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PRÉFACE

Cette thèse est écrite en vue de l’obtention d’un doctorat de l’École Normale Supérieure (ENS),

membre de l’ Université Paris Sciences et Lettres, sous l’affiliation de l’école doctorale STEP’UP

(n°560) en spécialité Sciences de la Terre et de l’Environnement. Elle s’est déroulée entre le

Laboratoire de Géologie de l’ENS Paris et le département de Calcul de Haute Performance de

l’Institut Fraunhofer pour la Recherche en Mathématiques Industrielles (Fraunhofer ITWM)

en Allemagne. Le financement provient d’une bourse de thèse de la Fraunhofer-Gesellschaft

qui s’est étendue d’octobre 2016 à mars 2020. L’encadrement du projet de recherche a été

assuré par Dr. Matthias Delescluse (ENS), Dr. Norman Ettrich (Fraunhofer ITWM) et Dr. Janis

Keuper (Fraunhofer ITWM). La thématique principale de la thèse concerne les applications

de l’apprentissage profond, une branche de l’intelligence artificielle, pour le traitement et

l’interprétation des données sismiques.
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RÉSUMÉ

L’exploration sismique est une méthode de choix pour acquérir une connaissance détaillée

de la géologie des bassins sédimentaires et de la croûte terrestre. Cependant, transformer le

champ d’onde enregistré en une image précise du sous-sol est une tâche longue et difficile.

De nombreux algorithmes sont employés pour traiter le signal, atténuer le bruit et aider à

interpréter les données. Ces algorithmes sont conçus par des experts au moyen d’une série

d’instructions minutieusement programmées. Ils doivent être soigneusement paramétrés

chaque fois qu’ils sont employés et les utilisateurs doivent avoir une bonne compréhension

de leurs fonctionnements et de leurs limites. De plus, certaines tâches doivent être effectuées

manuellement par des géoscientifiques lorsque qu’elles ne peuvent pas être automatisées

correctement par des algorithmes. Ces dernières années, une classe différente d’algorithmes

a pris de l’importance. Au lieu de nécessiter des instructions explicites pour résoudre un

problème, ils fonctionnent comme des modèles adaptatifs qui peuvent apprendre des données

en s’améliorant avec l’expérience. Cette approche est appelée Apprentissage Machine, un

sous-domaine de l’Intelligence Artificielle, et parmi ses nombreuses branches, l’Apprentissage

Profond apporte actuellement les meilleures performances. L’Apprentissage Profond a ouvert

la voie à de nouvelles applications de pointe dans de nombreuses disciplines scientifiques et

techniques. Il permet notamment d’automatiser certains processus qui n’étaient jusque-là

réalisables que par les humains. Cependant, il peut être difficile de remplir les conditions

nécessaires pour utiliser efficacement ces modèles d’apprentissage.

Dans ce travail, nous commençons par identifier les principaux obstacles à l’exploitation du

potentiel de l’apprentissage profond. Un premier défi naît de la dépendance de la procédure

d’entraînement à l’intervention humaine. Les algorithmes ont besoin d’exemples pour ap-

prendre et pour certaines applications, la préparation de ces exemples peut nécessiter un

travail manuel considérable de la part d’experts. Un autre défi réside dans les incertitudes
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Résumé

inhérentes associées aux données sismiques. Le manque de résolution et la présence de

bruits conduisent à une non-unicité de l’interprétation. Cela pose des problèmes car des

erreurs et des biais humains peuvent être communiqués à l’algorithme. De plus, le manque

d’interprétabilité et de garanties théoriques sur l’apprentissage profond sont également des

problèmes. Il est difficile de comprendre le processus conduisant la machine à donner sa

réponse et le comportement de l’algorithme lorsqu’il est confronté à de nouvelles données

n’est pas prédictible.

Suite à ces observations, nous proposons une série de méthodologies qui visent à atténuer

ces problèmes et à exploiter les capacités de l’apprentissage machine. Nous démontrons la

validité et la faisabilité de nos méthodes sur un ensemble de problèmes d’interprétation et de

traitement sismiques. (1) Nous montrons comment, avec l’apprentissage par transfert de la

compréhension et la distillation des connaissances, nous pouvons exploiter des éléments déjà

connus, soit en utilisant la physique du problème, soit en tirant parti des algorithmes existants,

pour entraîner un réseau de neurones sans avoir besoin d’un travail manuel conséquent. (2)

Nous présentons des démarches basées sur un apprentissage semi-supervisé où le géologue

peut progressivement guider la machine vers une réponse qui lui convienne. Cette approche

permet de réduire le besoin d’intervention manuelle et est également utile pour gérer les

incertitudes et le caractère non unique de l’interprétation. (3) Nous explorons certaines des

possibilités offertes par l’apprentissage non supervisé afin d’accomplir des tâches sans avoir

besoin de directives explicites venant des experts, et démontrons les premiers résultats sur

des applications pratiques.
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ABSTRACT

Seismic reflection is a method of choice to gain a detailed knowledge of the geology of the

Earth’s crust. However, transforming the recorded wavefield into an accurate image of the

subsurface is a long and challenging task. Many algorithms are involved to process the signal,

attenuate the noise and help interpreting the data. Those algorithms are designed by experts

and are implemented as a sequence of hand-crafted operations that are thought to help solving

the imaging problem. They require to be carefully parametrized every time they are employed

and practitioners must have a good understanding of their applications range and limits.

Additionally, several interpretation tasks have to be performed manually by geoscientists

when algorithms fail to deliver good results. In recent years, a different class of algorithms

have rose to prominence. Instead of necessitating explicit instructions to solve a problem,

they are implemented as adaptive models that can learn from the data by self-improving when

given feedback. This approach is named Machine Learning, a subfield of Artificial Intelligence,

and among its many branches, Deep Learning currently brings the best performance for

complex tasks. Deep learning has set the new state-of-the-art in many applications across

numerous scientific and engineering disciplines. It also allows to automate certain processes

that were until then only feasible by humans. However, fulfilling the conditions necessary to

effectively use these learning models may be difficult.

In this work, we start by identifying the main impediments to harvest the potential of deep

learning for geophysical applications. A first challenge comes from the dependency of the

training procedure to human intervention. Algorithms need examples to learn and for some

applications preparing those examples may require a considerable amount of manual work

from experts. Another challenge lies in the inherent uncertainties associated with seismic data.

The lack of resolution and the presence of noise lead to uncertainties and non-uniqueness in

the interpretation. This raises issues when giving feedbacks to the machine about its perfor-
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mance since errors and human biases may be communicated to the algorithm. Additionally,

the lack of interpretability and theoretical guaranties of deep learning is also a problem. It is

difficult to understand the process leading the machine to give its answer and the expected

behaviour of the algorithm when encountering new data can not be predicted with certainty.

Following those observations, we propose a series of methodologies that aim to mitigate

these issues and exploit the capabilities of deep learning. We demonstrate the validity and

practicability of our methods on a set of challenging interpretation and processing problems.

(1) We show how with Transfer Learning and Knowledge Distillation we can benefit from

prior knowledge, either by exploiting the physics of the problem or by leveraging existing

algorithms, to train a neural network without the need of an extensive manual labour. (2) We

present workflows based on Semi-Supervised Learning where the interpreter can progressively

guide the machine toward an accepted answer. This approach enables to reduce the need for

manual intervention and is also valuable to handle uncertainties and non-uniqueness in the

interpretation. (3) We explore some of the possibilities offered by Unsupervised Learning in

order to accomplish tasks without the need of an explicit guidance by experts and demonstrate

initial results on practical applications.
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CHAPTER 1 INTRODUCTION

Solid earth science is the sub-discipline of Geosciences interested in the study of our planet’s

interior. One of the prominent method to probe the sub-surface is the analysis of seismic waves

that can yield detailed images valuable for the study of geological structures as well as giving

information about the type of rocks in presence. The remote nature of the measurements

combined with the need of ever higher resolution information lead to large datasets that

need to be processed in order to improve the signal-to-noise ratio and need to be interpreted

despite uncertainties. Machine learning deals with the creation of algorithms that perform

specific tasks without having explicitly programmed instructions. They rely instead on the

statistics of the data and are becoming increasingly useful to help dealing with very large

datasets. In the following we give an overview of seismic exploration techniques, introduce

some relevant machine learning disciplines and discuss their application to the processing

and interpretation of seismic data.

1.1 Reflection Seismology

While seismology is the study of the Earth using waves produced by natural sources such

as earthquakes, reflection seismology uses controlled industrial sources to generate the me-

chanical energy. In standard surveys, seismic waves possess a penetration depth of several

kilometres below the surface and yield a resolution of few tens of meters. They can be acquired

both on land and off shore. This make them valuable to the study of processes in the crust and

sedimentary basins as well as in various industrial applications such as oil and gas exploration

and production, geothermal energy exploitation, carbon dioxide trapping or construction
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Chapter 1. Introduction

engineering.

1.1.1 Seismic Data

Figure 1.1 – Summary of the factors affecting the seismic amplitudes. Blue terms list acquisition
related effects, terms in green highlight general propagation effects while orange terms list the
properties affecting the reflection at layer boundaries. (From Simm et al. (2014)).

Seismic Acquisition and Migration

The Earth’s interior can approximatively be described as a sequence of layers each consisting

in a certain type of rock with given physical properties. In a typical marine acquisition, sources

and receivers are placed just beneath the sea surface and towed by a vessel. At a regular pace,

sources are triggered and they release acoustic waves that propagate down the water and

through the subsurface. At each interface between layers, an impedance contrast reflects part

of the seismic energy towards the surface that is recorded by the sensors. As it propagates,

the seismic wavefield is modified according to the geometry and properties of the medium.

Using equations that describe the propagation of mechanical waves, it is possible to relate

the informations contained in the recorded wavefield to the hidden geology of the subsurface.

Figure 1.1 summarizes the different factors influencing the seismic response.

According to the convolutional model, seismic traces can be modelled as the convolution of a

8



1.1. Reflection Seismology

Figure 1.2 – Illustration of the effect of the wavelet on the seismic signal. Synthetic traces
generated with the convolution model. The impedance is the product of the volumetric mass
density of the medium and the speed of waves. (Taken from Simm et al. (2014)).

seismic pulse with a reflection coefficient series. The reflection coefficient series is related to

changes in the physical properties at layers interfaces following Zoeppritz equations. Figure

1.2 illustrates the meaning of the colors in a seismic image. Following the SEG convention

(Society of Exploration Geophysicists), a positive reflection coefficient is associated with an

increase in the impedance and is associated with a wavelet pick (here in blue). Conversely, a

decrease of impedance is associated with a seismic trough (here in red).

It is not straightforward to understand raw seismic data. A vast amount of processing se-

quences need to be applied in order to transform the wavefield into an image that can be

interpreted. We give a brief overview of seismic processing at the end of the section, and only

mention here the migration step. After acquisition, a seismic event is located with respect to

the position of the source and the receiver as well as the time the wave took to travel from one

to the other. The purpose of migration is to re-locate the event to the position it occurred in the

subsurface. There exist many types of migration algorithms that differ in the assumptions they

make about wave propagation as well as in the domain they operate in, but they all require the

knowledge of an accurate estimate of the subsurface velocity (Robein et al., 2010). An overview

of how velocity models are obtained is for example given in Jones et al. (2010). Depending on

the method, the vertical dimension of the subsurface can either be time or depth. The former

corresponds to the two way travel-time of the wave between the source and the receiver and is

related to the actual depth via a velocity model. An example of time migration can be seen in

Figure 1.3.
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Chapter 1. Introduction

Figure 1.3 – A 2D line from the China Sea before (right) and after (left) Prestack time migration.
The red ellipse marks the focusing of some diffraction hyperbolas. The blue ellipse shows a
dipping reflector with a corrected slope. To read this image: The vertical axis is in seconds
two-way travel-time (sTWT from the source to the reflector and back to the receiver). The
horizontal axis shows the common depth points number (CDP, which are consecutive physical
points imaged by seismic rays of various incidence angles). The distance between two CDPs is
6.25m and the total section is 25km long. The first reflector at 1.5 sTWT is the seafloor, the
initial 1.5sTWT corresponding to the propagation in water have been cut. The correspondence
between sTWT and depth requires the knowledge of the waves velocity in the media. A
propagation of acoustic waves at 1500 m/s in water indicates that the seafloor is at a depth of
1125m. Typical marine sensors (hydrophones) measure the pressure variations (scalar field)
caused by the waves. The colorbar of the image is centred around zero (white). (Provided by
Delescluse (2020)).

Stack and Prestack Domains

After migration, seismic amplitudes are stored on a regular grid representing a discreet model

of the subsurface. A representation of the grid is drawn in Figure 1.4. The local coordinates

are inherited from the acquisition set-up. In a standard marine survey, the ship towing the

equipments is navigating back and forth following a constant heading and progressively

creating a 2D mesh at the sea surface. The sailing direction is called the Inline and the

perpendicular direction the Crossline. The vertical direction can either be Time or Depth

depending on the working stage. Datasets are typically recorded over hundreds of inlines and

crosslines, during several seconds at a sampling rate of few milliseconds, leading to data sizes

that can reach terabytes. It is common to look a the data in 2 dimensions for practical purpose.

We give the naming conventions of the different 2D sections through the 3D data in Figure 1.4.
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1.1. Reflection Seismology

Figure 1.4 – A model of a 3D grid storing stacked seismic amplitudes.

As an example, the image on the right in Figure 1.5 is a crossline section (or equivalently an

inline slice). This means that we are looking at the data at a fixed inline, seeing how it changes

with time and crosslines.

Because of redundancies in the acquisition, a single point in the subsurface is imaged by more

than a single wave. In Figure 1.1, the variable h, named the offset, represents the distance

between the source and the receiver. Using ray-tracing in a velocity model, the offset can

be related to the incidence angle θ, which measures at a reflection event the inclination

between the incoming wave and the vertical. These extra measurements provide a fourth

dimension to the data, called the prestack dimension. A collection of vertical seismic traces

(extracted at a constant inline and crossline), and changing with time and offset (or angle)

is called a gather (as an example there are eleven gathers displayed on the left in Figure 1.5).

By summing contributions from all offsets (or angles), we fall back to a 3D dataset. This

summation process is named stacking and therefore we often refer to the 3D data as a stack.

We show in Figure 1.5 a dataset in the prestack and stacked domain side-by-side. The prestack

signal is useful because its summation enhances the signal-to-noise ratio, and it also enables

geophysicists to gain knowledge about the elastic properties of the layers since they relate to

how amplitudes change with the incidence angle. More recently, some datasets with a 5th

dimension associated with the azimuthal orientation of the incident waves have appeared.
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Chapter 1. Introduction

Figure 1.5 – Crossline sections of a seismic dataset. Prestack data is displayed on the left
and stacked data on the right. The black crosshair shows the synchronization between both
viewers. The vertical axis is time. On the stack, the horizontal axis is the crossline number.
At every vertical trace of the stack is associated an offset gather in the prestack domain. The
horizontal axis for the prestack data is 2-dimensional. The fast dimension is the offset and the
slow one the crossline. We obtain the stack data by summing the prestack traces along the
offset dimension.

1.1.2 Processing and Interpretation

Processing

As we mentioned previously, many processing sequences need to be applied in order to

transform seismic records into an interpretable image. Those sequences aim at enhancing

the events relating to key physical factors (in orange in Figure 1.1) and isolate them from

other events generated by factors that do not inform us on the geology (in blue and green in

Figure 1.1). There is no single processing workflow that can be applied to every datasets and

geophysicists rather adapt to the data and the needs of the interpreters. Yilmaz (2001) gives

a large list of existing algorithms and their purpose. Important pre-migration steps are the

removal of source effects and the separation of primary and multiple reflections.

Figure 1.2 illustrates the effect that the wavelet has on the seismic signal. This underlines the

importance of processing algorithms that transform the source wavelet. In particular, the

original source wavelet may not be compact and may be contaminated with echoing effects.

By reshaping the wavelet to be near zero-phase and free of ringing, we greatly improve the

resolution by sharpening the image and allowing to better see the layer interfaces (see the

difference between the first and last trace in Figure 1.2). Multiples, i.e. waves that reflected

12



1.1. Reflection Seismology

Figure 1.6 – A seismic line before (left) and after (right) deconvolution. The operation sharp-
ens the wavelet. Reflectors, especially in the deeper part, are more clearly defined (see e.g.
the reflection marked by the red ellipse). This operation also boosts high frequency noise.
(Provided by Delescluse (2020)).

more than once, can obscure reflections by interfering with them or can lead to confusion by

appearing as fictive reflections in the data. Figure 1.6 shows the effect of the deconvolution

operation on the wavelet and Figure 1.7 illustrates the removal of multiples.

After migration, several processes can be employed to correct the remaining noise that was not

accounted for during the pre-processing. Residual move-out and trim-statics are for instance

employed to rectify reflections in the prestack domain that are not properly flattened because

of errors in the processing velocities. Other important steps involve the use of well data to

better assess the shape and phase of the wavelet, to re-position reflections to a more accurate

depth and correct the amplitude versus angle behaviour.

Interpretation

Gaining knowledge from seismic data requires to skilfully marry geological and geophysical

concepts. Seismic waves only offer an indirect observation of the subsurface, and despite
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Chapter 1. Introduction

Figure 1.7 – Surface related multiple elimination (SRME, Verschuur et al. (1992)). On the
left image, surface multiples of the basin are visible around 3s and 4.5s (blue arrows). Once
removed (right), the primary signal is visible.(Provided by Delescluse (2020)).

the processing they remain contaminated with noise and have a limited resolution. Together

with the sometimes complex subsurface geology, this explain why interpretation is subject

to uncertainties and reaching a consensus between experts is not always possible. Addi-

tionally, interpretations are also influenced by the goal of the study, and different aspects

will be considered whether one performs natural resources exploration or are interested in

the understanding of the tectonic processes. In their book, Bacon et al. (2003) separate the

interpretation process into three main groups: structural, geological and quantitative.

Structural geologists are concerned with understanding how structures were formed. Their

goal is to be able to tell a chronological story of the different depositional and deformation

processes that occurred in order to explain the observed wavefield. They have to make sense of

the 3-dimensional structural complexity by looking at either 2D or 3D images. In particular, a

large portion of their time is allocated to the picking of events such as horizons, fault networks

or channels. An example of manual interpretation of a 2D line is shown in Figure 1.8.

In geological interpretation, one aims to associate the observed reflections and structures with

actual rock types. Using general knowledge about the area and the depositional system, one

can try to relate observations with the stratigraphy. In addition to seismic, well measurements,

when available, are also valuable. Those offer a direct observation of the media and allow to

tie some reflections to stratigraphic sequences and position them at their true depth. One can

also try to classify areas into groups of similar seismic characters. Those characters, or facies,
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Figure 1.8 – Interpretation of a seismic line from the China sea. (a) Highlights of noisy signals.
(b) Interpretation overlayed on the amplitudes. (From Liang et al. (2019)).

provide maps of the lithology and potential distribution of fluids.

Quantitative interpretation uses seismic amplitudes, well logs and knowledge about the

wavelet to infer physical properties such as the acoustic and elastic impedances. Using well

known equations derived from the physics of wave propagation, one tries to find the value

of the parameters that best explain the observed wavefield. Amplitude versus angle (AVA)

analyses the response of a reflection in the prestack domain by looking at how amplitudes

are affected by the incidence angle (variable θ in Figure 1.1). Different AVA responses may

be associated with different lithologies and fluid contents. Inversion is an other approach

that aims to convert information from the layer boundaries into information about the layers

themselves. In Figure 1.9 we show an example of waveform tomography employed to derive

an accurate velocity model.

1.2 Machine Learning and Deep Learning

Machine Learning (ML) and Deep Learning (DL) are fields dealing with the study and design

of algorithms that can perform specific tasks without having been programmed with explicit
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Figure 1.9 – Waveform tomography applied to long-streamer data from the Scotian Slope. (a)
Inverted P-wave velocity model. (b) Prestack depth-migrated data shown for comparison.
(From Delescluse et al. (2011)).

instructions. To build their computing model, these algorithms instead rely on the patterns

they discover in the data and progressively update their parameters to improve their perfor-

mance. In the following we expose some introductory elements about the topic. We also have

a more in depth look at deep learning in Chapter 2.

1.2.1 Concept and Ideas

Conventional Methods v s Machine Learning

Let us consider the problem that consists in associating elements from a space X to elements

in a space Y . Given pairs of samples (x, y) ∈X ×Y , the task is to find a function f that suc-

cessfully maps the elements, i.e. such that f (x) = y . Depending on what the spaces represent,

the correspondence between X and Y can take many forms. In computer vision, the input

domain could be natural images and the output domain a set of abstractions describing the

objects and symbols present in the image. f is then a map that should reflect the established

semantics ("In this picture, there are two cats and a dog."). In Geophysics, X could be a space
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Figure 1.10 – This cartoon was released before the new machine learning revolution (see
Section 2.2.1). Explicitly defining a set of rules to perform a task may prove surprisingly
difficult even for problems that are trivially handled by humans. GIS stands for Geographic
Information System and CS for Computer Sciences. (Source: xkcd.com/1425/)

of physical parameters and Y a space of observations. f would then be a forward operator

describing the physics of the problem.

A conventional procedure to build f is to define a set of hand-crafted rules and program them

to create an algorithm. In the case of a geophysical forward problem, those rules come from

physics and are programmed by a discretization of the governing equations. It is however

not always easy to find them, as it is for instance illustrated by Figure 1.10. Conversely, with

machine learning, f is a generic function built with a number of free-parameters and asked to

find its own rules by learning from the data. There exists many families of machine learning

algorithms. Among the most widely used are linear regression models, decision trees, support

vector machines or neural networks (see e.g. Bishop (2006)). We explain how the function is

learned, in the case of neural networks, in Chapter 2.

Machine learning is therefore appealing since it offers the promise to substitute itself to the

difficult problem of finding rules to solve a task. Moreover, hand crafted algorithms are usually

highly specific. For example, the instructions to recognize a bird are completely different from

the ones to recognize a tree and this work must be done for every new object that one which

to find. On the contrary, the same learning algorithm can be used for all objects.
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Machine Learning & Deep Learning

(a)

(b)

Figure 1.11 – Example of a ML workflow proposed by Dalal & Triggs (2005) to identify pedestri-
ans in video frames. A preprocessing pipeline successively transforms the input images with
predefined filters and trains a simple linear support vector machine (SVM) classifier to solve
this complex task. (a) Desciption of the workflow. (b) Examples of explicit feature engineering.

Most machine learning algorithms have a fairly compact design. They receive input data

and perform a small number of operations to yield the output data. This equips them with a

rather small representation power, i.e. that they are limited in their capacity to extract patterns

from the input data and combine them to make a decision. In practice, this means that

their application is restricted to simpler problems where the input data contains only limited

features and where these features are informative enough to help finding the correct answer

in a straight forward manner. To overcome those limitations, researchers have developed

strategies to simplify the job of the ML algorithm. In particular, complex pre-processing

pipelines are involved in order to transform the data to a more appropriate domain. Many

hand-crafted filters have been proposed to emphasis on certain characteristics of the data

which are believed to be important to solve the problem. An example of such pipeline is given

in Figure 1.11.

Deep learning (DL) is a subset of machine learning, and DL models are employed in a similar

fashion as the ML ones. The terminology deep refers to the particular design of the algorithms.

The relationship between the input and output data is no longer determined by a single or by

small number of operations, but by a larger sequence of them. The main representatives of DL

are neural networks (Rosenblatt, 1958). This sequential construction, or construction in layers,

where each layer performs simple operations and forward the results to the next, turned out
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to be a very powerful way to increase the representation power of learning algorithms (LeCun

et al., 2015, Schmidhuber, 2015). In particular, DL is not restricted to simpler problems and

no longer requires that custom processing pipelines be designed by experts, as illustrated

in Fig.1.12. However, a drawback of DL over ML is that it usually requires much more data

for learning and the preparation of this data may be very challenging. We go deeper into the

details of DL in Chapter 2.

(a)

(b)

Figure 1.12 – Deep learning does not require any specific manually engineered transformations
as opposed to machine learning (Figure 1.11). Both the data transformations and the decision
making are learned in a unified fashion by the algorithm. (a) Typical workflow in image
classification. (b) Examples of transformation learned by the network (taken from Olah et al.
(2017)).

Artificial Intelligence ?

The term learning is employed to describe the algorithms capacity to self-improve when given

feedback. However, the notion of improvement is based on a performance measure specifically

designed to evaluate a chosen task. This concept does not involve cognitive notions and the

relationship between the term learning applied to machines and learning in the human sense

is not obvious (Mitchell, 1997). Similarly, the notion of artificial intelligence (AI) can’t be easily

defined. Broadly speaking, AI is the field that studies intelligence demonstrated by machines.

Many branches of science, engineering and philosophy are involved in this study and deep

(machine) learning is only a part of it. Nevertheless, it is common to see the terminology AI
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substituted with deep learning in scientific writings or in the media 1.

Because the concepts of intelligence and consciousness are difficult to understand and define,

it is not clear what a real AI will look like. It is also not clear whether incremental improvements

made in the fields of neural networks and DL will one day lead to the emergence of such AI. In

this thesis we prefer to stay clear from this notion and limit the use of this terminology.

1.2.2 Some Applications

The formulation of a ML algorithm is very generic and models are mostly free of a priori

constraints which gives them the capacity to adapt to many problems. For this reason, ML

can be applied to practically every domains of science and engineering. As long as data are

available and that the task we aim to accomplish posses a relationship to these data, it is

possible to train a model. Some of the application fields, relevant for geosciences, that benefit

from machine learning are computer vision, speech recognition or time series forecasting.

Figure 1.13 – Machine learning based segmentation of different objects (buildings, roads,
water, vegetation and shadows) on hyper-spectral satellite images. From Tuia et al. (2011).

Computer vision is the field devoted to creating computer programs that are able to analyse

and reason about digital data. These data are traditionally natural images and videos, and

when working with recordings of human voices one rather speak of speech recognition. When

employing machine learning to tackle those tasks one also refer the process as pattern recog-

1e.g. https://www.nytimes.com/2019/10/24/well/live/machine-intelligence-AI-breast-cancer-
mammogram.html ; https://www.bbc.com/news/technology-49165713
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nition. Those fields share similar goals and largely overlap in their methods and by extension

they also apply to other forms of data such as seismic recordings or satellite observations. One

of the main application is classification (or segmentation), where the purpose is to associate

meta-information to the data. Such information may for example identify the nature and the

position of various objects contained in the data. We show an application example in Figure

1.13, where ML is employed to locate as set of objects, such as buildings and vegetation, in

satellite images.

Other interests lie for instance in learning the underlying physical process of a phenomenon

and use this knowledge to predict the future behaviour of a dynamic system or invert for

the physical parameters that best explain the observations. As examples, Krasnopolsky &

Fox-Rabinovitz (2006) proposed to use a neural network to forecast the weather and Röth

& Tarantola (1994) to invert for a velocity model from seismic data. Those tasks can be

performed using physical models instead, but ML and DL approaches are usually much

easier to programme and some authors claim that DL can outperform algorithms based

on explicit physical laws (see e.g. Araya-Polo et al. (2018)). Once trained, neural networks

based algorithms also tend to be computationally much more efficient than their classical

counterpart.

1.3 Deep Learning for Seismic Analysis

1.3.1 Motivations and Challenges

Motivations

In the previous sections we gave an overview of seismic data processing and interpretation.

Extracting useful information from the recorded wavefield is a long and difficult process that

requires the intervention of many experts. We list in the following some of factors explaining

the complexity of the task:

• Datasets are usually very large, with millions of traces arranged in a multi-dimensional

grid (typically 3D, 4D and even 5D). This is a challenge for writing algorithms that must

bear the computational and memory burden. It is also challenging for experts to be able
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to explore a dataset in its entirety.

• In order to be interpretable, raw data need to be transformed with a chain of complex

processing operations. Each operation is difficult to design and delicate to implement

and requires a careful parametrization by experts every time it is employed.

• Qualitative interpretation requires to understand the 3-dimensional structure of the

data and to annotate many features over the entire grid. Picking events such as faults

and horizons is a tedious and time consuming task. Geologists also often need to look

at a large number of attributes designed to help highlighting certain characteristics in

the data, which multiply the effective dimension of the problem.

• Quantitative interpretation is also challenging. Clues in the amplitudes are strongly

affected by noise and a lack of resolution. It is difficult to write robust algorithms, and

they need to be carefully calibrated using various data sources (seismic and wells).

Machine learning, and in particular deep learning, has recently become extremely popular.

Learning models have shown a very good potential on a variety of data analysis tasks and have

set the new state of the art in many cases (LeCun et al., 2015, Schmidhuber, 2015). Problems

that were until recently considered very difficult, such as robust object recognition in images

(see Figure 1.10), are now routinely tackled using neural networks (Krizhevsky et al., 2012).

Moreover, ML and DL algorithms are versatile. A single model can be used to solve many

different problems. They usually require much less efforts from experts to be designed and

programmed than traditional algorithms and offer the promise to perform sometimes far

better. Additionally, if repetitive and time consuming tasks can be automated, this will allow

experts to focus on the more interesting aspects of the interpretation. For these reasons it is

worth to look at applications in Geosciences and see if one can alleviate the difficulties listed

above. We give in the following some remarks and questions to be investigated:

• Machines are less penalized than humans when dealing with large and high dimensional

datasets. Does it mean they have a natural potential to outperform geoscientists in

processing and interpretative tasks?

• Can we improve the performances when substituting hand crafted processing algo-

rithms by DL? Once trained, can a learning model automatically adapt to new data

without the need for experts to re-parametrize it?
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• Can we improve existing automated methods to perform picking by replacing them

with DL? Can we use DL to pick features in difficult regions where only humans could

succeed so far?

• Can we by-pass physics and use DL to directly and efficiently extract qualitative and

quantitative information from the data?

Challenges

(a) (b)

Figure 1.14 – Cartoons making allusions to the dependence on human intervention of machine
learning and its empirical nature and lack of explainability. (source: (a) xkcd.com/2173, (b)
xkcd.com/1838).

While deep learning as been shown to outperform traditional methods in many applications,

fulfilling the conditions required to efficiently exploit its power can be challenging, especially

when working with geoscientific data. Figure 1.14 shows two popular cartoons that depict

some problematic aspects of ML and DL.

Preparation of the training data: A first issue lies in the strong dependency of the training

process on human intervention. For many applications, in particular in pattern recognition,

the observed data are not enough in themselves and one also need to enrich them with a

variety of meta-information describing their content. This enrichment, named labelling, is

the pillar of many applications. Moreover, for real world applications, it has been discovered

that the quantity of labelled data necessary for training was substantial. As an example, in
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the famous work of Krizhevsky et al. (2012) to automatically detect objects in images, the

training dataset consisted in more than one million images all annotated by hand (Deng et al.,

2009). The preparation of such a profusion of examples is a considerable chore. To alleviate

this problem, the machine learning community has adopted a largely open-source approach

where teams around the world collaborate and big companies voluntary contribute to prepare

datasets accessible to all. In seismic exploration however, most of the data and interpretations

are kept secret because of their strategic value and getting access to good training datasets

may be a major bottleneck for the development of machine learning applications.

Accounting for uncertainties and qualitative assessment: Another difficulty when working

with seismic data arises from the approach employed for training. The performance metric,

that quantitatively measures the quality of the answer of learning models, is the cornerstone

of the procedure. It is used by the machine to update its parameters and by the practitioners to

evaluate, improve and communicate about the quality of their algorithm. This measure is very

often given as a single score between 0 and 1, where approaching 1 is considered equivalent

with approaching exactitude. The assumption behind this paradigm is that one have access

to the true answer, i.e. that one have perfect knowledge of the output space and a way to

quantify it. In the work of Krizhevsky et al. (2012) for instance, this assumption is valid. They

indeed have access to a dataset well representative of the diversity of the real world, there is

little ambiguity in the labelling process and it is easy to quantify the answer of the machine

by simply comparing it with the answer given by humans. In seismic, this assumption is less

valid. Besides the difficulty to get access to a large and representative training dataset, there

are additional issues brought by the inherent uncertainties in the field. The noise and lack

of resolution of seismic data inevitably lead to uncertainties and non-uniqueness of their

interpretation. This in turn weakens the significance of any performance metric as errors and

human biases will be communicated to the machine. There are also cases where quantifying

the quality of a result is difficult. In processing for instance, it is not trivial to tell how much

better (or worse) is one version of the transformed data with respect to an other version of

the transformed data. This sometimes forces the need of a more qualitative assessment of

the results. This is problematic because this assessment is subjective and requires efforts

to be communicated, which does not make it well accepted in the data science community.
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Additionally, this judgement can’t be automated, which makes the training procedure more

difficult.

Weak theoretical foundations and lack of interpretability: Another concern often raised

when working with deep learning is the lack of theoretical guaranties and explanations. Train-

ing an algorithm is a largely empirical process conducted by trials and errors until satisfactory

results are obtained (see Figure 1.14b). It is not well understood why algorithms, and in partic-

ular neural networks, can perform so well and what is the process that leads them to give their

answer. This lack of interpretability may be a problem, especially in geosciences where an

interpretation or inversion is never certain and is only accepted by ones peers if one is able to

reasonably explain how we came to this result. There is also no definitive guaranties about the

general quality of a model. In practice, models are judged by providing a performance score

obtained during a blind test. But agreeing that a good score is equivalent to good generaliza-

tion (i.e. that the model will perform well with any new data), requires the assumption that

the blind test data is highly representative of the diversity of the world. Obtaining excellent

results during synthetic tests is not a proof that results will be trustworthy on real data.

1.3.2 Thesis Outline

In this thesis, we explore applications of machine learning, and especially deep learning, to

solve various problems in seismic processing and interpretation. In particular, we propose

methodologies that aim to overcome the challenges associated with the use of deep learning

and aim to develop workflows that have practical uses.

We first give an overview of deep learning in Chapter 2 and provide details about the internals

of neural networks and the training procedure.

In Chapter 3, we show how with transfer learning and knowledge distillation one can obtain

state-of-the art results in picking tasks without needing to label by hand an extensive amount

of data. In particular, we show how synthetic modelling allows us to use physics to create well

controlled training datasets and that our trained model successfully handles real data. We

also show how one can take advantage of pre-existing auto-picking algorithms to train neural
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networks and progressively outperform the results by a noticeable margin.

In Chapter 4, we demonstrate the use of interactively supervised learning to execute a challeng-

ing interpretation work. We show how human intervention can be integrated together with the

automatic process in order to progressively guide the algorithm toward an accepted answer.

We also explore the possibilities offered by unsupervised learning to see if an algorithm can

provide useful information without the need of human intervention.

In Chapter 5, we focus on processing applications. We show how a simple application of

unsupervised learning can be used to remove random noise in the data and how supervised

learning and transfer learning can be employed to attenuate more complex forms of noise.

We also share in Appendix A the programming techniques and the libraries that we used to

generate the results shown in this thesis.
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CHAPTER 2 DEEP LEARNING: THEORY AND PRACTICE

2.1 Résumé

Dans ce chapitre nous donnons une vue d’ensemble de l’apprentissage machine profond.

Nous commençons par exposer les origines de ce domaine et expliquons les raisons pour

lesquelles cette branche des statistiques à récemment connu un renouveau d’intérêt spectacu-

laire. Nous introduisons également la technologie principale derrière l’apprentissage profond,

les réseaux de neurones à propagation avant, ainsi qu’une de leurs incarnations les plus utiles,

les réseaux convolutifs.

Dans une seconde partie, nous rappelons les différents paradigmes qui permettent d’entraîner

ces algorithmes et revenons sur la méthode de rétro-propagation des gradients ainsi que sur

les techniques d’optimisation des paramètres des réseaux de neurones.

Enfin, nous donnons quelques éléments pratiques sur l’utilisation de ces méthodes. En

particulier, nous insistons sur l’importance de la préparation des données d’entraînement et

sur le rôle central joué par l’évaluation quantitative des performances. Nous mentionnons

également les facteurs à prendre en compte pour le choix de l’architecture du réseau et des

paramètres de réglage.

2.2 Deep Neural Networks

In this chapter, we give a basic overview of the field of deep learning. After briefly introducing

neural networks, we present the main concepts behind the learning process and we discuss
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practical aspects that intervene when resorting to this technology. For a more thorough

introduction to the subject, interested readers may refer to Goodfellow et al. (2016) and

Nielsen (2015).

2.2.1 History

While deep learning has recently known a considerable renewal of interest, its foundations

were laid during the second part of the 20th century. Early developments arose in attempts

of creating computational models for the human brain (McCulloch & Pitts, 1943, Rosenblatt,

1958). This inspiration explains why the field often borrows terminologies from neurosciences,

such as the naming artificial neural networks to designate computing systems inspired by

biological neural networks. Further progress were made by refining the architectures of the

networks (e.g. Fukushima (1980)) or improving the training procedures (Rumelhart et al.,

1985). A large portion of the field is now disconnected from biological influences, and modern

algorithms may or may not be working in a manner analogous to the brain (Goodfellow

et al., 2016). While research in the field was prolific during this period, deep learning did

not gain much popularity outside of the concerned community (LeCun et al., 2015). Among

the reasons for this lack of awareness were the computational limitations that restricted

applications mostly to small sand-box experiments, as well as the lack of publicly available

datasets that could be used to train the algorithms. However, a booming event appended in

2012 when Krizhevsky et al. (2012) won a prestigious image classification competition, by a

surprisingly large margin, using deep learning. While their algorithm was not much different

from earlier works (e.g. by LeCun et al. (1989)), they benefited from two key factors. First,

their implementation was among the first to be compatible with modern graphical processing

units (GPUs), leading to computation performances orders of magnitude better than the

previous state of the art. Secondly, and maybe most importantly, they trained their network

on one of the first very large scale public database. Created by Deng et al. (2009), the ImageNet

dataset originated after the authors correctly speculated that one of the biggest limitation of

deep neural networks did not lie in algorithmic details but rather in the lack of available data

examples they could learn from. The original dataset took approximately five years of tedious

work to gather and label by hand more than a million images.
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Presently, theoretical and applied research in deep learning is extremely active and neural

networks are being employed in nearly every existing scientific and engineering fields. Besides

the promises of much greater performances offered by neural networks, the exponential

growth of the field can also be explained by the very open nature of the community. Most

publications and improvements made to software and databases are openly accessible to

everyone. Libraries like Keras (Chollet et al., 2015) and cuDNN (Chetlur et al., 2014) enable to

build and train neural networks yielding near state of the art results on a benchmark by writing

only few lines of code. Another factor explaining the great number of daily new results in the

field lies in its highly empirical nature. It is still not well understood why neural networks

perform so well and how they could be better designed (Zeiler & Fergus, 2014), and most

improvements, or at least new ideas, come from a trial and error process over a virtually

infinite set of possible modifications. While these factors make the entry level barrier to use

deep learning low, they also bring some challenges. It is indeed difficult to keep up with the

evolution of the state of the art and to filter through the many research results that claim

superior performances while not always being generalizable to ones own problem (Lipton &

Steinhardt, 2018).

2.2.2 Feedforward Networks

The prominent model for building neural networks is the feedforward model. Let f ∗ be a

function that maps a variable x ∈X to a variable y ∈Y , where X and Y are respectively the

input and output domains, y = f ∗(x). A feedforward network defines a mapping y = f (x;θ) and

learns the values of the parameters θ such that f best approximates f ∗. The term feedforward

refers to the direction of the information flow. The function f is designed as a sequence of

operations, each taking an input and passing its output to the next operation. The sequence

builds a unidirectional link from x to y. Models that include feedback loops, such as the

recurrent neural networks (Rumelhart et al., 1985), are not covered here. A network is defined

as the sequence of operations expressed as the successive composition of several functions.

For a sequence of p operations described by the set of functions ( f (i ))i=1..p , the network is

described by the chain f (x) = f (p) ◦ f (p−1) ◦ ...◦ f (1)(x).

Individual functions are associated with layers and the length p of the chain defines the depth
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of the network. The function f (1) receiving x defines the input layer and the function f (p),

yielding y, defines the output layer. Intermediate functions are usually said to represent so-

called hidden layers. One of the earliest and most prominent transformation used in neural

networks is the fully connected layer (Rosenblatt, 1958). Let’s assume that the function f (l )

implements a fully connected transformation from layer l −1 to l . The function treats its input

data as a one dimensional vector, and performs an affine transform defined as a matrix-vector

multiplication followed by a vector addition. We introduce the notations in Figure 2.1. Black

arrows indicate the directions of the data flow between individual units, also called neurones,

represented by blue circles. Layers are composed of individual units and their number defines

the width of a layer. Layer l −1 is composed of nl−1 units identified by index i and layer l

contains nl units identified by index j . We note wl ∈ Rnl−1×nl the matrix whose individual

elements w l
j i

are the weights connecting the i th unit of layer l −1 to the j th unit of layer l .

bl ∈ Rnl is the bias vector containing the individual scalar terms bl
j

of the l th layer. Finally

we denote by al−1 ∈Rnl−1 the output data of layer l −1 (and input data to layer l ) and al ∈Rnl

the output data of layer l . Individual units are responsible for computing individual output

elements al
j
. The exact operation performed by the layer is given by Equation 2.1:

al
j =σ

(

nl−1
∑

k=1
w l

j k al−1
k +bl

j

)

. (2.1)

In addition to the affine transformation, an additional non-linear function σ() is applied.

This function is called the activation function and is used to break the linearity between

successive layers. Being able to accuratly approximate non-linear processes is important

when solving non-trivial problems. Because of the use of this function, the output vector al is

called the activation of layer l . The function σ() is parameter free and applied independently

to every element. Common choices are the sigmoid function ( 1
1+e−x ) or the rectifier (max(0, x))

(Hahnloser et al., 2000). Equation 2.1 can also be written in vectorized form:

al = f (l )(al−1) =σ
(

wl al−1 +bl
)

. (2.2)

The complete network is defined by chaining fully connected layers. The width n1 of the first

layer needs to be chosen equal to the size of the input elements x, and np should be equal

to the size of output elements y. Intermediate widths are hyper-parameters to be chosen by

the practitioner (see Section 2.4.3). Given that they are provided with enough capacity (i.e.
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(a) (b)

Figure 2.1 – Diagrams representing a fully connected operation transitioning from layer l −1 to
layer l . The left diagram introduces notations for the data while the right diagram introduces
notations for the parameters.

that they have enough parameters and non-linearities), neural networks satisfy the universal

approximation theorem (Cybenko, 1989), which means they can be used as proxies to model

many of the processes encountered in the real world.

2.2.3 Convolutional Networks

Convolutional neural networks (CNNs) (LeCun et al., 1989) are a class of feedforward networks

that use convolutions as a linear transformation instead of the dense matrix multiplications

employed in the fully connected layers presented above. CNNs are suited to process data that

are represented on a regular grid and that exhibit spatio-temporal characteristics. Examples

of such data can be an audio signal discretized at a constant sampling rate and expressed on a

1D grid, or a migrated seismic stack expressed over a 3D grid.

Convolutions are a common transformation in image and seismic processing. Given a time

series x(t ), many operations, such as a frequency filtering, can be expressed as a convolution

operation. Using an appropriate kernel w, the convolution will morph the input into a new

signal s(t). The operation is defined as the shifting dot product between the reversed input
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signal and the kernel:

s(t ) = (x∗w)(t ) =
∫

x(t −τ)w(τ)dτ , (2.3)

where τ is the integration variable over the support of x. When expressed on a grid, Equation

2.3 writes as:

s( j ) = (x∗w)( j ) =
∑

i

x( j − i )w(i ) , (2.4)

where i is the integration index defined over the support of w (w is generally chosen to

be smaller than x). Figure 2.2 illustrates how a convolution can be described as a sparse

interaction with the input data. For a kernel of size 3, only 3 weights are needed to compute

an output element s j , where n weights (n being the size of x) are required in a dense matrix

operation (see Figure 2.1). Therefore, the operation does not depend on the input size, which

is an advantageous property when working on large data. Moreover, the weights of the kernel

are shared among the input values since they will progressively slide across the entire vector.

This leads the operation to be invariant under translation of the input. If, for instance, a

convolution operation is used to detect a particular sound in an audio signal, the detection

will not be affected whether this sound occurs at the beginning, middle or end of the recording.

As a consequence, convolution based algorithms tend to require much less parameters than

(dense) matrix based algorithms.

Figure 2.2 – Diagram representing the connectivity in a 1D convolution operation for a kernel
of size 3.

Additionally, nodes of the input data grid usually do not store a single scalar value but rather a
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vector of values. For examples, a picture stores at every node of the 2D grid a 3-dimensional

vector holding values of the RGB color model. For seismic data, nodes of a 3D grid may store

amplitudes recorded at various offsets or incidence angles. This extra dimension is refereed

to as the channel dimension. For an input data containing p channels X = (x1, ...,xp ), we also

define a multi-channel kernel W(1) = (w(1)
1 , ...,w(1)

p ). A convolution is performed in parallel for

every channel and the results are summed together as described by Equation 2.5:

s1( j ) =
p
∑

k=1
(xk ∗w(1)

k
)( j ) . (2.5)

While a convolution kernel can detect one particular feature, more advance filters will need to

detect and combine multiple features to obtain good performances. For this reason, convolu-

tional layers are performing multiple convolutions in parallel, each with their own kernel. If a

layer contains q kernels (W(1), ...,W(q)), the output data S = (s1, ...,sq ) will then be composed

of q channels as well. The number of kernels q per layer is a hyper-parameter to be chosen

when defining the architecture (see Section 2.4.3). Defining also a scalar value b(k) associated

with every convolutional kernel, the operation performed by a convolutional layer on a single

input is summarized in Equation 2.6.

S =σ

(

{

X∗W(i ) +b(i )
}

i=1..q

)

. (2.6)

If we assume that boundary conditions of the convolution are treated with appropriately, the

output signal will have the same spatio-temporal size as the input. However, an essential

characteristics of CNNs is that they must be able to access the data at different scales (LeCun

et al., 1989). In Figure 2.2 we took the example of a 1D convolution with a kernel of size 3. A

layer composed of such kernels will never see more than 3 consecutive input samples at the

same time, restricting its ability to analyse only fine scale features. The maximum number

of input elements seen by a layer is called the receptive field. In order to access coarser scale

information, this receptive field needs to be expanded. While increasing the size of the kernels

is a possibility, it is not recommended in practice as it will lead to an increase in the number of

parameters, making the algorithm less memory and computationally efficient and potentially

introducing training instabilities (LeCun et al., 1989). Instead, pooling is commonly used to

achieve this goal. A pooling operation will decrease the size of the input data by introducing

some down-sampling rule. Max-pooling, for instance, will drop every grid node inside of a
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defined window, keeping only the node containing the highest value. If the window is of size

2, this will down-sample the signal by the same factor. If we now send the down-sampled

signal to a convolutional kernel of size 3, the effective receptive field, measured relative to the

original signal, will then be 3×2. Alternating between convolutional layers and pooling layers

will progressively increase the effective receptive field. Other mechanisms such as strided

convolutions (Long et al., 2015) or dilated (atrous) convolutions (Mallat, 1999) can also be

employed to change the effective receptive field of the network.

2.3 Training a Network

2.3.1 Different Forms of Learning

So far, we introduced how neural networks are defined but not how they are trained. At

the initial stage, the parameters of a network are chosen at random, making them useless

to solve a given task. However, these parameters are not fixed, and networks are given the

freedom to modify them in order to improve their performance. This is the reason why we

say that they are learning, as opposed to traditional algorithms which use fixed parameters

manually engineered by experts. Among the various existing learning paradigms, supervised

learning and unsupervised learning are most often employed to tackle problems in the fields

of computer vision and speech recognition (LeCun et al., 2015). Supervised learning requires

a training dataset D = X ×Y composed of pairs of inputs and desired outputs. Given this

set of points {x,y} ∈D, the neural network f will adjust its weights θ in order to minimize the

distance between the output ŷ = f (x;θ) and the desired solution y. While supervised learning

was empirically shown to be a very effective way to train networks, it relies heavily on the

availability and quality of the training data, which poses challenges in practice (see Section

2.4). On the other end, unsupervised learning does not require explicit knowledge of the

output space. While it offers the promise to solve issues tied to supervised learning, it is not

often used in real world applications as designing an unsupervised training procedure is a

difficult task and remains an active area of research (LeCun et al., 2015). In Section 4.3.3 we

will see an example use case for unsupervised learning.
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2.3.2 Error Back-Propagation

As explained in the previous section, networks rely on an error measure (or equivalently a

performance measure) and try to minimize (maximize) it by adapting their parameters. This

error measure is a scalar value computed by some loss function L (also called cost, error or

objective function). L depends on the output of the network ŷ ∈Y and is chosen to be defined

and differentiable in Y .

The gradient of L with respect to ŷ is the vector of the first order partial derivatives. Partial

derivatives inform us on how a small change in the input affects the output. The negative

gradient of L with respect to ŷ, noted ∇ŷL, indicates in the neighbourhood of ŷ the direction

in which L decreases the fastest (Bertsekas, 1997). This means that the gradient holds local

information about how ŷ should be changed in order to best decrease the loss function.

Changing ŷ can only be done by changing the parameters θ of the neural network, which

means that the quantity of interest is really ∇θL. The back-propagation algorithm (Rumelhart

et al., 1985) provides a way to propagate the output gradient information backward trough the

different layers of the network and to relate it to the gradients computed with respect to the

parameters.

The main ingredient of the procedure is the chain rule of calculus. It is a formula that expresses

the derivative of the composition of two functions. If f and g are real valued functions such

that y = g (x) and z = f (y) = f (g (x)), we have:

d z

d x
= d z

d y

d y

d x
. (2.7)

This rule is generalizable to the multi-dimensional case, and when applied recursively it can

propagate the derivatives through the nested composition of several functions. A complete

derivation of the back-propagation algorithm can be found for instance in Nielsen (2015).

In practice, numerical libraries for deep learning implement both the mathematical operations

needed to build layers as well as their analytical derivatives. In addition of building the

main forward computational graph, they also build a second graph with the derivatives for

computing the backward pass. This process is called symbolic differentiation (Bergstra et al.,

2010).
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2.3.3 Optimization

In the previous section, we explained that the gradients contained information useful to

decrease the loss function. The purpose of an optimizer is to define rules on how to use those

gradients in order to actually modify the values of the network’s parameters. Presently, most

optimizers are variants of the stochastic gradient descent (SGD) (Bottou, 1998). Gradient de-

scent is a first-order iterative optimization algorithm designed to converge to a local minimum

of a function. Given a training dataset D = {d(i )}i=1..n , containing n elements, the global loss

function L is defined as the arithmetic mean value of the losses L(i ) computed for every d(i ). As

a consequence, the gradient with respect to the parameters is given by the following Equation:

∇θL = 1

n

n
∑

i=1
∇θL(i ) . (2.8)

Given an initial state for the parameters (random initialization), the method updates them by

the following rule:

θ← θ−γ∇θL , (2.9)

where the learning rate γ is a parameter controlling the step size of the update. In practice,

because n can be very large, we do not compute the complete mean gradient at every iterations

but instead select a small random subset of examples, called a batch. Hence the stochastic

nature of Equation 2.10.

∇θL ≈ 1

m

m
∑

i=1
∇θL(i ),m ≪ n . (2.10)

Additionally, most optimizers keep a memory of the gradients of the few previous updates

and use them to rescale the learning rate and correct the update direction (e.g. Sutskever

et al. (2013), Duchi et al. (2011)). Those modifications were shown to greatly improve the

convergence in the presence of noise or when progressing in regions of the loss landscapes

with small or large curvature.

The method is said to converge to a local minimum, as opposed to global, because the

gradients only carry information about the close neighbourhood of the current position in

the optimization landscape. Once converged to a minimum, gradients will be nearly null

and parameters will not be updated any more. However, there is no guaranty that a smaller

minimum does not exist elsewhere in the landscape since the problems are usually non-
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convex. This is a well known limitation of gradient based learning, and understanding and

finding better optimization procedures for neural networks is an active field of research (LeCun

et al., 2015).

2.4 Practical Methodology

While neural networks are learning by adjusting their parameters on their own, human inter-

vention is nevertheless essential to the process. If from time to time algorithmic developments

happen to provide a noticeable improvement of the way networks perform (e.g. Srivastava

et al. (2014), Ioffe & Szegedy (2015), He et al. (2016)), it is often observed in practice that

the key to successfully apply deep learning resides in factors external to the algorithm itself

(Goodfellow et al., 2016). In particular, advanced uses of neural networks require access to an

ideal training database containing an exhaustive set of examples labelled with unambiguous

and clearly quantifiable meta-information.

It should be noted that research and development efforts put into deep learning and artificial

intelligence are considerable, and in only few years from now the fields might be radically

different from what they presently are.

2.4.1 Preparing Data

Data are the backbone of artificial intelligence based solutions. For most practical applications,

it is not enough to have solely access to the measurements themselves but one also need a

variety of meta-informations describing the content as well as the context. As an example, the

ImageNet database (Deng et al., 2009), which is one of the reference dataset to help solving

object detection problems, currently contains more than 14 million images all manually

annotated, sometimes at a pixel level. Preparing such data is usually considered the biggest

obstacle and the most important step of deep learning. In geosciences, this stage is especially

challenging since data interpretation usually requires expertise and is subject to fundamental

limits that make the description of the data uncertain and partially subjective.
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2.4.2 Measures of Performance

The viability of a neural network is often judged and communicated using a simple quantitative

performance measure. It is common practice to split the training dataset into three parts, the

training, validation and evaluation data. The training data is explicitly used as an input to

the network to compute and minimize the loss function. The validation data is not directly

seen by the network but implicitly influence the training procedure as the user will monitor

the performance metric computed on them and optimize for the best architecture and hyper-

parameters (see next section). Once the network is deemed trained, i.e. once training loss is

low and the evaluation metric yields good results, the final performance is measured on the

blind-test data. The performance metric is not necessary the same as the loss function. For

instance, in most image classification tasks, the network outputs a distribution representing

the probability of the input to belong to each class and the loss function employed is the

cross-entropy with respect to the true probability (LeCun et al., 1989, Krizhevsky et al., 2012).

On the other end, the performance metric can be the confusion matrix expressing the rate of

true positives and detailing the possible types of mistakes between classes.

Data scientists describe the difference between the train performance and the blind-test

performance as the generalization ability of a network, i.e. its capacity to perform well

on new data it has never encountered before. This definition is convenient as it offers a

clear quantitative measure that can be communicated and compared against. However, this

definition can also be sometimes a source of surprise. When an domain expert tries a deep

learning solution on his/hers own data, he/she might observe different performances than

the one advertised. It is indeed important to remember that performance is measured with

respect to the training dataset and that this choice of dataset can be completely arbitrary. In

seismic interpretation for instance, many parameters such as the quality of the acquisition

and processing or the geology of the sub-surface will affect the data. Deep learning offers only

mild theoretical guaranties as to how a trained network will behave when seeing new data. If

performances were judged excellent on synthetic tests, or on a single real dataset, it is not in

itself a proof that the method will work on other field recorded data.

Another difficulty encountered when working with geoscientific data is that there is no abso-
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lute ground truth. Performance and loss metrics are computed with respect to uncertain labels,

which affect their significance. Reaching the global minimum of a loss function computed

on such labels means that the network would also have learned to reproduce the noise and

possible mistakes they contain.

2.4.3 Architecture, Hyper-Parameters and Regularization

It is important that the user has some degree of understanding of the data and problem at

end. This knowledge will determine the choice of the general category of model. For data

like seismic amplitudes with a spatio-temporal structure, CNNs are a good choice. The exact

architecture, such as the number and type of layers or the number of units per layer needs

to be defined. It is common practice to start from a baseline architecture by selecting one

of the top performing model in the current literature. While it is commonly accepted that

the deeper the networks are the better they perform, one are often limited in practice by

both the size and quality of the training data as well as the memory constrains. A very deep

architecture developed for well labelled 2D images might not be usable as is for 3D seismic

data. If the number of parameters is too small, the network will not have enough capacity

to express the full content of the data and will yield poor results. This is called under-fitting.

On the other end, a network with a very large capacity might be prone to over-fitting. This

happens when one observe a large drop of performance between the train and test data. In

this case, rather than learning to extract meaningful features, a network is simply memorizing

the training examples. To prevent this from happening, known strategies involve gathering

more and better training data and employing some forms of regularization. Regularization

enforces some additional constrains to the learning process, and if chosen adequately it helps

to converge to a better solution. Convolutional layers are themselves a form a regularized

layers since they are forcing the network to learn multi-scale, spatio-temporal relationships

in the data. Other hyper-parameters, such as the choice of optimizer or the schedule of

the learning rate, also need to be selected. As previously said, it is common to start from a

known baseline model and to make progressive changes in order to better adapt to our own

problem. Automatic hyper-parameter tuning methods act as a black-box optimizer searching

for the best combination of parameters in a constraint space (Mockus et al., 1978). However,
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besides being computationally expensive, those methods rely heavily on the use of a perfect

quantifiable performance metric, which is again not trivially obtainable with geoscientific

data. The alternative is to tune hyper-parameters by hand. The user will need to build an

understanding of the effect of the different parameters on the training loss and validation

metric. This process can be tedious, and good algorithms should be relatively robust to the

exact state of the hyper-parameters.
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CHAPTER 3 TRANSFER LEARNING AND KNOWLEDGE

DISTILLATION FOR SEISMIC INTERPRETA-

TION

3.1 Résumé

Dans ce chapitre, nous considérons des étapes de l’interprétation qui nécessitent de parcourir

et d’annoter de grandes quantités de données en 3D, et parfois même avant sommation.

Bien qu’il existe aujourd’hui des algorithmes qui permettent d’effectuer ces tâches de façon

automatique, l’intervention des experts est néanmoins nécessaire dans les régions géologiques

les plus complexes. Nous nous intéressons donc ici à la possibilité d’utiliser l’apprentissage

profond pour permettre à la machine de fournir de bons résultats y compris dans les cas les

plus difficiles.

L’obstacle majeur à l’utilisation de l’apprentissage profond pour ces applications réside dans

la nécessité de préparer les exemples nécessaires pour entraîner les modèles. Dans l’idéal,

il faudrait avoir accès à une grande quantité de données, représentatives de la diversité de

la géologie mondiale, et minutieusement traitées et interprétées par des géoscientifiques.

Cependant, en pratique, il est extrêmement difficile d’accéder à un tel ensemble de données

et nous proposons donc des façons alternatives d’approcher le problème.

En particulier, nous étudions le recours à l’apprentissage par transfert de la compréhension,

ainsi qu’à la distillation des connaissances, pour entraîner des algorithmes tout en se passant

de la nécessité d’effectuer la majeure partie du travail à la main. Dans une première application

sur la détection des objets diffractants, nous utilisons la modalisation synthétique à partir de

modèles physiques pour créer des données d’entraînement et nous montrons qu’un réseau

d’apprentissage est ensuite capable d’utiliser ses connaissances pour pointer des données
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réelles. Dans une seconde application, nous utilisons un algorithme classique de pointage

des failles sismiques afin de fournir une version initiale des exemples d’entraînement. Bien

que contenant des erreurs, nous montrons que notre réseau d’apprentissage est capable

d’extraire les informations utiles au milieu du bruit et de progressivement améliorer les

résultats jusqu’à clairement surpasser l’algorithme traditionnel. Enfin, dans une dernière

application, nous explorons les possibilités offertes par l’apprentissage adverse pour aider à

réduire les différences statistiques entre données synthétiques et données réelles.

3.2 Overview

In this chapter we consider seismic interpretation tasks that routinely require substantial

efforts from engineers to be completed. Those tasks are time consuming because they involve

to explore and annotate large 3D, sometimes prestack, datasets. While the community has

developed advanced methods to partially automate those process, traditional data processing

algorithms are not able to compete with human solutions in area of complex geology or

low signal-to-noise ratio (Yilmaz, 2001, Bacon et al., 2003). Conversely, deep learning offers

the promise to bridge this automation gap by reaching expert like performances even in

the most complex cases. However, currently, the only known viable way to exploit fully the

representation power of a deep network is to train it in a supervised manner with a diversified

and well labelled dataset (LeCun et al., 2015). Unfortunately, preparing large scale training

labels for seismic and other geoscientific data requires huge efforts. We therefore hereby

investigate alternative approaches that enables to get results on real data without the need

of an extensive manual preparation work. Particularly, we explore the possibilities offered

by transfer learning and knowledge distillation. In the first approach, we employ synthetic

modelling to create training data and train networks that are then evaluated on field recordings.

In the second approach, we use as initial training labels the solution provided by a traditional

automatic picker and aim at improving them.

One of the hurdle of deep learning lies in the difficulty to learn a general solution to a problem

when the distribution of the training data is not representative enough of the diversity of

the real world or when the available labels are scarce and noisy. Transfer learning aims at

successfully reusing the knowledge gained by solving one problem to a different but related
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(a) (b)

Figure 3.1 – Visualization of the inputs that preferably activate a convolutional kernel from
(a) the first layer (b) the twelfth layer of GoogleNet (Szegedy et al., 2015) trained on ImageNet
(Deng et al., 2009). Details for computing such images where first described by Erhan et al.
(2009) and a modified version by Olah et al. (2017) was used in this example. The main idea is
to set up an optimization problem that iteratively transforms an input image (starting from
random noise) in order to maximize the activation of a chosen unit.

problem (Pratt, 1993, Bengio, 2012). It is for instance a common practice to pre-train an

algorithm on a publicly available dataset and to perform fine-training on a different but

semantically similar dataset. This approach relies on the fact that the features extracted by the

pre-trained network are fairly universal and that they will also partially express the content

of the new data (Yosinski et al., 2014). The benefit is that the fine-training step will require

less training examples, reducing the need for manual preparation. Depending on the number

of available labels in the new dataset as well as its similarity to the original, one may decide

to fine tune either the entire network or only the last classification layer. A similar domain,

called one-shot learning, aims at using prior knowledge to learn about new object categories

from only one (or few) examples (Miller et al., 2000, Fei-Fei et al., 2006). Those methods make

use of the well studied fact that complex signals can often be well described by a composition

of a small number of simpler elements, as for instance in the field of wavelet transforms

(Donoho, 1995, Mallat, 1999). A limitation of those approaches is that only the most basic

feature detectors are well transferable across different data. In a CNN for instance, those basic

detectors are learnt in the shallow layers. The deepest layers learn more complex and abstract

representations tied to the training samples and are therefore less adequate to well represent

different data (see Figure 3.1). Since the true potential of deep learning is reached when the

deepest layers are well trained, it might be that transfer learning methods cannot bring state

of the art performance on really complex problems, and that an extensive labelling of the new

data would still be required. More recently, adversarial regularization has been proposed to
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Figure 3.2 – Illustration of the distillation process. Initial labels are obtained by a given
method and used to train a first machine learning (ML) algorithm. The trained model yields a
prediction on the data that can be treated as new pseudo-labels. Those can serve to train a
new ML algorithm, or fine-train the model previously used.

solve the domain adaptation problem in semantic segmentation problems (Liu & Tuzel, 2016,

Hoffman et al., 2016, Tzeng et al., 2017).

Another strategy to train algorithms on new data is to use prior knowledge under the form of

approximate labels. Such labels, sometimes called pseudo-labels or proxy-labels, are different

in the sense that they where not obtained from the standard approach, i.e that they were

not prepared manually by a human expert. They may for instance come from a network pre-

trained on another dataset, or be computed by a specialized (non-learning) algorithm. Those

pseudo-labels are treated as the ground truth and used to train a new network. If the pseudo-

labels are good enough to start with, the network might be able to exploit the meaningful

information they provide and discard the noisy content, improving the final results. This

process is sometimes refereed as knowledge distillation (Lee, 2013, Hinton et al., 2015). Figure

3.2 illustrates several iterations through the distillation process. Mixing together pseudo-labels

and manual labels is a common approach in semi-supervised learning (Chapelle et al., 2009).

3.3 Applications

In the following, we present three applications that make use of the concepts introduced in

this chapter. In Section 3.3.1, we resort to numerical modelling to create synthetic training

data an train a CNN to find small objects in the shallow sub-surface by identifying diffracted

waves. In Section 3.3.2, we use the output of a traditional fault auto-picker to train a network

, and we show that the method is able to improve on the results. Finally, in Section 3.3.3,
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we explore how adversarial training may be employed to improve the transfer learning from

synthetic to real data.

3.3.1 Picking Diffractions in Prestack Data

In the following we insert our publication about automatic diffraction picking (Tschannen

et al., 2019). We use physical modelling to create a synthetic training dataset without the need

of manual labelling and show that the method yields useful results on real data. A similar

approach has been employed by Pham et al. (2019) and Wu et al. (2019) to pick channels and

faults.
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ABSTRACT

Diffracted waves carry high-resolution information that can help interpreting fine

structural details at a scale smaller than the seismic wavelength. However, the diffrac-

tion energy tends to be weak compared to the reflected energy and is also sensitive

to inaccuracies in the migration velocity, making the identification of its signal chal-

lenging. In this work, we present an innovative workflow to automatically detect

scattering points in the migration dip angle domain using deep learning. By taking

advantage of the different kinematic properties of reflected and diffracted waves, we

separate the two types of signals by migrating the seismic amplitudes to dip angle

gathers using prestack depth imaging in the local angle domain. Convolutional neural

networks are a class of deep learning algorithms able to learn to extract spatial infor-

mation about the data in order to identify its characteristics. They have now become

the method of choice to solve supervised pattern recognition problems. In this work,

we use wave equation modelling to create a large and diversified dataset of synthetic

examples to train a network into identifying the probable position of scattering ob-

jects in the subsurface. After giving an intuitive introduction to diffraction imaging

and deep learning and discussing some of the pitfalls of the methods, we evaluate

the trained network on field data and demonstrate the validity and good general-

ization performance of our algorithm. We successfully identify with a high-accuracy

and high-resolution diffraction points, including those which have a low signal to

noise and reflection ratio. We also show how our method allows us to quickly scan

through high dimensional data consisting of several versions of a dataset migrated

with a range of velocities to overcome the strong effect of incorrect migration velocity

on the diffraction signal.

Key words: Seismics, Imaging, Modelling, Signal processing.

I N T RODUCTI O N

Most of the information obtained in exploration seismol-

ogy comes from specular energy associated with reflections

of acoustic and elastic waves at boundaries between geolog-

ical layers. The resolution of the images is limited by the

∗E-mail: valentin.tschannen@itwm.fraunhofer.de

bandwidth of the seismic wavelet and, in particular, objects

whose size is small compared to the dominant wavelength

cannot be well resolved. Many small-scale structural details

such as reflector discontinuities at fault planes, karst, pinch-

outs, channel edges, boulders or sand injectites may fall below

the resolution power of reflection images and undermine the

quality of the interpretation. Yet these objects will provoke

the scattering of waves in all directions, a phenomenon called

830 C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.
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diffraction. Due to their truncated Fresnel zone, diffracted

waves contain a higher resolution signal and are valuable for

an enhanced interpretation and inversion (Khaidukov, Landa

and Moser 2004; Moser and Howard 2008; Landa, Fomel

and Reshef 2008; Huang, Zhang and Schuster 2015). How-

ever, diffracted signal is not often available to the interpreter

because its amplitude can be far weaker than reflected signal

and is often lost during processing (Khaidukov et al. 2004).

It is possible to separate reflected signal from specular sig-

nal by taking advantage of the different kinematic properties

of the waves interactions (Landa, Shtivelman and Gelchinsky

1987; Kanasewich and Phadke 1988). When encountering a

locally planar surface, the energy will reflect in a focused direc-

tion depending on the angle of incidence. On the other hand,

a diffractor will scatter the energy in all directions. In par-

ticular, this distinction will strongly affect the appearance of

both signals in the migration-dip angle domain, as this angle

is associated with the illumination direction. Using ray-based

prestack depth migration in the local angle domain, we can

form common image gathers (CIGs) in dependence on the mi-

gration dip angle. When computing the diffraction response at

a migration point located exactly on a scattering object, given

that the correct velocity model is used, the migration operator

will align with the diffraction hyperbola and give rise to a

flat response in the dip angle CIG. In contrast, when migrat-

ing a point located on a reflector, the operator will respond

only at a dip corresponding to the structural inclination angle

(Audebert et al. 2005; Landa et al. 2008; Reshef and Landa

2009; Klokov, Baina and Landa 2010; Klokov and Fomel

2012).

Several authors have suggested algorithms to detect

scattering points from seismic data. Klokov and Fomel (2012)

use a hybrid Radon transform to detect diffracted waves from

time domain dip angle CIGs. Arora and Tsvankin (2017)

show that discrimination in the dip angle domain is also

possible in a transversely isotropic media. Shustak and Landa

(2017) and Dafni and Symes (2017) form dip angle CIGs

using reverse time migration, making their method applicable

in complex geological areas exhibiting strong local variations

in the velocities.

In order to detect the diffraction points, those approaches

usually rely on filtering out the dips around the estimated spec-

ular dip before stacking followed by a visual inspection of the

seismic image. This may be a time consuming and also chal-

lenging task due to the weak energy of the diffraction signal.

For the same reasons, it is challenging to design a detection

filter that will be reliable especially in areas of low signal to

noise ratio. However, it has now become common practice

to resort to supervised machine learning, a branch of artifi-

cial intelligence, to solve pattern recognition problems. Rather

than requiring a hand crafting of the detection function, this

class of algorithms is based on the use of a number of free

parameters that will learn from examples. In particular, most

of the attention is currently received by the field of deep learn-

ing carried by the so-called deep neural networks algorithms

that have become the state of the art in solving a variety of

recognition tasks (LeCun, Bengio and Hinton 2015). Several

authors already applied deep learning to automatically detect

structural features in seismic data. Waldeland and Solberg

(2017) and Guitton (2018) employed a convolutional neural

network (CNN) to, respectively, detect salt bodies and faults

from a stack. Pham, Fomel and Dunlap (2018) used a pixel-

wise CNN to locate channels networks. Regarding diffraction,

de Figueiredo et al. (2013) suggested to use a machine learn-

ing based k-nearest neighbours classifier to detect diffracted

signal from common offset gathers and applied their method

on ground penetration radar data. Serfaty et al. (2017) sug-

gested to distinguish diffracted events from other signals by

working with compressed gathers in the local angle domain.

After manually labelling a small number of seismic patches

according to the dominant object they contain (reflector,

fault, point diffractor, migration noise, random noise), they

used a network pre-trained on natural images and retrained

the last classification layer. The authors show that their

method was successful in identifying diffracted waves in their

dataset.

While deep neural networks are the best classifiers cur-

rently known, resorting to them comes with several difficul-

ties. Probably the most challenging part is to create a training

dataset. Not only do we need the seismic amplitudes but also

the labels indicating the correct interpretation of those data.

In practical applications on natural images, state-of-the-art

results usually require to train the networks on millions of

examples (LeCun et al. 2015). Creating such a dataset, es-

pecially in geoscience where expertise is required for the in-

terpretation and where uncertainty and subjectivity will lead

to non-unique answers, present a serious challenge. Addition-

ally, the networks are made of many, sometimes millions, of

parameters and a number of key hyper-parameters with com-

plex non-linear dependencies. Finding the correct settings is

both computationally and manually time consuming. To judge

the quality of the obtained solution, authors usually evaluate

performances with a blind test on a subset of the dataset that

was not used during training. However, in the case where this

data subset is statistically similar to the training data, a good

test accuracy will not necessarily mean good generalization
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performances (LeCun et al. 2015). In that case, the network

might fail to produce an acceptable answer on a new dataset

with a different geology or different processing.

In this work, we present an automated workflow that

does not require manual picking of the diffracted waves. We

use modelling to design a large synthetic dataset with low in-

terpretation uncertainties and train a CNN from full dip angle

gathers to perform high-resolution detection of scattering ob-

jects. In particular, we are aiming to identify diffracted signal

emitted by point scatterers, that is objects which have a com-

pact shape in all three spatial dimensions. Diffraction may also

occur at edges, yielding a different pattern (Trorey 1970), that

we do not treated in this work. After evaluation on synthetic

data, we show that our network is able to identify diffracted

events on a field-recorded dataset, yielding encouraging results

as for its generalization capabilities. The first part of our paper

gives the reader elements for an intuitive understanding of the

diffraction imaging process and the training of a deep neural

network. We then give practical details about the synthetic

data creation and the training process. Finally we perform a

case study on real data and discuss the current limitations of

the method as well as further research opportunities.

M ETH ODS

Diffraction imaging

Prestack depth migration aims at mapping seismic events from

the acquisition domain to their true position in the subsur-

face. This method requires the knowledge of an accurate spa-

tially varying velocity field as well as a technique to simu-

late the propagation and back-propagation of waves. Under

the assumption that the dominant wavelength of the seismic

wavelet is much smaller than the scale of heterogeneities of

the velocity model, we can replace the direct integration of

the wave equation by a lighter ray tracing algorithm to com-

pute the propagation. The algorithm we used in our study

is working in the local angle domain, treating every node of

the imaging grid as a point scatterer (Audebert et al. 2005;

Moser and Howard 2008; Merten and Ettrich 2015). In the

following, we explain the procedure in more detail without

accounting for implementation performance specificities. In

a two-dimensional (2D) acquisition, we can sort the data as

common source gathers where seismic events are located by

the source and receiver positions along the sailing line x and

the two-way travel time t of the waves. We define our image

space with a discrete grid parameterized by x and the depth z

and build the migrated image iteratively at every node p(x, z)

Figure 1 Two-dimensional representation of the local angle domain

imaging geometry. A ray pair obtained by shooting from the migration

point p(x, z) and reaching a source/receiver pair is drawn. Vectors νd

and νu are the tangents to the slowness vectors of the down- and

up-going rays at p. The dip vector ν is defined as the sum of those

vectors, and migration dip ν is the angle between ν and the vertical.

The opening angle θ is the angle between νd and νu. n is the normal

to the locally planar geological reflector.

of the subsurface model. We treat p as a scattering point and

start by shooting a ray fan through the velocity model to form

ray pairs that, respectively, reach existing source–receiver cou-

ples. Figure 1 shows the parameterization of the ray pairs in

terms of the opening angle θ and the migration dip angle ν.

Then, we compute the travel times along every ray pairs con-

tributing to p (as well as an amplitude correction factor that

accounts in particular for the geometrical spreading of the

energy along the expanding wavefront) and fetch the corre-

sponding samples in the shot gather. At this stage, for a given

velocity field, the migrated data will be depending on four pa-

rameters: its position in space given by x and z and the local

imaging angles ν and θ .

As the dip angle is directly associated with the illumi-

nation direction, reflected and diffracted events will exhibit

distinct responses in the dip angle domain. By summing the

data along opening angles, dip angle common image gathers

(CIGs) are formed by constructive interferences (Landa et al.

2008; Klokov et al. 2010). Figure 2 illustrates the dip angle

response of both a horizontal reflector and a scattering point.

For the horizontal reflector, the zero-offset recorded wavefield

will show a seismic event at a constant time for every position

on the sailing line. Points p0, p1 and p2 represent three mi-

gration nodes on a vertical line located at x = xk. From their

corresponding migration operators, we observe that nodes

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers., Geophysical Prospecting, 68, 830–844



Automatic detection of diffractors 833

Figure 2 Two-dimensional illustration of the dip angle response, drawn for the zero-offset case, of (a) a horizontal planar reflector at depth

z = zr separating two constant velocity half-spaces (b) a point scatterer in a constant velocity space located in (xs , zs ). The central row represents

the subsurface model. p0, p1 and p2 are migration points. Ray pairs are plotted for p0 as well as the corresponding minimum and maximum

dip-vectors (see Fig. 1). The upper row shows the recorded wave field. Colour-coded diffraction curves of the three migration points are

displayed on the seismograms. The bottom panel represents the migrated wavefield sorted as dip angle gathers. Coloured wiggles correspond to

the amplitudes picked by the migration operators.

beneath p0 will not contribute to the imaging of the reflec-

tor. The diffraction operator of the node p0, which is located

exactly on the reflector, will encounter the signal only at its

apex corresponding to the zero dip angle. Migration opera-

tors of the nodes above p0 will cross the wiggles at positions

progressively further away from their apex and contribute to

the imaging at progressively larger absolute dips, leading to

a parabola-like shape of the signal in the gather. One should

note that in the case of a tilted planar reflector, the apex of

this pseudo-parabola will be at the dip equal to the plane’s

normal direction (vector n in Fig. 1). For the point scatterer of

Figure 2, things are different as the waves will no longer reflect

in a focused direction but will be scattered in all directions.

The migration operator computed at p0, positioned on the

diffraction point, will match exactly the diffraction hyperbola

of the recorded wavefield. Seismic events will be fetched at ev-

ery dip angle, creating a flat horizontal response in the gather.

When migrating a vertical line on the left of the scattering

object, migration surfaces will cross the diffraction hyperbola

at dips progressively increasing as the depth of the nodes de-

creases (and inversely for a line on the right-hand side of the

diffractor), creating a flat tilted signature in the gathers. The

slope of the response will increase as the lateral position of the

line gets away from the diffractor. Similar observations hold
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for non-zero offset data. Moreover, we see with this example

that even for a short offset range large range dip gathers can

be created.

The focusing quality of the method relies on having been

able to derive an accurate velocity model. Figure 3 illustrates

the sensitivity of the diffracted signal to errors in the velocity

field. It is possible to use this strong sensitivity to perform

high-resolution velocity analysis (Sava, Biondi and tgen 2005;

Fomel, Landa and Taner 2007).

The relatively weak amplitudes of the diffracted waves

combined with their strong sensitivity to accurate velocity

models and pre-processing steps make their interpretation del-

icate. The interpreter will need to look through a large amount

of prestack data, and potentially through several migrated

versions of the same dataset obtained with different velocity

models. Additionally, certain geological areas might be very

rich in scattering objects, making their identification a time

consuming and tedious task. For these reasons, it is prefer-

able to employ an automated method, robust to low signal

to noise ratio, and yielding a high-resolution detection. In the

next section, we introduce the use of deep learning to solve

such problem.

Semantic segmentation

Semantic segmentation deals with the problem of classifying

every singular pixel of the data among a set of classes. This

approach is a high-resolution extension of data classification,

which aims at associating a class label to a group of pixels. Su-

pervised deep learning has now become the method of choice

to tackle those problems as it has proven to bring best perfor-

mances on a broad range of applications (LeCun et al. 2015).

The main technology behind deep learning is the so-called

neural networks. These networks are built as a sequence of

layers forming a non-linear, piece-wise differentiable function

connecting the input to the output. Every layer is responsi-

ble for performing a simple affine transformation on its input

and applies an element-wise non-linearity. The power of those

networks resides in the way the parameters of the transforms

are set. Rather than being manually engineered, the param-

eters are initially chosen at random and given the freedom

to automatically adapt to the data by progressively learning

from examples. Stacking several layers is a key to the suc-

cess of those algorithms since this architectural design allows

them to learn a hierarchical representation of the data. The

deeper layers will benefit from the work of the previous lay-

ers and will be sensitive to progressively more abstract and

complex features expressed as a composition of the simpler

features learnt by the shallower layers (LeCun et al. 2015).

Such networks can in theory approximate any function (Cy-

benko 1989). When the data exhibits a spatial structure and

the surrounding information is relevant to understand the lo-

cal context, a suited choice for the linear transformations is

convolutions, and the family of algorithms based on them is

called convolutional neural networks (CNNs) (LeCun et al.

1998).

In this work, we want to identify and localize diffraction

points in the subsurface using seismic data. Learning to iden-

tify those elements consists in optimizing a neural network

in order to approximate the distribution D over the domain

S = H × P, where H is the space of seismic data and P is the

space of probabilities indicating the likelihood for the pres-

ence of diffraction points. Our training dataset consists of a

collection of patches d1, d2, . . . , dN ∈ S drawn from D. In the

2D case, for a given d ∈ S, d = {hα, p} is a tuple formed of

a prestack seismic amplitudes patch hα(x, z, ν) and its corre-

sponding mask of probable locations of the scattering points

p(x, z) (see Fig. 4 for an example). In deep learning, we refer

to the different prestack sections as channels and call a single

channel section a feature map. As an example, when work-

ing on natural images, the input data contains three channels,

forming a coloured image as a composition of the red, green

and blue feature maps. In our binary problem, either there is

a diffraction point in this pixel or there is not, the mask p

is defining at every spatial sample the probability mass func-

tion (p, 1 − p), where 0 ≤ p ≤ 1 is the probability of having

a scattering point.

Figure 4 is a schematic representation of the CNN ar-

chitecture we use in this work. The network accepts as input

prestack seismic data that it will progressively transform and

reshape in order to output a patch matching the shape of the

mask. It is composed of four types of layers in charge of per-

forming convolutions, down-sampling, up-sampling and soft-

max scaling. The trainable parameters are the kernels (and

biases) of the convolutional layers. We illustrate in Figure 5

how the first convolutional layer is working. A single input

data sample hα = (hα
1, . . . , hα

nα
) is represented as the concate-

nation in the channel dimension of nα feature maps. In our

work, nα is the number of migration dips ν. The output of this

layer hβ = (h
β

1 , . . . , h
β
nβ

) is represented as the concatenation in

the channel dimension of nβ feature maps. nβ is an architec-

ture hyper-parameter and corresponds to the chosen number

of convolution kernels of the first layer. Every single feature

map of hβ is obtained by convolving the input data with a

different kernel. Equation (1) expresses the exact operation

performed:
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Figure 3 Sensitivity of the diffraction signal to errors in the migration velocity. Every image is a dip angle gather extracted at the same x coordinate

located above a synthetic diffraction point. 100% corresponds to the true migration velocity, while remaining percentages correspond to relative

perturbations from 2% to 8%.

h
β

i = γ

( nα
∑

k=1

hα
k ∗ wi

k + bi

)

, i = 1,.., nβ . (1)

In the 2D case, the ith weight wi = (wi
1, . . . , w

i
nα

) is a prestack

2D kernel containing the same number of channels as the in-

put layer. A 2D convolution ∗ is performed independently

for every channel, and the results are then summed across

channels. The ith bias term bi is added after summation to en-

able the linear transformation performed by the convolution

to be translated from the origin. An element-wise non-linear

operator γ (.), called the activation function, is applied to

break the linearity between the layers in order to increase

the approximation capabilities of the network. By repeating

equation (1) with nβ weights (wi )i=1,..,nβ
and concatenating

the resulting feature maps, we create the new input data for

the next layer.

In addition to convolutions, the network also performs

spatial down-sampling and up-sampling of the feature maps.

The down-sampling is achieved by sliding a small spa-

tial window that selects the largest value and drops the

Figure 4 Architecture of our convolutional neural network (designed after Ronneberger, Fischer and Brox 2015). The data flow direction for

the forward pass is represented by the black arrows. Input data hα(x, z, ν) is a 2D prestack data patch and input mask p(x, z) a 2D patch

matching the spatial dimension of the data. Boxes represent multi-channel feature maps colour coded by layer type. Output data q(x, z) has the

same dimension as the input mask.
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Figure 5 Principle of the first convolutional layer (in the 2D case, without bias adding and activation). The input data is a prestack 2D seismic

patch hα(x, z, ν) of shape 40�x × 40�z with nα channels corresponding to the number of dips. The kernels wi have the same rank as the input

data, and the 2D convolution is performed in the space (x, z) for every channel. An example of prestack kernel is overlay on the input seismic.

After the convolution, a 2D output feature map is obtained by summing across channels. Every feature map h
β

i is obtained after convolving

with a different kernel. The output data hβ is formed by the concatenation of the nβ feature maps.

remaining ones. While increasing the non-linearity of the net-

work and forcing translation invariance, this operation also

has the effect of expanding the receptive field of the convo-

lutional kernels. By using a small constant spatial shape (e.g.

3 × 3) through every layer, down-sampling enables the ker-

nels to progressively access a larger area of the data. This

characteristic is important in order to learn a multi-scale rep-

resentation, developing the abstraction power of the network.

The up-sampling is the reverse operation and is used to pro-

gressively bring back the feature maps to their original spa-

tial shape, which is a requirement since our network should

perform a pixel-wise classification. A common technique for

up-sampling is to learn the operation using strided transpose

convolutions (Long, Shelhamer and Darrell 2014). A final

architectural specificity is the use of skip connections (Fig. 4;

Ronneberger, Fischer and Brox 2015) to reuse data from shal-

low layers in the deepest ones. Shallow feature maps are con-

catenated along the channels with their deeper counterpart

of identical spatial size. This will allow the network to make

use of both feature maps coming from early layers that con-

tain information close to the original data and feature maps

from later layers that contained highly transformed informa-

tion. In order to map the output of the network to a pseudo-

probability distribution expressing the classes diffraction and

non-diffraction points, we design the output to be composed

of two feature maps and scale every prestack pixels using a

softmax layer (e.g. LeCun et al. 1998; Fig. 4). The output

q(x, z) is defining at every spatial samples a mass function
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(q, 1 − q), where 0 ≤ q ≤ 1 indicates the confidence of the

network in having found a diffraction point.

We called D the unknown true distribution that expresses

the probability of having diffraction points in the seismic data,

and let D̂ be the distribution computed by our network. Train-

ing a neural network consists in optimizing the values of its

parameters w ∈ R
m, where m is the number of free dimensions,

in order to increase its prediction performances by bringing D̂

close to D. For a given data point d ∈ S, we evaluate the qual-

ity of the prediction by the error measure l(w; d) and define

the training procedure as the minimization of the loss function

over the finite dataset S:

L(w; S) =
1

N

N
∑

i=1

l(w; d). (2)

Given a training sample d = {hα, p}, we are concerned with

minimizing the error of the network prediction q. A standard

pseudo-distance measure between two probability distribu-

tions is the cross-entropy (e.g. LeCun et al. 1998). It will

measure how close is the computed distribution in represent-

ing the true distribution. In its binary form, the cross-entropy

between p and q can be expressed as

l(w; d) = −p log(q) − (1 − p) log(1 − q). (3)

Equation (3) shows that cross-entropy is differentiable and

convex with respect to q (but not necessary convex with re-

spect to w), and its minimum is reached at q = p. So far,

the only computationally tractable way to minimize the loss

function of equation (2) is to use a steepest descent algo-

rithm (LeCun et al. 2015). Given a position in the optimiza-

tion landscape for a parameterization state wt, the method

consists of finding the local downhill direction expressed by

the negative gradient of the function computed at that point.

A move towards a new point of the landscape is done by

updating the parameters of the function in this direction,

wt+1 := wt − η∇L(wt, S), where the gradient ∇ is the first-

order vector derivative and η, called the learning rate, is the

hyper-parameter defining the step size of the descent. Since

the loss function directly depends only on the last layer of

the network, we need to use the derivative chain rule in or-

der to back-propagate the gradient to earlier layers (Werbos

1974). The procedure is repeated iteratively until convergence

to a local minimum is obtained. In practice, it is not feasi-

ble to compute the gradients for every points of our training

set at once, and we rather use a small random subset of the

data, called batch, at every iteration. When every example has

been seen once by the network, we say it was trained for one

epoch. In addition, it is common to keep a moving average of

past gradients and use it to influence the latest decent direc-

tion for better performances in the case of ill-conditioned loss

landscapes (Rumelhart et al. 1988). Put together, this mini-

mization procedure is called momentum stochastic gradient

descent.

Coming up with the architecture and set of hyper-

parameters that perform well on a given dataset can be a

tedious task. Most of the field of deep learning is based on

empirical findings, and the time needed to design a network is

usually spent on hand tuning a number of parameters in order

to increase the performances on the testing data. Moreover,

the very high dimensionality of the optimization space com-

bined with its non-convexity might provoke the convergence

towards a bad local minimum. When this happens, one can

achieve very good performances on a certain dataset but the

network generalization capability will be poor and therefore

lead to incorrect results when evaluated on new data with

a non-trivially overlapping statistical distribution. In prac-

tice, it seems that to overcome these limitations, one needs

to train the network with many, sometimes millions, labelled

examples (LeCun et al. 2015). In the next section, we expose

our strategy to create a training dataset using wave equation

modelling.

R E S U L T S

Training on synthetics

Probably the most challenging part in designing a deep learn-

ing based application is not building the algorithm but rather

preparing the data that will be used for training and evalua-

tion, and most engineering-level applications of convolutional

neural networks (CNNs) require to prepare a very large num-

ber of examples to produce robust and generalizable results

(LeCun et al. 2015). While semantic segmentation offers a

high-resolution interpretation of the data, it comes at the cost

of having to prepare label masks. Such labels are difficult to

get by since we need to annotate every pixel of the training

data, and applications to seismic images usually require ex-

pertise in order to provide an acceptable interpretation. At

this end, rather than manually labelling real data, we resort

to synthetic modelling to create training and testing sets. Ad-

ditionally, because of the inerrant uncertainties on geophysi-

cal data, manual labelling is prone to errors and subjectivity,

while modelling allows us to use physics to control the proce-

dure. As our approach is fully automated, we can cover for a

wide range of velocity contrasts and source wavelets, in order

to incorporate as much diversity in our training examples as
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possible. In the next section, we will evaluate our network

performance on high-resolution field-recorded data and we

have chosen the modelling parameters accordingly.

We simulated fifty two-dimensional (2D) marine acqui-

sitions with 250 Hz Ricker wavelets using a finite difference

integration of the acoustic wave equation on a �x × �z =

0.5 m × 0.5 m grid. Punctual high acoustic impedance pertur-

bations are added to the layered velocity and density models

to simulate the diffraction points. Our labels consist of binary

masks indicating the position of the diffractors on the grid by

a 1 and 0 elsewhere. In order to allow for uncertainties in the

exact position of the scattering points, we convolved the masks

with a normalized anisotropic 2D Gaussian (see label patch in

Fig. 4). The central point of the Gaussian indicates the most

likely position, and surrounding pixels show a progressive de-

cay of the likelihood. After migrating the seismic to gathers

with dips ranging from −40◦ to 40◦, we created our training

dataset by randomly extracting 200,000 prestack patches of

shape 40�x × 40�z with the corresponding masks (see Fig. 4

for an example). To augment the diversity of the training

data, we also post-processed them with random band-pass

frequency filtering and phase rotation. The architecture of

our network is presented in Fig. 4. Every convolutional layer

contains twenty-four 3 × 3 kernels. We trained with a mo-

mentum stochastic gradient descent optimizer for 30 epochs

with a batch size of 48, using an initial learning rate of 10−3.

To regularize the training and try to avoid over-fitting, we

perturbed the input patches with additive white noise and ap-

plied dropout (see, e.g., Ronneberger et al. 2015) and a decay

factor of 50 × 37 every 10 epochs to the learning rate.

To control the quality of the training, we additionally

created 10 synthetic datasets with a similar method. Figure 6

shows an example of the application of the trained network on

this data. To count and localize the diffraction points found by

the network, we run a filter on the predicted attribute to find

every local maxima. Our parameters are set such that a local

maximum should be detected only above a 0.5 confidence

and two local maxima should be separated by at least 2 m.

We compared the position of those maxima with those of the

synthetic perturbations we added to the model and obtained

a rate of a 100% true positives and no false negative. We

also ran the network on a dataset imaged with a range of

velocities to analyse the sensitivity of the prediction to errors

in the migration model. Figure 7 illustrates that the algorithm

is resilient to small errors in the velocities and is reaching its

highest confidence for velocities close to the true one.

While the evaluation on synthetic data shows good per-

formances, one should be careful before extrapolating and

claiming that comparable performances will be achieved on

any dataset. It is indeed well known that neural networks can

easily over-fit the training data without learning to extract

meaningful information. Then, if our blind test data are statis-

tically similar to the train data, one is to expect our evaluation

metric to yield good results. However, this is not a guaranty

that we have solved our problem by creating a robust network

that can generalize well. For instance, in this section, we are

using synthetic validation data created with a similar approach

than the training ones, which might not be enough for a thor-

ough evaluation. A second case is when we use real examples

labelled by an interpreter to train the network and evaluate the

performances on the same data few hundreds of meters away.

It might not be a guaranty that the evaluation metric will still

be good if measured on a new dataset with different geology

and processing. Another concern deals directly with the evalu-

ation performance measure and training loss we use. Since the

interpretation of our data is uncertain, it is unclear what the

truth is and trying to match exactly, uncertain, and sometimes

wrong labels might be a problem. In our case, it is difficult to

know where the scatterers exactly stand in the subsurface and

what is their exact spatial extent. In the next section, we judge

the performances of our trained network on field-recorded

data.

Field data evaluation

The data we use in this study is a 3.5-km line acquired in

shallow waters with a high-resolution, shallow penetration

source. It serves in a preliminary study to plan the construction

of an offshore wind farm. Since the area is a former moraine, it

is expected to contain small-scale debris, brought by a glacier,

that need to be avoided while drilling.

Figure 8 shows the result given by the network trained

on synthetic data. Since we do not know the true number

and the location of the scattering objects, we cannot easily

give a quantitative measure of the performance of the net-

work. To assess the results, we investigated the data man-

ually. Figures. 9 and 10 show examples of objects found

by the network that we believe to be indeed boulders. In

Fig. 11, we can see examples of misclassification. A shal-

low diffraction point with a noisy prestack response was not

at all recognized by the machine, while a cross-shaped sig-

nal was, we believe, misclassified as a diffraction. Overall,

we are satisfied with the rate of true positives. Most areas

highlighted by the attribute seem to correspond to actual

diffracted events. Estimating the number of false negatives

is more difficult, but the dense coverage observed in Fig. 8

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 6 Prediction of the network on synthetic data that was not used for training. The machine confidence in having found a diffraction point

is overlaid on the seismic stack. Likelihood inferior to 0.1 is set to be transparent. A vertical red line at x = 40 m passes through a diffractor

and indicates the location of the central dip-gather displayed at the bottom. Remaining gathers are extracted every meter on the left and right

sides. An horizontal line at z = 31 m highlights the signature of the scatterer.

gives us confidence that it found a majority of the scattering

points.

We tried to incorporate as much diversity as possi-

ble in the synthetic data to cover a wide range of possible

geologies, but they remain nevertheless a simplification of the

reality. Using the confidence attribute, we selected the most

probable diffracting objects in the field data and used them

to fine-train the network. The results after such training did

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 7 Prediction of the network in a 25 m × 25 m square around a synthetic point scatterer for data migrated with different velocity

perturbations as presented in Figure 3. The maximum confidence scores are plotted above their corresponding patch.

not dramatically improve, but we believe that progressively

extending our training dataset with real examples found by

the network in different datasets will prove useful in further

work to increase performances.

D I S C U S S I O N

Mapping seismic amplitudes to the dip angle domain is a use-

ful approach to help separate between diffracted and specular

wavefields. Supervised deep learning has become the method

of choice to automatically identify patterns in high dimen-

sional data, and in particular convolutional neural networks

(CNNs) are a suitable choice for seismic images as they learn,

multi-scale, spatial relationships to support their decision.

We proposed an automated workflow to detect point scat-

terers from prestack seismic data using deep learning. We

created with wave equation modelling a large and diverse

database of examples to feed to the network and showed that

our algorithm could successfully transfer the knowledge it

acquired from synthetic data to real data. The architecture

of the network yields a pixel-wise classification enabling a

high-resolution localization of the diffracting objects, while

its probabilistic nature allows for some uncertainties in its

answer. This method also lets us quickly scan through data

migrated with different velocities to overcome the strong sen-

sitivity of the diffraction images to velocity errors. Neverthe-

less, after carefully evaluating the results on field data, we

found few false positives and false negatives and had diffi-

culties to know how to better parameterize the algorithm to

avoid those mistakes.

While deep neural networks can outperform every other

method in classification tasks, they come with a number of dis-

advantages and difficulties. Deep learning is mostly empirical

and works best when trained in a supervised fashion. It relies

on the creation of a vast set of annotated data as well as on tri-

als and errors to tune a large number of hyper-parameters. The

datasets are usually prepared manually beforehand, and the

performance is judged according to evaluation metrics com-

puted on the training and validation sets. Those requirements

are a challenge for applications in seismic interpretation. Be-

cause of inherent uncertainties in the data, the interpretation

is often non-unique and subjective, and it also requires exper-

tise in geology and geophysics. For this reason, as well as for

the fact that most of the interpreted data is not publicly avail-

able, it is difficult to create large training databases. It also

affects the reach of the evaluation metrics we use since they

need to compare the answer of the network to non-perfect,

and sometime non-existent, labels provided by interpreters.

To tackle the problem of creating a large labelled train-

ing dataset, we used synthetic modelling. This allows us to

carefully control the subsurface model and provide an inter-

pretation without manual work. However, synthetic data are

a simplification of the reality and cannot account for all of

the diversity and complexity that exists in nature. Other au-

thors such as Serfaty et al. (2017) suggest to use a network

pre-trained on publicly available datasets containing a very

large number of annotated natural images. They then only

need to label a small number of real seismic examples to fine-

train the last layers of the network. This approach seems to

work well but has few practical limitations. First, the geome-

try of the training data restricts the use of pre-trained nets to

work on two-dimensional (2D) patches with three channels

corresponding to the red, green and blue colour maps. This

is a limiting factor for seismic data where structural objects

are inherently three-dimensional and where full fold prestack

data might bring more information as in this work or in auto-

matic amplitude versus angle classification for instance. Fur-

thermore, while it is understandable that shallow layers that

learn to detect high-frequency characteristics such as edges are

useful when transferred from natural images to seismic data, it

is less intuitive for the deepest layers that have learnt abstract

and large-scale concepts. Since the power of deep learning
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Figure 8 A full stack and the confidence attribute generated by the network. The local minima filter ran on the attribute counted 537 diffracting

objects.

Figure 9 An example of true positive located just beneath the water bottom. The left image is a zoom on the stack with an overlay of the

confidence attribute shown in Fig. 8. A vertical red line indicates the position of the central dip CIG displayed on the right side. Other gathers

are displayed every 0.5 m around the central gather. The vertical red line highlights the signature of the boulder.

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 10 An example of true positive. Disposition of the figure is similar to Fig. 9.

comes from those abstract concepts learnt in the deeper layers

of the network, it is unclear whether such pre-trained net-

works are really taking advantage of the full extent of deep

learning and if traditional machine learning methods would

not yield similar results. We believe that our approach using

synthetic examples to train and progressively adding real ex-

amples as they are found by the network to fine train it is a

good compromise to have full flexibility in the design in the

absence of an ideal training database.

While it is common to judge the performance of a neu-

ral network with a numerical evaluation metric, we believe

that such conclusion is more difficult to draw with geosci-

entific data. The labels we provide are often uncertain and

sometimes wrong. In our work, for example, it is unreal-

istic to expect the network to know the exact position of

the centre of the diffracting object as well as it exact spatial

extent. Therefore, the minimum of the training loss function

is probably not indicating the best possible parameterization

of the network. Additionally, when evaluating our network

on real data we observed a drop in performances compare

to the blind evaluation on synthetic data. It is difficult to

prove the generalization of the performances of a network.

If the blind dataset we use for evaluation is too similar to

the training data, a good evaluation score will not necessary

extrapolate to all new data. Finally, we argue that providing

an evaluation score itself is problematic when working with

real data. Again, because of uncertainties and lack of perfect

manual interpretations, it is not possible to know the truth

and therefore to give a 0 to 1 score that is truly meaning-

ful. We think that qualitative judgement by human experts of

the machine’s findings on field data, while subjective, is still

required.

Figure 11 Examples of a false positive and a false negative. The disposition of the figure is similar to Fig. 9. The blue line indicates a probable

diffraction that was not recognized by the network, while the red line highlights a cross-shaped signal wrongfully interpreted as a scatterer by

the machine.
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In further work, we hope to benefit from the creation

of a dataset of real examples by progressively incorporating

real findings from our method on a variety of field-recorded

data. We plan to extend the method to be three dimensional.

In theory, such extensions do not pose any problem, the mi-

gration will yield three-dimensional (3D) spatial data with 2D

azimuthal dip gathers. The CNN will be working in the same

fashion but with 3D convolutions and a fourth dimension

being channels made of the concatenation of azimuthal mi-

gration dip angles. We also plan to improve the precision of

the method to perform automated residual velocity analysis,

using the results of the network as a misfit criteria to optimize

a tomographic inversion.

CONCLUSION

We have introduced a new method to automatically identify

scattering points from prestack data migrated using diffrac-

tion imaging. We built a database of dip angle common image

gathers containing point scatterers using wave equation mod-

elling and trained a convolutional neural network to compute

a spatially varying attribute, indicating the machine’s confi-

dence in having found diffracting objects in the subsurface.

The use of synthetic data was a key in order to provide a

variety of examples with their interpretation at minimal man-

ual labour cost. We showed that our trained network could

successfully transfer its knowledge on field-recorded data and

bring a valuable help to interpreters on an engineering task.

Additionally, this automated workflow enables us to quickly

scan through different versions of the same dataset to account

for potential errors in the migration velocities.

We also discussed some of the challenges associated with

the use of artificial intelligence–based algorithms to analyse

seismic data. Uncertainties and non-uniqueness of the inter-

pretation as well as the non-guaranty of generalization of the

results should be taken into account when evaluating the per-

formance of a network. In particular, we believe that careful

inspection by experts, while subjective and qualitative, should

be nevertheless carried on a reasonable variety of real datasets

before concluding that the problem at hand was solved. We

see a good potential in our workflow and hope to prove it

valuable in further work for applications to other structural

and amplitude related interpretation tasks.
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3.3.2 Highlighting Faults in a 3D Volume

Introduction

Extracting fault surfaces from a seismic volume is an important step in structural interpreta-

tion. Assuming a locally planar geometry, we can characterize a fault with few properties as

illustrated in Figure 3.3. The strike angle represents the azimuthal orientation of the plane, the

dip angle measures the inclination between the plane and the horizontal. The throw measures

the vertical displacements up or down the dip and the heave measures the horizontal displace-

ment perpendicular to the strike. Workflows to extract fault surfaces usually consist of several

steps. One first needs to delineate the position of the faults before extracting fault surfaces

and creating fault objects. In this work, we explore how deep learning can be employed to

compute an improved fault delineation attribute without the need for manually picking the

data.

Besides manual interpretation, several methods have been developed to highlight faults from

3D seismic images. Most methods are based on the observation that faults represent a discon-

tinuity through lateral reflections, and aim to compute attributes which are sensitive to this

property. Semblance (Marfurt et al., 1998) and coherency (Marfurt et al., 1999) are examples

of attributes measuring continuity of the waveforms, while variance (Van Bemmel & Pepper,

2000) measures potential discontinuities in the reflections. However, those attributes alone

are sensitive to noise and stratigraphic features, such a inclusions, which also corresponds

to discontinuities (Hale, 2013). Improved worflows have been proposed by regularizing the

attributes, using for instance smoothing along estimated fault strikes and dips. The resulting

attribute is usually named the fault likelihood or the fault plane (Hale, 2013, Wu & Hale, 2016,

Philit et al., 2019).

Recently, several authors have employed supervised machine learning to approach this prob-

lem (Guitton et al., 2017, Huang et al., 2017, Xiong et al., 2018, Zheng et al., 2019, Wu et al.,

2019). While most authors require to manually pick a portion of the data to train the algorithm,

some propose a more practical methodology. In particular, Guitton et al. (2017) use as initial

labels a fault likelihood attribute (Hale, 2013) and train a non-linear support vector machine to

reproduce it. They show that the classifier is able to learn the dominant signal of the attribute
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Figure 3.3 – Geometry of a fault plane. Taken from Wu & Hale (2016).

Figure 3.4 – Schematic representation of the CNN we use in this work (after Ronneberger et al.
(2015)). The data flow is indicated by the black arrows. Blocks represent 4-dimensional layers
outputs, color coded by operation types.

while discarding the less coherent signals, resulting in a better, less noisy, final answer. Wu

et al. (2019) employ synthetic modelling to create a dataset of faulted seismic reflections and

train a CNN. They show that while the training samples are synthetic, the CNN yields good

results on real data. This approach is similar to the one we presented in Section 3.3.1.

Method and Experiments

In this work, we approach the problem in a similar fashion as Guitton et al. (2017), but using

deep learning. As opposed to machine learning methods, deep learning allows for an end-to-

end workflow that does not require intermediate calculations such as the computing of an
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histogram of oriented gradients (see Section 1.2). Deep learning is also an appropriate choice

to work with 3-dimensional data, as unlike traditional machine learning algorithms, it does

not require to drastically reduce the size of the input data via preprocessing. We use as initial

labels a fault plane attribute (Philit et al., 2019) to train a 3-dimensional CNN, and propose an

iterative approach to progressively refine the predictions of the network. Figure 3.4 illustrates

the method. The network takes as input seismic patches of 64∆i l × 64∆xl × 64∆t (where

the dimensions are expressed with respect to the sampling units along the inline, crossline

and time directions). It yields a volume with the same shape as the input and is trained by

maximizing the similarity between the output and the fault plane attribute.

In order to improve the quality of the network’s prediction, we pre-process the initial labels

to get a better definition of the faults positions. In particular, we take the power of 3 of the

fault plane attribute and perform a thinning operation using a 2D Sobel–Feldman operator to

compute the gradient along both the inline and crossline directions. The thinned attribute

is then defined as the magnitude of positive gradients. In order to align the thinned image

with the fault locations, we also shift the volume in the inline and crossline direction. The

shift value is found as the argmax of the cross-correlation between the thinned and pre-

thinned attributes. More advanced methods exist to thin the initial attribute (e.g. Philit et al.

(2019)), but we resort to this simple worklow since it partially preserves the thickness, with

a gradual increase and decrease of likelihood around the fault position. This results in a

smoother learning landscape and provides the network with the notion of uncertainty. We

show the result of the operation in Figure 3.5. The thinning we employ robustly preserves

the original signal, but it does not highlight faults with a clearly continuous and noise free

likelihood. We nonetheless show in the following that the network can learn from those labels

and progressively improve the results.

We display the initial training results in Figure 3.6. The network’s prediction is scaled to the

range 0−1 and can be interpreted as a confidence or likelihood for the position of the faults. We

observe that the continuity of faults is better highlighted in the prediction and that it provides

a less noisy answer. More interestingly, the network also seems to recognise faults which are

not clearly present in the original fault plane attribute volume. This is for instance highlighted

by the red ellipses of Figure 3.6. Despite being trained with partially wrong labels, the CNN is
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(a)

(b)

Figure 3.5 – Preprocessing of the fault plane attribute. Examples for (a) an inline section (b)
a time slice. The seismic data are displayed on the left. The central images are the original
fault plane attribute (Philit et al., 2019). The images on the right show the same attribute after
pre-processing.
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Figure 3.6 – Post-processing of the network’s prediction. Example shown for an inline section.
The first image from the left shows the original labels, the second image shows the network’s
prediction, the third image the data and the fourth the post-processed prediction.

robust enough to correct the interpretation in some cases by highlighting new faults, although

with a smaller likelihood. From these observations, we propose an iterative approach in order

to progressively improve on the results. We call the original fault plane attribute the first

generation labels and the network’s prediction, after training, the second generation labels.

We can now repeat the training of a new CNN with the improved second generation labels.

Since the quality of the training information is better, we expect to obtain a better performing

network. Additionally, to increase the labels quality, we perform simple post-processing. To

boost the likelihood of the newly found faults, we renormalise the prediction using an adaptive

histogram equalization algorithm (Pizer et al., 1987, Stimper et al., 2019). We also apply the

same thinning procedure as described above. The effect of the post-processing and successive

training generations can be seen in Figures 3.6 and 3.7.

In the following, we present the results obtained after the 4th generation training. Each

generation requires about 18 minutes of computing time using the library Tensorflow (Abadi

et al., 2015) and a Titan X GPU. Running a prediction on the entire input stack takes less than

a minute and the overall algorithm runs for about 80 minutes. In Figure 3.8, we show an

example of the transformations that are learned by the CNN to process the data. In Figure 3.9

we compare the results between the original thinned fault plane and the network’s prediction.

On a first order, the final answer is satisfactory as it yields a clean and thin attribute that

highlights most major faults of the data.
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(a)

(b)

Figure 3.7 – Evolution of the network’s prediction with successive generations. Lefts images
show the input labels, central images the data and right images the predictions. (a) First
training generation. (b) Second generation.

(a) (b)

Figure 3.8 – Visualization of a transformation performed by the network. (a) Input data. (b)
Activation map for a convolution kernel of the first layer. Waveforms of the reflections are
simplified on the transformed data, and faults are more apparent.
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Figure 3.9 – Overlay of the fault attributes on top of an inline section. The original thinned
fault plane is shown on the left and the network’s prediction on the right.

Discussion

We see with this experiment that the CNN is a very good tool to clean the original fault

plane attribute as it does not learn the noise initially present in the labels. False negatives,

i.e. faults that are visible in the data but not found by the algorithm are more problematic.

Using appropriate post-processing and several training generations, we show that we can

nevertheless help the network to find new faults and better define the ones that were not

clearly highlighted. We stopped at the 4th generation as training longer did not seem to

improve the results any-more. Besides the fact that the training labels are partially wrong,

other factors that explain why a network can find a fault but not an other (that seems very

similar to a human interpreter) are not easily identifiable. The lack of explainability is one

of the difficulties associated with deep learning. In order to highlight the remaining missing

faults, a possibility is to pick some of them manually and fine-train the network with these

new examples (we present this approach in Section 4.3.1).

In this work, we do not train the network to predict additional attributes like the local strike,

dip or throw of the faults and these values can later be computed in an independent fashion.

It should also be noted that the fault attributes our approach is relying on can only yield

good results when the reflections exhibit a good lateral consistency and are dense in the
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vertical direction. Picking fault networks in a chaotic area, or inferring fault planes through a

thick package of homogeneous properties (and hence free of any clear reflections) remains a

challenge for automated methods.

We show few additional results in Figure 3.10.

I am grateful to Jean-Philippe Adam and Sébastien Lacaze from Eliis1 for providing the seismic

data and the fault plane attribute used in this work.

3.3.3 GANs for Improved Synthetic to Real Transfer

Introduction

This section presents a work in progress done in collaboration with Ricard Durall-Lopez from

Heidelberg University and Fraunhofer ITWM and Janis Keuper from Offenburg University. We

aim here to improve the quality of the transfer learning methodology proposed in Section

3.3.1 by trying to reduce the gap between the synthetic data and real data domains.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a class of deep learning

models that became instantaneously popular for their relative simplicity and yet very powerful

ability to learn data distributions. The main idea is to use two networks that compete against

one another, as illustrated in Figure 3.11. Given two domains A and B, the first network, called

the generator G , is responsible for learning an operation that transforms samples from domain

A to a domain A
′ that approximates the target domain B. The second network, called the

discriminator D, judges the quality of this transformation by trying to distinguish between

transformed samples and native samples of the domain B. If the training is successful,

the generator has become so good at performing the transformation that even a well trained

discriminator can no longer tell the difference between the target samples and the transformed

one.

Several authors already employed GANs in a seismic workflow. They are for instance used for

trace interpolation (Kaur et al., 2019), full-waveform inversion (Mosser et al., 2018) or forward

modelling (Siahkoohi et al., 2019). In this work, we try to improve on the results obtained

1http://www.eliis.fr/
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(a)

(b)

(c)

Figure 3.10 – Additional results for some inline sections. The original thinned fault plane is
shown on the left and the networ’s prediction on the right. Green circles highlights area where
the prediction is visibly improved, while orange circles show regions that will require some
manual work.
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Figure 3.11 – Schematic representation of a GAN’s setting (after Goodfellow et al. (2014)). The
generator G is trained to transform data samples that can "fool" the discriminator D. The
discriminator is trained to distinguish original samples from transformed ones.

in Section 3.3.1 by creating better synthetic training data. The main idea is to use synthetic

modelling to create diffraction signal and train a GAN to synthesize those diffractions into real

seismic data. The benefit of this approach is to create more realistic training data, without the

need of manually picking examples. This sort of methodology, named attribute transfer, is for

instance described in Kim et al. (2017), Zhu et al. (2017), Choi et al. (2017).

Method

We employ two prestack datasets, a synthetic one that models seismic data both with and

without diffractions, and a real dataset that is (almost entirely) free of diffracted waves. Each

sample taken from those datasets come with two meta-information: whether the image is real

or synthetic and whether it contains diffraction signal or not. The method is summarized in

Figure 3.12. The generator is given two tasks, make the synthetic data to look more real and

add a diffraction signal in the data if it’s not present (or conversely remove it if it’s present). It

is the task of the discriminator to judge the quality of those transformations. We name Ldi sc

the discriminative loss, i.e the feedback provided by the discriminator. In addition, we also

resort to a cycle consistency loss (Zhu et al., 2017), Lc ycle , in order to regularize the generator

and make sure that the transformed data still retains some of the characteristics of the input

data. We name a the input sample and a′ the sample transformed by the the generator. We

calculate a third sample â by sending a′ to the generator and define the cyclic loss to minimize
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Figure 3.12 – Schematic representation of the method. The generator G is trained to make the
synthetic data more realistic and to add or remove diffraction signal. The discriminator D is
trained to distinguish real samples from transformed synthetics and to guess whether or not a
diffraction is present in the transformed sample.

the distance between a and â. Together, the generator loss writes:

Lg en =Ldi sc +λ1 ∗Lc ycle (3.1)

where the scalar λ1 is a trade-off hyper-parameter. The discriminator must both determine

if the data is real or synthetic and if it contains or not a diffraction. The first loss, Lad v , is

computed using the Wasserstein distance (Arjovsky et al., 2017) and the second loss, Lcl ass ,

with the cross-entropy distance. Together, the discriminator loss writes:

Ldi sc =Lad v +λ2 ∗Lcl ass , (3.2)

where the scalar λ2 is a trade-off hyper-parameter.

Results and Discussion

Once trained, the generator can be used to insert diffracted waves into real data. Because,

in every synthetic examples the diffraction was at the center of the patch, the generator

learns to always insert it at this location. Therefore, we can construct a likelihood mask

indicating the probable location of the scattering signal and use it to train a segmentation

network as we explain in Section 3.3.1. We show initial results in Figure 3.13. A qualitative

evaluation of the results suggests a good behaviour of the model. It shows the ability of

generating seismic diffraction and combining them within the real images, without destroying
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Figure 3.13 – Two examples of real data transformed by the generator in order to add diffraction
signal. The data are shown in both the stacked domain (left) and prestack dip-angle domain
(right, see Section 3.3.1). The red lines highlight the synthetic diffractions added by our model.

the surrounding reflected signal. The synthetic training data contained diffractions from point

perturbations with different acoustic impedance contrasts and this variety in size and intensity

of the diffracted waves is displayed by the generator as well.

This approach is promising, but many tests remain to be done. In particular, it is a problem that

no perfect quantitative measure enables us to judge the results of the generator. Qualitative

evaluation is tedious when working with a large amount of data, and also a bit subjective and

uncertain. Overall, we recognize the usefulness of GANs to tackle seismic processing tasks.

Adversarial training is a powerful idea that enables to create implicit metrics that could not

be expressed well otherwise (such as a measure of how realistic a piece of synthetic seismic

data looks like). However, the need to train several networks together as well as the difficulty

to provide a clear quantitative evaluation of the final results are hassles that must be kept in

mind.
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CHAPTER 4 SEISMIC INTERPRETATION VIA INTERAC-

TIVELY SUPERVISED AND UNSUPERVISED

LEARNING

4.1 Résumé

Dans ce chapitre, nous considérons des cas qui nécessitent de progressivement affiner

l’interprétation à mesure que les géoscientifiques acquièrent une plus grande compréhension

de la géologie de la zone d’étude. En conséquence, le domaine d’apprentissage de la machine

est lui aussi petit à petit modifié et les résultats fournis par l’algorithme se doivent de refléter

ces changements.

L’apprentissage supervisé interactif est un cadre qui permet d’associer de façon efficace

l’expertise humaine et la puissance de calcul de la machine. À l’aide d’un certain nombre

d’exemples initiaux l’algorithme est entraîné et fournit des résultats préliminaires. L’interpréteur

peut alors en contrôler la qualité et choisir d’apporter des corrections, sous forme de nouveaux

exemples, afin de guider la machine dans les régions les plus complexes.

En apprentissage non supervisé, il n’est pas nécessaire de préparer des données d’entraînement,

l’algorithme est capable d’apprendre seul à partir des données brutes. Cette approche est

intéressante car elle évite la dépendance directe de la machine en intervention humaine et

peut en théorie fournir des résultats qui sont dénués de biais humains et qui peuvent s’adapter

à n’importe quelles nouvelles données. Cependant en pratique il est très difficile d’utiliser

cette approche pour résoudre des tâches complexes. De plus, l’expertise humaine est toujours

nécessaire afin de régler les différents paramètres de l’algorithme. En pratique, de façon

similaire à l’apprentissage supervisé interactif, les experts modifies petit à petit les résultats de

la machine en changeant la paramétrisation jusqu’à obtenir une solution jugée satisfaisante.
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Dans la suite, nous présentons trois applications concrètes employant ces méthodologies.

Dans une première partie nous avons recours à l’apprentissage profond supervisé de maniéré

interactive afin de pointer des horizons dans des donnés sismiques 3D. Ensuite, nous utilisons

l’apprentissage machine supervisé et non supervisé afin de faire ressortir les différent faciès

lithologiques distinguables dans les données de puits et les courbes de variation de l’amplitude

avec l’angle d’incidence. Enfin, nous explorons l’apprentissage profond non supervisé et

établissions des axes de recherches intéressant à poursuivre dans ce domaine.

4.2 Overview

In the first part of this chapter we consider seismic interpretation tasks that require progressive

refining as the experts get to understand better the area and have access to new information,

coming for instance from well measurements or additional seismic surveys. As the knowl-

edge and beliefs about the depositional system and the local tectonic history are evolving,

geoscientists might change their interpretation and consequently change the learning space

of the algorithm. Interactive supervised learning is a framework in which interpreters progres-

sively guide the algorithm to converge toward a solution they trust. The machine will learn

and update its parameters as it receives new examples, and the human experts can directly

observe the effect on the results. They can then select areas where they disagree and try to

correct the model by giving new inputs. Rather than replacing interpreters, this approach aims

at augmenting the interpretation workflow by combining artificial and human intelligence

(Amershi et al., 2014, Holzinger et al., 2019).

Many research domains, such as medical and biological image analysis, have already experi-

enced with semi-automated algorithms where human experts are used to carefully constrain

learning algorithms (e.g. Shyu et al. (1999), Sommer et al. (2011)). These approaches are espe-

cially suitable when one cares about explainable artificial intelligence (or at least trustworthy

AI), i.e. when one can not be satisfied only from receiving an answer but where one also

needs to have a reasonable understanding of how the algorithm got there. This need arises

when working in fields where data come with uncertainties. Uncertainties are for instance

present in seismic interpretation since the resolution of the data is not sufficient to uniquely

resolve the problem and approximations of the physics of wave propagation are being made
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during processing. Moreover, human inputs to the algorithm is also a convenient way to bring

external knowledge that cannot be trivially streamed to the algorithm. A geologist, for instance,

can make use of the knowledge from regional models in order to guide the interpretation in

noisy or poorly resolved areas. Additionally, interactive supervised learning is also a good

approach when one doesn’t have a lot of labelled data to start with. An expert can influence

the quality of the algorithm’s prediction by carefully selecting few relevant new examples

(Chapelle et al., 2009).

Figure 4.1 – Interactive learning framework. After a quality control (QC), the user can change
hyper-parameters of the algorithm and annotate few additional data samples. The learning
algorithm is automatically retraining with the new information and sends the new results to
the visualization engine for the next iteration of human/machine interaction.

Several approaches are possible to perform interactive supervised learning. A summary of the

different methods can be found in Chapelle et al. (2009). In Settles (2009), authors propose

an active learning framework where the algorithm selects on its own the unlabelled regions

where it would benefit the most from human input. Figure 4.1 presents a typical interactive

supervised learning framework.

Unsupervised learning is another approach that aims to let the algorithm discover statistical

patterns in the data without the help of external information provided by humans (Bishop,

2006). This approach is appealing as preparing training labels is often a difficult and very

time consuming and constitutes a major difficulty to overcome when working with deep
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learning. Interestingly, if we could train algorithms without the need for explicit supervision,

one could study the results of the machine obtained (mostly) without the introduction of

human biases. Additionally, networks trained in this fashion would suffer less from a lack of

generalization abilities. Indeed, while supervised learning is limited to the amount of available

labelled examples, with unsupervised learning one can in theory always learn to adapt to new

observations. Unfortunately present paradigms to train machine learning models without

supervision are far from approaching state of the art results obtained by supervised methods

on complex problems (LeCun et al., 2015). But they can nonetheless prove useful to tackle

smaller and simpler tasks. They can also be employed to pre-train models, that are then

fine-trained by human experts (Erhan et al., 2010). Working with unsupervised learning

is sometimes analogous to working with semi-supervised learning. While humans are not

necessary to label the data, they need to parametrize the algorithm and design the workflow.

Obtaining useful results often necessitate to modify hyper-parameters and observe the effect

on the results. It is another way to interactively converge toward a useful answer.

4.3 Applications

4.3.1 Picking Horizons in a 3D Volume

In this section we insert the work done in Tschannen et al. (2020) on the picking of horizons in

3D seismic data.
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Extracting horizon surfaces from 3D seismic data using deep learning

Valentin Tschannen1, Matthias Delescluse2, Norman Ettrich3, and Janis Keuper4

ABSTRACT

Extracting horizon surfaces from key reflections in a seismic
image is an important step of the interpretation process. Inter-
preting a reflection surface in a geologically complex area is a
difficult and time-consuming task, and it requires an understand-
ing of the 3D subsurface geometry. Common methods to help
automate the process are based on tracking waveforms in a local
window around manual picks. Those approaches often fail when
the wavelet character lacks lateral continuity or when reflections
are truncated by faults. We have formulated horizon picking as a
multiclass segmentation problem and solved it by supervised
training of a 3D convolutional neural network. We design an
efficient architecture to analyze the data over multiple scales
while keeping memory and computational needs to a practical

level. To allow for uncertainties in the exact location of the
reflections, we use a probabilistic formulation to express the
horizons position. By using a masked loss function, we give
interpreters flexibility when picking the training data. Our
method allows experts to interactively improve the results of
the picking by fine training the network in the more complex
areas. We also determine how our algorithm can be used to ex-
tend horizons to the prestack domain by following reflections
across offsets planes, even in the presence of residual moveout.
We validate our approach on two field data sets and show that it
yields accurate results on nontrivial reflectivity while being
trained from a workable amount of manually picked data. Initial
training of the network takes approximately 1 h, and the fine
training and prediction on a large seismic volume take a minute
at most.

INTRODUCTION

A key step in seismic interpretation is the mapping of the main
horizons in the amplitude volume. Horizons are reflection surfaces
visible in the data that present a similar character in terms of wavelet
shape throughout the survey. Mapping the reflections enables us to
analyze the amplitudes to scan for potential fluid anomalies. High-
lighting the horizons is also essential to understand how and when
the observed geologic structures were formed. At later interpreta-
tion stages, surfaces are used to tie the seismic to well logs to relate
seismic reflections to actual geologic interfaces and to perform a
depth conversion for building geomodels. Dorn (1998) explains that

working with full 3D data, rather than with sparse 2D lines, is essen-
tial when dealing with complex geology. Typical surveys contain
hundreds of inlines and crosslines, which makes the manual interpre-
tation of these surfaces a time-consuming task. For this reason, au-
totracking tools were developed to help interpreters (Bacon et al.,
2003). Working with an autopicker is usually an iterative process
in which the interpreter starts by dropping seed points on the
desired reflection and gives some key information such as the wave-
form phase or the expected maximal vertical deviation between two
adjacent traces. The tracker uses those hints to extract a 2D surface
from the 3D data by finding related waveforms between traces using
similarity measures. More seeds are progressively added, and the
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completion usually requires the interpreter to finish the most difficult
portions manually. Although autopickers work well on high-ampli-
tude reflections with a consistent waveform across the data, in com-
plex structural areas, they usually fail to track across faults with a
large throw or to follow weak and chaotic reflections. Many authors
have proposed tracking algorithms that try to alleviate those limita-
tions. Gersztenkorn and Marfurt (1999) and Lomask and Guitton
(2007) suggest computing 3D structural attributes to highlight faults
and stratigraphic elements not readily apparent in the seismic data.
Aurnhammer and Toennies (2002) show how one could further con-
strain the autotracking by incorporating information of the main faults
in the area. Alternatively, Pauget et al. (2009) and Wu and Fomel
(2018) propose global approaches in which they treat the mapping
as an optimization problem and solve it for all the reflections at once.
In practice, local approaches often result in misties when the tracks
from independent seeds are merged, and global approaches suffer
from the curse of dimensionality and might require a lot of manual
interventions to constrain the problem in regions containing nonstra-
tified objects such as salt or gas chimneys and chaotic depositions
(Hoyes and Cheret, 2011). In addition, traditional similarity measures,
such as crosscorrelation, are sensitive to coherent noise in the data
(e.g., acquisition and migration artifacts or interference from multi-
ples) and perform poorly in regions with a low signal-to-noise ratio.
In recent years, there has been a big resurgence of interest around

the field of deep learning, and in particular, convolutional neural
networks (CNNs), to tackle computer vision and waveform analysis
problems. Those methods have proven to outperform traditional
signal processing and other machine-learning techniques on a large
panel of applications (LeCun et al., 2015). Several authors use neu-
ral networks for tracking horizons (Harrigan et al., 1992; Kusuma
and Fish, 1993; Veezhinathan et al., 1993; Alberts et al., 2000;
Leggett et al., 2003), but modern computing power and the accu-
mulation of empirical findings have permitted the emergence of
deep neural networks that possess greater potential. Recent appli-
cations of deep learning to seismic interpretation include salt clas-
sification (Waldeland et al., 2018; Shi et al., 2019), fault detection
(Huang et al., 2017; Xiong et al., 2018; Wu et al., 2019; Zheng et al.,
2019), diffraction picking (Tschannen et al., 2019), and seismic lith-
ofacies classification (Liu et al., 2019).
Horizon picking is a typical pattern recognition problem, and

deep learning is therefore a logical choice to approach it. Peters et al.
(2019) use a 2D CNN to track horizons using only a few manual
picks to train the algorithm and show that the network can accu-
rately predict the position of the surfaces in field data. In this work,
we use a similar approach, but we propose a more in-depth study of
the problem and aim to provide a practical methodology for inter-
preters. We work with a 3D CNN and propose two detailed and
challenging case studies, in which we identify the strengths and lim-
itations associated with the use of neural networks to pick horizons.
We present a practical and robust workflow to segment several hori-
zons at once in a large seismic volume. Our method does not require
any special assumption on the character of the seismic wavelet nor on
the spatial continuity of the horizons. We design a 3D-CNN archi-
tecture inspired by Ronneberger et al. (2015), which processes data
over multiple scales and yields a high-resolution prediction. Because
we treat the spatial and temporal dimensions differently, our network
provides a stable interpretation while keeping the memory and com-
putational requirements to a workable level. We express the initial
manual picks provided by the interpreter as probabilities, and we use

the cross-entropy loss to train the network in a supervised manner.
The probabilistic formulation allows for uncertainties in the exact lo-
cation of the predicted horizons. Given a simple masking of the loss
function, interpreters have the freedom to label the training data using
either seed points or 1D- and 2D-line interpretations. By keeping the
total number of free parameters of the CNN small and by using regu-
larization and data augmentation, we show that our method requires
only reasonable manual work to prepare the training data. The initial
network training time is approximately 1 h, and the prediction on a
large seismic survey takes only seconds. We also show how the in-
terpreter can interactively fine train the network by picking a few
additional examples in the most complex areas. Finally, we show that
our method can be used to extend horizons to the prestack domain to
perform higher-quality amplitude analysis. We verify the validity of
our approach on two marine data sets that exhibit challenges because
of the presence of faults and weak reflections.

METHODS

Semantic segmentation

After prestack time (depth) migration, seismic data are repre-
sented as a multidimensional array over a regular grid of inline,
crossline, and time (or depth) coordinates. Every element of the ar-
ray is called a voxel and holds the value of the wavefield amplitude
at this position. In the image processing community, given a set of
preestablished categories or labels, classification refers to the asso-
ciation of an image with one label. Segmentation goes beyond clas-
sification and refers to the association of every pixel of an image
with a category. By analogy, with seismic data, we refer to one sam-
ple as a patch (i.e., a small cube) extracted from the global volume.
Classification aims to associate one class to the entire sample. This
is, for instance, the approach taken by Waldeland et al. (2018) to
pick salt bodies. To obtain the final prediction on the entire seismic
data, Waldeland et al. (2018) assume that the label corresponds to
the central voxel of the patch and apply the network on overlapping
patches extracted around every voxel of the volume. In segmenta-
tion, we also use patches for training, but the network associates one
class to every voxel of each patch. This is similar to the approach
taken in Wu et al. (2019) and Tschannen et al. (2019) to pick faults
and diffracting objects.
Supervised deep learning is now established as the reference

method to tackle such problems because it leads to the best results
on a wide variety of applications (LeCun et al., 2015). The field of
deep learning is almost entirely focused around neural networks,
which are a set of algorithms expressed as a computational graph
built from a sequence of layers performing simple operations.
Rather than being manually engineered, the parameters of the trans-
formations are initially chosen at random and given the freedom to
adapt to the data and problem at hand. Chaining several layers is a
key feature of these algorithms because this architectural design al-
lows the algorithm to learn a hierarchical representation of the data.
The deeper layers build upon the work of the previous layers and are
sensitive to progressively more abstract and complex features, ex-
pressed as a composition of the simpler features learned by the shal-
lower layers (LeCun et al., 2015). When the data exhibit a spatial
structure and the surrounding information is relevant to understand
the local context, a suitable choice for the linear transformations is
convolutions, and the family of algorithms based on them is called
CNNs (LeCun et al., 1998).
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In this work, we aim to segment a set ofK horizons in a 3D seismic
stack. Let hðil; xl; tÞ be a seismic sample expressed in the 3D coor-
dinate system ðil; xl; tÞ, where il and xl are the spatial coordinates in
the inline and crossline directions and t is the vertical temporal co-
ordinate. We express the labels as a 4D hypercube pðil; xl; t; K þ 1Þ
representing the probable locations of theK target reflectors. For every
voxel, p holds the discrete probability density func-
tion ðpk≥0Þk¼1::Kþ1, such that

P
Kþ1
k¼1 pk¼1. The

terms p1 to pK are the probabilities of each hori-
zon, whereas pKþ1 is the probability of not being
any of the desired reflectors.
A neural network depending on the parameters

w ∈ Rm, where m is the number of free dimen-
sions, takes as an input the seismic data h and
outputs a pseudoprobability density function
p̂wðil; xl; t; K þ 1Þ defined at every voxel. Train-
ing the network consists of optimizing the values
of its parameters to increase its prediction perfor-
mance so that p̂w approaches p. A standard pseu-
dodistance measure between two probability
distributions is cross entropy, which measures
how close the computed distribution is to re-
present the true distribution. In its discrete form,
the cross entropy between p and p̂w, summed
over space and time, is

lðw;p; p̂wÞ ¼ −

X

il;xl;t

XKþ1

k¼1

pðil; xl; t; kÞ

× log½p̂wðil; xl; t; kÞ�: (1)

For a training data setD composed of N pairs of samples (hðiÞ, pðiÞ),
the training loss is defined as the average over all samples of the loss
computed in equation 1:

Lðw;DÞ ¼
1

N

XN

i¼1

lðw;pðiÞ; p̂
ðiÞ
w Þ: (2)

The most commonly chosen approach to minimize the loss function
of equation 2 is to resort to an optimizer belonging to the minibatch
stochastic gradient-descent family (Robbins and Monro, 1951; Le-
Cun et al., 2015). In this iterative procedure, a random subset of the
training data set (called a minibatch) is chosen at every iteration, and
the local steepest-descent direction is found by computing the gra-
dients of the loss function with respect to the network’s parameters
using the back-propagation algorithm (Werbos, 1974). The param-
eters are updated by taking a step toward this direction, and a new
minibatch is selected for the next iteration. The learning rate is an
important hyperparameter that defines the step size used for the up-
date. When all minibatches have been seen once by the network, we
say that it has been trained for one epoch.

Network architecture

Figure 1 and Table 1 present the architecture of our network. It is a
traditional feed-forward convolutional network inspired by Ronne-
berger et al. (2015). The trainable parameters are contained in the
convolutional layers, which transform the data by convolving the
input with kernels and adding bias coefficients. Convolving with a

single kernel yields a 3D feature map. Because every layer contains
several kernels, the output of each layer is 4D with the fourth dimen-
sion corresponding to the number of channels (i.e., the number of
kernels in the layer). We use rectified linear units (maxð0; :Þ) as ac-
tivation functions for the output of the convolutional layers. To learn
abstract concepts, the network should see the data at different scales.

Figure 1. Simplified overview of the 3D CNN used in this work. The data flow is from
left to right during the forward pass as indicated by the black arrows. The boxes re-
present multichannel 4D feature maps (here drawn in 3D for simplicity) color coded
by layer type. In this example, the input data h are interpreted along their central cross-
line and the mask m contains ones at the location of the picks along the crossline slice
and zeros elsewhere. For simplicity, the output hypercube is represented as a histogram
counting the number of voxels associated with each horizon. The exact architecture of
the CNN is described in Table 1.

Table 1. Architecture of our CNN, designed after Ronneberger
et al. (2015)5.

5Conv stands for convolution, upsampling is performed by nearest neighbor
interpolation, BN stands for batch normalization (Ioffe and Szegedy, 2015), ReLU
for rectified linear unit, and Maxpool for max-pooling. The size and number of
convolutional kernels in each layer are indicated in parentheses. The down and
upsampling factors are indicated in parentheses next to the corresponding
operations. The blue arrows indicate the skip connections that concatenate the
activation maps, along the fourth dimension, which consists of a shallow
convolution with its symmetric upsampled counterpart.
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The receptive field refers to the effective window size that a convolu-
tional layer is accessing from the original data. For the first layer, the
receptive field is equal to the spatial size of the kernels. We use a
constant kernel size of 5 × 5 × 5 over the network, and we
use max-pooling operations to progressively downsample the data.
Max pooling is a sliding window operation that keeps the largest
value inside the window and drops the others. A pooling window of
1 × 1 × 2 keeps the inline and crossline dimensions unchanged and
downsamples the time dimension by a factor of two. Accordingly, the
effective receptive field of the next convolutional layer is twice as
large in the vertical direction as in the horizontal ones. Because
we aim to classify every voxel of the input data, the network must
yield an output that has the same spatial shape as the input. The first
half of the network is downsampling the data by a desired rate, and
the second half is a symmetric counterpart that progressively trans-
forms the data back to their original spatial shape (see Figure 1). We
use nearest neighbor interpolation to perform the upsampling. To
compensate for the loss of information caused by the successive pool-
ing layers, we use skip connections (Ronneberger et al., 2015) to in-
ject data from shallow layers to deeper ones (see Table 1).
To choose the number of layers, there is a trade-off between the

largest data scale accessible to the network and the memory and com-
putational costs. We consider that for the horizon picking problem, it
is more important to access low-frequency information along time
than along the inline and crossline dimensions. For this reason, as
detailed in Table 1, we alternate between 1 × 1 × 2 and 2 × 2 × 2

downsampling factors. The three pooling layers yield to a total down-
sampling of 2 × 2 × 8. To regularize the training, we apply batch nor-
malization (Ioffe and Szegedy, 2015) and dropout (Srivastava et al.,
2014) and learn the parameters with the Adam optimizer (Kingma
and Ba, 2014) using the library TensorFlow (Abadi et al., 2016).

Training data and prediction

When picking horizons, the interpreter needs to build an under-
standing of the geometry of the area by establishing fault patterns
and inferring the depositional and tectonic history of the site. Once
the reflectors of interest have been identified, they need to be picked
in a dense 3D grid. Most workstations allow this process to be par-
tially automated by letting the interpreter provide information to the
tracking algorithm of the reflections that should be followed and
iteratively refining the results by making manual adjustments and
adding constraints in the mispicked areas. The quality of the auto-
matic tracking will have a big impact on the time needed to com-

plete the task. For our supervised deep-learning approach, we use
the picks of the interpreter to create the training labels. As explained
in the previous section, the labels should be provided as a hypercube
in which the fourth dimension holds the reflector probabilities. For
every manually picked horizon, we set the probability of the cor-
responding voxels to one in the label’s hypercube.
To introduce uncertainty in the exact position of the reflectors, we

convolve the labels with a normalized 1D Gaussian kernel in the
vertical direction (see Figure 2). A difficulty of this approach is
that one needs to label every voxel of the training data, which is
a tedious task when working with 3D seismic. However, a common
solution is to use a masked loss that allows labeling only a subset of
the voxels without affecting the training quality (Xu et al., 2015;
Peters et al., 2019). In addition to providing the labels, one also
defines a binary mask mðil; xl; tÞ containing ones for the voxels
that are explicitly marked by the interpreter and zeros elsewhere.
For instance, if one decides to label an entire inline section, the
mask would be a cube of zeros for every inline except for the hori-
zons interpreted on the single inline section in which the mask
would contain ones for these voxels (looking at Figure 2, we set
to one every voxel of the mask that corresponds to a nonzero prob-
ability for at least one of the horizons). If one wishes to highlight
horizons with seed points, the mask would contain ones only at the
seed locations. Because we incorporate uncertainties in the exact
position of the picks by convolving with a Gaussian kernel, we also
convolve the binary mask with the same kernel and set to one all
voxels whose value is greater than 0.1. The loss function of equa-
tion 1 is then modified by masking the cross entropy by an element-
wise multiplication:

lðw;p; p̂wÞ ¼ −

X

il;xl;t

mðil; xl; tÞ

×

XKþ1

k¼1

pðil; xl; t; kÞ log½p̂wðil; xl; t; kÞ�: (3)

In this way, during training, the gradients used to update the param-
eters will be nonzero only in the picked areas.
Once the network is trained, we run a prediction on the entire seis-

mic stack to obtain a hypercube containing the probability density
function for the presence of the horizons at every voxel. Because con-
volutions and other transformations of our network do not depend on
the input data size, we can evaluate the network on data of arbitrary
dimensions (Long et al., 2014). Because the entire 3D stack may not

Figure 2. Preparation of the labels for training. The left image shows the picks performed on a 2D section for the different horizons that we
want to map. The images on the right are three of the probability slices obtained by convolving in the vertical dimension the picks of individual
horizons with a 1D Gaussian kernel. The final labels are created by concatenating every probability slices along an extra dimension. The last
slice of the labels corresponds to the “other” class, and its values are chosen such that the total distribution sums to one.
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fit in memory, we perform the evaluation in chunks. We split the vol-
ume into subcubes, run the segmentation iteratively, and merge the
probabilities at the end. To extract an actual 2D horizon surface sk
from the hypercube, we take the position of the maximum probability
along the vertical dimension as indicated in equation 4 (see Figure 3):

skðil; xlÞ ¼ argmax
t

½p̂wðil; xl; t; kÞ�: (4)

Because storing the full 4D probability cube can
occupy an excessive amount of disk space, one
may instead extract the surfaces during the itera-
tive segmentation and only store the horizons. The
final horizons are obtained after despiking and
smoothing postprocessing procedures.

RESULTS

We evaluate our method on two marine surveys
and compare the results of the machine with the
interpretations proposed by experts. We create the
training data sets by selecting several interpreted
lines. We could use seed points instead of full 2D
interpretations, but in this way we get more train-
ing examples at a minimum extra of manual effort.
Seed points may also not be enough to guide the
algorithm for difficult reflections that have a low
signal-to-noise ratio and that may have a fairly
heterogeneous character over the survey. For such
reflections, interpreters use their experience and
intuition to draw the lines. We also select one in-
terpreted line in a different region for the valida-
tion set of each survey. We normalize the seismic
volume to the amplitude range ½−1; 1�, and we
extract samples around the training and validation
lines with a shape of ½Δil;Δxl;Δt� ¼ ½32; 32; 96�.
For both experiments, we use a learning rate of
5 × 10−4 and reduce its value by 33% every 10
epochs. We train the network for 25 epochs with
a batch size of 12 samples. To artificially increase
the size of the training data sets, we perform a sim-
ple data augmentation (Simard et al., 2003) by
flipping the inline and crossline directions and by
adding white noise with a standard deviation of
0.025 to the input seismic image.

Faults and fine training

The first data set is a stack of 301 inlines × 201
crosslines × 301 time samples with a discretiza-
tion of 25 m × 25 m × 4 ms. It contains six hori-
zons of interest in a faulted area, and a manual
interpretation serves as a reference. We use four
inlines to create the training data set. The training
takes 47 min on a TITAN X GPU. The final pre-
diction takes less than a minute by splitting the
stack in overlapping chunks of 32 inlines. Fig-
ure 3 shows the results on two cross sections (not
used to prepare the training data) for the top res-
ervoir. The probability attribute can be used to
determine areas where the network’s prediction

is uncertain. The bottom section, for instance, shows that on the
other side of the tectonic event (for crosslines less than 1020) is a
region of low certainty, although the network is nevertheless able to
find the reflection. Figure 4 displays all of the horizons on a cross-
line section. Although the extracted surfaces do not exactly match
the original interpretation, we deem them to be of good quality for a

Figure 3. The 2D sections at (a) crossline 1200 and (c) inline 500 through the data and
their corresponding probability cube for the top reservoir in (b and d). The interpretation
and the machine’s prediction are displayed, and we also show the prediction before
despiking in semitransparency.

Figure 4. The 2D section at crossline 1200 shows (a) the interpretation and (b) the
machine prediction for the six horizons.
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first training pass. Even the relatively weak reflectors, such as the
reflection highlighted by the orange horizon (the fifth deepest), are
picked. Figure 5 shows the top reservoir. Regions of low values in
the probability surface highlight the faults and the tectonic folding.
By construction of the neural network, we do not impose special
assumptions on the lateral continuity of the reflectors and, in par-
ticular, fault discontinuities are, in theory, not a problem for the pre-
diction. We see that the faults are better defined on the expert’s
interpretation. This might be explained by the fact that it was done
by hand and that the interpreter picked the reflection from both sides
of the discontinuity and filled the gap by linear interpolation, lead-
ing to a sharp transition.
If one is not completely satisfied by the results of the first training

pass, one can fine-tune the network training. Figures 6 and 7 show
the effect of such fine training. In the area marked by the red rec-
tangle in Figure 6a, we place 10 seed points to extract additional
training examples. We create a new training data set composed of
10 samples extracted around the seed points, as well as 50 samples
randomly chosen from the original training set. We further train the

network for approximately 2 min with a learning rate 10 times
smaller than the original one. We use a much smaller learning rate
because the network is already trained, and we only want to fine
tune its weights. We also incorporate samples from the original data
set to limit overfitting. This phenomenon happens when the training
set is too small and the network becomes overly specialized at rec-
ognizing the training data and performs poorly in other areas of the
survey. For this reason, we also only reevaluate the fine-trained net-
work in a small region around the seed points. After rerunning the
segmentation, we observe that the prediction follows the interpre-
tation more closely.

Extension to prestack seismic data

The second data set consists of prestack angle gathers of dimen-
sion 999 inlines × 699 crosslines × 30 angles × 241 time samples
with a discretization of 12.5 m × 12.5 m × 2° × 4 ms. It contains
six horizons of interest, around a reservoir, interpreted with a com-
bination of handpicking and crosscorrelation-based autotracking.
We use one inline and one crossline from a 2° to 12° near-angle
stack to create the training data set, and we train the network for
1.03 h. The evaluation runs in less than a minute by splitting the
volume in overlapping chunks of 32 inlines. Figures 8 and 9 show
the results, obtained by predicting on the near stack, on a crossline
section away from the training lines. The autopicking results are
similar to the reference baseline, and differences observed on the
weaker reflectors are subject to discussion with experts.
In addition, we study how sensitive the network is to changes in

the wavelet in the prestack domain. We apply the trained network
iteratively on all angle planes from 2° to 60°. Each angle plane is a
3D volumewith the same dimensions as the near stack, and the final
prediction yields 3D prestack horizons that depend on the incidence
angle. We focus on the top of the reservoir shown in Figure 10 and
display the corresponding horizon in Figures 11 and 12. We see that
the network is correctly picking the horizon up to a certain angle
before losing it once the waveform becomes too different from
the one observed in the near stack. Extending horizons to the prestack
domain is useful to perform an improved amplitude versus angle
analysis because the gradient is strongly sensitive to moveout effects.

DISCUSSION

CNNs present several advantages to tackle the horizon picking
problem. They do not require strong prior information to operate,
and they can adapt to any seismic data. For instance because they
work by scanning the entire volume and do not expect a reflection to
be found within a certain vertical distance between two neighboring
traces, they are appropriate to follow a signal in a faulted area or
across a steeply dipping event. In Figure 5d, we observe that the
confidence of the network is low at the faults because the reflection
at these exact locations is not well-defined, but it nevertheless fol-
lows the horizon across the fault blocks. CNNs also have good scal-
ability with respect to the number of reflections to be predicted.
When increasing the number of horizons, one only needs to increase
the number of channels in the last convolutional layer by the same
amount, which results in a minor growth in computational cost.
The fact that our network performs a segmentation, instead of a

classification, of the input data is also an advantage. Indeed, whereas
segmentation networks need to see each voxel only once, classifica-
tion networks associate one label to the center of a fixed-size input

Figure 5. Map views of the top reservoir. (a) Solution provided by
the interpreters; the training lines are shown in red. (b) Horizon pre-
dicted by our neural network. (c) Difference between the interpre-
tation and the prediction. We also report the root-mean-square error
(rms error) and mean absolute error (MAE). (d) Probability asso-
ciated with the picks.
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patch, and obtaining a prediction over the entire volume requires us to
evaluate the network on a few overlapping patches equal to the num-
ber of voxels in the data. For standard seismic stacks containing
106–109 voxels, this induces a considerable overhead that can lead to
an evaluation time much greater than the training time itself. Because
the evaluation time of our segmentation approach is small, it is suit-
able to run many successive segmentation on offset or angle planes to
follow a reflection in the prestack domain, as shown in Figure 11.
The multidimensional and multiscale nature of CNNs also make

them robust classifiers. In Figure 13, we experiment with a 1D net-

work that only analyzes traces along time and observe that, given
the same training data, the performance is worse than with the cor-
responding 3D version. The limited resolution of seismic data, and
the various sources of noise, often lead to uncertainties in the in-
terpretation. As such, we believe that exploiting deep learning in an
interactive manner, by giving the interpreter the possibility to refine
the results by progressively adding new examples to the training
data set, is an important part of the presented workflow. By using
a masked loss, we give flexibility to the interpreter to pick examples
using either seed points or line interpretations, without worrying

about the 3D aspects of the algorithm.
However, there are also challenges in applying

deep learning to the horizon interpretation prob-
lem. Neural networks are dependent on the quan-
tity and quality of the training data (LeCun et al.,
2015). They can adapt to any data set and do not
suffer from prior-induced limitations, but they
need to be given enough examples before cor-
rectly generalizing. Although we show that our
method only requires a reasonable amount of
training labels, the approach still strongly relies
on manual interpretation by an expert. For a seis-
mic volume containing many horizons, provid-
ing the initial training samples is an obstacle to
overcome. The workflow is also penalized by a
slow start because the neural network needs to be
trained to convergence before obtaining the firsts
results. In Wu et al. (2019) and Tschannen et al.
(2019), the authors use synthetic modeling to
create large training data sets and train networks
that can generalize to real data. However, in this
application we aim to pick specific reflections

Figure 6. Map views of the top reservoir. (a) Ground truth provided by the interpreters.
(b) Horizon picked by our neural network after the first pass of training. (c) Prediction,
updated only inside of the red square, after fine-tuning the network. The rms error, com-
puted inside the red square between the interpretation and the prediction, decreased from
36.9 to 15.5 and the MAE from 18.8 to 9.7. The 10 seed points used to fine-train the
network are shown by the red dots.

Figure 7. The 2D section at inline 646. We plot the interpretation,
as well as the original and refined predictions are shown in Figure 6.
The seed points used for fine-training are displayed as red dots.

Figure 8. The 2D section at crossline 16301 of (a) the near-angle
stack and (b) the probability cube for the top reservoir. The interpre-
tation and the machine’s prediction are displayed.
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and we cannot rely on the exploitation of more
abstract and generalizable concepts such as faults
or diffractions. By borrowing elements from
state-of-the-art architectures (Ioffe and Szegedy,
2015; Ronneberger et al., 2015) and designing
the network to have a smaller reach in the inline
and crossline directions than in the time direc-
tion, we keep the computational and memory
requirements low.
Another difficulty lies in the empirical nature of

deep learning. Training a CNN requires the tuning
of several hyperparameters. To find these param-
eters, practitioners usually rely on a performance
metric evaluated on a validation data set. However
in geosciences, labeled data are scarce and some-
times noisy. In our experiments, monitoring the
training process using a single test line is not al-
ways very informative, and we also find it helpful
to use a more qualitative assessment by carefully
visualizing the predicted horizons together with
the seismic data. We show in Figure 14 the evo-
lution of the training and validation errors with the
number of epochs for the first data set. We see that
the validation error decreases with the number of
epochs in a similar fashion as the training error.
This behavior is a good sign that indicates low
overfitting and is in accordance with the good
quality, on average, of the prediction shown in Fig-
ure 5b. However, horizon interpretation is a task
that requires precision, and the geology may rap-
idly change over a data set. The average value of
the validation loss does not inform us directly on
how the network is performing in the different
areas of the data set. For example, in Figure 7,
the prediction (in green) is very close to the inter-
pretation except in the steeply dipping area, be-
tween crosslines 1000 and 1140. We also see
that the validation error is more volatile and on
average a bit larger than the training error, which
indicates that the network does not perfectly gen-
eralize to the entire survey. Using larger training
and validation sets would certainly improve the
prediction’s quality, but a trade-off must be found
because increasing the amount of manual labeling
is in contradiction to the automatization that is the
purpose of the algorithm. Overall, we find that our
architecture is not overly sensitive to key hyper-
parameters such as the learning rate, the number
of kernels per layer, and the number of epochs,
and we obtain good results on two different data
sets with the same parameterization. As stated
above, our solution depends on the training data,
and we see for instance in Figure 12 that the pre-
diction does not work when the waveform is too
different from the one observed in the training
data. In this case, to successfully recognize the re-
flection beyond the polarity reversal angle, one
would need to repeat the training procedure using
examples picked on a far stack.

Figure 9. The 2D section at crossline 16301 of the near-angle stack shows (a) the in-
terpretation and (b) the machine prediction for the six horizons.

Figure 10. Map views of the top reservoir for the near stack. (a) Solution provided by
the interpreters; the training lines are shown in red. (b) Horizon predicted by our neural
network. (c) Difference between the interpretation and the prediction. (d) Probability
associated with the picks.

N24 Tschannen et al.

D
o
w

n
lo

ad
ed

 0
5
/2

9
/2

0
 t

o
 8

0
.1

9
7
.1

2
9
.7

9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



Figure 11. Prediction of the top reservoir across the prestack do-
main. (a) Angle gather at inline 27208 and crossline 16022; the pre-
dicted horizon is drawn in red. The prediction is following the
moveout of the reflector up to 40°, and it fails to recognize the event
once the waveform becomes too different from the reference near
stack, in particular because of stretching. (b) Prediction probability.

Figure 12. Prediction of the top reservoir across the prestack domain.
The setting is similar to Figure 11, for a gather at inline 27600 and
crossline 16402. The network correctly picks the reflection until 34°,
and it fails to recognize the event once the waveform becomes too dif-
ferent from the reference near the stack because of a polarity reversal.

Figure 13. Results obtained for the same horizon as shown in
Figure 5 but with a 1D CNN. The architecture of the CNN is the
same as the one presented in Table 1, but 3D kernels are replaced by
1 × 1 × 5 kernels. We use training samples of size 1 × 1 × 96 in the
inline, crossline, and time dimensions, and we train the network for
40 epochs with the same parameters as for Figure 5.

Figure 14. Training and validation errors, for the first data set, moni-
tored over the training epochs.
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In addition, CNNs may also suffer from boundary condition ar-
tifacts. In Figure 5b, some outliers are visible in the upper part of the
predicted surface (at large inlines). Because the network is based on
convolutions, performing a prediction on the edge of the volume
requires artificially extending the data, using for instance a mirror-
ing condition, which may affect the quality of the output. Finally,
although here we treat the multihorizon picking problem, we do not
explicitly enforce an ordering of the predictions, and crossings may
occur. Because the network is trained using patches, it does not have
knowledge of the global coordinate system, and it is nontrivial to
make it aware of the relative position of the different samples. We
do not address this issue here, and we enforce ordering of the hori-
zons as a postprocessing operation.

CONCLUSION

We have discussed a practical approach to efficiently and simul-
taneously pick several horizons in a 3D seismic image. We formu-
late the problem as a segmentation task, in which the position of the
reflectors is expressed as a probability distribution, and we use su-
pervised deep learning to solve it. We design an efficient architec-
ture for a 3D CNN that allows us to analyze the data over multiple
scales while keeping the memory and computational requirements
low. We use a masked loss function to give flexibility to the inter-
preters in the way they pick the training data. The method requires
us to label only a few lines through the survey to yield good initial
results, and we show how interpreters can progressively improve the
predictions by fine-tuning the network training. Validation on field
data shows the potential of the method, and in future work we plan
to integrate, within the same end-to-end workflow, the interpretation
of other structural features such as faults or salt bodies.
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4.3. Applications

4.3.2 Determination of Geological Facies

Classification from Well Logs

In this section we insert the work done in Tschannen et al. (2017) on the determination of

geological facies with well logs.
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SUMMARY

The idea to use automated algorithms to determine geolog-

ical facies from well logs is not new (see e.g Busch et al.

(1987); Rabaute (1998)) but the recent and dramatic increase

in research in the field of machine learning makes it a good

time to revisit the topic. Following an exercise proposed by

Dubois et al. (2007) and Hall (2016) we employ a modern

type of deep convolutional network, called inception network

(Szegedy et al., 2015), to tackle the supervised classification

task and we discuss the methodological limits of such problem

as well as further research opportunities.

INTRODUCTION

Facies are used by geologists to group together body of rocks

with similar characteristics in order to facilitate the study of a

basin of interest. Their definition is rather subjective as it de-

pends on the attributes we choose for the classification. One

may for instance focus on biological differences by looking at

the type of shells present in the samples or we may wish to em-

phasis petrological characteristics by accounting for the granu-

lometry and the mineralogy. In the case of Oil&Gas reservoirs,

porosity and permeability are critical properties to determine

since they give indications about the potential volume of fluids

that might be stored in a rock and how they will flow during

production. We can therefore expect that grains size, shape

and density as well as the depositional and compaction history

of the rocks will be a dominant factor for the categorization.

While the main source of information for defining those facies

comes from the observation of core samples under visible and

x-ray light, we also have a variety of well log recordings at our

disposal. By measuring the acoustic and electrical responses

as well as the nuclear radiations of the drilled medium, we

can infer properties about its rock matrix and fluid content and

indirectly relate them to the porosity, permeability or fluid sat-

uration of the rocks.

Classifying high dimensional data into groups is one of the

main branch of the popular field of machine learning. Among

the vast panel of methods, current attention is mainly received

by so called deep neural networks. Learning from experience,

those algorithms are able to discover abstract representations

and to understand the data in terms of a hierarchy of concepts.

They have shown impressive results in a vast panel of super-

vised classification problems (LeCun et al., 2015).

METHOD

Convolutional networks

Deep networks have recently become the method of choice to

solve problems in the fields of computer vision and speech

recognition. Their general architecture can be seen as a se-

quence of layers connected to each other trough a non-linear

differentiable function. Each layer is composed of a number

of units that independently apply a simple affine transform on

their input. The power of such approach resides in the way

the coefficients of the transforms are set. Rather than being

manually engineered they are given the freedom to adapt to

the data by progressively learning from examples. Stacking

several layers is a key in the success of those algorithms. Due

to the non-linearity applied in between each layers, the learnt

coefficients tend to be sensitive to progressively more abstract

and complex features in the data as we go deeper in the net-

work. The global perspective of those algorithms however

has some inconveniences. They require a huge number of pa-

rameters and are difficult to train when working on real world

datasets (Lecun et al., 1998).

To overcome those drawbacks, early researchers such as Lecun

et al. (1998) proposed to restrict the so called receptive fields of

each units to localized regions of the data. By making the ob-

servation that the world is compositional, they argued that in-

stead of using the entire input at once to learn the coefficients,

units should rather process local groups of samples in a sliding

manner. This particular class of networks are named convolu-

tional networks (ConvNets). In addition of being computation-

ally and memory effective (each unit now posses only as many

parameters as the size of its receptive field) it also appears to

be a more robust way to proceed when it comes to field record-

ings. In the shallow part, by looking at localised regions of the

data, the units typically learn wavelet-like convolutional filters

that are useful in detecting basic features. The deeper units will

take advantage of the simple feature detectors provided by the

previous layers to make their own advanced detectors. Further-

more, by using zoom-out operations (referred in the literature

as pooling) in-between the layers, deeper units will look at the

data in a progressively more global way (LeCun et al., 2015).

As an example, if we assume the gradient of the well logs to be

relevant in our problem, it is likely that knowing the gradient

over the entire logs will be necessary. Rather than having to

learn a large filter made of the concatenation of many differ-

ential operators, it is easier to simply learn one operator and

apply it in a convolutional manner.

ConvNets are typically designed in a reversed pyramid manner

by increasing the number of units as we go to deeper layers.

This will progressively transform the original data into a very

high dimensional, non-linear space, where clustering, classifi-

cations or regressions can be effectively conducted.

Classification

In this work we are interested in employing a ConvNet to solve

a supervised classification problem. Using training data com-

ing from wells where the facies sequences were already de-
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Figure 1: Schematic architecture of a 1 dimensional ConvNet. A short depth-window is extracted from the logs around an example

of facies. Filters in the convolution layers are 2-dimensional, in measured-depth (meters or feet) and in channels (number of logs

per well) but applied only along depth. The number of filters in the first layer will determine the number of input data to the second

layer. Pooling operations reduce the length of the logs by dropping every other samples. On input to the fully connected layers,

all filtered well logs are concatenated into a large 1-dimensional series. The softmax layer outputs a vector whose elements form a

discrete probability distribution of the facies.

termined by geologists, we train the network to predict facies

series that accurately match the experts’ interpretation. To this

end, in addition to the convolutional and pooling layers de-

scribed in the previous section, we also need to append fully

connected (fc) layers and an output layer. Unlike the convolu-

tional layers, fc layers have access to the entire input at once.

Since they come after the deepest convolutional layer, they

will be fed with already abstracted individual feature detec-

tors. With the help of additional non-linearities between them,

their role is to appropriately combine the abstracted features

together in order to solve the supervised task. The output layer

is converting the information fed by the fc layers (usually) as

a discrete probability distribution of the facies. At each itera-

tion, a random subset of the examples are sent to the network,

and using an appropriate objective function, such as the cross-

entropy, we compare the predicted labels to the training labels.

A global error term is computed and back-propagated though

the network to update all the coefficients, in order to minimize

the classification error. This approach is called the stochastic

gradient descent (Lecun et al., 1998). If the network was prop-

erly trained, it should now be able to generalise to new wells

where we do not know in advance the facies sequence.

The inception modules

Szegedy et al. (2015) proposed an interesting modification to

the convolutional layers. Instead of having a homogeneous set-

ting, they split the layers into four distinct paths (Figure 2) and

they introduce the 1×1 convolutions as a cost-effective and ef-

ficient feature augmentation technique. The 1×1 convolutions

can be seen as a weighting of the different input filters, pro-

ducing many possible linear combinations that the network can

choose from in later layers, while keeping the number of out-

puts reasonably small. They are also followed by a non-linear

activation which further improves the generalization power of

the network.

The layout of the inception module can be seen in Figure 2.

The data follows each of the four path in parallel before being

concatenated at the output. Since it is unclear whether the low

frequency or the hight frequency (or both) information con-

tained in the well logs will dominate the learning process, we

better let the algorithm decides on its own. As we stack those

modules on top of each other, the network progressively learns

more and more abstract features from the data which can then

be fed to the softmax classifier.

Figure 2: Inception module architecture after Szegedy et al.

(2015). On the left, the 1×1 convolution will preserve the ver-

tical resolution of the log sequences. The small kernel con-

volution will be more sensitive to high frequency informa-

tions. The large kernel convolution will be more sensitive to

low frequency information. Finally, on the right side, a pool-

ing followed by a 1x1 convolution will perform a sort of low-

frequency filtering of the logs, in order to progressively look at

more spatially averaged features.
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Regularization techniques

The biggest challenge in teaching a deep network lies in pre-

venting over-fitting, whos symptom is a large drop between

the training and the testing performances. Rather than learn-

ing parameters that capture the nature of the data, it is often

observed that a network simply memorizes the training exam-

ples. Hence, this results in a very high prediction accuracy

on the examples it has already seen, but in poor generaliza-

tion performances. The most important is to make sure that

the problem we want to solve is well-posed and that we have

enough training samples. Additionally, many preconditioning

and regularization techniques have been developed. Common

practice involve a standardization of the input data, an appro-

priate choice of objective function with the possible addition of

penalty terms and the use of dropout (Srivastava et al., 2014)

to enforce redundancy in the learnt filters weights. Hyper-

parameters, such as the learning rate (step size of the gradi-

ent descent) should be carefully tuned by using subsets of the

training examples for blind validation. Due to the random ini-

tialization of the network and the stochastic nature of the learn-

ing phase, results will vary from run to run, and one should aim

to design a stable algorithm.

EXPERIMENT

The data we used and the experiment settings originate from a

class taught at the University of Kansas (Bohling and Dubois,

2003); (Dubois et al., 2007). An up-to-date implementation

of our method with the library Tensorflow can be found on

Github∗. A total number of 11 wells were supplied, each con-

taining 7 logs and a corresponding rock facies series. Out of

those 11 wells, 9 were used for training the network and the re-

maining 2 for a blind evaluation. Among the logs, 5 come from

wireline measurements sampled every 1.5 meters (gamma ray,

resistivity logging, photoelectric effect, neutron-density poros-

ity difference and average neutron-density porosity) plus an

additional 2 geological constraints (non-marine versus marine

indicator and relative position) derived from knowledge of the

reservoir area. Moreover, we remark that the 2 neutron-density

logs are computed using mineralogy dependent coefficients,

which may be an additional source of uncertainty.

From observations of core samples, geologists determined that

the stratigraphy could be described by 9 different facies: Non-

marine sandstone (SS), Nonmarine coarse siltstone (CSiS), Non-

marine fine siltstone (FSiS), Marine siltstone and shale (SiSh),

Mudstone (limestone - MS), Wackestone (limestone - WS),

Dolomite (D), Packstone-grainstone (limestone - PS) and Phylloid-

algal bafflestone (limestone - BS).

We show in Figure 3 the results obtained for one of the two

blind wells and we assess the quality of the machine’s pre-

diction with respect to the geologists’ classification in term of

the F1 score (Figure 4). Visually, the predicted stratigraphy

seems reasonable in the first order, as it looks like a median

filtered version of the man-made solution. However, an aver-

age F1 score of 0.574 and the many observable short intervals

∗https://github.com/vts21/2016-ml-contest/tree/master/itwm

in the lithofacies sequence presenting dissimilarities, bring out

the difficulties of the network to match the geologists’ answer

with a high resolution. For instance, if we focus on the packe-

stone layer (PS, in purple) predicted by the machine with a

fairly high confidence between 2990m and 3005m, we see a

drop in the probabilities at the borders indicating uncertainties

in the exact location of the transitions from the above siltstone

and the coming wackestone. We also observe that the very fine

layers (between 1.5m and 3m thick) of dolomite, mudestone

and wackstone found inside the main packestone layer by the

geologists were simply not recognized by the machine.

Figure 3: Results of the classification on a blind well. The five

first plots show the measured logs as a function of depth (in

meters). The two facies series represent the prediction by the

machine on the left and the solution proposed by the geologists

on the right. The last plot gives the probability with which

the machine selected the facies. Bright yellow colors indicate

a high certitude (above 70%) while the dark colors indicate

uncertain regions (below 50%). The colorbar on the very right

gives the correspondences to the facies. (Plot modified from

del Monte (2015)).

DISCUSSION

The results published by Hall (2016) and the SEG show that all

the deep learning methods gave F1 scores below 0.60 and that

the decision tree like methods fell below 0.65. For a machine

learning contest those scores are surprisingly bad, and it is also
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Figure 4: Confusion matrix for the results shown in Figure

3. The last column (in blue) shows the total number of facies

present in the geologists’ interpretation. The diagonal (in red)

gives the number of facies that were correctly classified by the

machine. Off diagonal terms represent the miss-classifications

of the machine. E.g, the number in the first row, second col-

umn indicates that the machine classified 14 samples as coarse

siltstone (CSiS) whereas the geologist classified them as sand-

stone (SS). Precision is the ratio of true positives to all pre-

dicted positives. Recall is the ratio of true positives to all actual

positives. The F1 metric weights recall and precision equally.

interesting to note that deep learning approaches do not dom-

inate. Concerning the later observation, we believe that the

poorer performances of deep learning is due to a lack of data,

as the power of those algorithms comes at the cost of supply-

ing a profusion of training examples. As for the poor match

in terms of F1 score, Dubois et al. (2007) point out that the

facies zones are more of a continuum rather than a clearly dis-

crete sequence. This means that neighbour classes can be very

similar, and a clear frontier does not exist. Moreover, human

interpretation is non-unique and subject to errors, which is an

additional challenge for geoscientific applications of machine

learning as the ground truth is never know for certain.

As previously mentioned, geologists used visual observations

of core samples as well as general knowledge about the area to

determine their sequence. On the other hand the network was

only given access to well data. Since the resolution at the log

scale is lower than the resolution at the core scale, this alone

should explain why the very thin layers labelled by the geol-

ogists are not always recovered by the algorithm. Besides, it

is not obvious that the distinctive visual criteria chosen by the

experts will also appear in our 7 logs. This could mean that the

boundaries drawn by the geologists cannot be completely re-

covered by the machine, making the problem we want to solve

ill-posed. As an example, the confusion matrix in Figure 4

highlights the difficulty encountered by the network to separate

the coarse siltstone (CSiS) and the fine siltstone (FSiS). To dis-

tinguish between the two clastic sedimentary rocks, petrologist

are measuring the grain size. Given the well logs available, it

is unlikely that the machine can match the power resolution of

the human eye even considering the differences in porosity. It

would have been informative to have a sonic log in addition, as

grain size, and so the softness of the rock, strongly influences

the acoustic propagation.

An other factor to take into account is the proportion occupied

by the different facies in the training and validation data. Fig-

ure 5 reveals that the algorithm saw almost seven times more

examples of coarse sisltstones (CSiS) than dolomites (D). How-

ever, despite this, the confusion matrix indicates that classifi-

cation performances for the dolomites reached an F1 score of

0.66 against 0.60 for the coarse siltstones. Therefore, it seems

that the main problem is not the quantity of data but rather the

resolution limitations discussed in the previous paragraph.

Figure 5: Bar-plot representing the total number of occur-

rences of each of the 9 facies for both the training data and

the geologists interpretation for one of the blind wells (Stuart).

As noted again by Dubois et al. (2007), being able to correctly

classify within one neighbour facies is just as good as being

correct, and since sources of information given to the geolo-

gists and the machine were different, we believe that evaluat-

ing the success of the exercise in terms of F1 score alone is of

little interest. The machine’s classification is not in competi-

tion with the humans’ one but should rather be evaluated as a

complementary information. Discussions with geologists who

know the reservoir will indicate whether the global machine

interpretation is nevertheless interesting.

CONCLUSION

We proposed to train an inception network to determine the

stratigraphy of a reservoir from well measurements. By ex-

tracting short sequences from the logs around examples of fa-

cies, the algorithm progressively learns a facies - dependent

parametrization of the data. We evaluated the prediction per-

formances on blind wells and provided visual and statistical

information about the results. The machine’s answer is satis-

fying in the first order but, being deprived of higher resolu-

tion core samples data and of additional well measurements,

it failed at reproducing the work of the geologists with a high

accuracy. In future work we will investigate a form of unsuper-

vised classification called clustering. Instead of teaching our

network to recognize the facies chosen by the geoscientists,

we may give it the freedom to come up with its own classes

and analyse the similarities and differences with the human in-

terpretation. Additionally, it shall be interesting to work with

hybrid networks which accept different types of data, from the

core scale to the seismic scale (see e.g Wang and Carr (2012)).
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4.3. Applications

Clustering from Seismic AVA Curves

Seismic amplitudes carry information about the physical properties of the sub-surface. Analysing

their spatial distribution as well as their evolution with the incidence angle (AVA behaviour),

yield hints about the lithology and fluids in presence (Simm et al., 2014). In early stages of the

exploration process, well information may not be available and amplitude analysis serves as a

scanning tool in charge of highlighting potentially interesting regions.

In this section, we look at a possible automatisation method of the amplitude screening using

unsupervised clustering. As opposed to the classification approach that we presented in our

work on well logs, clustering aims to group elements of a datasets together without the need

of an external (manual) help. Those algorithms are based on some notion of similarity and

optimize their parameters iteratively until a criteria of convergence is met.

We first perform a synthetic test by clustering AVA curves extracted at an horizon for data

modelled with the Zoeppritz equations. We design a wedge model with variations in the shear

wave velocities along inlines and variations of thickness along crosslines. We treat every curve

independently and cluster them with the K-mean algorithm (Hartigan & Wong, 1979). Given

a set of n curves (x1,x2, ...,xn) where each curve is of dimension d , the number of recorded

incidence angles, the algorithm aims to partition the n observations into a set of k clusters

C = {C1,C2, ...,Ck }. The partitioning is done as to minimize the per-cluster variance, i.e. to

solve:

argmin
C

k
∑

i=1

∑

x∈Ci

∥ x−µi ∥2 , (4.1)

where µi is the mean of points in Ci . Given an initial position of the cluster’s centres (centroids)

µ(0)
1 ,µ(0)

2 , ...,µ(0)
k

, a naive approach to optimize the clusters is to iteratively repeat the two

following steps:

Assignment step: For each observation, compute the Euclidean distance with each centroid

and assign it to the closest cluster.

Update step: Calculate the new centroids by taking the mean of the assigned observations:

µ(t+1)
i

= 1

|C (t )
i

|
∑

x j∈C (t )
i

x j , (4.2)
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where |C (t )
i

| is the cardinality of the i th cluster at step t .

The algorithm is not guaranteed to converge toward a global optimum, and the initialization

of the centroids position has a strong impact on the results (Hartigan & Wong, 1979). We use

the kmean++ algorithm for initialization (Arthur & Vassilvitskii, 2007), that aims to find good

initial positions by spreading out the initial centroids. The stopping criteria is either specified

as a maximum number of iterations or as a tolerance over the average intra-cluster variance.

(a)

(b)

Figure 4.2 – Clustering results of the synthetic data for a choice of 8 clusters. (a) Image on the
left is a stacked amplitude map extracted along the horizon. Image on the right displays the
cluster assignments. (b) Pairwise Euclidean distance matrix between the centroids.

The two key parameters of the approach are the choice of the number of clusters and the

preprocessing pipeline applied to the observations. For the synthetic data, we do not perform

any special preprocessing other than standardizing the curves with the global amplitude mean

and standard variation. We randomly select 20% of the curves to train the algorithm and
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Figure 4.3 – AVA curves extract along the horizon shown in Figure 4.2 and grouped according
to the clustering results. Coloured thick lines represent the average curve within each cluster
and the semi-transparent area represent the standard deviation.

assign every curve to a cluster after convergence. We show the clustering results in Figure 4.2.

We observe a continuous partitioning of the data along the inline direction, which indicates

the sensitivity of the algorithm to the changes in shear velocities. The signal is more complex

at small crossline indexes as the thickness of the reflector decreases and tuning interferences

occur. However, we observe a certain consistency of the clustering results as the zones adapt

to group together areas with similar average amplitudes. We also display in Figure 4.3 the

average AVA curves for each cluster. We see that the AVA-gradient is the main information

discovered by the algorithm to cluster the observations.

(a) (b)

Figure 4.4 – The BCU horizon mapped in the Volve dataset. (a) A slice at inline 10239. The
BCU horizon is highlighted by the red curve. (b) Map view.
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We now test the algorithm on curves extracted from the base Cretaceous unconformity (BCU)

horizon of the Volve dataset1 (see Figure 4.4). The worklow we employ is the same as for

the synthetic data with the exception that we perform spatial Gaussian smoothing prior to

clustering. This preprocessing step helps enforcing some spatial continuity of the predicted

clusters. More advanced preprocessing, involving for instance the computing of a series of

attributes, can be employed in order to help the algorithm extract more useful information

(de Matos et al., 2006). We display the results for two choices of cluster numbers in Figures 4.5

and 4.6. There is a consistency of the results between both cluster numbers, and a first quality

control allows us that the answer seems to be at least consistent in terms of average amplitude

distribution.

(a)

(b)

Figure 4.5 – Clustering results of the real data for a choice of 6 clusters. (a) Image on the left is
a stacked amplitude map extracted along the horizon. Image on the right displays the cluster
assignments. (b) Pairwise Euclidean distance matrix between the centroids.

1https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
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(a)

(b)

Figure 4.6 – Clustering results of the real data for a choice of 8 clusters. The display is similar
to Figure 4.5.

Evaluating the results of a clustering algorithm is often more difficult than performing the

clustering itself(Pfitzner et al., 2009). Those approach are explorative and no method come

with theoretical guaranties of optimality. Is is usually up to the user to try different configu-

rations and to judge the results (Estivill-Castro, 2002). For instance, without clear external

information about the area to constrain the problem, choosing the correct number of clusters

is not obvious. Some methods, like hierarchical clustering (Bishop, 2006), do not have a

number of cluster parameter and find one on their own. This is often stated as a strength

of those methods, however, those come with other hyper-parameters that have an indirect

influence on the number of clusters found. For this reason, we believe that K-mean is a

good choice as choosing explicitly the number of clusters facilitates the search for the best

parametrization. Also, many quantitative criteria exist in order to automatically tune for the

best hyper-parameters, but a subjective human evaluation is often needed for real world
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applications (Feldman & Sanger, 2007).

Our present approach remains a bit simplistic and more advanced worklows are designed by,

for instance, helping the clustering algorithm by feeding it with custom attributes that practi-

tioners believe to be of importance (de Matos et al., 2006). Overall, for seismic applications, it

is important that the clustering algorithm be fast and stable to initial conditions in order to

facilitate the exploration by the interpreter. We also like algorithms whose parameters have a

clear effect on the results as this make their tuning far easier. Together, we believe that seismic

clustering methods are only useful so long as the practitioners are able to interpret and judge

the results.

Discussion and Outlook

The initial goal of the Section was to develop a workflow for automatically partitioning a

dataset into distinctive regions by resorting to both seismic data and well measurements.

Unfortunately, the key challenge was to get access to a real dataset with a good quality migrated

prestack seismic as well as a number of (calibrated) well logs, together with an in depth

interpretation of the data done by experts of the region in order to allow for a serious discussion

of the machine’s results.

Nevertheless, we studied parts of the problem and already identified some of the main chal-

lenges associated with clustering analysis of geophysical data. One of the main point is the

difficulty to give a robust qualitative evaluation of the results. Even in the case of a supervised

training problem we point out in Tschannen et al. (2017) that a pure data scientist’s approach,

that does not take into account the specificities of geophysical data due to uncertainties and

subjectivity, is not suitable. We also discuss that despite the simplicity of creating an unsu-

pervised clustering workflow to partition seismic data into litho/fluid facies, the need for a

subjective evaluation by experts should not be overlooked.

In future work we hope to be working on a rich dataset in order to link information from

various geophysical and geological sources and have a look at inversion problems with deep

learning.
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4.3.3 Unsupervised Deep Learning

Introduction and Method

One of the earliest and simplest way developed to train a neural network without the need

for additional meta-information about the data, is to set-up a compression/decompression

scheme. As illustrated in Figure 4.7, the idea is to use two networks, one to compress the

data and the other to decompress it. Both networks are trained together in order to minimize

the decompression error. This is called an auto-encoder (Vincent et al., 2010) and we see

that no external information about the data is needed in order to train the network. It is

important to choose an architecture that yields an appropriate size for the latent space. If the

compression factor is too small, the auto-encoder may learn a trivial identity mapping that

will prove useless for further applications. If the compression factor is too big, the network

might not be able to recover all of the information. Besides data compression, auto-encoders

are also employed for denoising tasks (Vincent et al., 2010) or to pre-train networks before

performing a supervised training in the case where only few labelled examples are available

(Erhan et al., 2010).

Figure 4.7 – Schematic representation of an auto-encoder (Vincent et al., 2010). Input data is
first sent trough an encoder network E that decreases its spatial shape. It’s most compressed
form, z , is called the latent vector. The second part is a decoder D that up-samples the data
to its original shape. Both parts of the network are trained together in order to minimize the
reconstruction error.

In their work, Kingma & Welling (2013) proposed to add an additional constrain on the way

the latent representation is learned by re-formulating the problem using variational Bayesian

ideas. At the cost of an extra term in the loss function, variational auto-encoders (vae) are
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regularized to learn a continuous latent space. This brings interesting properties, in particular,

two input samples that are similar in the image domain tend to be mapped to the same region

of the latent space and all points sampled from the latent space tend to produce realistic

samples when decompressed by the decoder. As an example we show in Figure 4.8 the effect

of generating (i.e. transforming latent vectors using the decoder) images by progressively

moving through the latent space. We see that the network discovered properties such as the

orientation of the digits, and can also smoothly interpolate between distinct shapes.

Figure 4.8 – Images generated from the 2-dimensional latent space of a variational auto-
encoder trained on the mnist dataset (LeCun et al., 1989). Taken from Kingma & Welling
(2013).

Experiment

In this work, we design a 2D convolutional vae. The encoder is composed of two residual

blocks (He et al., 2016) and down-samples the data by a total factor of 4. We extract 350

samples from a stacked dataset in the crossline and time direction with a shape of 96×96

pixels, and train the network for 600 epochs with a momentum SGD optimizer. We use the

mean squared error in the image space and follow Kingma & Welling (2013) and regularize

the latent variables to be normally distributed. In order to regularize the training we use

batch-normalization and we randomly perturb the input samples by adding white noise and

performing Gaussian blurring. A key hyper-parameter is the trade-off coefficient between the

reconstruction error and the latent space constraint. To tune it, one can start with a very small

value. This essentially reverts the training setting to the one of a traditional auto-encoder.

Once one is able to get a good reconstruction, one can progressively increase the value until

one start to observe well behaving generative properties.
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Figure 4.9 – Results of the vae on an inline away from the training area. The image on the left
is the original seismic, the central image is the output of the network and the image on the
right is the difference between both.

We show in Figures 4.9 and 4.10 the results of passing an inline through the trained network.

Because it is much easier to learn structured signal than noisy, non-structured, signal, we

observe that the network naturally acts as a denoising algorithm. It seems that most of

reflections are correctly preserved and the network didn’t blur reflections across faults. In

Figure 4.11 we evaluate the generative performance of the network. To do so, we select two

input samples xa and xb from the seismic dataset. The encoder yields their respective latent

representation za and zb and the decoder their reconstructions x̃a and x̃b . Since the latent

space is supposed to be continuous and complete, we can linearly interpolate between the

points za and zb and observe the effect in the image space using the decoder. In practice, we

construct a set of variables z = (1−α)za +αzb for a range of values such that 0 ≤α≤ 1. We see

that the decoder can generate samples that do not exist in the original data but that look fairly

realistic. This visual quality control serves to judge whether the training can be considered

successful of not.

We also display in Figure 4.12 the results of the activation maximization technique proposed

by Erhan et al. (2009) to try to understand the sort of concepts learned by the different parts

of the network. To generate those images, we start with random noise in the image domain
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Figure 4.10 – A zoom of the vae results shown in Figure 4.9.

and iteratively update it by back propagation of the gradients computed from a loss function

asking to maximize the activation of a certain unit of the network. The textures seen here are

rather abstract but suggests that the network did start to learn some concepts from the data.

Figure 4.11 – Example of the generative performance of the network. Upper part: images on
the far right and left are obtained by decoding real input samples. Central images are obtained
by decoding a latent variable linearly interpolated between the latent representation of the
real samples. Lower part: real samples taken from the data for comparison. (Best seen as a
GIF animation.)

Discussion

While the denoising capability of the network is interesting in itself, variational auto-encoders

(and other self-supervised methods) have potential for more applications. Once trained, the
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(a) (b)

(c) (d)

Figure 4.12 – Visualization of the preferred input for some convolutional kernels of the network.
Computed after Erhan et al. (2009) (see Figure 3.1 for more details).

encoder may for instance serve as a feature extractor in other applications. In future work, we

plan for instance to replace the first half of the network that we use to map horizon surfaces

(Section 4.3.1) to see whether this helps to accelerate the convergence. This application would

be of interest since our horizon picking method is done with few training examples only and

suffers from a slow start. From the generative side, one may imagine applications to, for

instance, remove or enhance certain form of coherent signal. In their work, (Burgess et al.,

2018) showed on toy examples that a vae could be trained to learn a disentangled latent space.

This means that every dimensions of the space can be associated with a clear concept (such as

orientation or color). It then becomes possible to manipulate certain characteristics of the data

by modifying their latent representation in selected dimensions. As a loose example, Figure

4.13 shows that one dimension of the latent space is mostly sensitive to compact wavefronts

associated with near vertical events at the faults.
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Figure 4.13 – Probing the latent space by muting some of the dimensions. The image on the
left is the sample recovered from the full latent vector. The central image was obtained after
setting to 0 one of the dimension of the latent vector. The image one the right is the difference
between both.
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CHAPTER 5 APPLICATIONS TO SEISMIC PROCESSING

5.1 Résumé

Dans ce chapitre, nous nous intéressons aux méthodes de traitement destinées à améliorer

la qualité du signal afin de réduire les incertitudes dans l’interprétation. Ces approches né-

cessitent une attention particulière puisqu’elles transforment la donnée elle même, et par

conséquent elles ont une influence sur la totalité des étapes suivantes. Deux difficultés princi-

pales naissent de l’utilisation de l’apprentissage machine pour le traitement sismique. Pre-

mièrement, comme à chaque fois, il s’agit de trouver des moyens d’apprendre aux algorithmes.

En particulier, leur apprendre à distinguer le signal du bruit et à opérer des transformations

bénéfiques. De plus, puisque l’utilisateur n’a que peu de contrôle sur la façon d’opérer de

la machine, il faut être capable de s’assurer qu’aucun signal important n’a été endommagé

ou artificiellement modifié. Cette tâche peut s’avérer difficile devant la grande quantité de

données ainsi qu’à cause des incertitudes présentes.

Dans la suite, nous étudions trois applications possibles et discutons de leurs avantages

et limitations pratiques. Premièrement, nous décrivons un procédé d’apprentissage non

supervisé, basé sur la décomposition en éléments principaux, afin d’atténuer le bruit décorrélé

présent dans les données. Dans une deuxième partie, nous nous intéressons au problème

d’égalisation spectrale qui permet de comparer entre eux deux jeux de données issues de la

même région et enregistrées à des dates différentes. Nous utilisons l’apprentissage profond

supervisé et étudions en particulier le cas de l’extrapolation des hautes fréquences. Enfin,

nous proposons une méthode de traitement de bout-en-bout des données sismiques avant

sommation au moyen de l’apprentissage profond supervisé.
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Figure 5.1 – Typical workflow employed to transform data using deep learning. Arrows repre-
sent the direction of the data flow.

5.2 Overview

In this chapter we consider seismic processing techniques applied to improve the quality of the

data and reduce uncertainties in the interpretation. In particular we focus on post-migration

processing of gathers and stacks. Those applications fall into the regression category. Rather

than classifying elements of the data into a set of discreet categories like we present in Chapters

3 and 4, the goal here is to transform the seismic amplitudes themselves. These applications

therefore require special care since transforming the data will affect all the following processing

and interpretation steps. Unlike with traditional algorithms where it is possible to explicitly

constrain and parametrize algorithms in order to avoid damaging useful signal, one have a

less direct control over transformations done by a learning algorithm. On the other hand,

the potential of machine learning is in theory much greater than with traditional processing

methods, and better or even new ways to process the data may be made possible.

As often with machine learning, the main challenge is to find ways to train the algorithms. In

order to process the seismic data, one must indicate to the network which part of the signal

should be removed, which part should be transformed (and how it should be transformed)

and which part should be left untouched. We display in Figure 5.1 a typical workflow involving

the use of a neural network to process data. We present in this chapter different case studies
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and discuss their practicality.

In Section 5.3.1, we present a workflow that could be categorized as unsupervised learning in

order to remove random noise from the data. By using simple heuristics, we let the algorithm

learn a transform domain in which seismic events have a locally sparse representation. Since

it is spatially weakly correlated, random noise will not have a sparse representation in the

transformed domain and this is what can be used in order to isolate it from the important

signal. We show that the method is effective, but we also point-out some important limitations,

such as the fact that noise on real data is rarely fully decorrelated.

In Section 5.3.2 we look at the spectral matching problem. We consider the case where

two different seismic datasets are acquired over the same region, and one of them must be

transformed in order to account for differences in the acquisition and processing. We treat it

as a supervised learning problem by providing pairs of examples from both datasets and ask

the network to process the first sample in order to be more similar to the other. In particular

we look at the case where high frequencies must be boosted or even extrapolated.

In Section 5.3.3 we study the benefits and drawbacks of deep learning to perform gather condi-

tioning. We treat the problem as a supervised learning task and create pairs of noisy/denoised

examples either using traditional denoising workflows or by resorting to synthetic modelling.

Neural networks have the possibility to outperform traditional algorithms, or even allow for

new processing methods (such as super resolution (Wang et al., 2019b)). They also offer the

promise to process data at a fraction of the manual and computing time required by traditional

algorithms. However, we observe that finding good ways to train them is difficult. In particular

it is challenging to account for all of the possible variations in the data due to vast possibilities

in the underlying geology as well as in the pre-processing sequences, and therefore it is difficult

to guaranty optimal performances when applied to new data.
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5.3 Applications

5.3.1 Denoising with Pyramidal Kernel PCA

This work was submitted to the journal Geophysics and reviewers asked for revisions that we

have not yet provided. It proposes a method to attenuate random noise in the data. The end

results are similar to the ones we achieved with a variational auto-encoder (vae, Section 4.3.3),

but this approach does not make use of deep learning. I did this work at the beginning of my

thesis, and a comparison with the vae method illustrates how effective can deep learning be

since the vae method was far simpler to implement and test and provides better results.

Introduction

Seismic noise appears both as coherent events which we do not wish to account for and

as incoherent ambient energy. The later is produced by the superposition of a variety of

unrelated sources, usually spatially distributed and continuous in time, such as wind, ground

roll and human activities. In this work, we consider the problem of removing incoherent

noise from a seismic stack. We use a discreet wavelet transform (DWT) to perform a time-

frequency decomposition of the data and iteratively attenuate the noise through the successive

sub-bands using (kernel) principal component analysis (PCA) denoising.

A common approach for denoising is to seek for a transform domain in which the signal and

noise can be more easily separated than in the original spatial representation. In particular,

sparse decomposition techniques take advantage of the redundancies in a signal to find a

lower dimensional subspace spanned by a small number of elements designed to capture most

of the data features. Analytical transforms, such as the curvelet transform (Candes & Donoho,

2000), are a very popular choice to decompose the data. In order to accurately match seismic

wavefronts at different frequencies and dips, those transforms are usually designed to be

anisotropic, multiscale and multidirectional (Donoho, 1993, Hennenfent & Herrmann, 2006).

But despite the success of those transforms, researchers have shifted their attention toward

data-driven approaches. Instead of relying on a pre-chosen dictionary of basis functions, those

approaches attempt to learn the dictionary from examples (Olshausen & Field, 1997). Classic
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algorithms are the K-singular value decomposition (K-SVD) (Aharon et al., 2006) or principal

component analysis (PCA) (Muresan & Parks, 2003). As the dictionary elements adapt to the

structure of the data they usually out-perform wavelet based methods in denoising tasks and

are less likely to introduce artefacts (Elad & Aharon, 2006, Mairal et al., 2008). Several such

algorithms have already been applied to seismic data: Tang et al. (2012) propose to solve

an overdetermined non-linear dictionary learning problem combined with a total variation

minimization to achieve the denoising. In Beckouche & Ma (2014) the dictionary is learnt

using a variational sparse-representation model while Zhu et al. (2015) remove low frequency

noise by combining a sparse K-SVD algorithm with a basis pursuit denoising problem.

The good performance of the previously mentioned methods come at the price of greater

computation expenses and the difficulty in tuning the parameters. They require to solve

non-linear and sometimes non-convex optimization problems, making the task delicate when

applied to real sized seismic data. In this paper, we propose a simple algorithm based on

an iterative PCA threshold through a multiscale pyramidal decomposition of the data. We

use an isotropic discrete wavelet packet transform (Wickerhauser, 1991) to decompose the

noisy seismic into different time-frequency sub-bands (Fig.5.2), and iteratively learn new

dictionaries as we go deeper in the pyramid (Fig.5.3). In addition of being well adapted to

large datasets, this approach is also particularly efficient when the noise’s frequency spectrum

fully overlaps the spectrum of the signal. We also extend our algorithm by substituting the

PCA by it’s non-linear counterpart, the kernel PCA (Schölkopf et al., 1998). We demonstrate in

a controlled experiment on field data the efficiency of the method in removing noise while

preserving both the fine and coarse structures in the stack.

Patch based learning

In order to differentiate between signal and noise, the learned basis should be sensitive

to coherent events and leave the incoherent ones aside. Rather than resorting to a global

approach, modern denoising algorithms are comparing group of pixels against each other. By

working on small data patches we obtain a more robust estimation of coherent features as we

take advantage from the redundancy of the signal and thus are able to represent the data from

a reasonably sized dictionary. We follow the patch based dictionary learning methods which
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Figure 5.2 – Pyramidal denoising strategy. Using a discrete wavelet transform we iteratively
decompose the image from the level 0 (original time - space domain, in purple) to deeper levels
where each sub-band has a restricted frequency - wavenumber support. At each level, we
independently denoise the sub-bands using (kernel) PCA learning (as explained in Figure 5.3)
before going to the next iteration. At level 1, the average sub-band (in blue) is obtained by
convolution of the low-pass filter both along time and crosslines (LL). Similarly, the horizontal
sub-band (in orange) is obtained by convolution of H along time and L along crosslines (HL),
the vertical sub-band (in green) by convolution LH and the diagonal sub-band (in red) by
convolution HH.
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Figure 5.3 – Patch based PCA denoising. For the first step, using a random selection of
overlapping patches (in red), we form a dictionary from their principal components. In
a second step we decompose the entire image into overlapping patches (in green). For a given
patch we compute its inner product with respect to the dictionary elements. Third, we select
a sub-dictionary by keeping only the principal components that are prominent (i.e whose
inner product is greater than a threshold θ in absolute value) for the description of the patch.
The denoising is achieved by successively transforming it back and forth in the sub-space
spanned by the reduced dictionary. Fourth, we repeat step 2 and 3 for every green patches and
reconstruct the denoised image by arithmetically averaging pixels in overlapping area.
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works in two steps. First, for the training phase, we uniform randomly select a given number

of possibly overlapping samples and learn a basis able to represent every coherent event they

contain. The number of training samples should be large enough to account for all the features

present in the data, but also kept minimal to decrease compute time. Second, for the reduction

phase, we then decompose the entire image into overlapping patches. Independently for

each of them, the algorithm determines which of the basis components are relevant for

representing the signal and we assume that the remaining ones are mostly modelling the

noise. By successively projecting the samples onto the sub-space spanned by the relevant

basis components and re-projecting it onto the original space we achieve the denoising. A

typical overlap of 60% is used for the patches. This means that pixels are denoised multiple

times, and we use the arithmetic average as the final result, which helps to reduce dictionary

artefacts. In the 2D case, we use patches of shape
p

n ×
p

n. We extract ℓ training samples

xp f or p ∈ [1,ℓ], and vectorize them to the shape n ×1, where n is the number of pixels per

patch. We note by X =
{

xp ∈Rn
}

p=1,..,ℓ the training set. Input patches are standardized for a

better conditioning of the learning problem. By subtracting the mean value and dividing by

the standard deviation of every patch samples, we make sure that the learning process won’t

be artificially dominated by an area of strong reflectivity while diminishing the effect of weaker

but as much important reflectors.

Principal Component Analysis

For the first phase we consider each of the training patches x ∈X as an independent obser-

vation of the image. These observations have a degree of variability n equal to the number

of pixels that compose them. We use Principal Component Analysis (PCA) to learn the basis

over the training set. PCA will transform the observations into an orthogonal space whose

axes, called the principal components, are maximizing the variance of the data. In this way,

the first principal component will point in the direction accounting for as much variability

as possible among the training samples, the second one will also point in the direction of

maximum variance under the constraint of being orthogonal to the first one, and so on. As

seismic data is mostly formed by near horizontal reflectors, we would expect that the most

commonly observed amplitude variation among patches is a pick-through (or through-pick)
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Figure 5.4 – Principal components V learned by PCA at the level-0 of the pyramid. The
components are sorted by decreasing eigenvalues from top-left to bottom-right.

transition along the time axis (see Fig 5.4). We write as x̄ = 1
ℓ

∑ℓ
p=1 xp the arithmetical average

of the training patches and compute their n ×n centred empirical covariance matrix:

Σ= 1

ℓ

ℓ
∑

p=1
xp xT

p − x̄x̄T , (5.1)

where T denotes the transpose operator. By construction, the covariance matrix is symmetric

positive semi-definite. The eigendecomposition of Σ consists in solving the equation λV =ΣV.

We obtain a set of tuples (λp ,vp ) , p ∈ [1,n]. The eigenvalues λp are positive scalars sorted in

decreasing order, and the associated eigenvectors vp ∈Rn×1 are the principal axes forming an

orthonormal basis. We can now express each of our patches as a linear combination of the

principal components:

x = x̄+
n
∑

p=1

〈

x− x̄,vp

〉

vp , (5.2)

where 〈., .〉 is the inner product.

As seismic reflection signal is redundant, only a fraction of the principal components are

necessary to represent most of its continuous events, edges and textures. On the other hand,

random noise has a minimal co-variance between the observations and is therefore uniformly

spread over all the directions of the eigen-basis. In order to remove the unwanted noise we

need to identify the principal components required to well represent the seismic observations.

We decompose the entire seismic image into overlapping patches of the same shape as the

training patches. We call A =
{

xp ∈Rn
}

p=1,..,ℓ′ the set of all patches. Their number ℓ
′ > ℓ de-

pends on the ratio between the patches shape and the image shape and the amount of overlap

between patches. The method assumes that the eigenbasis learned over the observations
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in X will also be adequate to represent the remaining patches in A \ X . For this reason it

is important to use a sufficiently large amount of training data. In the next section we also

discuss image partitioning methods for improving the accuracy.

We denote by λ̄p = λp
∑n

i=1 λi
the amount of variance explained by the p th principal components

for our training data. Using this quantity resort to a threshold function to drop the eigenvalues

which are not necessary to model the coherent signal of a given data sample. Given a sample

x ∈A , the importance of the p th principal component for its representation in the eigenbasis

is given by the magnitude of the coefficient
〈

x− x̄,vp

〉

. We follow Deledalle et al. (2011) and

apply a hard threshold θ using the shrinkage function η:

η(S) = S.Γ(|S| ≻ θ), (5.3)

an element wise product between some tensor S and a mask Γ whose elements are 1 where

entries of S (in absolute value) are greater than θ, zero otherwise. Hence, the denoised version

x̃ of x is obtained by the successive projection into the reduced sub-space spanned by the

relevant principal components and re-projection to the image space:

x̃ = x̄+
n
∑

p=1
η(

〈

x− x̄,vp

〉

)vp (5.4)

The computational bottleneck in PCA comes from solving the eigendecomposition of the n×n

covariance matrix. Due to the orthogonality constraint, this decomposition remains fast for

small n. This partly motivates our strategy of time-frequency decomposition (Fig 5.2) as it

enables us to efficiently represent the data from a few number of small training patches by

learning several dictionaries at different time-scales.

The main parameter of the PCA denoising is the value of the threshold θ. It is possible to set it

empirically, but we rather employ an automated method designed by Zhu & Milanfar (2010).

For the case of additive random noise, the authors propose a grid search based on a simple

criteria which doesn’t require prior knowledge about the noise distribution and favours the

preservation of the high frequencies in the signal.
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Isotropic Wavelet Packet Decomposition

The success of dictionary methods relies on employing a basis that is able to sparsely represent

all features present in the seismic. Yet, if we learn one dictionary for the entire stack it is likely

that fine and localized details will not have a sparse representation in this basis or might not

even be fully represented. Thus, it is recommended to learn several dictionaries over local

regions of the image. Muresan & Parks (2003) perform the PCA denoising inside a sliding

square window while Deledalle et al. (2011) use a hierarchical approach where an hybrid

basis is computed from global to progressively more local features using a space partitioning

technique. Although the computation cost grows linearly with the number of dictionaries to

learn, such approaches have been shown to bring significant improvements and are therefore

worth the extra effort.

In our work, we employ a wavelet packet decomposition (WPD) (Wickerhauser, 1991) to

analyse the seismic data at different time - frequency resolutions. The method splits the input

data into sub-bands each with a distinct frequency-wavenumber support. In practice, the

2 dimensional WPD is computed in a cascaded manner by successively passing the image

rows and columns through a high pass and a low pass quadrature mirror filters followed by

a down-sampling operation (Mallat, 1999). At the first level of the decomposition, applying

the high pass (H) and the low pass (L) filters along rows and columns yields to 4 possible

sub-bands. The sub-band obtained by low-pass filtering along time and crosslines is said to

contain the average details (LL = a), high-pass filtering along time and crossline contains the

diagonal details (H H = d), high-pass along time and low-pass along crosslines the horizontal

details (HL = h) and low-pass along time and high-pass along crosslines the vertical details

(LH = v). Indeed, if we apply a high-pass filter along time and low-pass filter along the

crosslines, horizontal reflectors will be preserved while nearly vertical ones will be filtered. For

the second level of the decomposition, we repeat the procedure for each of the 4 sub-bands,

yielding to a total of 222 = 16 sub-bands. Following the naming convention, the sub-band

obtained from the original stack by applying only low-pass filters will be denoted LL,LL = aa.

Since each sub-band is made of details grouped by frequency/wavenumber category, the

features they contain have a stronger correlation than the features in the original image. WPD
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Figure 5.5 – Principal components learned by PCA at the level-1 (a, h, v, d) of the pyramid.

being an orthogonal transform, the band-limited white noise is nearly evenly split between

all sub-bands (Donoho, 1993). Additionally, as the decomposition level d increases, from the

sub-sampling operation, sub-bands size are decreasing by a factor 4d (8d in three dimensions)

and the computational burden is hence greatly diminished. Finally as the time and spatial

sampling are successively multiplied by two, our constant patch shape will progressively

represent a larger area of the seismic, going from local to global analysis.

We propose to denoise the seismic image successively at each level of the pyramidal decompo-

sition. At the level 0, training patches will represent a very small area of the global image, hence

focusing on high time/space resolution features. We then compute the first level sub-bands

from the image denoised at level 0. We denoise each sub-bands independently. Training

patches now cover an area twice as large in time and in crosslines and the features present are

better correlated. We stop at the third level of the pyramid, denoise each of the 16 sub-bands

and compute the inverse WPD to retrieve the final denoised image.

Kernel PCA

The orthogonality constraint in the PCA algorithm allows only a linear separation between

signal and noise. Therefore, we also evaluate its non-linear extension called Kernel PCA

(Schölkopf et al., 1998, Mika et al., 1999) to investigate if we can further improve results. Using

a non-linear mapping function, the method first transforms the data in a high dimensional

space and then performs the linear separation problem in this space. For an appropriate
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choice non-linear transform, it is expected that non-linearly separable data in the image

space will become linearly separable in the high dimensional feature space. The details of

the method are described in Schölkopf et al. (1998). Using what’s know as the kernel trick,

the method gives us access to the projection of an observation x ∈ X on the i th principal

component computed in the high dimensional-space without the need to perform explicit

computations in this space (Mika et al., 1999). We can therefore apply a hard threshold in

the transformed domain by dropping elements with a small projection score. Denoising in

the feature space is achieved by an automated selection of a hard threshold. To reconstruct

the denoised image we must find the inverse transform to go from the feature space to the

image space. This is know as the pre-image problem (Mika et al., 1999). As the transform

is non-linear and usually non-invertible, mapping from a low-dimensional space to a high

dimensional space, the problem seems difficult to solve. However, Bakir et al. (2003) propose a

simple and stable approach by learning the inverse transform solving a kernel ridge regression

problem.

Many types of non-linear functions are available and selecting one often brakes down to

empirical testing. Our implementation of the denoising algorithm relies on the kernel pca

toolkit from scikit-learn (Pedregosa et al., 2011), which offers several kernels including

polynomial, Laplacian and radial-basis functions (rbf). In our experiment we achieved the

best results with the rbf kernel (based on a least-squares distance) and the Laplacian kernel

(based on the ℓ1 distance). Both depend on a single parameter γ and since the rbf kernel is

faster to compute, this is the one we retained. Given two points xi ,x j in the image space, the

rbf kernel will compute their similarity along a Gaussian curve:

k(xi ,x j ) = exp(−γ
∥

∥xi −x j

∥

∥

2) (5.5)

We extend the automated parameter selection of Zhu & Milanfar (2010) to loop over both the

threshold and the weighting parameter γ.

Experiments and Discussion

In our experiment, we consider the signal to be any event that has a spatio-temporal coherency

(such as primary and multiple energy) and assume that the noise can be modelled by a band-
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Figure 5.6 – Average normalized amplitude spectrum of the stacks in Figure 5.7, with band-
limited gaussian spectrum.

limited normal distribution. Figure 5.7 shows a 0.8s marine stack sampled at 4ms with 462

crosslines spaced every 12.5m. In Figure 5.7 we artificially generated broadband Gaussian

noise to analyse denoising results both visually and in term of pick signal-to-noise (PSNR)

ratio (Welstead, 1999). The average amplitude spectrum of the data and the noise are ploted

in Figure 5.6. We compare our algorithm using PCA and kernel PCA with curvelets denosing

(Candes et al., 2006) and non-local mean filtering (Buades et al., 2005, Bonar & Sacchi, 2012).

We used constant size patches of 7×7 pixels through the pyramid and a biorthogonal 4.4

wavelet (Cohen et al., 1992) with the package PyWavelets for the DWP transform.

In Figures 5.4 and 5.5 we display the learned principal components at levels 0 and 1 of the

pyramid. In the case of kernel PCA, we do not have access to the eigenvectors but rather

to the projection of the data onto the non-linear high dimensional eigenbasis, making any

visualization more difficult. Results of the denoising can be seen in Figure 5.7. The PSNR

values are given in the caption.

In practice, as the kernel method is computationally demanding, we performed a weak PCA

denoising on the levels 0 and 1 of the pyramid and employed the kernel PCA only at the 2nd

level only.

Figure 5.7 show our denoising with pyramidal PCA and kernel PCA respectively, compared

to results obtained after carefully tuning the curvelets denoising algorithm implemented in

Candes et al. (2006) and the non-local mean filter implemented in van der Walt et al. (2014).

The non-local mean filter does not preserve well the signal, in particular the low frequency tex-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.7 – (a) True stack. (b) Noisy stack (PSNR=23.0 dB). (c) KPCA denoised (31.4 dB). (e)
Curvelet denoised (27.9 dB). (g) PCA denoised (29.3 dB). (i) Non-local mean filtering (27.1 dB).
Difference with the noiseless data for (d) KPCA. (f) Curvelets. (h) PCA. (j) NLM. All figures are
displayed on the same grey scale.
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Figure 5.8 – PSNR vs Gaussian noise’s standard deviation σ for our pyramidal methods with
comparison to curvelets denoising and non-local mean filtering (NLM).

(a) (b)

(c) (d)

(e) (f)

Figure 5.9 – Zoom on the results of Figure 5.7, with a different colormap. (a) True stack. (b)
Noisy stack. (c) KPCA denoised. (d) Curvelet denoised. (e) PCA denoised. (f) Non-local mean
filtering. Figures are displayed on the same colorbar.
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tured area are not successfully recovered and the reflections are blurred across faults. Curvelets

denoising is fast and setting the parameters is fairly simple, it removes a large proportion of

the noise at the cost of also removing some signal. In particular, it failed recovering exactly

the data along the fine and steep faults and it also introduces quite strong artefacts that are

particularly visible in the shallow and deep regions of the stack. The pyramidal PCA achieves

similar performances to the curvelets. The results might appear slightly more noisy but it

introduces much less artefacts in the denoised stack and removes less signal. The kernel PCA,

while not being perfect, achieves the best results both visually and in term of PSNR. A zoom

on the results can be seen in Figure 5.9.

We additionally conducted an experiment over different noise levels. In Figure 5.8 we display

the denoising results in term of PSNR for different standard deviations of the broadband

Gaussian noise. For all methods we used a grid search over the parameter space employing

the same criteria explained in the first section of the paper. Best results are achieved by the

pyramidal kernel PCA method.

Our method has been to be successful in the difficult setting where the noise’s bandwidth

fully overlaps the one of the reflectivity. Pyramidal PCA achieves performances comparable

to curvelets denoising while introducing less artefacts. Pyramidal kernel PCA achieved best

results both visually and in term of PSNR, and successfully preserves reflectivity across all

frequencies and dips. Our algorithm does require minimal manual parameters tuning while

remaining adaptable to the data. In particular, small variations in hyper-parameters such as

the patch size, the number of training patches or the choice of wavelet for the DWP transform

have a limited impact on the quality of the denoising while the threshold coefficients and the

parameter γ are efficiently selected by the method proposed by Zhu & Milanfar (2010). To the

cost of a linear expansion in compute time (due to the pyramidal decomposition), we are able

to reduce the quadratic cost of the Eigenproblem by requiring to use only small data patches

for learning the basis. While PCA is fast and stable, it may only provide a linear separation

between signal and noise. On the other hand kernel PCA has a greater adaptability but is

computationally more demanding and requires one more parameter to tune. Additionally,

since the denoising is performed independently on every sub-band of the decomposition level

it would be easy to execute the code in parallel.
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Figure 5.10 – Average amplitude spectrum of both the original and filtered data.

However, a major limitation in our method (and in the ones we refereed to) is that in practice

the noise is rarely purely random and often has spatio-temporal coherency, which limits the

reach of this algorithm.

5.3.2 Spectral Matching

Introduction

Spectral matching is a technique that aims to modify a signal such that its frequency response

is comparable with a target spectrum. It is for instanced employed in certain inversion schemes

to match the spectrum of the seismic data to that of well logs (Lancaster & Whitcombe, 2000).

It is also an essential step in the processing of time-lapse data (Jack, 1997, Johnston, 2013).

Time-lapse (or "4D") seismic refers to the use of multiple seismic surveys, acquired over the

same area, in order to detect changes in the physical properties due to the production of a

reservoir. In order to accurately compare the datasets, it is important to make sure they have

the same frequency content. Because the time-lapse signal is subtle, care must be taken not

to destroy it when matching the spectrum of the datasets. In particular, one should try to

isolate the 4D signal from the background signal, and only correct for the latter. Because of

non-stationary, a matching filter should be able to adapt to the different parts of the data and

yield correct results for all depths and lateral positions.
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Experiments and Discussion

In this work, we perform an initial study using a synthetic test on the Volve open-dataset 1. The

seismic was acquired with ocean-bottom nodes, and we use a full stack of the positive offsets

from the acoustic wavefield. For a first experiment, we create a second dataset by applying a

low-pass Butterworth filter (Butterworth et al., 1930) to the original data. We show the average

amplitude spectrum of both data in Figure 5.10. We build a 2D convolutional neural network

with an architecture similar to the one we presented in our work on diffraction picking (Section

3.3.1). The CNN has a maximum stride field of 48 crosslines × 48 time samples. Both datasets

have a geometry of 193 inlines × 240 crosslines × 800 time samples with respective sampling

of 25m × 25m × 4ms. To create the training data we extract a 1000 pairs of corresponding

patches, of size 64 crosslines × 64 time samples, from the first 20 inlines of both datasets. This

corresponds to a coverage of approximatively 10%. The input of the network are the filtered

patches and we train it with a standard mean-squared-error loss to reproduce the original

patches, i.e. to recover the missing high frequencies. We show the results on an inline away

from the training data in Figures 5.11 and 5.12. By looking at the spectrum of Figure 5.13, we

can see that the network was able to well recover the missing information in the 20H z −30H z

band, and to recover some of the signal in the 30H z −45H z band.

In order to study the effect of spatial variations, we perform a second synthetic test by applying

different low-pass filters in different quadrants of the data. Since the network is trained on

patches randomly extracted from the training data and only has a maximum stride field of 64

crosslines × 64 time samples, it is not aware of the relative position of individual data samples.

This is problematic if one wish to make it learn a spatio-temporally varying behaviour. While

not elegant, a way to give this information to the CNN is to concatenate the absolute position

of the patches (in terms of samples #) with the seismic amplitudes. In this way, for every

sample, the network will have a direct knowledge about its position in the stack. We use the

same network and training configuration as for the first experiment. We show the results in

Figures 5.14 and 5.15. We also show the amplitude spectrum of the four quadrants in Figure

5.16. Q1 and Q3 have the same 25H z cut-off frequency, but Q3 is deeper and has therefore a

lower frequency content.

1https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html
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(a)

(b)

Figure 5.11 – Results for the inline #110. Images on the left come from the original stack, central
images from the filtered stack and images on the right are from the filtered stack transformed
by the network. (a) Without automatic gain control (agc). (b) With agc.
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Figure 5.12 – Differences of the original data with the filtered data (a) before, (b) after, process-
ing by the network.

Figure 5.13 – Average amplitude spectrum of the datasets.
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Figure 5.14 – Results for the 110th inline. Images on the left come from the original stack,
central images from the filtered stack and images on the right are from the filtered stack
transformed by the network. For the filtering, we applied a different low-pass filter to the four
different quadrants. We used an order 8 Butterworth filter with a cut-off frequency of 25H z

for the top-left quadrant (Q1), 40H z for the top-right (Q2), 13H z for the bottom left (Q3) and
25H z for the bottom-right (Q4).

Figure 5.15 – Differences of the original data with the filtered data before (left) and after (right)
processing by the network.
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Figure 5.16 – Average normalized amplitude spectrum of the datasets computed over the four
quadrants described in Figure 5.14.

Figure 5.17 – Average normalized amplitude spectrum and phase spectrum of the datasets
computed over the third quadrant (Q3) described in Figure 5.14.

127



Chapter 5. Applications to Seismic Processing

(a) (b)

Figure 5.18 – Frequency supports for two 25H z low-pass Butterworth filters with an order of
(a) 3 (b) 8.

While the network is able to infer some of the missing high frequencies, we see on Figure 5.15

that the reconstruction error is still large. The test set-up is non trivial because we applied

a hard cut-off frequency, and recovering the competently missing energy is most likely a

very ill-posed problem. In particular, we see in Figure 5.17 that the network was not able to

correctly infer the phase of the high frequency components.

For this reason, we repeat the experiment, but using order 3 Butterworth filters (see Figure

5.18). We present the results for the same test inline away from the training region in Figures

5.19 and 5.20. This time, the difference plots show that the error is much weaker and Figures

5.21 and 5.22 show that both the amplitude and phase spectrum are accurately matched.

Conclusion

Experiments show the potential of deep learning to approach the spectral matching problem.

Initial results are encouraging, but we see that the method is presently enable to cope with

the missing highest frequencies. It is not obvious whether or not the clues present in the

low frequency filtered data are really enough to truly recover the original time resolution. An

overview of deep learning methods applied to super resolution can be found in (Wang et al.,

2019b). In particular, more advanced loss functions, such as adversarial training (Goodfellow

et al., 2014), could be tested to see whether one can push the results further. Additionally,

when applied in the context of time-lapse seismic, it is important to find a way to only match

the background while preserving the signal. Usual methods are to extract training examples
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Figure 5.19 – Results for the 110th inline. The set-up of the image is the same as Figure 5.14,
with the difference that an order 3 Butterworth filter was used instead.

Figure 5.20 – Differences of the original data with the filtered data before (left) and after (right)
processing by the network.
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Figure 5.21 – Average normalized amplitude spectrum of the datasets computed over the four
quadrants described in Figure 5.19.

away from the reservoir area, but this approach might not be sufficient.

5.3.3 Gather Conditioning

Introduction

After migration, geophysicists and geologists are tasked to understand the subsurface by

performing structural and geological interpretation of the data as well as analysing amplitudes

and running inversions. The success of those exercises is directly depending on the quality of

the data and the goal of seismic processing is to enhance the useful signal and separate it from

unwanted perturbations. We give in Section 1.1.2 a brief overview of the different processing

steps performed on a dataset. Processes applied prior to migration are destined to provide

good results on average over the entire dataset. Once the data have been migrated and the

area of interest narrowed down, processing becomes more targeted and is usually done with

a final goal in mind (like structural interpretation or inversion). While for a long time the
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Figure 5.22 – Average normalized amplitude spectrum and phase spectrum of the datasets
computed over the third quadrant (Q3) described in Figure 5.19.

standard delivery of a migration job was a set of partial stacks, it is now considered important

to access data in the prestack domain since most of the remaining issues can only be corrected

before gathers are stacked (Cook et al., 2016, Shea, 2012). In the following, we present a typical

post-migration conditioning workflow applied to a field recorded dataset and we evaluate

the ability of a neural network to learn to process the data in an end-to-end fashion. We also

discuss the advantages and problems associated with the use of deep learning for targeted

end-to-end data conditioning.

Experiment

The test dataset we use in this work was acquired in the North Sea and imaged with a Kirchhoff

prestack time migration. An example gather is shown in Figure 5.23. Despite the pre-migration

processing, we see that several problems remain with the data. For instance, we observe

a number of parabolic events between 1.0s and 1.8s, associated with multiple reflections,

interfering with the primaries. Some events are not completely flat, which indicates that the

processing velocities were not completely accurate, and there is also noise contamination. We

devised the following conditioning workflow to alleviate those problems, with the software

PreStack-Pro 2:

2https://sharpreflections.com/
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Figure 5.23 – Conditioning results for a gather located away from the training lines. Left: Noisy
gather. Middle: Gather processed with conventional algorithms. Right: Gather processed by
the neural network.

Figure 5.24 – Difference between the noisy and conditioned (left), and noisy and predicted
(right) gathers shown in Figure 5.23.
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• Angle mute (remove (post-critical) energy recorded at an incidence angle greater than

40◦)

• Automatic Gain Control (AGC - reversible equalization of the amplitudes to be able to

distinguish weak events in the τ−p domain)

• Parabolic Radon mute (remove residual multiples)

• Linear Radon mute (linear noise removal)

• Inverse AGC

• Semblance weighted spatial filtering (3D, per offset plane, random noise attenuation)

• Dip steered structurally consistent anisotropic diffusion filter (2D, per gather, random

noise attenuation)

• Time variant trim statics (mathematical correction of residual move-out in the gathers)

We design and train a neural network in a similar fashion as in Section 3.3.1. Our training

data consists in pairs of input/output gathers before and after conditioning. Once trained, we

evaluate the network on gathers away from the training area. We display results in Figures

5.23, 5.24 and 5.25.

Additionally, we also evaluate the trained network with a blind test. We use another marine

dataset from the North Sea and directly apply the network without further training with the

new data first. We compare the results with a traditional conditiong workflow similar to the

one we presented above in Figure 5.26.

At a first look, the results provided by the network look promising. Even when applied on a

dataset it was not trained on, the network seems to be able to perform a complex denoising

flow. On Figure 5.26, we even see that the jittering noise present in the near offsets was

corrected by the network while it is not completely removed by the traditional conditioning

flow. The stacks shown in Figure 5.25 reveal that the network perform as well as the denoising

worklow, and was able to preserve the relevant signal.

Discussion

There are several advantages in using deep learning to perform an end-to-end conditioning

of the data. Traditional workflows involve between 5 and 10 algorithms applied sequentially.
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(a)

(b)

Figure 5.25 – Comparison for inline slices away from the training area. (a) Near offset stack (b)
Mid offset stack. The images on the left are the input data, central images the ones processed
with the traditional algorithms and on the right processed by the network.
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(a)

(b)

Figure 5.26 – Evaluation of the network on a blind dataset. (a) From left to right: Noisy gather,
gather denoised by a conventional workflow, gather denoised by the neural network. (b) Left:
difference between the noisy and traditionally conditioned gathers, right: difference between
the noisy and network-conditioned gathers.
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Each of them come with a set of parameters that the geophysicists must tune in order to

obtain the best results. On the other hand, once trained, a neural network is parameter free.

Additionally, many algorithms, like the Radon transform, are computationally heavy and

induce a processing time of several hours every time they are used. For a neural network,

after an initial training time of few hours, the processing time for new datasets is reduced to

minutes only.

The adaptable nature of neural networks also make them ideal to process datasets with

strong variations in the signal and noise over the survey area. Because of the large number of

parameters in a traditional workflow and the long computing time, one usually select only

one set of parameters for the entire survey. However, those parameters may not be adequate

everywhere. A network, in theory, can adapt to the data and provide a tailored processing to

every area.

However, there are also serious limitations to the method we present here. Data condition-

ing is target oriented and partially subjective. Geophysicists adapt their workflows to the

particularities of the dataset. They focus mainly on a restricted region that was identified as

interesting. They also adapt to the different needs and will likely have a different approach

whether the final goal of the study is to perform structural picking or to run an inversion. In

their standard form, trained networks can only yield one solution and one therefore lose the

flexibility which is sometimes essential in interpretation. Moreover, because of the difficulty to

gather and prepare training data, one can only train a network with so many examples. When

provided with a new dataset with different a acquisition setting and pre-processing, recorded

over an area with a different geology, it is unlikely that the network can provide an optimal

answer. We see for instance in Figure 5.26 that the alignment of certain reflections (like the

blue one at 2.2s) is not as good with the network. This is likely because the training data did

not have moveout effect as severe as in this data. In these conditions, it is also difficult to

completely trust that the network will preserve all the important information.

Maybe, for those reasons, employing a network to perform an end-to-end conditioning is a

little ambitious at first. There are many things to take into consideration, and performing

a trustworthy quality control of the results as well as being able to identify and correct the
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(a) (b) (c)

Figure 5.27 – Field data test for the alignment of gathers. (a) Input data (b) Alignment with a
traditional algorithm (c) Alignment with a neural network. Courtesy of Breuer & Ettrich (2020)

problems brought by the network is difficult. In a similar work, Breuer & Ettrich (2020) focus

instead on a single processing step, looking at the alignment problem. They employed the

same method as we described above, but with pairs of input/output gathers that differ only in

the alignment of the reflections in the offset domain. They created a training dataset using

synthetic modelling and evaluated the results on real data. Figure 5.27 shows that they were

able to get better results than with a traditional algorithm, especially in the complex area

where multiples (that should not be flattened) interfere with the primaries, or where there is a

polarity reversal. Because a single step is involved it is simpler to perform a rigorous quality

control. While results are very encouraging, they also have similar problems. In particular,

since the training data are simplified synthetics, it is difficult to guaranty that the most complex

features in the real data will be preserved by the network. It is for instance not certain yet that

the AVO (amplitude vs offset) behaviour is well preserved after transformation by the network.
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Conclusion

Replacing parts or all algorithms in a processing workflow with neural networks is an appealing

idea. Comparatively, deep learning requires much fewer parameters and since it is a data

driven method, it can learn to adapt to the data and, in theory, does not suffer from intrinsic

limitations like most traditional algorithms. Networks are also computationally much more

efficient than a sequence of traditional algorithms. Moreover, an end-to-end approach may

be beneficial over a sequence of processing steps as small errors due to processing artefacts

may eventually accumulate and become problematic.

On the other hand, there are challenges not easy to overcome. Once trained, the user is left

with a single solution and if the results are not good it is not trivial to improve them. Typically

the method employed to improve a network’s results is to gather more training examples.

However, in seismic, it is not easy to do so and it is unlikely that one can have access to an

ideal training dataset rich enough to cover all the cases that can be encountered in practice.

One possible source of improvement for further work will be to look at variational methods

(Kingma & Welling, 2013), in combination with the segmentation method we use in this work,

in order to provide answers under the form of a set of possible solutions, so that the user can

select the preferred one. Using an adversarial regularization (Goodfellow et al., 2014) may also

help the network to learn a more complex representation of the data and to adapt better to

new datasets.
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6.1 Conclusion

Results of the Thesis

We began by exposing the main promises offered by deep learning to solve advanced process-

ing and interpretation tasks in seismic reflection, while putting those into perspective with the

main issues for its usage in geosciences. The ability of convolutional neural networks (CNNs)

to assimilate large and multi-dimensional data and to learn to perform complex tasks make

them ideal to tackle the many processes involved in seismic analysis. However, fulfilling the

necessary conditions to be able to exploit their impressive performance is not a trivial task,

and learning models also come with inconveniences compared to traditional methods. In

particular, we identified several key aspects that must be accounted for when working with

geoscientific data:

• For some applications, such as the identification of geological structures in the data,

preparing a training dataset may require an enormous amount of manual work.

• Because of uncertainties and a lack of resolution, designing an informative performance

metric to train networks is sometimes challenging in geosciences.

• Understanding how a network came to a result and guaranteeing that its good accuracy

generalizes to any new data is a non-trivial task.

In order to design algorithms that have practical uses, we developed workflows that took into

account those challenges by resorting to various paradigms and demonstrated them on real

case studies.
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Transfer learning and knowledge distillation: In Tschannen et al. (2019) (Section 3.3.1), we

used the physics of the propagation of waves in order to create a synthetic training dataset

for the automatic detection of diffracting objects and showed that the knowledge acquired

by the network could be successfully transferred on real data. Synthetic modelling allowed

us to have a full control over the experimentation space, and to provide training information

without the need of an extensive and tedious manual labelling process. Our trained CNN

could extract information from prestack gathers and yield accurate results on a field dataset,

highlighting several hundreds of scattering objects in few seconds only. This demonstrates a

certain generalization capability of neural networks that are able to go beyond the simplified

perception they got from the synthetic model and extract patterns in real data.

In Section 3.3.2, we made use of a fault picking algorithm developed using a traditional

approach and showed that the results it provided could serve as an initial answer for training

a 3-dimensional CNN. By iteratively training a new CNN using the results of the previous

iteration, we showed how the distilled knowledge helped to progressively improve the quality

of the predictions, and this without resorting to manual editing. This demonstrates a certain

resilience of neural networks to inaccuracies in the training data and an ability to improve

despite a partially erroneous feedback.

In Section 5.3.3, we experimented with the adaptation capabilities of CNNs to process new

datasets. We trained a model by providing it with pairs of noisy and conventionally denoised

gathers and experimented to see if the gained knowledge could prove useful for the end-to-end

processing of a new dataset. This task is challenging because the signal and the noise present

in the data are strongly affected by the geology and the pre-processing operations applied to

them. Despite facing a very different dataset, our network gave a reasonable answer. There

are however many remaining problems to solve before seeing the apparition of a one button

algorithm that can perform full denoising on any new data.

Supervised and semi-supervised learning: In Tschannen et al. (2020) (Section 4.3.1), we

showed how an interpreter could progressively help refining the predictions of a network by

guiding it in the more complex areas. We derived an automatic horizon picker that could be

initially trained with a reasonable amount of examples and that could successfully extrapolate
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horizon surfaces in a complex 3-dimensional environment. By controlling the quality the

results, the interpreter can then focus on regions where he or she disagrees with the machine

and fine-train it in order to progressively converge toward an acceptable answer. In addition

of limiting the amount of manual work, this approach also has the advantage to give more

control to the expert and therefore allow him/her to be more confident about the results and

to guide the interpretation in uncertain regions.

In Tschannen et al. (2017) (Section 4.3.2) we identified some of the pitfalls that machine

learning scientists should avoid when working with geoscientific data. When using supervised

learning to classify data, like the litho-fluid facies classes from well logs, it is important to

keep in mind the possible sources of uncertainties. Unlike with traditional machine learning

benchmarks, there is not always a clear correspondence between the data and the chosen

labels and we argued about the importance there is to understand those uncertainties.

Unsupervised learning: In Sections 5.3.1 and 4.3.3 we showed how unsupervised learning

could be used to denoise the data. This form of learning is appealing because it does not

necessitate human intervention to prepare a training dataset. This means that it is not limited

to learn only a subset of the output domain, like supervised approaches, and could therefore in

theory adapt to any data. We obtained good results with random noise attenuation, however,

some more advanced processing, such as the removal of coherent signals, are still out of the

reach of unsupervised methods.

In Section 4.3.2, we looked at clustering, i.e unsupervised classification, to find trends in the

amplitudes along an horizon based on their AVA response. Synthetic tests showed the results

to be coherent, and real data tests gave interesting results, although those results can only

be interesting if the experts are able to interpret them. Those form of approach are often

considered to be free of human biases, but we are not sure if this is really the case. It is true

that in this setting, humans are not the one that directly give the feedback necessary to learn,

but experts are still responsible for designing the algorithm, choosing the performance metric

and setting some key hyper-parameters which inevitably influence the results.
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Remarks

In this thesis we certainly were able to appreciate the impressive capacity of deep learning to

perform complex tasks and we demonstrated its usage on a variety of subjects. By designing

worklows aimed at alleviating the complications brought by its usage with seismic data, we

obtained algorithms that are practical and that yield good results on challenging real world

applications. However, a number of factors were not properly accounted for and some things

could have been done differently.

First, it was maybe a mistake to mainly focus on pattern recognition tasks such as the picking

of diffractions, horizons or faults. In those applications, the key factor is the preparation, by

hand, of the training datasets. We were able to circumvent this by employing appropriate

stratagems, but in order to truly harness the potential of deep learning, one would have needed

to access much larger and much more diversified labelled datasets. Other applications that (at

least in appearance) rely much less on human labelling, such as spectral matching (Section

5.3.2) and super resolution (Wang et al., 2019a) or waveform inversion (Araya-Polo et al., 2018)

would have been easier to investigate from the deep learning perspective.

Related to the first point, some applications would require a much greater number of tests in

order to be validated. For instance, in the case of end-to-end gather conditioning presented in

Section 5.3.3, we saw that the processing performed by the network on previously unseen data

was in appearance very good. However, many subtle processes are at play and gaining confi-

dence that no useful signal was removed or artificially distorted is not a trivial task. It remains

unclear how a network behaves when extrapolating its knowledge to a new configuration and

if this extrapolation can truly be trusted.

I also probably spent too much time worrying about those limitations and should have

accepted to limit myself to simpler test cases. In deep learning research and applications, the

most important presently seems to be the first to publish, and concerns about generalization

and explainability are often considered negligible since they seem become less and less

relevant in practice as more training data is being prepared and new heuristics for designing

and training better models are being found.
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6.2 Outlook

Multi-integration

We looked at several applications independently from one another. It would be interesting

to try to unify interpretative tasks together in a single algorithm. For instance by training a

CNN to recognize several features at once in the data such as faults, salt domes, horizons and

channels.

Interactive Platform

Integrating machine learning algorithms into a software built for data visualization and in-

terpretation would greatly facilitate the work of a practitioner. Having access to interactive

2D and 3D viewers with labelling tools, and being able to modify the hyper-parameters and

to add new examples to a learning model and observe in real time the effects on the results

of the machine would be a great help. In this setting, it would be possible to explore for an

optimal synergy between the machine and the expert.

Variational and Adversarial Methods

We began to explore the possibilities offered by variational and adversarial methods in Sections

4.3.3 and 3.3.3. It would be interesting to go further and see how variational methods could

be employed to provide results as a distribution of possibilities instead of a single answer.

Adversarial methods also seem to provide results that substantially improve the state-of-

the-art in some applications. Such applications are for instance low and high (spatial and

temporal) frequencies extrapolation (Wang et al., 2019a, Halpert, 2018, Lu et al., 2018), highly

efficient forward modelling (Moseley et al., 2018), or cheap, easy and accurate full waveform

inversion (Araya-Polo et al., 2018, Yang & Ma, 2019).

Uncertainty Quantification

In order to develop the use of machine learning based applications in geosciences it will be

important to have a better understanding of the uncertainties associated with the predictions
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of algorithms. Trying to quantify uncertainties associated with the labelling process may help

understanding how human biases and errors are communicated to the machine. Additionally,

using appropriate frameworks such as Bayesian learning (Neal, 2004) could help practitioners

to determine which predictions can be trusted or not.

Tighter Integration with Wave Propagation Physics

In Section 3.3.1 (Tschannen et al., 2019) we used synthetic data created using mathematical

modelling of the physics of wave propagation to train a network and latter evaluate it on real

data. It would be interesting to go further and integrate explicitly the prior-knowledge coming

from physics into the learning procedure. This would be an alternative to the black-box

approach and could yield more interpretable models and increase our confidence in their

reliability.

Deep 3D Networks

It is often observed that the deeper the networks are, the better their results. Writing very

deep 3D-CNNs to handle large seismic datasets presently remains a challenge as the available

memory on accelerators is too limited and the computational complexity is multiplied by

a factor greater than n log(n) (where n is the size of the third dimension). Parallelisation

schemes to distribute the training over multiple nodes are being developed but some issues

still need to be addressed before they can be effectively used (Keuper & Preundt, 2016). It will

be interesting to try those methods and see the potential of a very deep network for seismic

processing and inversion.
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Analysing and visualizing geoscientific data can quickly become a challenge in terms of

computing time and memory resources. When developing research algorithms, one therefore

should address those obstacles and build the programs on solid foundations if we hope to

scale our work to real world applications. Writing such technologies represents a heavy task

and requires profound expertise in the fields of high performance computing and software

development. However, when working with limited human resources and under tight budget

and time constraints, building them from scratch is impracticable. Nevertheless, we will

see in the following how one can benefit from a vast set of tools developed by the scientific

community, and released under friendly licences, to achieve good algorithmic performances

while requiring only moderate knowledge and efforts.

In Geosciences, data are typically recorded over space and time, and come with a variety

of meta-information, such as physical units and geographic coordinates, that should be

readily accessible when needed. We can roughly decompose the analysis workflow in two

main steps. First, the data are collected from the sensors, pre-processed, and used in a

computationally heavy algorithm such as imaging and waveform inversion in seismology or

model simulations in climate sciences. Secondly, the results of those simulations are used in

further post-processing and visualisation operations to help the scientists derive knowledge

from them. In this work, we focus only on the second step. Our data consist mainly of migrated

seismic volumes stored on a regular grid. Typical volume sizes range from few hundreds of

megabytes for 2D lines to hundreds of gigabytes for prestack multi-azimuth gathers. Any

process that we aim to apply beyond toy examples will need to work on data that do not fit in

RAM (random access memory).

145



Appendix A. Elements of Programming

Presently, one of the most widely used programming language to do research with scientific

data is Python. Its popularity can be explained by its simplicity and by the large and active

community around it. Since it is an interpreted, high-level, language, users do not have to deal

with complex low-level concepts such as explicit memory management and can write working

programs with a high productivity. While simplicity comes at the cost of performance issues,

there exists a large ecosystem of scientific and high performance computing libraries such as

SciPy (Jones et al., 2001), NumPy (van der Walt et al., 2011), Scikit-Learn (Pedregosa et al., 2011)

or Dask (Rocklin, 2015) that offer simple Python application programming interfaces (api)

that call behind the scenes efficient code written in compiled languages like C and FORTRAN.

When using those libraries, it is possible to write scripts that will scale well to medium and

reasonably large size problems.

In this chapter, I present the main tools I used to produce the results of my thesis. I followed

many of the recommendations laid out by the PANGEO project 1. This is by far not an exhaus-

tive list, and I only present succinctly the packages. Interested readers should refer to online

documentations and community forums for more information.

A.1 Getting Started

Before starting to write scripts it is important to set-up proper working environments to ensure

that one will have access to the latest version of the programming language and have flexibility

to install packages, move and copy data, open graphical interfaces and run applications on

either CPUs (central processing units) or GPUs (graphical processing units). I used three

distinct machines: my laptop, a single workstation holding 12 cores and 2 GPUs and a GPU

cluster built with Open Carme (Straßel et al., 2018). Those types of machines come with a

trade-off between freedom and convenience as well as memory and compute power. Working

on a cluster will give us access to the best computing performances but some restrictions

might affect the working conditions. In particular, one usually does not have any control on

the software stack and one is entirely relying on the system administrator to get access to the

tools needed. Some clusters run on old operating systems and are often not compatible with

modern packages. One might also have limited access rights that can restrict permissions to

1https://pangeo.io/
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freely upload and download data to the cluster. On the other end, when working on personal

machines, one have the freedom to configure it at will but one is limited by the hardware and

also carry the responsibility for the good functioning of the system as well as data back-ups.

All the computers I used were managed by a GNU-Linux operating system (OS). These OS

are popular in the scientific community for their great flexibility, and most of the tools a

programmer need are readily available and come with documentation as well as online

support. It is in particular convenient to work simultaneously on several remote machines

and to transfer data using the secure shell protocol (ssh). One can also automate many time

consuming tasks by writing shell scripts. For instance, the following command typed into

a console terminal will transfer data between my laptop and a remote computer over the

Fraunhofer network:

1 $ scp ./ mydata.h5 tschannen@ ***. itwm.fhg.de:/media/storage/DATA

Most of the scientific packages do not come with the default OS’s python installation and

should be installed separately. A convenient python distribution is offered by Anaconda, as it

comes with the Conda package management system that enables to easily install and update

modules while taking care of dependencies. Conda can also be used to maintain several

hermetic environments, for instance to run some legacy software with Python 2 without

affecting a Python 3 installation.

To write Python scripts and organize them in a project, one can resort to an integrated develop-

ment environment (IDE) such as Spyder or Atom. These come with a set of useful features like

syntax highlighting and integrated debugger and profiling tools. We can also do quick testing

in an interactive Python shell (IPython) that bear conveniences like tab completion. Jupyter

notebooks (Pérez & Granger, 2007) are designed for presenting and sharing research results by

providing interactive computing and visualization capabilities as well as supporting several

text formatting and web page creation languages like markdown, latex, HTML or CSS. To track

the successive modifications made to the source code, one should use a version control system

such as git. In addition of providing a safe back-up mechanism, it is also a handy tool for

coordinating work among several programmers contributing to the same project, and keeping

up-to-date versions of the scripts on different machines.
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A.2 Data Formats

The dominant file format to store and exchange seismic data is the SEG-Y. It is an open

standard that specifies how both the data and meta-data should be written as a hybrid text

and binary file. While revisions of the standard are made from time to time, it is a little rigid

due to its age, and some design choices like the trace headers are not the most convenient to

work with. It also suffers from a lack of explicit constraints which results in the existence of

essentially several standards instead of just one. Additionally, the format is only used by the

seismology community and there is therefore little tools that can operate directly with it in the

Python ecosystem.

One of the most popular file format in the geoscience community is the NetCDF4, a format

specially created to work with scientific data represented as multi-dimensional arrays with

meta-information. It builds on top of the HDF5 format and is designed to store very large files

with possibly dynamic sizes and organized under a Unix-like tree-based file system. In order

to convert data between both formats, I used the segy parser segyio to load data into memory

and write it to a netcdf4 archive with the NetCDF4 library. This operation can be written inside

a loop in order to read and write data by chunks, avoiding out-of-memory errors. For very

large files, the operation can be sped-up by starting several processes that each read and write

a portion of the data in parallel.

Additional formats that store other smaller geophysical data such as well logs or horizon picks

are usually text formats and can be efficiently handled with the Pandas (McKinney, 2010)

library.

A.3 Lazy Labelled ND-Arrays

Typically, migrated seismic data are represented as multidimensional arrays and come with

a variety of meta-information, such as physical units and project geometry, that should be

readily accessible when needed. The standard python library to operate on multi-dimensional

arrays is NumPy (van der Walt et al., 2011). For the user, Numpy ndarrays are n-dimensional

matrices containing elements of the same type (e.g.floating point values). Those arrays support
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fast linear algebra operations and are compatible with a large number of vectorized algorithms

for instance available in the SciPy package (Jones et al., 2001). They also provide convenient

fancy indexing operations for non-trivial data slicing and merging.

However, those arrays come with some limitations, most notably they can only work in

memory and they do not support labels. This limits their usage to relatively small datasets

and also forces to write classes around them to keep track of meta information. To solve

those issues, projects like xarray (Hoyer & Hamman, 2017) offer to create out-of-memory data

structures that support lazy computing, chunked processing and labelling with meta-data.

Xarrays can be created directly from NetCDF4 files: ds = xr.open_dataset(’./dataset.

nc’,group=’gathers/angles’). Figure A.1 shows the content of an xarray storing seismic

gathers. The wavefield itself is contained under the field Data variables, and the information

of the dimensions are stored under the fields Dimensions and Coordinates. We see that

the wavefield is expressed over 4 dimensions and, for instance, the prestack dimension is

represented by incidence angles from 4° to 60° with a resolution of 2°. Creating the xarray do

not load any data into main memory but rather generates a view of the dataset. A convenient

feature of those arrays is the possibility to select data by coordinates rather than indexes. The

following code snippet demonstrates this by extracting the first angle gather from the dataset

by using both coordinate based and index based slicing:

1 assert np.allclose(ds.amplitudes.sel(ilines=27200 ,xlines=16002).values ==

ds.amplitudes[0,0,...].values)

Another feature is the lazy nature of the arrays. Data is never loaded into memory unless

explicitly asked. Before performing operations, one need to specify how the array should be

chunked in order for the process to work only on sub-parts of the data that can fit in memory.

ds = ds.chunk(dict(ilines=20,xlines=20,angles=-1,time=-1)) defines such data

subsets as hyper-cubes of 20 inlines by 20 crosslines. To compute a near angle stack from 4° to

20° we run the following code:

1 stack = ds.amplitudes.sel(angles=slice(4,20)).sum(dim=’angles ’)

At this stage no computation as been performed, the code snippet instead built a compu-

tational graph linking the input data (the on-disk NetCDF4 prestack dataset) to the output
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Figure A.1 – Print of an xarray.Dataset object pointing to angle gathers.

Figure A.2 – Print of an xarray.DataArray object pointing to a 3D stack.

data (a near stack). The variable stack is itself an xarray DataArray structure that inherited the

correct coordinates and chunking meta-information (see Figure A.2). Several such operations

can be chained together, progressively building a more complex graph. The graph can then be

executed, and the output is either returned into memory or saved as additional data into the

NetCDF4 dataset.

A.4 Good Performance Computing

As explained earlier, writing efficient python code mostly consists in using correctly the

well tested and maintained libraries available in the scientific stack. Such libraries perform

well because they were written by domain experts and run the heavy computations using

behind the scenes calls to more appropriate languages. However, one limitation is that we

are restricted to the available routines and some operations highly tailored for our data may

not be available as is, or not easily expressible as a combination of those routines. In this

case one could write our own routine in an appropriate language and offer a python api for it.

But this approach is not easily feasible and takes time to carry out. In this section we instead

present few tools that are developed to offer an easier approach to code acceleration and

parallelization.
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We introduced in the previous section the xarrays object. An additional feature that we did

not mention is that they integrate well with the out-of-core parallel computing library Dask

(Rocklin, 2015). Dask can be employed for both shared memory and distributed memory

computing. The latest is used to parallelize an application to be run on a cluster, but we

will showcase only the former which enables to make use of the multiple cores available on

most laptops and workstations. As an example we consider the trace envelope computation.

This attribute is based on the Hilbert transform and is helpful for instance to discriminate

stratigraphic sequence boundaries or thin-bed tuning effects (Roden & Sepulveda, 1999). We

compute it with the following code:

1 import numpy as np

2 from scipy.signal import hilbert

3 def trace_envelope(x,axis=-1):

4 return np.sqrt(np.square(x) + np.square(hilbert(x).imag))

Using Dask we can decorate the trace _ envelope function so that it operates lazily on our vari-

able stack from the previous section. Evaluating stack_env = dask.delayed(trace_envelope

)(stack) will create a computational graph that Dask’s scheduler can automatically parallal-

ize at run time.

Other tools exist to overcome the interpreted nature of python by enabling to compile portions

of the code without resorting to an other language. Cython (Behnel et al., 2011) is a package

used to write C extensions for Python with minimal efforts. The following example computes

the root mean square (rms) amplitude of a trace:

0 %%cython

1

2 import cython

3 cimport cython

4 import numpy as np

5 cimport numpy as np

6 from libc.math cimport sqrt

7

8 DTYPE = np.float64

9 ctypedef np.float64_t DTYPE_t

10
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11 cpdef np.ndarray[DTYPE_t , ndim=1] rms_amplitude_cython(np.ndarray[DTYPE_t

, ndim=1] trace ,

12 unsigned int halfwindow=11):

13

14 cdef unsigned int N = trace.size

15

16 cdef np.ndarray[DTYPE_t , ndim=1] zs = np.zeros(( halfwindow ,))

17 cdef np.ndarray[DTYPE_t , ndim=1] pad = np.concatenate ((zs,trace ,zs))

18 cdef np.ndarray[DTYPE_t , ndim=1] rms_signal = np.empty ((N,))

19

20 cdef unsigned int wsize = 2*halfwindow+1

21 cdef double sq = 0.

22 cdef unsigned int i, j

23

24 for i in range(N):

25 sq = 0.

26 for j in range(i,i+wsize):

27 sq += pad[j]** 2

28 rms_signal[i] = sqrt(sq/wsize)

29

30 return rms_signal

The library allows to define C types and the line %%cython is a jupyter magic command (see

next section) that compiles the function and wraps it to be a callable from python. Figure A.3

shows that the cython version is more than 360 times faster than the equivalent naive python

implementation (it is also about 1.7 times faster than the convolution based vectorized numpy

version).

Numba (Lam et al., 2015) is another tool that implements a just-in-time compiler for trans-

forming a subset of python and numpy into fast machine code. In some cases it can be very

easy to use as minor modifications to the original code can bring a dramatic speed increase.

The following code implements the same operation as above in python. The only difference

with the naive implementation is the decorator added on top of the function definition.

0 @numba.jit(nopython=True)

1 def rms_amplitude_numba(trace , halfwindow=11):

2 N = trace.size
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Figure A.3 – Jupyter magic command timing four implementations of the same function.

3 zs = np.zeros(( halfwindow ,),dtype=trace.dtype)

4 pad = np.concatenate ((zs,trace ,zs))

5 rms_signal = np.empty_like(trace)

6 wsize = 2*halfwindow+1

7

8 for i in range(N):

9 sq = 0.

10 for j in range(i,i+wsize):

11 sq += pad[j]** 2

12 rms_signal[i] = sqrt(sq/wsize)

13

14 return rms_signal

Performances reported by Figure A.3 shows that the speed is comparable to the cython imple-

mentation.

For completeness we also give the numpy version of the above function:

0 def rms_amplitude_np(trace , halfwindow = 11):

1 ws = 2*halfwindow + 1

2 trace2 = np.power(trace ,2)

3 window = np.ones(ws)/float(ws)

4 return np.sqrt(np.convolve(trace2 , window , ’same’))

Another important family of tools to write efficient code are profilers and debuggers. Profilers

let you dissect the memory usage and compute time of individual instructions, giving insights

about potential non desired data copy and highlighting the computational bottlenecks that

might be worth optimizing. Figure A.4 shows the result of a line by line profiling, with the
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(a) Naive implementation.

(b) Vectorized implementation with numpy.

Figure A.4 – Line-by-line profiling of two implementation of the same function with IPython’s
%lprun profiler.

IPython profiler %lprun, of the root mean square function for the naive and numpy based

implementations. Without surprise we see that most of the performance gain was obtained

by replacing the loop by vectorized operations. Figure A.5 displays the result of the memory

profiling of the numpy based implementation with the %memit magic. The IPython debugger

allows for full inspection of the code, by navigating through the different layers of function

calls and letting us inspect the state of each variable as they are encountered by the interpreter.

A.5 Data Pipelines for Deep Learning

Presently, the fastest way to train a deep neural network is to resort to Graphical Processing

Units. GPUs are high throughput devices composed of hundreds of cores and thousands of
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Figure A.5 – Line-by-line memory profiling of a function with IPython’s %memit magic.

(a) Without pipelining

(b) With pipelining

Figure A.6 – Graphic illustrating the effect of pipelining on the CPU and GPU usage (taken
from Abadi et al. (2015)).

hardware threads which make them ideal for running linear algebra operations in parallel. A

number of libraries have been developed to build neural networks and train them on GPUs.

Two of the most popular are Tensorflow (Abadi et al., 2015) and PyTorch (Paszke et al., 2017).

They come with a set of predefined layer types as well as with many low level operations that

can be used to create custom layers. Users define a network by programming a computation

graph expressing the data flow as well as the operation types. Those libraries also provide a set

of optimizers, like the stochastic gradient descent (SGD), and compute the back-propagation

using automatic differentiation. The user does not have control over the compute performance

of the library, but it is essential that (s)he builds an efficient data pipeline. Figure A.6 illustrates

how a naive pipeline can negatively affect training performances by starving the GPU.

As seen in the previous sections, we start with a large seismic dataset stored on disk in a
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(a)

(b)

Figure A.7 – Monitoring cpus activity with the htop command.

NetCDF4 or HDF5 archive. Training neural networks is done in a stochastic manner by

sending at every iteration a batch of samples, which each consists in smaller subset of the

entire data. First, the CPU asks to the file system to fetch a batch from disk and brings it

to the host memory. It then performs some optional operations and sends the batch to the

GPU. With pipelining, several CPU cores work in parallel to fetch and transform the data, they

queue them in a buffer and several threads dequeue the buffer to feed the GPU as soon as

possible, in order to limit idle time. The following script is an example for a skeleton of a

python generator than can be provided to Tensorflow’s dataset api via the instruction tf.data

.Dataset.from_generator. It assumes that the data is stored on disk as an HDF5 file and

specifies how every samples should be extracted. The locations for the extraction are stored in

the variable self.indices and can represent for instance the 3-dimensional position slice

indexes of data sub-cubes extracted along a training inline.

0 import h5py

1

2 class DataGenerator:

3 """ """

4 def __init__(self , side , ...):

5 ...

6 self.side = side
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Figure A.8 – Monitoring the GPU usage the the command watch -n 1 nvidia-smi.

7 self.indices = self._get_training_slice_indices ()

8

9 def __call__(self):

10 with h5py.File(HDF5_PATH ,’r’) as h5f:

11 reader = h5f[self.dataset_name + ’/stack ’]

12 for idx in self.indices:

13 cube= reader[idx]

14 cube = preprocess_data_cube(cube)

15

16 yield (cube , idx)

Another possibility, if the above approach is too slow, is to serialize the data before hand

in TFRecords binary files and write a generator that reads those files. In Figure A.7, we see

how one can use multiprocessing to read data with the above generator, pre-process them,

and write them to a set of TFRecords in parallel. This approach as the advantage to cache

the preprocessing operation that does not need to be performed any more at every training

iteration, and it also saves the data format conversion time.

To make sure that the pipeline we designed is efficient, we can monitor the GPU activity (see

the column Volatile GPU-Util in Figure A.8) and verify that there is only little idle time.
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Figure A.9 – Example of a Jupyter notebook.

A.6 Visualizing and Reporting

Visualizing the results and organizing them to present our work to colleagues and record the

experimental flow is important. We already introduced the Jupyter notebooks (or JupyterLab)

(Pérez & Granger, 2007) that can run code snippet from many languages including python,

markdown, latex, CSS, HTML, or javascript. This offers the possibility to create organized lab

reports (see Figure A.9) that can be easily shared with colleagues, run and modified on cloud

services or published under the form of blog posts for people to read in their web browser.

The default plotting library for python is Matplotlib Hunter (2007), I used it to create many of
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Figure A.10 – 3D viewer in a Jupyter notebook with Plotly.

the figures seen in this thesis. Recently, more modern libraries like Plotly (Inc., 2015) or Bokeh

(Bokeh Development Team, 2019) have appeared. They are based on a JavaScript engine and

are powerful for interactive data visualization in a web browser (see e.g. Figure A.10).
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RÉSUMÉ

Acquérir des connaissances sur la géologie de la subsurface terrestre grâce à l’imagerie sismique est un processus

long et parfois fastidieux. De nombreux algorithmes sont utilisés pour transformer le signal, atténuer le bruit et aider

à interpréter l’image. Ces algorithmes sont conçus par des experts et nécessitent d’être soigneusement paramétrés.

De plus, de nombreuses tâches doivent être effectuées manuellement par les géoscientifiques lorsque les algorithmes

ne parviennent pas à fournir de bons résultats. Ces dernières années, l’apprentissage profond, un sous-domaine de

l’intelligence artificielle, a pris une grande importance. Il a été montré que les modèles d’apprentissage surpassent les

algorithmes traditionnels dans de nombreuses applications à travers un grand nombre de disciplines scientifiques. Ils per-

mettent également d’automatiser certains processus qui n’étaient jusque-là réalisables que par des humains. Cependant,

il peut être difficile de remplir les conditions nécessaires pour exploiter leur potentiel. Dans cette thèse, nous identifions

les principaux obstacles à l’utilisation de l’apprentissage profond, notamment ceux de l’incertitude sur l’interprétation

des données et de la dépendance de l’apprentissage en exemples fournis par des experts, et proposons une série de

méthodologies visant à les surmonter. Nous démontrons la validité et la faisabilité de nos méthodes sur un ensemble de

problèmes d’interprétation et de traitement sismique.

MOTS CLÉS

Analyse Sismique – Apprentissage Profond

ABSTRACT

Gaining knowledge of the geology of the Earth’s subsurface with seismic reflection is a long and challenging process.

Many algorithms are employed to transform the signal, attenuate the noise and help interpreting the image. Those algo-

rithms are designed by experts and require to be carefully parametrized. Additionally, many tasks have to be performed

manually by geoscientists when algorithms fail to deliver good results. In recent years, deep learning, a subfield of artifi-

cial intelligence, has rose to prominence. Learning models have been shown to outperform traditional algorithms in many

applications across numerous scientific disciplines. They also allow to automate certain processes that were until then

only feasible by humans. However, fulfilling the necessary conditions to exploit their potential may be challenging. In this

thesis, we identify the main impediments to the use of deep learning, in particular the uncertainties in the interpretation

of the data and the dependency of the training procedure on examples supplied by experts, and propose a series of

methodologies that aim to overcome them. We demonstrate the validity and practicability of our methods on a set of

challenging seismic interpretation and processing problems.

KEYWORDS

Seismic Analysis – Deep Learning
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