for opetopic sets

T
his chapter further develops the syntax of chapter 6 in order to include opetopic
sets. Recall that in Opt!, a derivable sequent typing a variable is an expression
of of the form

E ▹ Γ ⊢ x ∶X,

where by construction, all variables in VΓ − {x} appear in the type X (up to =E) of x.
Informally, all the variables of Γ “contribute” to the definition of x, and thus are all “faces”
of x. This is analogous to a representable presheaf, where all cells derive from a unique
cell (corresponding to the identity of the represented object). To describe a finite opetopic
set, one would just need an expression of the form

E ▹ Γ.

This time, no particular variable is the center of attention, and (E ▹ Γ) would need to be
constructed in a more liberal manner to reflect arbitrarily complex “adjacency” relations
among variables. This is the purpose of system OptSet!, present in this chapter.

7.1 THE OPTSET! SYSTEM

We now present OptSet!, a derivation system for opetopic sets that is based on Opt!

(definition 6.1.16). We first present the required syntactic constructs and conventions,
then the inference rules in definition 7.1.2.

syntax

An interesting aspect of the named approach is that only the source faces are specified in
the type of terms:

x ∶ sxr⊸ s sxr⊸ ⋯

Nonetheless, as proven in proposition 6.2.16, all the information about targets remain.
This comes from the intuition that any two opetopes with the same source are equal.
In opetopic sets however, two cells with the same source faces need not be equal, nor
have the same target. To adapt Opt! to opetopic sets, all faces, including targets, need
to be explicitly specified. This will be part of rule repr of system OptSet!, presented in
definition 7.1.2. Lastly, recall that a typical sequent in system Opt! looks like this:

E ▹ Γ ⊢ t ∶ T.

Here, t represents a pasting diagram who will ultimately serve as the source of a new
variable, which will be introduced using rule shift. It does not provide any additional
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information about the variables of Γ and their adjacencies. Thus, when describing opetopic
sets, we will drop the right hand side of the sequent, and deal with expressions of the form
(E ▹ Γ), called opetopic contexts modulo theory (or OCMTs for short).

Example 7.1.1. As a preliminary example, the OCMT describing the opetopic set:

a a a

b

⇓α
⇓β

h

f g h

h

is given by

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b = t f, a = t g = t tα = th = t tβ
h = tβ = tα

▹

a ∶ ∅, b ∶ ∅, t f ∶ ∅, t g ∶ ∅, t tα ∶ ∅,
th ∶ ∅, t tβ ∶ ∅

f ∶ ar⊸ ∅, g ∶ ar⊸ ∅, tα ∶ ar⊸ ∅,
h ∶ ar⊸ ∅, tβ ∶ ar⊸ ∅

α ∶ g(b← f)r⊸ ar⊸ ∅, β ∶ hr⊸ ar⊸ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

On the right of ▹, we have all the variables and types, much like a context in Opt!. The
novelties are variables of the form tx, which indicate targets. For example, tα, the target
of α, has type a r⊸ ∅, meaning that it is an arrow of source a. On the left hand side is
an equational theory as in Opt!, identifying variables. Note that tα is identified with h,
as shown by the diagram above. See example 7.3.2 for a full treatment of this case.

inference rules

Our derivation system for opetopic sets, presented in definition 7.1.2, has four rules:
(1) repr that takes an opetope in our previous system and turns it into the repre-

sentable opetopic set of that opetope by adding all the target faces;
(2) zero that constructs the empty OCMT, corresponding to the empty opetopic set;
(3) sum that takes the disjoint union of two opetopic sets;
(4) glue that identifies cells of an opetopic set.

By lemma 3.5.5, every finite opetopic set is a quotient of a finite sum of representables.
Therefore, those rules should be enough to derive all finite opetopic sets, which is formally
demonstrated in theorem 7.2.26.



Definition 7.1.2 (The OptSet! system). Introduction of all targets. This rule
takes a sequent (E ▹ Γ ⊢n x ∶X), and completes it by adding all the targets
cells, and turning it into an OCMT:

E ▹ Γ ⊢n x ∶X repr
E′ ▹ Γ′

where

Γ′ ∶= Γ ∪ {tk a ∶ sk+1 ar⊸ sk+2 ar⊸ ⋯ ∣ a ∈ VΓ,l,1 ≤ k ≤ l ≤ n} ,

and

E′ ∶= E
∪ {ta = b ∣ for all b← a(⋯) occurring in a type in Γ} (7.1.3)
∪ {t ta = t v[] sa ∣ a ∈ VΓ′,k non degen.,2 ≤ k ≤ n} (7.1.4)
∪ {tk+2 a = b ∣ if tk a ∶ br⊸ br⊸ ⋯,0 ≤ k ≤ n − 2} . (7.1.5)

Here, tk a = t⋯ ta can be thought of as a “tagging” on the variable a ∈ Vl, but
for simplicity, we consider it as a variable of its own: tk a ∈ Vl−k. By convention,
t0 a ∶=a, and if a = b, then ta = t b, for all a, b ∈ Γ′. In line (7.1.4), the source
of a is assumed non degenerate, thus sa is a term of the form x(ÐÐÐÐ→yi ← ui), and
v[] sa = x (see definition 6.2.2).

Zero. This rules introduces the empty OCMT:

zero▹

Binary sums. This rule takes two disjoint opetopic sets (i.e. whose cells have differ-
ent names), and produces their sum. If Γ∩Υ = ∅ (which implies that E∩F = ∅),
then

E ▹ Γ F ▹Υ sum
E,F ▹ Γ,Υ

Quotients. This rule identifies two parallel cells in an opetopic set by extending the
underlying equational theory. If a, b ∈ VΓ are such that sa =E s b and ta =E t b,
then

E ▹ Γ glue
E,a = b ▹ Γ

We also write glue-(a=b) to make explicit that we added {a = b} to the theory.



Remark 7.1.6. In rule repr, the additional equalities of (7.1.3) enforce (Inner), those
of (7.1.4) enforce (Glob1), and those of (7.1.5) enforce (Degen). Condition (Glob2)
is implemented in (7.1.3), by the definition of the type of the target variables ta: the
bookkeeping of the readdressing map is completely transparent, as for an n-variable x,
the correspondence between the (n − 1)-variables of sx and (n − 1)-variables of s tx is
already established by their name! See also remark 8.1.17.
Remark 7.1.7. Akin to Opt!, in OptSet!, an OCMT that is equivalent to a derivable one
is itself derivable.
Remark 7.1.8. The sum and zero rules may be replaced by the following usum rule (unbi-
ased sum) without changing the set of derivable OCMTs. For k ≥ 0, and for (E1 ▹ Γ1) , . . . ,
(Ek ▹ Γk) OCMTs such that Γi ∩ Γj = ∅ for all i ≠ j, then

E1 ▹ Γ1 ⋯ Ek ▹ Γk usum
E1, . . . ,Ek ▹ Γ1, . . . ,Γk

7.2 EQUIVALENCE WITH OPETOPIC SETS

opetopic sets from ocmt

Notation 7.2.1. Let E ▹ Γ be an OCMTs. We write Γ/E for the set VΓ quotiented by the
equivalence relation generated by the equational theory E.

Definition 7.2.2 (OCMT of a variable). For (E ▹ Γ ⊢n x ∶X) a derivable sequent in
system Opt!, where x ∈ Vn, let (Tx ▹Cx), the OCMT of x (leaving the sequent around x

implicit), be given by the following instance of repr:

E ▹ Γ ⊢n x ∶X repr
Tx ▹Cx

We now establish a series of results to prove that Cx/Tx carries a natural structure of
representable opetopic set. We proceed in 4 steps:

(1) we start by noting that Cx/Tx is naturally a set over O via the polynomial coding
map ⟦−⟧ (proposition 7.2.5);

(2) then, in proposition 7.2.7, we construct source and target maps in Cx/Tx, i.e. the
structure maps of an opetopic set;

(3) we show in theorem 7.2.8 that the opetopic identities of definition 3.4.2 are satisfied,
and that consequently, Cx/Tx has the structure of an opetopic set;

(4) finally, we show in proposition 7.2.15 that Cx/Tx is in fact a representable opetopic
set, using a counting argument.

From there, we define a structure of opetopic set on an arbitrary OCMT by induction on
its proof tree in equations (7.2.17) and (7.2.18).

Definition 7.2.3. Let (E ▹ Γ ⊢n x ∶X) be a derivable sequent on Opt!, where x ∈ Vn,
and a ∈ VCx,k. If a ∈ VΓ,k, recall that by proposition 6.1.32, a is typed by the derivable
sequent (E∣a ▹ Γ∣a ⊢k a ∶ A), where (−)∣a denotes restriction of contexts and theories to
a and to the variables occurring in the type A. Thus we have a well-defined opetope
⟦a⟧k = ⟦E∣a ▹ Γ∣a ⊢k a ∶ A⟧k ∈ Ok. Otherwise, if a = tn−k x, then sa = sn−k+1 x, and define
⟦a⟧k ∶= ⟦sn−k+1 x⟧k. We thus have a map ⟦−⟧ ∶ VCx Ð→ O.



Lemma 7.2.4. Let (E ▹ Γ ⊢n x ∶X) be a derivable sequent on Opt!, where x ∈ Vn, and
a ∈ VCx,k. Then the opetope ⟦a⟧k of definition 7.2.3 does not depend on the proof tree of
(E ▹ Γ ⊢n x ∶X).

Proof. If a ∈ VΓ,k, then ⟦a⟧k = ⟦E∣a ▹ Γ∣a ⊢k a ∶ A⟧k, which does not depend on the proof
tree of (E∣a ▹ Γ∣a ⊢k a ∶ A) which by definition (see definition 6.2.4) does not depend on
any proof tree. If a = tn−k x, then ⟦a⟧k = ⟦sn−k+1 x⟧k which does not depend on the proof
tree of (E ▹ Γ ⊢n x ∶X) either.

Proposition 7.2.5. The map ⟦−⟧ ∶ VCx Ð→ O factors through Cx/Tx.

Proof. By construction, the theory Tx identifies variables a, b ∈ VCx,k only if sa = s b, thus
⟦a⟧k = ⟦sa⟧k = ⟦s b⟧k = ⟦b⟧k.

Definition 7.2.6. For ψ ∈ Ok, write

(Cx/Tx)ψ = {a ∈ VCx,k ∣ ⟦a⟧k = ψ} .

We now construct source and target maps between those subsets.
Sources. If [p] ∈ ⟦a⟧●k, then by corollary 6.2.17, there is a unique b ∈ VCx∣a,k−1 such that

&sa b = [p]. Let v[p] a ∶= b.
Target. For a ∈ VCx,k, k > 0, we of course set t(a) ∶= ta, the latter being a variable

introduced by the repr rule.

Proposition 7.2.7. Let a ∈ VCx,k.
(1) For [p] ∈ ⟦a⟧●k we have ⟦v[p] sa⟧k−1 = s[p] ⟦a⟧k.
(2) We have ⟦ta⟧k−1 = t ⟦a⟧k.

Proof. (1) It a is not a target i.e. a ≠ t b for any b ∈ VCx,k, then this is already proven
by proposition 6.2.11. If a = tl b for some b ∈ VCx,k+l that is not a target, and l ∈ N,
then

⟦v[p] sa⟧k−1 = ⟦v[p] s t
l b⟧

k−1

= ⟦v[p] sl+1 b⟧k−1 see definition of repr

= s[p] ⟦s sl b⟧k by proposition 6.2.11
= s[p] ⟦sa⟧k
= s[p] ⟦a⟧k see convention 6.2.1.

(2) If a is not a target, then

t ⟦a⟧k = t ⟦sa⟧k see convention 6.2.1
= ⟦s sa⟧k−1 by proposition 6.2.16
= ⟦s ta⟧k−1 see definition of repr
= ⟦ta⟧k−1 see convention 6.2.1.

If a = tl b for some b ∈ VCx,k+l that is not a target, and l ∈ N, then

t ⟦a⟧k = t ⟦sa⟧k see convention 6.2.1



= t ⟦s tl b⟧
k

= t ⟦sl+1 b⟧
k

see definition of repr

= ⟦sl+2 b⟧
k−1

= t ⟦s tl+1 b⟧
k

see definition of repr

= ⟦s ta⟧k−1
= ⟦ta⟧k−1 see convention 6.2.1.

Theorem 7.2.8. With all the structure of definition 7.2.6, Cx/Tx is an opetopic set.

Proof. We check the opetopic identities of definition 3.4.2. Take a ∈ VCx,k,
(Inner) Take [p[q]] ∈ ⟦a⟧●k, and write d = v[p[q]] sa. In sa, the variable d occurs as

sa = ⋯, b(c← d),⋯

where b = v[p] sa and c = v[q] s b. By equation (7.1.3), v[q] v[p] a = v[q] b = c = td =
t v[p[q]] a.

(Glob1) Assume that sa is not degenerate. Then, by equation (7.1.4), we have t ta =
t v[] a.

(Glob2) Assume that sa is not degenerate, take [p[q]] ∈ ⟦a⟧∣k , and let c ∶= v[q] v[p] a.
Then

℘⟦a⟧k[p[q]] = ℘⟦sa⟧k[p[q]] see convention 6.2.1

= ℘⟦sa⟧k &sa c by definition

= &s sa c by lemma 6.2.14
= &s ta c see definition of repr.

and thus v[q] v[p] a = c = v&s ta c ta = v℘⟦a⟧k [p[q]] ta.
(Degen) Assume that sa is degenerate, say sa = b. Then by equation (7.1.5), v[] ta =

b = t ta = t0 a = a.

Lemma 7.2.9. The opetopic set Cx/Tx is a quotient of the representable O[⟦x⟧n].

Proof. The category of elements O/(Cx/Tx) of Cx/Tx is a poset since O is a directed
category. It has a unique maximal element, namely the equivalence class of variable x
itself. Moreover, that element has shape x♮ = ⟦x⟧n. By the Yoneda lemma, there is a map
O[⟦x⟧n] Ð→ Cx/Tx having cell x in its image, and since x the maximum, this map is
surjective.

Let (E ▹ Γ ⊢n x ∶X) be a derivable sequent, with x ∈ Vn. In lemma 7.2.9, we established
that Cx/Tx is a quotient of the representable opetopic set O[⟦x⟧n]. We now aim to show
that the two are actually isomorphic (proposition 7.2.15) by showing that they have the
same number of cells. Recall the cell counting function # from definition 0.3.2. Since all
the slices of O are finite, #ω =#O[ω] is a finite number, for all ω ∈ O.

Lemma 7.2.10. For ω ∈ O an opetope, we have #ω = 2 +#S[ω] (definition 3.5.1).



Proof. Follows from remark 3.5.2.

Proposition 7.2.11. (1) We have # ⧫ = 1, and # ◾ = 3.
(2) If ω is an endotope, say ω = Yψ, then #ω = 2 +#ψ.
(3) If ω is a degenerate opetope, say ω = Iϕ, then #ω = 2 +#ϕ.
(4) If ω = ν○[l]Yψ, for some ν ∈ On, [l] ∈ ν∣, and ψ ∈ On−1, then #ω =#ν+#ψ−# e[l] ν.

Proof. The first point is clear. If ω = Yψ, then S[ω] = O[ψ], thus by lemma 7.2.10,
#ω = 2 +#O[ψ] = 2 +#ψ. If ω = Iϕ, then S[ω] = O[ϕ], thus #Iϕ = 2 +#ϕ. If ω = ν ○[l]Yψ,
then by lemma 3.5.8, S[ω] = S[ν]∐O[e[l] ν]O[ψ], thus #ω = 2 + (#ν − 2) +#ψ −# e[l] ν =
#ν +#ψ −# e[l] ν.

Corollary 7.2.12. If ω ∈ O≥2 is not degenerate, then

#ω = 2 +
⎛
⎝ ∑[p]∈ω●

# s[p] ω
⎞
⎠
−
⎛
⎝ ∑
[p[q]]∈ω●

# s[q] s[p] ω
⎞
⎠

Proof. If ω is an endotope, the result is already proved in proposition 7.2.11. Otherwise,
decompose ω as ν ○[l]Yψ, and assume that by induction, the result holds for ν. We have

#ω = #ν +#ψ −# e[l] ν ♠

= 2 +
⎛
⎝
#ψ + ∑

[p]∈ν●
# s[p] ν

⎞
⎠
−
⎛
⎝
# e[l] ν + ∑

[p[q]]∈ν●
# s[q] s[p] ν

⎞
⎠

♢

= 2 +
⎛
⎜⎜⎜
⎝
# s[l] ω + ∑

[p]∈ω●
[p]≠[l]

# s[p] ω

⎞
⎟⎟⎟
⎠
−
⎛
⎜⎜⎜
⎝
# e[l] ω + ∑

[p[q]]∈ω●
[p[q]]≠[l]

# s[q] s[p] ω

⎞
⎟⎟⎟
⎠

= 2 +
⎛
⎝ ∑[p]∈ω●

# s[p] ω
⎞
⎠
−
⎛
⎝ ∑
[p[q]]∈ω●

# s[q] s[p] ω
⎞
⎠
,

where ♠ is by proposition 7.2.11, and ♢ is by induction.

Example 7.2.13. Consider the opetopic integer n ∈ O2 from example 3.1.4:

.
⇓

.

. . .

.
(n)

(n − 1)

(1)⇓

We show that #n = 2n + 3. If n = 0, then #0 = #I⧫ = 2 +# ⧫ = 3. This can be read on
the graphical representation of 0, that has one point, one simple arrow, and one double
arrow, for a total of 3 cells. If n = 1, then #1 =#Y◾ = 2 +# ◾ = 5. Otherwise,

#n = #((n − 1) ○
[∗n−1]

Y◾) by definition of n

= #(n − 1) +# ◾−# e[∗n−1](n − 1) by proposition 7.2.11
= (2n + 1) + 3 −# ⧫ by induction
= (2n + 1) + 3 − 1 = 2n + 3.



Example 7.2.14. Consider the 3-opetope ω = Y2 ○[[∗]]Y0 of example 6.3.5:

. .
⇓
⇓ ⇛

. .

⇓

Then,

#ω = #(Y2 ○
[[∗]]

Y0)

= #Y2 +#0 −# e[[∗]]Y2 by proposition 7.2.11
= 2 +#2 +#0 −# ◾ by proposition 7.2.11
= 9 since #n = 2n + 3.

Proposition 7.2.15. We have Cx/Tx ≅ O[⟦x⟧n].

Proof. (1) If x = ⧫, then VCx = ⧫, while Tx = ∅. Thus #Cx/Tx = 1 = # ⧫ by proposi-
tion 7.2.11. We know by lemma 7.2.9 that Cx/Tx is a quotient of O[⟦x⟧n], and we
just showed that the two have the same number of cells, namely # ⧫ = 1. Conse-
quently, Cx/Tx ≅ O[⟦x⟧0].

(2) Likewise, if x = ◾, then VCx = {⧫, ◾, t ◾}, while Tx = ∅. Thus #Cx/Tx = 3 = # ◾ by
proposition 7.2.11, and by the argument above, Cx/Tx ≅ O[⟦x⟧1].

(3) Assume now that x ∈ Vn for n ≥ 2. We proceed by case analysis on the form of sx.
a) If sx = y ∈ Vn−1, then ⟦x⟧n = Y⟦y⟧n−1 , and by proposition 7.2.11, # ⟦x⟧n =

2 + # ⟦y⟧n−1. Then Cx = Cy + {tk x ∣ 0 ≤ k ≤ n}, and t tx =Tx t v[] x = t y.
Consequently, Tx is equivalent to the theory Ty + {t tx = t y}, and thus

Cx/Tx ≅ Cy/Ty + {x, tx} .

By induction, Cy/Ty ≅ O[⟦y⟧n−1], and #Cx/Tx = 2+#Cy/Ty = 2+# ⟦y⟧n−1 =
# ⟦x⟧n, which, by the same argument as above, proves the isomorphism
Cx/Tx ≅ O[⟦x⟧n].

b) If sx = a for some a ∈ Vn−2, then ⟦x⟧n = I⟦a⟧n−2 , and by proposition 7.2.11,
# ⟦x⟧n = 2 + # ⟦a⟧n−2 . Then Cx = Ca + {tk x ∣ 0 ≤ k ≤ n}, and t tx =Tx a.
Therefore Tx is equivalent to the theory Ta + {t tx = a}, and thus

Cx/Tx ≅ Ca/Ta + {x, tx} .

Consequently, #Cx/Tx = 2 +#Ca/Ta = 2 +# ⟦a⟧n−2 =# ⟦x⟧n.
c) Assume sx = t(a ← y), for some t ∈ Tn−1, a ∈ Vn−2, and y ∈ Vn−1. Let

z ∶ tr⊸ ⋯ be a fresh n-variable. Clearly, Cz − {z, t z} ⊆ Cx, thus

Cx = Cy ∪ (Cz − {tk z ∣ 0 ≤ k ≤ n}) + {tk x ∣ 0 ≤ k ≤ n} ,

while Tx is equivalent to Ty ∪Tz +{t y = a, t tx = t v[] x}. Since v[] sx = v[] t =
v[] s z, and t v[] s z =Tz t t z (see equation (7.1.4)), we have

Cx/Tx = Cy/Ty ∪Cz/Tz + {x, tx} − {z, t z}.



By hypothesis of the graft rule, Cz/Tz ∩Cy/Ty = Ca/Ta, and thus we have

#Cx/Tx = #Cy/Ty +#Cz/Tz −#Ca/Ta
= # ⟦y⟧n−1 +# ⟦z⟧n −# ⟦a⟧n−2

= #(⟦t⟧n ○
&t a

Y⟦y⟧n−1) by proposition 7.2.11

= # ⟦x⟧n .

We now extend the structure of opetopic set defined in definition 7.2.6 to all OCMTs.

Definition 7.2.16. Let (E ▹ Γ) and (F ▹Υ) be two OCMTs, and assume by induction
that Γ/E and Υ/F have a structure of opetopic set.

(1) If (G ▹Ξ) is given by

E ▹ Γ F ▹Υ sum
G ▹Ξ

then we have Ξ = Γ+Υ, and G = E+F . We endow the quotient Ξ/G with a structure
of opetopic set as follows:

Ξ/G ∶=Γ/E +Υ/F. (7.2.17)

(2) Let a, b ∈ VΓ,k be such that sa =E s b and ta =E t b. Note that O[⟦a⟧k] = O[⟦b⟧k].
Then, by definition of rule glue, and for (F ▹ Γ) given by

E ▹ Γ glue-(a=b)
F ▹ Γ

we have F = E + {a = b}. We endow the quotient Γ/F with a structure of opetopic
set defined by the following coequalizer:

O[⟦a⟧k] Γ/E Γ/F,
a

b

(7.2.18)

Proposition 7.2.19. For (E ▹ Γ) a derivable OCMT in OptSet!, the structure of ope-
topic set on Γ/E does not depend on the proof tree of (E ▹ Γ).

Proof. If Γ = ∅, i.e. if the OCMT is obtained using the zero rule, then the result trivially
holds. Otherwise, it is easy to see that the opetopic set Γ/E is given by the following
expression that does not depend on the proof tree of (E ▹ Γ):

Γ/E ≅
∑k∈N,a∈VΓ,k

O[⟦a⟧k]
a ∼ b, for all a, b ∈ VΓ s.t. a =E b.

By lemma 7.2.4, for a ∈ VΓ, the opetope ⟦a⟧k does not depend on any proof tree either.



the equivalence

Recall that Psh(O)fin is the full subcategory of Psh(O) spanned by finite opetopic sets.
In this subsection, we provide the last results needed to establish the equivalence between
the category of derivable OCMTs and Psh(O)fin.

Notation 7.2.20. For (E ▹ Γ) an OCMT, and a, b ∈ V, the substitution Γ[a/b] is defined in
the obvious manner, by applying it to all typings in Γ.

Definition 7.2.21 (Morphism of OCMTs). Let (E ▹ Γ) and (F ▹ Υ) be OCMTs. A
morphism f ∶ (E ▹ Γ) Ð→ (F ▹ Υ) is a (non necessarily bijective) map f ∶ VΓ Ð→ VΥ

compatible with E and F , such that if x ∶X is a typing in Γ, then f(x) ∶ f(X) is a typing
in Υ, where f(X) is the result of applying f to every variable in X. Further, we require
that for n ≥ 1 and x ∈ VΓ,n, we have f(tx) = t f(x). Note that this condition implies that
f preserves the dimension of variables. Also, if f, g ∶ (E ▹ Γ) Ð→ (F ▹ Υ), and if for all
x ∈ VΓ we have f(x) =F g(x), then we consider f and g to be equivalent, and only consider
maps up to equivalence.

Lemma 7.2.22. Morphisms of OCMTs preserve the shape of variables, i.e. for f ∶ (E ▹
Γ)Ð→ (F ▹Υ) a morphism and a ∈ VΓ,k, we have ⟦a⟧k = ⟦f(a)⟧k.

Proof. Since there is a unique 0-opetope and a unique 1-opetope, the result holds trivially
if k = 0,1. If k ≥ 2, we proceed by induction on sa.

(1) If sa = b ∈ Vk−1, then ⟦a⟧k = Y⟦b⟧k−1 = Y⟦f(b)⟧k−1 = ⟦f(a)⟧k.
(2) If sa = b for some b ∈ Vk−2, then ⟦a⟧k = I⟦b⟧k−2 = I⟦f(b)⟧k−2 = ⟦f(a)⟧k−2.
(3) If sa = b(ÐÐÐÐ→ci ← ui), then by induction, ⟦ui⟧k = ⟦f(ui)⟧k, and

⟦a⟧k = Y⟦b⟧k−1 ◯
[&s b ci]

⟦ui⟧k = ⟦f(a)⟧k .

Definition 7.2.23. Let Ctx! for the category of derivable OCMTs and such morphisms.
In a sense, it is the syntactic category of system OptSet!.

Definition 7.2.24 (Named stratification functor). The named stratification functor S! ∶
Ctx! Ð→ Psh(O)fin is defined as follows:

S! ∶ Ctx! Ð→ Psh(O)fin
(E ▹ Γ)z→ Γ/E

((E ▹ Γ)
f
Ð→ (F ▹Υ))z→ (Γ/E

f
Ð→ Υ/F) .

Proposition 7.2.25. Let f ∶ (E ▹ Γ) Ð→ (F ▹Υ) be a morphism of OCMTs. Then the
map S!f of definition 7.2.24 is indeed a morphism of opetopic sets.

Proof. By definition, the cells of Γ/E are exactly the variables of VΓ, and likewise for Υ/F .
By lemma 7.2.22, S!f preserves the shapes of the cells. By definition if x is an n-variable,



and x ∶ X a typing in Γ, then f(x) ∶ f(X) is a typing in Υ. So for ω ∶= ⟦x⟧n and [p] ∈ ω●
the following naturality square commutes:

(Γ/E)ω (Υ/F )ω

(Γ/E)s[p] ω (Υ/F )s[p] ω.

S!fω

s[p] s[p]
S!fs[p] ω

By definition again, if n ≥ 1, then f(tx) = t f(x), so the analogous naturality square for
target embeddings also commutes. Finally, S!f is a natural transformation.

Theorem 7.2.26. The stratification functor S! ∶ Ctx! Ð→ Psh(O)fin is an equivalence of
categories.

Proof. The full subcategory of Psh(O)fin spanned by the essential image of S! contains all
the representables opetopic sets (proposition 7.2.15), the initial object (since S!(▹) is the
opetopic set with no cell), and is closed under finite sums and quotients (definition 7.2.16).
Thus it is finitely cocomplete, and equal to the whole category Psh(O)fin, so S! is essentially
surjective. By definition, S! is also faithful, and it remains to show that is it full.

Let f ∶ Γ/E Ð→ Υ/F be a morphism of opetopic sets. Then, in particular, it is a map
between the set of cells of Γ/E and Υ/F . To prove that it is a morphism of OCMT, we
show that Γ[f(x)/x ∣ x ∈ VΓ] (see notation 7.2.20) is a subcontext of Υ modulo F , i.e.
that for every typing x ∶ X in Γ, for some x ∈ Vk, the type of f(x) in Υ is f(X) modulo
F . If (E ▹ Γ) is the empty OCMT, the result is trivial. Let x ∶ X be a typing in Γ, with
x ∈ Vk. Since f is a morphism of opetopic sets, we have f(x) ∈ VΥ,k, and by lemma 7.2.22,
⟦x⟧k = ⟦f(x)⟧k. We show that the type of f(x) in Υ is f(X) by induction on k.

(1) If k = 0, then X = ∅. Since f(x) ∈ VΥ,0, its type is necessarily ∅ = f(X), thus
f(x) ∶ f(X) is a typing in Υ.

(2) If k = 1, then X = (ar⊸ ∅) where a = v[] x in Γ/E, and since f is a morphism of
opetopic sets, f(v[] x) =F v[] f(x). Thus

f(X) = (f(v[] x)r⊸ ∅) =F (v[] f(x)r⊸ ∅) ,

the latter being the type of f(x) in Υ.
(3) Assume now that k ≥ 2. The type of x is X = (sxr⊸ s sxr⊸ ⋯r⊸ ∅), and by defi-

nition, the type of tx is Y ∶= (s sxr⊸ ⋯r⊸ ∅) (see equation (7.1.3)). By induction,
the type of f(tx) in Υ is f(Y ), and since f(tx) =F t f(x), and the type of the
latter is (s s f(x)r⊸ ⋯r⊸ ∅), we have

(f(s sx)r⊸ ⋯r⊸ ∅) = f(Y ) =F (s s f(x)r⊸ ⋯r⊸ ∅) ,

or in other words, si f(x) =F f(si x), for 2 ≤ i ≤ k. It remains to show that the
latter formula holds in the case i = 1. Towards a contradiction, assume s f(x) ≠F
f(sx). Then there exists [p] ∈ ⟦x⟧k

● = ⟦f(x)⟧k
● such that v[p] f(x) ≠F f(v[p] x),

which contradicts the fact that f is a morphism of opetopic sets. Consequently,
s f(x) =F f(sx), and f(X) is the type of f(x) in Υ modulo F .

Finally, the underlying map of f ∶ Γ/E Ð→ Υ/F is a morphism of OCMT, and S! is full.



Proposition 7.2.27. The category Ctx! has finite colimits, and S! preserves them.

Proof. The empty OCMT is clearly an initial object of Ctx!, and the OCMT (E,F ▹ Γ,Υ)
obtained by rule sum (definition 7.1.2) is clearly a coproduct of (E ▹ Γ) and (F ▹Υ). Let
now f, g ∶ (E ▹ Γ)Ð→ (F ▹Υ) be two parallel morphism in Ctx!. Consider the map

(F ▹Υ) xz→xÐÐÐ→ (G ▹Υ),

where G ∶=F ∪{f(x) = g(x) ∣ x ∈ VΓ}. Then, G▹Υ is derived from F ▹Υ by repeated appli-
cation of the glue rule, and by universal property, it is easy to see that it is a coequalizer
of f and g in Ctx!. So, to summarize, Ctx! contains all finite sums and coequalizers, and it
is thus finitely cocomplete. The fact that S! preserves finite colimits is trivial in the case of
initial objects, a consequence of equation (7.2.17) for binary sums, and of equation (7.2.18)
for coequalizers.

If C and D are small categories with finite limits, recall from theorem 0.5.6 that
Lex(C,D) is the category of left exact (i.e. finite limit preserving) functors from C to
D, and natural transformations.

Theorem 7.2.28. We have an equivalence Psh(O) ≃ Lex((Ctx!)op,Set).

Proof. This follows directly from theorem 7.2.26 and proposition 7.2.27 and from the
Gabriel–Ulmer duality (see corollary 0.5.7).

7.3 EXAMPLES

In this section, we give example derivations in system OptSet!. For clarity, we do not
repeat the type of previously typed variables in proof trees.

Example 7.3.1. The opetopic set

a b

f

g

h

⇓α

is derived as follows. First, we derive the cells α, g, and h as opetopes (i.e. in OptSet!)
to obtain the following sequents:

▹a ∶ ∅, f ∶ ar⊸ ∅, α ∶ f r⊸ ar⊸ ∅ ⊢2 α ∶ f r⊸ ar⊸ ∅
▹c ∶ ∅, g ∶ cr⊸ ∅ ⊢1 g ∶ cr⊸ ∅
▹b ∶ ∅, h ∶ br⊸ ∅ ⊢1 h ∶ br⊸ ∅

and applying the repr rule yields respectively:

▹ a ∶ ∅, f ∶ ar⊸ ∅, α ∶ f r⊸ ar⊸ ∅, t f ∶ ∅, tα ∶ ar⊸ ∅, t tα ∶ ∅
▹ c ∶ ∅, g ∶ cr⊸ ∅, t g ∶ ∅
▹ b ∶ ∅, h ∶ br⊸ ∅, th ∶ ∅.

The proof tree then reads:



⋮
▹a, f,α ⊢2 α repr

t tα = t f ▹ a, f,α, t f, tα, t tα

⋮
▹c, g ⊢1 g repr▹c, g, t g sum

t tα = t f ▹ a, f,α, t f, tα, t tα, c, g, t g

⋮
▹b, h ⊢1 h repr
▹b, h, th sum

t tα = t f
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = c)

t tα = t f, a = c
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(b = t f)

t tα = t f, a = c, b = t f
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(b = t g)

t tα = t f, a = c, b = t f, b = t g
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = th)

t tα = t f, a = c, b = t f, b = t g, a = th
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(g = tα)

t tα = t f, a = c, b = t f, b = t g, a = th
g = tα ▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α

Example 7.3.2. The opetopic set

a a a

b

⇓α
⇓β

h

f g h

h

is derived as follows. First, we derive the cells α and β as opetopes to obtain the following
sequents:

⎛
⎜⎜
⎝
▹

a ∶ ∅, b ∶ ∅
f ∶ ar⊸ ∅, g ∶ ar⊸ ∅
α ∶ g(b← f)r⊸ ar⊸ ∅

⊢2 α ∶ g(b← f)r⊸ ar⊸ ∅,
⎞
⎟⎟
⎠

⎛
⎜⎜
⎝
▹

a′ ∶ ∅
h ∶ a′ r⊸ ∅
β ∶ hr⊸ a′ r⊸ ∅

⊢2 β ∶ hr⊸ a′ r⊸ ∅
⎞
⎟⎟
⎠
.

Applying the repr rule yields respectively:

⎛
⎜⎜
⎝
b = t f, t g = t tα ▹

a ∶ ∅, b ∶ ∅, t f ∶ ∅, t g ∶ ∅, t tα ∶ ∅
f ∶ ar⊸ ∅, g ∶ ar⊸ ∅, tα ∶ ar⊸ ∅
α ∶ g(b← f)r⊸ ar⊸ ∅

,

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝
th = t tβ ▹

a′ ∶ ∅, th ∶ ∅, t tβ ∶ ∅
h ∶ a′ r⊸ ∅, tβ ∶ a′ r⊸ ∅
β ∶ hr⊸ a′ r⊸ ∅

⎞
⎟⎟
⎠

The proof tree then reads:



⋮

▹
a ∶ ∅, b ∶ ∅
f ∶ ar⊸ ∅, g ∶ ar⊸ ∅
α ∶ g(b← f)r⊸ ar⊸ ∅

⊢2 α ∶ g(b← f)r⊸ ar⊸ ∅

repr

b = tf, tg = t tα ▹
a, b, tf ∶ ∅, tg ∶ ∅, t tα ∶ ∅
f, g, tα ∶ ar⊸ ∅
α

glue-(a = tg)

b = tf, a = tg = t tα ▹
a, b, tf, tg, t tα
f, g, tα
α

⋮

▹
a′ ∶ ∅
h ∶ a′ r⊸ ∅
β ∶ hr⊸ a′ r⊸ ∅

⊢2 β ∶ hr⊸ a′ r⊸ ∅

repr

th = t tβ ▹
a′, th ∶ ∅, t tβ ∶ ∅
h, tβ ∶ a′ r⊸ ∅
β

glue-(h = tβ)
th = t tβ
h = tβ

▹
a′, th, t tβ
h, tβ
β

glue-(a′ = th)
a′ = th = t tβ
h = tβ

▹
a′, th, t tβ
h, tβ
β

sum
b = tf, a = tg = t tα,a′ = th = t tβ
h = tβ

▹
a, b, tf, tg, t tα,a′, th, t tβ
f, g, tα,h, tβ
α,β

glue-(a = a′)
b = tf, a = tg = t tα = a′ = th = t tβ
h = tβ

▹
a, b, tf, tg, t tα,a′, th, t tβ
f, g, tα,h, tβ
α,β

glue-(tα = h)
b = tf, a = tg = t tα = a′ = th = t tβ
h = tβ = tα

▹
a, b, tf, tg, t tα,a′, th, t tβ
f, g, tα,h, tβ
α,β

Write (E ▹ Γ) for the final OCMT of this proof tree. At the beginning of section 7.1, we
gave a seemingly different OCMT for the same opetopic set:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b = t f, a = t g = t tα = th = t tβ
h = tβ = tα

▹

a ∶ ∅, b ∶ ∅, t f ∶ ∅, t g ∶ ∅, t tα ∶ ∅,
th ∶ ∅, t tβ ∶ ∅

f ∶ ar⊸ ∅, g ∶ ar⊸ ∅, tα ∶ ar⊸ ∅,
h ∶ ar⊸ ∅, tβ ∶ ar⊸ ∅

α ∶ g(b← f)r⊸ ar⊸ ∅, β ∶ hr⊸ ar⊸ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

But this α-equivalent to (E ▹ Γ), as instances of a′ have been replaced by a, which are
both equal according to the equational theory E.

7.4 THE MIXED SYSTEM FOR OPETOPIC SETS

The OptSet! system, presented in section 7.1, suffers from the following drawback: deriva-
tions of opetopic sets start with instances of rules zero or repr, the latter requiring a full
opetope derivation in system Opt! (presented in section 6.1). This makes derivations
somewhat unintuitive, since for an opetopic set X ∈ Psh(O) written as

X = ∑iO[ωi]
∼

where ∼ represents some quotient, the opetopes ωi have to be derived in Opt! first, then
the repr rule has to be used on each one to produce the corresponding representables
O[ωi], and only then can the sums and gluing be performed:

glue
sum

Opt!

repr

In this section, we present system OptSet!
m (the m standing for “mixed”) for opetopic

sets, which does not depend on Opt!, and allows to perform introductions of new cells,



sums, and gluings in any sound order. This is done by introducing new cells along with
all their targets, effectively rendering OptSet!’s repr rule superfluous, and removing the
“barrier” between Opt! and OptSet! in the schema above.

syntax

The syntax of system OptSet!
m uses sequents from Opt! (see section 6.1) and OCMTs

from OptSet!. Specifically, we use two types of judgments.
(1) “E ▹ Γ”, stating that E ▹ Γ is a well formed OCMT.
(2) “E ▹ Γ ⊢ t ∶ T”, stating that in the OCMT E ▹ Γ, the term t is well formed, and

has type T . We may also write “E ▹ Γ ⊢n t ∶ T” to emphasize that t ∈ Tn.

inference rules

We present the inference rules of system OptSet!
m in definition 7.4.1. It uses rules point,

and graft from system Opt!, and rules zero, sum, and glue from system OptSet!. As
we will see, the system deals with two types of judgments:

(1) “E ▹ Γ”, stating that (E ▹ Γ) is a well-formed OCMT;
(2) “E ▹Γ ⊢ t ∶ T”, stating that in (E ▹Γ), the term t is well-defined, and has type T .

Two new rules, degen and pd, will go from the first type of judgment to the second, by
introducing degenerate terms and single variable terms respectively. In the other direction,
rule shift is a variant of that of system Opt!, and from (E ▹Γ ⊢ t ∶ T ), introduces a new
cell having t as source, along with all the necessary targets. It can be viewed as a fusion
of Opt!’s shift rule and OptSet!’s repr rule.

Definition 7.4.1 (The OptSet!
m system). Introduction of points. This rule in-

troduces 0-cells, also called points. If x ∈ V0, then

point▹x ∶ ∅

Introduction of degenerate pasting diagrams. This rule creates a new degenerate
pasting diagram. If x ∈ VΓ,k, then

E ▹ Γ, x ∶X degen
E ▹ Γ, x ∶X ⊢k+1 x ∶ xr⊸X

Introduction of non degenerate pasting diagrams. This rule creates a new non-
degenerate pasting diagram consisting of a single cell. It can then be extended
using the graft rule. If x ∈ VΓ,k, then

E ▹ Γ, x ∶X pd
E ▹ Γ, x ∶X ⊢k x ∶X

Grafting. This rule extends a previously derived non degenerate pasting diagram
by grafting a cell. With the same conditions as rule graft of system Opt! (see
section 6.1), if x ∈ Vn, t ∈ Tn is not degenerate, a ∈ (s t)● is such that sa = s sx,
then



E ▹ Γ ⊢n t ∶ s1 r⊸ s2 r⊸ ⋯ F ▹Υ, x ∶X graft
G ▹ Γ ∪Υ ⊢n t(a← x) ∶ s1[sx/a]r⊸ s2 r⊸ ⋯

where G is the union of E, F , and potentially a set of additional equalities
incurred by the substitution s1[sx/a] (definition 6.1.19). We also write graft-a
to make explicit the fact that we grafted onto a.

Shifting of pasting diagrams. This rule takes a previously derived pasting diagram
(degenerate or not), and introduces a new cell having this pasting diagram as
source. It also introduces the targets of all its iterated sources, and extends the
ambient equational theory with the required identities, in the same fashion as
rule repr of definition 6.1.16. If x ∈ Vn+1 is such that x ∉ VΓ, then

E ▹ Γ ⊢n t ∶ T shift
F ▹Υ

where

Υ ∶=Γ ∪ {x ∶ tr⊸ T} ∪ {ti x ∶ si+1 xr⊸ si+2 xr⊸ ⋯ ∣ 0 < i ≤ n}

by convention, we let t0 x = x, and where F is defined as follows:
(1) if t is a degenerate term, say t = a, then

F ∶= E ∪ {ti+2 x = ti a ∣ 0 ≤ i ≤ n − 1} (7.4.2)

(2) if t is not degenerate, say t = y(ÐÐÐÐ→zi ← ui), for some y ∈ Vn, Ð→zi ∈ Vn−1, and
Ð→ui ∈ Tn, then

F ∶= E
∪ {t2 x = t y ∣ if n ≥ 1}
∪ {ta = b ∣ for all b← a(⋯) occurring in t} .

Zero. This rules introduces the empty OCMT.

zero▹

Binary sums. This rule takes two disjoint OCMTs (i.e. whose cells have different
names), and produces their sum. If Γ ∩Υ = ∅, then

E ▹ Γ F ▹Υ sum
E,F ▹ Γ,Υ

Quotients. This rule identifies two parallel cells in an opetopic set by extending the
underlying equational theory. If a, b ∈ VΓ are such that sa =E s b and ta =E t b,
then

E ▹ Γ glue
E,a = b ▹ Γ

We also write glue-(a=b) to make explicit that we added a = b to the theory.



Remark 7.4.3. The sum and zero rules may be replaced by the following usum rule (unbi-
ased sum) without changing the set of derivable OCMTs. For k ≥ 0, and for (E1 ▹ Γ1) , . . . ,
(Ek ▹ Γk) OCMTs such that Γi ∩ Γj = ∅ for all i ≠ j, then

E1 ▹ Γ1 ⋯ Ek ▹ Γk usum
E1, . . . ,Ek ▹ Γ1, . . . ,Γk

Remark 7.4.4. Akin to Opt! and OptSet!, in OptSet!
m a sequent or an OCMT that is

equivalent to a derivable one is itself derivable.

7.5 EQUIVALENCE WITH OPETOPIC SETS

The aim of this section is to prove theorem 7.5.5, stating that system OptSet!
m precisely

derives opetopic sets, in the sense of theorems 7.2.26 and 7.2.28. In other words, we prove
that the set of derivable OCMTs of systems OptSet!

m and OptSet! are the same. This is
done by rewriting proof trees in OptSet! to proof trees in OptSet!

m (see proposition 7.5.2)
and conversely (see proposition 7.5.4).

Convention 7.5.1. Throughout this section, the rules of systems Opt! and OptSet! will be
decorated by a prime, e.g. shift', in order to differentiate them from the rules of system
OptSet!

m. Further, to make notations lighter and the demonstrations more graphical,
we write proof trees as actual trees, whose nodes are decorated by rules, and edges by
sequents or OCMTs. For instance, derivation of the arrow ◾ (see example 6.3.1) in system
Opt! is represented as on the left, and more concisely as on the right:

point'

shift'
▹x ∶ ∅ ⊢0 x ∶ ∅

▹x ∶ ∅, f ∶ xr⊸ ∅ ⊢1 f ∶ xr⊸ ∅

point'

shift'

If no uncertainty arise, we leave the decoration of the edges implicit, as on the right.

Proposition 7.5.2. Every OCMT derivable in system OptSet! is also derivable in system
OptSet!

m.

Proof. Recall that a proof tree in system OptSet! has the following structure:

glue'
sum'

Opt!

repr'

meaning that it begins with derivations in system Opt!, followed by instances of the repr'
rule, followed by a derivation in system OptSet!. Remark that rule glue' is exactly glue,
and likewise for sum, so that the bottom part of the proof tree is already a derivation in
system OptSet!

m.
We now show that we can rewrite the top part to a proof in system OptSet!

m by
“moving up ” the instances of rule repr, and replacing the other rule instances by those
of OptSet!

m. This rewriting procedure is defined by the following cases.



(1) If we have a proof tree as on the left, we rewrite it as on the right:

point'
repr'

point

(2) If we have a derivation as on the left, where Π is a proof tree in system Opt! or
OptSet!, then we rewrite it as on the right:

degen'

shift'
repr'

Π

repr'
degen

shift

Π

(3) If we have a derivation as on the top, where Π1, . . . ,Πk are proof trees in system
Opt! or OptSet!, then we rewrite it as below:

shift'
repr'

graft'-ak−1
graft'-a2graft'-a1

Π1 Π2 Π3 Πk⋯

shift

graft-ak−1

graft-a2graft-a1

pd pdpdpd
repr'repr'repr'repr'

Π1 Π2 Π3 Πk⋯

Here, the new instances of pd picks the adequate variables from each sequent,
so that they can be used by the instances of graft. Once the grafting process
is complete, rule shift adds all necessary targets, which was previously done by
repr'.



It is routine verification to check that the conclusion OCMT on the left and the right of
any of those cases are the same. This rewriting procedure is convergent (i.e. confluent and
terminating), and the normal form of a proof tree in system OptSet! is a proof tree in
system OptSet!

m that derives the same OCMT.

Lemma 7.5.3. Let (E ▹ Γ) be a derivable OCMT in system OptSet!
m. Then it admits a

proof tree of the following form

zero, glue
sum

point, degen, pd
graft, shift

meaning a proof tree starting with derivation in the fragment of system OptSet!
m con-

taining only rules point, degen, pd, graft, and shift, followed by a derivation in the
complementary fragment.

Proof. If we have a proof tree consisting only of an instance of rule zero, then the result
trivially holds. Otherwise, we proceed by stating rewriting steps of proof trees in system
OptSet!

m, as in the proof of proposition 7.5.2.
(1) If we have a proof tree as on the left, and assuming the instance of degen degen-

erates a variable in Γ2, we rewrite it as on the right:

sum
degen

shift

Π1 Π2

E2 ▹ Γ2

degen

shift
sum

Π1 Π2

(2) A proof tree as on the left is rewritten as on the right:

glue-(x=y)
degen

shift

Π

degen

shift
glue-(x=y)

Π

(3) Consider a proof tree as on the top. Then, by assumption on rule sum, either
ai−1 ∈ VΓ1 or ai−1 ∈ VΓ2 . Without loss of generality, assume the latter holds. Then



we rewrite the proof tree as below:

shift

graft-ak−1
graft-ai−1

graft-a1

sum

Π1 Π2 Πi,1 Πi,2 Πk⋯ ⋯
Ei,2 ▹ Γi,2Ei,1 ▹ Γi,1

shift

graft-ak−1

graft-ai−1
graft-a1

sum

Π1 Π2 Πi,1 Πi,2 Πk⋯ ⋯
Ei,2 ▹ Γi,2Ei,1 ▹ Γi,1

(4) Consider a proof tree as on the top, and rewrite it as below, x.

shift

graft-ak−1
graft-ai−1

graft-a1 glue-(x=y)

Π1 Π2 Πi Πk⋯ ⋯



shift
graft-a′k−1

graft-a
′
i−1

graft-a1

glue-(x=y)

Π1 Π2 Πi Πk⋯ ⋯

where in the circled area, for i − 1 ≤ j ≤ k − 1,

a′j =
⎧⎪⎪⎨⎪⎪⎩

x if aj = y
aj otherwise.

In other words, the uses of y in the circled area have been replaced by uses of x.

Proposition 7.5.4. Every OCMT derivable in system OptSet!
m is also derivable in

system OptSet!.

Proof. Consider a proof tree in system OptSet!
m. Then it can be rewritten so as to have

structure described in lemma 7.5.3. Applying the rewriting steps of proposition 7.5.2 in
reverse direction yields a proof tree in systems Opt! and OptSet! that derives the same
OCMT.

Theorem 7.5.5. System OptSet!
m derives opetopic sets, in the sense of theorems 7.2.26

and 7.2.28.

Proof. By propositions 7.5.2 and 7.5.4, the OCMTs derived by system OptSet!
m and

OptSet! are the same.

7.6 EXAMPLES

In this section, we give example derivations in system OptSet!
m. For clarity, we do not

repeat the type of previously typed variables in proof trees.

Example 7.6.1. The opetopic set

a b

f

g

h

⇓α

of example 7.3.1 can be derived as follows. The first half of the proof tree is on the left,
and the second half on the right. Moreover, for clarity, we do not repeat the typing of
previously typed variables



point▹ a ∶ ∅ pd▹ a ⊢0 a
shift

▹ a, t f ∶ ∅
f ∶ ar⊸ ∅

pd
▹ a, t f

f
⊢0 a

shift
▹ a, t f

f, g ∶ ar⊸ ∅

point
▹ b ∶ ∅ pd
▹ b ⊢0 b

shift
▹ b, th ∶ ∅

h ∶ br⊸ ∅
sum

▹ a, b, t f, t g, th

f, g, h
(b= t f)

b = t f ▹ a, b, t f, t g, th

f, g, h
(b= t g)

b = t f = t g ▹ a, b, t f, t g, th

f, g, h
pd

b = t f = t g ▹ a, b, t f, t g, th

f, g, h
⊢1 f

shift

b = t f = t g = t2 α ▹
a, b, t f, t g, th, t2 α ∶ ∅
f, g, h, tα ∶ ar⊸ ∅
α ∶ f r⊸ ar⊸ ∅

(g= tα)
b = t f = t g = t2 α
g = tα ▹

a, b, t f, t g, th, t2 α ∶ ∅
f, g, h, tα ∶ ar⊸ ∅
α ∶ f r⊸ ar⊸ ∅

(a= th)
b = t f = t g = t2 α,a = th
g = tα ▹

a, b, t f, t g, th, t2 α ∶ ∅
f, g, h, tα ∶ ar⊸ ∅
α ∶ f r⊸ ar⊸ ∅

where rules of the form (x = y) are shorthands for glue-(x = y).

Example 7.6.2. The opetopic set

a a a

b

⇓α
⇓β

h

f g h

h

of example 7.3.2 can be derived as follows.



point▹ a ∶ ∅
point

▹ b ∶ ∅ sum
▹ a, b pd

▹ a, b ⊢0 a ∶ ∅ shift
▹ a, b, t f ∶ ∅

f ∶ ar⊸ ∅
glue-(b = t f)

b = t f ▹ a, b, t f

f
pd

b = t f ▹ a, b, t f

f
⊢0 t f ∶ ∅

shift
b = t f ▹ a, b, t f, t g ∶ ∅

f, g ∶ t f r⊸ ∅
pd

b = t f ▹ a, b, t f, t g

f, g
⊢0 a ∶ ∅

shift
b = t f ▹ a, b, t f, t g, th ∶ ∅

f, g, h ∶ ar⊸ ∅
pd

b = t f ▹ a, b, t f, t g, th

f, g, h
⊢1 g ∶ t f r⊸ ∅

graft
b = t f ▹ a, b, t f, t g, th

f, g, h
⊢1 g(t f ← f) ∶ ar⊸ ∅

shift

b = t f = t tα ▹
a, b, t f, t g, th, t tα ∶ ∅
f, g, h, tα ∶ ar⊸ ∅
α ∶ g(t f ← f) ∶ ar⊸ ∅

glue-(h = tα)
b = t f = t tα
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = t g)

b = t f = t tα,a = t g
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = th)

b = t f = t tα,a = t g = th
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α
pd

b = t f = t tα,a = t g = th
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α

⊢1 h ∶ ar⊸ ∅

shift
b = t f = t tα,a = t g = th = t tβ
g = tα ▹

a, b, t f, t g, th, t tα, t tβ ∶ ∅
f, g, h, tα, tβ ∶ ar⊸ ∅
α,β ∶ hr⊸ ar⊸ ∅

glue-(h = tβ)
b = t f = t tα,a = t g = th = t tβ
g = tα, f = tβ = h ▹

a, b, t f, t g, th, t tα, t tβ

f, g, h, tα, tβ

α,β





Chapter Eight

The unnamed approach for opetopes

T
he unnamed approach for opetopes relies on the calculus of higher addresses
presented in definition 3.3.1 to identify cells, rather than on variables as used
in the named approach in chapter 6. For example, recall the opetopic integer

3 ∈ O2 from example 3.1.4, drawn on the left, with its underlying Z0-tree represented on
the right:

.

. .

.
⇓

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

In this chapter, 3 will be encoded as a mapping from its set of node addresses 3● =
{[], [∗], [∗∗]} to the set of 1-opetopes O1 as follows:

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
[∗]← ◾
[∗∗]← ◾

The 1-opetope ◾ can in turn be encoded as {∗← ⧫ , which gives a complete expression for
3: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← {∗← ⧫
[∗]← {∗← ⧫
[∗∗]← {∗← ⧫

This example will be treated in depth in example 8.3.2.

8.1 THE SYSTEM

preopetopes

Definition 8.1.1 (Preopetope). The sets Pn of n-preopetopes are defined by the following
grammar:

P0 ::= ⧫

Pn ::=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

An−1 ← Pn−1
⋮
An−1 ← Pn−1

n ≥ 1 (8.1.2)
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| {{Pn−2 n ≥ 2 (8.1.3)

where the set An of n-addresses is defined in definition 3.3.1. In line (8.1.2), we require
further that there is at least one (n − 1)-address, and that all addresses are distinct.

An n-preopetope p is degenerate if it is of the form of line (8.1.3), it is non-degenerate
otherwise. We write dimp ∶=n for its dimension.

Convention 8.1.4. An n-preopetope as in equation (8.1.2) is considered as a set of expres-
sions An−1 ← Pn−1 rather than a list. For instance, the following two n-preopetopes are
equal

{[p1]← p1

[p2]← p2
= {[p2]← p2

[p1]← p1

for any distinct (n − 1)-addresses [p1], [p2] ∈ An−1, and any p1,p2 ∈ Pn−1.

Example 8.1.5. (1) There is a unique 1-preopetope {∗← ⧫ , which we simply write ◾.
(2) The following are examples of a 2 and 3-preopetope, respectively:

{
[]← {∗← ⧫
[∗ ∗ ∗ ∗ ∗]← {∗← ⧫

{
[[∗]]← {{⧫
[[∗∗][∗][]]← {[]← {∗← ⧫

We will see that the first does not correspond to an actual opetope, as it is impos-
sible for a 2-opetope to only contain addresses [] and [∗ ∗ ∗ ∗ ∗] (it would at least
need addresses [∗], [∗∗], [∗∗∗], and [∗∗∗∗]). The second does not correspond to
an opetope either, as it does not have a root node (corresponding to address []).

(3) The following is a 4-preopetope {{{{⧫ . We will see that it corresponds to II⧫ ∈ O4.
(4) The following is not a valid preopetope:

{[[∗]]← ⧫
[[∗][∗]]← {∗← ⧫

as ⧫ and {∗← ⧫ do not have the same dimension.

Definition 8.1.6. If we have a non-degenerate n-preopetope of the form

p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← q1

⋮
[pk]← qk

(8.1.7)

we call [p1], . . . , [pk] ∈ An−1 the source addresses of p (or just sources), write p● for the
set of source addresses of p, and s[pi] p ∶=qi for the [pi]-source of p.

Assume n ≥ 2. A leaf address (or just leaf ) of p is an (n−1)-address of the form [p[q]]
such that [p] ∈ p●, [q] ∈ (s[p] p)●, and [p[q]] ∉ p●. We write p∣ ⊆ An−1 for the set of
leaf addresses of p. By convention, if p is degenerate, then p● ∶=∅ and p∣ ∶={[]}. Further,
⧫● = ⧫∣ ∶=∅.

Example 8.1.8. Consider the following preopetopes

p ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

[[∗]]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

q ∶= {
[]← {[]← {∗← ⧫
[[]]← {{⧫

Then p● = {[], [[∗]]}, p∣ = {[[]], [[∗][]], [[∗][∗]]}, q● = {[], [[]]}, and q∣ = ∅.



Definition 8.1.9 (Corolla grafting). Let n ≥ 1, p ∈ Pn be as in equation (8.1.7), and
q ∈ Pn−1. For [r] ∈ p∣ a leaf address of p (so in particular [r] ∉ p●), write

p ○̃
[r]

q ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[p1]← q1

⋮
[pk]← qk
[r]← q

and call p ○̃[r] q the corolla grafting of q on p at address [r]. By convention, this operation
is associative on the right.

Example 8.1.10. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

[[∗]]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

= {[]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

○̃
[[∗]]

{
[]← {∗← ⧫
[∗]← {∗← ⧫

which, together with the introduction of this chapter, means that graphically,

.

. .

.

⇓ ⇓ ⇛
.

. .

.
⇓ =

⎛
⎜
⎝ . .

.

⇓ ⇛
. .

.

⇓
⎞
⎟
⎠

○̃
[[∗]] . .

.
⇓

Remark 8.1.11. The denomination “corolla grafting” is motivated by the fact that p and
q do not have the same dimension, and thus q needs to be made into an n-dimensional
corolla first. Much like proposition 2.2.22, any preopetope can be obtained by iterated
corolla grafting as follows.

Lemma 8.1.12. Let n ≥ 1, p ∈ Pn be as in equation (8.1.7), and assume that whenever
1 ≤ i < j ≤ k, we have either [pi] ⊑ [pj] (definition 3.3.4), or that [pi] and [pj] are
⊑-incomparable (in particular, this condition is satisfied if the [pi]’s are lexicographically
sorted). Then

p = (⋯ ({[p1]← q1 ) ○̃
[p2]

q2 ⋯ ) ○̃
[pk]

qk.

Proof. The condition on the sequence [p1], . . . , [pk] guarantees that the successive corolla
graftings are well-defined, i.e. that for 1 ≤ i < k and

pi ∶= (⋯ ({[p1]← q1 ) ○̃
[p2]

q2 ⋯ ) ○̃
[pi]

qi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← q1

⋮
[pi]← qi

we have [pi+1] ∈ p∣i .

inference rules

We now introduce a typing system for preopetopes in order to characterize those corre-
sponding to opetopes, which is formally shown in theorem 8.2.9. We will deal with sequents
of the following form.



Definition 8.1.13 (Sequent). A sequent is an expression of the form

Γ ⊢ pÐ→ t,

where p ∈ Pn for some n ≥ 0, t ∈ Pn−1, and the context Γ is a finite set of pairs consisting
of addresses [l] ∈ p∣ and [q] ∈ t●, denoted by [l]

[q] . The preopetope p is the real object of
interest as we will see in subsequent results. We may think of t as the “target” of p, while
Γ establishes a bijection between the leaves of p and the nodes of its target, playing the
role of the readdressing map ℘ of definition 2.3.11.

Example 8.1.14. The following is a sequent:

[[]]
[]
,
[[∗][]]
[∗]

,
[[∗][∗]]
[∗∗]

⊢

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

[[∗]]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

Ð→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← {∗← ⧫
[∗]← {∗← ⧫
[∗∗]← {∗← ⧫

As we will see in example 8.3.3, it describes the following 3-opetope:

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

The operation of substitution (definitions 2.2.25 and 6.1.19), which consists in replacing
a node by a pasting diagram in an opetope, can be defined as follows in our formalism.

Definition 8.1.15 (Substitution). Let t,q ∈ Pn, Υ ⊢ qÐ→ u be a sequent. Write t as

t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[t1]←w1

⋮
[tl]←wl

For [ti] ∈ t●, we define t ◽[ti] q, the substitution by q in t at [ti], as follows:
(1) if l = 1 and q is degenerate, then t ◽[t1] q ∶=q;
(2) if l ≥ 2 and q is degenerate, then

t ◽
[ti]

q ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ[t1]←w1

⋮
ρ[ti−1]←wi−1
ρ[ti+1]←wi+1
⋮
ρ[tl]←wl

where ρ[tj] ∶=
⎧⎪⎪⎨⎪⎪⎩

[tir] if [tj] = [ti[]r],
[tj] otherwise.

(3) if l ≥ 2, and q is not degenerate, write it as

q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[q1]← v1

⋮
[qk]← vk



and define

t ◽
[ti]

q ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ[t1]←w1

⋮
ρ[ti−1]←wi−1
[tiq1]← v1

⋮
[tiqk]← vk
ρ[ti+1]←wi+1
⋮
ρ[tl]←wl

where ρ[tj] ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[tiar] if [tj] = [ti[b]r]
for some [a][b] ∈ Υ,

[tj] otherwise.

This operation relies on the context Υ, which we leave implicit. By convention, ◽ is asso-
ciative on the left.

We refer to section 8.3 for examples of applications of this construction. We now state
the inference rules of our unnamed system Opt? in definition 8.1.16.



Definition 8.1.16 (The Opt? system). Introduction of points.

point⊢ ⧫Ð→ ∅

Introduction of degeneracies.

Γ ⊢ pÐ→ t degen
[]
[] ⊢ {{p Ð→ {[]← p

Note that dim({{p ) = 2 + dimp, and that dim({[]← p) = 1 + dimp.
Shift to the next dimension. Write p● = {[p1], . . . , [pk]}.

Γ ⊢ pÐ→ t
shift[[p1]]

[p1] , . . . ,
[[pk]]
[pk] ⊢ {[]← p Ð→ p

As in the previous rule, dim({[]← p) = 1 + dimp.
Grafting. Assume dimp = n ≥ 2, [p[q]] ∈ p∣, dimq = n − 1, write u ∶= s[q] s[p] p and

q● = {[s1], . . . , [sl]}.

Γ,
[p[q]]
[r] ⊢ pÐ→ t Υ ⊢ qÐ→ u

graft
Γ′,
[p[q][s1]]
[rs1] , . . . ,

[p[q][sl]]
[rsl] ⊢ p ○̃

[p[q]]
qÐ→ t ◽

[r]
q

where Γ′ is given by pairs of the form
(1) [a]

[rxr′] , where [a]
[r[y]r′] ∈ Γ and [x]

[y] ∈ Υ,
(2) [a]

[b] , where [a][b] ∈ Γ is not as above (i.e. [b] not of the form [r[y]r′] for
some [x][y] ∈ Υ).

In large derivation trees, we will sometimes refer to this rule as graft-[p[q]]
for clarity, or simply as [p[q]] in order to make notations lighter.



Remark 8.1.17. Let us explain the transformation of context defined in rule graft in
definition 8.1.16. Take a derivable sequent in Opt?, say

Γ ⊢ pÐ→ t,

with p ∈ Pn. It will be proved in lemma 8.1.19 that Γ exhibits a bijection between p∣ and t●.
Further, in theorem 8.2.9, we will see that p corresponds uniquely to an n-opetope ω = ⟦p⟧,
that tω = ⟦t⟧, and that Γ corresponds to the readdressing function ℘ω ∶ ω∣ Ð→ (tω)

● or
definition 2.3.11.

But where is the readdressing map ℘ω implemented in Opt!? Applying theorem 6.2.27,
we know that ω corresponds to a unique sequent (modulo α-equivalence), say

E ▹Υ ⊢ x ∶ s1 r⊸ s2 r⊸ ⋯r⊸ ∅

where x ∈ Vn. More precisely, considered as a tree, ω is encoded by the term s1, and by
proposition 6.2.16, tω is encoded by s2. In lemma 6.2.14, we show that ℘ω exhibits a
bijection

{&s1 b ∣ b ∈ s
●
2}

℘ωÐ→ {&s2 b ∣ b ∈ s
●
2} .

Say that a node of the term s2 is an (n − 2)-variable b ∈ s●2, while a leaf of s1 is a variable
that can be used for grafting (see rule graft in definition 6.1.16), i.e. also an (n − 2)-
variable b ∈ s●2. Then the left hand side can be considered as the set of leaf addresses of
s1, while the right hand side is its set of node addresses of s2, and ℘ω maps the address
of b ∈ Vn−2 as a leaf of s1 to the address of b as a node of s2. But here, the function ℘ω is
unnecessary, as this correspondence is already established by the name of the variables.

In Opt? however, such bookkeeping is necessary since there are no names, and Γ is
designed to precisely be the desired correspondence.

We now prove basic properties of derivable sequents in Opt?. In proof trees, we may
sometimes omit irrelevant information. For instance, if contexts and targets are not im-
portant, the shift rule may be written as

p
shift

{[]← p

Lemma 8.1.18. If Γ ⊢ pÐ→ t is a derivable sequent, then dimp = 1 + dim t.

Proof. Easy induction on proof trees.

Lemma 8.1.19. Let Γ ⊢ pÐ→ t be a derivable sequent with dimp ≥ 2. Then Γ establishes
a bijection between p∣ and t● (i.e. as a set of pairs, Γ is the graph of a bijective function).

Proof. The fact that Γ is a relation from p∣ to t● (i.e. that whenever [a][b] ∈ Γ we have
[a] ∈ p∣ and [b] ∈ t●) is clear from the inference rules. It is also clear that Γ is a function
(i.e. that whenever [a][b] ,

[a′]
[b′] ∈ Γ if [b] ≠ [b′], then [a] ≠ [a′]). Finally, the fact that it is a

bijection is clear in the case of degen and shift, and is a routine verification in the case
of graft.

Lemma 8.1.20. Let Γ ⊢ p Ð→ t be a derivable sequent with dimp ≥ 2 non degenerate.
For [p[q]][r] ∈ Γ, we have s[q] s[p] p = s[r] t.



Proof. The sequent necessarily follows from an instance of shift or graft. The result is
clear for the former, and follows from inspection for the latter.

Proposition 8.1.21. If Γ ⊢ pÐ→ t is derivable, then so is t, i.e. there exists a derivable
sequent of the form Υ ⊢ tÐ→ u.

Proof. The only non obvious case is (as always) graft, where we have to show that t ◽[r] q
is derivable. Since the sequent Γ,

[p[q]]
[r] ⊢ p Ð→ t has a nonempty context, p and t are

non-degenerate. Write t and q as in definition 8.1.15. Up to reindexing, we may assume
that ρ[tj] = [tj] if and only if j < i. Assume moreover that the sequences [t1], . . . , [ti−1]
and [ti+1], . . . , [tl] are both lexicographically sorted. In particular, [t1] = []. For j > i write
[tj] = [ti[bj]xj] and ℘[tj] = [tiajxj], so that Υ = { [aj][bj] ∣ i < j ≤ l}. Then the proof tree of
t ◽[ti] q is sketched as follows.

(1) If [ti] = [], then necessarily i = 1, and t ◽[ti] q can be derived as

⋮
q

⋮
v2 graft-[a2x2]q ○̃[a2x2] v2

⋮
v3

graft-[a3x3](q ○̃[a2x2] v2) ○̃[a3x3] v3

⋮
(⋯ (q ○̃[a2x2] v2) ⋯ ) ○̃[al−1xl−1] vl−1

⋮
vl

graft-[alxl](⋯ (q ○̃[a2x2] v2) ⋯ ) ○̃[alxl] vl

and by definition, (⋯ (q ○̃[a2x2] v2) ⋯ ) ○̃[alxl] vl = t ◽[ti] q.
(2) If [ti] ≠ [], then necessarily i > 1, and the process goes similarly. We first derive

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[t1]← v1

⋮
[ti−1]← vi−1

then graft the sources of q, and lastly graft the remaining vj ’s, where j > i.

Proposition 8.1.22. If Γ1 ⊢ pÐ→ t1 and Γ2 ⊢ pÐ→ t2 are two derivable sequents, then
Γ1 = Γ2 (as sets) and t1 = t2.

Proof. By inspection of the rules, Γi is completely determined by p∣, thus Γ1 = Γ2. By
lemma 8.1.19, Γi exhibits a bijection between p∣ and t●i , and in particular, t●1 = t●2. By
lemma 8.1.20, for any [p] ∈ t●1 = t●2, we have s[p] t1 = s[p] t2. Therefore, t1 = t2.

Notation 8.1.23. We denote by P✓n the set of derivable n-preopetopes, i.e. those p such
that there exists a derivable sequent of the form Γ ⊢ p Ð→ t. By proposition 8.1.22, this
sequent is uniquely determined by p, so let tp ∶= t be the target of p, and ℘p ∶ p∣ Ð→ t●

be the bijection described by Γ. As such, the sequent around a derivable opetope p can
be reconstructed as ℘p ⊢ pÐ→ tp.

Remark 8.1.24. Our syntax is closely related to the one given for multitopes [HMP02,
section 3], called here Hmp. Briefly, in Hmp, the unique 0 and 1-opetopes are respectively
denoted ☀ and # and, given an n-opetope p, the notation [p] (resp. ⌜p⌝ ) is used for



the corresponding degenerate (resp. shifted) (n + 2)- (resp. (n + 1)-) opetope. The nodes
of an opetope come equipped with a canonical order (just as in our system we could re-
quire preopetopes to be always sorted according to the lexicographical order ⪯), which
apparently dispenses from using addresses. In Hmp, an inductive definition of opetopes is
given, in the same spirit as our sequent calculus: in particular, typing conditions involv-
ing targets when grafting opetopes (grafting is simply application in Hmp) are involved.
However, no explicit definition at the level of the syntax is given for computing targets
(the description given resorts to multicategorical composition), and it is not clear to us
how to define it without considering addresses and maintaining more information, as we
do with our sequent calculus.

8.2 EQUIVALENCE WITH POLYNOMIAL OPETOPES

We now establish a series of definitions and results to show theorem 8.2.9, stating that the
elements of P✓n are in bijective correspondence with the set On of polynomial n-opetopes.

Definition 8.2.1 (Unnamed coding). Define the unnamed coding function C? ∶ On Ð→ P✓n
by induction on n ∈ N. If n = 0,1, then On and Pn are singletons, so C? is trivially defined:

C? (⧫) ∶= ⧫, C? (◾) ∶= ◾ = {∗← ⧫

Assume n ≥ 2, that C? is defined for all k < n, and take ω ∈ On.
(1) If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−2, then

C? (Iϕ) ∶= {{C? (ϕ) .

(2) If ω is an endotope, say ω = Yψ for some ψ ∈ On−1, then

C? (Yψ) ∶= {[]← C? (ψ) .

(3) Otherwise, decompose ω as ω = ν ○[l]Yψ, for ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣, and let

C? (ω) ∶= C? (ν) ○̃
[l]
C? (ψ) .

Proposition 8.2.2. Let n ≥ 2 and ω ∈ On have at least three nodes. Then the preopetope
C? (ω) does not depend in the decomposition of ω in corollas.

Proof. Akin to proposition 6.2.25, it is enough to check that for ν ∈ On non degenerate,
two different leaf addresses [l], [l′] ∈ ν∣ (which are necessarily ⊑-incomparable), and ψ,ψ′ ∈
On−1 such that tψ = e[l] ν and tψ′ = e[l′] ν, we have

C? ((ν ○
[l]
Yψ) ○

[l′]
Yψ′) = C? ((ν ○

[l′]
Yψ′) ○

[l]
Yψ) .

To unclutter notations, write C? (ν) = {⋮ . We have

C? ((ν ○
[l]
Yψ) ○

[l′]
Yψ′)



= C? (ν ○
[l]
Yψ) ○̃

[l′]
C? (ψ′) by definition

= (C? (ν) ○̃
[l]
C? (ψ)) ○̃

[l′]
C? (ψ′) by definition

= ({⋮
[l]← C? (ψ)

) ○̃
[l′]
C? (ψ′) see definition 8.1.9

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋮
[l]← C? (ψ)
[l′]← C? (ψ′)

see definition 8.1.9

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋮
[l′]← C? (ψ′)
[l]← C? (ψ)

see convention 8.1.4

= ({⋮
[l′]← C? (ψ′)

) ○̃
[l]
C? (ψ) since [l] /⊑ [l′]

= (C? (ν) ○̃
[l′]
C? (ψ′)) ○̃

[l]
C? (ψ)

= C? ((ν ○
[l′]

Yψ′) ○
[l]
Yψ) .

We now establish a series of results to prove proposition 8.2.6 stating that C? (ω) is
always a derivable preopetope.

Lemma 8.2.3. For ω ∈ On, we have ω● = C? (ω)●, and ω∣ = C? (ω)∣.

Proof. We proceed by induction.
(1) If n ≤ 1, then the claims trivially hold.
(2) Assume ω = Iϕ, for some ϕ ∈ On−2. Then ω● = ∅ = ({{C? (ϕ) )●. For leaves, ω∣ =
{[]} = ({{C? (ϕ) )∣ = C? (ω)∣ (see definition 8.1.6).

(3) Assume ω = Yψ, for some ψ ∈ On−1, so that we have C? (ω) = {[]← C? (ψ) . Then
ω● = {[]} = ({[]← C? (ψ))● = C? (ω)●. By induction, ψ● = C? (ψ)●, so the leaf
addresses of ω and {[]← C? (ψ) are both of the form [[q]], where [q] ranges over
ψ●, hence ω∣ = C? (ω)∣.

(4) Assume ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Then, by induction,

ω● = ν● + {[l]} by definition
= C? (ν)● + {[l]} by induction

= (C? (ν) ○̃
[l]
C? (ψ))

●

see definition 8.1.9

= C? (ω)● see definition 8.2.1,

and

ω∣ = ν∣ − {[l]} + {[l[q]] ∣ [q] ∈ ψ●} by definition
= C? (ν)∣ − {[l]} + {[l[q]] ∣ [q] ∈ C? (ψ)●} by induction



= (C? (ν) ○̃
[l]
C? (ψ))

∣

see definition 8.1.9

= C? (ω)∣ see definition 8.2.1.

Lemma 8.2.4. For ω ∈ On non degenerate and [p] ∈ ω●, we have C? (s[p] ω) = s[p]C? (ω).

Proof. We proceed by induction. Since ω● ≠ ∅, ω is either ◾, an endotope, or a grafting.
(1) If ω = ◾, then [p] = ∗, and trivially, C? (s∗ ◾) = C? (⧫) = ⧫ = s∗ {∗← ⧫ = s∗C? (◾).
(2) Assume that ω is an endotope, say ω = Yψ, for some ψ ∈ On−1. Necessarily, [p] = [],

and C? (s[] ω) = C? (ψ) = s[] {[]← C? (ψ) = s[]C? (ω).
(3) Assume ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Let [p] ∈ ω●. If
[p] = [l], then

C? (s[l] ω) = C? (ψ)

= s[l] (C? (ν) ○̃
[l]
C? (ψ)) see definition 8.1.9

= s[l]C
? (ω) see definition 8.2.1.

Otherwise, we have

C? (s[p] ω) = C? (s[p] ν)
= s[p]C

? (ν) by induction

= s[p] (C? (ν) ○̃
[l]
C? (ψ)) see definition 8.1.9

= s[p]C
? (ω) see definition 8.2.1.

Lemma 8.2.5. For ω ∈ On, we have C? (tω) = tC? (ω), and ℘ω = ℘C?(ω) (see nota-
tion 8.1.23).

Proof. We proceed by induction.
(1) Assume ω = Iϕ, for some ϕ ∈ On−2. Then

C? (tω) = C? (Yϕ)
= {[]← C? (ϕ) see definition 8.2.1
= t{{C? (ϕ) see degen rule
= tC? (ω) see definition 8.2.1.

Since ω and C? (ω) are both degenerate (as opetope and preopetope, respectively),
℘ω and ℘C?(ω) both map [] ∈ ω∣ = C? (ω)∣ to [] ∈ (tω)● = tC? (ω)● (see the degen
rule).

(2) Assume ω = Yψ, for some ψ ∈ On−1, so that we have C? (ω) = {[]← C? (ψ) . Then

C? (tω) = C? (ψ)



= t{[]← C? (ψ) see shift rule
= tC? (ω) see definition 8.2.1.

Moreover, we have ω∣ = C? (ω)∣ = {[[p]] ∣ [p] ∈ ψ●}, and by definition, ℘ω[[p]] =
[p] = ℘C?(ω)[p] (see the shift rule).

(3) Assume ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Then,

C? (tω) = C? ((tν) ◽
℘ν[l]

ψ) by proposition 3.1.6

= C? (tν) ◽
℘
C?(ν)[l]

C? (ψ) by induction, ℘ν = ℘C?(ν)

= tC? (ν) ◽
℘
C?(ν)[l]

C? (ψ) by induction

= t(C? (ν) ○̃
[l]
C? (ψ)) see graft rule

= tC? (ω)

The equality ℘ω = ℘C?(ω) follows by inspection of rule graft.

Proposition 8.2.6. If ω ∈ On, then C? (ω) is a derivable n-preopetope.

Proof. If n ≤ 1, then the result is trivial, so assume that n ≥ 2.
(1) If ω = Iϕ for some ϕ ∈ On−2, then C? (ω) is simply obtained by an instance of degen:

⋮
C? (ϕ) degen
C? (ω)

(2) Likewise, if ω = Yψ for some ψ ∈ On−1, then C? (ω) can be obtained using an
instance of shift.

(3) Assume that ω = ν ○[l]Yψ, for νOn non degenerate, ψ ∈ On−1, and [l] ∈ ν∣. By
lemma 8.2.3, ν∣ = C? (ν)∣, thus [l] ∈ C? (ν)∣. Since ν is not degenerate, the leaf
address [l] can be decomposed as [l] = [p[q]], where [p] ∈ ν● and [q] ∈ (s[p] ν)●. We
have

s[q] s[p]C
? (ν) = s[q]C

? (s[p] ν) by lemma 8.2.3
= C? (s[q] s[p] ν) by lemma 8.2.3
= C? (tψ) by assumption
= tC? (ψ) by lemma 8.2.5

Finally, rule graft can be used to derive C? (ω):

⋮
C? (ν)

⋮
C? (ψ)

graft-[l]
C? (ω)

We finally prove that C? is a bijection by constructing its inverse.



Definition 8.2.7. Define the polynomial coding function ⟦−⟧ ∶ P✓n Ð→ On by induction
on n ∈ N. If n = 0,1, then both sets are singletons, and ⟦−⟧ is trivially defined. Assume
n ≥ 2, and that ⟦−⟧ is defined for all k < n. We distinguish three cases.

(1) If q ∈ P✓n−2, then ⟦{{q ⟧ ∶= I⟦q⟧.
(2) If q ∈ P✓n−1, then ⟦{[]← q⟧ ∶=Y⟦q⟧.
(3) If p ∈ P✓n , q ∈ P✓n−1, and [l] ∈ p∣ are such that the corresponding instance of rule

graft is well-defined, then let

⟦p ○̃
[l]
q⟧ ∶= ⟦p⟧ ○

[l]
Y⟦q⟧,

which is well-defined by lemmas 8.2.3 to 8.2.5.

Lemma 8.2.8. Let n ≥ 1 and p ∈ P✓n have at least three node addresses. Then ⟦p⟧ does
not depend on the decomposition of p into corolla graftings.

Proof. Akin to propositions 6.2.25 and 8.2.2, it is enough to check the that for p ∈ P✓n non
degenerate, [l], [l′] ∈ p∣ different leaf addresses (in particular, they are ⊑-incomparable),
q,q′ ∈ P✓n−1 such that tq = e[l] p and tq′ = e[l′] p, we have

⟦(p ○̃
[[l]]

q) ○̃
[[l′]]

q′⟧ = ⟦(p ○̃
[[l′]]

q′) ○̃
[[l]]

q⟧ .

This is straightforward:

⟦(p ○̃
[[l]]

q) ○̃
[[l′]]

q′⟧ = (⟦p⟧ ○
[[l]]

Y⟦q⟧) ○
[[l′]]

Y⟦q′⟧ by definition

= (⟦p⟧ ○
[[l′]]

Y⟦q′⟧) ○
[[l]]

Y⟦q⟧ since [[l]] /⊑ [[l′]]

= ⟦(p ○̃
[[l′]]

q′) ○̃
[[l]]

q⟧ by definition.

Theorem 8.2.9. The functions C? and ⟦−⟧ are mutually inverse.

Proof. Straightforward verifications.

8.3 EXAMPLES

In this section, we give example derivations in system Opt?.

Example 8.3.1 (The arrow). The unique 1-opetope ◾ = {∗← ⧫ is derived by

point⊢ ⧫Ð→ ∅ shift
⊢ {∗← ⧫ Ð→ ⧫



Example 8.3.2 (Opetopic integers). The opetopic integer n (example 3.1.4) is repre-
sented on the left in the case n = 0, and on the right if n ≥ 1:

.
⇓

.

. . .

.
(n)

(n − 1)

(1)⇓

The derivation of 0 is simply

point⊢ ⧫ degen
[]
[] ⊢ {{⧫ Ð→ ◾

whereas for n ≥ 1, the opetope n is derived as

⋮
⊢ ◾Ð→ ⧫ shift[∗]

∗ ⊢ {[]← ◾ Ð→ ◾
⋮

⊢ ◾Ð→ ⧫
[∗]

[∗∗]
∗ ⊢ {

[]← ◾
[∗]← ◾

Ð→ ◾
⋮

⊢ ◾Ð→ ⧫
[∗∗]

[∗∗∗]
∗ ⊢

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
[∗]← ◾
[∗∗]← ◾

Ð→ ◾

⋮

[∗n−1]
∗ ⊢

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
⋮
[∗n−2]← ◾

Ð→ ◾
⋮

⊢ ◾Ð→ ⧫

[∗n−1]
[∗n]
∗ ⊢

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
⋮
[∗n−1]← ◾

Ð→ ◾

where there is a total of n − 1 instances of the graft rule.

Example 8.3.3 (A classic). The 3-opetope

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

can be derived as follows:

⋮
[∗∗]
∗ ⊢ 2Ð→ ◾ shift[[∗]]

[∗] ⊢ {[]← 2 Ð→ 2

⋮
[∗∗]
∗ ⊢ 2Ð→ ◾ graft-[[∗]]

[[]]
[] ,

[[∗][]]
[∗] ,

[[∗][∗]]
[∗∗] ⊢ {

[]← 2

[[∗]]← 2
Ð→ 3



Example 8.3.4 (A degenerate case). The 3-opetope

.
⇓

⇓
⇛

.

⇓

can be derived as follows:

⋮
[∗]
∗ ⊢ 1Ð→ ◾ shift[[]]

[] ⊢ {[]← 1 Ð→ 1

⋮
[]
[] ⊢ 0Ð→ ◾ graft-[[]]

⊢ {[]← 1

[[]]← 0
Ð→ 0

Example 8.3.5 (Another degenerate case). The 3-opetope

. .
⇓
⇓ ⇛

. .

⇓

can be derived as follows:

⋮
[∗∗]
∗ ⊢ 2Ð→ ◾ shift[[]]

[] ,
[[∗]]
[∗] ⊢ {[] ∶ 2 Ð→ 2

⋮
⊢ 0Ð→ ◾

graft-[[∗]]
[[]]
[] ⊢ {

[]← 2

[[∗]]← 0
Ð→ 1

Example 8.3.6 (A 4-opetope). The 4-opetope

. .

.

⇓
⇓ ⇛

. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

.

.

.

.

.

⇓

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

is derived by



⋮
[∗
∗
∗
]

∗
⊢
3
Ð
→
◾

sh
if

t
[[
]] []
,
[[
∗
]]

[∗
]
,
[[
∗
∗
]]

[∗
∗
]
⊢
{ [
]
←

3
Ð
→

3

⋮
[∗
∗
]

∗
⊢
2
Ð
→
◾
[[
∗]
]

[[
]] []
,
[[
∗
∗
]]

[∗
∗
∗
]
,
[[
∗
][
]]

[∗
]
,
[[
∗
][
∗
]]

[∗
∗
]
⊢
{[
]
←

3

[[
∗]
]
←

2
Ð
→

4

⋮
[∗
∗
]

∗
⊢
2
Ð
→
◾
[[
∗]
[∗
]]

[[
]] []
,
[[
∗
∗
]]

[∗
∗
∗
∗
]
,
[[
∗
][
]]

[∗
]
,
[[
∗
][
∗
][
]]

[∗
∗
]

,
[[
∗
][
∗
][
∗
]]

[∗
∗
∗
]
⊢
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩[]
←

3

[[
∗]
]
←

2

[[
∗]
[∗
]]
←

2

Ð
→

5

⋮
[∗
]
∗
⊢
1
Ð
→
◾

[[
∗]
[∗
][
]]

[[
]] []
,
[[
∗
∗
]]

[∗
∗
∗
∗
]
,
[[
∗
][
]]

[∗
]
,
[[
∗
][
∗
][
∗
]]

[∗
∗
∗
]

,
[[
∗
][
∗
][
][
]]

[∗
∗
]

⊢

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

3

[[
∗]
]
←

2

[[
∗]
[∗
]]
←

2

[[
∗]
[∗
][
]]
←

1

Ð
→

5

sh
if

t

[[
]] []
,
[[
[∗
]]
]

[[
∗
]]
,
[[
[∗
][
∗
]]
]

[[
∗
][
∗
]]
,
[[
[∗
][
∗
][
]]
]

[[
∗
][
∗
][
]]
⊢

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

3

[[
∗]
]
←

2

[[
∗]
[∗
]]
←

2

[[
∗]
[∗
][
]]
←

1

Ð
→

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

3

[[
∗]
]
←

2

[[
∗]
[∗
]]
←

2

[[
∗]
[∗
][
]]
←

1

⋮
[∗
]
∗
⊢
1
Ð
→
◾

sh
if

t
[[
]] []
⊢
{ [
]
←

1
Ð
→

1

⋮
[∗
∗
]

∗
⊢
2
Ð
→
◾
[[
]]

[[
][
]]
[]

,
[[
][
∗
]]

[∗
]
⊢
{[
]
←

1

[[
]]
←

2
Ð
→

2

[[
[∗
]]
]

[[
]] []
,
[[
[∗
][
∗
]]
]

[[
∗
][
][
∗
]]
,
[[
[∗
][
∗
][
]]
]

[[
∗
][
][
∗
][
]]
,
[[
[∗
]]
[[
]]

[[
∗
]]

,
[[
[∗
]]
[[
[]
]]
]

[[
∗
][
]]

⊢

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

3

[[
∗]
]
←

2

[[
∗]
[∗
]]
←

2

[[
∗]
[∗
][
]]
←

1

[[
[∗
]]
]
←
{[
]
←

1

[[
]]
←

2

Ð
→

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩[]
←

3

[[
∗]
]
←

1

[[
∗]
[]
]
←

2

[[
∗]
[]
[∗
]]
←

2

[[
∗]
[]
[∗
][
]]
←

1



8.4 DECIDING OPETOPES

We now present in algorithm 1 the isOpetope function that, given a preopetope p ∈ P,
decides if p ∈ P✓, as proved in proposition 8.4.1. This algorithm tries to deconstruct p

by finding the last rule instance in a potential proof tree for it, and recursively checking
the validity of the premises. We emphasize that this algorithm, while straightforward, is
extremely inefficient.

Algorithm 1 Well formation algorithm
1: procedure isOpetope(p ∈ P) ▷ Returns a boolean
2: if p = ⧫ then
3: return true
4: else if p = {{q then
5: return isOpetope(q)
6: else
7: while p has an address of the form [p[q]] do
8: Let [p[q]] be the maximal such address
9: if [p] ∉ p● or [q] ∉ (s[p] p)● then

10: return false
11: else if not isOpetope(s[p] p) then
12: return false
13: else if not isOpetope(s[p[q]] p) then
14: return false
15: else if t s[p] p ≠ s[p[q]] p then
16: return false
17: else
18: Remove address [p[q]] from p
19: end if
20: end while
21: if p is of the form {[]← q then
22: return isOpetope(q)
23: else
24: return false
25: end if
26: end if
27: end procedure

Proposition 8.4.1. For p ∈ P, the execution isOpetope(p) returns true if and only if
p ∈ P✓.

Proof. This algorithm tries to deconstruct the potential proof tree of p in system Opt?.
Condition at line (2) removes an instance of the point rule. Condition at line (4) removes
an instance of degen. Each iteration of the while loop at line (7) removes an instance of
graft. Finally the condition at line (21) removes an instance of shift. If the algorithm
encounters an expression that is not the conclusion of any instance of any rule of Opt?, it
returns false. Otherwise, if all branches of the proof tree lead to ⧫, it returns true.





Chapter Nine

The unnamed approach for opetopic sets

W
e now present OptSet?, a derivation system for opetopic set that is controlled
by Opt?, unlike system OptSet! that is based on Opt!.

9.1 THE OPTSET? SYSTEM

As always, contexts are considered as sets, so that the order in which the typings are
written is irrelevant, even though those typings might be interdependent. We rely on two
types of judgment that can be understood as follows:

(1) “Γ”, meaning that Γ is a well-formed context,
(2) “Γ ⊢ P”, meaning that P is a well-formed pasting diagram in context Γ.

We now state the inference rules in definition 9.1.1, and simultaneously assign a shape
x♮ ∈ P✓ (see notation 8.1.23) to any variable x in a derivable context.
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Definition 9.1.1 (The OptSet? system). Introduction of points.

Γ point
Γ, x ∶ ⧫

for x a fresh variable name. Such a cell x has no source, no target, and its
shape is given by x♮ ∶= ⧫.

Introduction of degenerate pasting diagrams.

Γ, x ∶ T degen
Γ, x ∶ T ⊢ {{x

The shape of this pasting diagram is ({{x )♮ ∶={{x♮ .
Introduction of non degenerate pasting diagrams. If there exists p ∈ P✓ a non de-

generate opetope, say

p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← ψ1

⋮
[pk]← ψk

and typings x1 ∶ T1, . . . , xk ∶ Tk in the current context such that
(1) x♮i = ψi,
(2) (Inner) whenever [pj] = [pi[q]] we have txj = s[q] xi (the latter notation

is defined in rule shift below),
then:

Γ, x1 ∶ T1, . . . , xk ∶ Tk graft

Γ, x1 ∶ T1, . . . , xk ∶ Tk ⊢

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← x1
⋮
[pk]← xk

Denote this pasting diagram (the expression on the right of ⊢) by P. Its shape
is given by P♮ ∶=p, and for 1 ≤ i ≤ k, let s[pi]P ∶=xi. Forming a pasting diagram
in this manner is essentially an unbiased (or non binary) grafting, whence the
name of the rule.

Shift to the next dimension. If we have a pasting diagram P of shape P♮ = p, a cell
x ∶QÐ→ a in the current context, such that

(1) x♮ = tp,
(2) (Glob1) if p is non degenerate, then t s[]P = tx,
(3) (Glob2) if p is non degenerate, then for a leaf [p[q]] ∈ p∣, we have

s[q] s[p]P = s℘p[p[q]] x,
(4) (Degen) if p is degenerate, then Q = {[]← a ,

then:

Γ, x ∶QÐ→ a ⊢ P
shift

Γ, x ∶QÐ→ a, y ∶ PÐ→ x

for y a fresh name. The shape of y is given by y♮ ∶=P♮, its source is s y ∶=P, for
[p] ∈ p●, its [p]-source is s[p] y ∶= s[p]P, and its target is t y ∶=x.



9.2 EQUIVALENCE WITH OPETOPIC SETS

Definition 9.2.1 (Substitution). Let Υ and Γ = (x1 ∶ T1, . . . , xk ∶ Tk) be two derivable
contexts in OptSet?. Akin to classical type theory (see e.g. [Hof97, definition 2.11]), a
substitution σ ∶ Υ Ð→ Γ is a sequence of variables (σ1, . . . , σk) such that for 1 ≤ i ≤ k, the
typing σi ∶ Ti[σ1/x1]⋯[σi−1/xi−1] is in Υ.

Let Ctx? be the syntactic category of our type theory, i.e. the category whose objects
are derivable contexts, and morphisms are substitutions as defined above.

Lemma 9.2.2. In the setting above, we have σ♮i = x♮i.

Proof. The shape of a variable, i.e. the shape of its source pasting diagram, does not
depend on the variables present in it, only on its underlying preopetope.

Recall from definition 8.2.1 the unnamed coding function C? ∶ On Ð→ P✓n .

Definition 9.2.3 (Unnamed stratification). We now construct the unnamed stratification
functor S? ∶ (Ctx?)op Ð→ Psh(O)fin. For Γ ∈ Ctx? and ω ∈ O, let

S?Γω ∶= {x ∈ Γ ∣ x♮ = C? (ω)} .

If x♮ ≠ ⧫, then the type X of x is of the form PÐ→ z, and we let tx ∶= z. This is well defined
as by construction of Γ we have z♮ = t(x♮). For [p] ∈ ω●, we let s[p] x ∶= s[p]P. Again, this
is well-defined as (s[p]P)♮ = s[p](P♮) = s[p](x♮). From there, the opetopic identities clearly
hold, and S?Γ is a finite opetopic set.

On morphisms, write Γ = (x1 ∶ T1, . . . , xk ∶ Tk), let σ = (σ1, . . . , σk) ∶ Υ Ð→ Γ be a
substitution, and define a morphism S?σ ∶ S?Γ Ð→ S?Υ as follows. For xi a variable of
Γ, and ω ∈ O such that C? (ω) = x♮i, there is a corresponding cell xi ∈ S?Γω, and we let
(S?σ)(xi) ∶=σi. This is well-defined since by lemma lemma 9.2.2, we have σ♮i = x♮ = ω, thus
σi ∈ S?Υω.

Lemma 9.2.4. The map S?σ of definition 9.2.3 is a morphism of opetopic sets.

Proof. Assume ω ≠ ⧫, so that the type of xi is P Ð→ xj for some j < i, and the type of
σi is P[σ1/x1]⋯[σi−1/xi−1] Ð→ σj . Then (S?σ)(txi) = σj = t(S?σ)(xi). If [p] ∈ ω●, then
s[p] xi = xl, for some l < i, and

(S?σ)(s[p] xi) = (S?σ)(xl)
= σl see definition 9.2.1
= s[p] (P[σ1/x1]⋯[σl/xl]⋯[σi−1/xi−1])
= s[p](S?σ(xi)) see definition 9.2.1.

In conclusion, S?σ is compatible with the source and target maps, and thus is a morphism
of opetopic sets S?ΓÐ→ S?Υ.

Theorem 9.2.5. The stratification functor S? ∶ (Ctx?)op Ð→ Psh(O)fin is an equivalence
of categories.



Proof. It is clear from the definition that S? is faithful. Let Γ,Υ ∈ Ctx?, with Γ =
(x1 ∶ T1, . . . , xk ∶ Tk), and f ∶ S?Γ Ð→ S?Υ. For σf the substitution (f(x1), . . . , f(xk)) ∶
ΓÐ→ Υ, we clearly have f = S?σf , showing that S? is fully faithful.

We now show that S? is essentially surjective. Take X ∈ Psh(O)fin, and enumerate
its cells as x1 ∈ Xω1 , . . . , xk ∈ Xωk , such that whenever i < j we have dimωi ≤ dimωj . In
other words, they are sorted by dimension. We produce a sequence of derivable contexts
Γ(0) ⊆ Γ(1) ⊆ ⋯ ⊆ Γ(k), where Γ(i) = (x1 ∶ T1, . . . , xi ∶ Ti) is such that xi♮ = C? (ωi). For i = 0,
let Γ(0) = (). Assume 1 ≤ i ≤ k, and that Γ(i−1) is defined and derivable.

(1) If ωi = ⧫, let Γ(i) be given by the following proof tree:

⋮
Γ(i−1) point

Γ(i−1), xi ∶ ⧫

Note that in this case, Ti = ⧫.
(2) Assume ωi ≠ ⧫ is not degenerate. Then, by induction, we have txi

♮ = tωi, and for
every address [p] ∈ ω●i , we have s[p] xi

♮ = s[p]C? (ωi). From this, Γ(i) is given by the
following proof tree:

⋮
Γ(i−1) graft

Γ(i−1) ⊢ {[p1]← s[p1] xi
⋮

shift
Γ(i−1), xi ∶ {

[p1]← s[p1] xi
⋮

Ð→ txi

where the pasting diagram has shape C? (ω), and {[p1], . . .} ∶=ω●.
(3) If ωi is degenerate, then Γ(i) is given by the following proof tree:

⋮
Γ(i−1) degen

Γ(i−1) ⊢ {{t txi
shift

Γ(i−1), xi ∶ {{t txi Ð→ txi

Finally, the mapping xi z→ xi exhibits an isomorphism X Ð→ S?Γ(k), and S? is essentially
surjective.

The category Ctx? has finite limits, induced from finite colimits in Psh(O)fin through
S?. We conclude this section with a result similar to theorem 7.2.28, stating that opetopic
sets essentially are “models of the algebraic theory Ctx?”.

Theorem 9.2.6. We have an equivalence Psh(O) ≃ Lex(Ctx?,Set).

Proof. This follows directly from theorem 9.2.5 and from the Gabriel–Ulmer duality (see
corollary 0.5.7).



9.3 EXAMPLES

In this section, we give example derivations in system OptSet?. For clarity, we do not
repeat the type of previously typed variables in proof trees.

Example 9.3.1. We show how to derive the following opetopic set, which is not repre-
sentable:

a b

f

g

h

⇓α

First, we introduce all the points:
point

a ∶ ⧫ point
a, b ∶ ⧫

Then we introduce f , by first specifying its source pasting diagram with the graft rule,
parameterized by opetope ◾ = {∗← ⧫ , and then applying the shift rule:

⋮
a, b graft

a, b ⊢ {∗← a
shift

a, b, f ∶ {∗← a Ð→ b

We proceed similarly for g and h:

⋮
a, b, f graft

a, b, f ⊢ {∗← a
shift

a, b, f, g ∶ {∗← a Ð→ b
graft

a, b, f, g ⊢ {∗← b
shift

a, b, f, g, h ∶ {∗← b Ð→ a

Lastly, we introduce α, first by specifying its source with the graft rule, parameterized
by opetope 1 = {[]← ◾ (see the opetopic integers defined in example 8.3.2), and applying
the shift rule:

⋮
a, b, f, g, h graft

a, b, f, g, h ⊢ {[]← f
shift

a, b, f, g, h,α ∶ {[]← f Ð→ g

Example 9.3.2. The opetopic set

a a a

b

⇓α
⇓β

h

f g h

h

is straightforwardly derived as



point
a ∶ ⧫ point
a, b ∶ ⧫ graft

a, b ⊢ {∗← a
shift

a, b, f ∶ {∗← a Ð→ b
graft

a, b, f ⊢ {∗← b
shift

a, b, f, g ∶ {∗← b Ð→ a
graft

a, b, f, g ⊢ {∗← a
shift

a, b, f, g, h ∶ {∗← a Ð→ a
graft

a, b, f, g, h ⊢ {[]← g

[∗]← f
shift

a, b, f, g, h,α ∶ {[]← g

[∗]← f
Ð→ h

graft
a, b, f, g, h,α ⊢ {[]← h

shift
a, b, f, g, h,α, β ∶ {[]← h Ð→ h

9.4 APPLICATION TO OPETOPIC CATEGORIES

In this section, we present system OptCat?, an extension of OptSet? (definition 9.1.1).
It is a direct implementation of the axioms of opetopic categories [BD98] [CL04] [Fin16].

operations on pasting diagrams

Recall that in system OptSet?, a non degenerate pasting diagram is a syntactical con-
struct that reads

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← f1
⋮
[pk]← fk

(9.4.1)

where there is an opetope ω ∈ O such that ω● = {[p1], . . . , [pk]}.

Proposition 9.4.2. Let X ∈ Psh(O) be an opetopic set, and Γ be a derivable context in
OptSet? such that S?Γ ≅ X. Then a map S[ω] Ð→ X (recall the definition of the spine
S[ω] of ω from definition 3.5.1) corresponds exactly to a derivable pasting diagram P in
Γ such that P♮ = C? (ω), or equivalently, to an instance of the graft or degen rule on the
context Γ.

Proof. This follows by straightforward derivation of S[ω] in OptSet?.

Definition 9.4.3 (Substitution in a pasting diagram). Let Γ be a derivable context, and
P a non-degenerate pasting diagram in Γ as in equation (9.4.1). If h is a cell in Γ parallel



to fi (written h ∥ fi), i.e. having the same type, then write

P ◽
[pi]

h ∶= P[h/fi] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[p1]← f1
⋮
[pi]← h

⋮
[pk]← fk

Since fi and h have the same type, they can be used interchangeably, and Γ ⊢ P ◽[pi] h is
a derivable sequent.

Definition 9.4.4 (Source and target of a pasting diagram). Let Γ be a derivable context,
and P a pasting diagram in Γ (degenerate or not), of shape P♮ = p. The target tP of P is
defined as follows:

(1) if P is degenerate, say P = {{a , then tP ∶=a;
(2) otherwise, for P as in equation (9.4.1), let tP ∶= t s[]P.

By definition, tP is a cell in Γ of shape (tP)♮ = tp. By the same disjunction, define the
source sP of P as follows:

(1) if P is degenerate, say P = {{a , then sP ∶=a;
(2) otherwise, for P as in equation (9.4.1), and [p1[q1]], . . . , [pl[ql]] the leaf addresses

of p, let

sP ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

℘p[p1[q1]]← s[q1] s[p1]P

⋮
℘p[pl[ql]]← s[ql] s[pl]P

In the first case, sP is a cell of Γ, whereas in the second case, Γ ⊢ sP is derivable by the
assumptions of the graft rule. In both cases, (sP)♮ = s[p] p.

Lemma 9.4.5. For Γ a derivable sequent, and α ∶ P Ð→ u a cell of Γ, we have sP = su,
and tP = tu.

Proof. By assumption on the fill rule.

inference rules

In the definition of opetopic categories [BD98] [CL04] [Fin16], faces of a given cell can be
annotated as “universal”, and if so, certain lifting properties hold (see definition 9.4.7).

Notation 9.4.6. Recall that in system OptSet?, a cell is typed as follows:

α ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← f1
⋮
[pk]← fk

Ð→ g.

We can also write α ∶ P Ð→ g for short. If α is source universal at address [pi] (or
equivalently, at source fi), for 1 ≤ i ≤ k, we write

α ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋮
[pi]← ∀fi
⋮

Ð→ g,



or α ∶ ∀[pi]PÐ→ g for short. Likewise, if α is target universal, we write

α ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← f1
⋮
[pk]← fk

Ð→ ∀g

or α ∶ PÐ→ ∀g for short.

In definition 9.4.7, we present the four inference rules of system OptCat?, imple-
menting the axioms of opetopic categories of [BD98] [CL04] [Fin16] in our syntax. We
specifically rely on the formulation of [Fin16]. But first, let us sketch them informally.

Compositions. Of course, there is a notion of composition, which in this case is unbiased,
meaning the composition operation takes as input pasting diagrams, rather than
pairs of cells satisfying some condition. Graphically,

.

. .

.
tfill

.

. .

.
⇓

Moreover, the filler 2-cell above is target universal, which is hinted by the thickened
red arrow1.

Target universality. Assume that we have a target universal cell, here the upper trape-
zoidal 2-cell, and another cell which has the same source, represented by the big-
ger double arrow. Then that cell factorizes through the target universal one, and
further, the “factorizator” 3-cell is target universal and source universal at the
factorization (red double arrow on the bottom left).

.

. .

.⇓
⇓

tuniv

.

. .

.
⇓

⇓
⇛ .

. .

.⇓

This rule suggests that target universal cells should really be considered as com-
positors, even if they are not unique for a given pasting diagram.

Source universality. Akin to target universality, assume that we have a source uni-
versal cell, here the lower trapezoidal 2-cell, and another cell which has the same
target and sources, except for that universal one, represented by the bigger double
arrow. Then that cell factorizes through the source universal one, and further, the
“factorizator” 3-cell is target universal and source universal at the factorization
(red double arrow on the top left of the conclusion).

1Note that being target universal is a property of the filler and not of the target. Thus strictly speaking,
the filler should be highlighted rather than the target cell, but doing so results in less clear graphical
representations.



.

. .

.

⇓
⇓

suniv

.

. .

.
⇓

⇓
⇛

.

. .

.
⇓

Closure of target universal cells2. Lastly, the target universal cells enjoy the following
closure property. Assume we have a target universal cell whose faces are also target
universal, except for one. Then we may infer that one to be target universal too.
Here, target universality of the 1-cells is represented by the red dots (the bottom
right dot depicts the target universality of both arrows that have it as a target),
and note that the top horizontal arrow is not target universal in the premise.

.

● .

●
⇓

tclose

.

● ●

●
⇓

We now formulate those rules in the syntax of OptSet?:

Definition 9.4.7 (The OptCat? system). Filling of pasting diagrams. From
a pasting diagram, this rule creates the “composite” cell u, and a target
universal “compositor” γ.

Γ ⊢ P tfill
Γ, u ∶ sPÐ→ tP, γ ∶ PÐ→ ∀u

Target universality.

Γ, α ∶ PÐ→ ∀u,β ∶ PÐ→ v tuniv-α/β
Γ, α, β, ξ ∶ {[]← u Ð→ v,A ∶ {[]← ∀ξ

[[]]← α
Ð→ ∀β

Source universality. For s a cell of Γ, parallel to s[p]P:

Γ, α ∶ ∀[p]PÐ→ u,β ∶ P ◽[p] sÐ→ u
suniv-α/β

Γ, α, β, ξ ∶ {[]← s Ð→ s[p]P,A ∶ {
[]← α

[[p]]← ∀ξ
Ð→ ∀β

Closure of target universal cells. Let A be a target universal cell such that its faces
(sources and target) αi ∶Qi Ð→ ui are also target universal, for all 1 ≤ i ≤ k+1,
except for a given j. Then we may infer that αj is target universal as well.

Γ, αj ∶Qj Ð→ uj ,A ∶ PÐ→ ∀αk+1
tclose-A

Γ, αj ∶Qj Ð→ ∀uj ,A ∶ PÐ→ ∀αk+1



examples

We derive some of Finster’s examples [Fin16] in our system.

Example 9.4.8 (id, refl). Given a variable x, we derive its identity idx and reflexivity reflx
as follows.

Γ, x ∶ PÐ→ a degen
Γ, x ⊢ {{x

tfill
Γ, x, idx ∶ {[]← x Ð→ x, reflx ∶ {{x Ð→ ∀idx

tclose-reflx
Γ, x, idx ∶ {[]← x Ð→ ∀x, reflx

The fact that idx indeed behaves like an identity is argued by the upcoming derivations
of runitf (example 9.4.10) and lunitf (example 9.4.11), where f ∶ {[] ∶ x Ð→ y is a unary
cell (i.e. an arrow).

Convention 9.4.9. For clarity, we do not mention the ambient context, or repeat previously
derived variables. For instance, the proof tree of example 9.4.8 will be more concisely
written as:

x ∶ PÐ→ a degen
⋯ ⊢ {{x

tfill
idx ∶ {[]← x Ð→ x, reflx ∶ {{x Ð→ ∀idx

tclose-reflx
idx ∶ {[]← x Ð→ ∀x

Example 9.4.10 (runit). For idx and reflx derived as in example 9.4.8,

x, y, idx, reflx, f ∶ {[] ∶ x Ð→ y
graft

⋯ ⊢ {[]← f

[[]]← idx
tfill

f idx ∶ {[]← x Ð→ y, α ∶ {[]← f

[[]]← idx
Ð→ ∀f idx

graft
⋯ ⊢ {[]← α

[[[]]]← reflx
tfill

runitf ∶ {[]← f Ð→ f idx, β ∶ {[]← α

[[[]]]← reflx
Ð→ ∀runitf

tclose-β
runitf ∶ {[]← f Ð→ ∀f idx

Example 9.4.11 (lunit). For idx and idy derived as in example 9.4.8,



x, y, idx, idy, f ∶ {[] ∶ x Ð→ y
graft

⋯ ⊢ {[]← idy
[[]]← f

tfill
idyf ∶ {[]← x Ð→ y, α ∶ {[]← idy

[[]]← f
Ð→ ∀idyf

graft
⋯ ⊢ {[]← α

[[]]← refly
tfill

lunitf ∶ {[]← f Ð→ idyf, β ∶ {[]← α

[[]]← refly
Ð→ ∀lunitf

tclose-β
lunitf ∶ {[]← f Ð→ ∀idyf

Example 9.4.12 (f−1). A unary target universal cell f ∶ {[]← x Ð→ ∀y (for x and y

of arbitrary dimension) admits an antiparallel target universal cell f−1 constructed as
follows. For idx derived as in example 9.4.8,

x, y, idx ∶ {[]← x Ð→ ∀x, f ∶ {[]← x Ð→ ∀y
tuniv-f/idx

f−1 ∶ {[]← y Ð→ x, linvf ∶ {
∀[]← f

[[]]← f−1
Ð→ ∀idx

tclose-linvf
f−1 ∶ {[]← y Ð→ ∀x,

Example 9.4.13 (Associativity). Consider three composable unary cells f , g and h. We
show that there is a universal “coherence” cell between the unbiased composite fgh and
the iterated binary composite (fg)h. The dual case f(gh) is derived similarly. First, we
derive fgh.

f ∶ {[]← a Ð→ b, g ∶ {[]← b Ð→ c, h ∶ {[]← c Ð→ d
ps

⋯ ⊢

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← h

[[]]← g

[[][]]← f
tfill

fgh ∶ {[]← a Ð→ d, cmpfgh ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← h

[[]]← g

[[][]]← f

Ð→ ∀fgh

Next, we derive (fg)h.

⋮ ps

⋯ ⊢ {[]← g

[[]]← f
tfill

fg ∶ {[]← a Ð→ c, cmpfg ∶ {
[]← g

[[]]← f
Ð→ ∀fg

ps

⋯ ⊢ {[]← h

[[]]← fg
tfill

(fg)h ∶ {[]← a Ð→ d, cmp(fg)h ∶ {
[]← h

[[]]← fg
Ð→ ∀(fg)h



Then, we compose cmpfg and cmp(fg)h to obtain a new cell parallel to cmpfgh.

⋮ ps

⋯ ⊢ {[]← cmp(fg)h
[[[]]]← cmpfg

tfill

lcmpfgh ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← h

[[]]← g

[[][]]← f

Ð→ (fg)h, A ∶ {[]← cmp(fg)h
[[[]]]← cmpfg

Ð→ ∀lcmpfgh

Finally, we establish a coherence cell between fgh and (fg)h.

⋮ ♠
lassocfgh ∶ {[]← fgh Ð→ (fg)h, B ∶ {[]← ∀lassocfgh[[]]← cmpfgh

Ð→ ∀lcmpfgh

tclose-B
lassocfgh ∶ {[]← fgh Ð→ ∀(fg)h

where ♠ is tuniv-cmpfgh/lcmpfgh. From here, example 9.4.12 transposes to lassocfgh to
show that it is weakly invertible.



Part III

Algebras





Chapter Ten

Introduction

T
his part of the thesis is devoted to studying a family of structures called opetopic
algebras, which are algebraic structures whose operations have higher dimen-
sional tree-like arities. As an example in lieu of a definition, a category is an

algebraic structure where operations (a.k.a. morphisms) are shaped like arrows, in that
their input and output consist of a single color (a.k.a. object). Consequently, the action of
composing those operations takes as input sequences of (composable) arrows, which can
be seen as linear trees of operations. Thus, in categories, the shapes of compositions are
linear trees, i.e. 2-opetopes.

a b c d e
f g h i

a

b c d

e

f

g h

i

i ⋅ h ⋅ g ⋅ f

⇓µ

A second example, one dimension above, is that of a planar colored Set-operad (also called
nonsymmetric multicategory). Here, operations are shaped like 2-opetopes, since their
inputs are sequences of colors. As before, composition takes as input a pasting diagram of
operations, and since they are shaped like 2-opetopes, composition itself is shaped like a
3-opetope:

α

β γ

δ

.

. .

.

.

⇓β ⇓α

⇓γ
⇓δ

.

. .

.

.

⇓β ⇓α

⇓γ
⇓δ

⇛A

.

. .

.

.

⇓
α(β, γ(δ))

Heuristically extending this pattern leads one to presume that an algebra one dimension
above planar operads should have a composition whose arities are planar trees of oper-
ations whose arities are also planar trees. Indeed, such algebraic structures are precisely
the PT-combinads in Set (combinads over the combinatorial pattern of planar trees) of
Loday [Lod12]. These examples fit in the following table:

Algebraic structure Sets
=0-algebras

Categories
=1-algebras

Operads
=2-algebras

PT−combinads
=3-algebras ⋯ ?

Arity of compositions Trivial
=1-opetopes

Lists
=2-opetopes

Trees
=3-opetopes

Trees of trees
=4-opetopes ⋯ ?
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The polynomial definition of opetopes and the category O of section 3.1 provide a very
natural and uniform framework to deal with these examples and generalizations thereof.
Recall that if ω ∈ O and X ∈ Psh(O), then a morphism f ∶ S[ω]Ð→X amounts to pasting
diagram of shape ω of elements of X. For example, if ω = 3, then its spine is

S[3] =
.

. .

.

and thus f corresponds to a sequence of 3 “composable arrows” of X. Factoring f through
the spine inclusion sω requires to find a compositor, i.e. a cell in x ∈ Xω whose source is
the pasting diagram defined by f . In other words, x is a coherence cell corresponding to
f , while tx can be thought of as a composition

S[ω] X

O[ω].

f

sω
x

In particular, if Sn+1 ⊥ X, i.e. if all liftings against spine inclusions are unique, then we
have a map

µ ∶ {n-pasting diagrams of X}Ð→Xn.

For example, if n = 1, then µ maps chains of arrows of X to arrows, which looks just like
a category (ignoring higher-dimensional cells for now). If Y ∈ Psh(O) is such that S3 ⊥ Y ,
then trees of elements of Y2 can be composed into 2-cells, which is reminiscent of operads.
A natural definition thus arise:

Definition 10.0.1 (Opetopic algebra (tentative)). An n-opetopic algebra is an opetopic
set X such that Sn+1 ⊥X.

Unfortunately, Sn+1 cannot enforce suitable coherence conditions (i.e. associativity
and unitality) by itself. The fundamental issue is the inability to “merge” multiple pasting
diagrams into one. This can be addressed by requiring that Sn+2 ⊥X. For example, in the
case of categories (n = 1), if ω is the following 3-opetope

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

then the fact that sω ⊥X guarantees that for all composable arrows f , g, and h, we have
(fg)h = fgh. A similar opetope would enforce f(gh) = fgh. If

ν =
. .
⇓
⇓ ⇛

. .

⇓

then the fact that sν ⊥ X guarantees that for all arrow f ∶ a Ð→ b, ida f = f , where ida is
the composition of the empty pasting diagram at point a.

It turns out that (n + 2)-opetopes are enough to retrieve all suitable coherence laws,
as being orthogonal to Sn+k for greater values of k does not bring anything new (see
corollary 3.5.11). We arrive at this new definition:



Definition 10.0.2 (Opetopic algebra (tentative)). An n-opetopic algebra is an opetopic
set X such that Sn+1,n+2 ⊥X.

It remains to deal with cells of dimension > n+2 and < n. For the former, it is enough to
impose B>n+2 ⊥X, and for the former, O<n ⊥X (see definition 3.5.15). That last condition
can be replaced by O<n−k ⊥X to allow for “colors” (akin to that of colored operads).

This shall be treated in more details in chapter 11, where we give two equivalent def-
initions for the notion of k-colored n-dimensional opetopic algebras (or (k,n)-algebras for
short). The second one follows the intuitive approach above, while the main one presents
opetopic algebras as algebras over an extension of the Zn monad (definition 3.1.1) over
Psh(On−k,n). As advertised, we recover categories in the case (k,n) = (1,1), colored oper-
ads in the case (1,2), as well as PT-combinads in the case (0,3). The category Algk,n of
(k,n)-algebras comes with an adjunction

h ∶ Psh(O)Ð→←Ð Algk,n ∶M,

where M is the opetopic nerve, and where h maps an opetopic set X to the algebra whose
operations are the n-cells of X, and where the (n+1)-cell are interpreted as relations1. In a
result we call the “nerve theorem for O” (theorem 11.2.33), we show that this adjunction is
reflective, i.e. that being an algebra is a property of an opetopic set, rather than a structure.
Therefore, opetopes and opetopic sets encode the underlying geometry of algebras with
“higher arity”. This adjunction shows that the monadic approach and the lifting approach
presented above are equivalent.

As it turns out, the monad Zn over Psh(O) is a parametric right adjoint monad [Web07]
[BMW12]. The standard theory for such monads calls for another shape category, Λk,n,
and another nerve theorem in the form of a reflective adjunction

τ ∶ Psh(Λk,n)Ð→←Ð Algk,n ∶ N.

It is this adjunction, rather than h ⊣M above, that allows us to recover the well-known
examples

Psh(∆)Ð→←Ð Cat, Psh(Ω)Ð→←Ð Opcol,

where Ω is the planar version of Moerdijk and Weiss’s category of dendrices [MW07].
The category Λk,n of opetopic shapes is explicitly defined as the full subcategory of Algk,n
spanned by free algebras over On−k,n+2. In the categorical case (k = n = 1), this simply
says that ∆ is the category of finite ordinals, and in the operadic case (k = 1, n = 2), that Ω
is the category of operads spanned by trees. Thus, the functor h ∶ On−k,n+2 Ð→ Λk,n gives
rise to an adjunction that sits at the bottom of the following triangle

Algk,n

Psh(On−k,n+2) Psh(Λk,n),
M
�

N

�
h

h!

τ

h∗
�

1This is analogous to the homotopy category functor Psh(∆)Ð→ Cat, which interprets 0-cells as objects,
1-cells as arrows, and 2-cells as relations.



and gives a direct comparison between the opetopic nerve M ∶ Algk,n Ð→ Psh(O) and
the classical nerve N ∶ Algk,n Ð→ Psh(Λk,n), which is better-known in low-dimensional
examples. The adjunction h ⊣M that we presented first is in fact constructed last, as the
composite of the lower and right adjunctions of the triangle above.

With the notion of opetopic algebras now established, we move on to the study of their
homotopy theory, with the objective of generalizing existing results that apply to low-
dimensional opetopic algebras and presheaves over Λ = Λk,n. In chapter 13, we introduce a
model structure “à la Cisinski” on Psh(Λ), denoted by Psh(Λ)∞. It is cofibrantly generated,
the cofibrations are the monomorphisms, and the fibrant objects are those satisfying some
horn filling conditions. This construction generalizes Joyal’s structure on Psh(∆) for quasi-
categories [JT07, theorem 1.9], and Cisinski–Moerdijk’s structure on Psh(Ω) for∞-operads
in the planar case [CM13, theorem 1.1].

Then, in chapter 14, we define the folk model structure Algfolk (we omit k and n to
unclutter notations), which is a direct generalization of that for categories [Cis19, theorem
3.3.10], and operads [Wei07, theorem 1.6.2]. As expected, the weak equivalences are an
adequate notion of “equivalence of algebras”, i.e. invertible up to “natural isomorphism”,
and every object is fibrant and cofibrant. As in the familiar cases, we have a Quillen
adjunction

τ ∶ Psh(Λ)∞ Ð→←Ð Algfolk ∶M,

and in particular, nerves of algebras are “∞-algebras”, i.e. fibrant in Psh(Λ)∞.
Next, in chapter 15, we move to the level of simplicial presheaves over Λ. Much in

the spirit of Rezk [Rez01], Joyal–Tierney [JT07], and Cisinski–Moerdijk [CM13], we show
that there is an adequate notion of Segal space and complete Segal space in the opetopic
setting, and that their homotopy theory can be studied by the means of model structures
on Sp(Λ) ∶=Psh(∆)Λ

op

, denoted by Sp(Λ)Segal and Sp(Λ)Rezk, respectively. Further, the
discrete space functor (−)disc ∶ Psh(Λ)Ð→ Sp(Λ) gives rise to a Quillen equivalence

Psh(Λ)∞ Ð→←Ð Sp(Λ)Rezk,

showing that complete Segal spaces are a model for∞-algebras. Again, in low dimensions,
those results are already known, see [JT07, theorem 4.11] for the simplicial case, and
[CM13, corollary 6.7] for the planar dendroidal case.

Lastly, in chapter 16, we provide another simplicial model for ∞-algebras. Instead of
considering simplicial presheaves like in chapter 15, we consider simplicial algebras. Recall
that Alg is the category of (Set-)models over a projective sketch, and let IAlg be the
category of models in Psh(∆) of that same sketch. Generalizing the constructions of Horel
[Hor15], we first endow IAlg with a model structure equivalent to Sp(Λ)proj, the projective
structure on Sp(Λ). Then, by successive localizations, we arrive to the desired structure
IAlgRezk, which is related to Psh(Λ)∞ via a zig-zag of Quillen equivalences.

Most of the material of this part originates from a series of paper in collaboration with
Chaitanya Leena Subramaniam [HL19, HL20a, HL20b].



Chapter Eleven

Opetopic algebras

L
et k ≤ n ∈ N, and recall from notation 3.4.5 that On−k,n ↪Ð→ O is the full subcate-
gory of those opetopes ω such that n−k ≤ dimω ≤ n. A k-colored, n-dimensional
opetopic algebra, or (k,n)-opetopic algebra, will be an algebraic structure on a

presheaf over On−k,n, whose cells of dimension n are “operations” that can be “composed”
in ways encoded by (n + 1)-cells1. As we will see, the fact that the operations and rela-
tions of a (k,n)-opetopic algebra are encoded by opetopes of dimension ≥ n results in the
category Algk,n of (k,n)-opetopic algebras always having a canonical fully faithful nerve
functor to the category Psh(O) of opetopic sets (theorem 11.2.33).

We begin this chapter by surveying elements of the theory of parametric right adjoint
(p.r.a.) monads. This will be essential to the definition of the colored Zn monad, which
is an extension of Zn (in the sense of definition 3.1.1) to Psh(On−k,n). The algebras of
this new monad will be the (k,n)-opetopic algebras. Then, we introduce the category Λ of
opetopic shapes, which is the category of free algebras over On−k,n. We investigate ways to
construct algebras from presheaves over Λ and O. Specifically, we obtain two adjunctions

h ∶ Psh(O)Ð→←Ð Alg ∶M, τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N,

where the left adjoints are called algebraic realizations, and where the right adjoints are
their respective nerve functors. The theory of p.r.a., which we review in section 11.1,
provides remarkable information about the nerves, which we state in theorems 11.1.39
and 11.2.33. Finally, in section 11.3, we investigate a phenomenon we call algebraic trompe-
l’œil, whereby, in a sense we make precise, any opetopic algebra can be reduced to a
(1,3)-algebra.

11.1 MONADIC APPROACH

parametric right adjoints

The goal of this section is to present elements of the theory of p.r.a. monads, and state
the nerve theorem for p.r.a. monads (theorem 11.1.13). Informally, it gives a geometrical
characterization of algebras over a p.r.a. monad. This is further investigated in corol-
lary 11.1.14.

Definition 11.1.1 (Parametric right adjoint [Web07, definition 2.3] [Str00, section 5]).
If T ∶ CÐ→D is functor, and C has a terminal object 1, then T naturally factors as

C
≅Ð→ C/1 T1Ð→D/T1Ð→D, (11.1.2)

1Recall that an (n + 1)-opetope is precisely a pasting diagram of n-opetopes.
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where the second functor is the dependent sum along the terminal morphism ! ∶ T1Ð→ 1.
We say that T is a parametric right adjoint (abbreviated p.r.a.) if T1 has a left adjoint E.

Definition 11.1.3 (P.r.a monad). A p.r.a. monad T is a monad whose endofunctor is
a p.r.a. and whose unit id Ð→ T and multiplication TT Ð→ T are cartesian natural
transformations.

Notation 11.1.4. With a slight (but standard) abuse of notations, let T ∶ Psh(A) Ð→
Alg(T ) be the free T -algebra functor. The (identity-on-objects, fully faithful) factorization
of the composite Θ0 ↪Ð→ Psh(A) TÐ→ Alg(T ) will be denoted by

Θ0
jTÐ→ ΘT

iTÐ→ Alg(T ) (11.1.5)

In other words, ΘT is the full subcategory of Alg(T ) spanned by free algebras over elements
of Θ0.
Remark 11.1.6. We shall immediately restrict definition 11.1.1 to the case where C =
D = Psh(A) for a small category A. Recall that A/T1 is the category of elements of
T1 ∈ Psh(A), and using proposition 0.3.6, the factorization of (11.1.2) becomes

Psh(A) T1Ð→ Psh(A/T1)Ð→ Psh(A). (11.1.7)

Let E be the left adjoint of T1. Then T1 is the nerve of the restriction E ∶ A/T1 Ð→
Psh(A) of E to the representable presheaves, and the usual formula (see definition 0.4.9
and proposition 0.4.11) gives

(T1X)x = Psh(A)(Ex,X),

where X ∈ Psh(A) and x ∈ A/T1. Therefore, for a ∈ A, we have

(TX)a = ∑
x∈(T1)a

Psh(A)(Ex,X) (11.1.8)

In fact, it is clear that the data of the object T1 ∈ Psh(A) and of the functor E ∶ A/T1Ð→
Psh(A) completely describe (via equation (11.1.8)) the functor T up to isomorphism.
Let Θ0 (leaving T implicit) be the full subcategory of Psh(A) spanned by the image of
the restriction of the left adjoint E ∶ A/T1 Ð→ Psh(A) of T1. Objects of Θ0 are called
T -cardinals.
Remark 11.1.9. A p.r.a. monad T on a presheaf category is an example of a monad
with arities [BMW12]. The theory of monads with arities provides a remarkable amount
of information about the free-forgetful adjunction Psh(A) Ð→←Ð Alg(T ) and about the
category of algebras Alg(T ). In particular, T has arities in Θ0 [Web07, proposition 4.22].

Proposition 11.1.10 ([Web07, proposition 4.20]). Let T ∶ Psh(A)Ð→ Psh(A) be a p.r.a.
monad, and Θ0 be as in definition 11.1.3. Then the Yoneda embedding yA factors as

A
iÐ→ Θ0

i0Ð→ Psh(A)

or in other words, representable presheaves are T -cardinals. Since i0 and yA are embeddings
of categories, so is i.



Lemma 11.1.11. Let C be a small category, and let

C
iÐ→D

j
Ð→ Psh(C)

be a factorization of the Yoneda embedding yC ∶ C Ð→ Psh(C), where i and j are also
embeddings. In other words, D is a full subcategory of Psh(C) containing all representable
presheaves. Let Nj ∶ Psh(C)Ð→ Psh(D) be the nerve of j. Then Nj ≅ i∗, and j is dense.

Proof. Recall that Nj is right adjoint to L ∶=LanyD j. For X ∈ Psh(D) and a ∈ C,

(LX)a = ∫
b∈D

Xb × j(b)a by definition of L

= ∫
b∈D

Xb ×Psh(C)(a, j(b)) by the Yoneda lemma

= ∫
b∈D

Xb ×Psh(C)(ji(a), j(b)) since yC = ji

≅ ∫
b∈D

Xb ×Psh(D)(i(a), b) since j is fully faithful

≅ Xi(a) by the density formula
= (i∗X)a by definition of i∗,

naturally in X and a. Therefore, L ≅ i∗, and by adjunction, Nj ≅ i∗. By assumption, i is
fully faithful, so by lemma 0.4.14, i∗ ≅ Nj is fully faithful, and by proposition 0.4.11, j is
dense.

Corollary 11.1.12. Let i and j be as in lemma 11.1.11, and

JC ∶= {εθ ∶ i!i∗θ Ð→ θ ∣ θ ∈D − im i} ,

where ε ∶ i!i∗ Ð→ idPsh(D) is the counit of the adjunction i! ∶ Psh(C) Ð→←Ð Psh(D) ∶ i∗ (see
notation 0.4.12). Then a presheaf X ∈ Psh(D) is in the essential image of Nj if and only
if JC ⊥X (it is not hard to see that εθ is an isomorphism if θ ∈ im i, so JC ⊥X if and only
if {εθ ∣ θ ∈D} ⊥X).

Proof. Let Y ∈ Psh(C) and b ∈ D. Since i∗ is fully faithful, the counit i∗i∗Y Ð→ Y of the
adjunction i∗ ⊣ i∗ is an isomorphism. We have

Psh(D)(b,NjY ) ≅ Psh(D)(b, i∗Y ) by lemma 11.1.11
≅ Psh(C)(i∗b, i∗i∗Y ) since i∗ is fully faithful
≅ Psh(D)(i!i∗b, i∗Y ) since i! ⊣ i∗

≅ Psh(D)(i!i∗b,NjY ) by lemma 11.1.11.

It is easy to check that one direction of the previous isomorphism is pre-composition by εb,
thus εb ⊥ NjY for all b ∈D. Conversely, take X ∈ Psh(D) such that JC ⊥X. As previously
mentionned, εb ⊥X for all b ∈D, so

(Nji
∗X)b ≅ (i∗i∗X)b by lemma 11.1.11

≅ Psh(D)(b, i∗i∗X) by the Yoneda lemma
≅ Psh(D)(i!i∗b,X) since i! ⊣ i∗ ⊣ i∗



≅ Psh(D)(b,X) since εb ⊥X
≅ Xb by the Yoneda lemma,

and thus X is in the essential image of Nj .

Theorem 11.1.13. (1) The functors i0 ∶ Θ0 Ð→ Psh(A) and iT ∶ ΘT Ð→ Alg(T ) are
dense. Equivalently, their nerve Ni0 ∶ Psh(A) Ð→ Psh(Θ0) and NiT ∶ Alg(T ) Ð→
Psh(ΘT ) are fully faithful.

(2) The square of the left is an exact adjoint square [BMW12, section 1.4], i.e. there
exists a natural isomorphism Ni0U Ð→ j∗TNiT whose mate t!Ni0 Ð→ NiT T is in-
vertible2:

Psh(A) Alg(T )

Psh(Θ0) Psh(ΘT )

U

Ni0 NiT
j∗T

Psh(A) Alg(T )

Psh(Θ0) Psh(ΘT )

T

Ni0 NiT
t!

In particular, both squares commute up to natural isomorphism.
(3) (Segal condition) A presheaf X ∈ Psh(ΘT ) is in the essential image of NiT if and

only if j∗TX is in the essential image of Ni0.

Proof. Density of i0 is a direct consequence of lemma 11.1.11 and proposition 11.1.10, and
density of iT is [BMW12, theorem 1.10]. Point (2) is [BMW12, proposition 1.9], and the
Segal condition is [Web07, theorem 4.10 (2)].

Corollary 11.1.14. Let

JT ∶= t!JA = {t!εθ ∶ t!i!i∗θ Ð→ t!θ ∣ θ ∈ Θ0 − im i} ,

where ε is the counit of the adjunction i! ⊣ i∗. Then a presheaf X ∈ Psh(ΘT ) is in
the essential image of NiT if and only if JT ⊥ X. As a consequence, the left adjoint
Psh(ΘT )Ð→ Alg(T ) of NiT (i.e. the left Kan extension of iT along the Yoneda embedding)
exhibits an equivalence of categories

J−1T Psh(ΘT )
≃Ð→ Alg(T ).

Proof. The first claim follows from corollary 11.1.12 and theorem 11.1.13. For the second,
see corollary 0.5.12.

colored Zn-algebras

Remark 11.1.15. Recall the definition of the polynomial monad Zn from definition 3.1.1.
If X = (Xψ ∣ ψ ∈ On) is a set over On, and if ω ∈ On, then

(ZnX)ω = ∑
ν∈On+1
t ν=ω

∏
[p]∈ν●

Xs[p] ν .

2This definition is a slight generalization of the Beck–Chevalley condition [MP00, remark 2.6].



Under the equivalence Set/On ≃ Psh(On), this formula can be rewritten as

(ZnX)ω = ∑
ν∈On+1
t ν=ω

Psh(On)(S[ν],X),

where S[ν] is the truncated spine of ν (see definition 3.5.1).
In this section, we extend the polynomial monad Zn over Set/On = Psh(On) to a p.r.a.

over Psh(On−k,n), where k ≤ n. This new setup will encompass more known examples
than the uncolored case (see proposition 11.1.29). For instance, recall that the polynomial
monad Z2 on Set/O2 ≅ Set/N is exactly the monad of planar operads. The extension of
Z2 to Psh(O1,2) will retrieve colored planar operads as algebras. Similarly, the polynomial
monad Z1 on Set is the free-monoid monad, which we would like to vary to obtain “colored
monoids”, i.e. small categories.

The first step of this construction is to define Zn as a p.r.a. functor, i.e. such that Zn1
below is a right adjoint:

Psh(On−k,n)
Zn1Ð→ Psh(On−k,n/Zn1)Ð→ Psh(On−k,n).

Following remark 11.1.6, it suffices to define its value Zn1 on the terminal presheaf, and
to specify a functor E ∶ On−k,n/Zn1Ð→ Psh(On−k,n).

Definition 11.1.16. Define Zn1 ∈ Psh(On−k,n) as

(Zn1)ψ ∶= {∗}, (Zn1)ω ∶= {ν ∈ On+1 ∣ tν = ω} ,

where ψ ∈ On−k,n−1 and ω ∈ On. We now define a functor E ∶ On−k,n/Zn1Ð→ Psh(On−k,n).
On objects, for ∗ ∈ (Zn1)ψ and ν ∈ (Zn1)ω, let3

E(∗) ∶= O[ψ], E(ν) ∶= S[ν]. (11.1.17)

On morphisms, E maps face embeddings to the canonical inclusions. The functor Zn1 ∶
Psh(On−k,n)Ð→ Psh(On−k,n/Zn1) is defined as the right adjoint to the left Kan extension
of E along the Yoneda embedding, i.e. Zn1 = NE (see definition 0.4.9). We now recover the
endofunctor Zn explicitly using equation (11.1.8): for ψ ∈ On−k,n−1 we have (ZnX)ψ ≅Xψ,
and for ω ∈ On, we end up with a formula similar to remark 11.1.15

(ZnX)ω ≅ ∑
ν∈On+1
t ν=ω

Psh(On−k,n)(S[ν],X).

Example 11.1.18. Let us unfold definition 11.1.16 in the case n = 1 and k = 1. Here,
Psh(O0,1) is the category of directed graphs, whose terminal object 1 is the graph with
one vertex and a loop. The graph Z11 also has one vertex, but this time, it has an many
loops as there are 2-opetopes, i.e. one loop per element in N. The category of elements
O0,1/Z11 looks like this:

∗

0 1 2 ⋯ m ⋯

s0,t0

s
1 ,t1

s2 ,t2

sm,tm

3Note that in equation (11.1.17), the presheaves O[ψ] and S[ν] are considered in Psh(On−k,n), but as
per convention 3.5.20, the truncations are left implicit.



where ∗ corresponds to the vertex of Z11, the numbers on the second row correspond to
its vertices, and the morphisms are the inclusions of ∗ as the source or target of these
vertices. The functor E ∶ O0,1/Z11Ð→ Psh(O0,1) maps ∗ to the graph with one vertex and
no edges, and maps m to the linear graph with m consecutive edges:

E(∗) = (●) , E(m) = (●Ð→ ●Ð→ ●Ð→ ⋯Ð→ ●) .

On morphisms, E(sn) (resp. E(tn)) is the inclusion of ● as the first (resp. as the last)
vertex of E(m). Then, for X ∈ Psh(O0,1), the graph Z1X has the same vertices as X, but
its edges are paths in X. In other words, Z1 ∶ Psh(O0,1)Ð→ Psh(O0,1) is the free category
monad.

Recall from definition 11.1.3 that a p.r.a. monad is a monad T whose unit id Ð→ T

and multiplication TT Ð→ T are cartesian, and such that its underlying functor is a p.r.a.
We now endow Zn with the structure of a p.r.a. monad over Psh(On−k,n). We first specify
the unit and multiplication η1 ∶ 1 Ð→ Zn1 and µ1 ∶ ZnZn1 Ð→ Zn1 on the terminal object
1, and extend them to cartesian natural transformations (lemma 11.1.23). Next, we check
that the required monad identities hold for 1 (lemma 11.1.25), which automatically gives
us the desired monad structure on Zn.

Proposition 11.1.19. Recall from definition 3.1.7 that O(2)n+2 is the set of (n+2)-opetopes
of of uniform height 2, and let X ∈ Psh(On−k,n). Then as usual, (ZnZnX)<n = X<n, and
if ω ∈ On, then

(ZnZnX)ω ≅ ∑
ξ∈O(2)n+2
t t ξ=ω

Psh(On−k,n)(S[t ξ],X).

Proof. Take ω ∈ On, and x ∈ (ZnZnX)ω, say x ∶ S[ν]Ð→ ZnX, where tν = ω. For [pi] ∈ ν●,
write xi ∶=x[pi] ∶ S[νi] Ð→ X, where tνi = s[pi] ν. Informally, x is a “pasting diagram of
pasting diagrams” of X, i.e. a pasting diagram of the xi’s, which are themselves pasting
diagrams in X. The goal is to assemble the xi’s in a single pasting diagram Φ(x). Let

ξ ∶= Yν ◯
[[pi]]

Yνi ,

and note that t t ξ = t s[] ξ = tν = ω by (Glob1). We now define a map Φ(x) ∶ S[t ξ]Ð→X.
Note that leaf addresses of ξ are of the form [[pi][l]], where [l] ∈ ν∣i , thus node addresses
of t ξ are of the form ℘ξ[[pi][l]]. Let

Φ(x) (℘ξ[[pi][l]]) ∶= xi (℘νi[l]) .

The construction of Φ(x) provides a map

Φ ∶ (ZnZnX)ω Ð→ ∑
ξ∈O(2)n+2
t t ξ=ω

Psh(On−k,n)(S[t ξ],X)

whose inverse we now construct. Let ξ ∈ O(2)n+2, say

ξ = Yα ◯
[[p]]

Yβ[p] ,



be such that t t ξ = ω, and take y ∶ S[t ξ]Ð→X. Write ν ∶= t ξ. As noted in definition 3.1.7,
ξ exhibits a partition of ν into subtrees, and let Ψ(y) ∶ S[α] Ð→ ZnX map [p] to the
restriction of y to the subtree β[p] of ν. It is routine verification to check that Φ and Ψ

are mutually inverse.

Definition 11.1.20. We now define η1 ∶ 1 Ð→ Zn1 and µ1 ∶ ZnZn1 Ð→ Zn1, the monads
laws of Zn, on the terminal presheaf 1 ∈ Psh(On−k,n). In dimension < n, they are the
identity. Let ω ∈ On. Recall from definition 11.1.16 that (Zn1)ω = {ν ∈ On+1 ∣ tν = ω}, and
by proposition 11.1.19,

(ZnZn1)ω = {ξ ∈ O(2)n+2 ∣ t t ξ = ω} . (11.1.21)

Now, let (η1)ω map the unique element of 1ω to Yω ∈ (Zn1)ω, and let (µ1)ω map ξ ∈
(ZnZn1)ω to t ξ ∈ (Zn1)ω.

Remark 11.1.22. Let X ∈ Psh(On−k,n), and consider the terminal map ! ∶ X Ð→ 1. The
map Zn ! ∶ (ZnX)ω Ð→ (Zn1)ω simply maps a pasting diagram f ∶ S[ν] Ð→ X (where
tν = ω) to its shape ν.

Lemma 11.1.23. Let X ∈ Psh(On−k,n), and consider the terminal map ! ∶ X Ð→ 1. To
alleviate notations, write p ∶=Zn ! ∶ ZnX Ð→ Zn1. there exists maps ηX ∶ X Ð→ ZnX and
µX ∶ ZnZnX Ð→ Zn such that the following squares are cartesian:

X ZnX

1 Zn1,

ηX

! p

η1

ZnZnX ZnX

ZnZn1 Zn1.

µX

Znp p

µ1

(11.1.24)

In particular, the maps ηX and µX assemble into cartesian natural transformations η ∶
idÐ→ Zn and µ ∶ ZnZn Ð→ Zn.

Proof. Both squares trivially cartesian in dimension < n, so it suffices to check in dimension
n.

(1) If P is the pullback
P ZnX

1 Zn1,

⌟
! p

η1

then for ω ∈ On we have

Pω = {x ∈ ZnX ∣ p(x) = Yω} = Psh(On−k,n)(S[Yω],X) = Xω,

as S[Yω] = O[ω].
(2) Let P be the bullback

P ZnX

ZnZn1 Zn1,

⌟
p

µ1

and let ω ∈ On. By definition, and with equation (11.1.21), Pω is the set of all pairs
(ξ, x), where ξ ∈ O(2)n+2 is such that t t ξ = ω, x ∶ S[ν] Ð→ X is such that tν = ω,



and subject to the constraint that t ξ = ν. By proposition 11.1.19, it is clear that
Pω ≅ (ZnZnX)ω.

Lemma 11.1.25. The following diagrams commute:

Zn1 ZnZn1 Zn1

Zn1,

ηZn1

µ1

Znη1
ZnZnZn1 ZnZn1

ZnZn1 Zn1.

Znµ1

µZn1 µ1

µ1

Proof. Recall from definition 11.1.16 that for X ∈ Psh(On−k,n), (ZnX)<n = X<n. Thus all
diagrams commute trivially in dimension < n.

(1) Let ω ∈ On and ν ∈ Zn1ω, i.e. ν ∈ On+1 such that tν = ω. Then

µ1ηZn1(ν) = µ1 (YYtν ○[[]]
Yν) see definition 11.1.20

= t(YYtν ○[[]]
Yν) see definition 11.1.20

= Yt ν ◽
[]
ν by proposition 3.1.6

= ν,

and similarly, if {[p1], . . .} = ν●,

µ1(Znη1)(ν) = µ1
⎛
⎝
Yν ◯
[[pi]]

YYs[pi]
ν

⎞
⎠

♠

= t
⎛
⎝
Yν ◯
[[pi]]

YYs[pi]
ν

⎞
⎠

♠

= (ν ◽
[p1]

Ys[p1] ν
) ◽
[p2]

Ys[p2] ν
⋯ by proposition 3.1.6

= ν,

where ♠ follows from definition 11.1.20.
(2) Akin to proposition 11.1.19, one can show that elements of ZnZnZn1ω are (n + 2)-

opetopes ξ of uniform height 3 such that t t ξ = ω. Let ξ be such an opetope, and
write it as

ξ = Yα ◯
[[pi]]

⎛
⎝
Yβi ◯

[[qi,j]]
Yγi,j
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ai ∶=

=
⎛
⎝
Yα ◯
[[pi]]

Yβi
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B ∶=

◯
[[pi][qi,j]]

Yγi,j

where α,βi, γi,j ∈ On, [pi] ranges over α● and [qi,j] over β●i . Then

µ1(Znµ1)(ξ) = µ1(Znµ1)
⎛
⎝
Yα ◯
[[pi]]

Ai
⎞
⎠

= µ1
⎛
⎝
Yα ◯
[[pi]]

YtAi

⎞
⎠



= t
⎛
⎝
Yα ◯
[[pi]]

YtAi

⎞
⎠

= t
⎛
⎝
Yα ◯
[[pi]]

Ai
⎞
⎠

by proposition 3.1.6

= t
⎛
⎝
B ◯
[[pi][qi,j]]

Yγi,j
⎞
⎠

by definition

= t
⎛
⎝
YtB ◯

[℘B[[pi][qi,j]]]
Yγi,j
⎞
⎠

by proposition 3.1.6

= µ1µZn1(ξ).

Proposition 11.1.26. The cartesian natural transformations µ and η (whose components
are defined in definition 11.1.20 and lemma 11.1.23) give Zn a structure of p.r.a. monad
on Psh(On−k,n).

Proof. This is a direct consequence of lemmas 11.1.23 and 11.1.25.

Remark 11.1.27. Clearly, when k = 0, we recover the usual polynomial monad on Set/On.

Definition 11.1.28 (Opetopic algebra). A k-colored n-dimensional opetopic algebras is
an algebra of Zn in Psh(On−k,n). We write Algk,n for the Eilenberg–Moore category of Zn.

Proposition 11.1.29. Up to equivalence, and for small values of k and n with k ≤ n, the
category Algk,n is given by the following table:

k
n 0 1 2 3

0 Set Mon Op CombPT
1 Cat Opcol Alg1,3
2 Alg2,2 Alg2,3
3 Alg3,3

where Mon is the category of monoids, Op of non colored planar operads, Opcol of colored
planar operads, and CombPT of combinads over the combinatorial pattern of planar trees
[Lod12].

Proof (sketch). (1) The case k = 0 is treated in proposition 3.1.5.
(2) Assume k = n = 1. Then Psh(O0,1) is the category of graphs, and a Z1 maps a

graph to its graph of paths. A Z1-algebra is just a graph with an adequate notion
of composition of paths, i.e. a category.

(3) Similarly, in the case k = 1 and n = 2, the category Psh(O1,2) is the category of
signatures whose inputs and output of functions are typed. Extending the reasoning
of the proof of proposition 3.1.5, it is easy to see that a Z2-algebra is a colored planar
operad.

Proposition 11.1.30. Let C be a complete and cocomplete category, and T be a monad
on C.



(1) The forgetful functor U ∶ Alg(T ) Ð→ C creates limits. If T preserves J-indexed
colimits, then U creates them.

(2) If T is finitary, then Alg(T ) is cocomplete.

Proof. The first point is [Bor94b, propositions 4.3.1 and 4.3.2], and the second is [BW05,
theorem 3.9 on p. 265].

Remark 11.1.31. Unlike completeness, cocompleteness of categories of algebras is a tricky
subject, but is thankfully well-studied in the literature, see e.g. [Lin69] [Adá77] [AK80]
[BW05]. We would also like to cite the paper of Hermelink [Her19], which is a convenient
survey on the matter.

Proposition 11.1.32. The category Algk,n is complete and cocomplete.

Proof. Recall that Algk,n is the Eilenberg–Moore category of Zn. Since it is a presheaf
category, Psh(On−k,n) is complete and cocomplete. In particular, Algk,n has all limits. By
definition 11.1.16, Zn preserves all colimits (in particular, it is finitary), and cocompleteness
follows from proposition 11.1.30.

opetopic shapes

In this section, we state and prove the nerve theorem for Zn. In particular, we show that
the category Algk,n is a localization of Psh(Λk,n), where Λk,n ∶=ΘZn (see definition 11.1.33).
This serves as an intermediate result to obtain a similar nerve theorem over opetopic sets.

Definition 11.1.33 (Opetopic shape). By definitions 11.1.3 and 11.1.16, the category of
Zn-cardinals is the full subcategory of Psh(On−k,n) spanned by the representables O[ω],
where ω ∈ On−k,n−1, and the spines S[ν], where ν ∈ On+1. Analogous to notation 11.1.4, let
Λk,n, the category of opetopic shapes, be the full subcategory of Algk,n spanned by ZnΘ0.

Convention 11.1.34. Throughout this work, we will frequently fix parameters k ≤ n ∈ N
in an implicit manner, and suppress them in notation whenever it is unambiguous. For
example, we write Λ instead of Λk,n, Z instead of Zn, Alg instead of Algk,n, etc.

Definition 11.1.35 (Algebraic realization for Λ). Recall from proposition 11.1.32 that Alg

is cocomplete. From ΛÐ→ Alg the inclusion of definition 11.1.33, we derive an adjunction

τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N,

by left Kan extension along the Yoneda embedding. The left adjoint is called the algebraic
realization, and the right adjoint is the nerve.

Example 11.1.36. (1) Take n = k = 1. By proposition 11.1.29, Alg1,1 = Cat, and Λ1,1

is the full subcategory of Cat spanned by [m] = Z1O[m], where m ∈ N. Therefore,
Λ1,1 = ∆. The algebraic realization τ1,1 ∶ Psh(∆) Ð→ Cat is just the realization of a
simplicial set into a category, and its right adjoint N1,1 is the classical nerve.

(2) Likewise, Λ1,2 is the category of colored operads generated by trees, thus it is the
planar version of Moerdijk and Weiss’s category of dendrices Ω. The functor N1,2

is the dendroidal nerve of [MW07, section 4], and τ1,2 is its left adjoint. In that
paper, they are respectively denoted by Nd and τd.



Akin to Psh(O), the category Psh(Λ) enjoys an adequate notion of spine. As we shall
see, the set S of spine inclusions in Psh(Λ) will characterize the nerves of algebras in the
sense of corollary 11.1.14.

Definition 11.1.37 (Spine). For ν ∈ On+1, write λ ∶=ZS[ν], and let S[λ], the spine of the
opetopic shape λ, be the colimit

S[λ] ∶= h!S[ν] = colim(On−k,n/S[ν]Ð→ On−k,n
ZÐ→ Λ

y
Ð→ Psh(Λ)) .

Let sλ ∶ S[λ] ↪Ð→ λ be the spine inclusion of λ, and let S be the set of spine inclusions in
Psh(Λ):

S ∶= {sλ ∶ S[λ]↪Ð→ λ ∣ ν ∈ On+1} .

Example 11.1.38. If k = n = 1, then Λ1,1 = ∆, and the (n + 1)-opetopes are the opetopic
integers (example 3.1.4). For m ∈ N, the diagram O0,1/S[m]Ð→ O0,1 is

◾ ◾ ◾ ⋯ ◾ ◾

⧫ ⧫ ⧫ ⧫

s∗ s∗t s∗t s∗t

where there are m instances of ◾. By definition, Z ⧫ = ∆[0] and Z ◾ = ∆[1]. Further,
Z s∗ = d1 and Z t = d0. Thus, if λ ∶=ZS[m], then S[λ] is the colimit of the following
diagram in Psh(∆):

∆[1] ∆[1] ∆[1] ⋯ ∆[1] ∆[1]

∆[0] ∆[0] ∆[0] ∆[0]

d1 d1d0 d1d0 d1d0

Therefore, S[λ] is the simplicial spine S[m].

Theorem 11.1.39 (Nerve theorem for Λ). (1) The functor τ ∶ Λ Ð→ Alg is dense, or
equivalently, the nerve N ∶ Alg Ð→ Psh(Λ) is fully faithful.

(2) A presheaf X ∈ Psh(Λ) is in the essential image of N if and only if S ⊥ X. In
particular, using point (1), Alg is equivalent to the orthogonality class induced by
the set S.

(3) (Segal condition) The reflective adjunction τ ∶ Psh(Λ) Ð→←Ð Alg ∶ N exhibits Alg as
the localization of Psh(Λ) at the spine inclusions, i.e. Alg ≃ S−1Psh(Λ).

Proof. (1) This is theorem 11.1.13.
(2) Consider the inclusions

On−k,n
iÐ→ Θ0

j
Ð→ Λ

as in definition 11.1.33, and the counit ε ∶ i!i∗ Ð→ idPsh(Θ0) of the adjunction
i! ∶ Psh(On−k,n) Ð→←Ð Psh(Θ0) ∶ i∗. The category Θ0 − im i is spanned by the spines
S[ν], for ν ∈ On+1 (see definition 11.1.33).
Since i maps an opetope ω ∈ On−k,n to the associated representable O[ω] ∈ Θ0, we
have i∗S[ν] = Θ0(i−, S[ν]) = S[ν] as presheaves over On−k,n. Next, by definition
of left Kan extensions, the presheaf i!i∗S[ν] = i!S[ν] is the colimit

colim(On−k,n/S[ν]Ð→ On−k,n
iÐ→ Θ0

y
Ð→ Psh(Θ0)) ,



thus

t!i!i
∗S[ν] = t! colim(On−k,n/S[ν]Ð→ On−k,n

iÐ→ Θ0
y
Ð→ Psh(Θ0))

≅ colim(On−k,n/S[ν]Ð→ On−k,n
iÐ→ Θ0

y
Ð→ Psh(Θ0)

t!Ð→ Psh(Λ))

≅ colim(On−k,n/S[ν]Ð→ On−k,n
iÐ→ Θ0

j
Ð→ Λ

y
Ð→ Psh(Λ))

= colim(On−k,n/S[ν]Ð→ On−k,n
hÐ→ Λ

y
Ð→ Psh(Λ)) ♠

= S[hν] ♢

where ♠ is by definition of h on On−k,n, and ♢ is by definition of S[hν]. On the
other hand, t!S[ν] = ZnS[ν] = hν, and the counit εS[ν] is simply the spine inclusion
shν ∶ S[hν] Ð→ hν. We apply corollary 11.1.14 to conclude that a presheaf X ∈
Psh(Λ) is in the essential image of N if and only if S ⊥X.

(3) Follows from the previous two points and corollary 0.5.12.

Remark 11.1.40. Then theorem 11.1.39 generalizes the well-known fact that Cat (in the
case k = n = 1) and Opcol (in the case k = 1 and n = 2) have fully faithful nerve functors
to Psh(∆) and Psh(Ω) [MW07, example 4.2] respectively, exhibiting them as localiza-
tions of the respective presheaf categories at a set of spine inclusions, sometimes called
Grothendieck–Segal colimits.

11.2 ALGEBRAIC REALIZATION

In this section, we show how to construct opetopic algebras from opetopic sets, by the
means of the algebraic realization hk,n ∶ Psh(O) Ð→ Algk,n, for all k,n ∈ N with k ≤ n.
Much in the spirit of the classical realization Psh(∆)Ð→ Cat, given X ∈ Psh(O), we shall
interpret its n-cells as “generators”, and its (n + 1)-cells as “relations”. The first step to
implement this idea is to extend ZnO[−] ∶ On−k,n Ð→ Λ to a functor from On−k,n+2. Infor-
mally, the image of an (n+ 1)-opetope represents an algebra with essentially one relation,
and the image of an (n + 2)-opetope is an algebra, also with essentially a single relation,
but which is presented with many smaller composable relations (see example 11.2.2 for an
illustration of this intuition). Thus, realizations of (n+ 1)-opetopes implement the idea of
“relation” in opetopic algebras, while realizations of (n+2)-opetopes enforce “associativity
among relations”. Then, in definition 11.2.3, the realization hk,n for opetopes is defined as
a composite of left adjoints

Psh(O)
(−)n−k,n+2ÐÐÐÐÐ→←ÐÐÐÐÐ Psh(On−k,n+2)Ð→←Ð Psh(Λk,n)

τk,nÐ→←Ð Algk,n.

To declutter notations, we shall use convention 11.1.34 and omit parameters k and n in
most notations, e.g. Λ = Λk,n, Alg = Algk,n, Z = Zn, etc.

definition

Definition 11.2.1. There is a natural functor On−k,n Ð→ Λ, mapping an opetope ω to
ZO[ω], see proposition 11.1.10 and equation (11.1.5). We now extend it to a functor



h ∶ On−k,n+2 Ð→ Λ. On objects, it is given by

h ∶ On−k,n+2 Ð→ Λ

ω z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ZO[ω] if dimω ≤ n,
ZS[ω] if dimω = n + 1,
ZS[tω] if dimω = n + 2.

We now specify h on morphisms. Since it extends the natural functor On−k,n Ð→ Λ, it is
enough to consider morphisms in On,n+2, so take ν ∈ On+1 and ξ ∈ On+2.

(1) For [p] ∈ ν●, let h(s[p] ν
s[p]ÐÐ→ ν) ∶=Z(O[s[p] ν]

s[p]ÐÐ→ S[ν]).

(2) In order to define h(tν tÐ→ ν) = (ZO[tν] h tÐ→ ZS[ν]), it is enough to provide a

morphism O[tν] Ð→ ZS[ν], i.e. a cell in ZS[ν]t ν . Let it be (S[ν] idÐ→ S[ν]) ∈
ZS[ν]t ν .

(3) Let h(t ξ tÐ→ ξ) = (ZS[t ξ] h tÐ→ ZS[t ξ]) be the identity map.
(4) Let [p] ∈ ξ●. In order to define a morphism of Z-algebras

h(s[p] ξ
s[p]ÐÐ→ ξ) = (ZS[s[p] ξ]

h s[p]ÐÐÐ→ ZS[t ξ]) ,

it is enough to provide a morphism h s[p] ∶ S[s[p] ξ] Ð→ ZS[t ξ] in Psh(On−k,n),
which we now construct.

a) Using equation (2.2.26), ξ decomposes as

ξ = α ○
[p]

Ys[p] ξ ◯
[[qi]]

βi,

for some α,βi ∈ On+2, and where [qi] ranges over (s[p] ξ)●. The leaves of
βi are therefore a subset of the leaves of ξ. More precisely, a leaf address
[l] ∈ β∣i corresponds to the leaf [p[qi]l] of ξ. This defines an inclusion fi ∶
S[tβi]Ð→ S[t ξ] that maps the node ℘βi[l] ∈ (tβi)

● to ℘ξ[p[qi]l] ∈ (t ξ)●.
b) Note that by definition, the map fi is an element of

Psh(On−k,n)(S[tβi], S[t ξ]) ⊆ ZS[t ξ]t tβi ,

and since t tβi = t s[] βi = e[p[qi]] ξ (by (Glob1) and (Inner)), we have
fi ∈ ZS[t ξ]e[p[qi]] ξ.

c) Together, the fi assemble into the required morphism h s[p] ∶ S[s[p] ξ] Ð→
ZS[t ξ], that maps the node [qi] ∈ (s[p] ξ)● to fi. So in conclusion, we have

h s[p] ∶ S[s[p] ξ]Ð→ ZS[t ξ]
(h s[p])[qi] ∶ S[tβi]Ð→ S[t ξ]

℘βi[l]z→ ℘ξ[p[qi]l],

for [qi] ∈ (s[p] ξ)● and [l] ∈ β∣i .
This defines h on object and morphisms, and functoriality is straightforward.



Example 11.2.2. Consider the case k = n = 1, so that h = h1,1 is a functor O0,3 Ð→ Λ1,1 ≅
∆. In low dimensions, we have h ⧫ = [0], h ◾ = [1], and hm = [m] with m ∈ N, since h is Z

in this case. For instance,

h3 = h
⎛
⎜
⎝ 0

1 3

4

⇓
⎞
⎟
⎠
= [3]

is the category with 3 generating morphisms, and the 2-cell of 3 just witnesses their
composition.

Consider now the following 3-opetope ξ:

ξ = Y3 ○
[[∗]]

Y2 ○
[[∗∗]]

Y1 =

⎛
⎜⎜⎜⎜⎜
⎝ 0

1 3

4

2

⇓ ⇓

⇓
⇛

0

1 3

4

2

⇓

⎞
⎟⎟⎟⎟⎟
⎠

Then hξ = ZS[t ξ] = ZS[4] = [4]. This result should be understood as the poset of points
of ξ (represented as dots in the pasting diagram above) ordered by the topmost arrows.
The 2-dimensional faces of ξ provide several relations among the generating arrows, and
the 3-cell is a witness of the composition of those relations.

Take the face embedding s[] ∶ 3 Ð→ ξ, corresponding to the trapezoid at the base of
the pasting diagram. Then h s[] maps points 0, 1, 2, 3 of h3 = [3] to points 0, 1, 3, 4 of hξ,
respectively. In other words, it “skips” point 2, which is exactly what the pasting diagram
above depicts: the []-source of ξ does not touch point 2 (the topmost one). Likewise, the
map h s[[∗∗]] ∶ [1] = h1Ð→ hξ maps 0, 1 to 0, 1, respectively.

Consider now the target embedding t ∶ 4 Ð→ ξ. Since the target face touches all the
points of ξ (this can be checked graphically, but more generally follows from (Glob2)),
h t should be the identity map on [4], which is precisely what the definition gives.

Definition 11.2.3 (Algebraic realization for O). With a slight abuse of notation, let
h ∶ Psh(O)Ð→←Ð Alg ∶M be the composite adjunction

Psh(O)
(−)n−k,n+2ÐÐÐÐÐ→←ÐÐÐÐÐ Psh(On−k,n+2)

h!Ð→←Ð Psh(Λ)
τÐ→←Ð Alg,

where h! is the extension of h ∶ On−k,n+2 Ð→ Λ (definition 11.2.1) to the presheaf categories
(see notation 0.4.12).

Remark 11.2.4. The first adjunction of the composite is just a truncation, and does not
carry any information; the part between Psh(On−k,n+2) and Alg is actually what imple-
ments the n-cells of a presheaf as operations, and (n+1)-cells as relations. The (n+2)-cells
represent relations among relations (e.g. associativity of composition in categories) and
cannot be discarded, i.e. one cannot obtain an adequate realization adjunction of the form
Psh(On−k,n+1) Ð→←Ð Alg. Formally, the nerve theorem 11.2.33 will not hold if h is defined
as the composite

Psh(O)
(−)n−k,n+1ÐÐÐÐÐÐ→ Psh(On−k,n+1)

h!Ð→ Psh(Λ) τÐ→ Alg.



Remark 11.2.5. We now have a commutative triangle of adjunctions:

Alg

Psh(O) Psh(Λ),
M
�

N

�h τ

�

(11.2.6)

The notation h might seem a bit overloaded, but its meaning is quite simple: it always
takes an opetopic set and produces an algebra. If that opetopic set is the representable of
an opetope in On−k,n+2, then it falls within the scope of definition 11.2.1, and the output
algebra is in fact an opetopic shape, i.e. in Λ.

diagrammatic morphisms

This section is devoted to proving various (rather technical) facts about the functor
h ∶ On−k,n+2 Ð→ Λ of definition 11.2.1, eventually leading to lemma 11.2.16, stating
that most morphisms in Λ admit a good “geometrical description” (see definition 11.2.7
and example 11.2.8). This result shall be used when proving the nerve theorem for O
(theorem 11.2.33), but as a first application, we show in proposition 11.2.20 that h it is
essentially surjective on morphisms4.

Definition 11.2.7 (Diagrammatic morphism). Let ν1, ν2 ∈ On+1. A morphism f ∶ hν1 Ð→
hν2 in Λ is diagrammatic if there exists an opetope ξ ∈ On+2 and a node address [p] ∈ ξ●
such that s[p] ξ = ν1, t ξ = ν2, and f = (h t)−1 ⋅ (h s[p]). This situation is summarized by the
following diagram, called a diagram of f :

ξ

ν1 ν2

s [p
]

t

hν1 hν2.
f

Example 11.2.8. Consider the case k = n = 1 again, and recall from example 11.1.36 that
in this case, Λ = ∆. Consider the map f ∶ [2] Ð→ [3] in ∆, where f(0) = 0, f(1) = 1, and
f(2) = 2. In other words, f = d3 is the 3rd coface map. Taking ξ as on the left, we obtain
a diagram of f on the right:

ξ = Y2 ○
[[∗]]

Y2 =
⎛
⎜⎜
⎝ .

. .

.

⇓ ⇓ ⇛
.

. .

.
⇓

⎞
⎟⎟
⎠
,

ξ

2 3

s [[
∗]
]

t

[2] [3]f

Consider now a non injective map g ∶ [2] Ð→ [1] where g(0) = g(1) = 0 and g(2) = 1. In
other words, g = s0 is the 0th codegeneracy map. Taking ξ′ as on the left, we obtain a

4While pleasant, this proposition is not put to use in the present work



diagram of g on the right:

ξ′ = Y2 ○
[[∗]]

Y0 =
⎛
⎜
⎝

. .
⇓ ⇓ ⇛

. .

⇓
⎞
⎟
⎠
,

ξ′

2 1

s []

t

[2] [1]g

On the one hand, lemma 11.2.9 below states that diagrammatic morphisms are stable
under composition, and on the other hand, those two examples seem to indicate that
all simplicial cofaces and codegeneracies are diagrammatic. One might thus expect all
morphisms of ∆ to be in the essential image of h1,1 ∶ O0,3 Ð→ ∆. This is indeed true, and
a more general statement is proved in proposition 11.2.20.

Lemma 11.2.9. If f1 and f2 are diagrammatic as on the left, the diagram on the right
is well-defined, and is a diagram of f2f1.

ξ1 ξ2

ν1 ν2 ν3

s [p 1
]

t
s [p 2

]

t

hν1 hν2 hν3,
f1 f2

ξ2 ◽[p2] ξ1

ν1 ν3

s [p 2
p 1
]

t

hν1 hν3
f2f1

Proof. It is a simple but lengthy matter of unfolding the definition of h. First, note that

t(ξ2 ◽
[p2]

ξ1) = t t(Yξ2 ○
[[p2]]

Yξ1) by proposition 3.1.6

= t s[](Yξ2 ○
[[p2]]

Yξ1) by (Glob2)

= t ξ2 = ν3.

Using equation (2.2.26), we decompose ξ1 as

ξ1 = α1 ○
[p1]

Yν1 ◯
[[qi]]

βi, (11.2.10)

where [qi] ranges over ν●1 . If β∣i = {[li,j] ∣ j}, then ξ∣1 = {[p1[qi]li,j] ∣ i, j}, and so ν●2 =
(t ξ1)● = {℘ξ1[p1[qi]li,j] ∣ i, j}. Using equation (2.2.26) again, we decompose ξ2 as

ξ2 = α2 ○
[p2]

Yν2 ◯
[℘ξ1 [p1[qi]li,j]]

γi,j (11.2.11)

and write

ξ2 ◽
[p2]

ξ1 =
⎛
⎜
⎝
α2 ○
[p2]

Yν2 ◯
[℘ξ1 [p1[qi]li,j]]

γi,j
⎞
⎟
⎠
◽
[p2]

ξ1 see (11.2.10)

= α2 ○
[p2]

ξ1 ◯
[p1[qi]li,j]

γi,j see definition 2.2.25

= α2 ○
[p2]

⎛
⎝
α1 ○
[p1]

Yν1 ◯
[[qi]]

βi
⎞
⎠ ◯
[[qi]li,j]

γi,j see (11.2.11)



= (α2 ○
[p2]

α1) ○
[p2p1]

Yν1 ◯
[[qi]]

⎛
⎝
βi ◯
[li,j]

γi,j
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δi

rearranging terms.

Applying the definition of h we have, for [qi] ∈ ν●1 , [li,j] ∈ β∣i , and [r] ∈ γ∣i,j ,

h s[p2p1] ∶ S[ν1]Ð→ ZS[ν3]
(h s[p2p1])[qi] ∶ S[t δi]Ð→ S[ν3]

℘δi[li,jr]z→ ℘ζ[p2p1[qi]li,jr]; (11.2.12)
h s[p1] ∶ S[ν1]Ð→ ZS[ν2]

(h s[p1])[qi] ∶ S[tβi]Ð→ S[ν2]
℘βi[li,j]z→ ℘ξ1[p1[qi]li,j]; (11.2.13)

h s[p2] ∶ S[ν2]Ð→ ZS[ν3]
(h s[p2])(℘ξ1[p1[qi]li,j]) ∶ S[tγi,j]Ð→ S[ν3]

℘γi,j [r]z→ ℘ξ2[p2 ℘ξ1[p1[qi]li,j] r]. (11.2.14)

Thus,

(h s[p2p1])([qi])(℘δi[li,jr])
= ℘ζ[p2p1[qi]li,jr] by (11.2.12)
= ℘ξ2[p2 ℘ξ1[p1[qi]li,j] r] ♠
= (h s[p2])(℘ξ1[p1[qi]li,j])(℘γi,j [r]) by (11.2.14)

= (h s[p2]) ((h s[p1])([qi])(℘βi[li,j])) (℘γi,j [r]) by (11.2.13)

= (h s[p2] ⋅ h s[p1]) ([qi])(℘δi[li,jr]), ♢

where equality ♠ comes from the monad structure on Z, and ♢ from the definition of the
composition in Λ when considered as the Kleisli category of Z.

Lemma 11.2.15. (1) Let ν ∈ On+1, ω ∶= tν, and ξ ∶=YYω ○[[]]Yν . Note that ν = t ξ. The
following is a diagram of h t ∶ hω Ð→ hν:

ξ

Yω ν

s []

t

hω hν.h t

(2) Let β, ν ∈ On+1 = trZn−1, and i ∶ S[β] Ð→ S[ν] a morphism of presheaves. Then
i corresponds to an inclusion β ↪Ð→ ν of Zn−1 trees, mapping node at address [q]
to [pq], where [p] ∶= i[] ∈ ν● is the address of the image of the root node. Write
ν = β̄ ◽[p] β, for an adequate β̄ ∈ On+1, and let ξ ∶=Yβ̄ ○[[p]]Yβ. Note that ν = t ξ by
proposition 3.1.6. The following is a diagram of hi:

ξ

β ν

s [p
]

t

hβ hν.hi



Proof. Tedious but straightforward matter of unfolding definition 11.2.1.

Lemma 11.2.16 (Diagrammatic lemma). Let ν, ν′ ∈ On+1 with ν non degenerate, and
f ∶ hν Ð→ hν′ be a morphism in Λ. Then f is diagrammatic.

Proof. Let us first sketch the proof. The idea is to proceed by induction on ν. The case
ν = Yψ for some ψ ∈ On is fairly simple. In the inductive case, we essentially show that f
exhibits an inclusion ν ↪Ð→ ν′ of Zn−1-trees by constructing an (n+1)-opetope ν̄ such that
ν′ = ν̄ ◽[q] ν. Thus by lemma 11.2.15, the following is a diagram of hf :

ξ

ν ν′

s [[
q 1
]]

t

hν hν′,
f

where ξ ∶=Yν̄ ○[[q1]]Yν .
Let us now dive into the details. As advertised, the proof proceeds by induction on ν,

which by assumption is not degenerate.
(1) Assume ν = Yψ for some ψ ∈ On. Then

Λ(hYψ, hν′) = Λ(ZS[Yψ],ZS[ν′]) ≅ (ZS[ν])ψ.

Thus f corresponds to a unique morphism f̃ ∶ S[ν′′]Ð→ S[ν′], for some ν′′ ∈ On+1
such that tν′′ = ψ, and f is the composite

hYψ = hψ
h tÐ→ hν′′

Zf̃
Ð→ hν′.

Those two arrows are diagrammatic by lemma 11.2.15, and by lemma 11.2.9, so is
f .

(2) By induction, write ν = ν1 ○[l]Yψ2 for some ν1 ∈ On+1, [l] ∈ ν∣1 , and ψ2 ∈ On. Write
ψ1 ∶= tν1, and ν2 ∶=Yψ2 . Then f restricts as fi, i = 1,2, given by the composite

hνi Ð→ hν
f
Ð→ hν′.

Let [l′] be the edge address of ν′ (or equivalently, the (n−1)-cell of S[ν′] ⊆ hν′) such
that e[l′] ν′ = f(e[l] ν). Then ν′ decomposes as ν′ = β1 ○[l′] β2, for some β1, β2 ∈ On+1
(in particular, β1 and β2 are sub Zn−1-trees of ν′), and f1 and f2 factor as

hνi hβi

hν′,

f̄i

fi
bi

where bi correspond to the subtree inclusion βi ↪Ð→ ν′. By induction, f̄i is diagram-
matic, say with the following diagram:

ξi

νi βi

s [p i
]

t

hνi hβi,
f̄i



and thus βi can be written as βi = ν̄i ◽[qi] νi, for some ν̄i ∈ On+1 and [qi] ∈ ν̄●i . In the
case i = 2, note that β2 = ν̄2 ◽[q2] ν2 = ν̄2 ◽[q2]Yψ2 = ν̄2.
On the one hand we have

e[l′] ν
′ = f(e[l] ν) by definition of [l′]
= f1(e[l] ν1) since ν = ν1 ○

[l]
Yψ2

= b1f̄1(e[l] ν1) since f1 = b1f̄1
= b1(e[q1l] β1) since β1 = ν̄1 ◽

[q1]
ν1

= e[q1l] ν,

showing [l′] = [q1l], and thus that ν̄1 is of the form

ν̄1 = µ1 ○
[q1]

Yψ1 ◯
[[r1,j]]

µ1,j , (11.2.17)

where [r1,j] ranges over ψ●1 − {℘ν1[l]}, and µ1, µ1,j ∈ On+1. On the other hand,

e[l′] ν
′ = f(e[l] ν) by definition of [l′]
= f2(e[] ν2) since ν = ν1 ○

[l]
Yψ2

= b2f̄2(e[] ν2) since f1 = b2f̄2
= b2(e[q2] β2) since β2 = ν̄2 ◽

[q2]
ν2

= e[l′] ν
′,

showing [q2] = [], and so s[] β2 = s[] ν̄2 = ψ2, and we can write β2 as

β2 = Yψ2 ◯
[[r2,j]]

µ2,j , (11.2.18)

where [r2,j] ranges over ψ●2, and µ2,j ∈ On+1. Finally, we have

ν′ = β1 ○
[l′]
β2 = (ν̄1 ◽

[q1]
ν1) ○

[l′]
β2

=
⎛
⎜
⎝
µ1 ○
[q1]

ν1 ◯
℘−1ν1 [r1,j]

µ1,j
⎞
⎟
⎠
○
[l′]

⎛
⎝
Yψ2 ◯

[[r2,j]]
µ2,j
⎞
⎠

by (11.2.17) and (11.2.18)

=

⎛
⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝

µ1 ○
[q1]

ν1 ○
[l]
Yψ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ν

⎞
⎟⎟⎟⎟
⎠

◯
[q1]⋅℘−1ν1 [r1,j]

µ1,j

⎞
⎟⎟⎟⎟
⎠

◯
[l′[r2,j]]

µ2,j rearranging terms

= ν̄ ◽
[q1]

ν,

for some ν̄′ ∈ On+1. Finally, by lemma 11.2.15, the following is a diagram of hf ,
where ξ ∶=Yν̄ ○[[q1]]Yν :

ξ

ν ν′

s [[
q 1
]]

t

hν hν′.
f



Lemma 11.2.19. (1) If ω ∈ On−1, then h maps t t ∶ ω Ð→ Iω to an identity.
(2) If ω ∈ On, then h maps s[] ∶ ω Ð→ Yω to an identity.
(3) If ω ∈ On+2, then h maps t ∶ tω Ð→ ω to an identity.

Proof. By inspection of definition 11.2.1.

Proposition 11.2.20. The functor h ∶ On−k,n+2 Ð→ Λ is essentially surjective on mor-
phisms.

Proof. Let ω,ω′ ∈ On−k,n+2.
(1) If dimω,dimω′ < n−1, then by definition 11.2.1, hω = ω and hω′ = ω′ as presheaves

over On−k,n+2, and thus

Λ(hω,hω′) = Psh(On−k,n+2)(ω,ω′) = O(ω,ω′).

(2) Assume that dimω < n − 1 and dimω′ ≥ n − 1. We first show that O[ω′]<n−1 =
(hω′)<n−1 by inspection of definition 11.2.1. If dimω′ ≤ n, then the claim trivially
holds. If dimω′ = n + 1, then hω′ = ZS[ω′], and

(hω′)<n−1 = (ZS[ω′])<n−1
= S[ω′]<n−1 see definition 11.1.16
= O[ω′]<n−1 see remark 3.5.2.

The case where dimω′ = n+2 is proved similarly. Thus, O[ω′]<n−1 = (hω′)<n−1, and
in particular, O[ω′]ω = (hω′)ω. Finally,

Λ(hω,hω′) ≅ Psh(On−k,n+2)(ω,hω′)
= Psh(On−k,n+2)(ω,ω′) ♠
= O(ω,ω′),

where ♠ results from the observation above.
(3) If dimω ≥ n − 1 and dimω′ < n − 1, then Λ(hω,hω′) = ∅.
(4) Lastly, assume dimω,dimω′ ≥ n−1. By lemma 11.2.19, we may assume that dimω =

dimω′ = n + 1. If ω is non degenerate, then by lemma 11.2.16, every morphism in
Λ(hω,hω′) is diagrammatic, thus in the essential image of h. Assume that ω is
degenerate, say ω = Iϕ for some ϕ ∈ On−1. Akin to point (2), by inspection of
definition 11.2.1, one can prove that O[ω′]ϕ = (hω′)ϕ. Finally,

Λ(hω,hω′) ≅ Λ(hϕ,hω′) by corollary 3.5.14
≅ O(ϕ,ω′) ♠,

where ♠ results from the observation above.

Remark 11.2.21. It is worthwhile to note that h ∶ On−k,n+2 Ð→ Λ is not full. Take for
example n = k = 1, so that h is a functor O0,3 Ð→ ∆. Let a, b ∈ N, a ≠ b, and consider
the corresponding opetopic integers a,b ∈ O2. Since they are different but have the same
dimension, O(a,b) = ∅, but of course, ∆(ha, hb) = ∆([a], [b]) is not empty. The diagram-
matic lemma says that if a ≠ 0, then a morphism in ∆([a], [b]) can be recovered as the
image of a face embedding of a in some 3-opetope whose target is b.



nerve theorem

Recall from corollary 11.1.14 that we have a reflective adjunction

τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N

that exhibits Alg as the localization of Psh(Λ) at the set S of spine inclusions. This result
is part of what we call the nerve theorem for Λ. In this section, we prove a similar result in
Psh(O). The strategy is to study the adjunction h! ∶ Psh(On−k,n+2) Ð→←Ð Psh(Λ) ∶ h∗, and
to show that it preserves the orthogonality classes of spine inclusions. It follows that it
restricts and corestricts as an adjunction S−1n+1,n+2Psh(On−k,n+2)Ð→←Ð S−1Psh(Λ) ≃ Alg, and
it remains to prove that it is an equivalence. More formally, we make use of the following
observation:

Lemma 11.2.22. Let F ∶ A Ð→←Ð B ∶ U be an adjunction, and write η ∶ id Ð→ UF for the
unit and ε ∶ FU Ð→ id for the counit. If A′ (resp. B′) is a full subcategory of A (resp. B)
such that

(1) FA′ ⊆ B′ and UB′ ⊆ A′,
(2) for all a ∈ A′, the unit ηa ∶ aÐ→ UFa is an isomorphism, and dually, for all b ∈ B′,

εb is an isomorphism,
then the adjunction restricts and corestricts to an adjoint equivalence F ∶ A′ Ð→←Ð B′ ∶ U .
In particular, if A′ (resp. B′) is an orthogonality class induced by a class of morphism K

(resp. K′), then condition (1) above translates as follows:
(1’) for all a ∈ A, if K ⊥ a, then K′ ⊥ Fa, and dually, for all b ∈ B, if K′ ⊥ b, then

K ⊥ Ub.

Proposition 11.2.23. The functor h! ∶ Psh(On−k,n+2) Ð→ Psh(Λ) (see definition 11.2.3)
takes the set Sn+1 ⊆ Psh(On−k,n+2)[1] (of definition 3.5.1) to S ⊆ Psh(Λ)[1] (of defini-
tion 11.1.37), and takes morphisms in Sn+2 to S-local isomorphisms.

Proof. (1) Let ν ∈ On+1, and recall from definition 11.1.37 that On−k,n/S[ν] is the
category of elements of S[ν]. We have

h!S[ν] = h! colim
ψ∈On−k,n/S[ν]

O[ψ]

≅ colim
ψ∈On−k,n/S[ν]

h!O[ψ]

= colim
ψ∈On−k,n/S[ν]

yΛ(hψ)

= S[hν] see definition 11.1.37.

(2) For ξ ∈ On+2, the inclusion S[t ξ] Ð→ S[ξ] is a relative Sn+1-cell complex by
lemma 3.5.12. Since h! preserves colimits, and since h!Sn+1 = S, we have that
h!(S[t ξ] Ð→ S[ξ]) is a relative S-cell complex, and thus an S-local isomorphism.
In the square below

h!S[t ξ] h!S[ξ]

h!O[t ξ] h!O[ξ]

h!st ξ h!sξ

h! t



the top arrow is an S-local isomorphism, the right arrow is in S by the previ-
ous point, and the bottom arrow is an isomorphism by definition. By 3-for-2, we
conclude that h!sξ is an S-local isomorphism.

Lemma 11.2.24. Let X ∈ Psh(On−k,n+2) be such that Sn+1,n+2 ⊥X, and take ω ∈ On−k,n+2.
The following are spans of isomorphisms:

(1) for ψ ∈ On−1,

Λ(hω,hψ) ×Xψ
id× t t←ÐÐÐ Λ(hω,hψ) ×XIψ

Λ(hω,h t t)×id
ÐÐÐÐÐÐÐ→ Λ(hω,hIψ) ×XIψ ;

(2) for ψ ∈ On,

Λ(hω,hψ) ×Xψ

id× s[]←ÐÐÐ Λ(hω,hψ) ×XYψ

Λ(hω,h s[])×idÐÐÐÐÐÐÐ→ Λ(hω,hYψ) ×XYψ ;

(3) for ψ ∈ On+2,

Λ(hω,h tψ) ×Xtψ
id× t←ÐÐ Λ(hω,h tψ) ×Xψ

Λ(hω,h t)×id
ÐÐÐÐÐÐÐ→ Λ(hω,hψ) ×Xψ.

Proof. Follows from lemma 11.2.19.

Lemma 11.2.25. Let ω ∈ On−k,n+2. If ψ ∈ On−k,n−1, then Λ(hω,hψ) ≅ On−k,n+2(ω,ψ).

Proof. Easy verification.

Proposition 11.2.26. Let X ∈ Psh(On−k,n+2). If Sn+1,n+2 ⊥ X, then the unit ηX ∶ X Ð→
h∗h!X is an isomorphism.

Proof. It suffices to show that for each ω ∈ On−k,n+2, the following map is a bijection:

Xω
ηXÐ→ h∗h!Xω = ∫

ψ∈On−k,n+2
Λ(hω,hψ) ×Xψ.

If ω ∈ On−k,n−1, then hω = O[ω], and Λ(hω,h−) ≅ On−k,n+2(ω,−). Thus,

h∗h!Xω = ∫
ψ∈On−k,n+2

Λ(hω,hψ) ×Xψ by definition

≅ ∫
ψ∈On−k,n+2

On−k,n+2(ω,ψ) ×Xψ since dimω ≤ n − 1

≅ Xω by the density formula.

Assume how that dimω ≥ n. We construct an inverse of ηX via a cowedge Λ(hω,h−) ×
X−

⋅ ⋅Ð→Xω.
(1) Assume ω ∈ On. By lemma 11.2.24, it suffices to consider the case ψ ∈ On+1. To

unclutter notations, write P ∶=Psh(On−k,n+2). We have the sequence of morphisms

Λ(hω,hψ) ×Xψ
≅Ð→ ( ∑

ν∈On+1
t ν=ω

P(S[ν], S[ψ])) ×P(S[ψ],X) ♠

comp.
ÐÐÐ→ ∑

ν∈On+1
t ν=ω

P(S[ν],X)



≅Ð→ ∑
ν∈On+1
t ν=ω

Xν ♠

tÐ→Xω,

where ♠ follow from the assumption that Sn+1 ⊥ X. It is straightforward to verify
that this defines a cowedge whose induced map is the required inverse.

(2) Assume ω ∈ On+1. If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−1, then Λ(hω,h−) ≅
Λ(hϕ,h−) and we are in a case we have treated before. So let ω be non-degenerate.
By lemmas 11.2.24 and 11.2.25, we may suppose ψ ∈ On,n+1. Recall that for every
f ∈ Λ(hω,hψ), the diagrammatic lemma 11.2.16 computes a ξ ∈ On+2 and [p] ∈ ξ●
such that s[p] ξ = ω, t ξ = ψ and h s[p] ≅ f . By corollary 3.5.13, the target embedding
t ∶ ψ Ð→ ξ is an Sn+1,n+2-local isomorphism, and by assumption, Sn+1,n+2 ⊥ X.
Therefore, we have an isomorphism t ∶Xξ Ð→Xψ, which gives rise to a map

Λ(hω,hψ) ×Xψ Ð→Xω

(f, x)z→ s[p] t
−1 x.

It is straightforward to verify that this assignment defines a cowedge, whose asso-
ciated map is the required inverse.

(3) Assume ω ∈ On+2. Then by definition of h, Λ(hω,h−) ≅ Λ(h tω,h−), and this is the
case we have just treated.

Corollary 11.2.27. Let X ∈ Psh(On−k,n+2). If Sn+1,n+2 ⊥X, then S ⊥ h!X.

Proof. Recall from proposition 11.2.23 that S = h!Sn+1. Let ν ∈ On+1. To unclutter nota-
tions, write P ∶=Psh(On−k,n+2). We have

Psh(Λ)(h!ν, h!X) ≅ P(ν, h∗h!X) since h! ⊣ h∗

≅ P(ν,X) by proposition 11.2.26
≅ P(S[ν],X) since sν ⊥X
≅ P(S[ν], h∗h!X) by proposition 11.2.26,
≅ Psh(Λ)(h!S[ν], h!X) since h! ⊣ h∗

and by construction, this isomorphism is the precomposition by h!sν . Therefore, h!sν ⊥X.

This second proposition will provide the other half of the equivalence between Alg and
the localization S−1n+1,n+2Psh(On−k,n+2).

Proposition 11.2.28. Let Y ∈ Psh(Λ). If S ⊥ Y , then the counit map εY ∶ h!h∗Y Ð→ Y

is an isomorphism.

Proof. We have to prove that for each λ ∈ Λ, the map

h!Yλ = ∫
ψ∈On−k,n+2

Λ(λ,hψ) × Yhψ
(εY )λÐÐÐ→ Yλ (11.2.29)

is a bijection. Recall notation 0.4.2, and consider, the map

s ∶ Yλ Ð→ ∫
ψ∈On−k,n+2

Λ(λ,hψ) × Yhψ



mapping y ∈ Yλ to idλ⊗y. It is well-defined, as h is surjective on objects, and it is easy to
verify that s(y) it is independent of the choice of an antecedent hν = λ. Note that s is a
section of (εY )λ, and we proceed to prove that s is surjective. In other words, we show
that that every element f ⊗y, with f ∈ Λ(λ,hψ) for some ψ ∈ On−k,n+2 and y ∈ Yλ, is equal
to an element of the form idλ⊗y′, for some y′ ∈ Yλ.

(1) Assume λ = hϕ for some ϕ ∈ On−k,n−1. Then Λ(λ,hψ) = On−k,n+2(ϕ,ψ), and f ⊗ y =
idϕ⊗f(y) has the required form.

(2) Assume λ = hν = hS[ν] for some ν ∈ On+1. If ν is degenerate, say ν = Iϕ, then by
lemma 11.2.19, hν = hϕ, so we fall in the previous case. Thus, we may assume that
ν is not degenerate. Further, by lemmas 11.2.24 and 11.2.25, we may consider only
the case where ψ ∈ On+1. By lemma 11.2.16, f admits a diagram, say

ξ

ν ψ

s [p
]

t

hν hψ,
f

i.e. f ≅ h s[p]. We then have f ⊗ y = idYω ⊗(h s[p])(y).
(3) Assume λ = hω for some ω ∈ On. By lemma 11.2.19, hω = hYω, and we fall in the

previous case.

Definition 11.2.30. Let the adjunction induced by the localization of Psh(On−k,n+2) at
the set of spine inclusions Sn+1,n+2 be denoted by

u ∶ Psh(On−k,n+2)Ð→←Ð S−1n+1,n+2Psh(On−k,n+2) ∶ Nu

On the other hand, recall from theorem 11.1.39 that we have an adjunction τ ⊣ N that
exhibits Alg as the localization S−1Psh(Λ). We are now well-equipped to prove that Alg

is equivalent to the localized category S−1n+1,n+2Psh(On−k,n+2).

Lemma 11.2.31. The adjunction h! ∶ Psh(On−k,n+2) Ð→←Ð Psh(Λ) ∶ h∗ restricts to an
adjoint equivalence h̃! ⊣ h̃∗, as shown below.

S−1n+1,n+2Psh(On−k,n+2) S−1Psh(Λ) ≃ Alg

Psh(On−k,n+2) Psh(Λ).

Nu

h̃!

N
h̃∗
⊥

h!

h∗
⊥

Proof. We check the conditions of lemma 11.2.22.
(1) By proposition 11.2.23, for all Y ∈ Alg ≃ S−1Psh(Λ), we have that h!Sn+1,n+2 ⊥ NuY ,

or equivalently, that Sn+1,n+2 ⊥ h∗NuY . Thus h∗Nu factors through the localization
S−1n+1,n+2Psh(On−k,n+2). Next, by corollary 11.2.27, h!Nu factors through Alg.

(2) By proposition 11.2.26, if X ∈ S−1n+1,n+2Psh(On−k,n+2), then the unit map ηX ∶X Ð→
h∗h!X is an isomorphism, and dually, by proposition 11.2.28, if Y ∈ S−1Psh(Λ), then
the counit map εY is an isomorphism.



Definition 11.2.32. Recall the definition of O and S from definitions 3.5.1 and 3.5.15,
and let A = Ak,n ∶=O<n−k ∪ S≥n+1.

Theorem 11.2.33 (Nerve theorem for O). The reflective adjunction h ∶ Psh(O)Ð→←Ð Alg ∶
M exhibits Alg as the localization A−1Psh(O), or equivalently, as the orthogonality class
induced by A in Psh(O).

Proof. Recall from definition 11.2.3 that h is the composite

Psh(O)
(−)n−k,n+2ÐÐÐÐÐÐ→ Psh(On−k,n+2)

h!Ð→ Psh(Λ) τÐ→ Alg,

and by lemma 11.2.31, it is isomorphic to the composite

Psh(O)
(−)n−k,n+2ÐÐÐÐÐÐ→ Psh(On−k,n+2)

uÐ→ S−1n+1,n+2Psh(On−k,n+2)
≃Ð→ Alg.

By proposition 3.5.19, the truncation (−)n−k,n+2 is the localization at O<n−k ∪ B>n+2. By
corollary 0.5.12, u is the localization at Sn+1,n+2. Therefore, h is the localization at O<n−k∪
Sn+1,n+2 ∪B>n+2, which by lemma 3.5.10 is the localization at A. By corollary 0.5.12, Alg

is equivalent to the orthogonality class induced by A.

Corollary 11.2.34. Assume k = 1. Any opetopic shape λ ∈ Λ = Λ1,n is isomorphic to one
of the form hω for ω ∈ On+1.

Proof. By theorem 11.2.33, h ∶ Psh(O) Ð→ Alg maps spine inclusions in S≥n+1 to isomor-
phism. Thus, it maps S≥n+1-local isomorphisms to isomorphisms. The result then follows
from corollary 3.5.14.

We now present a notation that shows how solutions of lifting problems S[ω] Ð→ X

can really be understood as compositions of “tree-shaped arities”.
Notation 11.2.35. For ϕ ∈ On−1 and x ∈ Xϕ, write idx ∈ XYϕ for the target of the unique
solution of the lifting problem

S[Iϕ] = O[ϕ] X

O[Iϕ].

x

t t
∃!f

Explicitly, if f is the solution, then idx is the cell of XYϕ selected by

O[Yϕ]
tÐ→ O[Iϕ]

f
Ð→X.

Note that by (Degen), we have t idx = s[] idx = x. Let now ψ,ψ′ ∈ On, and [p] ∈ ψ●
such that s[p]ψ = tψ′. In particular, ω ∶=Yψ ○[[p]]Yψ′ is a well-defined (n+1)-opetope. For
x ∈ Xψ, x′ ∈ Xψ′ such that s[p] x = tx′, let x ○[p] x′ be the target of the unique solution of
the following lifting problem:

S[ω] X

O[ω].

[]↦x, [[p]]↦x′

∃!g



Note that (x ○[p] x′)♮ = tω = ψ ◽[p]ψ′. An iterated composition as on the right can be
concisely written as on the left:

x◯
[pi]

yi ∶= (⋯(x ○
[p1]

y1) ○
[p2]

y2⋯) ○
[pk]

yk,

where x ∈ Xψ, ψ● = {[p1], . . . , [pk]}, yi ∈ Xψi , and tψi = s[pi]ψ. Equivalently, x◯[pi] yi is
the target of the unique solution of

S[ω′] X

O[ω′].

[]↦x, [[pi]]↦yi

where ω′ ∶=Yψ◯[[pi]]Yψi .

Proposition 11.2.36. Let U be the following composite

Alg
MÐ→ Psh(O)

(−)n−k,nÐÐÐÐÐ→ Psh(On−k,n).

In other words, it considers an algebra as an opetopic set (via the fully faithful nerve
functor M) and truncates it. For A,B ∈ Alg, a map f ∶ UA Ð→ UB is in the image of U
if and only if

(1) for all a ∈ UAn−1, we have f(ida) = idf(a);
(2) for a well defined composition x ○[p] y, where x, y ∈ An (see notation 11.2.35), we

have f(x ○[p] y) = f(x) ○[p] f(y).
Note that if condition (1) holds, then condition (2) is equivalent to the following

(3) for a well defined composition x◯[pi] yi, where x, y1, . . . ∈ An, and [pi] ranges over
the set of node addresses of the shape of x (see notation 11.2.35), we have

f
⎛
⎝
x◯
[pi]

yi
⎞
⎠
= f(x)◯

[pi]
f(yi)

Proof. The direct implication is clear. For the converse, note that the conditions simply
state that f can be extended as a map MA Ð→ MB, as S ⊥ MA,MB. Since M is fully
faithful, f ∶MAÐ→MB is the nerve a (unique) morphism of algebras.

11.3 THE ALGEBRAIC TROMPE-L’ŒIL

As we saw in section 11.1, for all k,n ∈ N with k ≤ n, we have a notion of k-colored
n-opetopic algebra. For such an algebra B ∈ Algk,n, operations are n-cells (so that their
shapes are n-opetopes), and colors are cells of dimension n − k to n − 1, thus the “color
space” is stratified over k dimensions. Notable examples include

Cat ≃ Alg1,1, Opcol ≃ Alg1,2.

(see proposition 11.1.29). But are all Algk,n fundamentally different?



In this section, we answer this question negatively: in a sense that we make precise,
the most “algebraically rich” notion of opetopic algebra is given in the case k = 1 and
n = 3. Although opetopes can be arbitrarily complex, the algebraic data they carry can be
expressed by 3-opetopes, a.k.a. trees. We call this phenomenon algebraic trompe-l’œil, a
French expression that literally translates as “fools-the-eye”. And indeed, the eye is fooled
in two ways: by color (proposition 11.3.4) and shape (proposition 11.3.15). In the former,
we argue that the color space of an algebra B ∈ Algk,n, expressing how operations may
or may not be composed, only needs 1 dimension, and thus that cells of dimension less
than n − 1 do not bring new algebraic data, only geometrical one. For the latter, recall
from definition 3.1.3 that opetopes are trees of opetopes. In particular, 3-opetopes are just
plain trees, and O3 already contains all the possible underlying tree shapes of all opetopes.
Consequently, operations of B, which are its n-cells, may be considered as 3-cells in a very
similar 3-algebra B∨. Finally, we combine those two results in theorem 11.3.16, which
states that an algebra B ∈ Algk,n is exactly a presheaf B ∈ Psh(On−k,n) with a 1-colored
3-algebra structure on B∨n−1,n (see definition 3.5.16).

color

For B ∈ Algk,n, recall that the colors of B are its cells of dimension n − k to n − 1. They
express which operations (n-cells) of B may or may not be composed. However, since that
criterion only depends on (n − 1)-cells, constraints expressed by lower dimensional cells
should be redundant. In proposition 11.3.4, we show that this is indeed the case, in that
the algebra structure on B is completely determined by a 1-colored n-algebra structure
on the truncation Bn−1,n.

Lemma 11.3.1. Let k,n ≥ 1, and ν ∈ On+1. Then

S[ν]n−k,n ≅ ι!(S[ν]n−1,n),

where ι! is the left adjoint to the truncation Psh(On−k,n)Ð→ Psh(On−1,n).

Proof. It follows from the fact that S[ν] is completely determined by the incidence relation
of the n- and (n − 1)-faces of ν (see lemma 3.5.8).

Proposition 11.3.2. For X ∈ Psh(On−k,n) we have Zn(Xn−1,n) ≅ (ZnX)n−1,n. Conse-
quently, the truncation functor (−)n−1,n ∶ Psh(On−k,n)Ð→ Psh(On−1,n) lifts as

Algk,n Alg1,n

Psh(On−k,n) Psh(On−1,n).

(−)n−1,n

(−)n−1,n

(11.3.3)

Proof. To unclutter notations, write P ∶=Psh(On−1,n). First, Zn(Xn−1,n)n−1 = Xn−1 =
(ZnX)n−1. Then, for ω ∈ On, we have

Zn(Xn−1,n)ω = ∑
ν∈On+1
t ν=ω

P(S[ν]n−1,n,Xn−1,n) see definition 11.1.16

≅ ∑
ν∈On+1
t ν=ω

P(ι!S[ν],X) since ι! ⊣ (−)n−1,n



≅ ∑
ν∈On+1
t ν=ω

P(S[ν]n−k,n,X) by lemma 11.3.1

= ZnXω.

Proposition 11.3.4. The square (11.3.3) is a pullback. That is, a Zn-algebra structure
on X ∈ Psh(On−k,n) is completely determined by a Zn-algebra structure on Xn−1,n.

Proof. Let X ∈ Psh(On−k,n). By proposition 11.3.2, a Zn-algebra structure on X restricts
to one on Xn−1,n. Since the truncation functor (−)n−1,n ∶ Psh(On−k,n) Ð→ Psh(On−1,n)
is faithful, its lift Algk,n Ð→ Alg1,n is injective on objects. In particular, different alge-
bra structures on X truncate to different algebra structures on Xn−1,n. Conversely, since
(ZnX)<n = X<n, a Zn-algebra structure on Xn−1,n extends to one on X. Therefore, the
truncation functor establishes a bijective correspondence between the algebra structures
on X and on Xn−1,n.

shape

We start by defining the flattening operator (−)∨ ∶ On−1,n Ð→ O2,3, for n ≥ 1, mapping an
n-opetope ω to a 3-opetope ω∨ having the same underlying polynomial tree, i.e. ⟨ω∨⟩ ≅ ⟨ω⟩
(see notation 2.2.9).

Definition 11.3.5. (1) If n = 1, then (−)∨ simply maps O0,1 = (⧫
s∗,tÐÐ→ ◾) to the dia-

gram (0
s[],tÐÐ→ Y0).

(2) Assume now that n ≥ 2. Recall from definition 3.1.3 that a 3-opetope is a Z1-tree,
where Z1 is given by

{◾} E2 O2 {◾},s p t

where O2 = {m ∣m ∈ N}, and where E2(m) = m● = {[∗i] ∣ 0 ≤ i <m}. Let f ∶
Zn−2 Ð→ Z1 be the morphism of polynomial functors given by

On−2 En−2 On−1 On−2

{◾} E2 O2 {◾},

f0

s

f2

p

⌟
f1

t

f0

s p t

where f1(ψ) =m, m =#ψ●, and where f2 is fiberwise increasing with respect to the
lexicographical order ⪯ on addresses. This morphism induces a functor f∗ ∶ On =
trZn−2 Ð→ trZ1 = O3 (see definition 2.2.7) mapping an n-opetope to its underlying
tree, seen as a 3-opetope. Explicitly,

f∗(Iϕ) = I◾, f∗
⎛
⎝
Yψ ◯
[[pi]]

ωi
⎞
⎠
= m ◯

[[∗i]]
f∗(ωi),

where ϕ ∈ On−2, ψ ∈ On−1, ψ● = {[p0] ≺ [p1] ≺ ⋯}, and ω0, . . . , ωm−1 ∈ On. For
ω ∈ On, since ω and ω∨ have the same underlying tree, they have the same number



of source faces, i.e. #ω● = #(ω∨)●, and we write aω ∶ ω● Ð→ (ω∨)● for the unique
increasing map with respect to the lexicographical order. Intuitively, aω maps a
node of the underlying tree ⟨ω⟩ of ω to that same node in ⟨ω∨⟩. However, since
the source faces of ω and ω∨ are not the same, aω is not strictly speaking an
identity, but rather a conversion of a “walking instruction in the tree ω” (which is
what an address is) to one in ω∨. Explicitly, a node address [[q1]⋯[qk]] ∈ ω● (with
[qi+1] ∈ s[[q1]⋯[qi]] ω) is mapped to [f2,s[] ω[q1] ⋯ f2,s[[q1]⋯[qk−1]] ω

[qk]].
(3) Define now the flattening operator (−)∨ ∶ On−1,n Ð→ O2,3 as follows: for ψ ∈ On−1

and ω ∈ On,
a) ψ∨ ∶= f1(ψ) and ω∨ ∶= f∗(ω) as above;
b) clearly, (tω)∨ =m = tω∨, where m ∶=#(tω)●, so let (tω tÐ→ ω)

∨
simply be

((tω)∨ tÐ→ ω∨);

c) likewise, for [p] ∈ ω●, we have (s[p] ω)
∨ = saω[p] ω∨, and let (s[p] ω

s[p]ÐÐ→ ω)
∨

simply be (s[p] ω)
∨ saω[p]ÐÐÐ→ ω∨.

Example 11.3.6. Consider the 4-opetope ω, represented graphically and in tree form
below:
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.

⇓
⇓ ⇛

. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓
⇓

⇛
.

.

.
.

.

.

⇓

.

.

.

.

.

⇓
.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓
5
ψ1 []1

22 3

ψ2 [[[∗]]]
2 1

where ψ1 and ψ2 are the 3-opetopes on the top right and top left hand corner respectively.
Then its flattening ω∨ is as follows:

.

. . .

.

.

⇓

⇓
⇛

.

. . .

.

.

⇓

◾
4 []

◾
◾◾ ◾

2 [[∗]]
◾ ◾

Although the graphical representations of ω and ω∨ look nothing alike, their underlying
(undecorated) trees are identical.

Remark 11.3.7. Clearly, (−)∨ ∶ On−1,n Ð→ O2,3 is faithful, and if n ≤ 3, then (−)∨ is also
injective on objects. Note that this is no longer the case if n ≥ 4, as distinct n-opetopes
may have the same underlying tree. For example, the underlying tree of the any degenerate
is just a single edge, and for all n ≥ 4, there exists infinitely many degenerate n-opetopes.



Definition 11.3.8 (Flattening). With a slight abuse of notations, let

(−)∨ ∶ Psh(On−1,n)Ð→ Psh(O2,3),

the flattening operation, be the left Kan extension of On−1,n
(−)∨
ÐÐ→ O2,3 Ð→ Psh(O2,3) along

the Yoneda embedding.

Lemma 11.3.9. Explicitly, for X ∈ Psh(On−1,n), we have

X∨m ≅ ∑
ψ∈On−1
#ψ●=m

Xψ, X∨γ ≅ ∑
ω∈On
ω∨=γ

Xω,

with m ∈ N and γ ∈ O3.

Proof. (1) Assume that X = O[ω] for some ω ∈ On−1, and let d ∶=#ω●. If m ∈ N, then
by definition

O[ω]∨m = O[d]m =
⎧⎪⎪⎨⎪⎪⎩

{idd} if d =m
∅ otherwise.

On the other hand, if ψ ∈ On−1,

O[ω]ψ = O(ψ,ω) =
⎧⎪⎪⎨⎪⎪⎩

{idψ} if ω = ψ
∅ otherwise.

Thus,

∑
ψ∈On−1
#ψ●=m

O[ω]ψ ≅
⎧⎪⎪⎨⎪⎪⎩

{idd} if d =m
∅ otherwise

= O[ω]∨m.

On the other hand, if γ ∈ O3, then

O[ω]∨γ = O[d]γ = ∅ = ∑
ω′∈On
ω′∨=γ

Xω′ .

(2) With the same reasoning, one can prove the lemma in the case X = O[ω] for some
ω ∈ On.

(3) Let us now consider the general case. If m ∈ N, then

X∨m = ∫
ω∈On−1,n

Xω ×O[ω∨]m see equation (0.4.8)

≅ ∫
ω∈On−1,n

Xω × ∑
ψ∈On−1
#ψ●=m

O[ω]ψ by the previous points

≅ ∑
ψ∈On−1
#ψ●=m

∫
ω∈On−1,n

Xω ×O[ω]ψ

≅ ∑
ψ∈On−1
#ψ●=m

Xψ by theorem 0.4.1.

We prove the second isomorphism of the lemma in a similar manner.



Remark 11.3.10. Take n ≥ 1 and X ∈ Psh(On−1,n). By lemma 11.3.9, X and X∨ essentially
have the same cells and the same incidence relations among them. Formally, there is a
canonical isomorphism On−1,n/X Ð→ O2,3/X∨ between the categories of elements of X
and X∨, which maps source (resp. target) maps to source (resp. target) maps. Further, if
f ∶X Ð→ Y is a morphism in Psh(On−1,n), then we have a commutative square

On−1,n/X On−1,n/Y

O2,3/X∨ O2,3/Y ∨

f

≅ ≅
f∨

In particular, (−)∨ ∶ Psh(On−1,n)Ð→ Psh(O2,3) is faithful.

Lemma 11.3.11. Let n ≥ 1, and consider the flattening operator (−)∨ ∶ Psh(On−1,n) Ð→
Psh(O2,3).

(1) For ν ∈ On+1, there exists a unique 4-opetope ν′ ∈ O4 such that S[ν]∨n−1,n ≅ S[ν′]2,3.
(2) Let X ∈ Psh(On−1,n), ν ∈ O4, and f ∶ S[ν] Ð→ X∨. Then there exists a unique

ν′ ∈ On+1 and g ∶ S[ν′]2,3 Ð→X such that S[ν′]∨n−1,n = S[ν]2,3, and g∨ = f .

Proof. (1) If ν = Iϕ for ϕ ∈ On−1, let ν′ = Iϕ∨ . If ν = Yω◯[[pi]] νi, let

ν′ ∶= Yω∨ ◯
[aω[pi]]

ν′i,

where the ν′i are given by induction. The graftings are well defined since

t s[] ν
′
i = t (s[] νi)

∨ = (t s[] νi)
∨ = (s[pi] ω)

∨ = saω[pi] ω
∨.

The isomorphism S[ν]∨n−1,n ≅ S[ν′]2,3 can easily be shown by induction on the
structure of ν and using lemma 3.5.8.

(2) For ν● = {[p1], . . . , [pm]}, f maps [pi] to a cell xi ∈X∨ =Xn−1, and let ψi ∈ On−1 be
the shape of xi as a cell of X. If [pi] = [pj[q]] for some j and [q], then s[q] xj = txi
in X∨, so sa−1

ψj
[q] xj = txi in X, and in particular, sa−1

ψj
[q]ψj = tψi. Consequently,

the ψis may be grafted together into a (n + 1)-opetope ν′ such that ν′∨ = ν, and
sa−1
ν′ [pi]

= ψi. Define g ∶ S[ν′]2,3 Ð→ X mapping sa−1
ν′ [pi]

ν′ to xi, and observe that
g∨ = f .

Proposition 11.3.12. For X ∈ Psh(On−1,n) we have Z3(X∨) ≅ (ZnX)∨. Consequently,
the functor (−)∨ lifts as

Alg1,n Alg1,3

Psh(On−1,n) Psh(O2,3).

(−)∨

(−)∨
(11.3.13)

Proof. First, Z3(X∨)2 =X∨2 ≅Xn−1 = (ZnX)n−1 = (ZnX)∨2 . Then,

Z3(X∨)3 = ∑
ν∈O4

Psh(O2,3)(S[ν],X∨)



≅ ∑
ν∈On+1

Psh(On−1,n)(S[ν],X) by lemma 11.3.11

= (ZnX)n
= (ZnX)∨3 .

Lemma 11.3.14. Let X ∈ Psh(On−1,n) and m ∶ ZnX Ð→ X. Then m is a Zn-algebra
structure on X if and only if m∨ ∶ Z3X∨ Ð→X∨ is a Z3-algebra structure on X∨.

Proof. Clearly, (−)∨ maps the multiplication µn ∶ ZnZn Ð→ Zn to µ3, and the unit ηn ∶
idÐ→ Zn to η3. By remark 11.3.10, (−)∨ is faithful, and the square on the left commutes
if and only if the square on the right commutes

ZnZnX ZnX

ZnX X,

Znm

µn m

m

Z3Z3X∨ Z3X∨

Z3X∨ X∨,

Z3m∨

µ3 m∨

m∨

and likewise for the diagram involving ηn and η3.

Proposition 11.3.15. The square (11.3.13) is a pullback. That is, a Zn-algebra structure
on X ∈ Psh(On−1,n) is completely determined by a Z3-algebra structure on X∨.

Proof. Let X ∈ Psh(On−1,n). By proposition 11.3.12, a Zn-algebra structure on X induces
a Z3-algebra structure on X∨. By remark 11.3.10, (−)∨ ∶ Psh(On−1,n) Ð→ Psh(O2,3) is
faithful, and thus its lift Alg1,n Ð→ Alg1,3 is injective on object. In particular, different
algebra structures on X result in different algebra structures on X∨.

Conversely, let m ∶ Z3X∨ Ð→ X∨ be a Z3-algebra structure on X∨, and define m′ ∶
ZnX Ð→ X as the identity in dimension n − 1, and mapping f ∶ S[ν] Ð→ X to m(f∨) ∈
X∨2 ≅ Xn−1. Recall that f∨ is a map of the form S[ν′] Ð→ X∨, for some ν′ such that
tν′ = (tν)∨, and thus m′ is a map of opetopic sets. By lemma 11.3.14, it is a Zn-algebra
structure on X.

Finally, the flattening operation establishes a bijective correspondence between the
Zn-algebra structures on X and the Z3-algebra structures on X∨.

Theorem 11.3.16 (Algebraic trompe-l’œil). The following square is a pullback:

Algk,n Alg1,3

Psh(On−k,n) Psh(O2,3).

(−)∨n−1,n

(−)∨n−1,n

(11.3.17)

In other words, a Zn-algebra structure on X ∈ Psh(On−k,n) is completely determined by a
Z3-algebra structure on X∨n−1,n.

Proof. This is a direct consequence of propositions 11.3.4 and 11.3.15, and the pasting
lemma for pullbacks.



Chapter Twelve

Preliminaries in homotopy theory

W
e review elements of abstract homotopy theory in preparation for the upcoming
chapters, with an emphasis on the homotopy theory of presheaves. For more
complete references, see [Hov99] [Hir09] [Lur09, section A.2] as well as [Cis06,

chapter 1].

12.1 MODEL CATEGORIES

definitions

Definition 12.1.1 (Model category [Hir09, definition 7.1.3]). A model category is a ca-
tegory M endowed with three classes of maps Cof,Fib,Weq ⊆ M[1], whose elements are
respectively called cofibrations, fibrations, and weak equivalences, subject to the following
conditions.

(M0) Limit axiom. The category M is complete and cocomplete.
(M1) 3-for-2 axiom. The class Weq of weak equivalences has the 3-for-2 property.
(M2) Retract axiom. The classes Cof, Fib, and Weq are closed under retracts (in M[1]).
(M3) Lifting axiom. For ACof ∶=Cof ∩Weq and AFib ∶=Fib∩Weq the classes of acyclic

cofibrations and acyclic fibrations1, respectively, we have ACof ⋔ Fib and Cof ⋔ AFib.
(M4) Factorization axiom. For any morphism f ∈M, there exists a factorization f =

pj, where j ∈ ACof and p ∈ Fib. Dually, there exists a factorization f = qi, where
i ∈ Cof and q ∈ AFib. Further, those factorizations are functorial2.

Definition 12.1.2. Let M be a model category. An object x ∈M is cofibrant (resp. fibrant)
if the initial map !

∶ ∅ Ð→ x (resp. the terminal map ! ∶ x Ð→ 1) is a cofibration (resp. a
fibration). Consider the factorizations of !and ! of (M4):

∅ x

Qx,

!

∈ Cof qx ∈AFib

x 1

Rx.

!

rx ∈ACof ∈ Fib

The object Qx (resp. Rx) is called a cofibrant replacement (resp. a fibrant replacement)
of x. Since the factorizations of (M4) are functorial, these constructions give rise to two
functors Q,R ∶MÐ→M.

1We resort to the term “acyclic fibration” rather than the most common “trivial fibration”, reserved
for definition 12.3.15.

2In the sense that they define functors M[1] Ð→M[2] that are sections of the composition map.

201



Definition 12.1.3 (Proper model category [Hir09, definition 13.1.1]). A model category
M is left proper if the cobase change of a weak equivalence along a cofibration is a weak
equivalence. Explicitly, if w ∈Weq and c ∈ Cof share the same domain, then the morphism
w̄ below is a weak equivalence

⋅ ⋅

⋅ ⋅
⌜

c

w w̄

Dually, M is right proper if the base change of a weak equivalence along a fibration is a
weak equivalence. Finally, M is proper if it is left and right proper.

Definition 12.1.4 (Homotopy category). Let M be a model category, and let hoM, the
homotopy category of M be the localization hoM ∶=Weq−1M. It is a category in the same
universe as M [Hov99, corollary 1.2.9], e.g. locally small if M is.

Proposition 12.1.5 ([Hov99, proposition 1.2.8]). Let M be a model category, A be cofi-
brant, and P be fibrant. Then a morphism f ∶ A Ð→ P is a weak equivalence if and only
if it is a homotopy equivalence, i.e. there exists g ∶ P Ð→ A (in M) such that f and g are
mutually inverse in hoM.

Definition 12.1.6 (Small object). Let C be a category with small colimits.
(1) [Hir09, definition 10.2.1] Let λ be an ordinal. A λ-sequence is a functor F ∶ λÐ→ C

such that for every limit ordinal β < λ, the canonical map colimα<β Fα Ð→ Fβ is
an isomorphism.

(2) [Hir09, definition 10.4.1] [Hov99, definition 2.1.3] Let K be a class of morphisms of
C and κ be a cardinal. An object c ∈ C is κ-small relative to K if C(c,−) preserves
colimits of λ-sequences, for every regular cardinal λ ≥ κ. It is small relative to K

if it is λ-small relative to K for some regular cardinal λ. It is small if it is small
relative to the class of all morphisms of C.

(3) We say that K admits the small object argument if domains of morphisms of K are
small relative to CellK.

Remark 12.1.7. Note that small objects are presentable. Conversely, finitely presentable
objects are ℵ0-small [AR94, corollary 1.7].

Lemma 12.1.8 ([Cis06, theorem 1.2.23]). Let K be a set of morphisms of Psh(C) allowing
the small object argument. Then its saturation ⋔(K⋔) is the closure of CellK under retracts
(in Psh(C)[1]).

Definition 12.1.9 (Cofibrantly generated model category). We say that a model category
M is cofibrantly generated if there exists two sets I, J ⊆ M[1] that admit the small object
argument, such that Cof = ⋔(I⋔) and ACof = ⋔(J⋔). We say that M is combinatorial if it is
locally presentable and cofibrantly generated.

Example 12.1.10. There is a model structure Psh(∆)Quillen on simplicial sets, where the
cofibrations are the monomorphisms, and the weak equivalence are those maps f such that
their geometric realization ∣f ∣ ∈ Top[1] is a weak homotopy equivalence. In this structure,
fibrations are called Kan fibrations, and fibrant object are called Kan complexes.



It is combinatorial, the set of boundary inclusions B (see example 0.3.10) is a set of
generating cofibrations, and the set of horn inclusions H is a set of generating acyclic
cofibrations. In particular, map p is a Kan fibration if and only if H ⋔ p.

Definition 12.1.11 (Simplicial model category). A model category M is simplicial if the
following additional axioms hold.

(SM0) Enrichment. The category M is simplicially enriched, and we write map(−,−)
for the simplicial hom-space. It is furthermore tensored, and cotensored over sim-
plicial sets, meaning that we have two functors

− ⊗ − ∶ Psh(∆) ×MÐ→M, (−)(−) ∶M ×Psh(∆)op Ð→M,

such that for K ∈ Psh(∆) and x, y ∈M, the following isomorphisms hold

map(K ⊗ x, y) ≅ map(K,map(x, y)) ≅ map(x, yK)

naturally in K, x, and y.
(SM7) HELP3. Let i ∶ aÐ→ b be a cofibration and p ∶ xÐ→ y be a fibration. Then the

cartesian gap map m̂ap(i, p) below is a Kan fibration (see example 12.1.10), and a
weak equivalence if either i or p is:

map(b, x)

⋅ map(a, x)

map(b, y) map(a, y).

i∗

m̂ap(i,p)

p∗ ⌟
p∗

i∗

Remark 12.1.12. If M is a model category that satisfies (SM0), then (SM7) has two
equivalent formulations involving the simplicial tensor and cotensor.

(SM7’) Let i ∶ a Ð→ b be a cofibration in M and j ∶ K Ð→ L be a cofibration in
Psh(∆). Then the cocartesian gap map j ⊗̂ i below is a cofibration, and a weak
equivalence if either i or j is:

K ⊗ a K ⊗ b

L⊗ a ⋅

L⊗ b.

K⊗i

j⊗a
⌜

j⊗b

L⊗i

j⊗̂i

(SM7”) Let p ∶ aÐ→ b be a fibration in M and j ∶K Ð→ L be a cofibration in Psh(∆).
Then the cartesian gap map ĥom(j, p) below is a fibration, and a weak equivalence

3This is an acronym for “Homotopy Extension Lifting Property” and not a covert distress call.



if either p or j is:
aL

⋅ aK

bL bK .

j∗

ĥom(j,p)

p∗ ⌟
p∗

j∗

quillen functors

Definition 12.1.13 (Quillen functor). Let M and N be two model categories. An ad-
junction F ∶ M Ð→←Ð N ∶ U is a Quillen adjunction if F preserves cofibrations and acyclic
cofibrations, or equivalently (see lemma 0.2.7), if U preserves fibrations and acyclic fibra-
tions. In this case, we say that F is a left Quillen functor, and that U is a right Quillen
functor.

Let Q be a cofibrant replacement functor in M, and R be functorial fibrant replacement
in N. The left derived functor of F is defined as dF ∶=FQ, and dually, the right derived
functor of U is dU ∶=UR. In the sequel, we never deal with functors that are both left and
right Quillen, so the notation d is not ambiguous.

Lemma 12.1.14 (Ken Brown’s lemma [Hov99, lemma 1.1.12]). Let F ∶ M Ð→ N be a
functor between model categories4 that maps acyclic cofibrations between cofibrant objects
(resp. acyclic fibrations between fibrant objects) to weak equivalences. Then F preserves
all weak equivalences between cofibrant objects (resp. between fibrant objects).

Corollary 12.1.15. Let F ∶ M Ð→←Ð N ∶ U be a Quillen adjunction. Then F (resp. U)
preserves weak equivalences between cofibrant (resp. between fibrant) objects.

Lemma 12.1.16 ([Dug01, corollary A.2] [Hir09, proposition 8.5.4]). Let F ∶MÐ→←Ð N ∶ U
be an adjunction between model categories. The following are equivalent:

(1) the adjunction is Quillen;
(2) F preserves cofibrations and U preserves fibrations between fibrant objects;
(3) F preserves cofibrations between cofibrant objects and U preserves fibrations.

Definition 12.1.17 (Quillen equivalence). A Quillen adjunction F ∶ M Ð→←Ð N ∶ U is
a Quillen equivalence if for all x ∈ M and y ∈ N, the following composites are weak
equivalences:

x
η
Ð→ UFx

Uj
Ð→ URFx, FQUy

Fq
Ð→ FUy

εÐ→ y,

where η and ε are the unit and counit of the adjunction, j ∶ Fx Ð→ RFx is a fibrant
replacement of Fx, and q ∶ QUy Ð→ Uy is a cofibrant replacement of Uy.

Proposition 12.1.18. If F ∶ M Ð→←Ð N ∶ U is a Quillen adjunction (resp. a Quillen
equivalence), then the derived functors dF and dU form an adjunction (resp. an adjoint
equivalence) hoMÐ→←Ð hoN.

4In fact, N only needs to be equipped with a class of “weak equivalences” that satisfies 3-for-2.



homotopy theory of functors

Definition 12.1.19 ([Lur09, definition A.2.8.1]). Let M be a model category, and C be
a small category.

(1) A morphism in MC is an injective cofibration (resp. an injective weak equivalence)
if it is pointwise a cofibration in M (resp. a weak equivalence in M). An injective
fibration is a morphism that has the right lifting property against all injective
acyclic cofibrations.

(2) Dually, a morphism in MC is an projective fibration (resp. a projective weak equiv-
alence) if it is pointwise a fibration in M (resp. a weak equivalence in M). A
projective cofibration is a morphism that has the left lifting property against all
projective acyclic fibrations.

Theorem 12.1.20 ([Lur09, proposition A.2.8.2, A.3.3.2] [Hir09, theorem 11.6.1]). Let M
be a combinatorial model category with IM and JM as sets of generating cofibrations and
generating acyclic cofibrations respectively, and C be a small category.

(1) If for every set X ∈ Set, the box product X ⊠ − ∶ M Ð→ M (see definition 0.3.9)
preserves acyclic cofibrations, then MC admits a combinatorial model structure
whose cofibrations, weak equivalences, and fibrations are the projective ones. We
write this structure MC

proj and call it the projective model structure on MC. The
following are sets of generating projective cofibrations and generating projective
acyclic cofibrations, respectively:

{C(c,−) ⊠ i ∣ c ∈ C, i ∈ IM} , {C(c,−) ⊠ j ∣ c ∈ C, j ∈ JM} .

(2) If for every set X ∈ Set, the exponentiation (−)X ∶M Ð→M (see definition 0.3.9)
preserves acyclic fibrations, then MC admits a combinatorial model structure whose
cofibrations, weak equivalences, and fibrations are the injective ones. We write this
structure MC

inj and call it the injective model structure on MC. The following are
sets of generating injective cofibrations and generating injective acyclic cofibrations,
respectively:

{iC(−,c) ∣ c ∈ C, i ∈ IM} , {jC(−,c) ∣ c ∈ C, j ∈ JM} .

Furthermore, the projective and injective structures (provided that they exist) are left
proper, right proper, or simplicial, whenever M is. Lastly, the identity functor induces a
Quillen equivalence

id ∶MC
proj

∼Ð→←ÐMC
inj ∶ id .

Definition 12.1.21 (Reedy category [RV14, definition 2.1]). A Reedy category is a small
category R with two wide subcategories (i.e. containing all objects of R) R+ and R−
containing all the isomorphisms, and a map deg ∶ obRÐ→ N such that for every morphism
f ∶ a Ð→ b that is not an isomorphism, if f ∈ R+ (resp. f ∈ R−), then deg a < deg b (resp.
deg a > deg b). Further, we require that every morphism factors uniquely as one from R−
followed by one in R+. Morphisms in R+ (resp. R−) are called increasing (resp. decreasing).

If R− is a discrete category (i.e. there is no non-trivial decreasing morphism), then R

is said to be a direct category.



Remark 12.1.22. In [RV14, definition 2.1] and [Hir09, definition 15.1.2], the subcategories
R+ and R− are denoted by Ð→R and ←ÐR respectively. It is possible to use a more general
degree map deg ∶ obR Ð→ κ, where κ is a regular ordinal, and most of the theory of
Reedy categories still hold in this setting [Hir09, remark 15.1.4]. In this work, we shall
only consider the case κ = N.

Definition 12.1.23 (Latching and matching objects). Let R be a Reedy category, C be
a complete and cocomplete category, X ∈ CR, and a ∈ R. The latching object LaX and
matching object MaX of X at a are defined as

LaX ∶= colim
f ∶b→a

f∈R+−{ida}

Xb, MaX ∶= lim
f ∶a→b

f∈R−−{ida}

Xb.

For f ∶ X Ð→ Y a morphism in CR and a ∈ R, the relative latching map L̂a f and relative
matching map M̂a f of f at a are defined as the gap maps below:

LaX X

La Y ⋅

Y,

La f

⌜ f

L̂a f

X

⋅ MaX

Y Ma Y.

M̂a f

f ⌟
Ma f

Example 12.1.24. The category ∆ is naturally a Reedy category, where deg[n] ∶=n,
and where a map f is in ∆+ (resp. in ∆−) if it is injective (resp. surjective). The opposite
category ∆op is also Reedy, with the same the degree map, (∆op)+ ∶=∆−, and (∆op)− ∶=∆+. If
X ∈ Psh(∆) and n ∈ N, then LnX is the smallest subobject of X such that (LnX)<n =X<n,
i.e. it contains of the k-cells of X, where 0 ≤ k < n and their degeneracies. On the other
hand, MnX = ι∗X, where ι is the inclusion ∆<n Ð→ ∆. Note that LnX (resp. MnX) is
initial (resp. terminal) among all the simplicial sets Y such that X<n = Y<n.

Theorem 12.1.25 ([Lur09, proposition A.2.9.19] [Hir09, theorems 15.3.4 and 15.6.27]).
Let R be a Reedy category, and M be a model category. There exists a model structure on
MR where a morphism f is

(1) a cofibration (resp. a fibration) if all its relative latching maps (resp. matching
maps) are cofibrations (resp. fibrations) in M,

(2) a weak equivalence if it is a pointwise weak equivalence.
Further, a morphism is an acyclic cofibration (resp. an acyclic fibration) if and only if
all its relative latching maps (resp. relative matching maps) are. We call this structure
the Reedy model structure and denote it by MR

Reedy. If M is left proper, right proper,
cofibrantly generated, or simplicial, then so is MR

Reedy. Lastly, the identity functor induces
two Quillen equivalences

MR
proj

∼Ð→←ÐMR
Reedy

∼Ð→←ÐMR
inj.

left bousfield localizations

Similar to the 1-categorical setting, where a localization of a category formally inverts
morphisms, a localization of a model category M formally turns some morphisms into weak



equivalences, thereby localizing (in the 1-categorical sense) its homotopy category hoM.
While declaring arbitrary morphisms to be weak equivalence is always possible, there is no
guarantee that the resulting model structure has an adequate universal property, let alone
that we have any control over the new cofibrations, fibrations, or even weak equivalences.

In this section, we recall the notion of left Bousfield localization, which is a type of
localization that keeps the class of cofibrations constant. Under mild conditions, it is
guaranteed to exist, and all the enjoyable properties of the model structure (e.g. being
proper) carry over. The point of such a construction is to enforce new lifting properties on
fibrant objects. Indeed, by increasing the amount of weak equivalences while keeping the
same cofibrations, the left Bousfield localization mechanically increases the constraints on
the fibrant objects.

Definition 12.1.26 (Local object). Let M be a simplicial model category, and K ⊆M[1]

be a class of morphisms. We say that an object x ∈ M is K-local if it is fibrant, and if
for all f ∶ a Ð→ b in K, the precomposition map f∗ ∶ map(b, x) Ð→ map(a, x) is a weak
equivalence. A morphism g is a K-local equivalence if every K-local object is also a {g}-local
object.

Remark 12.1.27. Note the similarity with the definition of local isomorphisms (see def-
inition 0.2.8), where instead of weak equivalences between mapping spaces, we require
bijections between hom-sets.

Definition 12.1.28 (Left Bousfield localization [Hir09, section 3.3]). Let M be a simplicial
model category, and K ⊆M[1] be a class of morphism. The left Bousfield localization K−1M

of M at K, if it exists, the model structure on M where CofK−1M = CofM, and WeqK−1M
is the class of K-local equivalences. In this case, fibrant objects in K−1M are exactly
the K-local objects, and AFibK−1M = AFibM. Furthermore, we have a Quillen adjunction
id ∶ M Ð→←Ð K−1M ∶ id, and the left Quillen functor id ∶ M Ð→ K−1M is essentially initial
among all left Quillen functors from M mapping elements of K to weak equivalences.

The next two results involve the technical notion of cellular model category [Hir09,
definition 12.1.1]. We shall skip its definition, for in this work, results that depend on
cellular model structures either produce or request them in a “black box” manner.

Theorem 12.1.29 ([Hir09, theorem 4.1.1]). If M is a left proper cellular model category,
and K is a set of morphisms, then the left Bousfield localization K−1M exists, and is left
proper and cellular, with the same simplicial enrichment, tensor, and cotensor as M.

Theorem 12.1.30 ([Hir09, theorem 3.3.20]). Let F ∶MÐ→←Ð N ∶ U be a Quillen adjunction,
K ⊆M[1] a class of morphism, and dF the left derived functor of F . If the left Bousfield
localizations K−1M and (dFK)−1N exist, then F ⊣ U descends to a Quillen adjunction
F ∶ K−1M Ð→←Ð (dFK)−1N ∶ U . Furthermore, if the original adjunction was a Quillen
equivalence, then so is the localized one.

12.2 PRESHEAVES AS MODELS FOR HOMOTOPY TYPES

In this section, we survey some of the results and constructions of [Cis06] that lead to
the powerful theorem 12.2.8. Informally, given C a small category, and a good notion of



“cylinder object”, this result allows us to construct a model structure on Psh(C). In this
structure, the cofibrations are exactly the monomorphisms, while the homotopy equiva-
lences are determined by those cylinders. In the second part of this section, we present
the notion of normal skeletal category, which is a stronger form of Reedy category. Much
like in the Reedy setting, a skeletal category C has a notion of “dimension” for its objects,
but here, the elementary maps that “jump dimension” must satisfy some additional re-
quirements. From this, we can define a set of boundary inclusions B such that the class of
monomorphisms of Psh(C) is exactly CellB, see proposition 12.2.13. Combined together,
those two theories produce model category structures on presheaf categories where we
have a very fine control over the weak equivalences and cofibrations. By lifting arguments,
it thus makes reasoning with fibrations a manageable endeavor.

the cisinski model structure

Definition 12.2.1 (Cylinder object [Cis06, definition 1.3.1]). Let C be a small category,
and X ∈ Psh(C) be a presheaf over C. A cylinder of X is a factorization of the fold map

X +X X

IX,

∇

(i0,i1) ∇

such that (i0, i1) ∶ X + X Ð→ IX is a monomorphism. We write X(e) for the image of
ie ∶X Ð→ IX.

Definition 12.2.2 (I-homotopy [Cis06, definition 1.3.3, remark 1.3.4]). Let C be a small
category, f, g ∶ X Ð→ Y be two parallel maps in Psh(C), and IX be a cylinder of X
(definition 12.2.1). An elementary I-homotopy from f to g is a morphism H ∶ IA Ð→ B

such that the following triangle commutes:

A +A

IA B.

(i0,i1)
(f,g)

H

Let ≃I (or just ≃ is the context is clear), the I-homotopy relation, be the equivalence
relation spanned by this relation on Psh(C)(A,B).

One readily checks that ≃ is a congruence on the category Psh(C), and let hoPsh(C)
be the quotient category. A morphism f ∶ X Ð→ Y is a I-homotopy equivalence (or just
homotopy equivalence if the context is clear) if it is invertible in hoPsh(C).

Definition 12.2.3 (Elementary homotopical data [Cis06, definition 1.3.6]). For C a small
category, an elementary homotopical data on Psh(C) is a functorial cylinder I ∶ Psh(C)Ð→
Psh(C) (see definition 12.2.1) such that

(DH1) I preserves small colimits and monomorphisms;



(DH2) for every monomorphism f ∶X Ð→ Y in Psh(C), and for e = 0,1, the following
square is a pullback:

X Y

IX IY.

f

ie ie

If

Definition 12.2.4 (Relative anodyne extension). Let C be a small category, and I be an
elementary homotopical data on Psh(C) (definition 12.2.3). A class of anodyne extensions
relative to I is a class K ⊆ Psh(C)[1] such that

(An0) there exists a set A ⊆ Psh(C)[1] of monomorphisms such that K = ⋔(A⋔) (in
particular, elements of K are monomorphisms);

(An1) for every monomorphism m ∶ X Ð→ Y in Psh(C), and e = 0,1, the cocartesian
gap map g is in K:

X Y

IX IX ∪ Y (e)

IY ;

m

ie ⌜
ie ie

Im

g

(An2) for all m ∶X Ð→ Y in K, the cocartesian gap map g is in K:

X +X Y + Y

IX IX ∪ (Y + Y )

IY.

m+m

(i0,i1) ⌜ (i0,i1)

Im

g

Lemma 12.2.5. Let I be an elementary homotopical data, and K be a class of anodyne
extensions relative to I. Then I preserves K.

Proof. By axiom (An0), K is closed under compositions and cobase change. The claim
then follows from axiom (An1).

Definition 12.2.6 (Homotopical structure [Cis06, definition 1.3.14]). Let C be a small
category. A homotopical structure on Psh(C) is a pair (I,K), where I is an elementary
homotopical data on Psh(C) (definition 12.2.3), and K is a class of anodyne extension
relative to I (definition 12.2.4).

Definition 12.2.7 (Cisinski model category). A Cisinski model category is a model struc-
ture on a presheaf category over a small category, that is cofibrantly generated, and where
Cof is the class of monomorphisms.

A notable source of such structures is the following theorem:



Theorem 12.2.8 ([Cis06, definition 1.3.21, theorem 1.3.22]). Let C be a small category,
and (I,K) be a homotopical structure on Psh(C) (definition 12.2.6). There is a model
structure on Psh(C) where:

(1) a morphism f is said to be a naive fibration if K ⋔ f ; a presheaf X ∈ Psh(Λ) is
fibrant if the terminal morphism X Ð→ 1 is a naive fibration;

(2) a morphism f ∶ X Ð→ Y is a weak equivalence if for all fibrant object P ∈ Psh(Λ),
the induced map f∗ ∶ hoPsh(C)(Y,P ) Ð→ hoPsh(C)(X,P ) is a bijection (defini-
tion 12.2.2);

(3) the cofibrations are the monomorphism.
This model structure is of Cisinski type (definition 12.2.7), cellular, and proper (defini-
tion 12.1.3).

Lemma 12.2.9. Let C be a small category, and Psh(C) is endowed with a model structure
as in theorem 12.2.8. Let f ∶X Ð→ Y be a morphism in Psh(C), where Y is fibrant. Then
f is a fibration if and only if it is a naive fibration.

Proof. (Ô⇒ ) By construction, anodyne extensions are monomorphisms (hence cofi-
brations), and by [Cis06, proposition 1.3.31], they are also weak equivalences. In
particular, if f is a fibration, then K ⋔ f , and f is a naive fibration.

(⇐Ô ) This is [Cis06, proposition 1.3.36].

skeletal categories

Definition 12.2.10 (Skeletal category). A skeletal category [Cis06, definition 8.1.1] is a
small category C endowed with a map deg ∶ obCÐ→ N and two wide subcategories C+ and
C− such that the following axioms are satisfied.

(Sq0) Invariance. Isomorphisms are in C+ and C−, and if c, c′ ∈ C are isomorphic, then
deg c = deg c′.

(Sq1) Dimension. If f ∶ cÐ→ c′ is an arrow in C+ (resp. C−) that is not an isomorphism,
then deg c < deg c′ (resp. deg c > deg c′).

(Sq2) Factorization. Every arrow f of C can be factored as f = f+f−, with f+ ∈ C+ and
f− ∈ C−, in an essentially unique way.

(Sq3) Section. Every arrow in C− admits a section. Two arrows f, f ′ ∈ C− are equal if
and only if they have the same sections.

The skeletal category C is normal [Cis06, definition 8.1.36, proposition 8.1.37] if C is rigid,
i.e. does not have non-trivial automorphisms.

Example 12.2.11. The usual Reedy structure on ∆ is in fact a normal skeletal structure.

Definition 12.2.12 (Boundary). Let C be a skeletal category. The boundary [Cis06,
paragraph 8.1.30] ∂c ∈ Psh(C) of an object c ∈ C is defined as

∂c ∶= Lc yC = colim
f ∶d→c

f∈C+−{idc}

yCd.

It is the maximal subpresheaf of c = yCc not containing idc. The canonical map bc ∶ ∂cÐ→ c

is a monomorphism, and is called the boundary inclusion of c. Let BC (or just B if the
context is clear) be the set of boundary inclusions.



Proposition 12.2.13 ([Cis06, propositions 8.1.35 and 8.1.37]). If C is a normal skeletal
category, then the class of monomorphisms of Psh(C) is CellB.

12.3 JOYAL–TIERNEY CALCULUS

In this section, we present the so-called Joyal–Tierney calculus, which is a symbolic cal-
culus introduced in [JT07] in order to facilitate the use of lifting arguments. At its core is
the box product (introduced in definition 0.3.9)

− ⊠ − ∶ Psh(∆) ×Psh(∆)Ð→ Sp(∆),

where Sp(∆) ∶=Psh(∆)∆
op

is the category of bisimplicial sets, that is left adjoint in both
variables. If u ∶ AÐ→ B and v ∶K Ð→ L are maps between simplicial sets, then the Leibniz
box product u ⊠̂ v (also called pushout-product) is the cocartesian gap map

A ⊠K A ⊠L

B ⊠K ⋅

B ⊠L.

A⊠v

u⊠K
⌜ u⊠L

B⊠v

u⊠̂v

and the functor − ⊠̂ − ∶ Psh(∆)[1] × Psh(∆)[1] Ð→ Sp(∆)[1] is also left adjoint in both
variables. If ⟨u/−⟩ (resp. ⟨−/v⟩) is the right adjoint of u⊠̂− (resp. −⊠̂v), and if f ∈ Sp(∆)[1],
then by adjunction we have

v ⋔ ⟨u/f⟩ ⇐⇒ (u ⊠̂ v) ⋔ f ⇐⇒ u ⋔ ⟨f/v⟩, (12.3.1)

which allows to seamlessly translate lifting problems between Sp(∆) and Psh(∆). This
formalism has many applications in Reedy theory [RV14], and as we shall see, in the
study of presheaves over a skeletal category. In preparation for upcoming results, we need
to generalize the Joyal–Tierney calculus slightly, by considering a box product of the form

− ⊠ − ∶ Psh(C) ×Psh(∆)Ð→ Sp(C),

where Sp(C) ∶=Psh(∆)C
op

(see definition 12.3.2). The equivalences of (12.3.1) then become
a convenient “Rosetta stone” for lifting problems between Psh(∆), Psh(C), and Sp(C).

Definition 12.3.2. Let Sp(C) ∶=Psh(∆)C
op

be the category of simplicial presheaves over C.
If no ambiguity arise, elements of Sp(C) are also called spaces, leaving the shape category
C implicit. There are obvious equivalences Sp(C) ≃ Psh(C)∆

op

≃ Psh(C × ∆).

Example 12.3.3. The category of bisimplicial sets [JT07, section 2] [Jar06, chapter 4] is
simply Sp(∆).



Definition 12.3.4 (Box product [JT07, section 2]). Specifying definition 0.3.9 to the case
D = Psh(∆), the box product5 is a functor − ⊠ − ∶ Psh(C) × Psh(∆) Ð→ Sp(C), where for
X ∈ Psh(C), K ∈ Psh(∆), c ∈ C, and n ∈ N,

(X ⊠K)c,n = Xc ×Kn.

Clearly, it preserves colimits in both variables, and therefore, it is left adjoint in both
variables6 since its domains and codomain are presheaf categories. The right adjoints of
X ⊠ − ∶ Psh(∆)Ð→ Sp(C) and − ⊠K ∶ Psh(C)Ð→ Sp(C) will be denoted by

X/− ∶ Sp(C)Ð→ Psh(∆), −/K ∶ Sp(C)Ð→ Psh(C),

respectively. Note that X/− and −/K are contravariant in X and K respectively. Conse-
quently, for W ∈ Sp(C), the functors −/W ∶ Psh(C)op Ð→ Psh(∆) and W /− ∶ Psh(∆)op Ð→
Psh(C) are mutually right adjoint.

Lemma 12.3.5. Let W ∈ Sp(C). For c ∈ C, we have c/W = Wc. Dually, for n ∈ N,
W /∆[n] =W−,n.

Proof. Straightforward computations.

Lemma 12.3.6 (Generalization of [JT07, lemma 4.8]). Let C be a small category, and
F ∶ Psh(∆)op Ð→ Psh(C) be a continuous functor. Then F ≅ G/−, where G ∈ Sp(C) is the
restriction of F to ∆, i.e. G−,k ∶=F∆[k], for k ∈ N.

Proof. For k ∈ N, we have G/∆[k] = G−,k = F∆[k], thus G/− and F coincide on ∆op. Since
∆op freely generates Psh(∆)op under small limits, we are done.

Definition 12.3.7 (Leibniz construction [RV14, definition 4.4]). Consider a functor of
two variables − ⊗ − ∶ A ×B Ð→ C, where C has pushouts. Its Leibniz construction is the
functor −⊗̂− ∶ A[1] ×B[1] Ð→ C[1] which maps an arrow f ∶ a1 Ð→ a2 in A and g ∶ b1 Ð→ b2
in B to the cocartesian gap map below:

a1 ⊗ b1 a1 ⊗ b2

a2 ⊗ b1 ⋅

a2 ⊗ b2.

a1⊗g

f⊗b1
⌜

f ′ f⊗b2
g′

a2⊗g

f⊗̂g

The Leibniz construction ⊗̂ essentially has the same properties as the original functor ⊗,
see [RV14, section 4].

Definition 12.3.8 (Leibniz box product). The Leibniz box product7

− ⊠̂ − ∶ Psh(C)[1] ×Psh(∆)[1] Ð→ Sp(C)[1]

5The box product is denoted by ◻ in [JT07, section 2]. In [RV14, notation 4.1], it is called the exterior
product and written ×.

6Such functors are also called divisible on both sides.
7In [JT07, section 2], it is denoted by ◻′.



is simply the Leibniz construction of definition 12.3.7 applied to the box product of defi-
nition 12.3.4. If K and L are classes of morphisms of Psh(C) and Psh(∆) respectively, let
K ⊠̂ L ∶={k ⊠̂ l ∣ k ∈ K, l ∈ L}.

Akin to the box product, the Leibniz box product is divisible on both sides. Specifically,
if h ∶W1 Ð→W2 is a morphism in Sp(C), let ⟨f/h⟩ be the cartesian gap map on the left:

X2/W1

⋅ X1/W1

X2/W2 X1/W2.

f/W1

⟨f/h⟩

X2/h ⌟
X1/h

f/W2

W1/Y2

⋅ W2/Y2

W1/Y1 W2/Y1.

h/Y2

⟨h/g⟩

W1/g ⌟
W2/g

h/Y1

Then the functor ⟨f/−⟩ is right adjoint to f ⊠̂ −. Dually, if ⟨h/g⟩ be the cartesian gap map
on the right above, then the functor ⟨−/g⟩ is right adjoint to − ⊠̂ g.

Lemma 12.3.9. (1) Let h be a morphism in Sp(C), and K ∈ Psh(C). Then K/h =
⟨(∅↪K)/h⟩. Similarly, if L ∈ Psh(∆), then h/L = ⟨h/(∅↪ L)⟩.

(2) Let X ∈ Sp(C), and f be a morphism in Psh(C). Then f/X = ⟨f/(X ↠ 1)⟩.
Likewise, if g is a morphism in Psh(∆), then X/g = ⟨(X ↠ 1)/g⟩.

Proof. Straightforward computations.

We now lift some technical results of [JT07, section 2] from the setting of bisimplicial
sets to simplicial presheaves over a normal skeletal category C (definition 12.2.10).

Definition 12.3.10. (1) The discrete space functor (−)disc ∶ Psh(C) Ð→ Sp(C) maps
a presheaf X to Xdisc ∶=X ⊠∆[0]. Explicitly, Xdisc is the space such that for all
c ∈ C, (Xdisc)c is the discrete simplicial set at Xc. Recall that the − ⊠∆[0] is left
adjoint to the “evaluation at 0” (−)−,0 ∶=−/∆[0]:

(−)disc ∶ Psh(C)Ð→←Ð Sp(C) ∶ (−)−,0.

Note that if i ∶ C ↪Ð→ C × ∆ is the embedding mapping c ∈ C to the tuple (c, [0]),

then the discrete space functor is i!, the left Kan extension of C iÐ→ C×∆
y
Ð→ Sp(C)

along the Yoneda embedding, and the evaluation at 0 is i∗, the precomposition by
i.

(2) Dual to the discrete space functor, let 1 ∈ Psh(C) be the terminal presheaf, and
(−)const ∶ Psh(∆) Ð→ Sp(C), the constant space functor, map a simplicial set K to
Kconst ∶=1 ⊠K. Explicitly, the functor Kconst ∶ Cop Ð→ Psh(∆) is constant at K.
Recall that (−)const = 1 ⊠ − is left adjoint to r ∶=1/−:

(−)const ∶ Psh(∆)Ð→←Ð Sp(C) ∶ r,

Note that if p ∶ C × ∆ Ð→ ∆ is the projection onto the second component, then
(−)const is simply p∗, the precomposition by p, whereas r ∶=p∗ is the right Kan
extension of C × ∆

p
Ð→ ∆

y
Ð→ Psh(∆) along the Yoneda embedding.



Proposition 12.3.11. The functor r ∶ Sp(C)Ð→ Psh(∆) provides a simplicial enrichment
on Sp(C) with map(X,Y ) ∶= r(Y X). Note that map(X,Y )n = Sp(C)(∆[n]const ×X,Y ).

Proof. Straightforward verifications.

Lemma 12.3.12. For X,Y ∈ Sp(C) we have

map(X,Y ) ≅ ∫
c∈C

map(Xc, Yc),

where the map on the right is the mapping space in Psh(∆).

Proof. For n ∈ N we have

map(X,Y )n ≅ Sp(C)(∆[n]const ×X,Y ) by definition

≅ ∫
c∈C

Psh(∆)(∆[n] ×Xc, Yc) by theorem 0.4.1

= ∫
c∈C

map(Xc, Yc)n by definition.

Proposition 12.3.13 (Generalization of [JT07, proposition 2.4]). The category Sp(C)
endowed with the simplicial enrichment of proposition 12.3.11 is simplicially tensored and
cotensored, where for for K ∈ Psh(∆) and X ∈ Sp(C), we let K ⊗ X ∶=Kconst × X and
XK ∶=XKconst.

Proof. Let Y ∈ Sp(C).
(1) We have

map(K ⊗X,Y ) = map(Kconst ×X,Y ) by definition

= ∫
c∈C

map(K ×Xc, Yc) by lemma 12.3.12

≅ ∫
c∈C

map (K,map(Xc, Yc)) ♠

≅ map(K,∫
c∈C

map(Xc, Yc)) ♠

= map (K,map(X,Y )) by lemma 12.3.12,

naturally in all variables, where ♠ comes from the fact that Psh(∆) is cartesian
closed. Thus − ⊗X is an enriched left adjoint to map(X,−).

(2) We have

map(X,Y K) = map(X,Y Kconst

) by definition
≅ map(Kconst ×X,Y ) by def. of exponentials
= map(K ⊗X,Y ) by definition

naturally in all variables, and thus (−)K is an enriched right adjoint to the left
tensor K ⊗ −.

Proposition 12.3.14. If C is a normal skeletal category, then the class of monomorphisms
of Sp(C) is CellBC⊠̂B∆

.



Proof. Observe that ∆ is normal skeletal (with deg[n] ∶=n), and thus so is the product
C × ∆ in an evident way [Cis06, remark 8.1.7]. In particular, for (c, [n]) ∈ C × ∆, maps
f ∈ (C × ∆)+ with codomain (c, [n]) are pairs or morphisms f = (fC, f∆) ∈ C+ × ∆+, and
f is an isomorphism if and only if both fC and f∆ are8. Thus it is easy to see that the
boundary and boundary inclusion of (c, [n]) are given by

(c ⊠ ∂∆[n]) ∐
∂c⊠∂∆[n]

(∂c ⊠∆[n]) bc⊠̂bnÐÐÐ→ c ⊠∆[n].

We apply proposition 12.2.13 to conclude.

Definition 12.3.15 (Trivial fibration). We say that a morphism f in some category A is
a trivial fibration if it has the right lifting property with respect to all monomorphisms.

Remark 12.3.16. In a model category, the classes of acyclic and trivial fibrations are in
general different. They only coincide when the cofibrations are the monomorphisms, e.g.
in Cisinski model categories.

Proposition 12.3.17 (Generalization of [JT07, proposition 2.3]). Let C be a normal
skeletal category, and f ∶X Ð→ Y be a morphism in Sp(C). The following are equivalent:

(1) f is a trivial fibration;
(2) the map ⟨bc/f⟩ is a trivial fibration, for all c ∈ C;
(3) the map ⟨u/f⟩ is a trivial fibration, for all monomorphisms u in Psh(C);
(4) the map ⟨f/bn⟩ is a trivial fibration, for all n ∈ N;
(5) the map ⟨f/v⟩ is a trivial fibration, for all monomorphisms v in Psh(∆).

Proof. Simple consequence of proposition 12.3.14 and the adjunctions u ⊠̂ − ⊣ ⟨u/−⟩ and
− ⊠̂ v ⊣ ⟨−/v⟩ of section 12.3.

Lemma 12.3.18. Let C be a normal skeletal category (in particular, it is Reedy), and A

be a small category.
(1) For X ∈ Psh(A)C and c ∈ C, the matching object of X at c is ∂c/X. For f ∶X Ð→ Y

in Psh(A)C and c ∈ C, the relative matching map of f at c is ⟨bc/f⟩.
(2) Assume that Psh(A) be endowed with some model structure, and consider the Reedy

model structure on Psh(A)C. Then a morphism f is a Reedy fibration (resp. acyclic
fibration) if and only if for all c ∈ C, the map ⟨bc/f⟩ is a fibration (resp. acyclic
fibration) in Psh(A).

Proof. For the fist claim, observe that

∂c/X = ( colim
d→c

in C+,not iso

d)/X ≅ lim
d→c

in C+,not iso

(d/X) ≅ lim
d→c

in C+,not iso

Xd,

which is the matching object of X at c. The rest is by definition.

For the the rest of this section, we assume that C is a normal skeletal category, and
that Psh(C) is endowed with a Cisinski model structure (definition 12.2.7). Speaking of
the Reedy model structure on Sp(C) ≃ Psh(C × ∆) can lead to confusions as to which
Reedy category is used as shape category. We introduce the vertical and horizontal model
structures to remedy this.

8This observation is called Leibniz’s formula in [RV14, observation 4.2].



Definition 12.3.19. (1) Let Sp(C)v, the vertical model structure on the category of
spaces Sp(C) = Sp(∆)C

op

, be the Reedy structure induced by the Quillen model
structure on Psh(∆). In this structure, a map f ∶ X Ð→ Y is a weak equivalence
(also called column-wise weak equivalence) if for all c ∈ C, the map of simplicial
sets c/f = fc ∶Xc Ð→ Yc is a weak equivalence. It is a fibration (also called vertical
fibration) if for all c ∈ C, the relative matching map ⟨bc/f⟩ is a Kan fibration, where
bc ∶ ∂cÐ→ c is the boundary inclusion of c. Fibrant spaces in Sp(C)v are also called
vertically fibrant.

(2) Dually, let Sp(C)h, the horizontal model structure on Sp(C) ≃ Psh(C)∆
op

, be the
Reedy structure induced by the model structure on Psh(C). The description of weak
equivalence and fibrations transpose from the vertical model structure mutadis
mutandis.

Proposition 12.3.20. The model structures Sp(C)v and Sp(C)h are of Cisinski type
(definition 12.2.7).

Proof. By [Hir09, theorem 15.6.27], both are cofibrantly generated. A map f ∈ Sp(C)
is a vertical (resp. horizontal) acyclic fibration if and only if for all c ∈ C (resp. for all
n ∈ N), the matching map ⟨bc/f⟩ (resp. ⟨f/bn⟩) is an acyclic fibration in Psh(∆)Quillen

(resp. in the model structure on Psh(C), which is assumed to be of Cisinski type), i.e. a
trivial fibration. By proposition 12.3.17, f is a trivial fibration. Finally, f is a vertical or
a horizontal acyclic fibration if and only if it is a trivial fibration. Therefore, vertical and
horizontal cofibrations are the monomorphisms.

Proposition 12.3.21 (Generalization of [JT07, proposition 2.5]). Let f ∶ X Ð→ Y be a
morphism in Sp(C). The following are equivalent:

(1) f is a vertical fibration, i.e. the map ⟨bc/f⟩ is a Kan fibration (see example 12.1.10),
for c ∈ C;

(2) the map ⟨u/f⟩ is a Kan fibration, for all monomorphism u ∈ Psh(C);
(3) the map ⟨f/hkn⟩ is a trivial fibration, where hkn ∶ Λk[n] Ð→ ∆[n] is the k-th horn

inclusion of [n], for all n ∈ N and 0 ≤ k ≤ n;
(4) the map ⟨f/v⟩ is a trivial fibration, for all anodyne extension v ∈ Psh(∆).

Definition 12.3.22 (Homotopically constant space [RSS01, section 3]). A space X ∈
Sp(C) is homotopically constant if for every map f ∶ [k] Ð→ [l] in ∆, the structure map
X/f ∶X−,l Ð→X−,k is a weak equivalence Psh(C).

Lemma 12.3.23. Let X ∈ Sp(C). The following are equivalent:
(1) X is homotopically constant;
(2) for all k ∈ N, writing s ∶ [k] Ð→ [0] the terminal map in ∆, the structure map

X/s ∶X−,0 Ð→X−,k a weak equivalence;
(3) for every codegeneracy si ∶ [k]Ð→ [k −1] in ∆, the structure map X/si ∶X−,k−1 Ð→

X−,k is a weak equivalence;
(4) for all k ∈ N and all map d ∶ [0]Ð→ [k] in ∆, the structure map X/d ∶X−,k Ð→X−,0

is a weak equivalence;
(5) for every coface map di ∶ [k] Ð→ [k + 1] in ∆, the structure map X/di ∶ X−,k+1 Ð→

X−,k is a weak equivalence.



Proof. The implications (1) Ô⇒ (2) Ô⇒ (3) and (1) Ô⇒ (4) Ô⇒ (5) are trivial.
(2) Ô⇒ (1) Take a map f ∶ [k] Ð→ [l] in ∆. Clearly, s = sf , so X/s = (X/f)(X/s).

By 3-for-2, X/f is a weak equivalence.
(3) Ô⇒ (2) Note that the terminal map s ∶ [k]Ð→ [0] is a composite of codegenera-

cies [k]Ð→ [k − 1]Ð→ ⋯Ð→ [1]Ð→ [0].
(4) Ô⇒ (2) The terminal map s ∶ [k]Ð→ [0] is a retraction of any map d ∶ [0]Ð→ [k],

thus X/s is a section of X/d. By 3-for-2, X/s is a weak equivalence.
(5) Ô⇒ (4) Note that all map d ∶ [0]Ð→ [k] is a composite of coface maps.

Proposition 12.3.24 (Generalization of [JT07, proposition 2.8]). If a space is vertically
fibrant (definition 12.3.19), then it is homotopically constant.

Proof. Let X ∈ Sp(C) be vertically fibrant. Take d ∶ [0] Ð→ [n] in ∆. Since d ∶ ∆[0] Ð→
∆[n] is a trivial cofibration in Psh(∆)Quillen, by proposition 12.3.21, the map X/d = ⟨(X →
1)/d⟩ is a trivial fibration. Apply lemma 12.3.23 to conclude.

Proposition 12.3.25 (Generalization of [JT07, proposition 2.9]). A map f ∶ X Ð→ Y

between vertically fibrant spaces is a weak equivalence in Sp(C)h if and only if f−,0 ∶
X−,0 Ð→ Y−,0 is a weak equivalence.

Proof. Let n ∈ N and s ∶ [n] Ð→ [0] be the terminal map in ∆. We have a commutative
square

X−,0 Y−,0

X−,n Y−,n

f−,0

X/s Y /s
f−,n

where by proposition 12.3.24, the vertical morphisms are weak equivalences. The result
follows by 3-for-2.





Chapter Thirteen

The homotopy theory of ∞-opetopic algebra

W
e now take interest in the notion of “weak opetopic algebra”, or ∞-algebras.
In dimension 1, ∞-categories are modeled by the weak Kan complexes (or
quasi-categories) of Boardman–Vogt [BV73], further studied by Joyal [Joy08],

Lurie [Lur09], and others. In particular, the fibrant objects of Joyal’s model structure
Psh(∆)Joyal on simplicial sets are exactly quasi-categories. One dimension above, at the
level of operads, similar results have been achieved by Cisinski and Moerdijk [CM11b]
[CM13], using the category Ω of dendrices as shape theory, rather than ∆. The idea is
similar:∞-operads are presheaves over Ω satisfying some non strict “horn filling condition”.
In particular, operads are recovered as presheaves which satisfy said conditions strictly. In
this chapter, we generalize those ideas by considering the category Λ of opetopic shapes
(definition 11.1.33). More precisely, by applying Cisinski’s homotopy theory (recalled in
section 12.2) we show that Psh(Λ) can be endowed with a model structure whose fibrant
objects are exactly the presheaves satisfying some inner Kan filling condition.

13.1 A SKELETAL STRUCTURE ON Λ

Let n ≥ 1. In this section, we endow Λ = Λ1,n with the structure of a skeletal category (cf.
definition 12.2.10). To that end, we need to assign a notion of degree to objects λ ∈ Λ, which
shall be denoted by degλ ∈ N, and specify two wide subcategories Λ+ and Λ− satisfying
axioms (Sq0) to (Sq3).

Definition 13.1.1. Recall from corollary 11.2.34 that the objects of Λ are (up to iso-
morphisms) the free algebras on (n + 1)-opetopes. For ω ∈ On+1, let deghω ∶=#ω● be the
number of nodes of ω.

Definition 13.1.2. Let f ∶ hω Ð→ hω′ be a morphism in Λ, with ω,ω′ ∈ On+1. In particu-
lar, it induces a set map between (n − 1)-cells: (Mf)n−1 ∶ (Mhω)n−1 Ð→ (Mhω′)n−1. Let
Λ+ (resp. Λ−) be the wide subcategory spanned by those morphisms f such that (Mf)n−1
is a monomorphism (resp. epimorphism).

The rest of this section is dedicated to prove the following result.

Theorem 13.1.3. With the data of definitions 13.1.1 and 13.1.2, Λ is a skeletal category.

Proof of theorem 13.1.3, axiom (Sq0). Since Λ has no isomorphisms beside the identities,
this axiom holds trivially.

Lemma 13.1.4. Let ω ∈ On+1 = trZn−1 and ψ ∈ On. Then (Mhω)ψ is the set of sub-Zn−1-
trees ν of ω such that tν = ψ.
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Proof. By definitions 11.1.16 and 11.2.1,

(Mhω)ψ = ZS[ω]ψ = ∑
ν∈On+1
t ν=ψ

Psh(On−1,n)(S[ν], S[ω]),

and morphisms S[ν]Ð→ S[ω] are precisely the Zn−1-tree embeddings of ν in ω.

Lemma 13.1.5. Let f ∶ hω Ð→ hω′ be a morphism in Λ, with ω,ω′ ∈ On+1. The following
are equivalent:

(1) f ∈ Λ+ (resp. Λ−);
(2) the map between n-cells Mfn ∶ (Mhω)n Ð→ (Mhω′)n is a monomorphism (resp.

an epimorphism);
(3) Mf is a monomorphism (resp. an epimorphism).

Proof. Recall from theorem 11.2.33 that the image of M ∶ Alg Ð→ Psh(O≥n−1) is the
orthogonality class induced by S≥n+1, thus Mf≥n is a monomorphism (resp. an epimor-
phism) if and only if Mfn is. It remains to show that Mfn−1 is a monomorphism (resp.
epimorphism) if and only if Mfn is. But this is a direct consequence of lemma 13.1.4,
stating that (Mhω)n is the set of sub-Zn−1-trees of ω.

Corollary 13.1.6. Let f ∶ hω Ð→ hω′ be a morphism in Λ, with ω,ω′ ∈ On+1. The following
are equivalent:

(1) f ∈ Λ+ ∩ Λ−, i.e. fn−1 is an isomorphism;
(2) Mfn is an isomorphism;
(3) Mf is an isomorphism;
(4) f is an isomorphism.

Proof. Follows from lemma 13.1.5 and the fact that M reflects isomorphisms (since it is
equivalent to the inclusion of a small orthogonality class).

Proof of theorem 13.1.3, axiom (Sq1). Let f ∶ hω Ð→ hω′ be a morphism in Λ that is not
an isomorphism, with ω,ω′ ∈ On+1. If f ∈ Λ+, then by lemma 13.1.5 and corollary 13.1.6,
Mfn is a monomorphism that is not an isomorphism, thus #(Mhω)n < #(Mhω′)n, i.e.
the number of subtrees of ω is strictly less than that of ω′. In particular, the number of
nodes of ω is strictly less than that of ω′, i.e. deghω < deghω′. The case where f ∈ Λ−
instead of Λ+ is treated similarly.

Proof of theorem 13.1.3, axiom (Sq2). Let f ∶ hω Ð→ hω′ be a morphism in Λ, with
ω,ω′ ∈ On+1. It maps the maximal subtree ω ⊆ ω to a subtree of ω′, say ν ⊆ ω′. Then the
following is the desired factorization:

hω hω′

hν.

f

f

By lemma 13.1.5, Λ+ only contains inclusions (seen in Psh(O≥n−1)), and uniqueness of the
factorization follows.



Lemma 13.1.7. Let f1, f2 ∶ hω Ð→ hω′ be two morphisms in Λ, with ω,ω′ ∈ On+1. Recall
from lemma 13.1.4 that (Mhω)n is the set of sub Zn−1 trees of ω. Then, f1 = f2 if and
only if Mf1 and Mf2 agree on all one-node subtrees of ω.

Proof. Under the adjunction Psh(O≥n−1) Ð→←Ð Alg, fi corresponds to a morphism f̄i ∶
O[ω] Ð→ Mhω′, and since S≥n+1 ⊥ Mhω′, it is uniquely determined by its restriction
fi ∶ S[hω]Ð→ hω′.

Notation 13.1.8. As a consequence of lemma 13.1.7, if ω ∈ On+1 is not degenerate, the
algebra hω is freely generated by its one-node subtrees. We denote these generators by
cω,[p], where [p] ranges over ω●.

Proof of theorem 13.1.3, axiom (Sq3). Let f ∶ hω Ð→ hω′ be a morphism in Λ−. We define
a section g of f . By adjointness, defining a map g ∶ hω′ Ð→ hω is equivalent to specifying
a map ḡ ∶ O[ω′] Ð→Mhω in Psh(O≥n−1). Since S≥n+1 ⊥Mhω, it is enough to define ḡ on
the spine S[ω′] of ω′. For [p] ∈ (ω′)●, let ḡ(s[p] ω′) ∶= s[q] ω, where

[q] ∶= min
wrt. ≺

{[r] ∈ ω● ∣Mf(s[r] ω) = s[p] ω′} .

In other words, g maps the node s[p] ω
′ to the lexicographically minimal node in the fiber

f−1(s[p] ω′). The composite

S[ω′]
ḡ
Ð→Mhω

Mf
Ð→Mhω′

maps a node s[p] ω
′ to s[p] ω

′, thus g is a section of f .
Let now f1, f2 ∶ hω Ð→ hω′ be a morphism in Λ− having the same sections. In particular,

for gi the section of fi constructed as above, where i = 1,2, we have f1g2 = idhω′ . Thus for
[p] ∈ (ω′)●, we have Mg2(s[p] ω′) ⪯ Mg1(s[p] ω′), meaning that the node Mg2(s[p] ω′) is
“below” Mg1(s[p] ω′) in the tree ω. Conversely, since f2g1 = idhω′ , we have Mg1(s[p] ω′) ⪯
Mg2(s[p] ω′), and finally, Mg1(s[p] ω′) =Mg2(s[p] ω′). By lemma 13.1.7, g1 = g2, so clearly,
f1 = f2.

Example 13.1.9. Take n = 1, so that Λ = ∆, and consider the map f ∶ [4] Ð→ [1] in ∆−
defined by f(0) = f(1) = 0 and f(2) = f(3) = f(4) = 1. Then f admits several sections (6
in total), but the proof of (Sq3) constructs that which maps each element i ∈ [1] to the
minimal element of f−1(i). Explicitly, g(0) ∶=0 and g(1) ∶=2.

13.2 ANODYNE EXTENSIONS

Proposition 13.2.1. The class of monomorphisms of Psh(Λ) is exactly the class of
relative B-cell complexes CellB.

Proof. By theorem 13.1.3, Λ is a normal skeletal category, and proposition 12.2.13 applies.

Definition 13.2.2 (Elementary face). Let λ ∈ Λ.
(1) A elementary face of λ is a morphism f ∶ λ′ Ð→ λ in Λ+, where degλ′ = degλ − 1.



(2) Let e ∶ λ′ Ð→ λ be an elementary face of λ, and write λ = hω and λ′ = hω′, with
ω,ω′ ∈ On+1. The face e is inner if Men−1 exhibits a bijection between the leaves of
ω′ (seen as (n− 1)-cells of Mhω′) and the leaves of ω, and if it maps the root edge
e[] ω to e[] ω

′. In other words, e induces an isomorphism h∂O[tω]Ð→ h∂O[tω′].

Remark 13.2.3. If e ∶ hω′ Ð→ hω is an inner face of hω, then, by a counting argument on
the number of nodes of ω′ and ω, there exists a unique [p] ∈ (ω′)● such that e(cω′,[p]) (see
notation 13.1.8) is a subtree of ω with two nodes. If [p] ≠ [p′] ∈ (ω′)●, then e(cω′,[p′]) is a
generator of hω, i.e. a one-node subtree. Thus f exhibits a subtree ν ∶= e(cω,[p]) of ω with
two nodes, or equivalently, an inner edge.

This remark motivates the following terminology:

Definition 13.2.4 (Inner horn). (1) Let ω ∈ On+1. If ω is degenerate (resp. an endo-
tope), say ω = Iϕ for some ϕ ∈ On−1 (resp. Yϕ for some ϕ ∈ On), then hω does not
have any inner face, but by convention, let its inner horn simply be Λ[hω] ∶=hϕ.
Write hhω ∶ Λ[hω]Ð→ hω for the unique inner horn inclusion of hω.

(2) Otherwise, for e an inner face of λ, define Λe[λ], the inner horn of λ at e, as the
colimit in Psh(Λ)

Λe[λ] ∶= colim
g∶λ′→λ elem. face

g≠e

λ′.

Let heλ ∶ Λ
e[λ]Ð→ λ be the inner horn inclusion λ at e.

Let Hinner ⊆ Psh(Λ)[1] be the set of inner horn inclusions.

Definition 13.2.5 (Inner anodyne extension). Let the class Aninner of inner anodyne
extensions (also called mid anodyne extensions) be the saturation of Hinner. An inner
fibration (also called mid fibration) is a morphism f ∈ Psh(Λ) such that Hinner ⋔ f , or
equivalently, such that Aninner ⋔ f .

Remark 13.2.6. Note that definitions 13.2.4 and 13.2.5 are compatible with the classical
notions of inner horn and inner anodyne extension in the simplicial setting (n = 1, see
example 0.3.10) and in the dendroidal setting (n = 2, see [CM13, section 1]).

Definition 13.2.7. Generalizing definition 13.2.4, if ω ∈ On+1, and I is a set of (not
necessarily inner) elementary faces of hω, let ΛI[λ] be the following colimit in Psh(Λ):

ΛI[λ] ∶= colim
g∶λ′→λ elem. face

g∉I

λ′

and write hIhω ∶ Λ
I[hω]Ð→ hω for the canonical inclusion.

Lemma 13.2.8. Let ω ∈ On+1 have d ≥ 2 nodes, and ∅ ≠ I ⊆ J be two nonempty sets of
inner faces of hω. Then the inclusion hJhω factors as

ΛJ[hω] uÐ→ ΛI[hω]
hIhωÐÐ→ hω,

and u is a relative cell complex of inner horn inclusions of opetopes with at most d − 1
nodes1.

1As we see in the proof, it is even a finite composite of pushouts of such maps.



Proof. We proceed by induction on m ∶=#(J − I). If m = 0, then u is an identity, and the
result holds trivially. Assume m ≥ 1, and that the holds up to m − 1. Take e ∈ J − I, and
let J ′ ∶=J − {e}. The inclusion u decomposes as

ΛJ[hω] vÐ→ ΛJ
′
[hω] wÐ→ ΛI[hω].

By induction, since hJ
′

hω = h
I
hω ⋅w, the inclusion w is a cell complex of inner horn inclusions

of opetopes with at most d − 1 nodes. To conclude, it remains to show that v is too.
The inner face e of hω exhibits a subtree ν ⊆ ω with two nodes (see remark 13.2.3), or

equivalently, an inner edge of ω, say at address [p]. Let ω′ be ω where this inner edge has
been contracted. Formally, decomposing ω on the left so as to exhibits the subtree ν, the
opetope ω′ is defined on the right:

ω = α ○
[p]
ν◯
[li]

βi, ω′ ∶=α ○
[p]

Yt ν ◯
[℘ν[li]]

βi,

where [li] ranges over ν∣. Equivalently, ω′ is the only opetope such that ω′ ◽[p] ν = ω. Then
the inclusion w ∶ ΛJ[hω]Ð→ ΛJ

′[hω] above is obtained as the following pushout

ΛJ
′[hω′] ΛJ[hω]

hω′ ΛJ
′[hω]

⌜
hJ
′
hω

w

Hence w is a pushout of hJ ′hω, and ω′ has d − 1 nodes.

Lemma 13.2.9 (Generalization of [MW09, lemma 5.1]). Let ω ∈ On+1, and I be a
nonempty set of inner faces of hω. Then the inclusion hIhω ∶ Λ

I[hω] ↪Ð→ hω is an in-
ner anodyne extension.

Proof. We proceed by induction on d ∶=deghω and on m ∶=#I. Since I is nonempty, d ≥ 2
and m ≥ 1. If d = 2, then hω has a unique inner face e, and hIhω = h

e
hω.

Assume now that d ≥ 3. If m = 1, then hIhω is an inner horn inclusion, and the claim
trivially holds. If m ≥ 2, take e ∈ I, and let J ∶= I − {e}. The inclusion hIhω decomposes as

ΛI[hω] uÐ→ ΛJ[hω]
hJhωÐÐ→ hω.

By induction on m, hJhω is an inner anodyne extension. By lemma 13.2.8, u is a cell complex
of inner horn inclusions of opetopes of at most d− 1 nodes, and so by induction on d, u is
an inner anodyne extension as well.

Lemma 13.2.10. Let ω ∈ On+1 have d ≥ 2 nodes, and I be the set of all inner faces of
ω. Note that ΛI[hω] contains all the generators cω,[p] (see notation 13.1.8), and thus the
spine inclusion shω decomposes as

S[hω] uÐ→ ΛI[hω]
hIhωÐÐ→ hω.

Then the inclusion u is a relative cell complex of spine inclusions of opetopes of at most
d − 1 nodes.



Proof. Note that an outer face (i.e. an elementary faces that are not inner) of hω is an
inclusion ω′ ⊆ ω of a subtree of ω of d − 1 nodes. Hence ΛI[hω] is the colimit on the left,
while S[hω] can be expressed as on the right

ΛI[hω] = colim
ω′⊆ω

deghω′=d−1

hω′, S[hω] = colim
ω′⊆ω

deghω′=d−1

S[hω′].

Thus
u ∶ colim

ω′⊆ω
deghω′=d−1

S[hω′] ↪Ð→ colim
ω′⊆ω

deghω′=d−1

hω′

can be obtained as a composition of pushouts of the sω′ ’s. Explicitly, let ω1, . . . , ωm ⊆ ω be
the subtrees of ω with d−1 nodes, and let g1, . . . , gm be the associated outer face inclusions
of hω. Let X(0) ∶=S[ω], let ι0 be the identity on X(0), and for 1 ≤ i ≤ m, let X(i) be the
pushout

S[ωi] X(i−1)

hωi X(i),
⌜

ιi−1gisωi

v

and ιi ∶= vιi−1. Then ΛI[hω] =X(m).

Proposition 13.2.11 (Generalization of [JT07, lemma 1.21]). Spine inclusions are inner
anodyne extensions, and consequently, ⋔(S⋔) ⊆ Aninner.

Proof. Let ω ∈ On+1, and consider the spine inclusion shω ∶ S[hω]↪Ð→ hω.
(1) If deghω =#ω● = 0,1, then shω is an identity, thus an inner anodyne extension.
(2) If deghω = 2, then hω admits a unique inner face e ∶ hYtω Ð→ hω, and note that

Λe[hω] = S[hω]. Thus in this case, the spine inclusion is an inner horn inclusion.
(3) Assume d = deghω ≥ 3, and let I be the set of all inner faces of hω. Note that since

ΛI[hω] contains all generators of hω (i.e. subtrees of one node), the spine inclusion
shω decomposes as

S[hω] uÐ→ ΛI[hω]
hehωÐÐ→ hω,

and in order to show that shω is an inner anodyne extension, it suffices to show
that u is. By lemma 13.2.10, it is a cell complex of spine inclusions of opetopes of
at most d − 1 nodes, thus by induction, it is an inner anodyne extension.

Proposition 13.2.12. Inner anodyne extensions are S-local isomorphisms.

Proof. It is enough to show that inner horn inclusions are S-local isomorphisms. Let ω ∈
On+1 have d ≥ 2 nodes. If d = 2, then it has a unique inner face, and the corresponding
inner horn inclusion is simply the spine inclusion S[hω]↪Ð→ hω.

Assume d ≥ 3, let I be the set of all inner faces of hω, and e ∈ I. Then the spine
inclusion shω decomposes as

S[hω] uÐ→ ΛI[hω] vÐ→ Λe[hω]
hehωÐÐ→ hω.

By lemma 13.2.10, u is a spine complex, thus an S local-isomorphism. By lemma 13.2.8, v is
a cell complex of inner horn inclusions of opetopes with at most d−1 nodes. By induction,
v is an S local-isomorphism. Thus vu and shω = hehωvu are S local-isomorphisms, and by
3-for-2, so is hehω.



13.3 HOMOTOPICAL STRUCTURE

Definition 13.3.1 (Parallel cells). Let X ∈ Alg be an opetopic algebra, ω ∈ On, and
x, y ∈Xω. We say that x and y are parallel if the following two composites are equal:

∂O[ω] O[ω] X.
bω x

y

Explicitly, tx = tx′, and for all [p] ∈ ω●, s[p] x = s[p] x′.

Definition 13.3.2 (Quotient of an opetopic algebra). Recall that by proposition 11.1.30,
the category Alg is cocomplete. Let X ∈ Alg be an opetopic algebra, ω ∈ On, and x, y ∈Xω

be parallel cells. Let the quotient of X by the equality x = y be the following coequalizer
in Alg:

hω X X/ {x = y} .
x

y

More generally, consider Xn as a set over On, and let K ⊆ Xn ×Xn be a set of pairs of
parallel cells. Then the quotient of X by K is the following coequalizer in Alg:

∑ω∈On∑(x,y)∈Kω hω X X/K,
p1

p2

where p1(x, y) ∶=x and p2(x, y) ∶= y.

Example 13.3.3. Assume k = n = 1, so that Alg = Cat. Let C be a category. Then
definition 13.3.1 corresponds to the classical definition of parallel morphisms. If K is a
set of pairs of parallel morphisms, then C/K is the usual quotient of C by the congruence
relation generated by K, see e.g. [Awo10, definition 4.6].

Definition 13.3.4 (Rezk interval in Alg). Let ϕ ∈ On−1. The Rezk interval of shape ϕ is
the algebra Jϕ ∈ Alg generated by one invertible operation jϕ of shape Yϕ. Explicitly, Jϕ
has two (n− 1)-cells 0ϕ,1ϕ ∈ (Jϕ)ϕ, and four n-cells jϕ, j−1ϕ , id0, id1 ∈ (Jϕ)Yϕ , satisfying the
following equalities

s[] jϕ = t j−1ϕ = 0ϕ, t jϕ = s[] j−1ϕ = 1ϕ, jϕ ○
[]
j−1ϕ = id1, j−1ϕ ○[]

jϕ = id0 .

The interval Jϕ admits an involutive automorphism that swaps 0ϕ and 1ϕ, and jϕ and j−1ϕ .
In particular, up to isomorphism, there is a unique endpoint inclusion jϕ ∶ hϕÐ→ Jϕ, and
let EJ ∶={jϕ ∣ ϕ ∈ On−1}.

If X = (Xϕ ∣ ϕ ∈ On−1) is a set over On−1, let JX ∶=∑ϕ∈On−1∑x∈Xϕ Jϕ. In the x ∈ Xϕ

component, we write jx instead of jϕ, and similarly, j−1x , 0x, and 1x. The Rezk interval
(without any mention of shape) is the sum J = JOn−1 ∶=∑ϕ∈On−1 Jϕ in Alg.

Notation 13.3.5. Let A ∈ Alg be an algebra, ϕ ∈ On−1, and a ∈ MAYϕ (recall that M ∶
Alg Ð→ Psh(O) is the opetopic nerve of algebras, see definition 11.2.3). If x = s[] a and
y = ta, we write a ∶ xÐ→ y. For example, in the Rezk interval Jϕ, the cell jϕ is of the form
0ϕ Ð→ 1ϕ.



Definition 13.3.6 (Rezk cylinder of an algebra). Let A ∈ Alg, let hAn−1 be the subalgebra
of A spanned by all identity operations, and consider the following pushout in Alg:

hAn−1 + hAn−1 A +A

JAn−1 A′,
⌜

(i0,i1)

where JAn−1 is defined in definition 13.3.4. For a a cell of A and e ∈ {0,1}, write a(e) ∶= ie(a).
Explicitly, A′ is generated by two copies of A, and for each a ∈ Aψ, ψ ∈ On−1, an additional
isomorphism ja ∶ a(0) Ð→ a(1). The Rezk cylinder of A is the quotient JA ∶=A′/K, where

K ∶=
⎧⎪⎪⎨⎪⎪⎩
a(1)◯

[pi]
js[pi] a = jta ○[]

a(0) ∣ ω ∈ On, ω
● = {[p1], . . .} , a ∈ Aω

⎫⎪⎪⎬⎪⎪⎭
. (13.3.7)

See notation 11.2.35 for the ○ notation. We write A(e) for the image of ie, and, by abuse
of notation, ie ∶ A(e) ↪Ð→ JA the obvious inclusion. It is a cylinder object in the sense of
definition 12.2.1, i.e. we have a canonical factorization of the codiagonal map

A +A A

JA.

∇

(i0,i1) ∇

Explicitly, ∇ ∶ JA Ð→ A maps a(e) to a, for a cell a ∈ A, and ja to ida, if a is (n − 1)-
dimensional. Note that (i0, i1) ∶ A+AÐ→ JA is a monomorphism, since the relation K of
equation (13.3.7) does not identify cells of A(e), for e = 0,1.

Example 13.3.8. Let ψ ∈ On. Then Jhψ is generated by
(1) ψ(0), ψ(1) ∈ (Jhψ)ψ, i.e. two copies of hψ,
(2) for each [p] ∈ ψ●, writing ϕ ∶= s[p]ψ, two cells jϕ, j−1ϕ ∈ (Ihψ)Ys[p] ψ

, i.e. one copy of
Jϕ,

(3) jtψ, j−1tψ, i.e. one copy of Jtψ,
subject to the equation (13.3.7). Likewise, for ω ∈ On+1, the cylinder Ihω is generated by
two copies of hω, and one copy Je[q] ω for each edge address [q] of ω.

Remark 13.3.9. The cylinder JA of an algebra A can be thought of the Boardman–Vogt
tensor product [Wei11] [BV73] [May72] J ⊗BV A. Unfortunately, in the planar case, a
general construction is not possible as there is no way to “shuffle the inputs”. In fact, this
is the only obstruction, so one could still define A ⊗BV B as long as either A of B only
have unary (i.e. endotopic) operations.

The Rezk cylinder construction of definition 13.3.6 extends to Psh(Λ):

Definition 13.3.10 (Rezk interval in Psh(Λ)). For ϕ ∈ On−1, recall the definition of
the Rezk interval Jϕ ∈ Alg from definition 13.3.4. Let Iϕ ∶=NJϕ be the Rezk interval of
shape hϕ. Write iϕ = N jϕ ∶ hϕ Ð→ Iϕ for the endpoint inclusion (which is unique up to
isomorphism), and EI ∶={iϕ ∣ ϕ ∈ On−1}.



Definition 13.3.11 (Rezk cylinder of a presheaf over Λ). Let ω ∈ O≥n−1. The Rezk cylinder
Ihω of the representable hω is defined as the nerve N(Jhω). Extend I by colimits to
obtain a functor I ∶ Psh(Λ) Ð→ Psh(Λ). The Rezk cylinder IX of a presheaf X ∈ Psh(Λ)
is a cylinder object in the sense of definition 12.2.1, i.e. we have a factorization of the
codiagonal map

X +X X

IX.

∇

(i0,i1) ∇

Remark 13.3.12. Explicitly, for X ∈ Psh(Λ), we have

IX ∶= colim
hω→X

N(Jhω).

In dimension (n − 1) and n, IX is the following pushout

Xn−1 +Xn−1 Xn−1,n +Xn−1,n

NJXn−1 (IX)n−1,n,
⌜

b

where b maps x ∈ Xψ in the first (resp. the second) component to 0x (resp. 1x) in NJx ⊆
NJXn−1 . The (n + 1)-cells of IX are so that in τIX, the following relation (analogous to
equation (13.3.7)) holds:

x(1)◯
[pi]

js[pi] x = jtx ○[]
x(0)

for a cell x ∈Xω, ω ∈ On, and ω● = {[p1], . . .}.
With that in mind, we readily deduce the following:

Lemma 13.3.13. For X ∈ Psh(Λ) we have a canonical isomorphism JτX ≅ τIX.

Proposition 13.3.14. The functorial cylinder I is an elementary homotopical data (def-
inition 12.2.3).

Proof. Straightforward unpacking of the definition of I.

Definition 13.3.15 (I-anodyne extension). Recall from definition 13.3.10 the set EI

of endpoint inclusions of the Rezk intervals in Psh(Λ). Let the class AnI of I-anodyne
extensions, be the saturation of Hinner ∪ EI.

Remark 13.3.16. At this stage, the term “anodyne” is a bit overloaded, so to summarize:
(1) an anodyne extension is an element of An ⊆ Psh(∆)[1], which is the saturation of

the set H = H1,1 of simplicial horn inclusions (example 0.3.10); we do not need to
generalize this notion to the opetopic setting;

(2) an inner anodyne extension is an element of Aninner, (definition 13.2.5) which is
the saturation of the set Hinner of inner horn inclusions (definition 13.2.5), and this
terminology is compatible with the classical one in the simplicial setting;

(3) an I-anodyne extension is an element of AnI (definition 13.3.15), which is the
saturation of the set Hinner ∪ EI; by definition, Aninner ⊆ AnI.



Lemma 13.3.17. Let X ∈ Psh(Λ), and consider the unit map ηX ∶ X Ð→ NτX. If ηX is
a monomorphism, then it is an inner anodyne extension.

Proof. Let X(0) ∶=X and ι0 ∶=ηX . We construct a sequence X = X(0) Ð→ X(1) Ð→ ⋯ Ð→
X(β) Ð→ ⋯. Assume by induction that for an ordinal β and all α < β, we have a factor-
ization

X
∈AninnerÐÐÐÐ→X(α)

ιαÐ→ NτX

of ηX , and that ια is injective. If β is a limit ordinal, simply set X(β) ∶= colimα<βX
(α), and

ιβ to be the induced inclusion.
Assume that β is a successor ordinal, say β = α+1, choose an unsolved inner horn lifting

problem l ∶ Λe[hω]Ð→ X(α) with ω ∈ On+1, and write e ∶ hν Ð→ hω for the corresponding
inner face. If such a lifting problem does not exist, simply set X(α+1) ∶=X(α) and ια+1 ∶= ια.
Otherwise, freely adjoin a solution to l by the means of the following pushout

Λe[hω] X(α)

hω Y

NτX,

l

hehω
⌜

i
ια

l̄

∃!

j

and let j ∶ Y Ð→ NτX be the map induced by ια, and the unique lift of ιαl along hehω
(recall that by proposition 13.2.12, Hinner ⊥ NτX). One of the following cases occurs.

(1) If j is a monomorphism, simply set X(α+1) ∶=Y and ια+1 ∶= j.
(2) Assume that j is not injective. Since j is injective on X(α) (as j extends ια which

is injective by induction), there must exist x ∈ X(α) and y ∈ Y −X(α) such that
j(x) = j(y). Because l was not solved in X(α), the offending cell y cannot be l̄ ∈ Yhω,
thus it is necessarily y ∶= e(l̄). Consider the coequalizer

hν Y X(α+1)
x

y

r

that collapses y onto x. Then r has a section s that maps the class [x] = [y] to y.
Thus r exhibits X(α+1) as a retract of Y , and the map ri ∶ X(α) Ð→ X(α+1) as a
retract of i:

X(α) X(α)

X(α+1) Y,

ri i

s

r

where s is a section of r. In particular, the composite X Ð→X(α)
riÐ→X(α+1) is an

inner anodyne extension. Note that ια+1 ∶= js is injective and extends ια.
In all cases, we constructed a factorization

X
∈AninnerÐÐÐÐ→X(α+1)

ια+1ÐÐ→ NτX



of ηX , where ια+1 is injective. If κ is the cardinal of the set of horn lifting problems of
NτX (solved or unsolved), then the sequence Xα stabilizes after κ steps, as all lifting
problems have been solved. Clearly, X(κ) = NτX, and by construction, ηX is an inner
anodyne extension.

Corollary 13.3.18. Let X ∈ Psh(Λ), A ∈ Alg, and m ∶ X Ð→ NA be a monomorphism
such that its transpose m̄ ∶ τX Ð→ A is an isomorphism. Then m is an inner anodyne
extension.

Proof. The condition states that up to isomorphism, m is the unit map ηX ∶X Ð→ NτX.
We can apply lemma 13.3.17 to conclude.

Proposition 13.3.19. The pair (I,AnI) satisfies condition (An1) of definition 12.2.4,
i.e. for every monomorphism m ∶ X Ð→ Y in Psh(Λ), and e = 0,1, the cocartesian gap
map g is I-anodyne:

X Y

IX IX ∪ Y (e)

IY.

m

ie ⌜
ie ie

Im

g

Proof. By proposition 13.2.1, it is enough to check the claim when m is a boundary
inclusion, say m = bhω ∶ ∂hω Ð→ hω with ω ∈ On+1.

(1) Assume deghω = 0, i.e. ω is degenerate, say ω = Iϕ. Then ∂hω = ∅, and since I

preserves colimits, I∂hω = ∅ as well. Thus g is the inclusion hω(e) = hIϕ = hϕ Ð→
Ihω = Iϕ, i.e. an endpoint inclusion of the Rezk interval Iϕ, which by definition is
I-anodyne

(2) Assume deghω ≥ 1. We only treat the case e = 0, the other one being similar.
Let [p] ∈ ω●, and consider the generator cω,[p] of hω (see notation 13.1.8). By
equation (13.3.7), in Ihω, we have

c
(1)
ω,[p] = jta ○[]

c
(0)
ω,[p]◯

[qi]
j−1s[qi] a

where [qi] ranges over (s[p] ω)●. Therefore, Ihω is freely generated by I∂hω∪hω(0).
By corollary 13.3.18, g is an inner anodyne extension.

Proposition 13.3.20. The pair (I,AnI) satisfies condition (An2) of definition 12.2.4,
i.e. if m ∶X Ð→ Y is an I-anodyne extension, then so is the cocartesian gap map g:

X +X Y + Y

IX IX ∪ (Y + Y )

IY.

m+m

(i0,i1) ⌜ (i0,i1)

Im

g



Proof. By proposition 13.2.1, it is enough to check the claim when m is an inner horn
inclusion or an endpoint inclusion of a Rezk interval.

(1) Assume m is a inner horn inclusion, say m = hehω ∶ Λe[hω]Ð→ hω, where ω ∈ On+1.
Recall that by proposition 13.2.12, τ(Λe[hω]) = hω. Thus applying τ to the diagram
of definition 12.2.3 (An2) yields

hω + hω hω + hω

Jhω Jhω

Jhω.

⌜

τg

Therefore g ∶ I(Λe[hω]) ∪ (hω + hω)Ð→ Ihω = NJhω is such that its transpose

Jhω
τg
Ð→ τN(Jhω) ≅Ð→ Jhω

is an isomorphism. By corollary 13.3.18, g is an inner anodyne extension.
(2) Assume m is an endpoint inclusion of a Rezk interval, say m = iϕ ∶ Nhϕ ↪Ð→ NJϕ,

for a ϕ ∈ On−1. Write X ∶=Nhϕ and Y ∶=NJϕ. Note that

IX ∪ (Y + Y ) = I(Nhϕ) ∪ (NJϕ +NJϕ) = IX ∪ (Y + Y ).

Further, IY = I(NJϕ) = N(Jτ(NJϕ)) ≅ N(JJϕ).
The algebra JJϕ contains four (n−1)-cells 00ϕ, 01ϕ, 10ϕ, and 11ϕ of shape ϕ, and is
generated by the n-cells j(0∗)ϕ ∶ 00ϕ Ð→ 01ϕ, j(1∗)ϕ ∶ 10ϕ Ð→ 11ϕ, j(∗0)ϕ ∶ 00ϕ Ð→ 10ϕ,
j
(1∗)
ϕ ∶ 10ϕ Ð→ 11ϕ and their inverses. Further, the equality on the left holds, which

can be depicted as a commutative square of invertible arrows on the right:

j
(∗1)
ϕ ○

[]
j
(0∗)
ϕ = j(1∗)ϕ ○

[]
j
(∗0)
ϕ ,

00ϕ 01ϕ

10ϕ 11ϕ.

j
(0∗)
ϕ

j
(∗0)
ϕ

j
(∗1)
ϕ

j
(1∗)
ϕ

On the other hand, the pushout IX ∪ (Y + Y ) contains j(0∗)ϕ , j(∗0)ϕ , j(∗1)ϕ , and
their inverses. Thus it freely generates JJϕ, i.e. g satisfies the conditions of corol-
lary 13.3.18. Consequently, it is an inner anodyne extension.

Theorem 13.3.21. The category Λ with the functorial cylinder I (definition 13.3.11) and
the class AnI of I-anodyne extensions (definition 13.3.15) forms a homotopical structure
(definition 12.2.6). Using theorem 12.2.8, we obtain the following model structure for
∞-algebras Psh(Λ)∞ on Psh(Λ):

(1) a morphism f is a naive fibration if AnI ⋔ f (definition 13.3.15); a presheaf
X ∈ Psh(Λ) is fibrant if the terminal morphism X Ð→ 1 is a naive fibration;

(2) a morphism f ∶ X Ð→ Y is a weak equivalence if for all fibrant object P ∈ Psh(Λ),
the induced map f∗ ∶ hoPsh(Λ)(Y,P )Ð→ hoPsh(Λ)(X,P ) is a bijection;

(3) a morphism f is a cofibrations if it is a monomorphism.



In particular, Psh(Λ)∞ is of Cisinski type (definition 12.2.7), cellular, and proper. Fibrant
objects in Psh(Λ)∞ are called ∞-algebras (or inner Kan complexes).

Proof. By definition, AnI is the class of relative cell complexes over a set of monomor-
phisms, thus it satisfies axiom (An0). Axioms (An1) and (An2) have been established
by propositions 13.3.19 and 13.3.20 respectively.

This construction is a direct generalization of the Joyal model structure Psh(∆)Joyal
for quasi-categories [JT07, theorem 1.9] [Ber18, theorem 7.1.7 and section 7.3] [Cis19,
definition 3.3.7], and of the Cisinski–Moerdijk model structure Psh(Ω)CM for planar ∞-
operads [CM11b, theorem 2.4]. The following results come as “sanity checks” for Psh(Λ)∞.

Lemma 13.3.22. A presheaf X ∈ Psh(Λ) is an ∞-algebra is and only if Hinner ⋔X.

Proof. It is enough to show that if Hinner ⋔X, then EI ⋔X. So assume that Hinner ⋔X let
ϕ ∈ On−1, and consider a lifting problem x ∶ hϕ Ð→ X. Recall from definition 13.2.4 that
hIϕ has a unique inner horn, and that the associated horn inclusion h ∶ Λ[hω]Ð→ hω, and
let x̄ be the solution on the left:

hϕ X

hIϕ.

x

hIϕ
x̄

hϕ X

Iϕ.

x

iϕ
l

Then the map l ∶ Iϕ Ð→ X mapping jϕ and j−1ϕ (see definition 13.3.4 for notations) to t x̄

is the desired solution as on the right2.

Proposition 13.3.23. The nerve NA of an algebra A ∈ Alg is an ∞-algebra.

Proof. By theorem 11.1.39, S ⊥ NA, and thus by proposition 13.2.12, Hinner ⊥ NA. Apply
lemma 13.3.22 to conclude.

13.4 SIMPLICIAL ACTIONS

The category Psh(Λ) admits a natural simplicial tensor and cotensor that behave well
with the model structure of theorem 13.3.21. In this section, we establish some technical
results that shall be of use in subsequent proofs.

Definition 13.4.1. For k ∈ N and λ ∈ Λ, let ∆[k]⊗ λ be the nerve

∆[k]⊗ λ ∶= N (Jλ∐
λ

Jλ∐
λ

Jλ∐
λ

⋯∐
λ

Jλ) ,

where there is k instances of Jλ. In other words, it is the nerve of k instances of the
(algebraic) cylinder Jλ “glued end-to-end”. Extending in both variables by colimits yields
a tensor product − ⊗ − ∶ Psh(∆) ×Psh(Λ)Ð→ Psh(Λ).

2In fact, t x̄ is the identity cell idx of notation 11.2.35, as the horn inclusion hIϕ ∶ hϕ Ð→ hIϕ is the
spine inclusion sIϕ .



Remark 13.4.2. Let us unfold definition 13.4.1 a little bit. Take X ∈ Psh(Λ) and K ∈
Psh(∆). Then for each x ∈Xhϕ with ϕ ∈ On−1, and k ∈K0, there is a cell k⊗x ∈ (K⊗X)hϕ.
For every edge e ∈ K1, there is an internal isomorphism (an operation that is invertible,
see definition 14.1.6 for a precise definition) e⊗x ∶ d1(e)⊗xÐ→ d0(e)⊗x. More generally,
for every m-cell k ∈Km, write k0, . . . , km ∈K0 for its vertices, and ki,j for its edge from ki
to kj , where 0 ≤ i < j ≤m. We have a cell

k ⊗ x ∈ (K ⊗X)hω, ω ∶=YYϕ ○[]
YYϕ ○[]

⋯ ○
[]
YYϕ ,

such that s[∗i](k ⊗ x) = ki,i+1 ⊗ x is an internal isomorphism ki ⊗ xÐ→ kj ⊗ x.
With this description, it is clear that for I◾ ∈ Psh(∆) (which is the nerve of the groupoid

generated by one isomorphism), we have IX ≅ I◾ ⊗X for all X ∈ Psh(Λ).

Definition 13.4.3. A mapping space and cotensor can be constructed from the tensor
product −⊗− of definition 13.4.1 so as to make Psh(Λ) enriched, tensored and cotensored
over Psh(∆):

map(X,Y )k ∶=Psh(Λ)(∆[k]⊗X,Y ), (Y K)λ ∶=Psh(Λ)(K ⊗ λ,Y ),

where X,Y ∈ Psh(Λ), K ∈ Psh(∆), λ ∈ Λ, and k ∈ N.

Lemma 13.4.4. For X,Y ∈ Psh(Λ) and K ∈ Psh(∆), consider the natural hom-set iso-
morphism

Φ ∶ Psh(Λ)(K ⊗X,Y )Ð→ Psh(Λ)(X,Y K)

of the adjunction K ⊗− ∶ Psh(Λ)Ð→←Ð Psh(Λ) ∶ (−)K . The map Φ preserves and reflects the
I-homotopy relation (definitions 12.2.2 and 13.3.11), i.e. it induces an isomorphism

Φ ∶ hoPsh(Λ)(K ⊗X,Y )Ð→ hoPsh(Λ)(X,Y K).

Proof. It is enough to show that Φ preserves and reflects the elementary I-homotopy
relation. Let f, g ∶K ⊗X Ð→ Y be elementary homotopic maps, i.e. such that there exists
a homotopy H ∶ I(K ⊗X)Ð→ Y making the following triangle commute:

(K ⊗X) + (K ⊗X)

I(K ⊗X) Y.

(i0,i1)
f+g

H

Note that (K⊗X)+(K⊗X) ≅K⊗(X +X), and I(K⊗X) ≅ I◾⊗K⊗X ≅ (I◾×K)⊗X ≅
(K × I◾)⊗X ≅K ⊗ IX. Under the adjunction, the triangle above transposes as

X +X

IX Y K ,

(i0,i1)
Φf+Φg

ΦH

exhibiting a homotopy from Φf to Φg. Reflection of homotopies is proved similarly.

Lemma 13.4.5. Let K ∈ Psh(∆).



(1) For ω ∈ O≥n−1, and e an inner face of hω, the map K⊗hehω ∶K⊗Λe[hω]Ð→K⊗hω
is an inner anodyne extension.

(2) For ϕ ∈ On−1, the map K ⊗ iϕ ∶K ⊗ hϕÐ→K ⊗ Iϕ is a I-anodyne extension.

Proof. Since Aninner and AnI are closed under colimits (in Psh(Λ)[1]), it is enough to check
the claims when K is representable, say K = ∆[m], where m ∈ N. But since ∆[m]⊗X is
a (∆/S[m])-indexed colimit involving ∆[0] ⊗X and ∆[1] ⊗X, it is enough to check the
claims in the case m = 0,1. If m = 0, then ∆[0]⊗− is the identity functor, and both claims
are tautological. If m = 1, then ∆[1]⊗ − ≅ I−, and the claims follows from lemma 12.2.5.

Corollary 13.4.6. For K ∈ Psh(∆), the functor (−)K preserves naive fibrations (defini-
tion 12.2.7), and in particular, ∞-algebras.

Proof. Let L ∶=Hinner ∪ EI, so that by definition AnI = ⋔(L⋔). Let p be a naive fibration,
i.e. a map such that AnI ⋔ p, or equivalently, such that L ⋔ p. By lemma 13.4.5, we have
K⊗L ⊆ AnI, so K⊗L ⋔ p, and by adjunction, L ⋔ pK . Consequently, pK is a naive fibration.

Lemma 13.4.7. (1) For K ∈ Psh(∆), the tensor K ⊗ − ∶ Psh(Λ)∞ Ð→ Psh(Λ)∞ pre-
serves cofibrations and weak equivalences.

(2) Let X ∈ Psh(Λ) be an ∞-algebra. Then −⊗X ∶ Psh(∆)Quillen Ð→ Psh(Λ)∞ preserves
cofibrations, and weak equivalences between Kan complexes.

Proof. (1) Clearly, K⊗− preserves monomorphisms. Let u ∶X Ð→ Y be a weak equiv-
alence, and P ∈ Psh(Λ) be an ∞-algebra. Recall from lemma 13.4.4 that we have a
natural isomorphism

Φ ∶ hoPsh(Λ)(K ⊗X,Y )Ð→ hoPsh(Λ)(X,Y K),

where Φ is the natural hom-set isomorphism of the adjunction K ⊗ − ⊣ (−)K .
Therefore, we have the following naturality square:

hoPsh(Λ)(K ⊗ Y,P ) hoPsh(Λ)(K ⊗X,P )

hoPsh(Λ)(Y,PK) hoPsh(Λ)(X,PK).

(K⊗u)∗

Φ Φ

u∗

The vertical maps are bijections. By corollary 13.4.6, PK is an ∞-algebra, thus u∗
is a bijection as well. Therefore, (K ⊗ u)∗ is a bijection for all ∞-algebras P . By
definition, K ⊗ u is a weak equivalence.

(2) Clearly, − ⊗ X preserves monomorphisms. Let w ∶ K Ð→ L be a weak equiva-
lence between Kan complexes. By proposition 12.1.5, it is a homotopy equivalence,
meaning that it admits a homotopy inverse w−1 ∶ L Ð→ K up to homotopy, and
w−1 ⊗X is a homotopy inverse of w ⊗X.

Corollary 13.4.8. Let u ∶ K Ð→ L be a cofibration between Kan complexes, v ∶ X Ð→ Y

be a cofibration in Psh(Λ), and consider the Leibniz tensor u ⊗̂v (definition 12.3.7). Then
u ⊗̂ v is a cofibration. If either u or v is an acyclic cofibration, then so is u ⊗̂ v.



Proof. Surely, since u and v are monomorphisms, u ⊗̂v is too. Assume that u is an acyclic
cofibration. By lemma 13.4.7, u⊗X and u⊗ Y are too, and so is the pushout u′ of u⊗X
along K ⊗ v. By 3-for-2, u ⊗̂ v is a weak equivalence. The case where v is an acyclic
cofibration instead of u is proved similarly.

Proposition 13.4.9. Let X ∈ Psh(Λ) be an ∞-algebra, and v ∶ K Ð→ L be a cofibration
(resp. an acyclic cofibration) between Kan complexes. Then Xv ∶XL Ð→XK is a fibration
(resp. an acyclic fibration).

Proof. Assume that v is a cofibration (resp. an acyclic cofibration). In order to show
that Xv is a fibration (resp. an acyclic fibration), we must show that u ⋔ Xv for every
acyclic cofibration (resp. all cofibration) u in Psh(Λ)∞. This is equivalent to u ⊗̂ v ⋔ X.
By corollary 13.4.8, u ⊗̂v is an acyclic cofibration, and since X is an ∞-algebra, the result
holds.

Remark 13.4.10. Unfortunately, the model structure Psh(Λ)∞, together with the tensor
and cotensor of definitions 13.4.1 and 13.4.3 cannot be promoted into a simplicial model
category. In fact, this already fails if n = 1 [JT07, section 6]. However, Psh(Λ)∞ is Quillen
equivalent to a model structure that is simplicial, see theorems 15.2.8 and 15.2.11.

13.5 WHAT ABOUT O?

Recall from definition 3.4.2 that in O, morphisms are (iterated) face embeddings of opeto-
pes. Therefore, the geometry of opetopic sets is fairly intuitive, as opposed to presheaves
over Λ, and it is natural to ask wether they enjoy a model structure similar to Psh(Λ)∞,
while still modeling ∞-algebras. Unfortunately, severe obstructions are in the way. First,
note that O is skeletal (definition 12.2.10), where the degree map OÐ→ N maps an opeto-
pic to its dimension, where O+ ∶=O, and where O− only contains the identity maps. That
last point means that O does not have “degeneracy maps”, so in general, there is no way
to “create identity cells”. More formally we shall see that because of this limitation, there
is no good notion of cylinder object in Psh(O). This argument was first presented in notes
of Van den Berg [VdB13] regarding semi-simplicial sets, which are presheaves over ∆+ (for
the usual Reedy structure on ∆).

Lemma 13.5.1 (Van den Berg argument). Recall from definition 12.1.21 that a Reedy
category R is direct if its subcategory R− of decreasing morphisms is discrete. It is connected
if it has a unique object of degree 0, say z. If R is direct and connected, then there is no
model structure on Psh(R) satisfying all of the following three conditions:

(VdB1) the representable presheaf yz is cofibrant;
(VdB2) there exists a fibrant presheaf P with #Pz ≥ 2, such that every cofibrant object

A, there is only one map AÐ→ P up to homotopy;
(VdB3) there exists an object with more than one connected component, i.e. a fibrant

object P such that for every cofibrant object A with #Az > 0, there are at least two
non-homotopic maps AÐ→ P .



Proof. Towards a contradiction, assume there is such a model structure. Consider a cylin-
der object of Z ∶= yz as in

Z +Z Z

IZ,

∇

(i0,i1) ∇

where ∇ is a weak equivalence. Recall that since R is direct, Zr = ∅ for all r ≠ z. Hence
the mere existence of ∇ as above forces IZ to only have cells of shape z, i.e. (IZ)r = ∅ for
all r ≠ z. We now wonder if i0 and i1 map the cell idz to the same cell of IZ.

(1) Assume they do, and take P a presheaf as in (VdB2). By (VdB1), Z is cofibrant,
and the assumption on P means that there is two distinct but left-homotopic maps
f, g ∶ Z Ð→ P . However, the homotopy cannot be witnessed by any map IZ Ð→ P .

(2) Assume now i0(idz) ≠ i1(idz), and take P a presheaf as in (VdB3). Again, Z is
cofibrant, and the disconnectedness condition entails that there exists two non-
homotopic maps f, g ∶ Z Ð→ P . Consider H ∶ IZ Ð→ P mapping i0(idz) to f(idz),
i1(idz) to g(idz), and the other cells of IZ (necessarily all of shape z by the remark
above) arbitrarily. Then Hi0 = f and Hi1 = g, thus H is a homotopy between f

and g, a contradiction.

Lemma 13.5.2. Let M be a model category. A fibrant object P is contractible if the
terminal map P Ð→ 1 is a homotopy equivalence. If P is contractible, then for every
cofibrant object A, there is only one map AÐ→ P up to homotopy.

Proof. Let r ∶ 1 Ð→ P be a homotopy inverse to ! ∶ P Ð→ 1. For A a cofibrant object and
f, g ∶ AÐ→ P , we have f ≃ r ! f = r ! g ≃ g.

Proposition 13.5.3. Let k = n = 1, so that Psh(Λ1,1)∞ = Psh(∆)Joyal. There is no Cisinski
model structure on Psh(O) such that the adjunction h! ∶ Psh(O) Ð→←Ð Psh(∆)Joyal ∶ h∗ is
Quillen.

Proof. Clearly, O is a connected and direct Reedy category. Towards a contradiction with
lemma 13.5.1, assume that such a model structure on Psh(O) exists. Composing with the
Quillen adjunction τ ⊣ N (see proposition 14.2.4) gives a Quillen adjunction h ∶ Psh(O)Ð→←Ð
Catfolk ∶ M , where Catfolk is the usual folk (or canonical) model structure on Cat (see
theorem 14.2.1 for a general construction). In particular, for a (necessarily cofibrant)
A ∈ Psh(O) and a (necessarily fibrant) P ∈ Catfolk, there is a natural isomorphism

hoCatfolk(hA,P )
≅Ð→ hoPsh(O)(A,MP ).

Since the model structure on Psh(O) is of Cisinski type, it satisfies (VdB1). The terminal
object in Cat is [0], and for J the Rezk interval of definition 13.3.4 (which in this case
is the groupoid ⋅↔ ⋅), the inclusion i0 ∶ [0] Ð→ J is clearly a retract of J Ð→ [0] up to
homotopy (i.e. up to equivalence of algebras). Consequently, J is contractible, but not
trivial in the sense that it has two objects. By lemma 13.5.2, J is an object satisfying the
condition of (VdB2), and so does MJ. Likewise, [0]+[0] satisfies condition (VdB3), and
so does M([0]+ [0]). Finally, the model structure on Psh(O) satisfies all the requirements
of lemma 13.5.1, which is not possible.





Chapter Fourteen

The homotopy theory of opetopic algebras

T
he goal of this chapter is to define the folk model structure on Algk,n, which
is a direct generalization of that for categories [Cis19, theorem 3.3.10], and
operads [Wei07, theorem 1.6.2]. Unlike most model structures that appear in

the literature (folk or otherwise), this one can be constructed directly and by elementary
means. Throughout this chapter, we shall use convention 11.1.34: we fix parameters k ∶=1
and n ≥ 1, and omit them from various notations, e.g. Alg = Alg1,n, Z = Zn, etc.

14.1 PRELIMINARIES

Convention 14.1.1. Recall from theorem 11.1.39 that the adjunction τ ∶ Psh(Λ) Ð→←Ð Alg ∶
N exhibits Alg as a small orthogonality class in Psh(Λ). To simplify notation, we will
shall consider Alg as a subcategory of Psh(Λ) via the nerve functor, i.e. an algebra A ∈
Alg will ubiquitously be a presheaf over Λ. Similarly, by theorem 11.2.33, Alg is a small
orthogonality class of Psh(O), and we shall consider Alg as a subcategory of Psh(O) via
the fully faithful functor M ∶ Alg Ð→ Psh(O). In particular, if A ∈ Alg and m ∈ N, then

Am = MAm = ∑
ω∈Om

MAω.

Definition 14.1.2 (Boundary, see definition 12.2.12). Let λ ∈ Λ be an opetopic shape.
The boundary ∂λ ∈ Psh(Λ) of λ is the colimit (in Psh(Λ))

∂λ ∶= colim
f ∶λ′→λ in Λ+
f not an iso.

λ′.

We write bλ ∶ ∂λ Ð→ λ for the boundary inclusion of λ, and B ∶={bλ ∣ λ ∈ Λ} the set of
boundary inclusions of Psh(Λ).

Example 14.1.3. (1) If n = 1, then Alg = Cat is the category of small categories. The
only 1-opetope is ◾, and ∂h ◾ = h ⧫+h ⧫, the discrete category with two objects.

(2) If n = 2, then Alg = Opcol is the category of colored operads. If ω ∈ O3 is a tree,
then ∂hω is the maximal subpresheaf of Nhω not containing the ω, i.e. the cell
witnessing the composition of all its source faces.

Notation 14.1.4. Let A ∈ Alg be an algebra, ψ ∈ On, and d ∶ ∂hψ Ð→ A, and consider the
following pullback

Ad Ahψ = Psh(Λ)(hψ,A)

∗ Psh(Λ)(∂hψ,A).

⌟
b∗hψ

d
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Explicitly, Ad is the subset of Ahψ of all cells a such that ta = d(tψ), and such that for
all [q] ∈ ψ●, s[q] a = d(s[q]ψ).

Example 14.1.5. (1) Take n = 1, and recall from example 14.1.3 that ∂h ◾ = h ⧫+h ⧫ is
the discrete category with two objects. Hence, if C ∈ Cat, a morphism d ∶ ∂h ◾Ð→ C

is simply a pair of objects (c, c′) ∶=(d s∗ ◾, d t ◾) of objects of C, and Cd = C(c, c′).
(2) Take n = 2, so that Alg is the category of planar colored operads. For P ∈ Alg and

k ∈ O2, a morphism d ∶ ∂hk Ð→ P is just a (k + 1)-tuple of colors (c0, . . . , ck−1; ck)
of P , where ci ∶=d s[∗i] k for 0 ≤ i < k, and ck ∶=d tk. The set Pd is simply the set of
operations P (c0, . . . , ck−1; ck).

Definition 14.1.6 (Internal isomorphism). Let A ∈ Alg, ϕ ∈ On−1, x, y ∈ Ahϕ, and a ∶ xÐ→
y (see notation 13.3.5). We say that a is an internal isomorphism (or just isomorphism)
if it is invertible, i.e. if there exists a cell a−1 ∶ y Ð→ x such that, using notation 11.2.35,
we have

a ○
[]
a−1 = idy, a−1 ○

[]
a = idx .

In this case, we also say that x and y are isomorphic, and write x ≅ y. Equivalently, a is
an internal isomorphism if the following lifting problem has a solution:

hYϕ A

Jϕ.

a

Definition 14.1.7 (Natural transformation). Let f, g ∶ A Ð→ B be two morphisms of
algebras. A natural transformation α ∶ f Ð→ g is the datum of a cell αa ∶ f(a)Ð→ g(a) for
each a ∈ An−1, called a component of α, such that for all ψ ∈ On and x ∈ Ahψ, the following
relation holds:

g(x)◯
[q]
αs[q] a = αta ○

[]
f(x).

Natural transformations can be composed in the obvious way, and the usual exchange law
holds. A natural isomorphism is an invertible natural transformation, or equivalently, one
whose components are all isomorphisms.

Definition 14.1.8 (Algebraic equivalence). Let f ∶ AÐ→ B be a morphism of algebras.
(1) We say that f is fully faithful if for all ψ ∈ On and for every morphism d ∶ ∂hψ Ð→ A,

the induced map fd ∶ Ad Ð→ Bfd is a bijection.
(2) We say that f is essentially surjective if for all b ∈ Bn−1, there exists a ∈ An−1 such

that f(a) ≅ b.
(3) We say that f is an algebraic equivalence (or equivalence of algebras, or simply

equivalence) if it is invertible up to natural isomorphism, i.e. there exists g ∶ B Ð→ A

and natural isomorphisms ε ∶ gf Ð→ idA and η ∶ idB Ð→ fg. In this case, g is called
a weak inverse of f .

Proposition 14.1.9 (Generalization of [ML98, theorem IV.4.1] [Wei07, lemma 1.1.19]).
A morphism f ∶ AÐ→ B of algebras is an equivalence if and only if it is fully faithful and
essentially surjective.



Proof. This is similar to [ML98, theorem IV.4.1]. The direct implication is easy. For the
converse, assume that f is fully faithful and essentially surjective. For b ∈ Bn−1, choose a
cell g(b) ∈ An−1 and an isomorphism ηb ∶ b Ð→ f(g(b)). Let ψ ∈ On and y ∈ Bhψ be such
that t y is in the image of f , say t y = f(a) for some a ∈ An−1. Then the cell

z ∶= y◯
[q]
η−1s[q] y

where [q] ranges over ψ●, has all its faces in the image of f , as t z = t y, and s[q] z =
s[] η

−1
s[q] y

= f(g(s[q] y)). Since f is fully faithful, there exists a unique cell in Ahψ, which
we call g(y), such that f(g(y)) = z. Using proposition 11.2.36, this defines a morphism
g ∶ B Ð→ A, and a natural isomorphism η ∶ idB Ð→ fg.

Lastly, let a ∈ An−1, and consider the isomorphism e ∶=η−1f(a) ∶ fgf(a) Ð→ f(a). Since
f is fully faithful, there exists a unique εa ∶ gf(a)Ð→ a such that e = f(εa). It is straight-
forward to check that the εa are the components of a natural isomorphism ε ∶ gf Ð→ idA.

Lemma 14.1.10. Let f ∶ A Ð→ B be a fully faithful essentially surjective morphism that
is injective on (n−1)-cells. Then f admits a retract up to isomorphism, i.e. a weak inverse
g ∶ B Ð→ A together with natural isomorphisms ε ∶ gf Ð→ idA and η ∶ idB Ð→ fg as in
proposition 14.1.9, but where gf = idA and ε is an identity (i.e. all its components are
identities), where f = fgf , and where for a ∈ An−1, ηf(a) = idf(a)

Proof. It suffices to amend the proof of proposition 14.1.9 so that g, ε and η have the
desired properties. For a ∈ An−1, since f is injective on objects, we may choose g(f(a))
to be a, and ηf(a) to be idf(a). It follows that, after extending g to a morphism B Ð→ A,
we have gf = idA. Further, for a ∈ An−1, εa ∶ gf(a) Ð→ a is the only n-cell of A such that
f(εa) = η−1f(a) = idf(a), whence ε is the identity.

14.2 THE FOLK MODEL STRUCTURE

Theorem 14.2.1 (Generalization of [Cis19, theorem 3.3.10] and [Wei07, theorem 1.6.2]).
The category Alg = Alg1,n of 1-colored n-opetopic algebras admits a model structure where

(1) the weak equivalences are the algebraic equivalences (definition 14.1.8);
(2) the cofibrations are the morphisms that are injective on (n − 1)-cells;
(3) the fibrations are the morphisms f ∶ AÐ→ B such that EJ ⋔ f (also called isofibra-

tions), i.e. such that for every isomorphism in B of the form x ∶ f(a)Ð→ b′, there
exist an isomorphism y ∶ aÐ→ a′ in A such that f(y) = x.

We call this structure the folk model structure on Alg, and denote it by Algfolk. Further-
more, acyclic fibrations are the algebraic equivalences that are surjective on (n − 1)-cells,
and every object is both fibrant and cofibrant.

The second claim can easily be checked once the model structure is established. The
rest of this section is dedicated to proving this theorem. To that end, we verify each of
Quillen’s axioms, recalled in definition 12.1.1.

Proof of theorem 14.2.1, (M0): limit axiom. This is proposition 11.1.32.



Proof of theorem 14.2.1, (M1): 3-for-2 axiom. It is easy to check that the class of mor-
phisms that are weakly invertible satisfies 3-for-2.

Proof of theorem 14.2.1, (M2): retract axiom. Let f be a retract of g as in

A B

C D

i

f r g

i′

r′

where ri = idA and r′i′ = idC .
(1) If g is a cofibration, i.e. injective on (n − 1)-cells, then clearly, so is f .
(2) Assume that g is a fibration, and x ∶ f(a)Ð→ c an isomorphism in C. Since i′f(a) =

gi(a), there exists an isomorphism y ∶ i(a) Ð→ b in B such that g(y) = i′(x), and
r(y) is an isomorphism in A such that fr(y) = x. Therefore, f is a fibration.

(3) Assume that g is a weak equivalence. By proposition 14.1.9, this is equivalent to g
being fully faithful and essentially surjective. Since f is a retract of g, it is clearly
fully faithful as well. Let c ∈ Cn−1. Since g is essentially surjective, there exists
b ∈ Bn−1 and an isomorphism x ∶ g(b) Ð→ i′(c). This induces an isomorphism
r′(x) ∶ fr(b)Ð→ c, and consequently, f is essentially surjective.

Proof of theorem 14.2.1, (M3): lifting axiom. Consider a commutative square

A B

C D,

f

i p

g

where i is a cofibration and p is a fibration. We show that a lift exists whenever i or p is
a weak equivalence.

(1) Assume that i is a weak equivalence, and let r ∶ C Ð→ A be a weak retract of i
as in lemma 14.1.10, together with the natural isomorphism η ∶ idC Ð→ ir. Let
c ∈ Cn−1, and consider gir(c) = pfr(c) ∈ Dn−1. Since p is an isofibration, there
exists an isomorphism βc ∶ fr(c) Ð→ b in B such that p(βc) = g(η−1c ) ∶ gir(c) =
pfr(c) Ð→ g(c). In particular, p(b) = g(c), and define l(c) ∶= b. This defines a lift
l ∶ Cn−1 Ð→ Bn−1.
The construction above also provides a natural isomorphism β ∶ fr Ð→ l. Without
loss of generality, we choose l and the components of β such that for all a ∈ An−1,
li(a) = f(a), and βi(a) = idf(a). For ψ ∈ On and x ∈ Chψ, let

l(x) ∶= βtx ○
[]
fr(x)◯

[q]
β−1s[q] x.

It can easily be checked that l is then a morphism of algebras C Ð→ B, and finally
that it provides the desired lift.

(2) Assume that p is a weak equivalence. In particular, on (n−1)-cells, i is an injection,
and p a surjection. Thus a lift l ∶ Cn−1 Ð→ Bn−1 can be found. We now extend l to
a morphism of algebras l ∶ C Ð→ B.



Let ψ ∈ On, x ∈ Cψ, and d be the composite

∂hψ
bhψÐÐ→ hψ

xÐ→ C.

Since p is fully faithful, it induces a bijection pd ∶ Cld Ð→ Dgd. By proposi-
tion 11.2.36, letting l(x) ∶=p−1d g(x) extends l to an algebra morphism which is
the desired lift.

Proof of theorem 14.2.1, (M4): factorization axiom. Let f ∶ A Ð→ B be a morphism of
algebras.

(1) We decompose f as f = pi, where i is an acyclic cofibration, and where p is fibration.
Define P ∈ Psh(Λ) as follows. For ϕ ∈ On−1, let

Phϕ ∶={(a, v, b) ∣ a ∈ Ahϕ, b ∈ Bhϕ, v ∶ f(a)
≅Ð→ b} .

There is an obvious projection p1 ∶ Pn−1 Ð→ An−1 mapping a tuple (a, v, b) to a. If
ψ ∈ On and d ∶ ∂hψ Ð→ Pn−1, let Pd ∶=Ap1d. At this stage, P clearly extends as an
algebra, essentially inheriting the same law as A.
Let i ∶ AÐ→ P map an (n−1)-cell a to (a, idf(a), f(a)). This completely determines
i, as indeed, for an n-cell x ∈ A≥n we necessarily have i(x) = x. Clearly, i is a fully
faithful cofibration. It remains to show that it is essentially surjective. If (a, v, b) ∈
Pn−1, note that ida exhibits an isomorphism i(a) = (a, idf(a), f(a)) Ð→ (a, v, b) in
P . Therefore, i is an acyclic cofibration.
Let p3 ∶ P Ð→ B be the projection mapping (a, v, b) to b. Let ψ ∈ On and x ∈ Phψ.
Write tx = (at, vt, bt), for a source address [q] ∈ ψ●, write s[q] x = (a[q], v[q], b[q]),
and define

p3(x) ∶= vt ○
[]
f(x)◯

[q]
v−1[q].

This defines a morphism p3 ∶ P Ð→ B which we claim to be a fibration. Indeed, if
(a, v, b) ∈ Pn−1 and w ∶ b Ð→ b′ is an isomorphism in P , we have an isomorphism
ida ∶ (a, v, b)Ð→ (a,w ○[] v, b′) in P , and

p3(idf(a)) = (w ○
[]
v) ○
[]
f(ida) ○

[]
v = w.

Lastly, it is clear that f = p3i, and thus f decomposes as an acyclic cofibration
followed by a fibration.

(2) We decompose f as f = pi, where i is an cofibration, and where p is an acyclic
fibration. Define C ∈ Psh(Λ) as follows. On (n − 1)-cells, it is given as on the left,
and let f̄ be defined as on the right:

Cn−1 ∶= An−1 +Bn−1, f̄ ∶= (f, idBn−1) ∶ Cn−1 Ð→ Bn−1.

Explicitly, f̄ maps a ∈ An−1 to f(a), and b ∈ Bn−1 to b. For ψ ∈ On and d ∶ ∂hψ Ð→
Cn−1, let the fiber Cd be simply Bf̄d. At this stage, C clearly extends as an algebra,
essentially inheriting the same law as B.
Let i ∶ AÐ→ C map an (n− 1)-cell a to a, and an n-cell x to f(x). Obviously, this
is a cofibration. Let p ∶ C Ð→ A map an (n − 1)-cell d to f̄(d), and an n-cell x to
x. This can easily be seen to be an acyclic fibration. Lastly, f = pi, so that f can
be decomposed into a cofibration followed by an acyclic fibration.



Remark 14.2.2. The algebras P and C above can be thought of as mapping path space
[May99, section 7.2] and the mapping cylinder [May99, section 6.2] of f , respectively. In the
classical model structure on topological spaces [Qui67, section II.3], those constructions
are used to provide the factorizations of axiom (M5).

Theorem 14.2.3. The model structure Algfolk is cofibrantly generated, and EJ can be
taken as a set of generating acyclic cofibrations.

Proof. By definition, a morphism f is an fibration if and only if EJ ⋔ f . It is straightforward
to check that f is an acyclic fibration of and only if J ⋔ f , where J is

{∅↪Ð→ hϕ ∣ ϕ ∈ On−1} + vB +
⎧⎪⎪⎨⎪⎪⎩
hψ∐

∂hψ

hψ Ð→ hψ ∣ ψ ∈ On

⎫⎪⎪⎬⎪⎪⎭
,

where B is introduced in definition 14.1.2. Finally, domains of maps in EJ and J are small,
since they are finite colimits of representable presheaves, which are small. In particular,
EJ and J admit the small object argument.

Proposition 14.2.4. We have a Quillen adjunction τ ∶ Psh(Λ)∞ Ð→←Ð Algfolk ∶ N .

Proof. Clearly, if f ∶ X Ð→ Y is a monomorphism in Psh(Λ), then τf is injective on
(n − 1)-cells. Therefore, τ preserves cofibrations. To conclude, it suffices to show that N
preserves fibrations. First, note that τ maps Hinner (see definition 13.2.4) to isomorphisms,
and since the adjunction is reflective, it maps EI = NEJ (see definition 13.3.10) to EJ up
to isomorphism. Therefore, τ maps AnI to acyclic cofibrations. Let now f be a fibration
in Algfolk. Then f has the right lifting property against all acyclic cofibrations, and in
particular, τAnI ⋔ f . By adjointness, AnI ⋔ Nf , and thus Mf is a naive fibration. By
proposition 13.3.23, the codomain of Nf is an ∞-algebra, and we apply lemma 12.2.9 to
conclude that Nf is a fibration.

Lemma 14.2.5. Let f, g ∶ A Ð→ B be two parallel morphisms of algebras. The following
are equivalent:

(1) f ≃J g (see definition 12.2.2);
(2) there is an elementary J-homotopy from f to g;
(3) there exists a natural isomorphism f Ð→ g.

Proof. (1) Ô⇒ (3) A homotopyH from f to g as in definition 12.2.2 induces a natural
isomorphism α with components αa = H(ja) (see definition 13.3.6 for notations),
for a ∈ An−1.

(3) Ô⇒ (2) A natural isomorphism α ∶ f Ð→ g induces a homotopy H ∶ JA Ð→ B

from f to g, where for a ∈ A, H(a(0)) ∶= f(a) (see definition 13.3.6 for notations),
H(a(1)) ∶= g(a), H(ja) = αa, and H(j−1a ) ∶=α−1a .

(2) Ô⇒ (1) By definition.

Proposition 14.2.6. A morphism f ∶ AÐ→ B is a weak equivalence (for the folk structure
of theorem 14.2.1) if and only if it is an isomorphism in hoAlg (with respect to J, see
definition 12.2.2). Therefore, the category hoAlg is the localization of Alg at the class of
algebraic equivalences.

Proof. Follows from proposition 14.1.9 and lemma 14.2.5.



Chapter Fifteen

∞-opetopic algebras vs. complete Segal spaces

M
uch in the spirit of [JT07] [CM13], we show that an adequate notion of opetopic
complete Segal space provides a model for the homotopy theory of ∞-algebras.
Formally, we show in theorem 15.2.11 that there is a Quillen equivalence be-

tween Psh(Λ)∞, the model structure for ∞-algebras of theorem 13.3.21, and Sp(Λ)Rezk,
the Rezk structure on simplicial presheaves over Λ, which we construct in this chapter.

As usual, and following convention 11.1.34, we fix parameters k ∶=1 and n ≥ 1, and
omit them from various notations, e.g. Λ = Λ1,n, Alg = Alg1,n, τ = τ1,n, etc.

15.1 SEGAL SPACES

Definition 15.1.1. Recall from definition 12.3.19 that Sp(Λ)v is the Reedy model struc-
ture on the category Sp(Λ) = Psh(∆)Λ

op

induced by Psh(∆)Quillen. Let Sp(Λ)Segal, the Segal
model structure on Sp(Λ), be the left Bousfield localization

Sp(Λ)Segal ∶= S−1Sp(Λ)v,

where S is the set of spine inclusions (definition 11.1.37). This localization exists by theo-
rem 12.1.29. Fibrant objects (resp. weak equivalences) in Sp(Λ)Segal are called Segal spaces
(resp. Segal weak equivalences). Unfolding the definition, a Segal space X ∈ Psh(Λ) is a
vertically fibrant space such that for all ν ∈ On+1, the map

shν/X ∶ hν/X
²
=Xhν

Ð→ S[hν]/X

is a weak equivalence.

Definition 15.1.2 (Right cancellation property [JT07, section 3]). Let C be a category. A
class of monomorphisms K ⊆ C[1] has the right cancellation property if for any composable
pair or monomorphisms f, g ∈ C[1], if gf, f ∈ K, then g ∈ K.

⋅ ⋅

⋅

gf∈K

f∈K ∴g∈K

Lemma 15.1.3 (Generalization of [JT07, lemma 3.5] and [CM13, proposition 2.5]). If K
is a saturated class of monomorphism of Psh(Λ) having the right cancellation property,
and if S ⊆ K, then Aninner ⊆ K.
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Proof. Since K is saturated, it is enough to show that Hinner ⊆ K. Let ω ∈ On+1 and
hehω ∶ Λ

e[hω] Ð→ hω be an inner horn inclusion. By lemma 13.2.10, the spine inclusion
sω ∶ S[hω]Ð→ hω decomposes as

S[hω] uÐ→ Λe[hω]
hehωÐÐ→ hω

where u is a spine complex. By assumption, sω ∈ K, and since K is saturated, u ∈ K. By
right cancellation, hehω ∈ K.

Proposition 15.1.4 (Generalization of [JT07, proposition 3.4]). Let X ∈ Sp(Λ) be verti-
cally fibrant. The following are equivalent:

(1) X is a Segal space;
(2) the map hehω/X is an acyclic Kan fibration, for all ω ∈ On+1 and all inner horn

inclusions hehω ∶ Λ
e[hω]Ð→ hω;

(3) the map u/X is an acyclic Kan fibration (see example 12.1.10), for every inner
anodyne extension u ∈ Psh(Λ);

(4) the map X/bn is an inner fibration (definition 13.2.5), for all n ∈ N;
(5) the map X/v is an inner fibration, for every monomorphism v ∈ Psh(∆).

Proof. The equivalences (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) are clear. We now show (1) ⇐⇒
(3).

(1) Ô⇒ (3) Recall from proposition 12.3.21 that since X is vertically fibrant, u/X is
a Kan fibration for every monomorphism u. In particular, u/X is an acyclic Kan
fibration if and only if it is a weak equivalence.
Let K be the class of monomorphisms u ∈ Psh(Λ) such that u/X is a weak equiva-
lence. We show that K satisfies the conditions of lemma 15.1.3.

a) Since X is a Segal space, S ⊆ K.
b) The class of weak equivalences has 3-for-2, thus, so does K. In particular, K

has the right cancellation property.
c) We now show that K is saturated. By the remark above, u ∈ K if and only

if u/X is an acyclic Kan fibration, i.e. bn ⋔ u/X for all n ∈ N. But this
is equivalent to u ⋔ X/bn, and thus K is the intersection of the class of
monomorphisms of Psh(∆) and ⋔{X/bn ∣ n ∈ N}, both of which are satu-
rated. Therefore, K is saturated.

Finally, by lemma 15.1.3, K contains all inner anodyne extensions.
(3) Ô⇒ (1) By proposition 13.2.11, spine inclusions are inner anodyne extensions.

Corollary 15.1.5 (Generalization of [JT07, corollary 3.6]). Let K ∈ Psh(∆) be a simplicial
set, and X ∈ Sp(Λ) be a Segal space. Then Hinner ⋔X/K. In particular, Hinner ⋔X/∆[n] =
X−,n for all n ∈ N.

Proof. For !

∶ ∅ ↪Ð→ K the initial map, the map X/

!

∶ X/K Ð→ X/∅ = 1 is an inner
fibration by proposition 15.1.4.

Lemma 15.1.6 ([JT07, lemma 3.7]). Let K ⊆ Psh(∆)[1] be a saturated class of monomor-
phisms having the right cancellation property (see definition 15.1.2). If K contains all
simplicial coface maps di ∶ ∆[m − 1] Ð→ ∆[m], then it contains all simplicial horn inclu-
sions hkm ∶ Λk[m]Ð→∆[m].



Lemma 15.1.7 (Generalization of [JT07, lemma 3.8]). Let f ∶ X Ð→ Y be an inner
fibration between∞-algebras. It is an acyclic fibration if and only if it is a weak equivalence
surjective on (n − 1)-cells.

Proof. (Ô⇒ ) Surely, if f is an acyclic fibration, it is a weak equivalence. Moreover,
f has the right lifting property against all monomorphisms (since Psh(Λ)∞ is of
Cisinski type, see theorem 13.3.21), and in particular, against the inclusions of the
form ∅↪Ð→ hϕ, for ϕ ∈ On−1. Therefore, f is surjective on (n − 1)-cells1.

(⇐Ô ) By lemma 12.2.9 f is a fibration if and only if it is a naive fibration, i.e. if
(Hinner ∪ EI) ⋔ f . By assumption, Hinner ⋔ f . By adjunction, in order to show
that EI ⋔ f , it suffices to show that EJ ⋔ vf . Note that f is a weak equivalence
between cofibrant objects. Recall from proposition 14.2.4 that τ ∶ Psh(Λ)∞ Ð→
Algfolk is a left Quillen functor, thus as a consequence of Ken Brown’s lemma
(see corollary 12.1.15), τf is a weak equivalence. Besides, it is also surjective on
(n− 1)-cells, so by definition of the folk structure (theorem 14.2.1), it is an acyclic
fibration. In particular, it is a fibration, thus EJ ⋔ vf .

Lemma 15.1.8. Let X ∈ Sp(Λ) be a space such that
(1) for all n ∈ N, the map X/bn is an inner fibration;
(2) Xhϕ is a Kan complex for all ϕ ∈ On−1.

Let u ∶ K Ð→ L be an anodyne extension in Psh(∆). Then X/u is an acyclic fibration if
and only if it is a weak equivalence.

Proof. Necessity is tautological, so suppose that X/u is a weak equivalence. By assump-
tion, X/u is an inner fibration whenever u is a monomorphism. In particular, X/u ∶
X/L Ð→ X/K is a weak equivalence between ∞-algebras. By lemma 15.1.7, in order
to show that X/u is an acyclic fibration, it is enough to show that it is surjective on
(n − 1)-cells. Note that for ϕ ∈ On−1,

(X/L)hϕ ≅ Psh(Λ)(hϕ,X/L) by the Yoneda lemma
≅ Sp(Λ)(hϕ ⊠L,X) since − ⊠L ⊢ −/L
≅ Psh(∆)(L,hϕ/X) since hϕ ⊠ − ⊢ hϕ/−
≅ Psh(∆)(L,Xhϕ) by lemma 12.3.5,

and likewise, (X/K)hϕ ≅ Psh(∆)(K,Xhϕ). By assumption, Xhϕ is a Kan complex, and
since u is an anodyne extension, the precomposition map on top is surjective

Psh(∆)(L,Xhϕ) Psh(∆)(K,Xhϕ)

(X/L)hϕ (X/K)hϕ.

u∗

≅ ≅
(X/u)hϕ

Therefore, X/u is surjective on (n−1)-cells, and thus an acyclic fibration as claimed.

Proposition 15.1.9 (Generalization of [JT07, proposition 3.9]). A space X ∈ Sp(Λ) is a
Segal space if and only if the following conditions are satisfied:

1In fact, the same argument shows that f is surjective in all dimension.



(1) for all n ∈ N, the map X/bn is an inner fibration;
(2) Xhϕ is a Kan complex for all ϕ ∈ On−1;
(3) X is homotopically constant (see definition 12.3.22).

Proof. (Ô⇒ ) Assume that X ∈ Sp(Λ) is a Segal space. In particular, it is vertically
fibrant.

(1) This is proposition 15.1.4 (4).
(2) The terminal map ! ∶X Ð→ 1 is a vertical fibration, so by definition 12.3.19,

for ϕ ∈ On−1, the map ⟨bhϕ/ !⟩ ∶Xhϕ Ð→ 1 is a Kan fibration.
(3) This is proposition 12.3.24.

(⇐Ô ) We first show that X is vertically fibrant. By proposition 12.3.21, this is equiv-
alent to X/u being an acyclic fibration for every anodyne extension u ∈ Psh(∆)[1].
Let K be the class of anodyne extensions u such that X/u is an acyclic fibration.
By lemma 15.1.8, this is equivalent to X/u being a weak equivalence. By proposi-
tion 12.3.21, to show that X is vertically fibrant, we must check that K contains
all simplicial horn inclusions. Using lemma 15.1.6, it suffices to show that K has
the right cancellation property, is saturated, and that it contains all simplicial face
maps.

(1) We show that K has the right cancellation property. Let u and w be two
composable monomorphisms such that u,wu ∈ K. In particular, u and wu

are acyclic cofibrations. By 3-for-2, w is a weak equivalence, and since it
is a monomorphism, it is an acyclic cofibration as well. Next, X/u and
X/(wu) = (X/u) ⋅ (X/w) are weak equivalences, so by 3-for-2 again, so is
X/w. Finally, w ∈ K, and K has the right cancellation property.

(2) We now show that K is saturated. By definition, an anodyne extension u

is in K if and only if bhω ⋔ X/u for all ω ∈ O≥n−1. By adjunction, this is
equivalent to u ⋔ bhω/X, thus K is the intersection of the class of acyclic
cofibrations and ⋔{bhω/X ∣ ω ∈ O≥n−1}, both of which are saturated.

(3) Lastly, let us show that the simplicial face maps di ∶ ∆[m − 1] Ð→ ∆[m]
belong to K. It is well known that di is an anodyne extension. By assumption,
X is homotopically constant, so by lemma 12.3.23, di ∈ K.

Therefore, by proposition 12.3.21, K contains all simplicial horn inclusions, and by
proposition 12.3.21, X is vertically fibrant.
Lastly, we show that X satisfies the Segal condition of definition 15.1.1. It suffices
to show that for every ω ∈ O≥n−1, the map shω/X is an acyclic fibration, i.e. that for
all n ∈ N, we have bn ⋔ shω/X. This is equivalent to shω ⋔ X/bn, which holds since
X/bn is an inner fibration by assumption, and shω is an inner anodyne extension
by proposition 13.2.11.

Proposition 15.1.10 (Generalization of [JT07, proposition 3.10]). Let f ∶ X Ð→ Y be a
vertical fibration between two Segal spaces.

(1) If u ∶ A Ð→ B is an inner anodyne extension in Psh(Λ) (definition 13.2.5), then
⟨u/f⟩ is an acyclic fibration.

(2) If w ∶ K Ð→ L is a monomorphism in Psh(∆), then ⟨f/w⟩ is an inner fibration
between ∞-algebras.



Proof. (1) In particular, u is a monomorphism, so by proposition 12.3.21, the map
⟨w/f⟩ is a Kan fibration. It remains to show that it is a weak equivalence. Consider
the following diagram:

B/X

⋅ A/X

B/Y A/Y.

u/X

⟨u/f⟩

B/f

p

⌟
A/f

u/Y

By proposition 15.1.4, u/X and u/Y are acyclic fibrations, and so is the pullback
map p. By 3-for-2, ⟨u/f⟩ is a weak equivalence.

(2) By proposition 15.1.4, X/K and X/L are ∞-algebras. In the pullback square

X/L

P X/K

Y /L Y /K,

X/w

⟨f/w⟩

f/Y

p

⌟
f/K

Y /w

the bottom map Y /w is an inner fibration by proposition 15.1.4, and thus p is
too. Since X/K is an ∞-algebra, so is P . We now show that ⟨f/w⟩ is an inner
fibration, i.e. that u ⋔ ⟨f/w⟩ for all u ∈ Aninner. By (1), ⟨u/f⟩ is an acyclic fibration,
so w ⋔ ⟨u/f⟩, and by adjunction, u ⋔ ⟨f/w⟩ as desired.

15.2 COMPLETE SEGAL SPACES

Definition 15.2.1 (Rezk map). For ϕ ∈ On−1, recall from definition 13.3.10 the definition
of the Rezk interval Iϕ, and the endpoint inclusion iϕ ∶ hϕ Ð→ Iϕ. There is a canonical
morphism, called the Rezk map :

rϕ ∶ Iϕ Ð→ hϕ,

mapping jϕ and j−1ϕ to idϕ (see definition 13.3.4 for notations), and let R be the set of
Rezk maps.

Remark 15.2.2. Let ϕ ∈ On−1. The endpoint inclusion iϕ ∶ hϕ Ð→ Iϕ (definition 13.3.11)
and the Rezk map rϕ displays hϕ as a deformation retract of Iϕ: rϕiϕ = idhϕ, and iϕrϕ ≃ idIϕ .

Definition 15.2.3. Let Sp(Λ)Rezk, the Rezk model structure on Sp(Λ), be the left Bous-
field localization

Sp(Λ)Rezk ∶= R−1Sp(Λ)Segal,

which exists by theorem 12.1.29. Fibrant objects (resp. weak equivalences) in Sp(Λ)Rezk

are called complete Segal spaces (resp. Rezk weak equivalences). Unfolding the definition,



a Segal space X ∈ Psh(Λ) is complete if and only if for all ϕ ∈ On−1, the map

rϕ/X ∶ hϕ/X
²
=Xhϕ

Ð→ Iϕ/X

is a weak equivalence.

Lemma 15.2.4 (Generalization of [JT07, lemma 4.2]). A Segal space X ∈ Sp(Λ) is com-
plete if and only if for all ϕ ∈ On−1, the map iϕ/X is a trivial fibration, where iϕ ∶ hϕÐ→ Iϕ
is the endpoint inclusion of the Rezk interval Iϕ (definition 13.3.10).

Proof. By definition, X is complete if and only if for all ϕ ∈ On−1, the map rϕ/X is a weak
equivalence. Since rϕiϕ = idhϕ, we have (iϕ/X)(rϕ/X) = idXhϕ , and by 3-for-2, iϕ/X is a
weak equivalence if and only if rϕ/X is. On the other hand, iϕ/X is always a Kan fibration
by proposition 12.3.21. Hence it is a trivial fibration if and only if it is a weak equivalence.

Lemma 15.2.5 (Generalization of [JT07, lemma 4.3]). Let f ∶X Ð→ Y be a Rezk fibration
(i.e. a fibration in Sp(Λ)Rezk) between two complete Segal spaces, and u ∶ K ↪Ð→ L be a
monomorphism in Psh(∆). Then the map ⟨f/u⟩ is a fibration.

Proof. By proposition 15.1.10, ⟨f/u⟩ is an inner fibration between ∞-algebras. Therefore,
by lemma 12.2.9, ⟨f/u⟩ is a fibration if and only if it is a naive fibration, so it remains
to show that EI ⋔ ⟨f/u⟩. By adjunction, for ϕ ∈ On−1, we have iϕ ⋔ ⟨f/u⟩ if and only if
u ⋔ ⟨iϕ/f⟩. Thus, we must show that ⟨iϕ/f⟩ is an acyclic fibration. By proposition 12.3.21,
it is a fibration. Consider the following commutative diagram:

Iϕ/X

⋅ hϕ/Y

Iϕ/Y hϕ/Y.

iϕ/X

⟨iϕ/f⟩

Iϕ/f
p

⌟
hϕ/f

iϕ/Y

By lemma 15.2.4, iϕ/X and iϕ/Y are acyclic fibrations. Since f is a Rezk fibration, it
is a vertical fibration, and its matching map ⟨(∂hϕ ↪ hϕ)/f⟩ is a fibration by proposi-
tion 12.3.21. Since ϕ ∈ On−1, ∂hϕ = ∅, thus hϕ/f = ⟨(∂hϕ ↪ hϕ)/f⟩ is a fibration. The
pullback map p is an acyclic fibration, and by 3-for-2, so is ⟨iϕ/f⟩.

Proposition 15.2.6 (Generalization of [JT07, proposition 4.4]). A space X ∈ Sp(Λ) is a
complete Segal space if and only if it is horizontally fibrant (i.e. X/bm is a fibration for all
m ∈ N, see definition 12.3.19) and homotopically constant. In particular, complete Segal
spaces are exactly the simplicial resolutions of [Dug01, definition 4.7].

Proof. (Ô⇒ ) By proposition 15.1.9, X is homotopically constant. By lemma 15.2.5,
X/bm = ⟨(X → 1)/bm⟩ is a fibration as X Ð→ 1 is a Rezk fibration.



(⇐Ô ) We first show that X is vertically fibrant. By proposition 12.3.21, this is equiv-
alent to X/u being an acyclic fibration for every anodyne extension u ∈ Psh(∆)[1].
Let K be the class of monomorphisms u such that X/u is an acyclic fibration. We
need to show that K contains all simplicial horn inclusions. Using lemma 15.1.6, it
suffices to show that K has the right cancellation property, is saturated, and that
it contains all simplicial face maps.

(1) Since X is horizontally fibrant, X/u is a fibration for all monomorphism u ∈
Psh(∆). Thus, X/u is an acyclic fibration if and if it is a weak equivalence.
The right cancellation property of K then follows from 3-for-2.

(2) For saturation, note that by definition, u ∈ K if and only if bhω ⋔X/u for all
ω ∈ O≥n−1. This is equivalent to v ⋔ bhω/X, thus K is the intersection of the
class of monomorphisms of Psh(∆) and ⋔{bhω ∣ ω ∈ O≥n−1}, both of which
are saturated.

(3) By assumption, X is homotopically constant. By lemma 12.3.23, K contains
all simplicial face maps.

Therefore, by proposition 12.3.21, K contains all simplicial horn inclusions, and by
proposition 12.3.21, X is vertically fibrant.
Since X is vertically fibrant, the terminal map ! ∶X Ð→ 1 is a vertical fibration, and
by definition 12.3.19, for ϕ ∈ On−1, the relative matching map ⟨bhϕ/ !⟩ ∶ Xhϕ Ð→ 1

is a Kan fibration. Therefore, Xhϕ is a Kan complex, and by proposition 15.1.9, X
is a Segal space.
Lastly, let us show that X is complete. By lemma 15.2.4, it suffices to show that
iϕ/X is an acyclic fibration, for all ϕ ∈ On. The map iϕ is is an acyclic cofibration
since it is a monomorphism and a homotopy equivalence by remark 15.2.2. Since
X is horizontally fibrant, iϕ ⋔ X/bm, for all m ∈ N. By adjunction, bn ⋔ iϕ/X, and
iϕ/X is an acyclic fibration.

Theorem 15.2.7 (Generalization of [JT07, theorem 4.5]). The Rezk model category struc-
ture Sp(Λ)Rezk is a left Bousfield localization of the horizontal model structure Sp(Λ)h
(definition 12.3.19). In particular, a weak equivalence in Sp(Λ)h is a Rezk weak equiva-
lence.

Proof. By proposition 12.3.20, Sp(Λ)v and Sp(Λ)h are both of Cisinski type. Since the
Rezk model structure Sp(Λ)Rezk is a left Bousfield localization of Sp(Λ)v, it is also of
Cisinski type. In particular, Sp(Λ)Rezk and Sp(Λ)h have the same cofibrations, namely the
monomorphisms. Thus, in order to prove the claim, it is enough to show that the identity
functor induces a Quillen adjunction id ∶ Sp(Λ)h Ð→←Ð Sp(Λ)Rezk ∶ id. By lemma 12.1.16,
it suffices to show that id preserves cofibrations, and Rezk fibrations between complete
Segal spaces. In both structures, cofibrations are the monomorphisms. By lemma 15.2.5,
for f ∶X Ð→ Y a Rezk fibration between complete Segal spaces, the matching map ⟨f/bm⟩
is a fibration for all m ∈ N, thus f is a horizontal fibration.

Theorem 15.2.8. With the simplicial action of proposition 12.3.13, Sp(Λ)Rezk is a sim-
plicial model category.

Proof. Recall from [Dug01, section 6] the model structure sPsh(Λ)hc, which is a left Bous-
field localization of Sp(Λ)h whose fibrant objects are the simplicial resolutions. It is sim-



plicial by [Dug01, theorem 6.1], and by [RSS01, theorem 3.1], it coincides with Sp(Λ)Rezk.

Definition 15.2.9. Recall from [JT07, proposition 1.16] that we have a coreflective ad-
junction (meaning that the left adjoint is an embedding)

KanÐ→←Ð qCat ∶ J

between Kan complexes and quasi-categories. The right adjoint J maps a quasi-category to
its maximal sub Kan complex, so it can be thought of as the “groupoidal core” functor. It
preserves cofibrations, fibrations, and weak equivalences from Psh(∆)Joyal. For X ∈ Psh(Λ),
let ΓX ∈ Sp(Λ) be the space given by

ΓX−,m ∶= XJ(∆[m]),

for m ∈ N, and where the simplicial cotensor is defined in definition 13.4.3.

Proposition 15.2.10 (Generalization of [JT07, proposition 4.10]). Let X ∈ Psh(Λ) be an
∞-algebra. Then ΓX is a complete Segal space, and there is a canonical acyclic cofibration
Xdisc Ð→ ΓX in Sp(Λ)Rezk. In particular, ΓX is a fibrant replacement of Xdisc in the Rezk
structure.

Proof. (1) Note that XJ(−) ∶ Psh(∆)op Ð→ Psh(Λ) is a continuous functor. Using
lemma 12.3.6 we readily deduce that XJ(−) ≅ ΓX/−.

(2) For u a map in Psh(∆), we have ΓX/u = XJ(u), and recall that J preserves cofi-
brations, fibrations, and weak equivalences of Psh(∆)Joyal. In particular, by propo-
sition 13.4.9, ΓX/bk = XJ(bk) is a fibration for all k ∈ N. Likewise, since any
map d ∶ ∆[0] Ð→ ∆[n] is an acyclic cofibration in Psh(∆)Quillen, ΓX/d = XJ(d) ∶
ΓX−,n Ð→ ΓX−,0 is an acyclic fibration, and by lemma 12.3.23, ΓX is homotopi-
cally constant. By proposition 15.2.6, we conclude that ΓX is a complete Segal
space.

(3) Note that ΓX−,0 ≅ ΓX/∆[0] ≅ XJ(∆[0]) = X, and let γ0 ∶ X Ð→ ΓX−,0 be the
identity. We extend γ0 to a morphism γ ∶Xdisc Ð→ ΓX. Note that in ∆, the terminal
map sk ∶ [k]Ð→ [0] is a retraction of any iterated coface map d ∶ [0]Ð→ [k]. Thus,
in addition to being a weak equivalence (as ΓX is homotopically constant), the
structure map sk ∶ ΓX−,0 Ð→ ΓX−,k is a section of d ∶ ΓX−,k Ð→ ΓX−,0, and in
particular injective. Letting γk ∶= skγ0 ∶Xdisc

−,k =X Ð→ ΓX−,k gives rise to the desired
map γ ∶Xdisc Ð→ ΓX which by construction is a horizontal acyclic cofibration. By
theorem 15.2.7, it is a Rezk acyclic cofibration.

Theorem 15.2.11 (Generalization of [JT07, proposition 4.7 and theorem 4.11]). The
adjunction

(−)disc ∶ Psh(Λ)∞ Ð→←Ð Sp(Λ)Rezk ∶ (−)−,0
of definition 12.3.10 is a Quillen equivalence. Thus, complete Segal spaces model ∞-
algebras.

Proof. (1) We first show that the adjunction is Quillen. Clearly, (−)disc preserves
monomorphisms and maps weak equivalences to horizontal weak equivalences,
which by theorem 15.2.7 are Rezk weak equivalences. Therefore, (−)disc is a left
Quillen functor.



(2) We show that for a complete Segal space X ∈ Sp(Λ), the map

(QX−,0)disc
qdisc

ÐÐ→ (X−,0)disc
εÐ→X

is a Rezk weak equivalence, where q ∶ QX−,0 Ð→ X−,0 is a cofibrant replacement
of X−,0. First, since all objects are cofibrant in Psh(Λ)∞, we choose q to be the
identity. Next, by theorem 15.2.7, it suffices to show that ε is a weak equivalence
in Sp(Λ)h, i.e. that ε−,n ∶ (X−,0)disc−,n = X−,0 Ð→ X−,n is a weak equivalence. Clearly,
ε−,n is induced by the terminal map [n]Ð→ [0] in ∆, and thus is a weak equivalence
since X is homotopically constant by proposition 15.2.6.

(3) We show that for an ∞-algebra X ∈ Psh(Λ)∞, the map

X
≅Ð→ (Xdisc)−,0

r−,0ÐÐ→ (RXdisc)−,0

is a Rezk weak equivalence, where r ∶ Xdisc Ð→ RXdisc is a fibrant replacement
of Xdisc. Choosing it to be γ ∶ Xdisc Ð→ ΓX (proposition 15.2.10) concludes the
proof.





Chapter Sixteen

Homotopy coherent opetopic algebras

T
he goal of this chapter is to present an alternative model for weak opetopic alge-
bras, a.k.a. ∞-algebras. In section 16.1, we consider the category IAlg = IAlg1,n
of opetopic algebras internal to simplicial sets (or equivalently, simplicial objects

in Algk,n), and in section 16.2, we transfer (in the sense of theorem 16.2.2) the projective
model structure on Sp(Λ) to one on IAlg, which we call the Horel model structure. The
strategy used here is a direct adaptation of [Hor15, section 3 and 4], where this result is
proved in the case k = n = 1 (i.e. Λ = ∆ and Alg = Cat). Finally, by successive localizations
of the Horel structure, we arrive at the notion of complete Segal algebra, and show in
theorem 16.3.5 that they are a model for ∞-algebras.

Throughout this chapter, we shall make use of convention 11.1.34, and fix parameters
k ∶=1 and n ≥ 1, and omit them from various notations, e.g. Λ = Λ1,n, Alg = Alg1,n, etc.

16.1 INTERNAL ALGEBRAS

Remark 16.1.1. Recall from theorem 11.1.39 that Alg = Algk,n is the small orthogonality
class induced by Ak,n (see definition 11.2.32) in Psh(O). By theorem 0.5.15, it is thus
equivalent to the category of models of a small projective sketch whose underlying category
is Oop. The distinguished cones are:

(1) for all ϕ ∈ O<n−k, the object ϕ over the empty diagram ∅Ð→ Oop;
(2) for all ω ∈ O≥n+1, the object ω over the diagram

(O/S[ω])op Ð→ Oop

via the morphisms ω Ð→ s[p] ω (where [p] ranges over ω●) and ω Ð→ tω in Oop.

Definition 16.1.2 (Algebras internal to simplicial sets). Let IAlg be the category of sim-
plicial models of the sketch described in remark 16.1.1. Explicitly, it is the full subcategory
of Psh(∆)O

op

spanned by the simplicial presheaves X such that
(1) for all ϕ ∈ O<n−k, Xϕ =∆[0];
(2) for all ω ∈ O≥n+1, we have

Xω ≅ lim((O/S[ω])op Ð→ Oop XÐ→ Psh(∆)) .

We have an isomorphism IAlg ≅ Alg∆op that simply swaps the indices (considering Alg as
a subcategory of Psh(O), see theorem 11.2.33). By proposition 11.1.32, Alg is complete
and cocomplete, thus so is IAlg.
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Definition 16.1.3 (Internal realization-nerve adjunction). The realization-nerve adjunc-
tion τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N of definition 11.1.35 induces an adjunction

τ̄ ∶ Sp(Λ)Ð→←Ð IAlg ∶ N̄ ,

where τ̄ is the composite

Sp(Λ) ≅Ð→ Psh(Λ)∆
op τ∆op

ÐÐ→ Alg∆op ≅Ð→ IAlg.

Explicitly, for X ∈ Sp(Λ) and m ∈ N, we have τ̄Xm = τ(X−,m) = τ(X/∆[m]), and for
A ∈ IAlg, we have (N̄A)−,m = N(Am). Since τ ⊣ N is a reflective adjunction (see theo-
rem 11.1.39), so is τ̄ ⊣ N̄ .

Proposition 16.1.4. The category IAlg is simplicially enriched. The mapping spaces are
given by

mapIAlg(A,B) ∶= mapSp(Λ)(N̄A, N̄B),

for A,B ∈ IAlg. We shall write map for mapIAlg or mapSp(Λ) if no ambiguity arises.
Moreover, IAlg is simplicially tensored, with, for K ∈ Psh(∆),

(K ⊗A)m ∶= τ̄(K ⊗ N̄A) = τ̄(Kconst × N̄A).

In the middle, ⊗ is the simplicial tensor of proposition 12.3.13.

Proof. The first claim follows from the fact that N̄ is fully faithful. We now check that
− ⊗ − above indeed defines a simplicial tensor.

IAlg(K ⊗A,B)
= IAlg(τ̄(K ⊗ N̄A),B) by definition
= Sp(Λ)(K ⊗ N̄A, N̄B) since τ̄ ⊣ N̄
≅ Sp(Λ)(( colim

∆[m]→K
∆[m])⊗ N̄A, N̄B)

≅ lim
∆[m]→K

Sp(Λ)(∆[m]⊗ N̄A, N̄B) since − ⊗ N̄A cocont.

= lim
∆[m]→K

Psh(∆)(∆[m],mapSp(Λ)(N̄A, N̄B)) see proposition 12.3.13

≅ Psh(∆)(K,mapIAlg(A,B)) by definition.

Lemma 16.1.5. For K ∈ Psh(∆), A ∈ IAlg, and m ∈ N, we have

(K ⊗A)m ≅ Km ⊠Am = ∑
Km

Am.

Proof. Straightforward computations:

(K ⊗A)m = τ̄(Kconst × N̄A)m by definition
= τ ((Kconst × N̄A)−,m) see definition 16.1.3
= τ (Km ⊠ (N̄A)−,m)
= τ(Km ⊠N(Am)) see definition 16.1.3



≅ Km ⊠ τN(Am) since τ cocont.
≅ Km ⊠Am since τ ⊣ N reflective.

Definition 16.1.6 (Connected object). An object c ∈ C in some category C is connected
if C(c,−) ∶ CÐ→ Set preserves sums.

Lemma 16.1.7. (1) A connected colimit (i.e. a colimit whose scheme is a connected
category) of connected objects is connected.

(2) Let C be a small category. Representable presheaves in Psh(C) are connected.

Proof. The first claim follows from the fact that in Set, sums commute with connected
limits. The second is by the Yoneda lemma.

Lemma 16.1.8. The nerve N ∶ Alg Ð→ Psh(Λ) preserves sums.

Proof. By proposition 11.1.30, it is enough to show that the monad Zn on Psh(On−k,n)
preserves sums. Let ∑iXi be a sum in Psh(On−k,n) and ω ∈ On−k,n. If dimω < n, then
by definition of Zn (see definition 11.1.16), we have (Zn∑iXi)ω = (∑iXi)ω = ∑iXi,ω. If
dimω = n, then

(Zn∑
i

Xi)ω = ∑
t ν=ω

Psh(On−k,n)(S[ν],∑
i

Xi).

Since k ≥ 1, and by lemma 3.5.8, the spine S[ν] is a connected colimit of representables,
hence connected by lemma 16.1.7.

Lemma 16.1.9. Let K ∈ Psh(∆) and X ∈ Psh(Λ), and recall the box product K⊠X ∈ Sp(Λ)
from definition 12.3.4.

(1) We have
τ̄(K ⊠X) ≅ K ⊗ (τX)const.

In particular, if λ ∈ Λ, then τ̄(K⊠λ) ≅K⊗λconst, where on the left, λ is considered
as a representable presheaf, and on the right, as an algebra.

(2) We have
N̄ (K ⊗ (τX)const) ≅ K ⊠NτX.

In particular, if λ ∈ Λ, then N̄(K⊗λconst) =K⊠λ, where on the left, λ is considered
as an algebra, and on the right, as a representable presheaf.

Proof. For m ∈ N, we have

τ̄(K ⊠X)m = τ̄ ((K ⊠X)−,m) see definition 16.1.3
= τ(Km ⊠X) see definition 12.3.4
≅ Km ⊠ τX since τ cocont.
= Km ⊠ (τX)constm

≅ (K ⊗ (τX)const)m by lemma 16.1.5,

and for the second point,

N̄(K ⊗ (τX)const)−,m = N ((K ⊠ (τX)const)m) see definition 16.1.3



≅ N(Km ⊠ τX) by lemma 16.1.5
≅ Km ⊠NτX by lemma 16.1.8.

16.2 THE HOREL MODEL STRUCTURE

Definition 16.2.1 (Projective structure on Sp(Λ)). By theorem 12.1.20, the category
Sp(Λ) ≃ Psh(∆)Λ

op

admits the projective model structure, whereby a map f is a fibration
(resp. weak equivalence) if for all λ ∈ Λ, fλ is a fibration (resp. a weak equivalence) in the
classical model structure Psh(∆)Quillen. We shall denote this structure by Sp(Λ)proj. It is
combinatorial, and we write

IΛ ∶= {∂∆[m] ⊠ λ
bn⊠λÐÐÐ→∆[m] ⊠ λ ∣m ∈ N, λ ∈ Λ}

JΛ ∶= {Λl[m] ⊠ λ
hln⊠λÐÐÐ→∆[m] ⊠ λ ∣m ∈ N,0 ≤ l ≤m,λ ∈ Λ}

for the sets of generating cofibrations and generating acyclic cofibrations respectively (see
theorem 12.1.20). Lastly, recall that the identity functor induces a Quillen equivalence

Sp(Λ)proj Ð→←Ð Sp(Λ)v.

The goal of this section is to use the following result to induce a model structure on
IAlg along the adjunction of definition 16.1.3:

Theorem 16.2.2 ([Fre09, proposition 11.1.14]). Let F ∶ M Ð→←Ð C ∶ U be an adjunction
between complete and cocomplete categories, and where M is a model category cofibrantly
generated by IM and JM as sets of generating cofibrations and acyclic cofibrations respec-
tively. Assume that

(1) U preserves filtered colimits,
(2) U sends pushouts of maps in F IM (resp. FJM) to cofibrations (resp. trivial cofibra-

tions).
Then the right-induced model structure on C exists, i.e. that in which a morphism f

is a fibration (resp. a weak equivalence) if and only if Uf is a fibration (resp. a weak
equivalence). By definition, the adjunction F ⊣ U is a Quillen adjunction, and furthermore,
U preserves cofibrations.

Proposition 16.2.3 (Generalization of [Hor15, proposition 3.5]). The nerve N̄ preserves
filtered colimits.

Proof. Let λ ∈ Λ. By definition, for A ∈ IAlg and m ∈ N we have N̄Aλ,m = (NAm)λ, and
by theorems 0.5.11 and 11.1.39, the nerve N preserves filtered colimits. Thus, so does N̄ .

Lemma 16.2.4. For ω ∈ O≥n−k, the algebra hω is a connected object in Alg.



Proof. For A,B ∈ Alg we have

Alg(hω,A +B)
≅ Psh(Λ)(hω,N(A +B)) since τ ⊣ N
≅ Psh(Λ)(hω,NA +NB) by lemma 16.1.8
≅ Psh(Λ)(hω,NA) +Psh(Λ)(hω,NB) since hω is repres.
≅ Alg(hω,A) +Alg(hω,B) since τ ⊣ N ,

and therefore, hω is connected in Alg.

Lemma 16.2.5 (Generalization of [Hor15, lemma 4.1]). Let A,B ∈ Alg, C,D ∈ IAlg,
i ∶K Ð→ L a monomorphism in Psh(∆), and consider a pushout square as on the left:

K ⊠A C

L ⊠A D,
⌜

i⊠A

map(B,K ⊠A) map(B,C)

map(B,L ⊠A) map(B,D).

map(B,i⊠A)

If B is a connected algebra, then the square on the right is a pushout too.

Proof. Since colimits in IAlg are calculated pointwise, for all m ∈ N, the following square
is a pushout in Alg:

Km ⊠A Cm

Lm ⊠A Dm.
⌜

im⊠A

Defining Mm ∶=Lm − im(Km), we clearly have Dm ≅ (Mm ⊠A) +Cm. Next,

colim

⎛
⎜⎜⎜
⎝

Alg(B,Km ⊠A) Alg(B,Cm)

Alg(B,Lm ⊠A)

⎞
⎟⎟⎟
⎠

≅ colim

⎛
⎜⎜⎜
⎝

Km ×Alg(B,A) Alg(B,Cm)

Lm ×Alg(B,A)

⎞
⎟⎟⎟
⎠

♠

≅ Mm ×Alg(B,A) +Alg(B,Cm)
≅ Alg(B,Mm ⊠A) +Alg(B,Cm) ♠
≅ Alg(B, (Mm ⊠A) +Cm) ≅ Alg(B,Dm), ♠

where in steps ♠, we used the fact that Alg(B,−) preserves sums, as B is connected.
Therefore, the following square is a pushout:

Alg(B,Km ⊠A) Alg(B,Cm)

Alg(B,Lm ⊠A) Alg(B,Dm),

but this is just the desired square evaluated at m.



Corollary 16.2.6 (Generalization of [Hor15, corollary 4.2]). With the same hypotheses
as lemma 16.2.5, the following square is a pushout:

N̄(K ⊠A) N̄C

N̄(L ⊠A) N̄D.

N̄(i⊠A)

Proof. This follows from lemmas 16.2.4 and 16.2.5.

Theorem 16.2.7 (Generalization of [Hor15, theorem 5.1]). The right induced model struc-
ture on IAlg along N̄ (in the sense of theorem 16.2.2) exists. We shall denote it by IAlgHorel

and call it the Horel model structure1. Recall that a morphism f of IAlg is a fibration
(resp. a weak equivalence) if and only if N̄f is a projective fibration (resp. a projective
weak equivalence). Furthermore, we have a Quillen adjunction

τ̄ ∶ Sp(Λ)proj Ð→←Ð IAlgHorel ∶ N̄ ,

and N̄ preserves cofibrations.

Proof. We apply theorem 16.2.2. Recall that IAlg is complete and cocomplete, and by
proposition 16.2.3, N̄ preserves filtered colimits. Let f ∈ IΛ be a generating projective
cofibration, say f = bm ⊠ λ ∶ ∂∆[m] ⊠ λ Ð→ ∆[m] ⊠ λ, where m ∈ N and λ ∈ Λ. By
lemma 16.1.9, τ̄(K⊠λ) ≅K⊗λconst for all K ∈ Psh(∆), and in particular, τ̄ f = bm⊗λconst ∶
∂∆[m]⊗ λconst Ð→∆[m]⊗ λconst, Consider a pushout of τ̄ f , say

∂∆[n]⊗ λconst C

∆[n]⊗ λconst D.
⌜

τ̄ f g

By lemma 16.1.9, N̄ τ̄f ≅ f , and by corollary 16.2.6, N̄g is a pushout of N̄ τ̄f ≅ f , thus
a cofibration. Consequently, N̄ maps pushouts of maps in τ̄ IΛ to cofibrations. A similar
reasoning shows that N̄ maps pushouts of maps in τ̄JΛ to trivial cofibrations.

Example 16.2.8. If k = n = 1, then IAlg is the category ICat of internal categories in
Psh(∆), and one can check that IAlgHorel matches the model structure on ICat given in
[Hor15].

Proposition 16.2.9 (Generalization of [Hor15, proposition 4.3]). If X ∈ Sp(Λ)proj is
cofibrant, then the unit map ηX ∶X Ð→ N̄ τ̄X is an isomorphism.

Proof. Since the adjunction τ̄ ⊣ N̄ is reflective, the unit map ηX is an isomorphism if and
only if X is a nerve, i.e. of the form N̄B for some B ∈ IAlg. We now show that all cofibrant
objects (i.e. retracts of IΛ-cell complexes) are nerves.

(1) The initial object ∅ is a nerve, as ∅ = N̄ τ̄∅.
(2) Clearly, if Y is a retract of X, then ηY is the retract of ηX . Therefore, if X is a

nerve, so is Y .
1In [Hor15, section 5.1], it is called the levelwise model structure



(3) We now show that pushouts of nerves along maps in IΛ are nerves. Let n ∈ N, λ ∈ Λ,
X be a nerve, and Y be the pushout on the right.

∂∆[n]⊗ λconst τ̄X

∆[n]⊗ λconst C,
⌜

∂∆[n] ⊠ λ X

∆[n] ⊠ λ Y,
⌜

By assumption, X ≅ N̄ τ̄X, and by lemma 16.1.9 we have N̄(K ⊗ λconst) ≅ K ⊠ λ
for all K ∈ Psh(∆). Therefore, the cospan in the right square is the nerve of the
cospan in the left square, and let C be its pushout. By corollary 16.2.6, Y ≅ N̄C.

(4) Let X = colimiXi be a filtered colimit of nerves. As a left adjoint, τ̄ preserves
all colimits, and by proposition 16.2.3, the nerve N̄ preserve filtered colimits. In
particular, the unit map ηX of X is the filtered colimit colimi ηXi (in Sp(Λ)[1]),
and thus an isomorphism.

(5) Let Xβ = colimα<βXα be a relative IΛ-cell complex, where X0 is a nerve. We show
that each Xγ is a nerve by transfinite induction, for γ ≤ β. The case γ = 0 is an
assumption. If Xγ is a nerve, then so is Xγ+1 by point 3. The limit case is handled
by point 4.

Finally, all cofibrant objects of Sp(Λ) are nerves.

Theorem 16.2.10 (Generalization of [Hor15, proposition 5.4]). The Quillen adjunction

τ̄ ∶ Sp(Λ)proj Ð→←Ð IAlgHorel ∶ N̄

of theorem 16.2.7 is a Quillen equivalence.

Proof. Let C ∈ Sp(Λ)proj be cofibrant, P ∈ IAlgHorel be fibrant, and f ∶ τ̄C Ð→ P be a
morphism. Then its adjoint f̃ ∶ C Ð→ N̄P is given by the composite

C
ηCÐ→ N̄ τ̄C

N̄f
ÐÐ→ N̄P.

By proposition 16.2.9, and since C is cofibrant, ηC is an isomorphism. By definition of
the right induced model structure in IAlg (see theorem 16.2.2), N̄ preserves and reflects
weak equivalences. Finally, f is a weak equivalence if and only its adjoint f̃ is, and the
adjunction is a Quillen equivalence.

16.3 ANOTHER MODEL FOR ∞-ALGEBRAS

The Horel model structure of theorem 16.2.7 serves as a basis for an alternative model
for ∞-algebras, namely complete Segal algebras (definition 16.3.4), which we introduce in
this section. More We show that they are the fibrant objects of IAlgRezk, the Rezk model
structure for internal algebras, and in theorem 16.3.5, we establish a span of Quillen
equivalences

IAlgRezk

τ̄←ÐÐ→ Sp(Λ)pRezk

idÐ→←Ð Sp(Λ)Rezk,

where Sp(Λ)pRezk is analogous to Sp(Λ)Rezk but built from the projective model structure
instead of the vertical one.



Definition 16.3.1. Akin to definitions 15.1.1 and 15.2.3, the projective Segal model struc-
ture (resp. the projective Rezk model structure) on Sp(Λ) is the left Bousfield localization
Sp(Λ)pSegal ∶=S−1Sp(Λ)proj (resp. Sp(Λ)pRezk ∶=R−1Sp(Λ)pSegal).

Proposition 16.3.2. Localizing the Quillen equivalence between the projective and vertical
(see definition 12.3.19) model structures on Sp(Λ) we obtain a Quillen equivalence

id ∶ Sp(Λ)pSegal Ð→←Ð Sp(Λ)Segal ∶ id,

and likewise for the Rezk structures.

Proof. Since id ∶ Sp(Λ)proj Ð→ Sp(Λ)v preserves and reflects weak equivalences, it maps a
cofibrant approximation of a spine inclusions shω (in Sp(Λ)proj) to a map that is weakly
equivalent to shω (in Sp(Λ)v). Thus, we have a chain of Quillen equivalences

Sp(Λ)pSegal Ð→←Ð (d idS)
−1Sp(Λ)proj Ð→←Ð Sp(Λ)Segal,

where the first one derives from theorem 12.1.30. The proof for the equivalence between
the Rezk structures is similar.

Proposition 16.3.3. The identity adjunction id ∶ Sp(Λ)proj Ð→←Ð Sp(Λ)pSegal ∶ id is a
Quillen equivalence. Consequently, Sp(Λ)pRezk is equivalent to R−1Sp(Λ)proj.

Proof. Localize the Quillen equivalence of theorem 16.2.10 as follows:

Sp(Λ)proj IAlgHorel

Sp(Λ)pSegal (dτ̄S)−1IAlgHorel.

τ̄

N̄

⊥

τ̄

N̄

⊥

By theorem 11.1.39, τ ∶ Psh(Λ)Ð→ Alg maps spine inclusions to isomorphisms. Therefore,
τ̄ maps spine inclusions to isomorphisms, and the left derived functor dτ̄ maps spine inclu-
sions to weak equivalences. Consequently, the left Bousfield localization (dτ̄S)−1IAlgHorel

is equivalent to IAlgHorel. On the other hand, the lower adjunction is a Quillen equiva-
lence by definition 12.1.28. Quillen equivalences satisfy the 3-for-2 property, and the result
follows.

Definition 16.3.4 (Rezk structure for IAlg). Let IAlgRezk, the Rezk model structure on
IAlg, be the left Bousfield localization IAlgRezk ∶=(dτ̄R)−1IAlgHorel. Fibrant objects are
called complete Segal algebras.

Theorem 16.3.5. The Quillen equivalence of theorem 16.2.10 descends to the Rezk struc-
tures, and we have a span of Quillen equivalences:

IAlgRezk

τ̄←ÐÐ→ Sp(Λ)pRezk

idÐ→←Ð Sp(Λ)Rezk.

Proof. Follows from propositions 16.3.2 and 16.3.3 and theorem 12.1.30.



Chapter Seventeen

Conclusion

I
n this thesis, we explored the theory and applications of opetopes. Starting from
the polynomial approach of Kock et. al., we presented developments of this field,
with an emphasis on syntactical and algebraic aspects. We now briefly summarize

the main results of this work.

The polynomial approach to opetopes. The very first undertaking of this thesis is to care-
fully review the polynomial definition of opetopes of Kock et. al. [KJBM10]. Special at-
tention is given to the structure of polynomial monads, and we show that, as algebras over
(−)⋆ (definition 2.3.3 and theorem 2.3.5), they essentially are tree calculi (theorem 2.3.6
and remark 2.3.13). From there, a completely formal definition of the Baez–Dolan con-
struction in the polynomial setting is given: if M is a polynomial monad, then M+ is the
calculus of M -tree substitutions (theorem 2.4.6).

Then, following Kock et. al. [KJBM10], the set On of n-opetopes is defined as the set
of colors of Zn ∶= id++⋯ +Set . Very informally, this means that an n-opetope is a

tree of trees of trees of trees of . . . of trees of
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

points.

Ultimately, manipulating opetopes amounts to reasoning about their nodes and adjacen-
cies. Applying the detailed review of the theory of polynomial functors and trees provides
the formalism of higher-dimensional addresses (section 3.3), a compact notation that gives
“simultaneous walking instructions” through all of the trees that make up a given opetope.

Opetopic sets and many-to-one polygraphs. In the opetopic setting, trees and pasting
diagrams are the two faces of the same coin. Using the latter point of view, it is apparent
that opetopes assemble into a category O whose morphisms are geometrical face embed-
dings (section 3.4). Presheaves over O are called opetopic sets, and we show that they are
equivalent to many-to-one polygraphs. In more details, if P ∈ Polmto, then its opetopic
nerve NP ∈ Psh(O) is P stripped of its algebraic structure. The source sx of a generator
x ∈ Pn can no longer be a composition of (n − 1)-generators, but the information about
the adjacency of the various occurrences of those (n − 1)-generators is enough to fully
reconstruct sx. The occurrence and adjacency data is precisely what NP stores. We recall
that this correspondence was already known from [HMP00] [HMZ02] [HMZ08], but our
approach is much more concise.

Syntax. In an effort to facilitate the use of opetopes, we turn our attention to syntactical
systems that fully encode them. A formalization which is adapted for computerized ma-
nipulation would indeed be desirable. The tree and pasting diagram dichotomy mentioned
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earlier gives rise to two very different systems, which we respectively call the unnamed
and named approach. In the unnamed approach, the recursive tree nature of opetopes is
represented in a construct called preopetope. For example,

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

2

2

◾

◾ ◾

◾ ◾

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

[[∗]]← {
[]← {∗← ⧫
[∗]← {∗← ⧫

The named approach, on the other hand, gives names to the (source) faces of an opetope,
and encodes the adjacency data in terms:

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

a

b c

d

f

g

h
i

j

⇓α
⇓β ⇛A

a

b c

d

f

g

h

j

⇓γ

A ∶ β(i← α)r⊸ h(c← g(b← f))r⊸ ar⊸ ∅.

We present the Opt? derivation system, which characterizes opetopes among all pre-
opetopes, and similarly in the named approach, where system Opt! determines which
terms are well-formed, i.e. correspond to opetopes. We also present variants of these sys-
tems, respectively OptSet? and OptSet!, that derive finite opetopic sets.

Opetopic algebras. A category C has a very natural opetopic nerve M1,1C ∈ Psh(O) whose
points are the objects of C, arrows are the morphisms, and the 2-cells witness the relations
of C: an equality of the form of the form f1⋯fn−1fn = g is witnessed by a 2-cell of the form

.

. . .

.
fn

fn−1

f1

g

⇓

The same idea works for operads, but this time, relations are encoded at the level of
3-cells. In continuation of this idea, we present the notion of k-colored n-dimensional
opetopic algebra, which are algebraic structures that can be presented by opetopic sets.
Specifically, we extend the polynomial monad Zn of chapter 3 to a p.r.a. monad over
Psh(On−k,n), which can be thought of as a “free pasting diagram” monad (section 11.1).
Then, we establish a nerve theorem which exhibits Algk,n, the category of (k,n)-algebras,
as an orthogonality class in Psh(O). Roughly speaking, it shows that an opetopic algebra
is an opetopic set X such that S≥n+1 ⊥ X, where S≥n+1 is the set of spine inclusions of
opetopes of dimension ≥ n+1. This is very similar to the fact that a category is a simplicial
set Y such that S≥2 ⊥ Y , where this time S≥2 is the set of spine inclusions of simplices of
dimension ≥ 2.



The notion of opetopic algebra seems to provide different structures for each choice of
parameters k,n ∈ N with k ≤ n, but this is not really the case. In a phenomenon we call
algebraic trompe-l’œil, we show that all opetopic algebra can essentially be reduced to a
“colored combinad”, i.e. a (1,3)-algebra. These structures sit 1 dimension above operads,
and, at the time of writing, have not been thoroughly studied in the literature.

Models of ∞-algebras. This thesis also studies ∞-algebras (or weak algebras), where
associativity and unitality only hold up to coherent homotopy (in this case, coherent
higher cell). For example, instead of requiring that S≥n+1 ⊥X as in the strict case, we only
have S≥n+1 ⋔X. The nerve of a strict opetopic algebra can also be described in terms of a
presheaf over the category Λ = Λk,n of opetopic shapes (definition 11.1.33). Although the
interplay between Psh(O) and Psh(Λ) is rather technical, the latter proves to be a much
better presheaf model when studying weak algebras (see e.g. proposition 13.5.3).

The homotopy theory of ∞-algebras is encapsulated in the model structure Psh(Λ)∞,
constructed in theorem 13.3.21 using methods of Cisinski’s homotopy theory of presheaves
[Cis06]. We also provide simplicial models for ∞-algebras. Then, in the style of Rezk
[Rez01], Joyal and Tierney [JT07], and Cisinski and Moerdijk [CM13], we consider the
category Sp(Λ) of simplicial presheaves over Λ. Starting from the Reedy model structure,
and by successive left Bousfield localizations, we construct the Rezk structure Sp(Λ)Rezk,
and show that it is Quillen-equivalent to Psh(Λ)∞ (theorem 15.2.11). We also investigate
an alternative approach, where in the style of [Hor15], we consider the category IAlg of
opetopic algebras internal to simplicial sets. There, we start from the Horel structure
IAlgHorel (theorem 16.2.7), and by a similar process of left Bousfield localization, obtain
a new model IAlgRezk for ∞-algebras (theorem 16.3.5).

PERSPECTIVES

We now expose some research directions that are in continuation of the themes of this
thesis.

Symmetric opetopes. Perhaps the most immediate field left uncharted in this thesis is
that of symmetric opetopes. The “original” opetopes of Baez and Dolan [BD98] where
built from symmetric operads and the so-called slice construction (analogous to the (−)+
construction presented in definition 2.4.1). Cheng later improved the theory by construct-
ing a category of opetopes [Che03a] [Che04b] by generators and relations, much in the style
of definition 3.4.2. However, the geometrical intuition stems from a different formalism
for trees, relying on Kelly–Mac Lane graphs [Che03b] [Che06].

The approach using polynomial trees offers the valuable notion of higher address,
used ubiquitously throughout this work in order to refer to source faces (or nodes) of
opetopes. Therefore, it would be desirable to formulate a definition of symmetric opetopes
in this context. It is not clear how the formalism of polynomial monads and trees can be
lifted to the symmetric setting, however. For example, monads describing structures with
symmetries (e.g. commutativity) tend to not be cartesian, thus not polynomial.



Computational models for ∞-categories. System OptCat? is an elegant implementation
of Hermida’s “coherence via universality” principle [Her01], but the correspondence with
∞-categories is not proved in this thesis. More formally, one would like an equivalence
between the category of contexts of OptCat? (or rather, an adequate definition thereof)
and the category of finitely presentable∞-categories (e.g. quasi-categories). Unfortunately,
experimental evidences suggest that rule tclose is too strong, although the subject is still
actively being investigated.

A computer implementation of opetopes leveraging either syntactic approach presented
in part II would further promote opetopes as a convenient formalism for higher structures.
In particular, a proof assistant based on a correct version of system OptCat? would be
of practical use for the study of higher coherence laws in ∞-categories or ∞-groupoids.
An implementation of the other syntactical systems of part II already exists [Ho 18a] but
is only a proof of concept at the moment.

Beyond ∞-categories, it seems very plausible that these syntactical methods can be
pushed to the setting of ∞-algebras. How much work would be required partially depends
on the perspective we present next.

Homotopical trompe-l’œil. The algebraic trompe-l’œil (theorem 11.3.16) states that a
(k,n)-opetopic algebra can essentially be reduced to a (1,3)-opetopic algebra, which can
be thought of as colored combinad. What about weak opetopic algebras? More formally,
if (−)∨ ∶ Psh(Λk,n)Ð→ Psh(Λ1,3) is the left Kan extension of the composite

Λk,n Ð→ Algk,n
(−)∨
ÐÐ→ Alg1,3

N1,3ÐÐ→ Psh(Λ1,3)

along the Yoneda embedding, and D is its right adjoint, what can be said about the ad-
junction (−)∨ ⊣D when considering the model structures of theorem 13.3.21 on Psh(Λk,n)
and Psh(Λ1,3)?

Towards oriented types. Homotopy type theory [Uni13] (thereafter HoTT) is a depen-
dent type theory where special attention is given to identity types. In a nutshell, types
are thought of as spaces, elements of a type as points, and an identity between two el-
ements as a path in the ambient space. Paths between paths, i.e. homotopies, are then
identities between identities, and so on. Naturally, HoTT acts as an internal language
for ∞-groupoids, where higher identities are interpreted as higher dimensional cells. One
would be interested in types that model ∞-categories instead. Much like opetopes rep-
resenting compositions of all valid pasting diagrams of lower dimensional cells, “opetopic
types” should have unbiased compositions of identities. This would be in contrast to the
usual binary composition of homotopies, which defined by induction on identity types.
A possible approach is to introduce identity types parametrized by pasting diagrams of
lower dimensional identities, along with an adequate induction principle, which should be
related to the axioms of system OptCat? (see section 9.4).

Further generalizations of the methods of Joyal–Tierney and Horel. In chapter 13, we
construct the model structure Psh(Λ)∞, and in chapters 15 and 16, we provide alternative
models for ∞-algebras by generalizing the approaches of Joyal and Tierney [JT07] and



Horel [Hor15], respectively. However, at their core, these methods do not seem to funda-
mentally rely on the combinatorics of opetopes. We ask if it is possible to lift them to a
more general setting.

For example, let C be a normal skeletal category, and (I,K) be a homotopical structure
on Psh(C). In particular, the Cisinski model structure of theorem 12.2.8 exists, and we
denote it by Psh(C)Cisinski. By (An0), K is the saturation of a set J of monomorphisms,
and assume that J admits the small object argument. In particular, J is a set of generating
acyclic cofibrations. Consider now Sp(C)v, the category of simplicial presheaves over C

endowed with the vertical model structure. Let the Segal model structure Sp(C)Segal be
the left Bousfield localization

Sp(C)Segal ∶= (Jdisc)−1Sp(C)v.

For c ∈ C, let i0, i1 ∶ c Ð→ Ic be the endpoint inclusions of c into its corresponding cylin-
der object, and E be the set of all endpoint inclusions. Define the Rezk model structure
Sp(C)Rezk to be the left Bousfield localization

Sp(C)Rezk ∶= (Edisc)−1Sp(C)Segal.

Conjecture. We have a Quillen equivalence

(−)disc ∶ Psh(C)Cisinski

∼Ð→←Ð Sp(C)Rezk ∶ (−)−,0.

Recall that by theorem 0.5.15, presheaves X ∈ Psh(C) such that J ⊥ X correspond to
models of a projective sketch over Cop. Let IMod be the category of simplicial models of
that sketch. We have a natural reflective adjunction τ ∶ Sp(C)Ð→←Ð IMod ∶ N .

Conjecture. The projective model structure over Sp(C) can be transferred along N , i.e.
there exists a model structure over IMod where a morphism f is a fibration (resp. a weak
equivalence) if and only of Nf is a projective fibration (resp. a projective weak equivalence).

Assuming it exists, denote this model structure by IModHorel. The localization methods
of section 16.3 should produce a Rezk structure IModRezk which is related to Sp(C)Rezk

(and thus to Psh(C)Cisinski) via a zig-zag of Quillen equivalences.

to be continued...





Part IV

Additional material





Appendix A

Linear opetopic sets

I
n this chapter, we generalize some results of [LV12] to the opetopic setting. Let
R be a commutative ring, ModR be the category of two sided R-modules, and
dgModR be the category of differential graded R-modules. Recall that a (planar)

algebraic R-operad P is a sequence of R-modules (P0, P1, P2, . . .), and for each finite
sequence of integers k1, . . . , km, a composition map

γ ∶ Pm
m

⊗
i=1
Pki Ð→ Pk1+⋯+km

(a; b1, . . . , bm)z→ a(b1, . . . , bm),

satisfying adequate unitality and associativity conditions. Intuitively, a ∈ Pm is an op-
eration with m inputs, and γ grafts all the bi on these inputs, giving an operation of
k1 +⋯ + km inputs. In the opetopic setting, the arity of an operation x of an “n-opetopic
operad” would not be a list, but rather an n-opetope. Thus an n-opetopic operad X would
be a collection of R-modules (Xω ∣ ω ∈ On), and the composition map would be of the
form

γ ∶ Pω ⊗
[p]∈ω●

Pψ[p] Ð→ Pω′ ,

where tψ[p] = s[p] ω, and ω′ ∶=ω◻[p]ψ[p]. Of course, γ is expected to satisfy unitality and
associativity conditions analogous to the classical operadic (or 2-opetopic) case. This can
be extremely tricky to write down. A homogeneous element of Pω⊗[p]∈ω● Pψ[p] is a tensor
of an element of Pω and a tree of elements of P , rather than just a list. Rearranging terms
to express the associativity equation of γ is an excruciating endeavor. In the differential
graded setting, the Koszul sign rule is simply unmanageable.

In this chapter, we present a formalism designed to tackle this problem, and manage
elements of an “higher” opetopic operad in a more tractable fashion. Classical operads are
recovered in the case n = 2, and associative R-algebras are recovered in the case n = 1.
We reformulate classical constructions and results in this setting, such as the bar-cobar
adjunction.

A.1 OPETOPIC MODULES AND SCHUR FUNCTORS

operations on On-modules

Definition A.1.1 (Opetopic module). Let ModOnR ∶=∏ω∈On ModR be the category of n-
opetopic modules, or On-modules for short. If X ∈ModOnR and ω ∈ On, we write Xω ∈ModR
for its component corresponding to ω.
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Notation A.1.2. Let X,Y1, . . . , Yk ∈ ModR. Much in the spirit of the ◯ notation (see
notation 2.2.23), we write

X⊗
i

Yi ∶= X ⊗
k

⊗
i=1
Yi = X ⊗ Y1 ⊗⋯⊗ Yk.

Definition A.1.3 (Operations on opetopic modules). For X,Y ∈ModOnR , let their sum,
tensor product, and composite product be

(X ⊕ Y )ω ∶= Xω ⊕ Yω, (A.1.4)
(X ⊗ Y )ω ∶= ⊕

ω1 ○[l] ω2=ω
Xω1 ⊗ Yω2 , (A.1.5)

(X ○ Y )ω ∶= ⊕
ν◻[pi] νi=ω

Xν⊗
i

Yνi , (A.1.6)

where ω ∈ On. In equation (A.1.5), the sum ranges over all decompositions of ω as a
grafting of the form ω1 ○[l] ω2, for ω1, ω2 ∈ On and [l] ∈ ω1. In equation (A.1.6), the sum
ranges over all decomposition of ω as a simultaneous substitution, and by convention,
the node addresses [pi] of ν are sorted in lexicographical order. Equivalently, the sum of
equation (A.1.6) ranges over all ξ ∈ O(2)n+1 (see definition 3.1.7) such that t ξ = ω, in which
case ν ∶= s[l] ξ, and νi ∶= s[[pi]] ξ.

Proposition A.1.7. The operations ⊕, ⊗, and ○ of definition A.1.3 are associative.

Proof. Straightforward computations.

Examples A.1.8. (1) If n = 1, then ModOnR =ModR is just the category of R-modules,
and ○ is the usual tensor product.

(2) If n = 2, then ModOnR =ModNR is the category of non negatively graded R-modules,
which we consider as a planar version of S-modules [LV12, section 5.1]. For X,Y ∈
ModO2

R and k ∈ N, we have that

(X ○ Y )n = ⊕
a1+⋯+ak=n

Xk⊗
i

Yai

which corresponds to the composite product of [LV12, section 5.1.6].

Notation A.1.9. Let X,Y ∈ ModOnR be opetopic modules, ω ∈ On, and consider a homo-
geneous element x ⊗ y1 ⊗ y2 ⊗ ⋯ ∈ (X ○ Y )ω, say in the Xν⊗i Yνi component. It will be
concisely denoted as y

x , where y is the sequence y1, y2, . . .. Recall that by convention, the
node addresses [pi] of ν are sorted in lexicographical order. In particular, y1 ∈ Yν1 “corre-
sponds” to the node address [] ∈ ν●. Similarly, if W ∈ModOnR , then homogeneous elements
of W ○X ○ Y we be denoted by

y

x

w

Definition A.1.10. The operations on n-opetopic modules presented above have neutral
elements that we define now. The identically null module 0 is clearly a two sided neutral
element for ⊕. Define R, I ∈ModOnR as follows:

Rω ∶=
⎧⎪⎪⎨⎪⎪⎩

Rω if ω is degenerate,
0 otherwise,

Iω ∶=
⎧⎪⎪⎨⎪⎪⎩

Rω if ω is an endotope,
0 otherwise,



where Rω is the free R-module on 1 generator ω. An element of Rω will be written rω,
for r ∈ R, or simply by r if no ambiguity arise.

Example A.1.11. If n = 2, then R is the N-graded module (R,0,0, . . .), while I =
(0,R,0,0, . . .).

Lemma A.1.12. (1) The On-module R is a left1 neutral element for ⊗.
(2) The On-module I is a two sided neutral element for ○.

Proof. (1) For X ∈ModOnR and ω ∈ On we have

(R⊗X)ω = ⊕
ω1 ○ω2=ω

Rω1 ⊗Xω2 = RIe[] ω
⊗Xω = Xω,

as indeed, the only decomposition of ω as a grafting ω1 ○[l] ω2 where ω1 is degenerate
is ω = Ie[] ω ○[] ω.

(2) For X ∈ModOnR and ω ∈ On we have

(I ○X)ω = ⊕
ν◻i νi=ω

Iν⊗
i

Xνi = IYtω ⊗Xω = Xω,

as indeed, the only decomposition of ω as a simultaneous substitution ν◻[pi] νi
where ν is an endotope is ω = Ytω ◽[] ω. For the other side, we have

(X ○ I)ω = ⊕
ν◻i νi=ω

Xν⊗
i

Iνi = Xω⊗
i

IYs[pi]
ω = Xω,

as indeed, the only decomposition of ω as a simultaneous substitution ν◻[pi] νi
where all νi’s are endotopes is ω◻[pi]Ys[pi] ω

.

Definition A.1.13 (Augmented, coaugmented). An opetopic module X ∈ModOnR is aug-
mented if it is equipped with an augmentation map ε ∶ X Ð→ I. In this case, we write
X̄ ∶=ker ε for the augmentation ideal of X. Dually, X is coaugmented if it is equipped with
a coaugmentation map η ∶ I Ð→X, and we let X̄ ∶= cokerη be the coaugmentation quotient
of X.

schur functors

Definition A.1.14 (Opetopic vector space). Let VectOnR ∶=ModOn−1R be the category of
On-vector spaces. It has direct sums, given pointwise, akin to equation (A.1.4). We now
endow it with a tensor product. For V,W ∈ VectOnR , and ψ ∈ On−1, let

(V ⊗W )ψ ∶= ⊕
ψ1 ◽[p] ψ2=ψ

Vψ1 ⊗Wψ2 . (A.1.15)

This is not the same tensor product as equation (A.1.5) if we consider V and W to be in
ModOn−1R .

Example A.1.16. If n = 2, then VectO2

R is just the category of R-modules, and the tensor
product above is just the usual tensor product of R-modules.

1Unfortunately this does not hold on the right if n ≥ 2. Indeed, there are as many ways of decomposing
ω as a grafting ω1 ○[l] ω2 with ω2 degenerate, as there are leaves in ω. Thus if k =#ω∣, then (X⊗R)ω =X⊕k.



Definition A.1.17 (Schur functor). LetX ∈ModOnR be an n-opetopic module. It induces a
functor X̃ ∶ VectOnR Ð→ VectOnR , called its Schur functor, defined as follows. For V ∈ VectOnR
and ψ ∈ On−1, let

X̃(V )ψ ∶= ⊕
tω=ψ

Xω ⊗ Vω,

where Vω ∶=⊗[p]∈ω Vs[p] ω.

Proposition A.1.18. The operations ⊕, ⊗, and ○ are compatible with (̃−), i.e. for X,Y ∈
ModOnR , we have X̃ ⊕ Y ≅ X̃ ⊕ Ỹ , X̃ ⊗ Y ≅ X̃ ⊗ Ỹ , and X̃ ○ Y ≅ X̃ ○ Ỹ .

Proof. (1) The first claim is clear.
(2) For V ∈ VectOnR and ψ ∈ On−1, we have

X̃ ⊗ Y (V )ψ = ⊕
tω=ψ

( ⊕
ω1 ○ω2=ω

Xω1 ⊗ Yω2)⊗ Vω

≅ ⊕
tω=ψ

⊕
ω1 ○ω2=ω

(Xω1 ⊗ Vω1)⊗ (Xω2 ⊗ Vω2) ♠

≅ ⊕
ψ1 ◽ψ2=ψ

⊕
tω1=ψ1

⊕
tω2=ψ2

(Xω1 ⊗ Vω1)⊗ (Xω2 ⊗ Vω2)

≅ (X̃(V )⊗ Ỹ (V ))
ψ
,

where in ♠, the isomorphism Vω ≅ Vω1 ⊗ Vω2 is by definition.
(3) For V ∈ VectOnR and ψ ∈ On−1, we have

X̃(Ỹ (V ))ψ = ⊕
t ν=ψ

Xν ⊗
[pi]∈ν●

Ỹ (V )s[pi] ν

= ⊕
t ν=ψ

Xν ⊗
[pi]∈ν●

⎛
⎝ ⊕
t νi=s[pi] ν

Yνi ⊗ Vνi
⎞
⎠

≅ ⊕
tω=ψ

⊕
ν◻i νi=ω

(Xν⊗
i

Yνi)⊗ Vω

= X̃ ○ Y (V )ψ.

Proposition A.1.19. (1) The Schur functor 0̃ of 0 is constant at the null On-module;
(2) the Schur functor R̃ of R is constant at R;
(3) the Schur functor Ĩ of I is the identity functor.

Proof. (1) Obvious.
(2) For V ∈ VectOnR and ψ ∈ On−1 we have

R̃(V )ψ = ⊕
tω=ψ

Rω ⊗ Vω =
⎧⎪⎪⎨⎪⎪⎩

RIϕ ⊗ VIϕ if ψ = Yϕ
0 if ψ is not an endotope

= R,

as VIϕ =⊗[p]∈I●ϕ Vs[p] Iϕ = R since I●ϕ = ∅.



(3) For V ∈ VectOnR and ψ ∈ On−1 we have

Ĩ(V )ψ = ⊕
tω=ψ

Iω ⊗ Vω = IYψ ⊗ VYψ = Vψ

where the second equality comes from the fact that the only endotope ω such
that tω = ψ is Yψ, and where the last equality is the observation that VYψ =
⊗[p]∈Y●

ψ
Vs[p] Yψ = Vψ since Y●ψ = {[]} and s[]Yψ = ψ.

Proposition A.1.20. The tuple (ModOnR , ○, I) is a monoidal category, and the “Schur
functor” functor (̃−) ∶ModOnR Ð→ [Vect

On
R ,VectOnR ] is monoidal. In particular, a monoid

(X,m,u) in ModOnR induces a monad X̃ on VectOnR .

Proof. The first claim is a direct consequence of proposition A.1.7 and lemma A.1.12, and
the second of propositions A.1.18 and A.1.19.

Definition A.1.21. An object C ∈ C is finitely generated [AR94, definition 1.67] if C(C,−)
preserves filtered colimits of monomorphisms. A functor F ∶ C Ð→ D is finitely bounded
[AMSW19, definition 3.1] if for every object C ∈ C and every finitely generated subobject
d ∶ D Ð→ FC, there exists a finitely generated subobject c ∶ C ′ Ð→ C such that d factors
through Fc:

FC ′

D FC.

Fc

d

Theorem A.1.22 ([AMSW19, theorem 3.4]). Let F ∶ CÐ→D be a functor between locally
finitely presentable categories. If

(1) in C, finitely generated objects are finitely presentable,
(2) F preserves monomorphisms,
(3) F is finitely bounded,

then F is finitary.

Proposition A.1.23. A R-module M is finitely generated in the sense of definition A.1.21
if and only if it is finitely generated in the classical sense, i.e. there is a short exact sequence

0Ð→K Ð→ R⊕k Ð→M Ð→ 0

for some k ∈ N. Further, M is finitely presentable (in the sense of definition 0.5.2) if K
is finitely generated.

Proof. This follows from a more general result regarding algebraic theories, see [AR94,
proposition 3.11 and theorem 3.12].

Proposition A.1.24. If R is a Noetherian domain, then for all X ∈ModOnR , the Schur
functor X̃ is finitary.

Proof. We apply theorem A.1.22. Since R is Noetherian, every finitely generated R-module
is finitely presentable [Rot09, corollary 3.19]. It is clear that X̃ preserves monomorphisms,
and it remains to check that it is finitely bounded. Let V ∈ VectOnR and W ⊆ X̃(V ) be



finitely generated. Let S be a finite generating family of W . An element s ∈ S is a finite
sums of generator of X̃(V ):

s = ∑
i∈Is

vs,i

xs,i
.

The set T ∶={vs,i ∣ s ∈ S, i ∈ Is} is thus finite, and consider the subspace V ′ of V generated
by T . Clearly, W ⊆ X̃(V ′).

the differential graded case

Definition A.1.25 (Differential graded opetopic module). Let the category of differential
graded (dg) n-opetopic modules be dgModOnR ∶=∏ω∈On dgModR.

Definition A.1.26 (Suspension). Recall that if M is a dg R-module, its suspension ▴M
(also denoted sM in [LV12], M(−1) in [Wu16], ↑M in [Pro11], or even M[1]) is defined as
(▴M)k ∶= Mk−1, with differential ∂▴M ∶= −∂M . Equivalently, ▴M = (R▴) ⊗M , where R▴
is the dg R-module concentrated in degree 1, freely generated by an element ▴. We write
▴nM ∶=▴⋯ ▴M , and ▾n the operation that is inverse to ▴n, also called desuspension.

Let now X be a dg On-module. The suspension ▴X of X is the On-module such that
for all ω ∈ On we have (▴X)ω = ▴(Xω) as dg R-modules. Equivalently, ▴X = ▴R⊗X. The
notations ▴n and ▾n transpose to this case.

Remark A.1.27. The constructions and results of definitions A.1.3 and A.1.17 transpose
to the differential graded case. Let X,Y ∈ dgModOnR .

(1) In X ⊕ Y , for x ∈X and y ∈ Y , we have ∂(x⊕ y) = ∂(x)⊕ ∂(y).
(2) Take a homogeneous element x⊗y in X⊗Y . Then ∂(x⊗y) = ∂(x)⊗y+(−1)xx⊗∂(y),

where we write (−1)x as a shorthand for (−1)∣x∣, and where ∣x∣ stands for for the
degree of x.

(3) Take a homogeneous element y
x ∈X ○Y , and recall that by convetion, the sequence

y = y1, . . . is lexicographically sorted, meaning that if y
x is in the ν◻[pi] νi = ω

component of (X ○ Y )ω =⊕ν◻[pi] νi=ωXν⊗i Yνi , then [p1] ≺ [p2] ≺ ⋯. The formula
for differentials gives,

∂ (
y

x
) =

y

∂(x)
+ (−1)x

∂[y]
x

, (A.1.28)

where
∂[y] ∶= ∑

i

(−1)y1+⋯+yi−1y1 ⊗⋯⊗ yi−1 ⊗ ∂(yi)⊗ yi+1 ⊗⋯,

and where as before, (−1)y1+⋯+yi−1 is a shorthand for (−1)∣y1∣+⋯+∣yi−1∣.

Definition A.1.29 (Homology). If X ∈ dgModOnR , then its homology H(X) is the dg
On-module given by:

Hk(X)ω ∶=
im (∂ ∶Xω,k+1 →Xω,k)
ker (∂ ∶Xω,k →Xω,k−1)

,

and endowed with the trivial differential. We say that X is acyclic if as dg On-modules,
H(X) = 0. If X is augmented or coaugmented, then X is acyclic if for Hk(X) = 0 as
On-modules, whenever k ≠ 0, and H0(X) ≅ I. Equivalently, the augmentation or coaug-
mentation map is a quasi-isomorphism between I (concentrated in degree 0 with trivial
differential) and X.



infinitesimal composite product

Definition A.1.30. The composite product − ○ − ∶ModOnR ×ModOnR Ð→ModOnR is linear
in its first variable, but not in its second one, meaning that in general, X ○ (Y ⊕ Z) /≅
(X ○ Y )⊕ (X ○Z). To remedy this, we define a ternary operator − ○ (−;−) [LV12, section
6.1], which is the maximal subfunctor of − ○ (− ⊕ −) that is linear in its third variable.
Explicitly, (X ○ (Y ;Z))ω is the maximal submodule of (X ○ (Y ⊕ Z))ω where Z appears
exactly once in each summand:

(X ○ (Y ;Z))ω ∶= ⊕
ν◻[pi] νi=ω

⊕
[p]∈ν●

Xν ⊗
i

⎧⎪⎪⎨⎪⎪⎩

Zs[p] ν if [pi] = [p],
Ys[pi] ν otherwise.

If f ∶ Y Ð→ Y ′ and g ∶ Z Ð→ Z ′, then the morphism X ○(f ; g) ∶X ○(Y ;Z)Ð→X ○(Y ′;Z ′)
maps an element w

x to (f ;g)(w)x , where (assuming that Y and Z are disjoint)

(f ; g)(wi) =
⎧⎪⎪⎨⎪⎪⎩

f(wi) if wi ∈ Y,
g(wi) if wi ∈ Z.

Remark A.1.31. By definition, a homogeneous element of X ○ (Y ;Z) is an element w
x ∈

X ○ (Y ⊕Z) with a distinguished element of the sequence w, such that that distinguished
element lies in Z while all the others are in Y . With this point of view, there is an obvious
morphism X ○Y Ð→X ○ (Y ;Y ) which maps a homogeneous element y

x ∈X ○Y to the sum
∑ y

x over all possible choices of distinguished element in the sequence y.

Definition A.1.32 (Infinitesimal composition of morphisms). If f ∶ X Ð→ X ′ and g ∶
Y Ð→ Y ′ are morphisms of On-modules, then their infinitesimal composite [LV12, section
6.1.5] f ○′ g is

X ○ Y Ð→X ○ (Y ;Y )
f○(idY ;g)
ÐÐÐÐÐ→X ′ ○ (Y ;Y ′),

which is given explicitly by

(f ○′ g) (
y

x
) ∶= (−1)gx

g[y]
f(x)

(A.1.33)

where y
x ∈X○Y is a homogeneous element, and g[y] ∶=∑i(−1)y1+⋯+yi−1y1⊗⋯⊗yi−1⊗g(yi)⊗

yi+1⊗⋯. For example, the differential on X○Y is concisely given by ∂X○Y = ∂X ○id+ id ○′∂Y .

Definition A.1.34 (Infinitesimal composite product). The infinitesimal composite prod-
uct [LV12, section 6.1.1] X ○(1) Y of X and Y is defined as

(X ○(1) Y )ω ∶= X ○ (I;Y ) = ⊕
ω1 ◽[p] ω2=ω

Xω1 ⊗ Yω2 , (A.1.35)

which is just the tensor product of VectOn+1R (see equation (A.1.15)). If f ∶ X Ð→ X ′ and
g ∶ Y Ð→ Y ′, the map f ○ (I; g) ∶ X ○(1) Y Ð→ X ′ ○(1) Y ′ will conveniently be denoted by
f ○(1) g.



A.2 LINEAR OPETOPIC ALGEBRAS

the linear Zn

Definition A.2.1. Let f ∶ A Ð→ B be a map between sets. It induces three functors
f!, f∗ ∶ ModAR Ð→ ModBR, and f∗ ∶ ModBR Ð→ ModAR, given as follow. For M ∈ ModAR,
N ∈ModBR, a ∈ A, and b ∈ B

f!Mb ∶= ⊕
f(a)=b

Ma, f∗Na ∶= Nf(a), f∗Mb ∶= ⊗
f(a)=b

Ma.

Proposition A.2.2. We have an adjunction2 f! ⊣ f∗.

Proof. Straightforward verifications.

Definition A.2.3 (Linear Zn). Using definition A.2.1, and akin to the Set-theoretical
case (see remark 2.1.4), a polynomial functor P in Set given by

I E B Js p t

induces a functor P = t!p∗s∗ ∶ ModIR Ð→ ModJR. In particular, for Zn the polynomial
functor introduced in definition 3.1.1

On En+1 On+1 On,
s p t

we consider the induced functor Zn ∶ ModOnR Ð→ ModOnR . Unfolding the definitions, for
X ∈ModOnR and ω ∈ On, we have

ZnXω = ⊕
t ξ=ω

⊗
[pi]∈ξ●

Xs[pi] ξ
= ⊕

t ξ=ω
Xξ. (A.2.4)

Remark that ZnXω = Z̃n(X)ω, where Zn ∈ModOn+1R is identically R (i.e. Znξ = Rξ for all
ξ ∈ On+1), and X is considered in VectOn+1R . A homogeneous element of (ZnX)ω will be
denoted by x

ξ where t ξ = ω, and where x is a sequence indexed by node addresses [p] ∈ ξ●
(in lexicographical order) such that x[p] ∈Xs[p] ξ.

Proposition A.2.5. The On-module Zn is naturally a ○-monoid. Therefore, the endo-
functor Zn on ModOnR is naturally a monad.

Proof. We endow Zn with a monoid structure. The unit morphism u ∶ I Ð→ Zn is simply
the inclusion. On the other hand, for ω ∈ On, we have

(Zn ○Zn)ω ≅ ⊕
ν◻i νi=ω

R,

and we let the multiplication morphism m ∶ Zn○Zn Ð→ Zn map the ν◻i νi = ω component
to the ω component via the identity map idR. The fact that (Zn,m,u) us a monoid follows
from the monad structure on Zn ∶ Set/On Ð→ Set/On. The second claim follows from
proposition A.1.20.

2In general, it is not true that f∗ ⊣ f∗.



Notation A.2.6. We write η ∶ id Ð→ Zn and µ ∶ ZnZn Ð→ Zn for the monad laws of Zn

induced by the monoid structure on Zn of proposition A.2.5. Explicitly, for X ∈ModOnR ,

ηX(x) =
x

Yω
, µX

⎛
⎜⎜
⎝

y

ζ

ξ

⎞
⎟⎟
⎠
=

y

ξ◻i ζi
, (A.2.7)

where x ∈Xω.

monoidal approach

Notation A.2.8. Let X = (X,m,u) is a ○-monoid in ModOnR . The morphism u ∶ I Ð→ X

maps 1 ∈ IYψ to 1 ∈XYψ . For y
x a typical element of X ○X, let

y

x
∶= m(

y

x
) .

The associativity and unit axioms read

z

( y
x
)
=
( zy )
x

x

1
= x =

1

x
. (A.2.9)

The expression on the left will be more consisely denoted by

z

y

x

.

If X = (X,m,u) is a dg ○-monoid, then the derivation rule reads

∂ (
y

x
) =

y

∂(x)
+ (−1)x

∂[y]
x

. (A.2.10)

Example A.2.11. For Zn the ○-monoid defined in proposition A.2.5, we have

ζ

ξ
= ξ ◻

[p]∈ξ●
ζ[p] (A.2.12)

Definition A.2.13. A ○-monoid (X,m,u) is augmented if it is endowed with an aug-
mentation map ε ∶ X Ð→ I such that εu = idI . In particular, the underlying module X is
augmented by ε.

Definition A.2.14 (Infinitesimal multiplication). If A = (A,m,u) is a ○-monoid, we have
an infinitesimal multiplication m =m(1) ∶ A ○(1) AÐ→ A given by the composite

A ○(1) A = A ○ (I;A)
idA ○(u;idA)ÐÐÐÐÐÐ→ A ○ (A;A)Ð→ A ○A mÐ→ A.

where the map A ○ (A;A)Ð→ A ○A just forgets the distinguished element. Explicitly, for
an element of A ○(1) A of the form 1,1,...,b,...,1

a , we have

m(1) (
1,1, . . . , b, . . . ,1

a
) =

u(1), u(1), . . . , b, . . . , u(1)
a

.



monadic approach

Remark A.2.15. Let X be an algebra over the monad Zn of proposition A.2.5, with struc-
ture map m ∶ ZnX Ð→X, and let

x

ξ
∶= m(

x

ξ
) .

The associativity and unit axioms read

( x
ζ
)

ξ
=

x

( ζ
ξ
)
=

x

ξ◻[p]∈ξ● ζ[p]
,

x

Yω
= x, (A.2.16)

where on the right, we assume x ∈Xω.

Proposition A.2.17. Let X ∈ModOnR . Then a ○-monoid structure on X is equivalent to
a Zn-algebra structure on X.

Proof. Assume we have a ○-monoid structure (X,m,u) on X. A structure map m′ ∶
ZnX Ð→X can be defined inductively as follows:

m′ (
Iψ
) ∶= u(1), m′ (

x

Yω
) ∶= x, m′ (

y

Yω◯[[qi]] ξi
) ∶=

m′ ( y
ξ

ξ )
y[]

,

where ψ ∈ On−1, ω ∈ On, x ∈ Xω, and yξi is the subsequence of y consisting of elements
corresponding to nodes in ξi. Conversely, given a Zn-algebra structure m′ on X, define

u(1) ∶= m′ (
Iψ
) ,

y

x
∶= m′ (

x, y

Yω◯iYωi
) ,

where ψ ∈ On−1, x ∈Xω, and yi ∈Xωi for some ω,ω1, . . . ∈ On.

Examples A.2.18. (1) If n = 1, then a Z1-algebra is just an associative unital R-
algebra.

(2) If n = 2, then a Z2-algebra is a planar algebraic operad [LV12, chapter 5].

Definition A.2.19 (Augmented algebra). A Zn-algebra A is augmented if it is endowed
with a morphism ε ∶ A Ð→ I of degree 0. This morphism is then called the augmentation
morphism of A, and the sub On-module Ā ∶=ker ε is the augmentation ideal. We write
dgAlg+R(Zn) for the category of augmented dg Zn-algebras, and morphisms preserving the
augmentations, i.e. those f ∶ AÐ→ B in dgAlgR(Zn) that lift as f ∶ ĀÐ→ B̄.

Remark A.2.20. Let X ∈ ModOnR and f ∶ X Ð→ X. It can be extended as a morphism
f ∶ ZnX Ð→ ZnX by letting

f (
x

ξ
) ∶=

f[x]
ξ

.

Note that this is not Znf , as (Znf) ( xξ ) =
f(x)
ξ , i.e. f is applied to each element of the list.



Definition A.2.21 (Derivation). LetA be a Zn-algebra with structure map γ ∶ ZnAÐ→ A.
A derivation on A is a morphism d ∶ AÐ→ A such that dγ = γd, explicitly:

d(
x

ξ
) =

d[x]
ξ

. (A.2.22)

We write Der(A) for the space of derivations of A. If A is free, say A = ZnX, then
equation (A.2.22) reads

d(
x

ξ◻i ζi
) = d

⎛
⎜⎜
⎝

x

ζ

ξ

⎞
⎟⎟
⎠
=
d [ xζ ]
ξ

. (A.2.23)

Proposition A.2.24 (Analogous to [LV12, proposition 1.1.8]). Let X ∈ ModOnR . The
restriction map

ModOnR (Z
nX,ZnX)Ð→ModOnR (X,Z

nX)

restricts to an isomorphism Der(ZnX) Ð→ ModOnR (X,Z
nX). Specifically, let f ∶ X Ð→

ZnX, and define df ∶ ZnX Ð→ ZnX as

df (
x

ξ
) ∶=

(ηX ; f)(x)
ξ

, (A.2.25)

where ηX ∶X Ð→ ZnX is the unit of the monad Zn at X, which maps x ∈Xω to x
Yω

. Then
df is a derivation, and the map d(−) ∶ModOnR (X,Z

nX)Ð→ Der(ZnX) is an inverse to the
restriction map.

Proof. We first check that df defined in equation (A.2.25) really is a derivation:

df

⎛
⎜⎜
⎝

x

ζ

ξ

⎞
⎟⎟
⎠
= df (

x

ξ◻i ζi
) by equation (A.2.12)

=
(ηX ; f)(x)
ξ◻i ζi

see equation (A.2.25)

=
(ηX ; f)(x)

ζ

ξ

by equation (A.2.12)

=
df [ xζ ]
ξ

see equation (A.2.25).

Next, we check that df extends f , i.e. that dfηX = f . For x ∈Xω

dfηX(x) = df (
x

Yω
) see equation (A.2.7)

=
(ηX ; f)(x)

Yω
since #Y●ω = 1

= f(x) see equation (A.2.16).



Thus the map d(−) is injective. Finally we check that it is surjective, specifically that for
d ∈ Der(ZnX), and f ∶=dηX , we have d = df .

df (
x

ξ
) =

(ηX ;df)(x)
ξ

since df is a derivation

=
d [ x

Yω
]

ξ
dy definition of f and df

= d
⎛
⎜⎜
⎝

x

Yω

ξ

⎞
⎟⎟
⎠

since d is a derivation

= d(
x

ξ◻iYωi
) by equation (A.2.12)

= d(
x

ξ
) .

Lemma A.2.26. Let X ∈ dgModOnR , f, g ∶ X Ð→ ZnX, and df , dg ∈ Der(ZnX) the unique
derivations extending f and g, as defined in equation (A.2.25).

(1) If f has an odd degree, then dfdf = ddff , explicitly,

dfdf (
x

ξ
) =

(ηX ;dff)(x)
ξ

= ddff (
x

ξ
) .

(2) If f and g both have (possibly distinct) odd degrees, then dfdg + dgdf = ddfg+dgf .
(3) If f and g both have (possibly distinct) even degrees, then dfdg − dgdf = ddfg−dgf .

Proof. We have

dfdf (
x

ξ
) = df (

(ηX ; f)(x)
ξ

)

=
df [(ηX ; f)(x)]

ξ
♠

= ∑
i

(−1)x1+⋯+xi−1
df [x1, . . . , xi−1, f(xi), xi+1, . . .]

ξ

= ∑
i
∑
j<i
(−1)xj+⋯+xi−1

. . . , f(xj), . . . , f(xi), . . .
ξ

+∑
i

. . . , dff(xi), . . .
ξ

+∑
i
∑
j>i
(−1)f+xi+⋯+xj−1

. . . , f(xi), . . . , f(xj), . . .
ξ

= ∑
i

. . . , dff(xi), . . .
ξ



=
(ηX ;dff)(x)

ξ
.

where ♠ follows from equation (A.2.23). The second and third points can be proved using
the same technique.

free monad

Definition A.2.27 (Algebra over a functor). Let P ∶ C Ð→ C be a functor. A P -algebra
is a pair (c,m), where c is an object of C, and m is a morphism Pc Ð→ c. If (c′,m′) is
another P -algebra, then an algebra morphism f ∶ (c,m)Ð→ (c′,m′) is simply a morphism
f ∶ cÐ→ c′ in C such that the following square commutes:

Pc Pc′

c c′.

Pf

m m′

f

We denote by Alg(P ) the category of P -algebras and algebra morphisms.

Theorem A.2.28. Let C be a category and P ∶ CÐ→ C be a functor.
(1) [BW05, theorem 4.4] If the forgetful functor UP ∶ Alg(P ) Ð→ C has a left adjoint

FP , then the monad UPFP is the free monad on P .
(2) [BW05, theorem 4.5] If C is complete, and if P has a free monad T , then the

forgetful functor UP above has a left adjoint, and the canonical comparison functor
E ∶ Alg(T )Ð→ Alg(P ) is an equivalence.

Corollary A.2.29 ([GH04, proposition 17]). Let C be a complete category and P ∶ C Ð→
C. A monad T over C is the free monad on P if and only if there is an equivalence
E ∶ Alg(T )Ð→ Alg(P ) such that the following triangle commutes:

Alg(T ) Alg(P )

C,

E

UT UP

where UT and UP are the forgetful functors.

Theorem A.2.30. For X ∈ModOnR , the Schur functor Z̃nX is the free monad over X̃.

Proof. The unit map ηX ∶ X Ð→ ZnX induces a functor η∗X ∶ Alg(Z̃nX) Ð→ Alg(X̃) that
commutes with the forgetful functors. We apply corollary A.2.29 by showing that η∗X is
an equivalence of categories.

To that end, we define a functor S ∶ Alg(X̃) Ð→ Alg(Z̃nX) that maps a X̃-algebra
m ∶ X̃(V ) Ð→ V to a Z̃nX-algebra m̄ ∶ Z̃nX(V ) Ð→ V that we now define. Applying
definitions A.1.17 and A.2.3, for ψ ∈ On−1,

Z̃nX(V )ψ = ⊕
t t ξ=ψ

Xξ ⊗ Vt ξ.



A homogeneous element
v

x

ξ

∈ Z̃nX(V )ψ (A.2.31)

may thus be considered as a decoration of the opetope ξ by elements of X on its nodes,
and elements of V in its leaves. Given a node decorated by x ∈Xω and whose input edges
are decoraged by a sequence w ∈ Vω, the algebra structure m gives an element

m(
w

x
) ∈ Vtω.

Thus, to define m̄ on a homogeneous element as in equation (A.2.31), we recursively apply
m to every node of ξ. Formally, it is given as follows.

(1) If ψ ∈ On−1 and v ∈ Vψ then

m̄

⎛
⎜⎜
⎝

v

Iψ

⎞
⎟⎟
⎠
∶= v.

(2) If ω ∈ On and v
x ∈ X̃(V )ω, then

m̄

⎛
⎜⎜
⎝

v

x

Yω

⎞
⎟⎟
⎠
∶= m(

v

x
) .

(3) Consider an element of Z̃nX(V )ψ as in equation (A.2.31), where ξ has at least two
nodes. Let [p] be the maximal element of ξ● (with respect to the lexicographical
order). Then ξ decomposes as ξ = ξ′ ○[p]Yω, where ω ∶= s[p] ξ. Further, the sequence
x of elements decorating the nodes of ξ decomposes as x = x′, y, where y ∈ Xω

corresponds to the node at [p]. Likewise, the sequence v decomposes as v = v′,w,
where the subsequence w correspond to all the elements of v decorating the input
edges (which are necessarily leaves by maximality of [p]) of node node at address
[p]. The idea is to decorate the output edge of that node by m ( wx ). Formally,

m̄

⎛
⎜⎜
⎝

v

x

ξ

⎞
⎟⎟
⎠
= m̄

⎛
⎜⎜⎜
⎝

v′,w

x′, y

ξ′ ○[p]Yω

⎞
⎟⎟⎟
⎠
∶= m̄

⎛
⎜⎜⎜⎜⎜
⎝

v′,m ( wy )
x′

ξ′

⎞
⎟⎟⎟⎟⎟
⎠

.

It is easy to see that m̄ ∶ Z̃nX(V )Ð→ V is indeed a Z̃nX-algebra. On morphisms, S simply
maps the square on the left to the one on the right:

X̃(V ) X̃(V ′)

V V ′

X̃(f)

m m′

f

z→
Z̃nX(V ) Z̃nX(V ′)

V V ′.

Z̃nX(f)

m̄ m̄′

f

Clearly, S is a section of η∗X , and in particular, η∗X is full and surjective on objects. We now
show that S is a retraction of η∗X . Take a Z̃nX-algebra p ∶ Z̃nX(W ) Ð→W , and consider



the algebra structure p̄ ∶ Z̃nX(W )Ð→W induced by the restriction p′ ∶ X̃(W )Ð→W of p
to X̃(W ), as defined above. We show that p = p̄. Specifically, we show that p and p̄ agree
on homogeneous elements as in equation (A.2.31) by induction on #ξ●.

(1) If #ξ● = 0, then ξ is degenerate, say ξ = Iψ. If w ∈Wψ, then

p̄

⎛
⎜⎜
⎝

w

Iψ

⎞
⎟⎟
⎠
= w = p

⎛
⎜⎜
⎝

w

Iψ

⎞
⎟⎟
⎠
.

(2) If #ξ● = 1, then ξ is an endotope, say ξ = Yω. If w
x ∈ X̃(W )ω, then by definition

p̄

⎛
⎜⎜
⎝

w

x

Yω

⎞
⎟⎟
⎠
= p′ (

w

x
) = p

⎛
⎜⎜
⎝

w

x

Yω

⎞
⎟⎟
⎠
.

(3) If #ξ● ≥ 2, then ξ can be decomposed as ξ = ξ′ ○[p]Yω, where [p] is the max-
imal element of ξ●. For an element as in equation (A.2.31), and with the same
decomposition as in the definition of m̄ above,

p̄

⎛
⎜⎜
⎝

w

x

ξ

⎞
⎟⎟
⎠
= p̄
⎛
⎜⎜⎜
⎝

v′,w

x′, y

ξ′ ○[p]Yω

⎞
⎟⎟⎟
⎠
= p̄

⎛
⎜⎜⎜⎜⎜
⎝

v′, p′ ( wy )
x′

ξ′

⎞
⎟⎟⎟⎟⎟
⎠

♠= p

⎛
⎜⎜⎜⎜⎜
⎝

v′, p′ ( wy )
x′

ξ′

⎞
⎟⎟⎟⎟⎟
⎠

♢= p
⎛
⎜⎜
⎝

w

x

ξ

⎞
⎟⎟
⎠

where ♠ is by induction, and ♢ is by the axioms of Z̃nX-algebra.
Finally, p = p̄, and S is a two sided inverse to η∗X . In particular, it is an equivalence of
categories, and by corollary A.2.29, Z̃nX is the free monad over X̃.

A.3 LINEAR OPETOPIC COALGEBRAS

comonoidal approach

Notation A.3.1. Let (C,∆, ε) be a comonoid for ○ in ModOnR . Akin to Sweedler’s notation
[LV12, definition 1.2.1], for c ∈ C we write

∆(c) = ∑
(c)

c2

c1

although we leave the ∑ symbol implicit most of the time. The coassociativity and counit
axioms read

c3

( c2c1 )
=
( c3c2 )
c1

=
c3

c2

c1

,
ε(c2)
c1

=
1

c
,

c2

ε(c1)
=
c

1
. (A.3.2)

If Y = (Y,∆, ε) is a dg ○-comonoid, then

∂(c)2
∂(c)1

= ∆∂(c) = ∂∆(c) =
c2

∂(c1)
+ (−1)c1

∂[c2]
c1

. (A.3.3)



Definition A.3.4 (Conilpotent comonoid). Let (C,∆, ε) be a ○-comonoid. Its n-fold
comultiplication is denoted by ∆n ∶ C Ð→ C○n. In particular, ∆0 = ε. The comonoid C is
conilpotent if for every c ∈ C, there exists an N ∈ N such that ∆N(c) = 0.

Remark A.3.5. In [LV12, section 5.7], an algebraic cooperad is defined as a comonoid
∆ ∶ C Ð→ C ○̄C, where ○̄ is a special composite product relying on invariants rather than
coinvariants [LV12, section 5.1.21]. In the opetopic setting developed here, we do not deal
with any action of the symmetric group, and ○̄ coindices with the composite product ○
defined in equation (A.1.6).

Definition A.3.6 (Infinitesimal comultiplication). Let C = (C,∆, ε) be a ○-comonoid.
Using the counit map, define a projection p ∶ C ○C Ð→ C ○(1) C as the composite

C ○C Ð→ C ○ (C;C)
C○(ε;idC)ÐÐÐÐÐ→ C ○ (I;C) = C ○(1) C,

which is given explicitly by

p(
d

c
) ∶=

(ε; id)(d)
c

, (A.3.7)

where d
c ∈ C ○C is a homogeneous element. The infinitesimal comultiplication of C is the

composite ∆(1) ∶=p∆ . Explicitly, if c ∈ C, then

∆(1)(c) =
(ε; id)(c2)

c1
.

comonadic approach

Recall proposition A.2.5 stating that the linear Zn ∶ ModOnR Ð→ ModOnR is naturally a
monad. The proof proceeds by noting that Zn is the Schur functor of a On+1-module
Zn (definition A.2.3), which is naturally a ○-monoid. We now show that Zn can also be
endowed with a ○-comonoid structure.

Lemma A.3.8. Let ε ∶ Zn Ð→ I be the obvious projection, and for ξ ∈ On+1, let

∆(ξ) =
ξ2

ξ1
∶= ∑

ζ◻[p] ζ′[p]=ξ

ζ ′

ζ
.

Then the tuple (Zn,∆, ε) is a ○-comonoid. In particular, Zn is naturally a comonad on
ModOnR .

Proof. By definition, ∆(ξ) is the formal sum of all the possible decompositions of ξ as
a simultaneous substitution. Equivalently, it is the formal sum of all (n + 2)-opetopes
ν ∈ O(2)n+2 such that tν = ξ. Therefore, (Zn ○∆)∆(ξ) and (∆○Zn)∆(ξ) are both the formal
sum of all (n + 2)-opetopes ν ∈ O(3)n+2 such that tν = ξ, and ∆ is indeed coassociative.
Counit axioms are easily checked.

Notation A.3.9. Let ∆ ∶ C Ð→ ZnC be a Zn-coalgebra. Recall that for ω ∈ On we have

(ZnC)ω = Z̃n(C)ω = ⊕
t ξ=ω

Rξ ⊗Xξ



where Xξ = ⊗[p]∈ξ●Xs[p] ξ, and that we write a homogeneous element of Rξ ⊗ Xξ as x
ξ ,

where x is an adequate sequence of elements of X indexed by ξ●. Then, the structure
morphism ∆ maps c ∈ C to

∆(c) = ∑
(c)

c2

ξc1
,

although we leave the ∑ symbol implicit most of the time. The coassociativity and counit
axioms read

(c2)2
ξc21
ξc1

=
c3

ξc2
ξc1

=
c2

(ξc1)2
(ξc1)1

,
ε(c2)
ξc1

= c =
c2

ε(ξc1)
. (A.3.10)

Definition A.3.11 (Coaugmented coalgebra). In the comonoid structure (Zn,∆, ε) of
lemma A.3.8, recall that ε(ξ) = 1 if ξ is an endotope, and 0 otherwise. A coalgebra C is
coaugmented if it is endowed with a map η ∶ I Ð→ C, called the coaugmentation map. In
this case, we write C̄ ∶=C/ imη. Let co

dgAlg+R(Zn) be the category of dg Zn-coalgebras and
morphisms preserving the coaugmentation maps, i.e. those f ∶ C Ð→ D in co

dgAlgR(Zn)
that descend to a morphism C̄ Ð→ D̄.

Proposition A.3.12. Let C ∈ModOnR . Then a conilpotent ○-comonoid structure on C is
equivalent to a Zn-coalgebra structure on C.

Proof. Assume we have a ○-comonoid structure (C,∆, ε) on C. A structure map γ ∶ C Ð→
ZnC can be defined as

γ(c) ∶= ∑
n∈N

∆n(c).

Since C is conilpotent, this sum has finitely many terms, so γ is well-defined. Conversely,
let γ ∶ C Ð→ ZnC be a coalgebra structure on C. Recall that

ZnCω = Z̃n(C)ω = ⊕
t ξ=ω

Rξ ⊗Cξ.

Therefore, the submodule of ZnC spanned by the summands where #ξ● = k is exactly
C○k = C○⋯○C. Write proj(k) for the projection ZnC Ð↠ C○k, and define a comultiplication
∆ and counit ε on C as proj(2) γ and proj(0) γ respectively.

Definition A.3.13 (Coderivation). Let C be a Zn-coalgebra with structure map ∆ ∶
C Ð→ ZnC. A morphism d ∶ C Ð→ C is a coderivation if d∆ =∆d, explicitly

d(c)2
ξ
d(c)
1

=
d[c2]
ξc1

, (A.3.14)

where c ∈ C. We write Coder(C) for the space of coderivations of C. If C is cofree conilpo-
tent, say C = ZnX, then equation (A.3.14) becomes

∆d(
x

ξ
) =

d [ xξ2 ]
ξ1

. (A.3.15)



Proposition A.3.16 (Generalization of [LV12, proposition 6.3.15]). Let X ∈ModOnR , and
consider the cofree conilpotent Zn-coalgebra ZnX. Then the map

ModOnR (Z
nX,ZnX)Ð→ModOnR (Z

nX,X)
f z→ εXf

restricts to an isomorphism Coder(ZnX)Ð→ModOnR (Z
nX,X). Specifically, let f ∶ ZnX Ð→

X be a morphism of On-modules, and define df by

df (
x

ξ
) ∶=

(εX ; f) ( xξ2 )
ξ1

. (A.3.17)

Then df is a coderivation on ZnX, and d(−) ∶ModOnR (Z
nX,X)Ð→ Coder(ZnX) is inverse

to the postcomposition by εX

Proof. We first check that df really is a coderivation:

∆df (
x

ξ
) = ∆

⎛
⎜
⎝

(εX ; f) ( xξ2 )
ξ1

⎞
⎟
⎠

by definition

=
(εX ; f) ( xξ3 )

ξ2

ξ1

=
df [ xξ2 ]
ξ1

by definition.

Next, we check that df coextends f , i.e. that εXdf = f :

εXdf (
x

ξ
) = εX

⎛
⎜
⎝

(εX ; f) ( xξ2 )
ξ1

⎞
⎟
⎠

by definition

=
(εX ; f) ( xξ2 )

ε(ξ1)

= f (
x

ξ
) see equation (A.3.10).

Thus the map d(−) is injective. Finally we check that it is surjective, specifically that for
d ∈ Coder(ZnX) and f ∶= εXd, we have d = df :

df (
x

ξ
) =

(εX ; f) ( xξ2 )
ξ1

by definition

=
(εX ; εXd) ( xξ2 )

ξ1
by definition

=
εX (d [ xξ2 ])

ξ1



= εZnX
⎛
⎜
⎝

d [ xξ2 ]
ξ1

⎞
⎟
⎠

= εZnX∆d(
x

ξ
) see equation (A.3.15)

= d(
x

ξ
) see equation (A.3.10).

Lemma A.3.18. Let X ∈ dgModOnR , f, g ∶ X Ð→ ZnX, and df , dg ∈ Coder(ZnX) the
unique coderivations coextending f and g, as defined in equation (A.3.17).

(1) If f has an odd degree, then dfdf = dfdf , explicitly,

dfdf (
x

ξ
) =

(εX ; fdf) ( xξ2 )
ξ1

= dfdf (
x

ξ
) .

(2) If f and g both have (possibly distinct) odd degrees, then dfdg + dgdf = dfdg+gdf .
(3) If f and g both have (possibly distinct) even degrees, then dfdg − dgdf = dfdg−gdf .

Proof. We have

dfdf (
x

ξ
) = df

⎛
⎜
⎝

(εX ; f) ( xξ2 )
ξ1

⎞
⎟
⎠

=
(εX ; f) (df [ xξ2 ])

ξ1
♠

= ∑
i

⎛
⎝∏j<i,l

(−1)xj,l
⎞
⎠
(εX ; f) ( x1

ξ2,1
) , . . . , xi−1ξ2,i−1

, df ( xi
ξ2,i
) , xi+1ξ2,i+1

ξ1

= ∑
i
∑
j<i

⎛
⎝ ∏j≤k<i,l

(−1)xk,l
⎞
⎠
. . . , f ( xj

ξ2,j
) , . . . , df ( xi

ξ2,i
) , . . .

ξ1

+∑
i

. . . , fdf ( xi
ξ2,i
) , . . .

ξ1

+∑
i
∑
j>i
(−1)f

⎛
⎝ ∏i≤k<j,l

(−1)xk,l
⎞
⎠
. . . , df ( xi

ξ2,i
) , . . . , f ( xj

ξ2,j
) , . . .

ξ1

= ∑
i

. . . , fdf ( xi
ξ2,i
) , . . .

ξ1

=
(εX ; fdf) ( xξ2 )

ξ1
.

where ♠ follows from equation (A.3.15). The second and third points can be proved using
the same technique.



A.4 CONVOLUTION ALGEBRAS

Definition A.4.1 (hom-algebra). Let A = (A,m,u) ∈ dgAlgR(Zn) and C = (C,∆, ε) ∈
co
dgAlgR(Zn). Define their hom dg-algebra as

hom(C,A)m ∶= ∏
ω∈On

dgMod(Cω,Aω)m.

In other words, an element f ∈ hom(C,A) of degree m is a collection of degree m mor-
phisms fω ∶ Cω Ð→ Aω in dgModOnR . The differential on hom(C,A) is given by

∂hom(C,A)(f) ∶= ∂A ⋅ f − (−1)ff ⋅ ∂C . (A.4.2)

Definition A.4.3 (Convolution product). Let A = (A,m,u) ∈ dgAlgR(Zn) and C =
(C,∆, ε) ∈ co

dgAlgR(Zn), and f, g ∈ hom(C,A). Their convolution product f ⋆ g [LV12,
section 1.6 and 6.4.4] (noted f ⌣ g and called cup-product in [Pro11]) is defined as the
composite

C
∆(1)ÐÐ→ C ○(1) C

f○(1)gÐÐÐ→ A ○(1) A
mÐ→ A.

Explicitly, for c ∈ C,

(f ⋆ g)(c) = (−1)gc1
(uε; g)(c2)
f(c1)

. (A.4.4)

Definition A.4.5 (Hom-algebra). Let A = (A,m,u) ∈ dgAlgR(Zn) and C = (C,∆, ε) ∈
co
dgAlgR(Zn). Following [LV12, section 1.6.1 and 6.4.1], define the Hom Zn-algebra of C
and A as

Hom(C,A)ω ∶= ⊕
m∈N

dgMod(Cω,Aω)m.

We endow it with the same differential as hom(C,A), see equation (A.4.2). If course, we
have to check that Hom(C,A) really is a dg Zn-algebra. First, we define a multiplication
m on it as follows: for a homogeneous element g

f ∈ (Hom(C,A) ○Hom(C,A))ω in the
ν◻i νi = ω component, let g

f
∶=m ( gf ) be the composite

Cω
∆Ð→ (C ○C)ω Ð↠ Cν⊗

i

Cνi
f⊗i giÐÐÐ→ Aν⊗

i

Aνi
mÐ→ Aω,

given explicitly by
g

f
(c) = (−1)gc1

g(c2)
f(c1)

. (A.4.6)

By convention, f(d) = 0 if d ∉ Cν , and likewise for g. Second, the unit I Ð→ Hom(C,A)
maps 1Yψ to the composite CYψ

εÐ→ IYψ
uÐ→ AYψ .

Proposition A.4.7 (Generalization of [LV12, proposition 6.4.2]). Let A = (A,m,u) ∈
dgAlgR(Zn) and C = (C,∆, ε) ∈ co

dgAlgR(Zn). With the structure of definition A.4.5,
Hom(C,A) is a ○-monoid.



Proof. Let g
f ∈ (Hom(C,A) ○Hom(C,A))ω be a homogeneous element in the ν◻i νi = ω

component, and c ∈ Cω. We have

h

( g
f
)
(c) = (−1)hc1

h(c2)
g

f
(c1)

= (−1)hc1+hc2+gc1
h(c3)
g(c2)
f(c1)

,

( hg )
f
(c) = (−1)gc1+hc1

h
g (c2)
f(c1)

= (−1)gc1+hc1+hc2
h(c3)
g(c2)
f(c1)

.

For unitality, we have

g

u(1)
(c) = (−1)gc1

g(c2)
uε(c1)

by definition

= m ⋅ (u⊗ g)(
c2

ε(c1)
)

= m ⋅ (u⊗ g) (
c

1
) see equation (A.3.2)

=
g(c)
1

= g(c) see equation (A.2.9),

and on the other hand,

u(1)
f
(c)

= (−1)uεc1
uε(c2)
f(c1)

by definition

= m ⋅ (f⊗
i

u)(
ε(c2)
c1
)

= m ⋅ (f⊗
i

u)(
1

c
) see equation (A.3.2)

= (−1)uc
u(1)
f(c)

=
u(1)
f(c)

since ∣u∣ = 0

= f(c) see equation (A.2.9).

Proposition A.4.8 (Generalization of [LV12, proposition 6.4.3]). Let A = (A,m,u) ∈
dgAlgR(Zn) and C = (C,∆, ε) ∈ co

dgAlgR(Zn). With the structure of definition A.4.5,
Hom(C,A) is a dg Zn-algebra.



Proof. We have to check that ∂ ( g
f
) = g

∂(f) + (−1)
f ∂[g]

f
, or, unfolding the definitions, that

∂ ⋅
g

f
− (−1)f+g

g

f
⋅ ∂ =

g

∂(f)
− (−1)f

∂[g]
f

.

On the one hand, we have

∂ ⋅ (
g

f
) (c) = ∂

⎛
⎝
(−1)gc1

g(c2)
f(c1)

⎞
⎠

by definition

= (−1)gc1
⎛
⎝
g(c2)
∂f(c1)

+ (−1)f+c1
∂[g(c2)]
f(c1)

⎞
⎠

see equation (A.1.28)

= (−1)gc1
g(c2)
∂f(c1)

+ (−1)f+gc1+c1
∂[g(c2)]
f(c1)

,

and on the other hand,

(−1)f+g (
g

f
) ⋅ ∂(c) = (−1)f+gm ⋅ (f⊗

i

gi)(
∂(c)2
∂(c)1

)

= (−1)f+gm ⋅ (f⊗
i

gi)(
c2

∂(c1)
+ (−1)c1

∂[c2]
c1
) ♠

= (−1)f+g
⎛
⎝
(−1)g∂(c1)

g(c2)
f∂(c1)

+ (−1)c1+gc1
g(∂[c2])
f(c1)

⎞
⎠

= (−1)f+g
⎛
⎝
(−1)g+gc1

g(c2)
f∂(c1)

+ (−1)c1+gc1
g(∂[c2])
f(c1)

⎞
⎠
,

= (−1)f+gc1
g(c2)
f∂(c1)

+ (−1)f+g+gc1+c1
g(∂[c2])
f(c1)

,

where ♠ follows from equation (A.3.3). Finally,

∂ ⋅ (
g

f
) (c) = ∂ ⋅ (

g

f
) (c) − (−1)f+g (

g

f
) ⋅ ∂(c)

= (−1)gc1
g(c2)
∂f(c1)

+ (−1)f+gc1+c1
∂[g(c2)]
f(c1)

− (−1)f+gc1
g(c2)
f∂(c1)

− (−1)f+g+gc1+c1
g(∂[c2])
f(c1)

= (−1)gc1
g(c2)

∂(f)(c1)
+ (−1)f+gc1+c1

∂[g](c2)
f(c1)

=
⎛
⎝

g

∂(f)
+ (−1)f

∂[g]
f

⎞
⎠
(c).



A.5 TWISTING MORPHISMS

left twisted composite product

Definition A.5.1 (Twisted differential). A morphism t ∶ C Ð→ A induces a twisting term
∂lt ∶ A ○C Ð→ A ○C given by

∂lt (
c

a
) ∶= (−1)ta

c2

(uε; t)(c1)
a

. (A.5.2)

From this twisting term, we construct the twisted differential ∂t on A○C as ∂t ∶=∂A○C +∂lt.
Despite the name, ∂t is not a differential in general, but we give a necessary and sufficient
condition for it to be the case in theorem A.5.7.

Lemma A.5.3. Let t, t′ ∶ C Ð→ A. We have ∂lt′ ⋅ ∂lt = ∂lt⋆t′.

Proof. Straightforward computations:

∂lt′∂
l
t (

c

a
) = (−1)ta∂lt′

⎛
⎜⎜
⎝

c2

(uε; t)(c1)
a

⎞
⎟⎟
⎠
= (−1)ta+t

′a+t′c1

c3

(uε; t′)(c2)
(uε; t)(c1)

a

= (−1)(t⋆t
′)a

c2

(uε; t ⋆ t′)(c1)
a

= ∂lt⋆t′ (
c

a
) .

Lemma A.5.4. If t ∶ C Ð→ A is of degree −1, then

∂A○C ⋅ ∂lt + ∂lt ⋅ ∂A○C = ∂l∂hom(A,C)(t)

Proof. On the one hand

∂∂lt (
c

a
) = ∂

⎛
⎜⎜⎜
⎝
(−1)a

c2

(uε; t)(c1)
a

⎞
⎟⎟⎟
⎠

= (−1)a
c2

∂ ( (uε;t)(c1)a )
+ (−1)a

−(−1)c1 ∂[c2]
(uε;t)(c1)

a

= (−1)a
c2

(uε; t)(c1)
∂(a)

+
c2

∂[(uε; t)(c1)]
a

− (−1)a+c1
∂[c2]

(uε; t)(c1)
a

,

and on the other hand,

∂lt∂ (
c

a
) = ∂lt (

c

∂(a)
) + (−1)a

∂[c]
a



= −(−1)a
c2

(uε; t)(c1)
∂(a)

+
∂[c]2

(uε; t)(∂[c]1)
a

= −(−1)a
c2

(uε; t)(c1)
∂(a)

+
c2

(uε; t)(∂[c1])
a

+ (−1)a+c1
∂[c2]

(uε; t)(c1)
a

.

Consequently,

(∂∂lt + ∂lt∂) (
c

a
) =

c2

∂[(uε; t)(c1)]
a

+
c2

(uε; t)(∂[c1])
a

=
c2

(uε;∂(t))(c1)
a

= ∂l∂(t) (
c

a
) .

Definition A.5.5 (Twisting morphism). A morphism t ∶ C Ð→ A of degree −1 is called
a twisting morphism if it satisfies the Maurer–Cartan equation [LV12, sections 2.1.3 and
6.4.8]

∂(t) + t ⋆ t = 0. (A.5.6)

Moreover, if C is coaugmented with coaugmentation map η ∶ I Ð→ C, we require that
tη = 0, and dually, if A is augmented with augmentation map ε ∶ A Ð→ I, we require
εt = 0. We write Tw(C,A) for the set of twisting morphisms from C to A.

Theorem A.5.7. The twisted differential ∂t on A○C really is a differential (i.e. ∂t∂t = 0)
if and only if t is a twisting morphism.

Proof. We have

∂t∂t = (∂A○C + ∂lt)(∂A○C + ∂lt) = ∂A○C∂lt + ∂lt∂A○C + ∂lt∂lt = ∂l∂(t)+t⋆t

which is 0 if and only if t satisfies the Maurer–Cartan equation.

Definition A.5.8 (Twisted composite product). If t ∈ Tw(C,A), the twisted composite
product A ○t C is the dg On-module A ○ C endowed with the differential ∂t. If C and A

are differential graded, and A○tC is acyclic then we say that t is a Koszul morphism . We
write Kos(C,A) for the set of Koszul morphisms from C to A.

A.6 BAR AND COBAR

the bar construction

Definition A.6.1 (Bar construction). Let A be an augmented Zn-algebra, with augmen-
tation ideal Ā. We define a Zn-coalgebra B(A) (which shall be the underlying coalgebra
of the bar construction of A defined in equation (A.6.6)) as follows:

B(A) ∶= Zn(▴Ā). (A.6.2)



We now follow [LV12, section 2.2.1 and 6.5.1] to construct a suitable differential on B(A).
Firstly, if ∂A is the differential of A, let ∂1 ∶ Zn(▴Ā)Ð→ Zn(▴Ā) be the unique coderivation
coextending the composite on the left (as defined in proposition A.3.16):

B(A) = Zn(▴Ā)
ε▴ĀÐÐ→ ▴Ā

∂▴ĀÐÐ→ ▴Ā, ∂1 (
▴a
ξ
) ∶=

∂▴Ā[▴a]
ξ

.

It is explicitely given as on the right. Next, write γA ∶ ZnAÐ→ A the structure map of A,
and let γ′A be the following composite:

B(A) = Zn(▴Ā)Ð↠ ▴Ā ○(1) ▴Ā
γAÐ→ ▴Ā.

Explicitly,

γ′A (
▴a
ξ
) =
⎧⎪⎪⎨⎪⎪⎩

(−1)a1 ▴ a1,a2
ξ

if #ξ● = 2,
0 otherwise.

(A.6.3)

where for #ξ●2 = 2, we write the two elements sequence ▴a as ▴a1,▴a2, for a1, a2 ∈ Ā, and
▴a1 decorating the root node of ξ. Let ∂2 ∶ B(A) Ð→ B(A) be the unique coderivation
coextending γ′A (as defined in proposition A.3.16).

Lemma A.6.4. (1) The coderivation ∂1 is a differential on B(A).
(2) The coderivation ∂2 is a differential on B(A).
(3) The differentials ∂1 and ∂2 anticommute, i.e. ∂1∂2 = −∂2∂1.

Proof. (1) By lemma A.3.18, ∂1∂1 is the unique coderivation coextending the following
composite:

Zn(▴Ā) ∂1Ð→ Zn(▴Ā)
ε▴ĀÐÐ→ ▴Ā

∂▴ĀÐÐ→ ▴Ā

which is 0 since ∂▴Ā∂▴Ā = 0.
(2) By lemma A.3.18 we have that ∂2∂2 is the unique coderivation coextending γ′A∂2,

and we now show that γ′A∂2 = 0. We have

∂2∂2 (
▴a
ξ
) = ∂2

⎛
⎜
⎝

(εA;γ′A) (
▴a
ξ2
)

ξ1

⎞
⎟
⎠
= (εA;γ

′
A)(

(εA;γ′A)(
▴a
ξ3
)

ξ2
)

ξ1

=
(εA;γ′A) (∂2 [

▴a
ξ2
])

ξ1

since ∂2 is a coderivation on a cofree conilpotent coalgebra, see equation (A.3.15).
Let us consider the following term:

γ′A∂2 (
▴a
ζ
) = γ′A

⎛
⎝
(εA;γ′A) (

▴a
ζ2
)

ζ1

⎞
⎠
.

It is 0 whenever #ζ● ≠ 3, thus let us assume that ζ has exactly 3 nodes. The
sequence ▴a can then be written ▴b,▴c,▴d with b, c, d ∈ Ā. Let us assume that ξ
has height 3, i.e. that c “is below” d (the other case is that in which the height of ξ
is 2, and thus where c and d are “disjoint”, and can be treated similarly). Ignoring
all 0 terms, we obtain

γ′A

⎛
⎜
⎝

(εA;γ′A) (
▴a
ζ2
)

ζ1

⎞
⎟
⎠
= γ′A

⎛
⎜
⎝

(−1)b ▴ b,c

ζ2,1
, ▴d

ζ1

⎞
⎟
⎠
+ γ′A

⎛
⎜
⎝

▴b, (−1)c ▴ c,d

ζ2,2

ζ1

⎞
⎟
⎠



= (−1)c ▴
b,c

ζ2,1
, d

ζ1
− (−1)c ▴

b,
c,d

ζ2,2

ζ1

= 0

by associativity.
(3) Let f ∶=∂▴Āε▴Ā∂2 and g ∶=γ′A∂1. By lemma A.3.18, ∂1∂2+∂2∂1 is the unique coderiva-

tion coextending f + g, and we now show that it is 0. Take a homogeneous element
▴a
ξ ∈ Z

n(▴Ā). It is easy to see that f ( ▴aξ ) = g (
▴a
ξ ) = 0 if #ξ● ≠ 2, so we assume

#ξ● = 2, and write the sequence ▴a as ▴a1,▴a2, with a1, a2 ∈ Ā. We have

f (
▴a
ξ
) = ∂▴Āε▴Ā

⎛
⎜
⎝

(ε▴Ā;γ′A) (
▴a
ξ2
)

ξ1

⎞
⎟
⎠

= ∂▴Āε▴Ā
⎛
⎝
(−1)a1 ▴ a1,a2

ξ

Yt ξ

⎞
⎠

= −(−1)a1 ▴ ∂A (
a1, a2

ξ
)

= −(−1)a1 ▴
∂A(a1), a2

ξ
− ▴

a1, ∂A(a2)
ξ

g (
▴a
ξ
) = γ′A (

∂▴Ā [▴a1,▴a2]
ξ

)

= γ′A (−
▴∂A(a1),▴a2

ξ
+ (−1)a1

▴a1,▴∂A(a2)
ξ

)

= (−1)a1 ▴
∂A(a1), a2

ξ
+ ▴

a1, ∂(a2)
ξ

,

and therefore f + g = 0.

Definition A.6.5 (Differential graded bar construction). By lemma A.6.4, the morphism
∂1 + ∂2 is a differential on the coalgebra B(A) defined in equation (A.6.2). The bar con-
struction of an augmented A ∈ dgAlgR(Zn) is the dg Zn-coalgebra

B(A) ∶= (Zn(▴Ā), ∂1 + ∂2) . (A.6.6)

Define now a degree (−1) morphism β ∶ B(A)Ð→ A as the composite

B(A) = Zn(▴Ā)
ε▴ĀÐÐ→→ ▴Ā ▾Ð→ Ā↪Ð→ A. (A.6.7)

Explicitly, it maps a homogeneous element ▴a
ξ

to a if ξ is an endotope, and 0 otherwise.

Proposition A.6.8. The morphism β ∶ B(A)Ð→ A is a twisting morphism.

Proof. We show that β satisfies the Maurer–Cartan equation (A.5.6), i.e. that 0 = ∂(β) +
β ⋆ β = ∂A ⋅ β + β ⋅ ∂1 + β ⋅ ∂2 + β ⋆ β. Let ▴aξ be a homogeneous element of B(A). Applying
definitions, we have

(∂A ⋅ β) (
▴a
ξ
) =
⎧⎪⎪⎨⎪⎪⎩

∂A(a) if #ξ● = 1,
0 otherwise,



(β ⋅ ∂1) (
▴a
ξ
) = β (

∂▴Ā[▴a]
ξ

) =
⎧⎪⎪⎨⎪⎪⎩

−∂A(a) if #ξ● = 1,
0 otherwise,

(β ⋅ ∂2) (
▴a
ξ
) = (−1)a1β

⎛
⎝
▴a1,a2

ξ2

ξ1

⎞
⎠
=
⎧⎪⎪⎨⎪⎪⎩

(−1)a1 a1,a2
ξ

if #ξ● = 2,
0 otherwise,

(β ⋆ β) (
▴a
ξ
) = (−1)a1+1

β ( ▴a1ξ2,1
) , β ( ▴a2ξ2,2

)
ξ1

=
⎧⎪⎪⎨⎪⎪⎩

(−1)a1+1 a1,a2
ξ

if #ξ● = 2,
0 otherwise,

where:
(1) in the cases in which #ξ● = 2 we write a1, a2 for the two element sequence a,
(2) in the β ⋅∂2 case, ξ1 and ξ2 define the unique decompositions ξ = ξ1 ◽ ξ2 with #ξ2 = 2,

which forces ξ1 to be an endotope, and ξ2 to be ξ,
(3) in the β ⋆ β case, ξ1, ξ2,1, and ξ2,2 define the unique decompositions ξ = ξ1◻i ξ2,i,

where #ξ1 = 2, which forces the ξ2,is to be endotopes, and ξ1 to be ξ.
We see that ∂A ⋅β +β ⋅∂1 +β ⋅∂2 +β ⋆β = 0 as desired. Let ε ∶ AÐ→ I be the augmentation
map of A. By definition, β factors through Ā = ker ε (see equation (A.6.7)), and thus
εβ = 0.

Theorem A.6.9. The morphism β ∶ B(A) Ð→ A is terminal among twisting morphisms
over A. Explicitly, for every twisting morphism t ∶ C Ð→ A, there exists a unique morphism
of dg coalgebra t♭ ∶ C Ð→ B(A) such that t = βt♭:

C

B(A) A.

∃!t♭
∀t

β

Consequently, we have an isomorphism co
dgAlg+R(Zn)(C,B(A)) ≅ Tw(C,A) natural in both

C and A.

Proof. By definition, t factors through the augmentation ideal Ā of A, and let u be the
composite

C
tÐ→ Ā

▴Ð→ ▴Ā.

Since B(A) = Zn(▴Ā) is cofree over ▴Ā, there exists a unique morphism of coalgebra
t♭ ∶ C Ð→ B(A) such that u = ε▴Āt♭. Postcomposing with

▴Ā ▾Ð→ Ā↪Ð→ A,

we have t = βt♭. Conversely, if g ∶ C Ð→ B(A) is a coalgebra morphism such that t = βg,
then postcomposing with the suspension map ĀÐ→ ▴Ā gives u = ε▴Āg, whence g = t♭.

We now show that t♭ is a morphism of dg coalgebras. Recall that as the unique fac-
torization of u through the cofree coalgebra B(A), t♭ is the composite

C
∆Ð→ ZnC

ZnuÐÐ→ Zn(▴Ā).

On the one hand, we have

(t♭ ⋅ ∂C)(c) = (Znu ⋅∆ ⋅ ∂C)(c) = (Znu ⋅ ∂ZnC ⋅∆)(c) =
▴t (∂C[c2])

ξc1
,



and on the other hand,

(∂1 ⋅ t♭)(c) =
∂▴Ā [▴t(c2)]

ξc1
= −
▴∂A [t(c2)]

ξc1
,

and

(∂2 ⋅ t♭)(c) =
(ε▴Ā;γ′A) (

▴t(c2)
ξc1,2
)

ξc1,1

= ∑
ξc1=ζ1 ◽[pk] ζ2

#ζ2=2

(−1)c2,k−1 ( ∏
k<i<k′

(−1)c2,i) ▴t(c2,1), . . . ,▴
t(c2,k),t(c2,k′)

ζ2
, . . .

ζ1
♠

= −
▴(t; t ⋆ t)(c2)

ξc1
,

where in ♠, (ξc1)● = {[p1] ≺ [p2] ≺ ⋯}, and the sequence c2 is as c2,1, . . . with c2,i ∈ C
corresponding to [pi]. Assembling the previous computations, we obtain

(t♭ ⋅ ∂C − ∂B(A) ⋅ f)(c) = (t♭ ⋅ ∂C − ∂1 ⋅ t♭ − ∂2 ⋅ t♭)(c)

=
▴t (∂C[c2])

ξc1
+
▴∂A [t(c2)]

ξc1
+
▴(t; t ⋆ t)(c2)

ξc1

=
▴(t; t ⋅ ∂C + ∂A ⋅ t + t ⋆ t)(c2)

ξc1

=
▴(t;∂(t) + t ⋆ t)(c2)

ξc1

= 0

since t satisfies the Maurer–Cartan equation (A.5.6).

Definition A.6.10 (Bar complex). Since β ∶ B(A) Ð→ A is a twisting morphism, the
twisted composite A ○β B(A) is a dg On-module, called the bar complex of A.

Remark A.6.11. In preparation for the next result, let us develop the twisting term ∂lβ ∶
A ○B(A)Ð→ A ○B(A). Consider a homogeneous element of A ○B(A):

▴b
ξ

a

.

Here, ▴bξ is a sequence ▴b1
ξ1
, . . . of homogeneous elements of B(A). Assuming ξi is not

degenerate, write
ξi = Ys[] ξi◯

j

ξi,j , ▴bi = ▴bi,[],▴b′,

where ▴bi,[] is the first element of the sequence ▴bi (corresponding to the root node of
ξi), and ▴b′ is the tail of the sequence. This just emphasizes the root node of ξi and the
corresponding element of ▴Ā. Now,

∂lβ

⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= ∑

i

⎛
⎝∏j<i
(−1)bi,[]⋅▴bj

⎞
⎠

▴b1
ξ1
, . . . ,

▴b′i
ξ′i
, . . .

bi,[]

a



where the signs just result of the Koszul sign convention, and where if ξi is degenerate,
the corresponding term in the sum is just 0. Intuitively, the i-th term removes the root
element bi,[] from ▴bi

ξi
and multiplies it with a.

Notation A.6.12. We now introduce a notation that will prove useful in the proof of the
next result. Let ▴aξ ∈ B(A) be a homogeneous element, where ▴a is a sequence (▴a[p])[p]∈ξ● ,
and let [e] be an inner edge address of ξ (note that this forces ξ to have at least two nodes).
Equivalently, [e] is a node address of ξ of the form [p[q]], for [p] ∈ ξ● and [q] ∈ (s[p] ξ)●.
Then ξ can be decomposed as ξ = ξ′ ◽[p] ξ′′ where ξ′′ has two nodes. In other words, the
unique inner edge of ξ′′ corresponds to the edge [p[q]] of ξ. We introduce the following
notation:

▴a
ξ
/[p[q]] ∶=

⎛
⎝ ∏
[p]≺[r]≺[p[q]]

(−1)(a[r]+1)(a[p[q]]+1)
⎞
⎠
(−1)a[p]

×
▴a[], . . . ,▴

a[p],a[p[q]]

ξ′′
, . . .

ξ′
.

Intuitively, it is the tree of elements of ▴Ā where the edge at address [p[q]] has been
contracted, and the elements a[p] and a[p[q]] at the extremal nodes have been multiplied
according to the algebra structure of A. The are given by the Koszul sign rule. For example,
the differential ∂2 can simply be expressed as

∂2 (
▴a
ξ
) = ∑

[p[q]]∈ξ●

▴a
ξ
/[p[q]],

where again, [p[q]] ranges over the inner edge addresses of ξ.

Proposition A.6.13. The universal twisting morphism β ∶ B(A) Ð→ A is Koszul. In
other words, the bar complex A ○β B(A) of A is acyclic.

Proof. We construct a contracting homotopy h ∶ A○βB(A)Ð→ A○βB(A) (i.e. a morphism
of On-modules such that ∂h + h∂ = id) as follows:

h

⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
∶=
▴a,▴b
ξ+

1

,

where if a ∈ Aω, then ξ+ ∶=Yω◯iξi. Recall that ∂A○βB(A) = ∂A○B(A) + ∂
l
β = (∂A ○ idB(A)) +

(idA ○′∂1) + (idA ○′∂2) + ∂lβ. We have:

(∂A ○ idB(A)) ⋅ h
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= (∂A ○ idB(A))

⎛
⎜⎜⎜
⎝

▴a,▴b
ξ+

1

⎞
⎟⎟⎟
⎠
= 0,

(idA ○′∂1) ⋅ h
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= (idA ○′∂1)

⎛
⎜⎜⎜
⎝

▴a,▴b
ξ+

1

⎞
⎟⎟⎟
⎠
=
∂▴Ā[▴a,▴b]

ξ+

1

= −
▴∂A(a),▴b

ξ+

1

+ (−1)a+1
▴a, ∂▴Ā[▴b]

ξ+

1

,



(idA ○′∂2) ⋅ h
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= (idA ○′∂2)

⎛
⎜⎜⎜
⎝

▴a,▴b
ξ+

1

⎞
⎟⎟⎟
⎠
= ∑
[p[q]]∈ξ●

▴a,▴b
ξ+
/[p[q]]
1

,

∂lβ ⋅ h
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= ∂lβ

⎛
⎜⎜⎜
⎝

▴a,▴b
ξ+

1

⎞
⎟⎟⎟
⎠
=
▴b
ξ

a

.

On the other hand,

h ⋅ (∂A ○ idB(A))
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= h
⎛
⎜⎜⎜
⎝

▴b
ξ

∂A(a)

⎞
⎟⎟⎟
⎠
=
▴∂(a),▴b

ξ+

1

,

h ⋅ (idA ○′∂1)
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= (−1)ah

⎛
⎜⎜⎜
⎝

∂▴Ā[▴b]
ξ

a

⎞
⎟⎟⎟
⎠
= (−1)a

▴a, ∂▴Ā[▴b]
ξ+

1

,

h ⋅ (idA ○′∂2)
⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= (−1)ah

⎛
⎜
⎝

∂2 [ ▴bξ ]
a

⎞
⎟
⎠

= (−1)a ∑
[p[q]]∈ξ●+
[p]≠[]

(−1)a+1
▴a,▴b
ξ+
/[p[q]]
1

,

= − ∑
[p[q]]∈ξ●+
[p]≠[]

▴a,▴b
ξ+
/[p[q]]
1

,

h ⋅ ∂lβ

⎛
⎜⎜⎜
⎝

▴b
ξ

a

⎞
⎟⎟⎟
⎠
= (−1)a∑

i

⎛
⎝∏j<i
(−1)bi,[]⋅▴bj

⎞
⎠
h

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

▴b1
ξ1
, . . . ,

▴b′i
ξ′i
, . . .

bi,[]

a

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= (−1)a ∑
[q]∈(s[] ξ+)●

(−1)a+1
▴a,▴b
ξ+
/[[q]]
1

= − ∑
[q]∈(s[] ξ+)●

▴a,▴b
ξ+
/[[q]]
1

,

Note that (idA ○′∂2) ⋅ h + h ⋅ (idA ○′∂2) + h ⋅ ∂lβ = 0. The result follows.

the cobar construction

Definition A.6.14 (Cobar construction). Let C be a coaugmented Zn-coalgebra, with
coaugmentation quotient C Ð↠ C̄. If c ∈ C we abuse notations and write c for its class in
C̄. We define a Zn-algebra (which shall be the underlying algebra of the cobar construction
of C defined in equation (A.6.18)) as follows:

Ω(C) ∶= Zn(▾C̄). (A.6.15)



We now follow [LV12, section 2.2.5 and 6.5.5] to construct a suitable differential on Ω(C).
Firstly, if ∂C is the differential of C, let ∂1 ∶ Zn(▾C̄)Ð→ Zn(▾C̄) be the unique derivation
extending the composite (as defined in proposition A.2.24)

▾C̄
∂▾C̄ÐÐ→ ▾C̄

η▾C̄ÐÐ→ Zn(▾C̄) = Ω(C),

explicitly,

∂1(▾c) ∶=
∂▾C̄[▾c2]

ξc1
.

Next, write ∆C ∶ C Ð→ ZnC for the structure map of C, and let ∆′C be the composite

▾C̄ ∆CÐÐ→ ▾C̄ ○(1) ▾C̄ ↪Ð→ Zn(▾C̄) = Ω(C),

explicitly,

∆′C(▾c) ∶= (−1)c2
▾c2,▾c3
ξc1

,

where ▾c2,▾c3ξc1
ranges over the terms of ∆C(c) = ▾dξc1 where #(ξc1)● = 2, and where we write

the sequence d as c2, c3, for c2, c3 ∈ C. Let ∂2 ∶ Ω(C) Ð→ Ω(C) be the unique derivation
extending ∆′C (as defined in proposition A.2.24).

Lemma A.6.16. (1) The derivation ∂1 is a differential on Ω(C).
(2) The derivation ∂2 is a differential on Ω(C).
(3) The differentials ∂1 and ∂2 commute, i.e. ∂1∂2 = −∂2∂1.

Proof. (1) By lemma A.2.26, ∂1∂1 is the unique derivation extending the following
composite

▾C̄
∂▾C̄ÐÐ→ ▾C̄

η▾C̄ÐÐ→ Zn(▾C̄) ∂1Ð→ Zn(▾C̄),

which is 0 since ∂▾C̄∂▾C̄ = 0.
(2) By lemma A.2.26, ∂2∂2 is the unique derivation extending ∂2∆′C , and we show that

it is 0. We have

∂2∆
′
C(▾c) = (−1)c2∂2 (

▾c2,▾c3
ξc1

)

= (−1)c2
(η▾C̄ ;∆′C)(▾c2,▾c3)

ξc1

= (−1)c2+c2,2
▾c2,2,▾c2,3

ξ
c2
1

,▾c3
ξc1

− (−1)c3,2
▾c2,

▾c3,2,▾c3,3
ξ
c3
1

,

ξc1
,

and

−(−1)c3,2
▾c2,

▾c3,2,▾c3,3
ξ
c3
1

,

ξc1
= − ▾ 1⊗ ▾1⊗ ▾1⊗

c2,∆(1)(c3),
ξc1

= − ▾ 1⊗ ▾1⊗ ▾1⊗
∆(1)(c2), c3,

ξc1



= −(−1)c2 ▾ 1⊗ ▾1⊗
∆(1)(c2),▾c3,

ξc1

= −(−1)c2 ▾ 1⊗ ▾1⊗
c2,2,c2,3
ξ
c2
1

,▾c3
ξc1

= −(−1)c2+c2,2
▾c2,2,▾c2,3

ξ
c2
1

,▾c3
ξc1

.

(3) Let f ∶=∂1∆′C and g ∶=∂2η▾C̄∂▾C̄ . By lemma A.2.26, ∂1∂2 + ∂2∂1 is the unique dif-
ferential extending f + g, and we show that it is 0. We have

f(▾c) = (−1)c2∂1 (
▾c2,▾c3
ξc1

)

= (−1)c2
∂▾C̄ [▾c2,▾c3]

ξc1

= (−1)c2
∂▾C̄(▾c2),▾c3

ξc1
−
▾c2, ∂▾C̄(▾c3)

ξc1

= −(−1)c2
▾∂C(c2),▾c3

ξc1
+
▾c2,▾∂C(c3)

ξc1

= ▾1⊗ ▾1⊗ (
∂C(c2), c3

ξc1
+ (−1)c2

c2, ∂C(c3)
ξc1

)

= ▾1⊗ ▾1⊗ ∂ZnC∆(1)(c)
= ▾1⊗ ▾1⊗∆(1)∂C(c)
= −∂2η▾C̄∂▾C̄(▾c)
= −g(▾c).

Definition A.6.17 (Differential graded cobar construction). By lemma A.6.16, the mor-
phism ∂1+∂2 is a differential on the algebra Ω(C) defined in equation (A.6.15). The cobar
construction of C ∈ codgAlg+R(Zn) is the dg Zn-algebra

Ω(A) ∶= (Zn(▾C̄), ∂1 + ∂2) . (A.6.18)

Define now a degree (−1) morphism ι ∶ C Ð→ Ω(C) as the composite

C Ð↠ C̄
−▾Ð→ ▾C̄

η▾C̄ÐÐ→ Zn(▾C̄) = Ω(C). (A.6.19)

It maps c ∈ Cω to ▾c
Yω

.

Proposition A.6.20. The morphism ι ∶ C Ð→ Ω(C) is a twisting morphism.

Proof. We show that ι satisfies the Maurer–Cartan equation (A.5.6), i.e. that 0 = ∂(ι) +
ι ⋆ ι = ∂1ι + ∂2ι + ι∂C + ι ⋆ ι. For c ∈ Cω we have

∂1ι(c) = −∂1 (
▾c
Yω
) =

▾∂C(c)
Yω

,



∂2ι(c) = −∂2 (
▾c
Yω
) = −∆′C(▾c), ♠

ι∂C(c) = −
▾∂C(c)
Yω

,

(ι ⋆ ι)(c) = (−1)c2
ι(c1), ι(c2)

ξc1
= (−1)c2

▾c1,▾c2
ξc1

= ∆′C(C), ♢

where in ♠ we recall that ∂2 extends ∆′C , and in ♢, c1,c2
ξc1

ranges over the terms of ∆C(c) = d
ξc1

where #(ξc1)● = 2, and we write c2, c3 for the sequence d, where c2, c3 ∈ C̄. We see that
∂1ι + ∂2ι + ι∂C + ι ⋆ ι = 0 as desired. Let η ∶ I Ð→ C be the coaugmentation map of C. By
definition, ι factors through C̄ = C/ imη, whence ιη = 0.

Theorem A.6.21. The morphism ι ∶ C Ð→ Ω(C) is initial among twisting morphisms un-
der C. Explicitly, for every twisting morphism t ∶ C Ð→ A, there exists a unique morphism
of dg algebra t♯ ∶ Ω(C)Ð→ A such that t = t♯ι:

C Ω(C)

A.

ι

∀t ∃!t♯

Consequently, we have an isomorphism dgAlg+R(Zn)(Ω(C),A) ≅ Tw(C,A) natural in both
C and A.

Proof. By definition, t factors through the coaugmentation quotient C̄ of C, and let u be
the composite

▾C̄ ▴Ð→ C̄
−tÐ→ A.

Since Ω(C) = Zn(▾C̄) is free over ▾C̄, there exust a unique morphism of algebras t♯ ∶
Ω(C)Ð→ A such that u = t♯η▾C̄ . Precomposing with −▾ ∶ C Ð→ ▾C̄ gives t = t♯ι.

Conversely, if g ∶ Ω(C) Ð→ A is an algebra morphism such that t = gι, then precom-
posing with −▴ ∶ ▾C̄ Ð→ C gives u = gη▾C̄ whence g = t♯.

We now show that t♯ is a morphism of dg algebras. Recall that as the unique factor-
ization of u through the free algebra Ω(C), t♯ is the composite

Ω(C) ZnuÐÐ→ ZnA
γ
Ð→ A,

where γ is the multiplication of A. Explicitly,

t♯ (
▾c
ξ
) ∶=

−t(c)
ξ

.

We have

∂At
♯ (
▾c
ξ
) = ∂A (

−t(c)
ξ
) =

−(t;∂At)(c)
ξ

,

t♯∂1 (
▾c
ξ
) = t♯ (

∂▾C̄[▾c]
ξ

) = −
−(t; t∂C)(c)

ξ



t♯∂2 (
▾c
ξ
) = t♯

⎛
⎝
(η▾C̄ ;∆′C)(▾c)

ξ

⎞
⎠
=
(−t; (−t) ⋆ (−t))(▾c)

ξ

= −
−(t; t ⋆ t)(▾c)

ξ

whence
(∂At♯ − t♯∂Ω(C))(

▾c
ξ
) =

−(t;∂At + t∂C + t ⋆ t)(c)
ξ

= 0

since t is a twisting morphism.

A.7 FLATTENING

Definition A.7.1 (Linear flattening). Recall from definition 11.3.5 the flattening operator
(−)∨ ∶ On,n+1 Ð→ O2,3 . It maps ω ∈ On to the opetopic integer k, where k = #ω●, and
ξ ∈ On+1 to the underlying tree of ξ, seen as a 3-opetope. This functor is faithful but not
full in general.

In particular, we have a set map (−)∨ ∶ On Ð→ O2, which induces a left adjoint
(−)∨ ∶ dgModOnR Ð→ dgModO2

R = dgModNR using definition A.2.1 and proposition A.2.2.
Explicitly, for X ∈ dgModOnR , we have

X∨k = ⊕
#ω●=k

Xω.

Proposition A.7.2. The flattening operator (−)∨ ∶ dgModOnR Ð→ dgModO2

R is additive
and exact.

Proof. Additivity is trivial. By proposition A.2.2, (−)∨ is left adjoint, thus it preserves
all colimits, and in particular, direct sums and cokernels. To conclude, we show that it
preserves kernels. For f ∶X Ð→ Y , note that f and f∨ have the same underlying set map.
Therefore,

ker f∨k = ⊕
#ω●=k

(ker f)ω

= ⊕
#ω●=k

{x ∈Xω ∣ f(x) = 0}

= ⊕
#ω●=k

{x ∈Xω ∣ f∨(x) = 0}

= {x ∈X∨k ∣ f
∨(x) = 0}

= (ker f∨)k.

Corollary A.7.3. For X ∈ dgModOnR , we have H(X)∨ ≅H(X∨) naturally in X. Further,
f ∶X Ð→ Y is a quasi-isomorphism if only if f∨ is.

Proof. The first claim follows directly from proposition A.7.2, while the second claim
follows from the first, and the fact that (−)∨ preserves and reflects isomorphisms.



Lemma A.7.4. Let X ∈ dgModOnR , and consider ZnX. The following canonical map is
injective:

i ∶ (ZnX)∨ Ð→ Z2X∨

x

ξ
z→

x

ξ∨
.

Proof. Assume i ( xξ ) = i (
x
ξ′ ). First, since ξ∨ = ξ′∨, ξ and ξ′ have the same underlying tree.

Write ξ● = {[p1] ≺ ⋯ ≺ [pk]} and (ξ′)● = {[q1] ≺ ⋯ ≺ [qk]}. In particular, x is a sequence
x1, . . . , xk of elements of X. For 1 ≤ j ≤ k, let ωj ∈ On be the opetope such that xj ∈
Xωj . Then by definition, s[pj] ξ = ωj = s[qj] ξ′. Therefore, in addition to having the same
underlying tree, ξ and ξ′ have the same source faces. Consequently, ξ = ξ′.

Proposition A.7.5. Let A ∈ dgAlgR(Zn) be an algebra with structure map m ∶ ZnAÐ→ A.
Define a map m′ ∶ Z2A∨ Ð→ A∨ as follows:

m′ (
x

ψ
) ∶=
⎧⎪⎪⎨⎪⎪⎩

x
ξ if there exists ξ ∈ On+1 st. x

ψ = i (
x
ξ ) ,

0 otherwise.

The tuple (A∨,m′) is a dg Z2-algebra, a.k.a. a dg planar operad.

Proof. We check the usual unitality and associativity axioms. For a ∈ Aω and k =#ω●,

m′η(a) = m′ (
a

Yk
) =

a

ω
= a.

Next, we show that the following square commutes:

Z2Z2A∨ Z2A∨

Z2A∨ A∨.

Z2m′

µ m′

m′

Let

x =
a

ψ′

ψ

∈ Z2Z2A∨.

Consider the following assumptions:
(A1) For all i, there exists ai

ξ′i
∈ ZnA such that (ξ′i)∨ = ψ′i.

(A2) Writing bi ∶= aiξ′i , assume further that there exists b
ξ ∈ Z

nA such that ξ∨ = ψ.
We now distinguish cases.

(1) If assumption (A1) fails, say for index i, then by definition m′ ( xiψ′i ) = 0, thus

m′(Z2m′)(x) = 0. On the other hand, there cannot exist x
ζ ∈ A

∨ such that i ( aζ ) =
a

ψ◻i ψ′i = µ(x), as it would allow us to construct an element ai
ξ′i
∈ ZnA such that

i ( aiξ′i ) =
xi
ψ′i

by taking ξ′i to be the subtree of ζ corresponding to ψ′i. Therefore,
m′µ(x) = 0 as well.



(2) If assumption (A1) holds but (A2) fails, then a similar argument shows that
m′(Z2m′)(x) = 0 =m′µ(x).

(3) Assume that (A1) and (A2) hold. Note that (ξ◻i ξ′i)∨ = ψ◻iψ′i, and thus

m′(Z2m′)
⎛
⎜⎜
⎝

a

ψ′

ψ

⎞
⎟⎟
⎠
= m′

⎛
⎜⎜
⎝

a

ξ′

ψ

⎞
⎟⎟
⎠
=
a

ξ′

ξ

=
a

ξ◻i ξ′i
= m′ (

a

ψ◻ψ′i
) = m′µ

⎛
⎜⎜
⎝

a

ψ′

ψ

⎞
⎟⎟
⎠
.

Definition A.7.6 (Linear flattening, cont.). In the light of proposition A.7.5, the flat-
tening operator induces a functor (−)∨ ∶ dgAlgR(Zn)Ð→ dgAlgR(Z2) = dgOpR. Likewise, if
C ∈ co

dgAlgR(Zn) is a dg coalgebra with structure map ∆ ∶ C Ð→ ZnC, then letting ∆′ be
the composite

C∨
∆∨Ð→ (ZnC)∨ iÐ→ Z2C∨

gives rise to a dg cooperad (C∨,∆′). Thus we have a functor (−)∨ ∶ codgAlgR(Zn)Ð→ co
dgOpR.

Proposition A.7.7. Let A ∈ dgAlgR(Zn), C ∈ co
dgAlgR(Zn), and t ∶ C Ð→ A. Then t is a

twisting morphism if and only if t∨ is.

Proof. Note that ∂(t)∨ = (∂At − (−1)tt∂C)
∨ = ∂A∨t∨ − (−1)t

∨
t∨∂C∨ . Likewise, (t ⋆ t)∨ =

t∨ ⋆ t∨. Therefore, t satisfies the Maurer–Cartan equation (A.5.6) if and only if t∨ does.
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F!, 6, 276
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uct
[∗k], 46
[p], 140
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p ◽[p] q, see substitution
p●, 134
☀, 140
⊠, see box product
y

x , 277
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ω-functor, 58
◾, see arrow (opetope)
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∂λ, see boundary
∂lt, see twisting term
∂t, see twisted differential
⊥, see orthogonal
⋔, see lifting property
⟦−⟧, see polynomial coding
⟦−⟧n, see polynomial coding
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℘, see readdressing
dF , see left / right derived functor
K−1C, see localization
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x♮, see shape
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▴, see suspension
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X̃, see Schur functor
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b⋀e∈E(b) ce, 34
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m(1), see infinitesimal multiplication
t♭, 295
t●, 88
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x ○[p] x′, 193
x ∥ y, see parallel
⌜p⌝, 140
3-for-2 property, 1
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A, 193
acyclic

cofibration, 201
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module, 274

address, 24, 96
of a variable, 96

adhesive category, 52
admissible, 29
Algk,n, see opetopic algebra
dgAlg+R(Zn), see augmented (dg) algebra

co
dgAlg+R(Zn), see coaugmented (dg) coal-

gebra
algebra, 281
algebraic

equivalence, 238
realization, 178
Rezk cylinder, 226
Rezk interval, 225
trompe-l’œil, 200

Algfolk, see folk model structure
Aninner, see inner anodyne extension, 222
anodyne extension, 4, 209, 227
arrow (opetope), 44
arrow category, 1
associahedron, ix
associator, see coherence cell
augmentation

ideal, 278
map, 271, 277, 278

augmented
(dg) algebra, 278
module, 271
monoid, 277

augnemtation ideal, 271

B(A), see bar construction
B, see boundary inclusion, 237
bλ, see boundary inclusion
bω, see boundary inclusion
Baez–Dolan construction, 34
bar

complex, 296
construction, 292, 294

bisimplicial set, 211
boundary, 4, 51, 237

inclusion, 51, 237
box product, 4, 212

C !, see named coding function
C?, see unnamed coding function
Jϕ, see algebraic Rezk interval
cω,[p], 221
cartesian

monad, 28
natural transformation, 20

Cat, 1



Cat, 1
category

of elements, 3, 22
of simplices, 3

Cauchy-complete category, 79
cell, 45

complex, 2
of a presheaf, 3

CellK, see relative cell complex
cellular

extension, 59
model category, 207

Cisinski model category, 209
Cisinski–Moerdijk model structure, 231
coaugmentation

map, 271, 285
quotient, 271

coaugmented
(dg) coalgebra, 285
module, 271

cobar construction, 298, 300
codegeneracy, 3
coface, 3
cofibrant

object, 201
replacement, 201

cofibrantly generated model category, 202
cofibration, 201
coherence cell, vi
column-wise weak equivalence, see verti-

cal model structure
combinad, 44, 177
combinatorial model category, 202
CombPT, see combinad
comma category, 1
complete Segal

algebra, 260
space, 247

component, 238
composition

operation, 66
tree, 66, 67

computad, see polygraph
concatenation, v, 48
concatenator, x

conilpotent comonoid, 284
connected, 234

object, 255
constant space, 213
context, 59, 89, 136
contractible object, 235
contraction, 32
corolla, 25

grafting, 135
cotensored category, 203
counting function, 59
ct, see composition tree
Ctx!, 118
Ctxn, see context
cylinder, 208

di, see coface
decreasing morphism, 205
deformation retract, 247
deg, see degree
(Degen), 49
degenerate

opetope, 44
preopetope, 134
term, 88

degree, 219
dendrotopic sets, 80
dense functor, 6
density formula, 5
Der(A), see derivation
derivation, 279
desuspension, 274
df , 279
(dg) opetopic module, 274
(DH1), 208
(DH2), 209
diagram, 183
diagrammatic morphism, 183
direct category, 205
discrete space, 213
(Disjoint multiplication), 30
divisible functor, 212

e[l], 35
edge, 21
effective category, 62



elementary
face, 221
face embedding, 49
homotopical data, 208
homotopy, see homotopy
polynomial tree, 21

eltP , see category of elements of a poly-
nomial functor

empty term, 88
endotope, 44
equational theory, 89
equivalent sequents, 90
essentially surjective, 238
exact adjoint square, 172
exchange law, 58
exterior product, 212

familially representable, 76
fibrant

object, 201
replacement, 201

fibration, 201
filtered

category, 7
colimit, 7

finitary
functor, 7
polynomial functor, 18

finitely
bounded, 273
generated, 273
presentable object, 7
presentable category, 7

flattening, 198
operator, 197, 302

folk model structure, 239
fully faithful, 238
fundamental cell, 64

(Glob1), 49
(Glob2), 49
globular identities, 58, 59
grafting, 26
Grothendieck–Segal colimit, 180

H(X), see homology

heλ, see inner horn inclusion
hIhω, 222
h, 181
higher dimensional address, 46
Hmp, 140
ho, see homotopy category
homology, 274
homotopical structure, 209
homotopically constant, 216
homotopy, 208

category, 202
equivalence, 208

Horel model structure, 258
horizontal

fibration, see horizontal model struc-
ture

model structure, 216
horizontally fibrant, see horizontal model

structure
horn, 4

I, 270
I, see Rezk cylinder
Iϕ, see Rezk inverval
Ii, 25
IΛ, 256
iϕ, 226
I-homotopy, see homotopy
IAlg, 253
IAlgHorel, see Horel model structure
ICat, 258
identity cell, 160
idx, 193
idx, see identity cell
increasing morphism, 205
infinitesimal

composite, 275
composite product, 275
comultiplication, 284
multiplication, 277

injective
cofibration, 205
fibration, 205
model structure, 205
weak equivalence, 205

inner



anodyne extension, 4, 222
face, 222
fibration, 222
horn, 4, 222
horn inclusion, 222
Kan complex, 4, see ∞-algebra

(Inner), 49
input, 19

color, 19
edge, 21
sort, 19

internal isomorphism, 238
isofibration, 239
isomorphism, see internal isomorphism
isOpetope, 149

JA, see algebraic Rezk cylinder
JΛ, 256
Joyal model structure, 231

Kan
complex, 202
extension, 5
fibration, 202

Kos(C,A), see Koszul morphism
Koszul morphism, 292

LaX, see latching object
L̂a f , see relative latching map
Lan, see left Kan extension
latching object, 206
leaf address, 25, 134
left

Bousfield localization, 207
Kan extension, 5
proper model category, 202
Quillen functor, 204

left derived functor, 204
(Left unit), 29
Leibniz

box product, 212
construction, 212
formula, 215

lexicographical order, 48
lifting

problem, 3

property, 2
limit sketch, 9
local

equivalence, 207
isomorphism, 2
object, 207

localization, 2
locally presentable category, 7

MaX, see matching object
M̂a f , see relative matching map
(M0), 201
(M1), 201
(M2), 201
(M3), 201
(M4), 201
many-to-one

cell, 61
polygraph, 61

m̂ap, see (SM7)
map, 203, 214, 232, 254
matching object, 206
Maurer–Cartan equation, 292
mid

anodyne extension, 222
fibration, 222

ModOnR , see opetopic module
dgModOnR , see dg opetopic module
model, 9

category, 201
structure for ∞-algebras, 230

monad with arities, 170
morphism of polygraphs, 60

N , see nerve
[n], 1
n, see opetopic integer
n-polygraph, 60
naive fibration, 210, 230
named coding function, 102
named stratification functor, 118
natural

isomorphism, 238
transformation, 238

nerve, 178
(Nested multiplication), 30



N(n), 59
node, 18

address, 25
non-degenerate preopetope, 134
normal skeletal category, 210
n-term, 88
n-type, 88

O[ω], 51
O<n, 50
Osym, see symmetric opetope
Om,n, 50
O(2)n+2, 45
O, 55
OCMT, see opetopic context modulo the-

ory
operation, 18
opetopic

algebra, 177
context modulo theory, 110
integers, 44
module, 269
polygraph, 61
set, 51
shape, 178
vector space, 271

orthogonal, 2
orthogonality class, 8
output

color, 19
sort, 19

P✓n , 140
Pn, see preopetope
p.r.a., see parametric right adjoint
p.r.a. monad, 170
parallel, 59, 157, 225
parametric right adjoint, 170
(Partial multiplication), 29
(Partial readdressing), 29
partial composition, 61
pasting diagram, 45
placed composition, see partial composi-

tion
point (opetope), 44
Pol, see polygraph

Polmto, see many-to-one polygraph
PolyEnd(I), 19
PolyEnd, 19
polygraph, 60
polygraphic nerve, 77
PolyMnd(I), 28
polynomial

coding function, 145
endofunctor, 18
functor, 18
monad, 28
tree, 21

polyplex, 63
(PR1), 71
(PR2), 71
(PR3), 71
prefix order, 25, 48
preopetope, 133
presentable object, 7
primitive context, 60
projective

cofibration, 205
fibration, 205
model structure, 205
Rezk model structure, 260
Segal model structure, 260
sketch, 9
weak equivalence, 205

proper model category, 202
Psh(∆)Joyal, see Joyal model structure
Psh(∆)Quillen, 202
Psh(Λ)∞, see model structure for∞-algebras
Psh(Ω)CM, see Cisinski–Moerdijk model

structure
PT-combinad, 165
P -tree, 23

Quillen adjunction, 204
quotient, 225

R, see Rezk map
rϕ, see Rezk map
Ran, see right Kan extension
readdressing, 32
Reedy

cofibration, 206



fibration, 206
model structure, 206
weak equivalence, 206

reflexivity cell, 160
reflx, see reflexivity cell
relative

cell complex, 1
latching map, 206
matching map, 206

Rezk
cylinder, 226, 227
interval, 225
inverval, 226
map, 247
model structure, 247
weak equivalence, see Rezk model struc-

ture
right

cancellation property, 243
derived functor, 204
induced model category structure, 256
Kan extension, 5
proper model category, 202
Quillen functor, 204

(Right unit), 29
rigid category, 23
root, 21
row-wise weak equivalence, see vertical

model structure

S[ω], see spine
S[n], see spine
S!, see named stratification functor
S?, see unnamed stratification functor
s, 93
S, see spine inclusion, 51, 179
sω, see spine inclusion
se, 22
s[p], see source embedding, 134
si, see codegeneracy
saturated class, 2
saturation, 2
Schur functor, 272
Segal

condition, 8
model structure, 243

space, 243
weak equivalence, see Segal model struc-

ture
sequent, 89, 136
shape, 3, 151
simplicial

model category, 203
presheaf, 211
resolution, 248
set, 4

simultaneous substitution, 40
skeletal category, 210
slice construction, 50
(SM0), 203
(SM7), 203
(SM7’), 203
(SM7”), 203
small

object, 202
object argument, 202

solved lifting problem, 3
source, see source face

address, 134
embedding, 49
face, 46
universal, 157

Sp(Λ)Rezk, see Rezk model structure
Sp(Λ)Segal, see Segal model structure
Sp(Λ)pRezk, see projective Rezk model struc-

ture
Sp(Λ)pSegal, see projective Segal model struc-

ture
Sp(C), see simplicial presheaf
space, see simplicial presheaf
spine, 8, 51, 179

inclusion, 8, 51, 179
split idempotent, 79
(Sq0), 210
(Sq1), 210
(Sq2), 210
(Sq3), 210
strict ∞-category, 58
(Subst1), 91
(Subst2), 91
(Subst2a), 91



(Subst2b), 91
(Subst2c), 91
(Subst2d), 91
(Subst2e), 91
substitution, 27, 136
suspension, 274
Sweedler’s notation, 283
symmetric

multicategory, 50
opetope, 50

Tn, see n-term
T, 62
t, 22, see target embedding
target

embedding, 49
universal, 158

T -cardinal, 170
tensored category, 203
total

grafting, 27
trP , 23
tr∣ P , 25
tr● P , 25
tree, see polynomial tree
Tree, see polynomial tree
Treeelem, see elementary tree
(Trivial), 29
trivial fibration, 215
truncation, 55
Tw(C,A), see twisting morphism
twisted

composite product, 292
differential, 291

twisting
morphism, 292
term, 291

typing, 88

unique lifting property, see orthogonal
(Unit), 29
unnamed

coding function, 141
stratification functor, 153

unsolved lifting problem, 3

V, 88

VΓ, 89
VΓ,k, 89
v[p], 96
(VdB1), 234
(VdB2), 234
(VdB3), 234
VectOnR , see opetopic vector space
vertical

fibration, see vertical model structure
model structure, 216

vertically fibrant, see vertical model struc-
ture

Vn, 88

walk-to-root function, 21
weak

equivalence, 201
inverse, 238
Kan complex, 219

whisker, 60
wide subcategory, 205

y, see Yoneda embedding
Yb, 25
Yoneda embedding, 3

Zn, 276
Zn, 43, 173
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