
HAL Id: tel-02953277
https://hal.science/tel-02953277v1

Submitted on 30 Sep 2020 (v1), last revised 26 Feb 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Hardware Accelerators for Post Quantum
Cryptography

Timo Zijlstra

To cite this version:
Timo Zijlstra. Secure Hardware Accelerators for Post Quantum Cryptography. Cryptography and
Security [cs.CR]. Université Bretagne Sud, 2020. English. �NNT : �. �tel-02953277v1�

https://hal.science/tel-02953277v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE BRETAGNE SUD
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Timo ZIJLSTRA »
« Accélérateurs matériels sécurisés pour la cryptographie post-
quantique »

Thèse présentée et soutenue à « Lorient », le « 28/09/2020 »
Unité de recherche : Lab-STICC
Thèse No : 564

Rapporteurs avant soutenance :

Lilian BOSSUET Professeur des Universités, Université Jean Monnet Saint-Étienne
Régis LEVEUGLE Professeur des Universités, Grenoble INP, Université Grenoble Alpes

Composition du Jury :
Président : Jean-Claude BAJARD Professeur des Universités, Université de Paris (UPMC)
Examinateurs : Nele MENTENS Professeur des Universités, Université Leiden / Université KU Leuven

Jean-Claude BAJARD Professeur des Universités, Université de Paris (UPMC)
Dir. de thèse : Arnaud TISSERAND Directeur de Recherche, CNRS
Co-enc. de thèse : Karim BIGOU Maître de conférences, Université de Bretagne Occidentale

Invité(s) :
Benoît GÉRARD Expert, DGA

Contents

1 Introduction 1

1.1 Context . 1

1.2 Objective and outline of the thesis . 8

2 Definitions and Notations 11

3 State of the Art 15

3.1 Introduction . 15

3.2 Public-Key Encryption . 15

3.3 Lattice Problems . 16

3.3.1 Cryptosystem . 19

3.4 Ideal Lattices and RLWE . 20

3.4.1 CPA and CCA Security . 21

3.4.2 Generalization and Module LWE . 23

3.4.3 NTRU . 26

3.4.4 LWR . 26

3.5 Implementation of LWE-based Cryptography . 27

3.5.1 Modular arithmetic . 27

3.5.2 Polynomial arithmetic . 28

3.5.3 Lattice Cryptography on FPGA . 32

3.6 Side-Channel Attacks . 35

3.6.1 SCAs on Lattice Cryptography and Countermeasures 37

4 Implementation Environment 41

4.1 Introduction . 41

4.1.1 FPGAs . 41

4.1.2 High Level Synthesis . 43

4.1.3 HLS and Cryptography . 43

4.2 Finite-Field Arithmetic using HLS . 43

4.2.1 Implementation results . 46

4.3 Schoolbook Algorithm for Polynomial Multiplication 50

5 LWE, RLWE and MLWE on FPGA 59

5.1 Introduction . 59

5.2 Implementation of main operations . 60

5.3 FPGA Implementation of LWE . 62

5.3.1 Parameters used in the implementations . 62

5.3.2 Matrix arithmetic for LWE . 63

5.3.3 Parallelization using HLS . 64

5.3.4 Implementation results . 65

5.4 RLWE Implementations . 66

5.4.1 Optimizing the area utilization . 69

5.5 MLWE implementations and comparison . 70

5.5.1 Modifying the RLWE implementation . 70

5.5.2 Parallelization of operations in Rkq . 72

5.5.3 Parallelization using HLS . 72

5.5.4 Implementation results . 74

5.6 Randomness generation and CCA implementations . 76

5.6.1 Rejection sampling . 76

5.6.2 Alternative PRNG . 76

5.6.3 CCA secure implementations . 77

5.7 Comparison with other works . 80

5.8 Conclusion . 82

6 Countermeasures against Side-Channel Attacks 84

6.1 Introduction . 84

6.1.1 Correlation Power Attack simulations in Python 84

6.2 Countermeasures in the State of the Art . 88

6.3 New Variants of State of the Art Protections . 92

6.3.1 Masking with a New Masked Decoder . 92

6.3.2 Modified Shifting . 95

6.3.3 Blinding . 95

6.3.4 Shifting and Blinding Combined . 96

6.4 New Protections . 96

6.4.1 Shuffling . 96

6.4.2 Randomization using Redundant Number Representation 100

6.5 Comparison of all Protections . 102

6.6 Generalizing the Countermeasures to Apply to MLWE/LWE 104

6.6.1 Masking . 104

6.6.2 Blinding . 107

6.6.3 Shifting . 107

6.6.4 Shuffling . 108

6.6.5 Redundant number representation . 109

6.7 Conclusion and Discussion . 109

7 Conclusion 110

Résumé en français 113

Chapter 1

Introduction

1.1 Context

An increasing number of electronic devices require the ability to exchange data in a secure manner. A

secure application for sending and receiving messages for example, must ensure the confidentiality and

authenticity of exchanged messages. Encryption is the cryptographic tool that is used to guarantee

confidentiality. It uses mathematical functions that are easy to compute but hard to invert. Only

with a so-called key the inverse function can be computed. An encryption of the message is obtained

by applying such a function to the message, or plaintext. The content of the encrypted message, or

ciphertext, can only be read by those who hold the key to invert the encryption function. Inverting

the encryption and recovering the message is called decryption. Symmetric-key cryptography deals

with the encryption and decryption of the message, assuming that both sender and receiver have the

key to encrypt and decrypt. It is symmetric in the sense that the same key must be used for both

encryption and decryption.

Symmetric-key encryption requires that both sender and receiver already have a shared key. Before

being able to use symmetric-key encryption, such a key must be created and shared in a secure way.

A key exchange protocol consists of an (unsecure) exchange of data over a public channel between

two parties Alice and Bob. The goal of the protocol is to have both parties ending up with the

same piece of pseudo-random information, which can then be used as a key for use in symmetric-key

encryption. It must be ensured that the public data exchanged over the public channel do not reveil

any information about the shared key created using this data.

The data exchanged between Bob and Alice is sent over a public channel (see figure 1.1). It is

assumed that there is always an eavesdropper that is able to intercept anything sent over this channel.

This makes a secure key establishment particularly difficult. The problem is that any straightforward

method of sharing a key would give away information about the key to the eavesdropper. The solution

is found in a clever use of computationally hard problems. These are mathematical problems for which

no efficient algorithm is known. Such a problem cannot be solved within a reasonable computation

1

Figure 1.1: Using symmetric and asymmetric cryptography to exchange confidential data from Bob
to Alice. SK is the secret key, PK the public key and C the ciphertext. If C is decrypted correctly,
then M = M ′ and the data that Alice obtains is equal to Bob’s data.

Alice Bobpublic channel

time. Computationally hard problems allow to construct trapdoor functions, which are typically used

as decryption function in public-key encryption schemes.

The discrete logarithm is an example of a computationally hard problem. Let g be a multiplicative

generator of (Z/pZ)∗ for some prime number p. The discrete logarithm problem is to find the value

of a given g and ga mod p for some integer a. The number of computations needed to solve this

problem is proportional to the size of the parameter p. To find the discrete logarithm of ga mod p

using a brute force approach, one must compute gi mod p for increasing i until finding a value for

which gi ≡ ga mod p. For sufficiently large p, it may take years to solve an instance of the discrete

logarithm problem. Key exchange protocols are designed in such a way that the (secret) key can only

be deduced from the (publicly) exchanged data by solving the underlying hard problem.

The Diffie-Hellman protocol [47] uses a prime number p and a multiplicative generator g of (Z/pZ)∗

as public parameters. Alice and Bob pick a random integer a and b and compute the values ga mod p

and gb mod p respectively. These values are then sent over the public channel. The random integers a

and b are kept secret. Alice receives gb mod p and computes (gb)a mod p. Bob, who picked b, receives

ga mod p and computes (ga)b mod p. Since (ga)b ≡ gab ≡ (gb)a mod p, both Alice and Bob end up

with the same element gab mod p. This element forms the secret key to be used with a symmetric

encryption method for the remainder of the encrypted communication between Alice and Bob.

The eavesdropper on the public channel intercepts ga mod p and gb mod p. To compute gab mod p,

either a or b has to be computed using only the information ga mod p and gb mod p. This is the discrete

logarithm problem described above: to break the protocol (i.e. to find the key), one must compute a

2

discrete logarithm. Assuming that p is sufficiently large, it is not practical to solve this problem and

therefore the key exchange is secure. In order for the protocol to be useful in practice, it is essential

that the number of computations needed by the eavesdropper to break the scheme, be significantly

greater than the number of computations performed by the two legitimate parties. In the worst case,

the eavesdropper will compute gi mod p for integer 0 < i < p− 1, before finding a or b. Alice and Bob

on the other hand, only perform two exponentiations each. Let n = 1+blog2(p)c, that is, n is equal to

the length of the binary representation of p. The worst-case hardness of breaking the Diffie-Hellman

protocol is exponential in n: between 2n−1 and 2n exponentiations have to be computed. Increasing by

1 the size of p doubles the hardness of breaking the protocol. A Diffie-Hellman instance of parameters

g and p where 1 + blog(p)c is equal to n+ 1 (instead of n), is twice as hard to break. The parameter

n is used as a security parameter. The U.S. National Institute of Standards and Technology (NIST)

recommends using n = 2048 or even n = 3072 for higher security levels [15].

On average, the brute force algorithm solves the discrete logarithm in Θ(2n) exponentiations.

There exist various algorithms that compute discrete logarithms faster than the brute force approach,

significantly lowering the security of the protocol. To compensate, the parameter n (and therefore

also p) has to be increased. A side effect of this increase is that Alice and Bob have to perform

more operations and on larger values to compute their 2 exponentations, and the size of ga mod p and

gb mod p, sent over the public channel, is increased. Increasing the parameter n too much, may make

the protocol impractical for use because of computation time requirements or bandwidth limitations.

Luckily, the fastest discrete logarithm algorithms are of a complexity that is at least subexponential

in the parameter n. This means that a linear increase of n causes a subexponential increase in the

computation time of the discrete logarithm algorithms. The modification to n required to make the

computation of these algorithms impractical, is acceptable in terms of computation time and bandwith

requirements for the Alice and Bob.

The Diffie-Hellman protocol is not limited to the group (Z/pZ)∗. Any cyclic group G = 〈g〉 in

which the discrete logarithm is significantly harder to compute than its group operation, can be used.

Another example is the additive group of points generated by some point P on an elliptic curve over

some finite field K. The discrete logarithm in such a group consists of finding some scalar a ∈ K given

the generator P and the point aP on the curve. For the right choice of parameters, this is a hard

problem. More background on elliptic curve cryptography (ECC) can be found in [39].

Public-key encryption is a slightly different approach to creating and sharing a symmetric encryp-

tion key. It allows Alice and Bob to exchange a small message without already having a pre-shared

symmetric key. In practice, this small message consists of a symmetric encryption key, therefore it

does not differ from key exchange protocols in its main purpose. The RSA public-key encryption

scheme [104] is the most famous example. The security of RSA is not based on the hardness of the

discrete logarithm problem, but instead on the hardness of the integer factorization problem. This

problem consists of factorizing an integer that is a product of two large prime numbers. Given a

3

number N = p · q for two large prime numbers p and q, it is very hard to find the factors p and q.

As is the case for the Diffie Hellman protocol, the security of RSA depends on the complexity of the

algorithms solving the underlying problem of integer factorization.

The integer factorization problem and the discrete logarithms over certain groups can be solved

in polynomial time by Shor’s quantum algorithm [108]. This means that, using a quantum computer,

these problems are easy to solve. The cryptographic protocols based on the hardness of these problems,

such as RSA, Diffie Hellman and ECC, are broken against attackers using sufficiently large quantum

computers. While the quantum computers that are operational are still too small to pose a threat

today, development is in progress. It is difficult to predict exactly when there will be quantum

computers that are sufficiently large to to break RSA and ECC. Some experts believe that it might

happen in the next 20 years [89], with a 1
2 chance of breaking RSA-2048 by 2031. Development in

practical quantum computing depends on the ability to produce reliable fault-resistant qubits and its

scalability. Regardless of the accuracy of this prediction, there are various reasons to start developing

quantum-safe alternatives to RSA/ECC. It may take a lot of time to develop and standardize new

cryptographic algorithms. The NIST hash function competition, with its goal to standardize a secure

hashing algorithm, lasted 5 years. It should be assumed that encrypted communication is stored by

adversaries that may in the future use quantum computers to break the encryption. Therefore it is not

sufficient to use cryptographic algorithms that we know will become obsolete. Some communication

is supposed to remain secret for over 20 years. For these cases it is imperative to use alternatives to

RSA/ECC that will be resistant against quantum algorithms.

These alternatives are called post-quantum cryptography (PQC). The NIST competition for the

standardization of post-quantum cryptography was launched in 2016 [36]. Its goal is to select and

standardize post-quantum algorithms for public-key encryption and digital signatures. The standard-

ized algorithms should in time replace RSA/ECC. The security of post-quantum primitives relies on

mathematical hard problems for which quantum computers do not offer significant speedup, as op-

posed to the large integer factorization problem. The most studied proposed post-quantum algorithms

fall in one of four different catagories:

• Lattice-based cryptography uses hard problems like Learning with Errors (LWE) [100] and

NTRU [59], which are both related to the Shortest Vector Problem (SVP). These problems

have been studied intensively, and known quantum algorithms cannot solve them efficiently.

Schemes based on LWE and NTRU use relatively simple algebraic structures, such as matrices,

vectors and polynomials. They are known to be fast to compute, especially the variants using

polynomial ring structures. An important drawback to lattice-based cryptography is the size

of the keys and ciphertexts when compared to ECC. The size of the public key of the Frodo

cryptosystem for example, is 21.6 kB (see Table 1.1), while the total communication of the ECC

Diffie-Hellman key exchange does not exceed 1 kB [16]. Other examples include Kyber [27],

NewHope [4] and NTRUPrime [21].

4

• Code-based cryptography is based on the problem of decoding a random linear code. Code-

based cryptosystems use some error correcting code C that can be decoded using a fast decoding

algorithm A. The specification of the code, in the form of a matrix, is kept as part of the

secret key. The public key is created by applying linear transformations and permutations to

the secret matrix in order to obtain a scrambled code. This scrambled code is the public key

and can be used by anyone to encode messages. The ciphertext then consists of a codeword

in the scrambled code. The holder of the secret key can undo the linear transformations and

permutations to the codeword and use her fast decoding algorithm A to decode and obtain the

plaintext. The McEliece cryptosystem [85] using Goppa codes was proposed in 1978 and has

never been broken. It is not much used in practice, due to the large public key (over 1 MB, see

Table 1.1) which makes it impractical. Variants of the McEliece scheme use different techniques

in order to decrease the key size, such as replacing the Goppa code by some other linear code.

• Isogeny-based cryptography uses the Diffie-Hellman key exchange framework. Instead of the

group (Z/pZ)× or the additive group of points on elliptive curves, a different group is used. An

isogeny graph is defined by vertices representing elliptic curves and edges between each pair of

elliptic curves that is connected by some isogeny. The group operation enables random walks

over such an isogeny graph. It is assumed that it is computationally hard to solve the problem

of finding an explicit isogeny between two given elliptic curves. It also seems that quantum

computers offer no significant speed-up in solving this problem. Advantages of isogeny-based

cryptography include small key sizes (less than 1 kB, also see Table 1.1) and the ressemblance

to the existing Diffie Hellman key exchange. An important inconvenient is the long computation

time needed to compute the group action. SIKE [10] is the only isogeny-based submission in the

NIST post-quantum contest.

• Multivariate polynomial cryptography is based on the hardness of solving a system of multivari-

ate quadratic equations. It seems most promising for digital signatures but is not used much for

public-key encryption.

The submissions to the NIST post-quantum contest differ in many aspects, and it can be challeng-

ing to make a fair comparison. The theoretical security is one of the criteria that must be satisfied.

The submissions focus on several pre-defined security levels. Their claims that certain security levels

are obtained by their proposal, are to be verified by cryptanalysts. The practicality of proposed so-

lutions is a second criterium. In real world applications, there are constraints on computation time

and transmission of data. The size of the public keys and ciphertexts is an important measure of the

efficiency of a cryptosystem. A key establishment mechanism typically requires the transmission of

one public key and one ciphertext. The sum of the public key and ciphertext size is equal to the total

1Key and ciphertext sizes and cycle count are for the parameter set for a security equivalent to AES-192.
2Key and ciphertext sizes and cycle count are for the parameter set targeting only 128 bits of security.

5

Table 1.1: A selection of round 2 submissions to NIST’s post-quantum PKE contest. Key and cipher-
text sizes are for parameter sets of the highest security level (equivalent to AES-256) unless stated
otherwise. The cycle count for the computation of the encryption algorithm is taken from [22] who
used an Intel Core i3-2310M processor.

Cryptosystem category type public secret ciphertext cycles
key (kB) key (kB) (kB) (×103)

Classic McEliece [20] code binary Goppa 1,044 13.9 0.2 318
BIKE-1 [6] code QC-MDPC 8.2 0.5 8.2 802
Frodo [28] lattice LWE 21.6 21.6 21.6 52,672

NewHope [4] lattice RLWE 1.8 1.8 2.2 498
Kyber [27] lattice MLWE 1.6 1.6 1.6 471
Saber [45] lattice MLWR 1.3 1.8 1.5 377

NTRUPrime [21] 1 lattice NTRU 1.2 0.6 1.0 11,032
SIKE [10] 2 isogeny supersingular 0.4 0.1 0.4 26,587

transmission required for one key establishment. Table 1.1 shows key and ciphertext sizes for a number

of candidates in the NIST’s post-quantum contest. Besides the size of the data transmission, speed is

another essential measure. A solution that is very secure but requires a long computation time, may

not be practical. The cycle counts shown in Table 1.1 are very high for some schemes. Improvement

to satisfy computation time constraints can be obtained using hardware acceleration. Hardware units

dedicated to the computation of specific cryptographic algorithms are faster than general purpose

processors. The efficiency of hardware implementations is therefore an indicator of the practicality of

a proposed cryptographic algorithm.

The security of hardware implementations does not only depend on the hardness of the mathe-

matical problem underlying the cryptosystem, but also on the way it is implemented. Side-channel

analysis (SCA) [71] makes use of physical properties that are measured while the device under at-

tack is running. These physical properties often depend on the exact values that are being used in

the computations. During decryption, the secret key is part of these values. Measuring the exact

time of the computation of ga mod q during a Diffie-Hellman key exchange for example, may reveal

information about the secret value a. In fact, if the exponentation is implemented using the Square-

and-Multiply algorithm [86], the computation time depends directly on the binary representation of

a. This algorithm iterates over the zeroes and ones in the binary representation of a and computes

a square operation if a bit is equal to 0, while computing both a square and a multiplication if a bit

is equal to 1. If the exponentation takes relatively little time to compute, one can deduce that the

binary representaion of a contains many zeroes. On the other hand, if the exponentation takes a long

time to compute, there must be many ones in the binary representation of a. The Diffie-Hellman

key exchange can thus be attacked, without attacking the underlying mathematical problem. These

attacks are called side-channel attacks. The computation time is referred to as a side channel.

Another example of a side channel is the power consumption of a device executing a cryptographic

6

operation. Power analysis uses measured power traces, showing the exact power consumption of a

device during the computation of an algorithm that uses the secret key. In the example of the Square-

and-Multiply algorithm, power analyis may reveal the complete secret key a. During a multiplication

a device consumes more power than during a square. The power trace thus reveals a unique pattern

of squares and multiplications that correspond to zeroes and ones of the secret key. The same attack

applies to the exponentation during an RSA decryption, and even to scalar multiplication in ECC

using the Double-and-Add algorithm [58] to compute a (secret) multiple of a point on the curve. These

attacks use only one power trace and are therefore called simple power attacks (SPA).

Using more traces, less straightforward relations between power consumption and secret keys may

be detected. It is often assumed that there is a linear relation between the power consumption and

the number of non-zero bits in the registers at any given moment during a computation. This is

called the Hamming Weight model [82]. The power consumption of a device can thus be modelled for

given inputs. Another model is defined by the Hamming Difference, in which it is assumed that the

power consumption depends linearly on the number of bits that change value in the registers at any

given moment. It is common practice to focus on a small part of the (unknown) secret key and the

exact period that this part is being manipulated by the algorithm. The power consumptions for all

the possibilities of the small part of the secret key are predicted by the attacker, using a prediction

model. Then these predictions are compared to the observed power trace. Statistical tools are used to

determine which one of the predictions fits the observed pattern most accurately. Correlation Power

Analysis [30][84] observes and predicts many traces for many known inputs, and uses the Pearson’s

correlation coefficients to select the most likely correct value for the small part of the secret key.

The attack then continues for the next small part of the secret key, until the full key is recovered.

Altenatively, the side-channel attacker may stop at the point at which a large enough part of the secret

key is known, so that a brute force approach can be used to recover the remaining unknown parts of

the key.

Side-channel attacks show that the theoretical security of a cryptographic protocol is not sufficient

to guarantee the security of its implementation in practice. Implementations should be protected by

countermeasures against side-channel attacks. Timing attacks, as the one described on the Square-and-

Multiply algorithm, can be avoided by making the implementation constant time. The computation

time of constant-time implementations does not depend directly or indirectly on the secrets in the

algorithm. A classic method of making the Square-and-Multiply algorithm constant time, is to add

dummy operations. Whenever a zero appears in the binary representation of the secret key, not only

a square is computed, but also a multiplication of some dummy variable. This ensures that the final

result does not change, while timing attacks are avoided by constantly squaring and multiplying,

independently of the secret key. This countermeasure may also prevent SPA, provided that the other

potential sources of information leakage, such as the control part of the implementation, are protected

as well.

7

Power attacks using multiple traces may be avoided by randomizing the computations. If the

operations in the algorithm are linear, then masking may be used. This method involves generating a

random value s′ and adding it the the secret key s. The algorithm is then computed twice: the first

time using s′ as secret key, and the second time using s + s′. The two results are then recombined

to obtain the correct outcome. The algorithm computes on randomized values only, provided that

during each call to the algorithm a new random value s′ is generated. The randomized computations

yield randomized power traces for the attacker observing the power consumption of the device. There

is no correlation between the random traces and those predicted (using the Hamming Weight model).

Masking can thus thwart attacks using correlation power analysis. A major drawback of masking is

that the algorithm is essentially computed twice by the device, dramatically increasing computation

time. Moreover, the presence of non-linear operations in the cryptographic algorithm might make

the masking method impractical. Other randomization methods may be possible, depending on the

cryptographic algorithm to be protected.

Among physical attacks, fault injection constitute another common threat for cryptographic im-

plementations, but this aspect is not addressed in this thesis due to lack of time and kept for future

prospects.

1.2 Objective and outline of the thesis

In this thesis we will study hardware acceleration for various lattice-based encryption schemes in

PQC. We implement LWE, Ring-LWE (RLWE) and Module-LWE (MLWE) based public-key encryp-

tion schemes on FPGA in order to compare their performances in hardware for multiple parameter

sets, degrees of parallelism and other implementation and algorithm choices. The aim is to obtain

implementations that are fast but use limited resources. In this thesis, we take a particular interest

in hardware security. We analyse side-channel vulnerabilities and propose countermeasures against

side-channel attacks. The countermeasures are implemented on FPGA to evaluate their cost in terms

of area and computation time. Various trade-offs between security and computation time provide

insight in the practicality of the post-quantum cryptosystems.

In chapter 2 we provide definitions and notations commonly used in the domain. This chapter

briefly provides some mathematical notions required in order to read this thesis. In lattice cryptog-

raphy, a basic understanding of finite fields and linear algebra is needed in order to appreciate the

functionality of the cryptosystems.

Chapter 3 provides further background and the state of the art of lattice based cryptography.

Mathematical problems involving lattices, such as the shortest vector problem, are introduced. Cryp-

tographic constructions rely on the computational hardness of solving these problems. We discuss

various algorithms to compute the operations required by the cryptosystems, such as modular reduc-

tion and polynomial multiplication. An overview of the state of the art of side-channel attacks, with

8

a focus on lattice cryptography, is presented in section 3.6.

In chapter 4 we discuss the methodology used for our FPGA implementations. Our method relies

on High Level Synthesis (HLS), a tool that can be used to generate FPGA implementations starting

from a description in a high level programming language, such as C or C++. Section 4.1 provides an

introduction to FPGAs and HLS and discusses the application of HLS in cryptography. The use of

HLS is not very common among cryptographers, who typically use VHDL/Verilog languages for FPGA

implementations. The HLS synthesis of the modular reduction operator in C (%), essential in public-

key cryptography, yields poor performances. Section 4.2 aims to improve the computation of modular

reduction by replacing the % operator. We implement finite-field arithmetic on FPGA using HLS

and compare the implementation results for different modular reduction algorithms, implementation

styles and parameters. In section 4.3 we explore the implementation of polynomial multiplication,

an important component of lattice based cryptosystems. We compare implementation results of the

schoolbook algorithm using different coding styles. We evaluate the impact of parallelization on the

speed and area utilization of the implementations.

In chapter 5 we implement lattice based cryptosystems on FPGA. The objective of this chapter is

to provide a comparison of the practicality of the implemented cryptosystems. The differences between

the algorithms used by LWE, RLWE and MLWE based public-key encryption make some cryptosys-

tems more practical than others. LWE based cryptosystems typically suffer from low performance

compared to RLWE or MLWE. The bottleneck in the LWE encryption algorithm is the multiplication

of large matrices. To accelerate this multiplication, we study the effectiveness of parallelism in the

FPGA implementation. By dividing the computations over a number of dedicated hardware units,

the computation time can be reduced. The same effort is made for the implementations of RLWE and

MLWE based encryption, where polynomial multiplication is the most important arithmetic opera-

tion. This chapter also discusses randomness generation and chosen ciphertext attack (CCA) secure

implementations. All lattice based public-key algorithms rely on the ability to generate random bits.

Efficient pseudo-random number generators (PRNG) are therefore an important part of the imple-

mentation. Fast PRNGs however, are less cryptographically secure than the more conservative ones.

This results in another trade-off between security and performance, discussed in section 5.6.

The topic of chapter 6 is the hardware security of our RLWE based decryption implementation.

We highlight the vulnerabilities of the algorithm and show how these vulnerabilities might be exploited

by an attacker using side-channel attacks. To prevent side-channel attacks, various countermeasures

are proposed. Our countermeasures are based on the randomization of the operations, in order to

randomize the information leakage through side channels. State of the art countermeasures include

masking, shifting and blinding. We discuss these protections and present various improvements. We

propose new countermeasures, such as a redundant representation of finite-field elements, and two

shuffling techniques. All of the countermeasures from the state of the art, with improvements, and

our proposed countermeasures are implemented on FPGA. We compare the difference in computation

9

time and area utilization for each countermeasure implementation. In section 6.6, the countermeasures

are generalized in order to be applied to LWE and MLWE based implementations.

10

Chapter 2

Definitions and Notations

• Z is the ring of integers. The Z-module Zn consists of vectors of length n whose coefficients are

in Z. Vectors are written in bold font: a ∈ Zn.

• R is the field of real numbers.

• For any a ∈ R, bac is the integer a′ ∈ Z that is closest to a and for which a′ ≤ a. The integer a′′

closest to a such that a′′ ≥ a is noted dae.

• For any integer q > 0, Zq := Z/qZ is the ring of integers modulo q, represented by the q elements

{0, 1, . . . , q − 1}. In this ring two elements are equivalent if and only if their difference in Z is

an integer multiple of q. Equivalence is noted with the ≡ symbol, for instance q ≡ 0 mod q. If q

is a prime number, then Zq is a field, that is, each non-zero element a in Zq has an inverse a−1

such that a−1a ≡ 1 mod q. In Z5 for example: 2 ·3 = 6 ≡ 1 mod 5, therefore the inverse 2−1 of 2

in Z5 is equal to 3. The inverse of 3 in Z5 is 2 and 4−1 mod 5 = 4 because 4 · 4 = 16 ≡ 1 mod 5.

The multiplicative group of inversible elements of Zq is noted Z×q . Each element a in this group

has a multiplicative order Ord(a). The order of some a is the smallest non-zero integer i for

which ai ≡ 1 mod q. A primitive n-th root of unity ω ∈ Zq is an element of order n. The order of

each element in Z×q divides the number of elements in Z×q . If q is prime, then Z×q = Zq\{0} and

there exists an element g ∈ Z×q such that Ord(g) = q − 1. Such an element is called a generator

of Z×q , since it generates the group: Z×q = {g, g2, g3, . . . , gOrd(g) = 1}.

• Z[x] is the ring of polynomials with coefficients in Z. Its contains all the elements in the set:

S =
{∑

i

aix
i : ai ∈ Z for i = 0, 1, 2, . . .

}

Polynomials are written in bold font: a ∈ Z[x]. Addition in Z[x] is defined by the map

11

+ : S × S −→ S∑
i

aix
i,
∑
j

bjx
j

 7−→∑
i

(ai + bi)x
i

that is, the sum of two polynomials is obtained by computing the sum of each pair of coefficients

(ai, bi) for each degree i. Multiplication of two elements in Z[x] is computed by the map:

• : S × S −→ S∑
i

aix
i,
∑
j

bjx
j

 7−→∑
i

∑
j≤i

ajbi−jx
i

Let a ∈ Z[x]. The ideal generated by a is noted (a). It contains all elements in the set

(a) = {ab : b ∈ Z[x]} .

If for instance a = x2, then (a) ⊂ Z[x] is the set of polynomials whose first and second coefficients

are equal to zero: (a) =
{∑

i≥2 aix
i : ai ∈ Z for i = 2, 3, . . .

}
. The ring Z[x]/(a) is defined by

the ring of polynomials in which two elements are considered to be equivalent if and only if their

difference is in (a). Let a = x2 for example, so that Z[x]/(a) = Z[x]/(x2). Elements x + 3 and

x7 + x4 + x + 3 are equivalent since their difference is x7 + x4 = x2(x5 + x2) ∈ (x2), therefore

x + 3 ≡ x7 + x4 + x + 3 in Z[x]/(x2). Each polynomial is equivalent to some polynomial of

degree smaller than 2. The ring Z[x]/(x2) can therefore be represented by the elements of the

set {a0 + a1x : a0, a1 ∈ Z}.

• R = Z[x]/(xn + 1) for some integer n, is the ring of polynomials in which two elements are

equivalent if and only if their difference in Z[x] is a multiple of xn+1. In other words: xn+1 ≡ 0.

Polynomials in this ring are of degree smaller than n, because xn ≡ −1.

• Rq = Zq[x]/(xn + 1). This is a finite ring, i.e. there is a finite number of elements in this ring.

This number is equal to qn, which is the number of polynomials of degree < n with coefficients

in Zq. If there exists a 2n-th primitive root of unity φ in Zq, then φn ≡ −1 mod q and the map

12

σ : Rq −→ Znq
a(x) 7−→

(
a(φ),a(φ3),a(φ5), . . . ,a(φ2n−1)

)
defines an isomorphism between Rq and Znq .

• An error distribution χ is a symmetric probability distribution centered around 0. The error

distribution χ over the integers is denoted χ(Z). Samples from error distributions must be

close to 0 with high probability. Examples include the Gaussian N (0, σ) distribution and the

distribution U([−a, a]) that is uniform on the interval [−a, a] for some a close to zero.

• Bλ is the binomial (n, p) distribution with p = 1
2 and integer parameter n = λ centered around

0.

List of acronyms

AES Advanced Encryption Standard

BRAM Block RAM

CPA Chosen Plaintext Attack

CC Clock Cycles

CCA Chosen Ciphertext Attack

CVP Closest Vector Problem

DIF Decimation-In-Frequency

DIT Decimiation-In-Time

DPA Differential Power Analysis

DSP Digital Signal Processing block

ECC Elliptic Curve Cryptography

FPGA Field Programmable Gate Array

GapSVPγ Decisional Approximate Shortest Vector Problem

HLS High Level Synthesis

HW Hamming Weight

KEM Key Exchange Mechanism

LFSR Linear Feedback Shift Register

LUT Look up Table

LWE Learning With Errors

LWR Learning With Rounding

LSB Least Significant Bit

13

MLWE Module Learning With Errors

MLWR Module Learning With Rounding

MSB Most Significant Bit

NIST National Institute of Standards and Technology (U.S.)

NTT Number Theoretic Transform

PCC Pearson’s Correlation Coefficient

PKC Public Key Cryptography

PKE Public Key Encryption

PRNG Pseudo Random Number Generator

RLWE Ring Learning With Errors

RLWR Ring Learning With Rounding

RSA Rivest Shamir Adleman (cryptosystem)

RNG Random Number Generator

SCA Side Channel Analysis

SHA Secure Hash Algorithm

SHAKE Secure Hash Algorithm with Keccak

SPA Simple Power Analysis

SVP Shortest Vector Problem

SVPγ Approximate Shortest Vector Problem

TRNG True Random Number Generator

14

Chapter 3

State of the Art

3.1 Introduction

This chapter introduces cryptographic primitives, computationally hard lattice problems and the con-

cept of implementation security. Section 3.2 explains the mechanisms used in public-key encryption,

with RSA as an example. Lattice based PKEs rely on the hardness of lattice problems. A number

of these mathematical problems are discussed in section 3.3. This section also provides a description

of the first LWE based cryptosystem. Variations, optimizations and generalizations of this cryptosys-

tem are discussed in section 3.4. Section 3.5 deals with the computational aspect of the presented

schemes. This includes algorithms for modular reduction and polynomial multiplication in finite rings.

Finally, section 3.6 provides the state of the art of side-channel attacks. Different methods, ranging

from simple-power analysis to fault attacks, are introduced. The most relevant side-channel attacks

on lattice based cryptography from the state of the art are presented. Countermeasures to improve

the security of implementations against these attacks are also discussed.

3.2 Public-Key Encryption

A public-key encryption scheme, or cryptosystem, is defined by three publicly known algorithms: key

generation (G), encryption (E) and decryption (D). Algorithm G generates a secret key SK and

corresponding public key PK. The encryption takes as input a public key and a message (plaintext)

and returns the ciphertext that encrypts the message using the public key. The decryption takes a

ciphertext and a secret key and computes the plaintext. The algorithms must satisfy the following

properties [47]:

1. For any plaintext m,

D(SK, E(PK,m)) = m,

15

that is, the decryption of an encrypted message is equal to the plaintext.

2. It is easy to evaluate the algorithms E and D for any input.

3. Given only the public key PK and a ciphertext c = E(PK,m), there is no easy way to compute

m.

4. For all possible secret keys SK, algorithm G can compute a public key PK.

RSA [104] and the McEliece cryptosystem [85] were the first examples of public-key encryption

schemes. To generate a pair of RSA keys, two large prime numbers p and q are needed, and kept

secret. The public key is given by M = p · q and some random number e that is inversible mod

(p− 1)(q − 1). The secret key consists of d = e−1 mod (p− 1)(q − 1).

Algorithm 1 RSA encryption and decryption

Encryption of plaintext µ ∈ ZM using public key PK = (M, e).

1: function Enc(µ, PK)
2: return µe mod M

Decryption of ciphertext c ∈ Zm using secret key SK = d.

1: function Dec(c, SK)
2: return cd mod M

The decryption of a ciphertext returns the plaintext. Using Fermat’s Little Theorem, it holds that:

cd = µed mod M

= µ1+k(p−1)(q−1) mod M, for some k ∈ Z

= µ · (1 mod M)k

= µ.

The security of RSA relies on the hardness of the factorization problem. An attacker who factors the

public key M = p · q, can compute the inverse of e mod (p− 1)(q − 1).

3.3 Lattice Problems

A lattice L is a subgroup of Rn defined by a set of basis vectors {b1, . . . ,bn}. It contains all linear

integer combinations of the basis vectors [100]:

L =
{ n∑
i=1

xibi : xi ∈ Z
}

16

Figure 3.1: Examples of lattices of dimension 2 over Z/12Z. The one on the left is generated by basis
vectors (2, 2) and (5, 2), the one on the right is generated by (2, 2) and (5, 3).

5 4 3 2 1 0 1 2 3 4 5 6

4

3

2

1

0

1

2

3

4

5

6

5 4 3 2 1 0 1 2 3 4 5 6

4

3

2

1

0

1

2

3

4

5

6

Examples of lattices of dimension 2 over the finite ring Z/12Z are shown in Figure 3.1. The lattice

generated by b0 = (2, 2) and b1 = (5, 2), contains for example the points b1 − b0 = (3, 0) and

2b0 + 3b1 = (19, 10) ≡ (−5,−2) mod 12.

The problem of finding the shortest non-zero vector in a lattice L given a basis for L, is called

the Shortest Vector Problem (SVP). The smallest non-zero vectors in the lattice on the left in Figure

3.1 are (1,−2) and (−1, 2). For the lattice on the right, the smallest vectors are (−1, 1) and (1,−1).

Let λ1(L) denote the length of the smallest non-zero vector in L. The approximate version of SVP

consists of estimating λ1(L). The decisional approximate shortest vector problem (GapSVPγ) is to

decide whether λ1(L) ≤ 1 or λ1(L) > γ, where γ = γ(n) is some approximation factor. The Closest

Vector Problem (CVP) is to find the lattice point that is closest to some given point that is not on the

lattice. The computational hardness of these problems depends on the given basis vectors that define

the lattice. Since the basis is not unique, any lattice can be defined by many different basis vectors.

If the given lattice basis includes the shortest non-zero vector of this lattice, then SVP is trivial. If

the given basis consists of large vectors (a hard basis) on the other hand, SVP becomes very hard to

solve. It is conjectured that, given a hard basis, SVP and its variants cannot be solved for polynomial

approximation factors in polynomial time. The LLL algorithm [76] can be used to find a relatively

short basis for a lattice given by some hard basis. This algorithm runs in polynomial time but can

only be used to solve the problem for subexponential approximation factors at best.

Let s ∈ Znq be some unknown vector and χ some distribution over Zq. Let a be some vector

sampled from the uniform distribution over Znq , and e
$←− χ(Z). An LWE sample for s is given by

the pair (a, b), where b = aᵀs + e. The decisional LWE problem [100] is to distinguish between LWE

samples and samples from the uniform random distribution over Zq. The search variant of the LWE

problem consists of finding s given a number m of LWE samples for this vector. The problem can

17

Figure 3.2: The LWE problem in a lattice over Z12 of dimension 2: given some random basis A =
(a0,a1) and a point b close to the lattice, find s such that A · s is close to b.

5 4 3 2 1 0 1 2 3 4 5 6

4

3

2

1

0

1

2

3

4

5

6

a0

a1

b

As

be seen as solving a system of linear equations over Zq, in which only approximations of the true

equations are given:

a(1) · s(1) ≈ b(1)

...

a(m) · s(m) ≈ b(m)

Using matrix notation: given A
$←− Zn×mq and an approximation b of the product As, the LWE

problem is to find s. The approximation of As is determined by some error vector e. This vector

contains the χ-distributed values needed to obtain the exact equation As + e = b. The LWE problem

in dimension 2 is visualized in Figure 3.2.

The classical and quantum hardness of LWE and related problems have been studied extensively,

after first results by [1] and [100] showed that these problems are suitable for use in post-quantum

cryptography. Let parameters n, q and α ∈ (0, 1) such that αq > 2
√
n, and χ a discrete Gaussian

distribution with standard deviation αq. For these parameters, [100] showed that if there is an

efficient quantum algorithm to solve this problem, then there is an efficient quantum algorithm to

solve GapSVPγ on arbitrary lattices of dimension n with approximation factor Õ(n/α). This result

implies that a random instance of LWE is as hard as a worst case instance of GapSVPγ , i.e. given

a hard basis. Since it is conjectured that worst case instances of GapSVPγ are hard to solve, there

must be no efficient quantum algorithm to solve average case LWE instances. The fastest methods

to solve LWE include the BKW algorithm [25], Babai’s nearest plane algorithm [12], BKZ [107][37],

18

sieving [2][19] and enumeration [55][57].

3.3.1 Cryptosystem

The first public-key encryption scheme based on the hardness of LWE was presented by Regev in

[100]. The secret key is given by a uniform random vector s ∈ Znq . The public key is a set of m LWE

samples for this vector, given by (A,b := As + e), where A is sampled from the uniform distribution

over Zn×mq and the m coefficients of e are sampled from χ.

Algorithm 2 LWE-based Encryption [100]

Input: Plaintext µ ∈ {0, 1}, public key PK = (A,b)
Output: Ciphertext (c1, c2)

1: function Enc(µ, PK)

2: v
$←− {0, 1}m

3: c1 ← vᵀA
4: c2 ← vᵀb + µ

⌊ q
2

⌋

Algorithm 3 LWE-based Decryption [100]

Input: Secret key SK = s, ciphertext (c1, c2)
Output: Plaintext µ

1: function Dec(C, SK)
2: d← c2 − cᵀ1s
3: if d is closer to 0 than to

⌊ q
2

⌋
then

4: µ← 0
5: else
6: µ← 1

The value of c2 − cᵀ1s is close to µ
⌊ q

2

⌋
, as can be seen by the following equations:

c2 − cᵀ1s = (As + e)ᵀv + µ
⌊q

2

⌋
− vᵀAᵀs

= µ
⌊q

2

⌋
+ eᵀv

≈ µ
⌊q

2

⌋
,

where the last approximation holds because the coefficients of v are binary and those of e are suffi-

ciently small with high probability. This allows to decrypt the ciphertext using the secret key.

19

3.4 Ideal Lattices and RLWE

Regev’s cryptosystem is not very efficient in terms of data transmission and computations per plaintext

bit. To exchange one encrypted bit, n+ 1 coefficients in Zq have to be sent. To increase the efficiency

and reduce the size of the public key, one can add structure to the matrix A. Let a = (a0, . . . , an) be

a vector sampled from the uniform distribution over Znq . This vector will be the first row vector of A.

The n− 1 remaining rows will be defined by applying an anti-cyclic shift to this row. This yields the

following matrix:

A :=



a0 a1 a2 . . . an−2 an−1

−an−1 a0 a1 . . . an−3 an−2

−an−2 −an−1 a0 . . . an−4 an−3

...
...

...
...

...
...

−a1 −a2 −a3 . . . −an−1 a0


LetRq := Zq[x]/(xn+1) and define the element v ∈ Rq by v =

∑n−1
i=0 vix

i for each v ∈ Znq . That is,

each vector is considered to be a coefficient vector of an element in Rq. Since xn ≡ −1 mod (xn + 1),

applying an anti-cyclic shift to a coefficient vector v is equivalent to computing xv mod (xn + 1).

The row vectors of the matrix A are obtained by computing xia in Rq for 0 ≤ i < n, so that

A = (a, xa, x2a, . . . , xn−1a)ᵀ. The multiplication wᵀA can be written as

wᵀA =

n−1∑
i=0

wi · xia mod (xn + 1)

= a
n−1∑
i=0

wix
i mod (xn + 1)

= aw mod (xn + 1),

that is, multiplication by an anti-cyclic matrix can be seen as multiplication in Rq. The lattice

generated by A:

L = {wᵀA : w ∈ Znq }

is equivalent to the ideal in Rq generated by a:

I = {aw mod (xn + 1) : w ∈ Rq}.

These ideal lattices are central to the Ring-LWE (RLWE) problem and RLWE based cryptography.

An example of an ideal lattice over Z12[x]/(x2 + 1) is given in Figure 3.3. It is generated by a(x) =

20

Figure 3.3: Ideal lattice over Z12[x]/(x2 + 1) generated by a(x) := 2 + 4x.

5 4 3 2 1 0 1 2 3 4 5 6

4

3

2

1

0

1

2

3

4

5

6

2 + 4x, corresponding to the basis vector (2, 4). The second basis vector, (−4, 2), is obtained by

computing x · a(x) mod (x2 + 1) = 2x + 4x2 ≡ −4 + 2x. Every point on the lattice can be obtained

by multiplying a by some polynomial in Z12[x]/(x2 + 1). Let b = 8 + 5x for instance. Then ab =

16 + 42x+ 20x2 ≡ −4 + 6x. Therefore, (−4, 6) is a lattice point.

Definition 1 (RLWE (informal version) [81]). Let s
$←− Rq be uniformly random. RLWE samples

for s are of the form (a,as + e), where a
$←− Rq and the coefficients of e are drawn from some

error distribution χ. The decisional version of RLWE is to distinguish between RLWE samples and

uniformly random pairs (v,w) in Rq.

It is shown by [81] that a generalized version of this problem is computationally hard, on the

condition that it is hard for any polynomial-time quantum algorithm to approximate the search version

of SVP in the worst case on ideal lattices. While there exist quantum algorithms solving SVP over

ideal lattices by exploiting the algebraic structure of ideal lattices [43], their approximation factor

is too large to affect the security of RLWE-based cryptography. The RLWE problem remains hard

when the secret polynomial s is sampled from the error distribution. The RLWE based cryptosystem

defines the secret key s
$←− χ(Rq), and public keys (a,b := as + e), where a

$←− Rq and e
$←− χ(Rq).

Encryption and decryption are defined by Algorithms 4 and 5.

3.4.1 CPA and CCA Security

The cryptosystem described by algorithms 4 and 5 is secure in the Chosen Plaintext Attack (CPA)

model. In this attack model, the adversary is given two plaintexts and a ciphertext that encrypts one of

the two, and must determine which plaintext is encrypted by the ciphertext. To do this, the adversary

may query an encryption oracle. If such an adversary cannot succeed, then the cryptosystem is called

CPA-secure (or IND-CPA). The RLWE encryption scheme essentially masks the plaintext using an

21

Algorithm 4 RLWE Encryption [81]

Input: Plaintext µ ∈ {0, 1}n, Public key (a,b) ∈ R2
q

Output: Ciphertext (c1, c2) ∈ R2
q

1: function Enc(µ,a,b)

2: e1, e2, e3
$←− χ(Rq)

3: View µ as a polynomial in Rq
4: c1 ← ae1 + e2

5: c2 ← be1 + e3 +
⌊ q

2

⌋
µ

Algorithm 5 RLWE Decryption [81]

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d ∈ {0, 1}n
1: function Dec(c1, c2, s)
2: d← c2 − c1s
3: for all coefficients d of d do
4: if d is closer to 0 than to

⌊ q
2

⌋
then

5: d← 0
6: else
7: d← 1

RLWE sample. Since samples from the RLWE distribution are indistiguishable from pseudorandom

samples, the ciphertext is pseudorandom. It is therefore not possible for the adversary, given two

plaintext and a ciphertext, to determine which plaintext is encrypted by the given ciphertext. The

RLWE-scheme is CPA-secure.

In practice, security in the CPA model may not be sufficient, as it assumes a fairly weak attacker.

The Chosen Ciphertext Attack (CCA) model assumes a more powerful attacker, who has access to a

decryption oracle. The adversary may send any query to the decryption oracle, except for the given

ciphertext. The goal, again, is to choose the correct plaintext given two plaintexts and an encryption

of one the two. To succeed in this goal, the adversary could try to find the secret key using the

decryption oracle. Let (c1, c2) be a ciphertext such that all the coefficients are equal to zero, except

for the first coefficient of c1 which is equal to −1. Then algorithm 5 computes d← 0− (−1) · s, which

is equal to the secret key. For each coefficient si of s, the output of the decryption oracle reveals

whether si is closer to 0 than to
⌊ q

2

⌋
. By making multiple queries and varying the coefficients of c2,

the adversary can thus recover the complete secret key. Therefore, algorithm 5 is not secure in the

CCA model.

The Fujisaki-Okamoto transform [56] is a generic method to convert CPA-secure encryption and

decryption algorithms to a CCA-secure Key-Exchange Mechanism (KEM). The transform uses some

cryptographic hash functions G and H, and is described by algorithms 6 and 7. In order to prevent

CCA on the decryption function, the decrypted ciphertext is re-encrypted and compared to the received

22

ciphertext. This allows to verify that the ciphertext is valid, that is, it was generated using the

encryption function. Chosen ciphertext attacks like the one described above are prevented by returning

a string of random bits if the re-encryption is not equal to the received ciphertext. One technicality

remains however, since the encryption function in non-deterministic. In order to make the CCA-

secure encapsulation deterministic, the source of randomness used during the encryption is uniquely

determined by evaluating a hash function on the public key and the plaintext. This ensures that a

re-encryption of the plaintext can be correctly reconstructed using the decrypted ciphertext. To the

contrary of the CPA-secure scheme, the plaintext in the CCA-secure scheme is not the same as the

session key. The session key is created by hashing public key and plaintext dependent data together

with the ciphertext.

Algorithm 6 CCA-secure Encapsulation [56]

Input: Public key PK, random µ ∈ {0, 1}n
Output: Ciphertext C and session key K

1: function Encaps()
2: (r, d)← H(PK||µ)
3: C ← Enc(µ, PK, r)
4: K ← G(C||d)

Algorithm 7 CCA-secure Decapsulation [56]

Input: Ciphertext C, Public key PK and secret key SK
Output: Session key K ′

1: function Decaps()
2: µ′ ← Dec(C, SK)
3: (r′, d′)← H(PK||µ′)
4: C ′ ← Enc(µ′, PK, r′)
5: if C ′ == C then
6: K ′ ← G(C ′||d′)
7: else
8: K ′

$←− {0, 1}256

3.4.2 Generalization and Module LWE

Module LWE (MLWE) was introduced by [75]. It is a generalization of RLWE and uses small matrices

and vectors over the polynomial ring Rq.

Definition 2 (MLWE [75]). For some integer parameter k > 0, an MLWE sample for some secret

vector of polynomials s ∈ Rkq is given by some uniformly random vector a
$←− Rkq , together with the

polynomial b = aᵀs + e, where e
$←− Bλ(Rq). The search MLWE problem is to find s given a number

of samples.

23

Table 3.1: Parameter sets to distinguish between LWE, RLWE, and MLWE based cryptosystems. The
number of rows and columns indicated are for the secret key matrix/vector/polynomial.

polynomial number of number
degree columns of rows modulus

algorithm n m k q

LWE 1 small, > 1 large large1

RLWE large1 1 1 large 2

MLWE large1 1 small, > 1 large 2

Note that for the polynomial degree n = 1 the MLWE problem is similar to the LWE problem with

vectors of length k. For k = 1, MLWE is equivalent to RLWE over the ring Rq. In the MLWE variant,

small matrices and vectors with polynomial coefficients are used. Table 3.1 shows how parameters n, k

and m allow to distinguish between LWE, RLWE and MLWE. It has been shown by [75] that MLWE

is at least as hard as solving some hard lattice problems using quantum algorithms.

Algorithms 8 and 9 describe the framework used for instance by NewHope, Kyber and FrodoKEM.

Variations of this framework include the use of deterministic errors (“Learning with Rounding”, LWR)

[45] or using Gaussian noise (used in FrodoKEM) instead of sampling the binomial distribution. The

private key is defined by sampling some s
$←− Bλ(Rk×mq). Then the public key is determined by

computing a number of LWE/RLWE/MLWE samples for this secret. That is, sample a uniform

random A
$←− Rk×kq and e0

$←− Bλ(Rm×kq). The public key is given by (A,b) where b := sᵀA + e0.

Algorithm 8 Encryption [27]

Input: Plaintext µ ∈ {0, . . . , 2B}m2n, PK = (A,b)
Output: Ciphertext (c1, c2)

1: function Enc(µ, PK)

2: e1, e2
$←− Bλ(Rk×mq)

3: e3
$←− Bλ(Rm×mq)

4: c1 ← eᵀ1A + eᵀ2
5: c2 ← be1 + e3 + encodeB(µ)

Algorithm 9 Decryption [27]

Input: Secret key SK = s, ciphertext C = (c1, c2)
Output: Plaintext µ

1: function Dec(C, SK)
2: d← c2 − c1s
3: µ← decodeB(d)

1For computational reasons such as simplifying modular reduction or using the NTT, these parameters are often
chosen to be powers of 2.

2These parameters need to be prime numbers in order to use the NTT for polynomial multiplication.

24

Figure 3.4: Left: Decoding the coefficients when B = 0. Coefficients closer to 0 than to
⌊ q

2

⌋
are

mapped to 0, while all the other coefficients are mapped to 1. Right: decoding when B = 1.
q/4

0

3q/4

q/2 1 0

q/4

0

3q/4

q/2

1
02

3

q/83q/8

5q/8 7q/8

The number of bits encoded in each plaintext coefficient is equal to B+1. For RLWE and MLWE,

the parameter B is set to zero and encodeB(µ) lifts µ to the ring Rq in a straightforward coefficient-

wise manner and returns µ
⌊ q

2

⌋
. The decodeB(d) function maps coefficients of d to 0 if they are in

the interval {
⌊−q

4

⌋
, . . . ,

⌊ q
4

⌋
}, else they are mapped to 1 (as depicted on the left in Figure 3.4). In

LWE each coefficient encodes a number of bits B ≥ 1. Encoding then lifts µ to the module Zm×mq

and involves a scalar multiplication by
⌊ q

2B+1

⌋
. Decoding is generalized by dividing Zq up into 2B+1

intervals as shown on the right in Figure 3.4.

For n > 1 and k = m = 1, Algorithms 2 and 3 describe the RLWE-based encryption scheme.

Ciphertexts, plaintexts and keys are then polynomials in Rq. For n = 1 and k,m > 1 the ring Rq is

equal to Zq and the plain LWE scheme is obtained, with ciphertexts, plaintexts and keys in the form

of matrices over Zq. The intermediate parameter sets for which n, k > 1 define the MLWE variant of

the scheme.

If k = 2, for example, an MLWE secret key is a vector s = (s1(x), s2(x))ᵀ, where the coefficients

of both polynomial are sampled from the uniform distribution over Zq. To create a public key, four

uniformly random (in Rq) polynomials a00(x), a01(x), a10(x) and a11(x) must be sampled, and two

error polynomials e0(x), e1(x) are sampled from Bλ(Rq). Then the public vector b = (b0(x),b1(x))

is computed as follows:

(
b0(x) b1(x)

)
=
(
s1(x) s1(x)

)(a00(x) a01(x)

a10(x) a11(x)

)
+
(
e1(x) e1(x)

)
(3.1)

An important advantage of MLWE-based cryptosystems is the flexibility in choosing parameters,

while still benefiting from fast arithmetic in Rq using the NTT. In RLWE, efficient use of the NTT

means that the degree n has to be a power of 2, restricting the lattice dimension to a very limited

subset. In MLWE one would also fix n to be a power of 2, but the total dimension of the lattice is

25

determined by n × k, allowing more choices. To instantiate the MLWE scheme for a higher security

level, it suffices to increase the vector size k. In [27] the MLWE-based Kyber key-exchange mechanism

is defined for k = 2, 3 and 4, where k = 4 aims for the highest level of security, equivalent to AES-256.

3.4.3 NTRU

Similar to RLWE-based PKE, the NTRU cryptosystem [59] is defined over a polynomial ring R =

Z[x]/(xn−1). Let q be some integer coprime with 3 and such that q > 3. The secret key is some f ∈ R
with small coefficients that is inversible modulo 3 and modulo q. A random polynomial g ∈ R with

small coefficients is used to compute h = (f mod q)−1g. This h will be the public key. Encryption

and decryption are defined in Algorithm 10.

Algorithm 10 NTRU encryption and decryption [59]

Encryption of µ ∈ R with coefficients in {−1, 0, 1}n using public key PK = h.

1: function Enc(µ, PK)

2: φ
$←− R with small coefficients

3: c← 3φ · h + µ mod q
4: return c

Decryption of ciphertext c ∈ R using secret key SK = f.

1: function Dec(c, SK)
2: a← f · c mod q
3: return (f mod 3)−1 · a mod 3

3.4.4 LWR

The use of the NTT restricts the choice of the parameters n and q for the ring Zq[x]/(xn + 1). The

degree n must be a power of 2. In practice, one would want to instantiate an RLWE cryptosystem for

some 29 < n < 210. An encryption scheme for 29 = 512 would be considered not secure enough, while

n = 210 would be overkill. Parameters used for NTRU schemes include for example n = 653, 761 and

857 [21]. Flexibility in parameters is one of the reasons why some RLWR/MLWR schemes such as

Round5 and Saber choose alternative multiplication methods over the NTT. The transmission of keys

and ciphertexts consisting of polynomials of degree 700 is cheaper than the transmission of polynomials

of degree 1024. This choice also allows them to use a power of 2 modulus q, so that modular reduction

needed for arithmetic in Zq is trivial to compute. When using a power of 2 modulus, it is possible

to simplify the error sampling process. Instead of sampling from an error distribution and adding

the error to the ciphertext during encryption, a number of least significant bits of each coefficient of

the ciphertext is removed, thereby “rounding” each coefficient. The security of cryptosystems using

this technique is based on the hardness of the Learing With Rounding (LWR) problem, and its ring

(RLWR) and module (MLWR) variants. The rounding function denoted b·ep : Zq → Zp is defined for

26

p < q by:

baep = b(p/q)e a mod p (3.2)

If p and q are both powers of 2, then this rounding function corresponds to removing the log2(q) −
log2(p) least significant bits. For some secret polynomial s ∈ Rq, an RLWR sample is generated by

sampling an uniform random a
$←− Rq and returning a and babep. This problem was first studied in

[14]. MLWR/RLWR based cryptosystems include Round5 [11] and Saber [45].

3.5 Implementation of LWE-based Cryptography

3.5.1 Modular arithmetic

In lattice cryptography computations are often performed in a fixed finite ring. There is no need for

a general modular reduction algorithm that works for any modulus. Specialized reduction algorithms

for some fixed modulus can be used to speed up the modular arithmetic.

Barrett reduction

A modular reduction x mod q can be seen as the computation of x−
⌊
x
q

⌋
q. This computation involves

a floating-point division. To avoid this costly operation, the Barrett reduction algorithm [17] uses a

precomputed constant that is determined by a given modulus. Let q be a modulus that is not a power

of 2 and w = dlog2 qe the length of its binary representation. The Barrett algorithm precomputes

r =
⌊

22w

q

⌋
and reduces any integer x < q2 with the following procedure:

1. Let p← r · x.

2. Shift p to the right by 2w positions, keeping only the integer part.

3. x̄← x− p · q.

4. If x̄ < q return x̄, else return x̄− q.

Two multiplications and a subtraction in Z suffice to obtain the modular reduction. A different

method to compute modular reduction using two multiplications is given by the Montgomery reduction

algorithm [88].

For some specific moduli, even these multiplications can be simplified. A multiplication of some x

by y = 2l1 + 2l2 + 1 for some integers l1, l2 > 0 can be written as:

yx = 2l1x+ 2l2x+ x

= (x << l1) + (x << l2) + x,

27

where the << operater denotes a leftshift of the bits. This method of multiplication is particularly

interesting when multiplying by a constant of the form

2lM ± 2lM−1 ± · · · ± 2l1 , (3.3)

where M is a small integer. The Barrett reduction algorithm consists of two multiplications by

constants: the modulus n and the precomputed factor r. If both constants are of the form (3.3) it

might be preferable to replace the multiplications by bit-wise shifts and additions. An example is

given by the modulus 8380417 = 223 − 213 + 1 and its corresponding precomputation constant

r =

⌊
246

8380417

⌋
= 8396807 = 223 + 213 + 23 − 1.

This modulus is used in the Dilithium signature scheme [50]. In [78] an adaptation of the Barrett

algorithm is described. The efficiency of their algorithm also depends on the fact that for q = 7681 the

Barrett constant
⌊

22l1
q

⌋
has a short binary representation. Modular reduction can then be computed

in just a few bit-wise shifts and additions.

Modular reduction for q = 2l1 − 2l2 + 1 In the LWE scheme the modulus is a power of 2, so that

no computation is required to compute modular reduction. In order to compute a mod 2R for some

2R < a < 22R and some exponent R, note that a can be written as a = a0 +2Ra1 for some a0, a1 < 2R.

Then a mod 2R ≡ a0. In other words, modular reduction for moduli of the form 2R, is computed by

simply taking the R least significant bits of a.

In RLWE/MLWE however, in order to use the NTT, the existence of a 2n-th root of unity in

Zq is required. This is the case if q is a prime for which q ≡ 1 mod 2n. The choices for q are

therefore limited. For prime moduli of the form q = 2l1 − 2l2 + 1 for some integers l1 and l2, one has

2l1 − 2l2 + 1 ≡ 1 mod 2n if l2 ≥ log2(2n). For n = 256 suitable primes include 7681 = 213 − 29 + 1

which is used in the original version of Kyber and for n = 1024 the prime q = 214 − 212 + 1 = 12289

is used in NewHope. A modular reduction method in the style of [109] can be used for moduli of the

form 2l1−2l2 +1. Using the fact that 2l1 ≡ 2l2−1 mod q, a modular reduction can be computed using

only bitwise shifts, additions and subtractions.

3.5.2 Polynomial arithmetic

NTT

Let q be a prime number and n power of 2 such that q ≡ 1 mod 2n. A multiplicative generator for Zq
is an element g ∈ Zq such that gi mod q 6= 1 for all i < q − 1. Then the element φ = g(q−1)/2n mod q

is a primitive 2n-th root of unity in Zq. Using the n-th root of unity ω = φ2, the Number Theoretic

Transform (NTT) can be computed.

28

Definition 3 (NTT [95]). Let ω ∈ Zq be a primitive n-th root of unity and a(x) =
∑n−1

i=0 aix
i an

element in Rq. Then the NTT is defined by the map from Rq to Rq:

a(x) 7→
n−1∑
j=0

a(ωj)xj (3.4)

The inverse of the NTT is denoted NTT−1. It is defined using the inverse ω−1 mod q and n−1 mod q,

by the map:

a(x) 7→ n−1
n−1∑
j=0

a(ω−j)xj (3.5)

To verify that this is indeed the inverse of the NTT, consider for some polynomial a =
∑n−1

k=0 akx
k :

NTT−1(NTT(a)) = n−1
n−1∑
i=0

n−1∑
j=0

(
n−1∑
k=0

akω
kj

)
ω−ijxi

= n−1
n−1∑
i=0

xi
n−1∑
k=0

ak

n−1∑
j=0

ωj(k−i) (3.6)

The expression
∑n−1

j=0 ω
j(k−i) is equal to 0 for all k 6= i, while equal to

∑n−1
j=0 1 for k = i. Then from

equation (3.6) follows:

NTT−1(NTT(a)) = n−1
n−1∑
i=0

xiai

n−1∑
j=0

1

= n−1
n−1∑
i=0

xiain =
n−1∑
i=0

aix
i = a

To use the NTT for multiplication in Rq, the polynomials have to be pre-processed using the negative

wrapped convolution (NWC) [80]. Let a,b, c,d ∈ Rq such that

a(x)b(x) = c(x) + d(x)(xn + 1) (3.7)

in Zq[x], where c(x) is a polynomial of degree smaller than n. Then c = ab mod (xn + 1). Let φ ∈ Zq
be a primitive 2n-th root of unity such that φn = −1 mod q. Then, in Zq[x] and for i ≥ 0, one has:

29

a(φωi)b(φωi) ≡ c(φωi) + d(φωi)((φωi)n + 1) mod q

≡ c(φωi) + d(φωi)(−1 + 1) mod q

= c(φωi)

This means that NTT(a(φx))�NTT(b(φx)) = NTT(c(φx)). Using the pointwise multiplication “�”,

polynomial multiplications may be computed in the NTT domain instead of computing them in the

time domain. First the NTTs of both input polynomials have to be computed, then the pointwise

multiplication, and finally the result has to be mapped back to the time domain. The pointwise multi-

plication “�” consists of only n independent multiplications in Zq. Computing polynomial products in

the NTT domain is therefore much less costly than multiplication in the time domain, on the condition

that the NTT itself can be computed efficiently.

Also note that the reduction mod(xn + 1) is obtained for free by using the NTT and the NWC.

To obtain the correct result from the polynomial multiplication, the inverse of the NWC should be

applied to NTT−1(NTT(c)). That is, each coefficient has to be multiplied by a power of φ−1.

Computation of the NTT

The NTT can be efficiently computed using the Cooley-Tukey [40] algorithm. This algorithm recur-

sively expresses an n-point NTT into 2 n/2-point NTTs. Using definition 3, the k-th coefficient of the

image â = NTT(a) can be written as:

âk = a(ωk) =

n−1∑
i=0

aiω
ik (3.8)

Separating the even powers from the odd powers, we get:

âk =

n/2−1∑
i=0

a2iω
2ik +

n/2−1∑
i=0

a2i+1ω
(2i+1)k (3.9)

=

n/2−1∑
i=0

a2iω
2ik + ωk

n/2−1∑
i=0

a2i+1ω
2ik (3.10)

= Xk + ωkYk, (3.11)

where Xk :=
∑n/2−1

i=0 a2iω
2ik and Yk :=

∑n/2−1
i=0 a2i+1ω

2ik. Then âk+n/2 can be expressed in Xk and

30

Tk, using the fact that ωn/2 = −1 mod q:

âk+n/2 =

n/2−1∑
i=0

a2iω
2i(k+n/2) + ωk+n/2

n/2−1∑
i=0

a2i+1ω
2i(k+n/2)

=

n/2−1∑
i=0

a2iω
2ik + ωkωn/2

n/2−1∑
i=0

a2i+1ω
2ik

= Xk − ωkYk.

This means that 2 coefficients of NTT(a) can be computed using Xk and Yk. Assuming that n is

a power of 2, then the same method can be applied to summations Xk and Yk. They can be split

into subsequences of even and odd powers, of length n/4 respectively. The Cooley-Tukey algorithm

consists of the divide-and-conquer strategy that continues this process upon obtaining subsequences

of length 1.

Other multiplication methods

Other polynomial multiplication methods include schoolbook, Karatsuba [68] or specialized algorithms

for sparse polynomial multiplication. The schoolbook method takes two polynomials a =
∑n−1

i=0 aix
i

and b =
∑n−1

i=0 bix
i and computes the product ab = c =

∑2n−2
i=0 cix

i, where

ci =
∑
k≤i

akbi−k (3.12)

Each coefficient of a is multiplied by each coefficient of b. In order to obtain the full product ab,

exactly n2 multiplications in Zq have to be computed.

This of operations number can be reduced using the Karatsuba algorithm. A polynomial of degree

n can be expressed as a function of two degree n
2 polynomials, assuming that n is even:

a =
n−1∑
i=0

aix
i

=

n/2−1∑
i=0

aix
i + xn/2

n−1∑
j=n/2

ajx
j

=: a(0) + xn/2a(1)

for some polynomials a(0) and a(1) of degree at most n/2. Similarly, let b = b(0) + xn/2b(1). In order

to compute the product

31

ab = (a(0) + xn/2a(1))(b(0) + xn/2b(1))

= a(0)b(0) + xn/2(a(0)b(1) + a(1)b(0)) + a(1)b(1),

4 partial products have to be computed: a(0)b(0),a(0)b(1),a(1)b(0) and a(1)b(1). The Karatsuba method

only computes 3 partial products. First a(0)b(0) and a(1)b(1) are computed, and then the xn/2 term

(a(0)b(1) + a(1)b(0)) is computed directly using the identity:

(a(0) − a(1))(b(0) − b(1)) = a(0)b(0) − (a(0)b(1) + a(1)b(0)) + a(1)b(1).

The third partial product to be computed is therefore (a(0) − a(1))(b(0) − b(1)). The Karatsuba

algorithm thus computes a product of two degree n polynomials by computing 3 partial products of

degree n/2 polynomials. The fourth partial product can be omitted at the cost of some additional

subtractions. If n is a power of 2, then the same process can be repeatedly applied to the partial

products. The complexity, expressed in integer multiplications, decreases asymptotically from O(n2)

(for schoolbook multiplication) to O(nlog2(3)).

Sparse multiplication methods can be used in the case that the number of non-zero coefficients of

one of the operands is small. This means that a straightforward computation using the schoolbook

algorithm would spend most of its time multiplying zeroes. To avoid this, it makes sense to store

only the indices of non-zero coefficients and their values. This technique is typically used in NTRU

implementations (see for instance [13]).

3.5.3 Lattice Cryptography on FPGA

Table 3.2 shows implementation results of state of the art FPGA implementations of lattice based

public key encryption. Polynomial multiplication is the most time consuming arithmetic operation in

RLWE and MLWE based cryptosystems. Different solutions have been proposed in the state of the

art FPGA implementations. The schoolbook algorithm is implemented by [97] and [77], in order to

minimize the resource utilization. These area-optimized implementations are much slower than NTT-

based solutions such as the one proposed by [105]. Comparing the computation time of the encryption

algorithm of [97] and [105], it can be seen that the NTT-based implementation is around 50 times

faster. The area results on the other hand, are less clear. While the schoolbook based solution [97] uses

4 times less LUTs, the DSP and BRAM utilization is the same. It seems that the trade-off between

area and computation time is in favor of the NTT. It should be mentioned though, that [105] uses a

Virtex-6 FPGA, which is better and more expensive than the Spartan-6 used by [97]. The very recent

RLWE-256 implementation by [116] uses schoolbook polynomial multiplication. Their computation

time is more than six times as high as the one reported in 2014 by [105], using the NTT. Moreover,

the schoolbook implementation uses one more DSP block, and has a very similar LUT utilization

32

Table 3.2: CPA and CCA-secure Encryption or Encapsulation (CPA, CCA) or ’Server’ part in Client-
Server-Client key exchange (K-E), from the state of the art. If marked with (*), resource results are
for both encryption and decryption.

Freq. Time Area
Src. Algorithm Type FPGA MHz µ s DSP, BRAM, Slice, LUT

[97] RLWE-256 CPA xc6slx9 128 1070 1, 2, 114, 360
[97] RLWE-256 CPA xc6slx9 144 946 1, 2, 95, 282
[96] RLWE-256 CPA xc6slx16 160 43 1, 14, n.a., 4121 (*)
[96] RLWE-256 CPA xc6vlx75t 262 26 1, 12, n.a., 4549 (*)
[105] RLWE-256 CPA xc6vlx76 313 20 1, 2, n.a., 1349 (*)
[77] RLWE-256 CPA Kintex-7 305 229 1, 3, 303, 898
[116] RLWE-256 CPA Kintex-7 280 128 2, 2, 402, 1254
[116] RLWE-256 CPA Kintex-7 275 129 2, 2, 479, 1381 (*)
[74] RLWE-1024 K-E xc7z020 131 79 8, 14, n.a. 20826
[90] RLWE-1024 K-E xc7a35t 117 1532 2, 4, n.a., 4498
[5] RLWR-1170 CCA 5csema 130 1350 6337 ALM, 11765 bytes (*)
[5] RLWR-1018 CPA 5csema 133 1000 4116 ALM, 10753 bytes (*)
[44] RLWR-1170 CCA xczu9eg 212 30 0, 4, 18733, 91166 (*)
[115] RLWE-1024 CCA xc7z020 200 62 2, 8, n.a, 6781 (*)

[63] LWE-256 CPA xc6slx45 125 786 1, 73, 1866, 6152
[64] LWE-640 CCA Artix-7 183 4624 4, 0, 1338, 4620
[64] LWE-640 CCA Artix-7 177 2342 8, 0, 1485, 5155
[64] LWE-640 CCA Artix-7 171 1212 16, 0, 1692, 5796
[65] LWE-640 CCA xc7a35t 167 19608 1, 11, 1855, 6745
[44] LWE-640 CCA xczu9eg 402 352 32, 27, 1186, 7213 (*)
[64] LWE-976 CCA Artix-7 180 10638 4, 0, 1455, 4996
[64] LWE-976 CCA Artix-7 175 5464 8, 0, 1608, 5562
[64] LWE-976 CCA Artix-7 168 2857 16, 0, 1782, 6188
[65] LWE-976 CCA xc7a35t 167 45455 1, 16, 1985, 7209
[44] LWE-976 CCA xczu9eg 402 760 32, 34, 1190, 7087 (*)
[44] LWE-1344 CCA xczu9eg 417 1328 32, 35, 1215, 7015 (*)

[44] MLWR-512 CCA xczu9eg 322 43 256, 7, 1989, 12343 (*)
[44] MLWR-768 CCA xczu9eg 322 49 256, 7, 1993, 12566 (*)
[87] MLWR-768 CCA xc7z020 125 4147 28, 4, n.a., 7400 (*)
[44] MLWR-1024 CCA xczu9eg 322 50 256, 7, 2341, 12555 (*)

compared to [105]. While their FPGAs are different (Virtex-6 v.s. Kintex-7), it seems that the NTT

is more efficient than schoolbook multiplication.

Differences between the FPGA used may account for some of the surprising performance results

in the table. The RLWR-1170 results by [44] were obtained for a high-end Zynq UltraScale+ FPGA.

Their computation time is more than 30 times faster than the RLWR-1018 result by [5] using a

Cyclone-V FPGA.

Since RLWR based cryptosystems often choose power of 2 moduli, their implementation involves

33

schoolbook or Karatsuba style polynomial multiplication. Most RLWE implementations on the other

hand, use the NTT. The computation of the NTT and its inverse is the bottleneck during both

encryption and decryption. Several optimizations have been proposed to accelerate this computation.

The multiplication by the powers of the 2n-th root of unity can be merged with the twiddle factors

in the first stage or the scaling multiplication by n−1 mod q [105]. Instead of precomputing n−1 and

the powers of φ−1, the values of n−1φ−i for 0 ≤ i < n can be precomputed directly. This saves one

multiplication per coefficient. A similar result merging the NWC with the final stage of the inverse

NTT was described by [98].

One technicality that comes with the Cooley-Tukey algorithm, is the so-called bit reversal. The

output vector of the Decimation-In-Frequency (DIF) variant of the transform is permuted. The output

coefficients are arranged in bit reversed order. For n = 8 for instance, the coefficient on position

1 = (001)2 can be found on index (100)2 = 4. After the transformation, all coefficients have to be

rearranged by reversing the bits of the indices. The Decimation-In-Time (DIT) transformation takes

an input vector whose coefficients are in bit reversed order, and returns an output vector in the correct

order. By making clever use of the DIT and DIF transforms, [98] shows that the bit reversal can be

avoided. The DIF transform is used for the forward transformation, while the DIT transform is used

for the inverse. The bit-reversal resulting from the DIF forward transformation is thus automatically

undone by the inverse NTT. All the operations in the NTT domain are computed on the bit-reversed

coefficient vectors. The public and private keys are therefore stored in bit-reversed order in the NTT

domain. To limit the amount of modular reductions during the NTT, [79] allows variables to grow

slightly larger than q.

Even with these optimizations, the NTT is still a very costly operation. To reduce the number of

NTTs to be computed, the public and private keys can be stored in the NTT domain. The ciphertext

part c1 must also be sent in the NTT domain. During the encryption, 2 forward NTTs and 1 inverse

NTT have to be computed and during the decryption only 1 inverse NTT is needed.

LWE involves the storage of large matrices, which may be problematic on constraint devices. A

simple trick is often used to avoid dealing with the largest matrix, the public key part A. This

matrix contains pseudo-random integers, generated using some deterministic pseudo-random number

generator (PRNG). A PRNG takes as input some random value, a seed, and returns any number of

cryptographically secure pseudo-random random numbers. If only the seed is stored in memory, and

not the complete matrix generated by it, an important amount of space can be saved. The public

key then consists of the seed and the smaller matrix b. To use the public key for encryption, the

coefficients of the matrix A are generated on the fly, concurrently with the coefficients of the error

matrix e1. The coefficients of A are immmediately used in the multiplication with the coefficients of

e1, and discarded afterwards. The encryption algorithm can thus be computed without storing the

matrix A. The same technique is proposed for the matrix or polynomial a in Kyber and NewHope

respectively. LWE implementation results by [63] and [44] show that memory utilization is still an

34

important issue. The ciphertext matrix c1 and other matrices that appear in the algorithms are, while

much smaller than A, still very large compared to the polynomials in RLWE. The computation time

is also very high compared to RLWE.

The memory utilization results for MLWR in Table 3.2 show a compromise between LWE and

RLWE, as one could expect by looking at the encryption algorithms. The large amount of DSPs

used by [44] is a result of a high level of parallelization. They do not benefit from fast polynomial

arithmetic using the NTT. To compensate for this and decrease the computation time, DSPs are added

for parallel computation.

3.6 Side-Channel Attacks

In the event that an attacker has physical access to a device that is computing a cryptographic algo-

rithm, Side Channel Analysis (SCA) may be used to obtain information about the encrypted message

or the secret key. The first attacks using SCA were reported by [73]. These timing attacks exploit the

dependence of the computation time on the secret key. By carefully measuring this computation time,

information about this key can be obtained. Simple Power Analysis (SPA) [71] exploits the leakage

of information caused by the power consumption variations of a device. Easy targets for SPA include

the Square-and-Multiply algorithm for modular exponentation and the Double-and-Add algorithm

for point addition on ECC [72][41]. The computations in these algorithms at instant t = ti depend

directly on the i-th bit of the secret key. The Diffie-Hellman key exchange, RSA and ECC using these

algorithms are particularly vulnerable to SPA attacks.

The power consumption at each precise instant can be modelled as a linear function of the number

of non-zero bits of the values in the registers. This is called the Hamming Weight (HW) model, as

the HW of the data in the registers determines the estimated power consumption. The Hamming

Distance model [30] on the other hand, assumes that the power consumption is a linear function of the

number of bits flipped at each instant. Differential Power Analyis (DPA) [71] can use either model

to compare observed power traces with estimated power consumptions.

In [71] it is described how to use DPA to extract the keys from an implementation of the DES

cipher. The trick is essentially to find an instruction in the algorithm that uses only a small part of the

secret key dependent state, called subkey. The DES cipher uses Sboxes which take six key-dependent

input bits and return four bits. Using the HW model, the power consumption of the Sbox can be

predicted for all of the 26 possible inputs (called subkey guesses). Statistical tools are used to compare

a number of observed power traces to the predicted consumptions. It can then be determined with

some probability that one particular subkey guess is true (i.e. the guess corresponds to the true subkey

value), while all other subkey guesses are false. The whole process is repeated for the other subkeys.

This divide-and-conquer strategy eventually allows to recover the complete secret key.

Correlation Power Analysis [30][84] is a variant of DPA in which the Pearson correlation coefficient

35

is used to compare between the observed and the predicted power traces. In order to perform a

correlation power attack, a large number of random inputs c0, . . . , cN to the target device is generated.

For each of these inputs ci, and assuming some subkey guess s0, the power consumption Ps0(ci) of the

device at a specific instance t = t0 is estimated using a prediction model, yielding a vector of predicted

power values:

~P (t)
s0 =

(
P (t)
s0 (c0), P (t)

s0 (c1), . . . , P (t)
s0 (cN)

)
. (3.13)

This computation is repeated for each possible subkey guess si, resulting in a number of vectors

~P
(t)
s0 , ~P

(t)
s1 , . . . of predicted values for each possible subkey guess si. For each of the random inputs, the

actual power consumption of the device is measured at instance t = t0, yielding a vector of observed

values:

~O(t) =
(
O(t)(c0), O(t)(c1), . . . , O(t)(cN)

)
. (3.14)

The correlation between ~O(t) and ~P
(t)
si is computed for each si. If the prediction model is accurate,

then the maximum correlation is obtained for the subkey guess sj that corresponds to the actual value

of the subkey. The attacker repeats the process for the unknown remainder of the key.

DPA and correlation attacks require many traces in order to find a single subkey. The attacker

is only interested in one particular time point of the trace, during which the targeted operation is

executed. Horizontal Correlation Power Analysis [38] exploits the fact that a single subkey value may

impact the value of many variables in the algorithm. In this case there are many points of interest

t0, t1, . . . , tN on a single trace. The observation vector from 3.14 is then taken from a number of points

on a single trace instead, computing on the same fixed input c = c0:

~O =
(
O(t0), O(t1), . . . , O(tN)

)
. (3.15)

Similarly, the prediction vectors are computed for the fixed input c = c0 and for all possible subkey

guesses si:

~Psi =
(
P (t0)
si , P (t1)

si , . . . , P (tN)
si

)
(3.16)

The statistical analysis using the correlation coefficient remains unchanged. Correlation Power analysis

using many traces for each subkey is sometimes referred to as vertical attack, as opposed to the

horizontal variant.

In some situations, the estimated power traces from the Hamming difference model might not be

accurate enough to succesfully attack a device. Template attacks [35] assume a more powerful attacker.

Before the attack, a profiling phase allows to pre-record a large number of real power traces for all

possible subkeys. In order to do this, the attacker must have a second device, similar to the target

36

device, on which (part of) the same algorithm is implemented and on which the attacker can control

the secret key.

Fault attacks [26] are active attacks in which the attacker perturbs the computing device in order

to cause faults in the computation. The fault is typically caused by underpowering or overpowering

the device, perturbing it with electromagnetic radiation, heating or cooling it or running it on too

high a frequency (overclocking). Analysis of the erroneous output may, depending on the algorithm,

reveil information about the secret key. One classic example is the Bellcore attack [26][67][8] targeting

the RSA-CRT signature algorithm. This algorithm uses the Chinese Remainder Theorem (CRT) to

compute an RSA signature in two parts. By injecting a fault into the computation of one of these

parts, the factorization of the public key can be deduced from the faulty signature.

3.6.1 SCAs on Lattice Cryptography and Countermeasures

On error sampling

Like any unprotected implementation of cryptographic primitives, lattice-based cryptosystems are not

resistant against SCAs. Many signature schemes and some encryption schemes rely on the ablility to

sample from a discrete Gaussian distribution. Vulnerabilities in Gaussian sampling of the signature

scheme BLISS [49] were used in cache based attacks by [32][93]. Several attacks on the same scheme

have been discussed by [53]. Various leakages are caused by the rejection sampling in the signing

algorithm. The Gaussian sampling algorithm used in the implementations is not constant time, making

it vulnerable to timing attacks. A countermeasure proposed by [106] consists of applying a random

permutation to the vector of Gaussian samples. In the case that the vector is used as an error

vector, this random permutation does not impact the correctness of the scheme. There have also been

made efforts to make the sampling algorithm run in constant time [69][70], but their propositions

are less efficient and need more pseudorandom bits per sample than other sampling methods. The

difficulties encountered with constant time Gaussian sampling has motivated some schemes to use

noise distributions that are easier to sample, such as the binomial distribution (Kyber [27], NewHope

[4]) or the uniform distribution (ring-Tesla [3], Dilithium [50], Saber [45]).

On modular and polynomial arithmetic

SPA and correlation power attacks can be used to target the polynomial multiplication. Sparse

multiplication techniques in the implementation of BLISS can be attacked with one single trace using

timing differences [53]. Multiple trace attacks like [101] use correlation power analysis to recover a

single secret key coefficient successfully within 100 power traces. They propose propose a first-order

masking scheme as a countermeasure. The masking scheme uses the linearity of the operations during

the decryption. The non-linear decoding step requires a rather inefficient masked decoder, which has

a heavy impact on the performance. Their second-order attack on the protected implementation is

37

still successful but needs over 2000 traces.

A different solution uses the additive homomorphic properties of the encryption scheme [103]. The

sum of two ciphertexts encrypts the sum of two plaintexts corresponding to each of the ciphertexts.

To mask the decryption, first a random plaintext is encrypted. The resulting ciphertext is added to

the input ciphertext. Decryption then yields the sum of the desired plaintext and the random one.

The problem with this method is that it adds extra noise to the ciphertext, thereby increasing the

decryption failure rate. Usually the parameters of encryption schemes are optimized in such a way

that any additional noise may compromise the security of the scheme. Decryption failures can be

exploited [51][52].

Other proposed countermeasures against DPA include shifting and blinding [106]. These protec-

tions consist of multiplying the input ciphertext and the secret key by some random scalar in Zq or

some power of x in Rq at the start of each decryption. The goal of this randomization of operations is

to randomize the power traces. The blinding countermeasure was used in combination with masking

in the CCA secure implementation by [91].

Power attacks on NTRU [7, 111, 66] typically target the schoolbook multiplication algorithm using

vertical DPA attacks. Horizontal DPA attacks use information from multiple points on a single power

trace. The horizontal DPA on NTRUPrime by [66] uses that fact that the same secret key coefficient

is multiplied by many different known coefficients. A schoolbook multiplication between a ciphertext

polynomial c =
∑n−1

i=0 ci and a secret polynomial s =
∑n−1

j=0 sj can be written as:

cs =
n−1∑
i=0

n−1∑
j=0

cisjx
i+j

=
n−1∑
j=0

sj

n−1∑
i=0

cix
i+j

=
n−1∑
j=0

(
sjc0x

j + sjc1x
j+1 + sjc2x

j+2 + . . .
)
.

Each secret coefficient sj is multiplied by n known input coefficients. A single power trace with little

noise could therefore provide sufficient information to recover all the secret key coefficients. A similar

attack [9] applies to schoolbook multiplication when used in RLWE schemes. The attack can also be

adapted to target the matrix multiplication in the standard LWE scheme Frodo, as described in the

same paper. During a multiplication between one known and one secret matrix, each secret coefficient

is used in many different integer multiplications. A multiplication of the ciphertext matrix C with a

secret key vector s is computed as follows:

38

Cs =



c00 c01 c02 . . .

c10 c11 c12 . . .

c20 c21 c22 . . .
...

...
...

...

c(n−1)0 c(n−1)1 c(n−1)2 . . .


×


s0

s1

...

sn−1



= s0


c00

c10

...

c(n−1)0

+ s1


c01

c11

...

c(n−1)1

+ . . .

=


s0c00

s0c10

...

s0c(n−1)0

+


s1c01

s1c11

...

s1c(n−1)1

+ . . .

Each secret key si is used in n modular multiplications. The amount of information from a single

trace is sufficient to recover the complete secret matrix. A similar approach is used by [29] to attack

Frodo.

Another attack angle is provided by the modular reduction. The non constant time of the Barrett

reduction algorithm inside the NTT is used by [99]. Their template attack requires a profiling phase

during which 100 millions traces are used to create close to a million templates. Once this profiling

phase is completed, the information from one single trace, combined with the information of the

templates, suffices to recover the secret key. To counter their attack, they suggest constant time

implementations of modular reduction, or the shuffling of operations inside the NTT. The template

attack targeting a constant-time Kyber implementation by [94] targets the NTT in the encryption

in order to recover the message. The (unknown) input to the NTT in the encryption function is

taken from a small subset of Znq , as opposed to the decryption. This allows to reduce the number of

templates needed to 213.

Fault attacks

In [33] the lattice-based signature scheme Dilithium is attacked using fault injection. The fault allows

to obtain two different signatures for the same message, which can then be used to compute the secret

key. The attack exploits the determinism in the randomness generation of the signing algorithm.

39

Randomization of the sampling is suggested as a countermeasure. In general, fault attacks on signature

scheme can often be prevented by verifying the signature before returning it as output, or computing

the signature twice. A range of fault attacks on lattice-based signature schemes are discussed by [24].

Their proposed fault attacks require the ability to fault the device in such a way that it skips a specific

instruction, or changes the value in some registers to zero or to some random number. Loop-abort

faults consist of forcing an early termination of some loop. This can be achieved by changing the value

of the loop counter. In [54] it is described how to deploy this type of attack against signature schemes

and encryption schemes such as BLISS and NewHope respectively. Most lattice-based schemes use

the sampling of some noise vector that is added in order to hide key-dependent variables. If this noise

sampling were to be terminated in an early stage, then some of the key-dependent variables would be

visible in plain sight. The remainder of the secret key can then be recovered by solving the underlying

lattice problems, only now on a lattice of a significantly lower dimension. Algorithm 11 shows an

example procedure typically found in signature and encryption algorithms. The output is a secret

vector or polynomial with normally distributed coefficients. By faulting the loop counter to cause an

early termination of the loop, the output vector may have very few non-zero coefficients.

Algorithm 11 Sampling randomness

1: function sample
2: e← (0, 0, 0, . . . , 0)
3: for i← 0 to n− 1 do

4: ei
$←− Nσ(Zq)

5: return e

Similar methods are used to attack the Frodo key exchange. Countermeasures against this type of

attack include implementing double loop counters, or verifying that the loop has been exited correctly.

40

Chapter 4

Implementation Environment

4.1 Introduction

This chapter introduces the methodology and the tools used in our implementations. After a brief

introduction to FPGAs and HLS, we show how HLS can be efficiently used to implement cryptographic

applications on FPGA. Section 4.2 discusses the implementation of finite-field arithmetic, which is at

the core of many PKC primitives. The modular reduction operator native to C language yields poorly

performing implementations when used in HLS. We describe how to improve both area utilization

and computation time by using customized algorithms. We also exploit the arithmetic properties of

specific forms of moduli to reduce area utilization. In section 4.3 we discuss the behaviour of Xilinx

Vivado HLS tool, using the schoolbook algorithm for polynomial multiplication as an example. By

rewriting the algorithm and using a specific set of directives, the implementation results from HLS

can be significantly improved.

4.1.1 FPGAs

Field Programmable Gate Arrays (FPGA) are devices that consist of a two dimensional array of

programmable logic (Configurable Logic Blocks, CLB), whose elements can be interconnected. Pro-

gramming an FPGA consists of programming (a part of) the logic elements on the array and the

interconnect in a certain way. FPGAs were first introduced by Xilinx [31]. The programmable array

elements in their FPGAs are called slices. The main components of a slice are look-up tables (LUT)

and flip-flops. The Xilinx 7 series LUT for example, takes up to six input bits and returns one output

bit. By setting the entries of the table, it can be configured as any boolean function that takes six

inputs. In order to construct more complicated functions, multiple LUTs, each one programmed as

some boolean funcion, can be interconnected. Such constructions can be used to implement parts of

finite-field operations.

Xilinx FPGAs also contain dedicated elements for integer operations, called digital signal processing

41

(DSP) blocks. The DSP48E1 block from the Xilinx 7 series [112] can be used to multiply a 25-bit signed

integer with an 18-bit signed integer. Additionally, the slice contains logic that computes addition or

subtraction with a third or fourth input before or after the multiplication. Given four inputs a, b, c

and d, the DSP block computes (a + b) × c + d. The registers on the DSP can be used to store the

result and accumulate new results to it. Complete multiplication and accumulation loops computing

functions of the form
∑n

i=0(ai + bi) × ci, can be implemented on a single DSP block. Alternatively,

one may choose to compute
∑n/2−1

i=0 (ai + bi) × ci on a first DSP block, and
∑n

i=n/2(ai + bi) × ci on

a second one. The final result can be obtained by adding the results of the two partial summations

together. The length of the loop, which determines the number of clock cycles (CC) needed to perform

the summation, is divided by 2. An implementation splitting the sum over 2 DSP blocks (computing

simultaneously) can thus compute the final results twice as fast as an implementation using only 1

DSP block. This technique of accelerating the computation is referred to as parallelism, as the two

DSP blocks operate in parallel.

Another essential building element in FPGA implementations is the multiplexer (MUX). It allows

to select one output from two inputs. A third input, the selection bit, is used to choose the desired

output. The If/Else statements in algorithmic descriptions are typically implemented using mul-

tiplexers. The instructions for both If and Else are implemented by some logic, and both results

are sent to a multiplexer. This multiplexer selects the right output by using the outcome of the If

condition (True/False) as a selection bit. Multiple multiplexers can be interconnected in order to

select between more than two inputs.

LUTs, DPS blocks and multiplexers can be used to implement the logic and arithmetic parts of

an algorithm. In order to compute a sequential algorithm, some intermediate results may need to be

stored for later use. The storage can be done using the hardwired memory blocks available on the

FPGA. These memory units are called block RAMs (BRAM). Intermediate values can be written to

or read from a BRAM. The amount of information that can be stored in a single BRAM is limited.

The Xilinx 7 series FPGAs have BRAMs that can store up to 36 Kbits of data [114].

To design an efficient FPGA architecture that implements some algorithm, the use of resources

must be optimized. The number of slices, DSPs and BRAMs available on the FPGA depends on

the specific device, and is correlated with its price. The smallest Xilinx’ Artix 7 part XC7A12T for

instance, has only 2,000 slices, 720 Kb of BRAM and 40 DSPs. The more expensive device XC7A200T

of the same Artix 7 series has over 33,000 slices, 13 Mb of BRAM and 740 DSP blocks. Even more

expensive devices such as the Kintex 7 part XC7K480T contain almost 2000 DSPs. By reducing the

area utilization of an FPGA architecture, the implementation may fit on a much cheaper FPGA. It

may therefore be worthwhile to optimize the area efficiency of the architecture. This can be done by

reusing area resources for multiple instances of similar computations in the implemented algorithm.

However, this may results in slower implementations, since it reduces parallelism. In practice, there

is often a trade-off between the area utilization and the computation time of the implementation.

42

4.1.2 High Level Synthesis

FPGA implementations can be created using a Hardware Description Language (HDL) such as VHDL

and Verilog. Programming in these languages can be a cumbersome process. This process can be

avoided by describing the algorithm in C language and then implementing it on FPGA using High

Level Synthesis (HLS) [113][42]. HLS is a tool that takes as input an algorithm in C and generates

an FPGA implementation that implements the algorithm. HLS can be used as a shortcut to obtain

FPGA implementations relatively quickly compared to VHDL/Verilog methods. This enables the

ability to explore a hardware design space at a reduced cost. HLS can therefore be a useful tool in

the development process of hardware accelerators.

4.1.3 HLS and Cryptography

Traditionally, HLS is mostly used in the domain of digital signal processing [83]. HLS tools are not

specifically designed for cryptographic purposes, and their use is not widespread among cryptogra-

phers. The potential of HLS however, including a reduced and simplified development process, makes

a case for its use in cryptography. In [61] the performances of FPGA implementations of the AES

cipher, generated by Xilinx’ Vivado HLS, are compared to those of handwritten Register-Transfer

Level (RTL) implementations using VHDL of the same algorithm. The area utilization of their HLS

generated implementations is very similar to that of their RTL implementations. In terms of through-

put, however, the RTL implementation is better. Depending on the FPGA, the throughput is reduced

by 23 to 47 percent when using HLS.

Xilinx’ Vivado HLS was also used by [60] to evaluate the performances of 16 competing algorithms

in the CAESAR contest for authenticated ciphers. Using the HLS implementation results, they create

a ranking, allowing to compare between the throughputs and throughput to area ratios of the imple-

mented algorithms. Their work shows that benchmarking candidates using HLS can be particularly

helpful in cryptographic contests. This method was used by [62] to compare 5 hash functions in the

SHA-3 contest for secure hashing algorithms. The more recent work by [44] takes a similar approach

using a software/hardware codesign to compare 3 lattice-based KEMs (Frodo, Round5 and Saber) in

the NIST post quantum competition.

4.2 Finite-Field Arithmetic using HLS

This section is based on our joint work [48] with Libey Djath. In this section we discuss the im-

plementation of finite-field arithmetic on FPGA usign HLS. Cryptographic applications often require

computations in finite fields of the form Fq = Z/qZ for some fixed prime number q. We implement op-

erations typically encountered in cryptographic applications. The computation of
∑n

i=1 xi × yi mod q

for some input vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) of some vector length n, where the

43

xi, yi are w-bit values for instance, is a core operation found in matrix multiplication algorithms, or

schoolbook polynomial multiplication.

In Vivado implementations, modular reduction, represented by the % operator in C language, is

computed by implementing a general modular reduction algorithm, most likely a Euclidean division,

that could work for any modulus q. The fact that q is constant, is not exploited by Vivado. Reduction

algorithms for fixed moduli, such as Barrett [17] and Montgomery [88] algorithms, may yield better

performances when implemented using HLS.

Moreover, in some cryptosystems the modulus q is an integer whose binary decomposition has

some specific structure that simplifies modular arithmetic. The best example is q = 2w for some

integer w. Any integer x > q can be written as x0 + 2wx1 for some x0 < 2w. Then x mod 2w =

x0 + 2wx1 mod 2w ≡ x0, that is, the modular reduction for q = 2w can be computed by taking the w

least significant bits and discarding all the other bits. A specific structure in the binary decomposition

of the modulus should therefore not be overlooked when implementing modular arithmetic. In this

section we consider examples of non-trivial prime moduli with some specific binary decomposition.

We define the following:

• MQ: moduli without any particular structure in their binary decomposition.

• MSC: moduli of the form 2w − 2l + 1 for integers w and l such that w > l > 0.

• MSR: moduli that are close to some power of 2, which can be written as 2w ± c for c < 2w/2.

Moduli of the form MSC include 7681 = 213−29 +1, used in Kyber key exchange mechanism. The

algorithm that computes modular reduction for MSC can be computed using only add and bit-wise

shift operations. We describe a fast reduction algorithm in the style of [109] for MSC moduli. Let

x < 22w+d for some integer d, then there exist 0 ≤ x0 < 2w and 0 ≤ x1 < 2w+d such that x = 2wx1+x0.

Using the fact that 2w ≡ 2l − 1 mod q, one has:

x ≡ (2l − 1)x1 + x0 = 2lx1 − x1 + x0. (4.1)

Let x(1) denote the value on the right hand side of the equation above. Then x(1) < 2l+w+d + 2w and

x(1) = 2wx
(1)
1 + x

(1)
0 (4.2)

for some x
(1)
1 ≤ 2l+d and x

(1)
0 < 2w. Again substitute 2w by 2l − 1 and obtain:

x(1) = (2l − 1)x
(1)
1 + x

(1)
0 = 2lx

(1)
1 − x

(1)
1 + x

(1)
0 =: x(2), (4.3)

where x(2) ≤ 22l+d + 2w. Repeating this procedure, it follows that

x mod q ≡ x(i) < 22w+d−i(w−l) + 2w. (4.4)

44

This means that for i ≥ w+d
w−l one has that x(i) < 2w+1. Algorithm 12 can be computed using only

bit-wise shifts and additions/subtractions. Optimizations similar to those in [110] may be used to

remove lines 6 and 7 of the algorithm.

Algorithm 12 Compute x mod q for MSC (q = 2w − 2l + 1)

1: function redw,l(x)

2: for i← 1 to
⌈
w+d
w−l

⌉
do

3: x0 ← x mod 2w

4: x1 ←
⌊
x

2w

⌋
5: x← 2lx1 + x0 − x1

6: if x ≥ q then
7: x← x− q
8: return x

Let for example q = 213 − 29 + 1 = 7681 and x = 1234567. To compute x mod q, we first compute x0

and x1 :

x0 = 1234567 mod 213 ≡ 5767

and

x1 =

⌊
1234567

213

⌋
= 150.

Then for the next iteration we have :

x(1) = 29 · 150 + 5767 + 150 = 82417.

We continue and compute x
(1)
0 and x

(1)
1 :

x
(1)
0 = 82417 mod 213 = 497

and

x
(1)
1 =

⌊
82417

213

⌋
= 10.

Then

x(2) = 29 · 10 + 497− 10 = 5607 < q.

Therefore 1234567 mod 7681 = 5607.

Moduli MSR (of the form 2w ± c) can also benefit from the particular structure of their binary

decomposition. Let q = 2w + c for some small c and let q ≤ x < q2 such that x = x0 + 2wx1 for some

x0 < 2w. Then

45

x mod q = x0 + 2wx1 mod q

≡ x0 + (−c) · x1

= x0 − cx1

The value x0 − cx1 is equivalent to x mod q, and can be written on w + log2(c) < 3w
2 bits. By

repeating this procedure, smaller values in the same equivalence class can be found. This yields an

algorithm for finding x mod q. We also implement Barrett [17] and Montgomery [88] reduction for

moduli MQ (without any particular structure). The source code of our implementation of the Barrett

algorithm is shown in figure 4.2 (the notations used in the figure are explained below). The reduction

algorithm is to be used in computations of the form (
∑n

i=1 xi × yi) mod q. The code uses the arbitrary

precision integer library, available for HLS. This library allows to define integer types of arbitrary

precision, which optimizes the resources allocated to perform certain operations. A multiplication of

two integers of the 32-bit type int is implemented using multiple DSP blocks, since one DSP block only

allows to compute multiplications of an 18-bit signed integer with a 25-bit signed integer. If the int

is used for values that fit within this range, than it would not be necessary to allocate multiple DSPs

to compute the multiplication. By defining an integer type of 18 bits for example, this overspending

of DSPs can be avoided. The HLS tool will recognize that the types fit into one single DSP block,

and therefore implement only one DSP. The following types are defined:

• word : unsigned integer of w bits;

• dword : unsigned integer of 2w bits;

• sumword : unsigned integer of w + blog2(n)c+ 1 bits, where n is the size of the summation.

• sumdword : unsigned integer of 2w + blog2(n)c+ 1 bits.

• counter : unsigned integer of blog2(n)c+ 1 bits.

• signword : signed integer of w + 1 bits.

4.2.1 Implementation results

We use Vivado HLS version 2017.4 to implement the top level function (see figure 4.2) computing(∑20
i=1 xi × yi

)
mod q on a Xilinx Artix-7 xc7a15 FPGA. Results for moduli of 13, 17, 23 and 30 bits

are shown in figure 4.3. It can be clearly seen in the graphs, that the implementation of the % operator

is the slowest. Moreover, it uses far more slices than any of the other implemented algorithms. For

instance, the % implementation for w = 17 has a computation time of between 2 to 2.5 times slower

46

#include "parameters.h"

word barrett(sumdword x)

{

sumword x1 = SUM_W(x >> width);

sumword q = SUM_W((RSW(x1) * RSW(R_const)) >> (shift - width));

word x0 = W(x);

counter c = 0;

if (x0 > M) c = 2;

else if (x0 != 0) c = 1;

q = q + c;

sumdword z = SUM_DW(q) * SUM_DW(m);

signword res = x - z;

if (res < 0) res = res + M;

if (res < 0) res = res + M;

return W(res);

}

Figure 4.1: Source code for Barrett reduction algorithm.

#include "parameters.h"

#include "arithmod.h"

word m2_rsf(word A[N], word B[N])

{

sumdword res=0;

acc: for(counter i=0; i<N; i++)

res += DW(A[i]) * DW(B[i]);

return barrett(res);

}

Figure 4.2: Source code for the implemented algorithm using the Barrett function.

47

algorithm area time (ns, cycles) area×time
and method slices DSP period cycles TM DSP×TM slices×TM

Montgomery RIS 194 12 2.6 60 156 1872 30264

Montgomery RSF 149 7 2.6 64 167 1165 24794

Barrett RIS 259 12 2.8 53 149 1781 38436

Barrett RSF 218 10 2.7 52 141 1404 30608

MSC RIS 403 4 2.7 55 149 594 59846

MSC RSF 261 4 2.7 47 127 508 33121

MSR RIS 146 8 2.6 31 81 645 11768

MSR RSF 167 6 3.2 46 148 884 24583

Table 4.1: Different methods to compute
∑20

i=1 xi × yi mod q for w = 23.

than the others, while using 3 to 6 times more slices. In contrast to the Barrett and Montgomery

implementations, however, the modular reduction by % does not use any DSPs. The 2 DSPs shown

are used in the multiplication and accumulation loop. When looking at the product of the number

of DSPs and the computation time (DSP × TM), a slightly different picture emerges. In this aspect,

the % operator is up to 20 percent better than the Barrett implementation. This results from the

Barrett algorithm’s reliance on integer multiplication, and therefore an increased DSP utilization. The

Montgomery implementation on the other hand, still has a better computation time/DSP utilization

trade-off than %, although it has less of an advantage than when considering the computation time

results only. Taking into account the trade-off between computation time and the utilization of slices

(slices × TM), it becomes decisively clear that the % operator is not a viable option for any efficient

finite-field arithmetic implementation. It shows 5 to 12 times worse performance in the slices × TM

column, compared to the other algorithms. Any application that requires modular arithmetic for a

fixed modulus, should not use the % operator in HLS. This confirms that a specialized finite-field

arithmetic library is needed when using HLS for cryptographic purposes.

Figure 4.3 also shows the advantage that specialized algorithms for moduli of types MSC and MSR

have over general algorithms (Barrett and Montgomery) for MQ. MSC does not require the use of

DSP blocks, and therefore has the best DSP utilization/computation time trade-off. MSR benefits

from similar properties, although for larger w additional DSP blocks are needed. The MSR algorithm

computes multiplications with a constant c (determined by de modulus q = 2w±c) where c < 2w/2. For

w = 13, we have that c < 27 and the HLS tool implements multiplication by 7-bit constants without

using DSP blocks. For larger w the constant c is too large to be implemented using this alternative

method, and therefore DSPs are instantiated. With respect to the slices/computation time trade-off

however, MSR has the upper hand over MSC.

Even when choosing the most efficient modular reduction algorithm, other factors may impact

the performance of the implementation. The operation that we implement consist of computing the

modular reduction of a sum of integer multiplications. There are two different methods to implement

48

Figure 4.3: Comparison of different reduction algorithms for w ∈ {13, 17, 23, 30} bits for the compu-

tation of
(∑20

i=1 xi × yi
)

mod q.

49

the operation computing the reduction of a sum of products. We define the methods:

1. RSF: Compute the sum of products first, and one single modular reduction at the end:(
n∑
i=1

xi × yi
)

mod q

2. RIS: Compute the sum of reduced products and reduce the summation:(
n∑
i=1

(xi × yi mod q)

)
mod q

While one might expect the first method to be faster, this is not evident. The additions to be com-

puted involve operands twice the size w = blog2(q)c+1 bits of the vector elements x1, . . . , xn, y1, . . . , yn.

The final modular reduction operates on an input of size 2w+ blog2(n)c+ 1, which can be more costly

to implement than the modular reduction of an integer of size w+ blog2(n)c+ 1, found in the second

method. The extend to which one of these methods is better than the other, depends on the parameters

q and n. We implement both algorithms for parameters w ∈ {13, 17, 23, 30} and n ∈ {10, 20, 40, 100}.
Table 4.1 shows the results of the different methods of computing the modular reduction of a sum of

products. It can be seen in the table that the RIS method requires more DSP blocks for all of the

implemented reduction algorithms. It also needs more slices (except for MSR). For Montgomery and

MSR, the RIS method is faster than RSF. For Barrett and MSC, the opposite holds. The best area

efficiency, measured by the DSP/computation time and the slices/computation time trade-offs, seems

to be obtained for RSF. The MSR algorithm however, is an exception. In figure 4.4, the difference

between RSF and RIS (using MSR algorithm) is shown for different vector lengths n. For all of the

tested values of n, RIS has better trade-offs than RSF. Without surprise, the computation time and

area utilization increases with n. Interestingly though, the cost of RSF seems to increase faster than

RIS. In Table 4.1, the differences between RIS and RSF in the DSP×TM column range from 15%

(MSC) to 40% (Montgomery). This shows that it is worthwhile, although not easy, to identify the

right algorithm for a given application.

4.3 Schoolbook Algorithm for Polynomial Multiplication

In this section we describe how the choice of algorithm, implementation style and directives impact the

quality of the implementation generated by the HLS tool. We use Vivado HLS v2017.4. We consider

the schoolbook algorithm for polynomial multiplication in Rq = Zq[x]/(xn + 1) where q = 7681 and

n = 256. Let a,b ∈ Rq. The algorithm computes the coefficients ck of the product polynomial

50

M2 RSF M2 RIS M1 RSF

10 20 30 40 50 60 70 80 90 100
N

60

80

100

120

140

160

180

200

220

sl
ic

e
s

10 20 30 40 50 60 70 80 90 100
N

0

2

4

6

8

10

d
sp

10 20 30 40 50 60 70 80 90 100
N

0

50

100

150

200

250

300

350

400

te
m

p
s

(n
s)

10 20 30 40 50 60 70 80 90 100
N

0

20

40

60

80

100

120

140

cy
cl

e
s

10 20 30 40 50 60 70 80 90 100
N

0

10000

20000

30000

40000

50000

60000

70000

80000

sl
ic

e
s*

te
m

p
s

(n
s)

10 20 30 40 50 60 70 80 90 100
N

0

500

1000

1500

2000

2500

3000

d
sp

*t
e
m

p
s

(n
s)

Figure 4.4: Impact of the vector length n on the computation of (
∑n

i=1 (xi × yi mod q)) mod q (RIS)
and (

∑n
i=1 xi × yi) mod q (RSF) for w = 23, using the MSR. The red dotted line marked M1 RSF

shows the results for implementations computing the modular reduction of a sum: (
∑n

i=1 xi) mod q.

51

c =

n−1∑
k=0

ckx
k = a · b mod (xn + 1)

These coefficients can be expressed in terms of the coefficients of a =
∑n−1

i=0 aix
i and b =

∑n−1
i=0 bix

i.

Since xn ≡ −1 mod (xn + 1), the computation consists of two summations for 0 ≤ k < n:

ck =
∑
i+j=k

aibj −
∑

i+j=n+k

aibj

=

k∑
i=0

aibk−i −
n−1∑
i=k+1

aibn+k−i (4.5)

In order to minimize the number of write operations to the memory, we only consider algorithms

in which each ck is computed seperately. Once a coefficient ck is completely computed, it is written

to the memory. The most direct way of implementing the computation is shown in the source code in

figure 4.5. The code uses custom integer types from the ap_int library. A 13 bit signed integer for

example, exactly fits in the type int13. We define types word, dword and sum_dword as 13-bit, 18-bit

and 26-bit signed integers respectively.

A Barrett reducer similar to the one from the previous section (implemented by the function

reduce) is used for modular reduction. The coefficients of the polynomial b are small (5 bits) and

are stored as constants in the memory, because in cryptographic applications the polynomial b is

the secret key. The function therefore takes an input coefficient vector of a and returns the output

coefficient vector of c. Note that the index bounds of the two inner loops depend on the index k of

the coefficient ck.

The variable loop bounds may prevent the HLS tool from optimizing a pipelined architecture.

To transform the function schoolbook0 into a function with constant loop bounds, we set all the

lower bounds to 0 and the upper bounds to N . This will double the number of multiplications to be

computed, but half of them are multiplications by zero. To avoid negative indices or indices out of

range, we append zeroes to the left and right of the vector b. The resulting source code is shown in

figure 4.6.

Before running the HLS tool, a number of choices have to be made. Firstly, the target device,

an Artix-7 in our case, which is the FPGA for which the HLS tool will try to synthesize the code.

Then a target clock period must be set. The HLS will try to optimize the generated implementation

in such a way that the obtained clock period will be close to the target clock period. We synthesise

the functions for target periods of 2, 4, 6 and 8 ns. Optionally, a number of directives can be set.

These directives provide additional information about the desired implementation. We compare the

different levels of parallelism that can be obtained for the functions by applying the unroll directive

52

void schoolbook0(word a[N], word c_out[N]){

counter k,i;

sum_dword sum1 , sum2;

for(k=0; k<N; k++){

sum1 = 0;

sum2 = 0;

for(i=0; i<=k; i++)

sum1 += a[i]*b[k-i];

for(i = k+1; i<N; i++)

sum2 += a[i]*b[N+k-i];

c_out[k] = reduce(sum1 - sum2);

}

}

Figure 4.5: Straightforward implementation of the schoolbook polynomial multiplication.

void schoolbook1(word a[N], word c_out[N]){

counter i,k;

sum_dword sum1 , sum2;

for(k=0; k<N; k++){

sum1 = 0;

sum2 = 0;

for(i=0; i<N; i++){

sum1 += a[i]* b_extended[N+k-i];

sum2 += a[i]* b_extended [2*N+k-i];

}

c_out[k] = reduce(sum1 - sum2);}

}

Figure 4.6: Implementation avoiding variable loop bounds.

53

(with factor 2 and 4) to the inner loops of the functions. Unrolling a loop with some factor f makes

the HLS tool implement f instances of the required hardware to execute the loop. A loop of length

n can then be computed in n
f cycles by dividing the computations over all hardware instances. The

directive pipeline is applied to the inner loops of all of the solutions, in order to pipeline the loops.

This technique consists of implementing registers between computational units, allowing each unit to

compute on a different input. Ideally, a loop of n iterations is computed in just over n cycles when

perfectly pipelined. Arrays are by default implemented on a single BRAM. To split up an array over

multiple BRAMs, the directive array partition can be set for a given factor. The array is then

implemented in a given number of BRAMs. When unrolling a loop, multiple simulteneous accesses

(memore reads) to the one single array are needed. Since one BRAM can only be accessed twice per

clock cycle, we partition the arrays whenever the loops are unrolled.

The variables to be fixed for each implementation include the target period, the unroll factor and

the algorithmic description. The resulting design space is too large to be explored manually, which is

why we use a TCL script to iterate over all variables while generating the HLS implementations. The

implementation results are shown in Table 4.2. The results are ordered by their computation time

(latency × period). For a target period of 2 ns and without unrolling, the latency of the schoolbook0

implementation is too high. In a smoothly pipelined implementation, the n2 modular multiplications

would be computed in about n2 = 65, 536 clock cycles. Instead, it takes twice as many (137,212)

clock cycles. The variable loop bounds prevent pipeline optimization as expected. For a target clock

period of 4, 6 or 8 ns (and without unrolling) we obtain implementations that compute the algorithm

in around n2 clock cycles indeed. Unrolling with factors 2 and 4 divide this number of cycles by

almost 2 and 4 respectively, but the clock period exceeds the target. By unrolling the loop with factor

4 and relaxing the clock period requirement, we get surprising results. We obtain implementations

running at clock period higher than 10 ns, taking around 20,000 clock cycles. These are the fastest

results for schoolbook0, despite the high clock period. Similarly, for an unrolling factor 2 we obtain

implementations whose clock period is much higher than the target (over 7 ns for target periods 4, 6

and 8 ns). The only implementations whose actual clock period is below the target, are given by those

that do not use the unroll directive. They do not benefit from parallelism however, and are slower

than the unrolled implementations.

The 7 fastest results in Table 4.2 are all implementations of schoolbook1, which justifies the

rewriting of the algorithm. The obtained clock periods all are close to the targets. The most sequential

implementation (without unrolling) executes the algorithm in around n2 cycles for a target period of

2 ns. It does not meet the target clock period requirement however. This is probably caused by the

fact that during each clock cycle, two multiplications have to be computed. The memory that stores

b is accessed twice for different indices, slowing down the implementation. This problem is solved

by adding BRAMs such that for unrolling factors 2 and 4, the performance of the implementation is

greatly increased.

54

Table 4.2: All solutions for schoolbook0 and schoolbook1 (algorithms 0 and 1 in the first column
respectively) and for all target clock periods. The solutions are ordered by computation time, from
fastest to slowest.

algo. unroll target obtained latency computation area
(0/1) factor per. (ns) per. (ns) (CC) time (µ s) DSP LUT

1 4 2 1.87 39169 73 10 767
1 4 4 3.76 20737 78 10 812
1 4 6 4.63 19457 90 10 569

1 2 2 1.87 71169 133 6 467
1 2 4 3.76 36609 138 6 376
1 4 8 8.25 18689 154 10 560

1 2 6 4.63 35841 166 6 381
0 4 8 11.43 20033 229 10 1333
0 4 6 10.59 21825 231 10 1240

0 - 2 1.87 137212 257 4 488
0 2 2 3.52 72961 257 6 690
0 4 2 3.52 73985 260 10 1222

0 - 4 3.76 70653 266 4 437
0 2 6 7.06 37761 267 6 642
1 - 2 4.14 65556 271 4 551

0 2 4 7.06 38785 274 6 645
1 - 4 4.39 65551 288 4 543
1 2 8 8.32 34817 290 6 381

1 - 6 4.52 65548 296 4 543
0 - 6 4.52 69630 314 4 434
0 4 4 14.12 22337 315 10 1499

0 2 8 9.88 35713 353 6 483
0 - 8 6.35 68096 432 4 361
1 - 8 8.32 65543 545 4 511

55

void schoolbook1b(word a[N], word c_out[N]){

counter k,i;

sum_dword temp_out;

for(k = 0; k<N; k++){

temp_out = 0;

for(i = 0; i<N; i++){

temp_out = temp_out + a[i]* b_tilde[N - 1 + i - k];

}

c_out[k] = reduce(temp_out);

}

}

Figure 4.7: The structure of the source code is simplified by rewriting the algorithm, using equation
(4.6).

By rewriting the coefficient vector in a different order, we can improve the performance of schoolbook1.

Let b̃ be the vector of length 2n defined by:

b̃ = (bn−1, bn−2, . . . , b1, b0,−bn−1,−bn−2, . . . ,−b1,−b0) ,

that is:

b̃i = bn−1−i

and

b̃n+i = −bn−1−i

for 0 ≤ i < n. In other words, b̃ is the concatenation of the coefficient vector of b(x) with its additive

inverse. Then for 0 ≤ k < n we have:

n−1∑
i=0

aib̃n−1+i−k =

k∑
i=0

aib̃n−1+i−k +

n−1∑
i=k+1

aib̃n−1+i−k (4.6)

=
k∑
i=0

aibn−1−(n−1+i−k) +

n−1∑
i=k+1

ai · (−bn−1−(−1+i−k))

=

k∑
i=0

aibk−i −
n−1∑
i=k+1

aibn+k−i

= ck.

Using these equalities we can simplify the code by computing the left hand side of equation (4.6),

as shown by Figure 4.7. Note that there is no need to implement the final subtraction between the

56

two summations. The signs of the coefficients of b̃ are determined by the indices. The subtraction is

avoided by accessing the coefficients of index greater than or equal to n. Moreover, the loop bound

is constant and no useless multiplications are computed (as was the case for schoolbook1). Multiple

simultaneous memory accesses have also disappeared from the code, so that the inner loop can be

fully pipelined and parallelized if requested. The resulting implementation should therefore be able

to compute the n2 multiplications in about n2 clock cycles, with high frequency.

A quick experiment with the HLS tool shows that for schoolbook1b we can obtain a parallelized

implementation with 6 DSP blocks and less than 500 LUTs executing in less than 40,000 cycles with

a clock period of 1.87 ns. This performance is equivalent to the fastest result in Table 4.2, but the

area usage is improved: 4 less DSP blocks are needed. The simplification of the source code allows

to better pipeline the inner loop, resulting in a higher obtained frequency for smaller architectures.

The area usage can be reduced even further by having a look at the reduction algorithm. Indeed,

the Barrett algorithm relies heavily on integer multiplication, and the increase in the number of DSP

blocks is linear in the degree of parallelization. We replace the Barrett reduction by the modular

reduction algorithm for moduli of the form 2k − 2l + 1 using only shift and add operations, described

in the state of the art.

Another way to reduce the number of DSP blocks in the implementation is to reuse the DSP block

for both multiplications in the Barrett algorithm. This can be accomplished using the allocation

directive. The best HLS results using this directive are shown in Table 4.3.

The decryption in RLWE schemes consists of a polynomial multiplication followed by a subtraction.

By far the most of the ressources and computation time are consumed by the polynomial multiplication,

so that it makes sense to compare our results with implementations of the decryption algorithm. A

few hundred cycles and some LUTs should be added to our architectures to make the comparison

credible.

In most cases, like in [105], the decryption function is implemented using the NTT, but [97] is an

exception. Their goal is to optimize the area utilization of the implementation, and to this end they

prefer to schoolbook algorithm over the NTT. They use a Spartan 6 FPGA and choose parameter set

(q, n) = (4096, 256). We implement our multiplication algorithm for this parameter set as well. The

advantage of picking q = 4096, is that this is a power of 2, so that modular reduction does not need

to be computed. The results are shown in Table 4.3. The implementations found in the literature do

not seem to take much advantage of parallelism: often only one multiplication unit is used.

It seems better to use constant loop bounds instead of variable loop bounds, although this means

that more information (longer vectors) has to be stored in the memory. For application in cryptography

this should not make much of a difference: the polynomial that is stored on the device (the secret

key) has very small coefficients. An improvement is given by the optimized version presented in this

section.

The shift and add based reduction algorithm seems to be better (smaller/faster) than the Barrett

57

Table 4.3: Comparing our results from HLS to those reported in literature.
parameters latency freq. time

source algorithm q, n FPGA (cycles) MHz (µs) DSP LUT

this work schoolbook 4096, 256 Artix-7 67585 283 239 1 294
this work schoolbook 4096, 256 Artix-7 35329 361 98 2 279

[97] decrypt (schoolbook) 4096, 256 Spartan-6 66338 189 351 1 112
this work schoolbook (shift add) 7681, 256 Artix-7 68609 283 242 1 322
this work schoolbook (shift add) 7681, 256 Artix-7 37377 508 74 2 412
this work schoolbook (Barrett) 7681, 256 Artix-7 67585 191 354 1 405
this work schoolbook (Barrett) 7681, 256 Artix-7 72706 534 136 2 499
this work schoolbook (Barrett) 7681, 256 Artix-7 37634 508 74 4 346

[105] decrypt (NTT) 7681, 256 Virtex-6 2800 313 9 1 1349

reducer for our implementation of the schoolbook algorithm, as can be seen in the table above. Al-

though the DSP block in the Barrett reducer can be shared with the coefficient multiplier, this works

only on relatively low frequencies. For higher clock frequencies, more DSPs are needed. Interestingly,

the performance of our schoolbook implementation using the shift and add based reduction algorithm

is similar to that of the implementation using the parameter set where q = 4096. While a few more

LUTs are needed, the implementation of the shift and add based reduction algorithm does not have

much impact on the latency, compared to the implementation with power of 2 modular reduction.

The pipeline is not slowed down by the shift and add based reduction.

We use twice as many LUTs as [97], but with a similar latency and higher frequency, our implemen-

tation is faster. By applying the unroll directive, we get an even faster implementation, making use

of parallelism. However, the implementations using the NTT are still a lot (10 to 20 times) faster than

the schoolbook multiplier. For efficient RLWE implementations, the NTT algorithm is indispensable.

58

Chapter 5

LWE, RLWE and MLWE on FPGA

5.1 Introduction

In this chapter, we discuss the implementation of LWE, RLWE and MLWE based public key encryption

on FPGA and show how to speed up the computations using parallelism. We implement CPA secure

algorithms 8 and 9 from the state of the art. More precisely, we use High Level Synthesis to:

• implement LWE, RLWE and MLWE-based PKEs for parameter sets used by NIST round 2

candidates Frodo [28], NewHope [4] and the original Kyber [27] scheme;

• study the speed-up that can be obtained by parallelizing the computation of the critical opera-

tions;

• implement the Fujisaki-Okamoto transform to obtain CCA secure key exchange mechanisms

(KEM);

• analyse the impact of the PRNG choice and the FPGA target on the performance and cost of

MLWE-based PKE.

Using the same techniques, the same effort and the same FPGA for each implementation, we

provide an objective comparison between the performances of the different algorithms. The imple-

mentations obtained by using HLS have, in many cases, a better area/computation time trade-off than

the results found in other works using VHDL/Verilog. Our MLWE implementations use up to 28 times

fewer DSP blocks than the results from [44], while computing the encapsulation algorithm 4% faster.

At the same time, the effort needed to explore a range of architectures is much reduced, compared to

VHDL/Verilog techniques. We study the impact of the PRNG on the computation time of the encryp-

tion algorithm. We consider a fast implementation using the lightweight Trivium PRNG [46], a slower

but more secure solution using the SHA3 based SHAKE-256 [23] and a hybrid one using both PRNGs.

This hybrid solution uses Trivium to generate the pseudorandom part of the public key, while using

59

SHAKE-256 to sample the secret error terms during encryption. We discuss and implement rejection

sampling for the pseudorandom part of the public key. We implement the Fujisaki-Okamoto transform

[56] to obtain CCA secure architectures for LWE, RLWE and MLWE. To the best of our knowledge,

this is the first CCA secure FPGA implementation of MLWE based encryption. The implementation

by [44] implements MLWR, which does not use the NTT for polynomial arithmetic.

State of the art implementations and their algorithms are discused in section 5.2. In sections 5.3,

5.4 and 5.5 respectively, the details of our LWE, RLWE and MLWE implementations are explained,

with a focus on parallel computation. Implementations of the CPA to CCA transformation (algorithms

6 and 7), and different methods of randomness generation are discussed in section 5.6. A comparison

of our results with other works is provided in section 5.7.

5.2 Implementation of main operations

Matrix Multiplication The multiplication of the public key A with the error matrix e1 is the

most expensive operation in the standard LWE scheme. It consists of k2m multiplications in the rings

Z215 or Z216 . In [64] the matrix multiplication is accelerated by computing partial products in parallel

using up to 16 DSP blocks.

Polynomial Multiplication In RLWE and MLWE, the most expensive arithmetic operation is the

polynomial multiplication. Multiplication in the ring Rq is computed using the Number Theoretic

Transform (NTT). FPGA implementations of NewHope using the NTT for n = 1024 are given by

[90] and [74]. A fast and area optimized implementation for n = 256 is given by [105]. While

implementations using Schoolbook polynomial multiplication have been proposed [97][77], they are

much slower than the NTT. To compute a polynomial multiplication using the NTT, the polynomials

should be mapped to the NTT domain where the polynomial multiplication is a point-wise operation

taking only n modular multiplications in Zq. Addition and subtraction can also be performed point-

wise in the NTT domain. The inverse NTT is applied to bring the result back in the time domain.

The transform is efficiently computed in log2(n) stages of n2 multiplications using the Cooley-Tukey

algorithm [40]. Using the constant geometry variant [92] of the NTT algorithm, the memory access

pattern is independent of the stage. The values are not read from the same memory as the one that

the updated variables are written to, therefore 2 BRAMs are needed in the implementation. At each

iteration of the stage loop, 2 values are read from the memory, a butterfly operation is computed and

the 2 results are written to the memory. A detailed description of the stage is given by Algorithm 13.

All arithmetic operations are performed in Zq.
In [77] the Schoolbook algorithm is implemented, using an optimized algorithm for coefficient

multiplication. A Xilinx DSP48E block can be used for 18 × 25-bit integer multiplication. The

coefficients sampled from the error distribution can be written on a few bits. Therefore, a naive

60

Algorithm 13 i-th stage of the NTT [92]

1: function stage(X, i)
2: for j ← 0 to n

2 − 1 do

3: θ ← ωb
j

2i
c·2i . Get twiddle factor from memory

4: (x0, x1)← (X[2j], X[2j + 1]) . Read from memory X
5:

(
Y [j], Y [j + n

2]
)
← (x0 + x1, (x0 − x1)θ) . Write to memory Y

6: return Y

multiplication of a coefficient of w = blog qc+ 1 bits with an error coefficient would not make optimal

use of the DSP block. The implementation from [77] takes two error coefficients e0, e1 of size wλ =

1 + blog2 λc and defines a new (w+ 2wλ)-bit coefficient e0 + 2w+wλe1. If (w+ 2wλ) < 25, then for any

w-bit coefficient a the multiplication (e0 + 2w+wλe1)a can be computed on one DSP block. The first

product e0a can be read on the first w + wλ bits of the output, starting with the LSB. The second

product e1a is obtained by applying w+wλ left shifts to the output and again selecting the first w+wλ

bits of the remainder. The sign of the products is computed separately. Then two multiplications are

obtained for the price of one.

Binomial sampling The Bλ(Zq) distribution is sampled by generating 2λ random bits x1, . . . , xλ

and y1, . . . , yλ and computing
∑2λ

i=1 xi−yi mod q. The sampling requires 2λ random bits per coefficient.

For a total of mn(2k+m) coefficients for the 3 errors e1, e2 and e3, the amount of random bits needed

is considerable. In the specifications of most of the NIST round 2 candidates it is suggested to use

SHAKE-256 or AES to supply the randomness. Some implementations however, such as [64], use

Trivium because it is faster. Precomputing random bits and storing them in BRAM is used in [65] to

improve the throughput of the PRNG.

Modular reduction for q = 2w − 2l + 1 In LWE based cryptography, the modulus q can be of

some specific form such that for x < q2 it is easy to compute x mod q. In the rings Z2m and Z2m+1 for

some integer m for example, modular reduction can be computed using bit-wise operations and one

addition. Any 2n-bit integer a can be written as a = a0 +2na1 for some a0, a1 < 2n. Then a mod 2n =

a0 + 2na1 ≡ a0 mod 2n. The modular reduction for q = 2n can be computed directly by taking the

least significant bits of a. Similarly, for q = 2n + 1, the equation a0 + 2na1 ≡ a0 − a1 mod (2n + 1)

leads to a direct and simple algorithm for modular reduction.

In order to use the NTT however, one needs q to be a prime for which q ≡ 1 mod 2n such that

there exists a 2n-th root of unity in Zq. The choice is therefore limited. For prime moduli of the form

q = 2w − 2l + 1 for some integers w and l and for l ≥ log2(2n), it holds that 2w − 2l + 1 ≡ 1 mod 2n.

For n = 256 suitable primes include 7681 = 213 − 29 + 1 which is used in Kyber [27]. For moduli of

the form 2w − 2l + 1, fast reduction algorithms in the style of [109] can be used. We use algorithm 4.2

described in chapter 4.

61

5.3 FPGA Implementation of LWE

5.3.1 Parameters used in the implementations

We implement the CPA and CCA secure LWE, RLWE and MLWE schemes for parameter sets shown

in Table 5.1. We choose LWE parameters from FrodoKEM [28] except for the Gaussian distribution.

We sample the Bλ distribution instead, where λ is chosen such that the obtained Bλ distributions are

close to the Gaussian distributions from FrodoKEM. This allows us to make a fair comparison between

LWE on one hand and RLWE and MLWE (both using binomial distributions) on the other. To the

best of our knowledge, there does not exist any attack that exploits the small difference between the

sampled distribution and the Gaussian distribution used in the security proof. The performance of the

best algorithms solving LWE does not depend on the exact error distribution, which is why schemes

such as Kyber [27] also prefer binomial sampling. The parameters for RLWE correspond to those used

by NewHope. A newer version of Kyber proposes to use the modulus q = 3329. On FPGA, there is

hardly any gain in computation time to be expected from replacing 13-bit operands by 12-bit, because

in both cases an integer multiplication can easily be computed on a single DSP48E. Reducing the

operand size however, comes at the cost of having to implement quadratic extension field arithmetic.

To avoid the overhead in computation time that this would cause, we choose to implement the original

scheme using q = 7681. The different parameter sets are designed for the security levels 1, 3 and 5

defined by the NIST, where 1 correspond to AES-128, 3 to AES-192 and 5 to AES-256. Security level

1 is claimed by [28] for Frodo using parameter set LWE-640, and by [27] for Kyber using parameters

set MLWE-512. Security category 3 proposals use parameter sets LWE-976 and MLWE-768, while

LWE-1344, RLWE-1024 and MLWE-1024 are used in security category 5.

Table 5.1: Parameter sets used in our implementations.

Algorithm n m k q λ

LWE 1 8 640/976/1344 215/216/216 15/10/4

RLWE 256/1024 1 1 7681/ 12289 3/8

MLWE 256 1 2/3/4 7681 5/4/3

Figure 5.1 presents the high-level architecture of our accelerator. For encryption, the public keys

are first loaded into the local RAM, then the computations are performed by the functional units.

During encryption/decryption our accelerator is isolated for security reasons, it does not take any

input or generate any output. After encryption/decryption, the result is sent out through the interface.

In this work, all the communications through the interface are included in our results. Depending

on parameter n, the typical time spent for interfacing represents about 12% to 21% of the total

encryption/decryption time.

62

Figure 5.1: High level architecture of our accelerator.

CTRL

RAM

@

in out

interface

clk

data

status

cmd

data Functional
units

internal zone

5.3.2 Matrix arithmetic for LWE

We extend the method in [77] to speed-up schoolbook polynomial multiplication, described in Sec.

5.2, to the matrix multiplication for the standard LWE scheme. Matrices A and e1 coefficients are

15 and wλ = 1 + blog2 λc bits wide respectively. We pack two coefficients e00||e10 to reduce the 8× k
matrix e1 with wλ-bit elements to a 4 × k matrix with (w + 2wλ)-bit ones. Then multiplying one

coefficient from A by one from e1 requires a single DSP block.

The coefficients of the public key matrix A are generated using the PRNG. At each clock cycle,

one coefficient is generated. During the first clock cycle, a00 is generated and multiplied by all 4

coefficients in the first column vector of e1.


e00||e10 e01||e11 . . .

...
...

e60||e70 e61||e71


︸ ︷︷ ︸

k columns

×



a00 a01 . . .

a10 a11

...

...

a(k−1)0


︸ ︷︷ ︸

k columns

=


c00 c01 . . .

c10

...
...

c70


︸ ︷︷ ︸

k columns

(5.1)

The resulting vector is added to the first column vector of the output matrix. All the coefficients

that are loaded in the first clock cycle are coloured blue in equation (5.1). During the second clock

cycle, the red coefficients are loaded. The resulting integer products are all added to the first column

63

Figure 5.2: Architecture for matrix multiplication eᵀ1A. The 4 DSPs compute 8 integer products.
Coefficients of A are generated by the PRNG (”PR”).

PRRAM RAM

++ ++++ ++

15100

15 15 15 15 15 15 15 15

40 40 40 40

2525 25 25

120

vector of the output matrix. The first column vector of this output matrix is completely computed

after k (+ pipeline depth) clock cycles. Only then the computation of the second column vector begins.

The row vectors of e1 are implemented on 1 BRAM each, so that the matrix e1 uses 4 BRAMs.

The architecture of the matrix multiplication is shown in figure 5.2. To increase the level of parallelism

by a factor two, the blue and red multiplications can be performed at the same time. Then twice

as many DSP blocks are required for the matrix multiplication and two coefficients of A have to be

generated at the same time. For higher degrees of parallelism, multiple elements on the same row

vectors of e1 have to be read simultaneously. Therefore the row vectors of e1 have to be implemented

on multiple BRAMs each.

5.3.3 Parallelization using HLS

We use Xilinx Vivado HLS (version 2018.1) to generate architectures for the target FPGA XC7A200.

The C source code of the matrix multiplication c1 ← eᵀ1A, described in equation 5.1, is shown in

Figure 5.3. The loops labelled col A and row A iterate over the columns and rows of A respectively.

Column vectors of the output matrix are loaded and stored by loops copy1 and copy2. The prng

function generates the next coefficient of A, and compute 2products computes a·(e||e′) for coefficients

a, e, e′ using the error encoding method described in the previous paragraph.

In order to specify how this code should be implemented by the HLS tool, the directives can be

applied to parts of the code. Applying the pipeline directive to the loop row A, ensures that this loop

is pipelined and the subloop row E is completely unrolled. That is, all 4 iterations of the loop row E

are computed at the same time on 4 DSPs. Arrays are implemented on a single BRAM by default.

Without any specifications, the HLS tool would try to implement E1 on a single BRAM. However, all

4 elements of each column vector have to be loaded simultaneously. Therefore we implement E1 on

64

Figure 5.3: Source code for matrix multiplication C1 ← Eᵀ
1A.

col_A: for(i=0; i<k; i++){
copy1: for(ii=0; ii<8; ii++)

C1_tmp[ii] = C1[ii][i]; // copy from BRAM to registers
row_A: for(jj=0; jj<k; jj++){

sum = 0;
prng(State_A, &a_coeff); // PK coefficient from PRNG
row_E: for(j=0; j<4; j++){

compute_2products(a_coeff, E1[j][jj], &prod1, &prod2);
C1_tmp[2*j] = C1_tmp[2*j] + prod1;
C1_tmp[2*j+1] = C1_tmp[2*j+1] + prod2; // update output matrix

}
}
copy2 :for(ii=0; ii<8; ii++)

C1[ii][i] = C1_tmp[ii]; // copy from registers to BRAM
}

1

4 different BRAMs by setting the directive array partition. This directive partitions an array into

multiple smaller arrays, which are then implemented on multiple BRAMs.

We parallelize the computation even further by applying the directive unroll on loop row A. When

using this directive, the unroll factor has to be specified. Our implementation results are obtained by

setting the unroll factor to 2, 4, 8 and 16. For unroll factors 4, 8 and 16, multiple elements on the

same row have to be accessed at the same time. Therefore the array E1 has to be partitioned in the

second dimension as well, using the array partition directive, to prevent simultaneous accesses to

the same BRAM.

Table 5.2: LWE implementations results for encryption and decryption.

Algorithm Freq. Time (enc/dec) Area

LWE- k MHz µs DSP, BRAM, Slices, LUT

LWE-640 200 2275/232 6, 16, 1629, 4311

LWE-976 200 5123/353 8, 16, 1601, 4322

LWE-1344 200 9506/486 6, 25, 1439, 3832

5.3.4 Implementation results

The implementation results are obtained using Vivado HLS (version 2018.1) for target device Artix

xc7a200, and are shown in table 5.2. The error encoding technique packing two error terms in one w+

2wλ bit integer allows to compute 8 multiplications in parallel using 4 DSP blocks for the parameters

65

Figure 5.4: Computation time and area utilization for our LWE-1344 implementation.

enc. dec. DSP BRAM slices (x100)
0

2000

4000

6000

8000

10000
ti

m
e
 (
µ
s)

9505

485

LWE-1344

0

5

10

15

20

25

30

35

u
n
it

s

6

25

14

sets of k = 640 and k = 1344. For k = 976 however, the error terms are still 5 bit integers while

the coefficient size is increased to 16 bits (see parameter sets in Table 5.1). Therefore w + wλ > 25

and extra DSP blocks are needed for the multiplications. For k = 1344 the size of the error terms

decreases to 4 bits.

The matrix multiplication using 4 parallel running DSP blocks is computed in roughly k2 = 409600

cycles for k = 640. This operation takes up 90 percent of the total encryption time. A visualization

of the impact of parallelism on the timing and area results of the implementation is shown in Figure

5.5. These results are for the encryption algorithm only. It can be seen that for unroll factor 2× the

total encryption time is divided by almost 2. The relative cost increase in terms of DSPs is lower

than the factor by which the computation time decreases. In terms of slices, LUTs and BRAMs,

the trade-off is even more favourable for the parallelized implementation, which even holds for the

more parallelized implementations using unroll factors 4×, 8× and 16×. For these higher degrees

of parallelism however, the number of DSPs increases faster than the computation time decreases.

The 8× and 16× implementations run on smaller frequencies, limiting the obtained speed-up. More

detailed results including comparisons with results from the state of the art are given in Table 5.7 in

section 5.7

5.4 RLWE Implementations

In this section, we present our implementation of the RLWE based encryption and decryption algo-

rithms described in the state of the art. One of our goals is to show that competitive results can be

obtained using HLS from C code for a reduced design cost compared to VHDL or Verilog design.

66

Figure 5.5: Comparing the base implementation (blue) to parallelized versions using unroll factors 2
(green), 4 (red), 8 (cyan) and 16 (magenta).

BRAM
13 =
1.00×
13

Enc. time (µs)
1201 = 0.55 × 2181

Slice
1588 =
1.10×
1437

LUT
4053 =
1.04×
3884

DSP
9 = 1.8 × 5

0.0
0.2

0.4
0.6

0.8
1.0

BRAM
17 =
1.30×
13

Enc. time (µs)
698 = 0.32 × 2181

Slice
1917 =
1.33×
1437

LUT
5000 =
1.28×
3884

DSP
17 = 3.4 × 5

0.0
0.2

0.4
0.6

0.8
1.0

BRAM
25 =
1.92×
13

Enc. time (µs)
554 = 0.25 × 2181

Slice
2583 =
1.79×
1437

LUT
6683 =
1.72×
3884

DSP
33 = 6.6 × 5

0.0
0.2

0.4
0.6

0.8
1.0

BRAM
41 =
3.15×
13

Enc. time (µs)
508 = 0.23 × 2181

Slice
3914 =
2.72×
1437

LUT
9296 =
2.39×
3884

DSP
65 = 13.0 × 5

0.0
0.2

0.4
0.6

0.8
1.0

67

Figure 5.6: Architecture computing the error polynomials in the NTT domain. The yellow part uses
the PRNG (TR unit) to generate samples from the Bλ distribution (here: λ = 3). The +bit operator
computes the sum of λ input bits. The NWC (upper left) is computed using a shift-based multiplier and
modular reduction (RED). The NTT is computed on the right, using one Gentlemen-Sande butterfly
(BF) operator.

RAM

RAM
BF

<<ROM + RED

PR
+bit

+bit
-6

3

3 2

2

3

13

13

13
13

13

13

13

16

16

Parameters. In order to compare with literature results, we implement RLWE for the parameter

sets (n, q, λ) = (1024, 12289, 8) and (256, 7681, 3). For n = 1024, the implemented algorithm is a

simplification of the CPA-secure version of NewHope1024 PKE with key reuse. We do not implement

the key refreshing, ciphertext compression/decompression and key encoding/decoding. For simplicity

we use the Trivium stream cipher as PRNG.

Encryption and Decryption. Following [98], we avoid the bit-reversal step by implementing both

the DIF and DIT NTT. The stage loop is fully pipelined, such that it takes just over n
2 clock cycles

to complete one stage. The complete forward transformation is computed in few more than n
2 log n

cycles.

The error polynomials e1, e2 and e3 are sampled from the binomial distribution Bλ(Rq). The

required random bits are provided by the PRNG. Since the ciphertext part c1 = ae1 + e2 will be sent

in the NTT domain, the NTT has to be applied to both e1 and e2. The NWC must be computed

for both polynomials. To compute these multiplications, we use the fact that the coefficients are

sampled from Bλ and therefore are bounded by −λ and λ. The multiplications can be computed using

only a few shifts and additions, without using a DSP block. The NTT is then applied to e1 and e2

simultaneously, using two parallel NTT units each consisting of one butterfly unit and two BRAMs.

The architecture for sampling e1 (or e2) and mapping it to the NTT domain is shown in Figure 5.6.

The architecture for decryption is shown in Figure 5.7. The area and timing implementation results

for RLWE are shown in Table 5.3 with similar solutions from the literature.

Our small implementation is denoted by V1. This implementation with only 1 DSP block is

comparable in size and speed to [96] but is larger and 15 to 20% slower than the cryptoprocessor from

68

Table 5.3: FPGA implementation results for our RLWE solutions (denoted V1, V2 and V3) and
literature solutions. If specified, Encryption/Decryption and Server/Client/Server (for a 3-step key
exchange) timing results are shown separately. Separate area results for Server and Client are indicated
with +.

Latency Time Slice, DSP,
Source FPGA (clock cycles) MHz (µs) LUT, BRAM

n = 256

[96] XC6VLX75 6861/4404 262 26.2/16.8 1506, 1, 4549,
12

[105] XC6VLX75 6300/2800 313 20.1/9.1 n.a., 1, 1349, 2

V1 XC7A200 5039/2188 208 24.2/10.5 1624, 1, 4365, 5

V2 XC7A200 3764/2239 250 15.1/9.0 2122, 6, 5616, 8

n = 1024

[74] XC7Z020 6900/10300/2800 133/131 51.9/78.6/21.1 n.a., (8+8),
(18756+20826),
(14+14)

[90] XC7A035 171124/179292 125/117 1369/1532 0, (2+2),
(5142+4498),
(4+4)

V3 XC7A200 16146/9586 250 64.6/38.3 4106, 7, 11164,
12

[105]. By computing the forward NTTs in parallel in V2, we are faster than both, but more DSP

blocks are needed. For n = 1024, the key exchange implementation by [74] is comparable with our

V3 results in terms of speed, but the V3 implementation uses 50% less DSP blocks and BRAMs. We

conclude that results obtained using HLS are comparable or, in the best case, even better in terms

of speed (up to 25%) and/or area (up to 50%) than results from works based on VHDL or Verilog

implementations.

5.4.1 Optimizing the area utilization

From here on, we will focus on the RLWE implementation for n = 1024 only, since this parameter

set is used by NewHope (for the highest security category). The parameter set for n = 256 has been

used in several implementations in the state of the art, but is considered not secure enough for RLWE

based cryptosystems and none of the PKE submissions in the NIST standardization competition uses

this parameter set.

The NTT is used in both encryption and decryption. During encryption, the forward NTT is

computed while during decryption the inverse transformation is computed. By sharing the ressources

used for these two operations, area utilization can be decreased. Encryption and decryption can then

be computed in the same time as in table 5.3, but using only 4 DSPs instead of 7 (for n = 1024).

69

Figure 5.7: Architecture for the decryption. The ciphertext is completely loaded in the RAM before
starting the computations. The two pointwise operations (one before and one after the inverse NTT)
in the blue region share a DSP block.

RAM

RAM
BF

13
13

13

13

13

RED

ROM 13

13RAM
13

1

- RED

Decoder
13

*

1

27

26

Using this optimization, we obtain implementation results for 3 different degrees of parallelism (table

5.4). The first architecture uses only one DSP block and no parallelization is used. By computing the

two forward NTTs simultaneously, n2 log n less cycles are needed for the encryption function, resulting

in a smaller latency. The second architecture also runs on a higher frequency than the first, resulting

in an even more significant speed-up. The third architecture is obtained by unrolling loops of the

point-wise computations by a factor 2. The gain in speed, compared to the second architecture, does

not seem worth the cost of the extra DSPs and BRAMs.

Table 5.4: RLWE-1024 encryption/decryption results.

Freq. Time (enc/dec) Area

Version MHz µs DSP, BRAM, Slices, LUT

Sequential 206 110/47 1, 11, 3820, 10563

NTTs in parallel 258 63/38 4, 10, 3701, 10112

Unroll 251 59/35 6, 16, 4474, 12301

5.5 MLWE implementations and comparison

5.5.1 Modifying the RLWE implementation

We transform our RLWE-1024 implementation for MLWE using slight changes, starting by changing n

from 1024 to 256. The arithmetic units are re-used for computations in Rq and MLWE. This includes

our architecture in Figure 5.6 (modified for n = 256) that generates binomial samples in the NTT

domain and now denoted BN. The same operations are performed but on polynomial coefficients of

k-dimensional vectors over Rq. The MLWE scheme is thus implemented by applying the operators

used in RLWE to each of the k polynomials (each of degree n) of the vectors in a sequential manner.

70

Figure 5.8: Comparison of MLWE with RLWE FPGA implementations for the same security level.

enc. dec. DSP BRAM slices (x100)
0

10

20

30

40

50

60

70
ti

m
e
 (
µ
s)

62

37

60

17

RLWE-1024
MLWE-1024

0

10

20

30

40

50

u
n
it

s

4

10

37

4

11

24

This is achieved by modifying the control accordingly. Each vector consists of 14 · 256 · k bits and is

stored in one 18 kb BRAM. For k = 4, around 14 kb is used in each BRAM, while for k = 2, only 7

kb is used. In a sequential architecture, the number of BRAMs is the same for k ∈ {2, 3, 4}. Extra

additions and a modified control are needed to support the multiplication of matrices and vectors of

dimension k. To avoid storing the k × k random matrix A, which is part of the public key, we use

the PRNG to generate the coefficients of the polynomials in matrix A on the fly, as suggested by [27].

The public key to be stored in the architecture only consists of the vector b ∈ Rkq and the seed for the

PRNG. We apply one step of rejection sampling in order to avoid too much bias in the distribution

of the coefficients (see section 5.6), as proposed for instance for Kyber in [27].

The parameter k is used as a security parameter and determines the number of multiplications

in Rq to be computed. During the encryption, k2 + k multiplications in Rq and 2k forward NTTs

are needed. The decryption consists of k multiplications in Rq, while there is only one inverse NTT,

independently of k.

We compare the performance of the RLWE scheme for n = 1024 with the performance of MLWE

for k = 4. It can be seen in table 5.5 and figure 5.8 that the encryption time does not differ by much

although RLWE seems to be slightly slower. More significantly, the MLWE scheme decrypts twice as

fast as RLWE. The impact of the parameter k on the decryption time of MLWE is limited, since only

the size of the computation c1 · s depends on the parameter k. During the encryption however k2 + k

multiplications in Rq and 2k NTTs have to be computed. The encryption time is therefore heavily

impacted by increasing the parameter k.

71

Table 5.5: MLWE FPGA implementations for different security levels.

Algorithm Freq. Time (enc/dec) Area

MLWE- (k × n) MHz µs DSP, BRAM, Slices, LUT

MLWE-512 256 30/12 4, 11, 2380, 5538

MLWE-768 256 44/15 4, 11, 2540, 6031

MLWE-1024 250 61/17 4, 11, 2383, 5515

5.5.2 Parallelization of operations in Rk
q

We also propose parallelized implementations that compute MLWE encryption and decryption for

different values of the security parameter k (vector length) in almost the same time. While the

computations in Zq are still performed sequentially, hardware is added to compute the operations on

a higher level (matrix-vector operations) in parallel. During the encryption the k components of the

error vectors e1 and e2 have to be sent to the NTT domain. All of these 2k transforms are computed

simultaneously. The operation (for k = 2)

e1, e2 7−−−−−−−−−→n
2

log(n) cycles

(
NTT(e

(0)
1)

NTT(e
(1)
1)

)
,

(
NTT(e

(0)
2)

NTT(e
(1)
2)

)
is computed in the time it takes to compute one NTT, that is, n

2 log(n) + δ cycles for where δ

is the pipeline depth. Similarly, PRNGs and binomial samplers are added to sample the 2k error

polynomials simultaneously. The k2 multiplications in Rq for the computation of c1 ← Aᵀe1 + e2

and the k multiplications in Rq needed to compute c2 are also computed in parallel. For k = 2, the

operation

e1,A 7−−−−−→
n cycles

(
a(00) � e

(0)
1 + a(01) � e

(1)
1

a(10) � e
(0)
1 + a(11) � e

(1)
1

)
is computed in just over n cycles, which is the time it takes to compute one single point-wise

multiplication. For the computation of Aᵀe1, in order to compute the k2 multiplications over Rq in

parallel, we need to be able to access all k2 coefficients of A at the same time. Therefore, we generate

a seed for the PRNG for each of the k2 coefficients of A. The public key then consists of a vector

b ∈ Rkq and a seed for the PRNG that is used to generate the k2 seeds for the k × k matrix A. The

parallel architecture for k = 3 using the BN unit described in the previous section is shown in figure

5.9.

5.5.3 Parallelization using HLS

The C source code in figure 5.10 is an excerpt from the MLWE encryption implementation. This code

computes the matrix-vector product Aᵀe1 where all the matrix and vector coefficients are in the NTT

72

Figure 5.9: Proposed parallel architecture for the matrix-vector multiplication in MLWE-768. The
PRNG (”PR”) generating A uses the internal PRNG states stored in the RAM. The modular arith-
metic unit (”MA”) computes modular multiplication and addition with the error coefficients supplied
by the BN units. The polynomial products are summed up to obtain c1 = Aᵀe1 + e2.

ADD

MA

PR

RAM

BN

28813 288

13 13 13 13 13

13 13 13

28813 288

13 13 13 13 13

13 13 13

28813 288

13 13 13 13 13

13 13 13

ADD ADD

RAM RAM RAM RAM RAM

BN BN BN BN BNPR PR PR PR PR PR PR PR

MA MA MA MA MA MA MA MA

domain.

A standard matrix-vector product can be recognized in the loops labelled col and row. The coeff

loop iterates over the coefficients of the polynomials in matrix A and e1. The matrix A is not read

from memory, but computed “on the fly”. The k2 internal PRNG states are read from memory and the

PRNG is used to generate the coefficients of the k2 polynomials in A. The reduce and reduce fast

functions perform modular reduction, the prng function samples a 13-bit signed integer, and the DW

macro casts the operands of the multiplication to the int26 type, to get a 26-bit signed integer as

result.

In order to generate a parallel architecture, the directives have to be specified accordingly in

Vivado HLS. Our goal is to compute all of the k2 polynomial multiplications simultaneously. We set

the directive pipeline on the coeff loop. This directive forces all subloops to be completely unrolled.

All of the k2 operations in the col and row loops will be performed in parallel.

We use the directive array partition to partition arrays E1[k][n] and C1[k][n] into k different

arrays. This will distribute the arrays over k different BRAMs each. Then k values can be loaded

from the array E1 at the same time and k values can be written to C1 at the same time. We apply

the same directive to both dimensions of the k × k array Trivium States.

To generate an architecture for a different vector length k, we run a script using SageMath that

creates a new header file defining k and computes a new set of valid keys. The C source code remains

the same and the same directives apply. The files generated by the SageMath script also define all the

constants used in the implementation, such as n-th roots of unity and exponents parametrizing the

modulus. A simple change of parameters in the script is all that is needed to generate architectures

for different values of (n, q, k). The C source code remains unchanged. This means that we can even

73

Figure 5.10: Matrix-vector multiplication Aᵀe1.

coeff: for(i=0; i<N; i++){
col: for(jj=0; jj<K; jj++){

c1_coeff = 0;
row: for(j=0; j<K; j++){

A_coeff = 0;
prng(Trivium_States[j][jj], &A_coeff);
c1_coeff += reduce(DW(A_coeff)*DW(E1[j][i]));

}
C1[jj][i] = reduce_fast(c1_coeff);

}
}

1

switch between RLWE (k = 1) and MLWE implementations (k = 2, 3 or 4) by simply generating a

new header file. For area optimization we add some specific directives depending on the parameter

k. The allocation directive for instance, allows to set a limit to the number of DSP blocks in the

implementation.

5.5.4 Implementation results

The PRNG is instantiated with the Trivium stream cipher. The results are shown in Table 5.6. In

the parallelized implementation of MLWE, the impact of the parameter k on the encryption time is

mitigated by adding BRAMs and DSP blocks. The latency (in clock cycles) of the arithmetic part of

the scheme is then the same for k = 2, 3 and 4. A slight increase in encryption and decryption time is

due to the loading and storing of public keys and ciphertexts of increased size. In Table 5.6, increasing

k means adding n cycles to the decryption latency, during which the k ·n coefficients of the ciphertext

part c1 are loaded. The encryption latency increases by 2n cycles since both b and c1 consist of k · n
coefficients.

The throughput of our LWE, RLWE and MLWE implementations for the different degrees of

parallelization discussed, is shown in Figure 5.11. Implementations of RLWE and MLWE using only

1 DSP block and no other optimizations than pipelining are compared to the slightly parallelized

(computing NTTs simultaneously) and maximally parallelized implementations. For the RLWE and

MLWE implementations, the throughput is increased by computing the NTTs during the encryption

in parallel. Further parallelization obtained by unrolling loops increases the throughput even more,

up to almost 2× the throughput of the slightly parallelized version in the case of MLWE-1024. The

gain in throughput for the RLWE-1024 however, is limited to only 7 percent compared to the slightly

parallelized version. This is due to the fact that the memory access patterns of the NTT prevent

further parallelization. In RLWE these NTTs consist of 10 stages of 512 butterfly operations each,

74

Figure 5.11: Throughput (in encryptions per second) vs area (in DSP blocks) trade-offs for various
parallelism levels. The most left point of each curve corresponds to a sequential architecture, the
middle point embeds parallel NTTs (for RLWE/MLWE) and the most right point represents a full
parallel architecture.

0 5 10 15 20 25
DSP

0

5

10

15

20

25

30

35

40

45

O
p
s/

s
×

10
00

MLWE-512
MLWE-768
MLWE-1024
RLWE-1024
LWE-640
LWE-976
LWE-1344

while in MLWE only 8×128 butterfly operations have to be computed. The potential for parallelization

provided by the matrix structure, is clearly an advantage for MLWE compared to RLWE. Even if the

number of DSPs is increased, for MLWE-1024 this represents less than 4 percent of the total number of

DSPs available on the Artix-7. For the LWE implementations the throughput increases when unrolling

the matrix multiplication loop. It remains however, far below those of MLWE and RLWE.

Table 5.6: Parallelized MLWE for different security levels

Size Freq. Time (enc/dec) Area

k MHz µ s DSP, BRAM, Slices, LUT

2 204 25/14 9, 17, 4565, 8584

3 196 29/16 16, 25, 6271, 12383

4 196 32/17 25, 29, 8988, 16803

75

5.6 Randomness generation and CCA implementations

We discuss the use of rejection sampling for the public key generation, the use of a more secure PRNG

and the transformation to CCA secure implementations.

5.6.1 Rejection sampling

To generate the coefficients of public key A, uniform sampling over Zq is needed. The naive way of

sampling the uniform distribution over Zq is to generate w = dlog2(q)e random bits defining a w-bit

number a and returning a mod q. This results in a biased distribution: for any a0 ∈ {0, . . . , 2w−q−1}
and a1 ∈ {2w − q, . . . , q − 1}, the probability of obtaining a0 is twice as high as the probability

of obtaining a1. The bias is determined by the probability of obtaining an integer in the range

{q, . . . , 2w − 1}, which is equal to 2w−q
2w ≈ 2−4 for q = 7681. To reduce the bias in the obtained

distribution, rejection sampling can be performed. This requires generating a number of random

integers a0, . . . , ar and selecting one that is in the interval [0, q − 1]. The sampling algorithm using r

rejection steps, has a probability of returning an integer in the range {q, . . . , 2w− 1} of approximately

2−4(1+r). The impact of the number of rejection steps on the area utilization is shown in Figure 5.12.

There is a clear increase in usage of slices, LUTs and flipflops as rejection steps are added. With

respect to the total area however, even the additional 189 LUTs (for r = 4) represent less than a 4

percent increase. The computation time is largely independent of the number of rejection steps for

the range of r considered in Figure 5.12.

5.6.2 Alternative PRNG

While the Trivium PRNG has a good performance, it has a key space of 80 bits, which is less than

the number of security bits (128, 192 or 256, depending on the parameter set) targeted by Kyber,

NewHope and Frodo. An attacker has no direct access to the PRNG output that is used for error

sampling. However, the correctness of a Trivium key guess can be checked by reconstructing e1 using

the PRNG and verifying that eᵀ1A ≈ c1. The Trivium key can therefore be found in 280 operations. If

the Trivium key is compromised, an attacker may compute c2 − be1 ≈
⌊ q

2

⌋
µ to recover the message.

An exhaustive search in the 80 bit key space could thus be used for message recovery attacks.

In Kyber, NewHope and Frodo it is suggested to use SHAKE-256 or similar algorithms as PRNG.

Some schemes propose to use the less secure SHAKE-128 to generate the public key part A. We

implement a hybrid version using Trivium for the public key and SHAKE-256 for the error samples,

as was done in [64]. We also implement a variant that uses SHAKE-256 for both error sampling and

generation of A. The results are shown in figure 5.13. The Keccak implementation, when synthesized

separately, takes up 1770 slices, 3782 LUTs and 5121 flipflops, and computes the 24 round Keccak

algorithm in 25 clock cycles. The overhead that the SHAKE implementation imposes on the area

and timing results is shown in Figures 5.14 and 5.15. The number of DSPs used remains unchanged.

76

Figure 5.12: Area increase of MLWE-1024 implementation due to rejection sampling.

0 1 2 3 4
Rejection steps r

0.5

0.0

0.5

1.0

1.5

2.0

2.5
%

 i
n
cr

e
a
se

Slice
LUT
FF
Latency

The hybrid version, using Trivium for the public key, has a clear advantage over the SHAKE-256

only variant in terms of area utilization and computation time. The obtained frequency of the RLWE

implementation is heavily impacted by substituting Trivium for SHAKE, dropping from 256 MHz

(Trivium) to 166 MHz (SHAKE).

5.6.3 CCA secure implementations

We transform our CPA-only secure LWE, RLWE and MLWE implementations (with hybrid sampling

mode) into CCA secure implementations using algorithms 6 and 7. Hash functions H and G are

instantiated with the SHA3-256 algorithm. Complete results are shown in Table 5.9. A comparison

between the timing results of the CPA-only implementations and the CCA implementations is shown

in Figure 5.16. For LWE, the additional hash function evaluations have relatively little impact on the

timing results. The computation time difference between CPA-secure and CCA-secure encryption are

almost entirely accounted for by the matrix multiplication in the encryption algorithm. For MLWE

and RLWE however, this is not the case. The difference between CPA-enc and CCA-enc is due to the

hash functions. This is also holds for the difference between CCA-dec and the sum of CPA-enc and

CPA-dec. Additional slow-down is caused by a drop in obtained frequency for CCA implementations.

The impact on the area is shown in Figure 5.17. There is a clear increase in DSPs for RLWE and

MLWE, showing that the sharing of resources is not optimal.

77

Figure 5.13: Impact of the choice of PRNG on the encryption time.

MLWE-512 MLWE-768 MLWE-1024 RLWE-1024
0

20

40

60

80

100

120

E
n
cr

y
p
ti

o
n
 t

im
e
 (
µ
s)

30

43

60 62

36

53

71

91

40

60

84

119Trivium
Hybrid
SHAKE-256

Figure 5.14: Impact of the choice of PRNG on area in slices.

MLWE-512 MLWE-768 MLWE-1024 RLWE-1024
0

1000

2000

3000

4000

5000

6000

7000

8000

S
lic

e
s

2380 2540 2383

37013834 3737 3840

4608
5029 5160

4871

7926

Trivium
Hybrid
SHAKE-256

Figure 5.15: Impact of the choice of PRNG on time × area.

MLWE-512 MLWE-768 MLWE-1024 RLWE-1024
0

200

400

600

800

1000

T
im

e
 (
m
s)
×

 S
lic

e
s

71
110

144

231

136
200

273

421

204

309

410

940
Trivium
Hybrid
SHAKE-256

78

Figure 5.16: Encryption and decryption time of CCA2 and CPA implementations. RLWE and MLWE
times are in µs, while ms are used for LWE.

MLWE-1024 RLWE-1024
0

50

100

150

200

T
im

e
 (
µ
s)

79

91

20

47

115

137
128

187
CPA-enc
CPA-dec
CCA2-enc
CCA2-dec

0

2

4

6

8

10

12

T
im

e
 (
m
s)

11

1

12
12

LWE-1344

Figure 5.17: Area comparison between CCA2 and CPA only implementations.

MLWE-1024 RLWE-1024 LWE-1344
0

10

20

30

40

50

60

u
n
it

s

4 5 65 5 4

12 11

41

11
9

6

12
15

13
16 17

62
CPA-dsp
CPA-slice (×1000)

CPA-bram
CCA-dsp
CCA-slice (×1000)

CCA-bram

79

5.7 Comparison with other works

A selection of our implementation results of the encryption/encapsulation algorithm is compared to

results found in other works in Table 5.7. All of our results and the results from [44] are obtained using

HLS. The best MLWE/MLWR implementation from the state of the art is given by [44]. The RLWR

and MLWR implementations from [5] and [44] compute the Round5 [11] and Saber [45] encapsulation

respectively. The advantage of RLWR is that there is no need to implement modular reduction: integer

arithmetic is computed in Zq where q is some power of two. There is no need for (binomial) error

sampling either: the errors are generated by setting a number of LSBs to zero. The drawback is that

the NTT cannot be used for polynomial multiplication for RLWR (and MLWR).

Our CPA-secure implementation of RLWE-1024 is more than 20% faster and at least twice as

small as the one from [74]. Note that our result includes area utilization for both encryption and

decryption, whereas the results from [74] are only for the implementation of the Server part of a

Client-Server-Client key exchange. The two other CPA-only RLWE/RLWR implementations by [90]

and [5] have an even higher computation time. Our CCA-secure implementation is outperformed by

the very recent result from [115], designed with Verilog HDL and highly optimized.

In [44], the inefficient (compared to the NTT) polynomial multiplication algorithm is compensated

by adding slices and LUTs for parallel computation. Their RLWR and MLWR seem faster than our

RLWE and MLWE. However, this is largely due to the difference in obtained frequency resulting

from the use of different FPGAs. We generate implementations on the same FPGA as [44] (Zynq

Ultrascale), and observe that our MLWE-1024 is actually 4% faster than theirs (also see table 5.8),

while using 28 times fewer DSPs. The enormous difference in area efficiency is mostly due to the

advantage that the NTT has over other multiplication methods. This drawback for RLWR and MLWR

schemes like Saber and Round5 seems to significantly outweigh the advantage of not having to compute

modular reduction and binomial sampling (needed in Kyber and NewHope). This also explains why

the Saber implementation by [87] uses 2.5 times more DSPs than our CCA secure MLWE-768, while

our implementation is 47 times faster than theirs.

Our CPA-secure LWE is faster than [64] for similar area utilization, especially for k = 640. Our

CCA secure LWE also implements decapsulation, which explains the large difference in area results

with [64]. Their area results are for encapsulation only, which consists of one encryption and some

computations of the hash function. The fastest results for LWE are given by [44].

It should be noted that the choice of FPGA accounts for quite a few differences in performance.

To illustrate this, results for our CCA secure MLWE-1024 implementation on other FPGAs are shown

in Table 5.8. High end FPGAs run on higher frequencies, reducing the total computation time with

a factor of more than 2 for the Zynq UltraScale FPGA, which was also used by [44].

80

Freq. Time Area

Src. P Algorithm PRNG Type FPGA MHz µs DSP, BRAM, Slice, LUT

[74] RLWE-1024 SHAKE K-E xc7z020 131 79 8, 14, n.a. 20826

[90] RLWE-1024 SHAKE K-E xc7a35t 117 1532 2, 4, n.a., 4498

TW m RLWE-1024 Trivium CPA xc7a200 259 63 4, 10, 3701, 10112 (*)

[44] RLWR-1170 SHAKE CCA xczu9eg 212 30 0, 4, 18733, 91166 (*)

[115] RLWE-1024 SHAKE CCA xc7z020 200 62 2, 8, n.a, 6781 (*)

TW m RLWE-1024 Hybrid CCA xc7a200 167 137 9, 17, 14026, 42062 (*)

TW l LWE-640 Trivium CPA xc7a200 200 2275 6, 16, 1629, 4311 (*)

TW m LWE-640 Trivium CPA xc7a200 208 1201 10, 16, 1692, 4490 (*)

TW h LWE-640 Trivium CPA xc7a200 213 698 17, 20, 2025, 5360 (*)

[64] l LWE-640 Hybrid CCA Artix-7 183 4624 4, 0, 1338, 4620

[64] m LWE-640 Hybrid CCA Artix-7 177 2342 8, 0, 1485, 5155

[64] h LWE-640 Hybrid CCA Artix-7 171 1212 16, 0, 1692, 5796

[65] LWE-640 Hybrid CCA xc7a35t 167 19608 1, 11, 1855, 6745

[44] LWE-640 SHAKE CCA xczu9eg 402 352 32, 27, 1186, 7213 (*)

TW l LWE-640 Hybrid CCA xc7a200 159 2972 5, 37, 12951, 39077 (*)

TW l LWE-976 Trivium CPA xc7a200 200 5123 8, 16, 1601, 4322 (*)

TW m LWE-976 Trivium CPA xc7a200 213 2577 12, 16, 1738, 4633 (*)

TW h LWE-976 Trivium CPA xc7a200 208 1493 18, 20, 2307, 5943 (*)

[64] l LWE-976 Hybrid CCA Artix-7 180 10638 4, 0, 1455, 4996

[64] m LWE-976 Hybrid CCA Artix-7 175 5464 8, 0, 1608, 5562

[64] h LWE-976 Hybrid CCA Artix-7 168 2857 16, 0, 1782, 6188

[65] LWE-976 Hybrid CCA xc7a35t 167 45455 1, 16, 1985, 7209

[44] LWE-976 SHAKE CCA xczu9eg 402 760 32, 34, 1190, 7087 (*)

TW l LWE-976 Hybrid CCA xc7a200 167 6317 14, 37, 13468, 41100 (*)

TW l LWE-1344 Trivium CPA xc7a200 200 9506 6, 25, 1439, 3832 (*)

TW m LWE-1344 Trivium CPA xc7a200 222 4491 10, 25, 1559, 3946 (*)

TW h LWE-1344 Trivium CPA xc7a200 213 2574 18, 29, 1892, 4960 (*)

[44] LWE-1344 SHAKE CCA xczu9eg 417 1328 32, 35, 1215, 7015 (*)

TW l LWE-1344 Hybrid CCA xc7a200 167 11606 6, 62, 12299, 37342 (*)

TW m MLWE-512 Trivium CPA xc7a200 257 30 4, 11, 2380, 5538 (*)

TW h MLWE-512 Trivium CPA xc7a200 204 25 9, 17, 4565, 8584 (*)

[44] MLWR-512 SHAKE CCA xczu9eg 322 43 256, 7, 1989, 12343 (*)

TW m MLWE-512 Hybrid CCA xc7a200 170 60 11, 16, 11028, 34206 (*)

TW m MLWE-768 Trivium CPA xc7a200 257 44 4, 11, 2540, 6031 (*)

81

TW h MLWE-768 Trivium CPA xc7a200 196 29 16, 25, 6271, 12383 (*)

[44] MLWR-768 SHAKE CCA xczu9eg 322 49 256, 7, 1993, 12566 (*)

TW m MLWE-768 Hybrid CCA xc7a200 167 88 11, 16, 11890, 34145 (*)

TW m MLWE-1024 Trivium CPA xc7a200 250 61 4, 11, 2383, 5515 (*)

TW h MLWE-1024 Trivium CPA xc7a200 196 32 25, 29, 8988, 16803 (*)

[44] MLWR-1024 SHAKE CCA xczu9eg 322 50 256, 7, 2341, 12555 (*)

TW m MLWE-1024 Hybrid CCA xczu9eg 417 48 9, 16, 9314, 44964 (*)

TW m MLWE-1024 Hybrid CCA xc7a200 170 116 11, 16, 11567, 33707 (*)

Table 5.7: CPA and CCA-secure Encryption or Encapsulation (CPA, CCA) or ’Server’ part in Client-

Server-Client key exchange (K-E). The ”P” column indicates the level of parallelism (low/medi-

um/high) used. If marked with (*), resource results are for both encryption and decryption. ’Hybrid’

in the PRNG column means Trivium + SHAKE.

5.8 Conclusion

We implemented CPA and CCA secure LWE, RLWE and MLWE based cryptosystems on FPGA.

To the best of our knowledge, the CCA secure MLWE implementation is a first. Our architectures

generated using HLS are up to 28 times smaller in terms of DSPs than other works using HLS [44],

while faster than works using VHDL/Verilog (such as [74, 90, 5, 65]). For MLWE in particular,

the timing versus area trade-offs of our implementations are better than the cited works, taking in

account the differences between FPGAs. We showed how HLS can be used effectively to parallelize

implementations. We also evaluated the impact of the choice of the PRNG on the performance of the

encryption. Using Trivium instead of SHAKE to generate the pseudorandom part of the public key,

the encryption can be accelerated. Even more speed-up is obtained when using Trivium for the error

sampling as well, although this decreases the theoretical security of the scheme.

Table 5.8: CCA-secure MLWE-1024 using SHAKE-256 for error sampling for different FPGAs, using
Vivado version 2018.3.

Freq. Time (enc/dec) Area
FPGA MHz µs DSP, BRAM, Slices, LUT

xc7a100t 200 99/110 11, 16, 11322, 35607
xc7k325t 286 70/77 9, 16, 12066, 34175
xc7v585t 286 70/77 9, 16, 12508, 35718
xczu9eg 417 48/53 9, 16, 9314, 44964
xcku040 333 61/68 9, 16, 7238 43101,
xcvu080 286 69/77 9, 16, 6474 33979,

82

Table 5.9: CCA-secure implementations using SHAKE-256 for error sampling.
Freq. Time (enc/dec) Area

Algorithm MHz µs DSP, BRAM, Slices, LUT

LWE-640 158 2972/3234 5, 37, 12951, 39077
LWE-976 166 6317/6698 14, 37, 13468, 41100
LWE-1344 166 11606/12130 6, 62, 12299, 37342

RLWE-1024 166 137/187 9, 17, 14026, 42062

MLWE-512 169 60/70 11, 16, 11028, 34206
MLWE-768 166 88/100 11, 16, 11890, 34145
MLWE-1024 169 116/129 11, 16, 11567, 33707

Table 5.10: CPA-secure encryption and decryption using Trivium PRNG, including results from Tables
5.2, 5.4, 5.5 and 5.6.

Algo. MHz Enc/dec(µs) DSP, BRAM, Slices, LUT

RLWE-1024 206 110/47 1, 11, 3820, 10563
RLWE-1024 258 63/38 4, 10, 3701, 10112
RLWE-1024 251 59/35 6, 16, 4474, 12301

MLWE-512 256 30/12 4, 11, 2380, 5538
MLWE-768 256 44/15 4, 11, 2540, 6031
MLWE-1024 250 61/17 4, 11, 2383, 5515
MLWE-512 204 25/14 9, 17, 4565, 8584
MLWE-768 196 29/16 16, 25, 6271, 12383
MLWE-1024 196 32/17 25, 29, 8988, 16803

LWE-640 200 2275/232 6, 16, 1629, 4311
LWE-976 200 5123/353 8, 16, 1601, 4322
LWE-1344 200 9506/486 6, 25, 1439, 3832
LWE-640 208 1201/223 10, 16, 1692, 4490
LWE-976 212 2577/333 12, 16, 1738, 4633
LWE-1344 222 4491/438 10, 25, 1559, 3946
LWE-640 212 698/219 17, 20, 2025, 5360
LWE-976 208 1493/340 18, 20, 2307, 5943
LWE-1344 212 2574/457 18, 29, 1892, 4960

83

Chapter 6

Countermeasures against Side-Channel

Attacks

6.1 Introduction

This chapter is based on our work [117] published and presented at IndoCrypt 2019. In this chapter,

we discuss side-channel vulnerabilities in the decryption algorithm of the RLWE based cryptosystem.

We identify the vulnerability of certain operations in the decryption algorithm by simulating SCA in

the Hamming weight model. To protect these operations, we implement countermeasures from the

state of the art, improve these countermeasures, and propose new protections. All countermeasures

are implemented on FPGA to measure and compare the impact on the computation time and area

utilization of each countermeasure.

6.1.1 Correlation Power Attack simulations in Python

The polynomial multiplication in the NTT domain c1� s consists of n independent multiplications in

the field Z/qZ. They are of the form s · c mod q, where s is a coefficient of the secret key and c is a

coefficient of the input ciphertext. We simulate DPA attacks on one single modular multiplication

of a known input coefficient c with an unknown secret key coefficient s.

In our attack model, for each multiplication c ·s mod q the attacker knows the value of c and learns

an approximation of the Hamming weight of the result:

HW (c · s mod q) +N (0, σ), (6.1)

where N (0, σ) is the rounded Gaussian distribution with standard deviation σ (see Figure 6.1).

The attacker proceeds as follows:

1. Generate a number Nc of random values r1, . . . , rNc in Z/qZ (these are the first coefficients of

84

Figure 6.1: Rounded Gaussian distributions for σ ∈ {1, 2, 3, 4}.

Nc random ciphertexts).

2. For each subkey candidate s̃ ∈ Z/qZ, compute the predictions

P (s̃) :=
(
HW (s̃ · r1 mod q), . . . ,HW (s̃ · rNc mod q)

)
.

3. Observe the approximations:

Q :=
(
HW (s · r1 mod q) +N (0, σ), . . . ,HW (s · rNc mod q) +N (0, σ)

)
.

4. Compute the Pearson correlation coefficients

ρs̃ = PCC(Q,P (s̃))

for all s̃.

5. Find the s̃ for which ρs̃ is maximum.

The standard deviation σ is a measure for the noise. Simulations results are shown in Figure

6.2. For σ ≤ 3, the correlation between the correct key coefficient guess and the simulated traces is

85

Figure 6.2: Simulations of correlation power attacks on one single modular multiplication, for 4
different degrees of noise: σ ∈ {1, 2, 3, 4}. For each subkey guess, the correlation with the ”observed”
(simulated) traces is drawn as a function of the number of simulated traces. The red dotted line is
the correct subkey guess.

maximum after obtaining a sufficient amount of traces. For σ = 1, this amount is equal to 20, for

σ = 2 at least 35 traces are needed and for σ = 3 the attacker needs a minimum of 60 traces. The

other subkey guesses that yield high correlation with the “observed” traces, are the guesses 2s, 4s and

8s, where s is the correct subkey guess. The reason for this is that a multiplicaton by 2 has no effect

on the Hamming weight of the product in Z, and relatively little effect when the product is computed

in Zq. For σ = 4, it seems to be getting impossible to distinguish between these false positives and the

correct subkey guess within 100 traces. This (near to) linearity makes that the modular multiplication

is not a perfect target for power analysis, as opposed to for example the completely non-linear Sbox

in the AES algorithm.

86

Figure 6.3: The ”black” line with the highest correlation actually consists of 4 overlapping lines
corresponding to the subkey guesses s, 2s, 4s and 8s.

To illustrate this further, let us consider to attack model in which the attacker learns an approx-

imation of the Hamming weight of the unreduced result: HW (c · s) + N (0, σ). As can be seen in

Figure 6.3, this method yields multiple false positives, even for the very small noise parameter σ = 1.

For any number of traces (smaller than 100), the correlation of these false positives is exactly equal to

that of the correct subkey guess. The problem is that in Z the Hamming weight of 2is · c is constant

for all i ∈ N.

The simulations discussed in this section show that the secret key coefficients can be recovered

using correlation power attacks in the defined attack model. While in the simulations we targeted the

point-wise multiplication of the secret key with the ciphertext input, other operations may be just as

vulnerable. The attack model used in the simulations assumed that the attacker is able to obtain an

approximation of the Hamming weight of the modular multiplication result at the moment that it is

written to the registers. Key dependent data is written to registers throughout the execution of the

decryption algorithm. The decryption algorithm decodes the coefficients of some polynomial d where

d is computed as d = c2 −NTT−1(c1 � s). It should be noted that knowledge of the coefficients of d

leads to complete key recovery in the chosen plaintext attack model. Since c1 and c2 are known inputs

and c1 is invertible in Rq with high probability, one can compute c−1
1 · (c2−d) = s. To prevent SCAs

on the coefficients of d, these coefficients should not be computed directly. Instead, a randomized

version of d should be used. The last step, which consists of decoding the coefficients, then takes a

randomized version of d as input. The decoder should therefore be able to decode randomized inputs.

87

6.2 Countermeasures in the State of the Art

We now present the main countermeasures from literature against power analysis attacks on RLWE.

Masking

In [102] the secret key is split in two shares: s = s′ + s′′ for some uniformly random s′ at the start of

each decryption. The linear part of the decryption function is computed twice: first the ciphertext is

decrypted (but not decoded) using secret key s′ and then using secret key s′′, yielding two polynomials

d′ and d′′, as shown in Algorithm 14.

Algorithm 14 Masked RLWE decryption [102]

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)

2: s′
$←− Rq

3: s′′ ← s− s′

4: d′ ← c2 − c1s
′

5: d′′ ← −c1s
′′

6: for 0 ≤ i < n do
7: di ← Decode masked(d′i, d

′′
i)

The final step consists of decoding the coefficients of d = d′ + d′′ to bits. This is a non linear

operation, that is, Decode(a+b) is not necessarily equal to Decode(a)+Decode(b). As an example,

if a = b =
⌊ q

6

⌋
, then 2×Decode

(⌊ q
6

⌋)
= 0 but Decode

(
2×

⌊ q
6

⌋)
= 1. This means that one cannot

simply apply the decoder to the coefficients of d′ and d′′ separately and then add the results in Z2 to

obtain the correct plaintext. The non-linearity of the decoding algorithm is illustrated in Figure 6.4.

Because of the DPA scenario mentioned above, the two shares d′ and d′′ should not be recombined

before decoding to bits. Let d′ and d′′ denote a coefficient (of some fixed index) of polynomials d′ and

d′′ respectively. A masked decoder takes as input two coefficients (d′, d′′) ∈ Z2
q and computes the value

of Decode(d′+ d′′) without computing d′+ d′′. The solution from [102] makes use of the fact that

for some (d′, d′′) ∈ Z2
q it is easy to deduce the value of Decode(d′ + d′′). For instance, if 0 ≤ d′ < q

4

and q
4 ≤ d′′ < q

2 then it must hold that q
4 ≤ (d′ + d′′) < 3q

4 , therefore the coefficient decodes to 1.

Similar “easy cases” exist, but not all (d′, d′′) ∈ Z2
q can be resolved in this way. If both d′ and d′′ lie

between 0 and q
4 , all we know is that 0 ≤ (d′+d′′) < q

2 and this can decode to either 0 or 1. Examples

of hard cases are illustrated in Figure 6.5.

The idea from [102] to solve the hard cases is to reshare the two shares: for any δ ∈ Zq one has

d′ + δ + d′′ − δ = d′ + d′′ = d. It is therefore possible to add any constant to one of the shares

and subtract the same constant from the other one. This refreshing of the shares is illustrated in

Figure 6.6. However, there is no guarantee that (d′ + δ, d′′ − δ) is an easy case. If the new shares

88

Figure 6.4: The two shares d′ and d′′ both lie in the right half of Zq, that is, both decode to 0 if decoded
individually. Their sum d on the other hand, decodes to 1. In this case: Decode(d′)+Decode(d′′) 6=
Decode(d′ + d′′).

q/4

0

3q/4

q/2 1

d'

d''

0

d

Figure 6.5: Both shares lie in the interval {0, . . . , q4}. Then their sum can lie in either the left or the
right half of Zq.

q/4

0

3q/4

q/2 1

d'

d''

0

d
q/4

0

3q/4

q/2 1

d'
d''

0

d

89

Figure 6.6: Refreshing the two shares d′ and d′′ yields an easy case, while preserving the correctness
of the decoding outcome.

q/4

0

3q/4

q/2 1

d'

d''

0

still do not form an easy case, the shares have to be reshared again. In [102] a list of constants

{δ1, . . . , δ16} is presented that is supposed to minimize the number of resharings to be performed.

Their implementation refreshes the shares 16 times such that with high probability an easy case is

obtained in at least one of the 16 iterations.

The computation time overhead due to the 16 iterations and the additional decoding failures are

important drawbacks to this solution. [91] propose an alternative masked decoding. Their method

effectively decodes without additional decoding failures. The comparison that they make between

this decoder and their re-implementation of the one from [102] however shows only a very limited

improvement in terms of performance. Their masked decryption takes over 3 times more cycles to

compute than the unmasked version. The same implementation also uses a blinding countermeasure

proposed by [106].

Blinding

With the blinding countermeasure [106] the polynomials s and c1 are multiplied by scalars a and b

in Zq respectively. The blinded polynomial multiplication is then computed: (as) · (bc1) = (ab)s · c1.

The inverse (ab)−1 should be computed to obtain s · c1. [106] suggested to use (pre-computed) powers

of ω and ω−1 as blinding factors to avoid the modular inversion. The decoding process cannot be

protected from DPA with the scalar blinding method. The blinding multiplication has to be inverted

before the coefficients can be decoded (see Algorithm 15).

90

Algorithm 15 RLWE decryption using the blinding countermeasure [106]

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)

2: i, j
$←− {0, . . . , n− 1}

3: s← ωis
4: c1 ← ωjc1

5: d← c1s
6: d← ω−(i+j)d
7: d← c2 − d
8: for 0 ≤ k < n do
9: dk ← Decode(dk)

Shifting

It is also suggested in [106] to apply a random anti-cyclic shift to the coefficients vector of the polynomi-

als before multiplying. Due to the ring structure, this anti-cyclic shift corresponds to a multiplication

by some power of x. For some random i, j < n, (xjs(x)) · (xic1(x)) = xi+js(x)c1(x) is computed and

s(x)c1(x) can be recovered by inversing the shift.

Algorithm 16 RLWE decryption using the shifting countermeasure [106]

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)

2: i, j
$←− {0, . . . , n− 1}

3: s← xis
4: c1 ← xjc1

5: d← c2 − x−(i+j)c1s
6: for 0 ≤ k < n do
7: dk ← Decode(dk)

Shuffling

Masking, blinding and shifting offer little to no protection against single trace attacks. The single

trace attack by [99] exploits leakage from the operations performed during the NTT. In that paper,

it is suggested to counter the attack by randomizing the order in which the butterfly operations are

computed. During each stage, the n
2 butterfly operations can be computed in a random order. The

same shuffling methods can also be applied to all the pointwise operations in the decryption.

91

6.3 New Variants of State of the Art Protections

The protections proposed in this section and the next one are implemented by modifying our base

architecture from Figure 5.7 for n = 256 and q = 7681. In real-world applications these protections

should be part of an architecture implementing the CCA2-secure version of the scheme, including a

re-encryption of the decrypted ciphertext and several evaluations of some hash function.

6.3.1 Masking with a New Masked Decoder

We implement a variant of the masking scheme described in the state of the art [102], improving the

masked decoding process. We propose a simple masked decoder that does not need 16 iterations and

that does not increase the decoding failure probability. Let d′, d′′ ∈
[
0, q4
)
, then d′ + d′′ ∈

[
0, q2
)
. If

either d′ or d′′ were to be shifted by exactly the right amount (see Figure 6.7), then we would be able

to determine if either d′+d′′ ∈
(−q

4 ,
q
4

)
or d′+d′′ ∈

(q
4 ,

3q
4

)
. The trick is then to find a δ ∈

[−q
4 ,

q
4

]
such

that d′ + δ changes quadrant while d′′ − δ does not (or the other way around). Suppose that d′ ≥ d′′

and let δ = 1 + min(
⌊ q

4

⌋
− d′, d′′). Then, depending on the value of δ, there are two possibilities for

the new shares d′ + δ and d′′ − δ:

1. d′ + δ =
⌊ q

4

⌋
+ 1 ∈

[q
4 ,

q
2

)
and d′′ − δ is in the same interval as d′′. Then d′ + d′′ must be in the

interval
(q

4 ,
3q
4

)
, therefore we decode to 1.

2. d′ + δ is in the same interval as d′ and d′′ − δ = −1 ∈
[−q

4 , 0
)
. Then d′ + d′′ must be in the

interval
[
0, q4
)
∪
(−q

4 , 0
]

and therefore we decode to 0.

Similar solutions can be found for the other hard cases. Let Qi denote the interval
[
iq
4 ,

(i+1)q
4

)
for

0 ≤ i ≤ 3, that we will refer to as “quadrants”. The property that allows to solve the easy cases is

the following:

Property 6.3.1. If d′ ∈ Qi and d′′ ∈ Qj then (d′ + d′′) ∈ Qi+j mod 4 ∪Qi+j+1 mod 4.

In the remainder of this section, we let i and j be the quadrant indices of d′ and d′′ respectively.

For i+ j = 1 mod 4 it follows from Property 1 that (d′ + d′′) ∈ Q1 ∪Q2. In other words, the sum lies

in the left half of Zq and therefore decodes to 1. Similarly, the (d′, d′′) ∈ Z2
q for which i+ j = 3 mod 4

are easy cases and decode to 0.

The hard cases are given by (d′, d′′) ∈ Z2
q for which i + j = 0 mod 4 or i + j = 2 mod 4, that is,

(d′ + d′′) ∈ Q0 ∪ Q1 or (d′ + d′′) ∈ Q2 ∪ Q3 respectively. To reduce to an easy case, it suffices to

move either (but not both) d′ or d′′ to an adjacent quadrant. Then for the new pair (d′ + δ, d′′ − δ)
exactly 1 mod 4 is added to or subtracted from the sum i+ j. Then for the updated i, j it holds that

i+ j = 1 mod 4 or i+ j = 3 mod 4 and Property 1 applies.

It is always possible to modify the sum i+ j for the i, j corresponding to the shares by exactly 1.

Assume w.l.o.g. that d′ ≥ d′′. If d′ ∈ Qi, d′′ ∈ Qj and d′ is closer to iq
4 than d′′ is to (j−1)q

4 , then there

92

Figure 6.7: Left: given that d′, d′′ ∈
[
0, q4
)
, there is no simple way to determine if d′ + d′′ ∈

(q
4 ,

3q
4

)
,

i.e. this is a hard case. Adding some δ to d′ while subtracting the same δ from d′′ yields a new pair
(d′, d′′) which is an easy case. Middle: for some hard cases, adding and subtracting a constant δ does
not give a solution: the new pair (d′, d′′) is another hard case. Right: d′ is closer to q

4 than d′′ is to 0.
We therefore let δ = 1 +

⌊ q
4

⌋
− d′. Then by construction, d′ + δ changes quadrant while d′′ − δ does

not. It follows that d = d′ + δ + d′′ − δ > q
4 and d < 3q

4 . Therefore (d′, d′′) decodes to 1.

q/4

0

3q/4

q/2 1 1 1

d'

d''

0

d'

d''

0 0

d'

d''

is a δ such that d′ + δ ∈ Qi+1 and d′′ − δ ∈ Qj . If the opposite holds, then d′′ can be moved to Qj−1

by subtracting a δ while d′ stays in Qi. The new pair (d′+ δ, d′′− δ) forms an easy case. This method

does not work when the distance δ′′ between d′′ and (j−1)q
4 is equal to the distance δ′ between d′ and

iq
4 . However, these are exactly the cases for which d′ + d′′ is equal to either

⌊ q
4

⌋
or
⌊

3q
4

⌋
. This means

that even an unmasked decoder would not be able to decode these cases correctly. The parameters in

LWE-based cryptosystems are usually chosen such that such cases appear with negligible probability.

The comparison operation δ′ < δ′′ has to be implemented with caution. Generally, comparisons are

performed by checking the bit sign of the subtraction of its operands. Since δ′−δ′′ = −(d′+d′′)+
⌊
kq
4

⌋
for some integer k < 4, this operation leaks information about the unmasked value of d.

Instead of implementing a combinatory circuit, we have implemented successive accesses to a look-up

table to perform the comparison. The implemented algorithm is described in Algorithm 17, where

the bits of a and b are denoted (a0, . . . , aw−1) and (b0, . . . , bw−1) respectively. The look-up table

implements the function T defined by T (ai, bi, Y) =
(
ai ∧ (bi ∨ Y)

)
∨ (bi ∧ Y).

Algorithm 17 Returns True if and only if a > b

1: function Compare(a, b)
2: Y ← False
3: for i = 0 to w − 1 do

Y ← T (ai, bi, Y)

4: return Y

Note that it is not necessary to assume that d′ > d′′. Given (d′, d′′) and their corresponding

93

quadrant indices (i, j) = index(d′, d′′), the distances δ′ =
⌊

(i+1)q
4

⌋
− d′ and δ′′ = d′′ −

⌊
jq
4

⌋
are

computed and compared. We have that:

δ′ < δ′′ ⇐⇒
⌊(i+ 1)q

4

⌋
− d′ < d′′ −

⌊jq
4

⌋
⇐⇒

⌊(j + 1)q

4

⌋
− d′′ < d′ −

⌊ iq
4

⌋
,

which means that swapping d′ and d′′ (and their corresponding indices) does not change the boolean

outcome of the comparison. The complete masked decoder is given by Algorithm 18. The new reshared

parts d′ + δ and d′′ − δ do not need to be computed explicitely. The comparison of δ′ and δ′′ yields

sufficient information to update the indices (i, j) and determine the decoded bit.

Algorithm 18 Proposed masked decoder for (d′, d′′)

1: function decode(d′, d′′)

2: r
$←− {0, 1} . Mask for output

3: (i, j)← index(d′, d′′) . Quadrant indices
4: if i+ j ≡ 1 mod 4 then
5: return (r, r̄) . Easy cases i+ j ≡ 1 or 3.
6: else if i+ j ≡ 3 mod 4 then
7: return (r, r)
8: else
9: δ′ ←

⌊
(i+1)q

4

⌋
− d′ . Distance to interval boundaries

10: δ′′ ← d′′ −
⌊
jq
4

⌋
11: if Compare(δ′′, δ′) then
12: if i+ j + 1 ≡ 1 mod 4 then
13: return (r, r̄)
14: else
15: return (r, r)

16: else
17: if i+ j − 1 ≡ 1 mod 4 then
18: return (r, r̄)
19: else
20: return (r, r)

In order to make this masked decoder compatible with CCA2-secure implementations, the output

is also masked. Instead of returning the plaintext bit, a random bit is generated and XORed with the

unmasked decoding result. The decoder returns both the mask and the masked value.

A total of 2n log q = 23328 different masks can be obtained. The security of the masking scheme with

its original decoder is experimentally evaluated by [102]. They also mention the (small) possibility of

horizontal DPA attacks targeting the 16 iterations of their masked decoder. Our proposed decoder

94

does not have this vulnerability since it does not use 16 iterations.

6.3.2 Modified Shifting

In practice it is not possible to obtain xis and xjc1 by applying anti-cyclic shifts to their coefficients

vectors, because they are represented in the NTT domain. To multiply by xi in the NTT domain,

observe that

NTT(xi) = (1, ωi, ω2i, . . . , ω(n−1)i), (6.2)

and NTT((φx)i) = φi · NTT(xi). All of the coefficients of NTT(xi) are already pre-computed, since

they are exactly the n powers of ω. Multiplication by xi can thus be done by a pointwise multiplication

with the powers of ω and φi (for the NWC). This multiplication has to be performed in bit-reversed

order, since s and c1 are in the NTT domain. In [106] there is no mention of any masked decoder.

To secure the complete decryption function, we propose to apply the (normal) decoder to the shifted

polynomial xi+jc2(x)−xi+js(x)c1(x), meaning that c2(x) should be shifted separately. The plaintext

can then be obtained by applying the inverse shift to the decoded polynomial. The minus sign that

comes with the anti-cyclic shift does not change the value of the decoded coefficient, because ∀a ∈ Z/qZ
it holds that Decode(a) = Decode(−a). The decryption procedure for a ciphertext (c1, c2) can then

be described as in Algorithm 19.

Algorithm 19 RLWE decryption using the shifting countermeasure [106]

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)

2: i, j
$←− {0, . . . , n}

3: s← φiNTT(xi)� s
4: c1 ← φjNTT(xj)� c1

5: c2 ← φi+jNTT(xi+j)� c2

6: d← c2 − c1s
7: for 0 ≤ k < n do
8: dk+i+j ← Decode(dk)

6.3.3 Blinding

The blinding countermeasure is implemented by generating two random indices 0 ≤ i, j < n and

multiplying c1 and s by ωi and ωj respectively, as described in Algorithm 15 from the state of the art.

95

6.3.4 Shifting and Blinding Combined

Both shifting and blinding involve multiplication by the powers of ω and φ. To shift the polynomial

s(x) by i < n positions, we compute φi · NTT(xi) � s(x). With almost no additional costs, this

operation can be combined with the blinding operation by simply modifying the exponents of ω. To

shift the polynomial by i positions and blind using ω−j for some j < n, we use:

ω−jφi ·NTT(xi)� s(x) = (φiω−j , φiωi−j , . . . , φiω(n−1)i−j)� s(x) (6.3)

Both s and c1 are shifted and blinded (see algorithm 20). The combined blinding factor has to

be removed before the decoding. The combination of the two countermeasures is therefore somewhat

more expensive than shifting alone. The decoding is performed in the shifted order.

Both shifting and blinding use two log(n)-bit randomization factors. As pointed out by [106], the

total amount of added noise entropy for shifting and blinding combined is 4 log(n) bits. For n = 256

this is equal to 32.

Algorithm 20 RLWE decryption using the shifting and blinding countermeasures.

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)

2: i, j, k, l
$←− {0, . . . , n}

3: s← ω−jφiNTT(xi)� s
4: c1 ← ω−lφkNTT(xk)� c1

5: c2 ← ωj+lφi+kNTT(xi+k)� c2

6: d← c2 − c1s
7: d← ω−(j+l)d
8: for 0 ≤ m < n do
9: dm+i+k ← Decode(dm)

6.4 New Protections

6.4.1 Shuffling

The point-wise multiplication s� c1 in the NTT domain consists of n independent modular multipli-

cations. The multiplications can be computed in any order. To compute

(s0, s1, . . . , sn−1)� (c0, c1, . . . , cn−1) = (s0c0, s1c1, . . . , sn−1cn−1) , (6.4)

instead of computing sici for i starting from 0 to n − 1, one could generate a random permutation

σ : {0, . . . , n − 1} → {0, . . . , n − 1} and compute sσ(i)cσ(i) for i from 0 to n − 1. The computations

do not change, but the moment at which each sici is computed, is randomized. This complicates the

analysis of the obtained power traces. The operations that can be shuffled in this manner are not

96

limited to the point-wise multiplication with c1 and subtraction of c2. The NTT consists of log2(n)

stages of n
2 butterfly operations each. The butterfly operations in a given stage are independent of

each other, and can thus also be computed in any order. The same holds for the coefficient-wise

decoding of d = c2 − sc1.

We consider two methods of shuffling the computations. The first of the two shuffling methods

proposed in this section consists of replacing loop counters by linear feedback shift registers (LFSR).

An LFSR is parametrized by an irreducible polynomial f ∈ F2[x] and its degree k. It computes

xia mod f for 0 ≤ i < 2k − 1 and some initial state a ∈ F2[x]/f . The computed values are exactly

all the 2k − 1 invertible elements of the finite field F2[x]/f . The order in which they are computed

is determined by the initial state a. Multiplication by x in F2[x]/f is very fast and can be computed

using only 1 shift and a XOR on bit positions depending on f . Our second shuffling method consists

of generating a random permutation using a permutation network in the style of [18].

Algorithm 21 RLWE decryption using the shuffling countermeasure.

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)
2: σ ← RandomPermutation()
3: d← σ(c2)− σ(c1)σ(s)
4: for 0 ≤ k < n do
5: dσ(k) ← Decode(dσ(k))

LFSR method

Let an LFSR be parametrized by some irreducible polynomial f of degree n
2 . We let k = log2(n)− 1

and consider the coefficients vectors of polynomials in F2[x]/f to be the binary representations of

integers ranging from 0 to n
2 −1. The LFSR thus generates a sequence of n

2 −1 integers that will serve

as indices for the loop counter in Algorithm 13. Instead of computing the i-th butterfly operation at

the i-th loop iteration, we compute the butterfly operation that is on the j-th position, where j is

the index corresponding to the i-th element generated by the LFSR. In other words, the normal loop

counter is replaced by an LFSR. The LFSR has only 2k − 1 outputs, whereas we need 2k for the n
2

butterfly operations. Therefore the first operation of each stage is not shuffled: it is always computed

in the first loop iteration of the stage.

To obtain a meaningful permutation, we use the PRNG to generate a new initial state a at the

start of each stage. Since a = 0 is not allowed as initial state, we set a = 1 as the default state in

the case that the PRNG outputs 0. The initial state is thus set to default state with probability 4
n .

All the other initial states appear with probability 2
n . This slight bias could be reduced by having the

PRNG generate multiple initial states and selecting a non-zero state.

97

The 2k− 1 possible initial states determine 2k− 1 unique sequences. The operations of a complete

log2(n) stage NTT can then be computed in (2k − 1)log2(n) different ways. For n = 256 and k = 7

this is more than 255. With the LFSR method applied to the pointwise operations outside the NTT

as well, the total number of random bits added is equal to 71. A single trace attack like [99] that

requires all of the log2(n) stages seems unlikely to succeed on an implementation using the LFSR

countermeasure as described.

We use an LFSR of degree k = log2(n) in a similar manner to shuffle the order of the n pointwise

multiplications outside the NTT.

Drawbacks to the LFSR loop counter include a limited permutation space, a slightly biased outcome

and the fact that the first element is not permuted.

Permutation Network Method

We propose to use a permutation network generator in the style of [18]. Their permutation generator

is designed for use in AES and is impractical for larger (N = 256) permutations. It is also biased.

We simplify their permutation network to obtain a permutation generator that can generate NN/2

permutations and that is uniform on its range. In the remainder of this section, the parameter N is

the size of the permutation, which is equal to n for the shuffling of the pointwise operations. To shuffle

the butterfly operations during the computation of the NTT, N is substituted by n
2 .

For b ∈ {0, 1}, let the operators Tb be defined by the mapping:

Tb : {0, . . . , N − 1} −→ {0, . . . , N − 1}

x 7−→
⌊x

2

⌋
+ b

N

2

Then T0 is a bitwise shift erasing the least significant bit (LSB), and T1 applies the same shift and

sets the MSB to 1.

The permutation network consists of k = log2(N) stages and takes as input (x0, . . . , xN−1) =

(0, . . . , N−1). During each stage, N2 random bits b1, . . . , bN/2 are generated and for all pairs (x2i, x2i+1)

the images Tbi(x2i) and Tb̄i(x2i+1) are computed. In other words, for each pair (x2i, x2i+1), one is sent

to position i, while the other is mapped to i+ N
2 . This is equivalent to writing one bit of the image of

x2i under the generated permutation and writing its complement to the image of x2i+1. The network

is shown for N = 8 in Figure 6.8. It is exactly the same as the computation scheme of the constant

geometry NTT, in which the butterfly operators are replaced by controlled swap operators.

For any integer 0 ≤ x < N the image of x under the generated permutation can be written as

Tb1 ◦ · · · ◦ Tbk(x) and is equal to the value corresponding to the binary representation (b1, . . . , bk)2.

The kN
2 control bits thus determine the image of each index under the generated permutation. By

uniqueness of binary representation it follows that any modification to any subset of the kN
2 control bits

98

Figure 6.8: Permutation network for N = 8. Each box is an instance of the operator shown in Figure
6.9.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 6.9: The swap operator is controlled by a random bit and swaps the inputs if this bit is equal
to 1.

x
y

b

k

1

k

99

would modify the generated permutation as well. The permutation generator is therefore an injective

map from {0, 1}Nk/2 into the set of all permutations ΣN . This means that the number of possible

configurations of the kN
2 control bits, which is equal to NN/2, is exactly the number of permutations

that can be generated by the network. The number of different permutations that can be obtained

is 21024 for the pointwise operations and 2256 for the NTT. Moreover, the output of the permutation

network is uniform on its range given uniformly random input.

Since the permutation space is much larger than the one we obtain with the LFSR, we will only

generate one {0, . . . , n2 −1} → {0, . . . , n2 −1} permutation for the NTT at the start of each decryption.

Each stage is then computed in the order defined by this permutation. We also compute only one

permutation of size n that will be used for all the pointwise operations during one decryption.

6.4.2 Randomization using Redundant Number Representation

In RSA and ECC, some exponent or scalar randomization countermeasures have been proposed against

SCAs (see for instance [34]). A secret exponent or scalar can be randomized without loss of information

by adding a random multiple of the group order to it. The corresponding power traces are thus

randomized, removing correlation between the side channel traces and the secret key. A similar

concept can be applied to RLWE.

We can add random multiples of the modulus q to the secret key coefficients without invalidating

the secret key. This is done at the start of each decryption (see Algorithm 22). The PRNG is used to

generate small r-bit random numbers for some integer parameter r. These numbers are multiplied by

q and then added to the input and to the secret key. We then continue using arithmetic operations

in Z/(2rq)Z instead of in Zq. The fact that for all a, b ∈ Z we have that ab mod (2rq) ≡ ab mod q,

ensures us that the result is in the correct equivalence class.

Algorithm 22 RLWE decryption using redundant secret key representation.

Input: Secret key s ∈ Rq, ciphertext (c1, c2) ∈ R2
q

Output: Plaintext d = (d0, . . . , dn−1) ∈ {0, 1}n
1: function Dec(c1, c2, s)
2: for 0 ≤ k < n do
3: i, j

$←− {0, . . . , 2r − 1}
4: sk ← sk + i · q
5: ck ← ck + j · q
6: d← c2 − c1s . compute in Z2rq

7: for 0 ≤ k < n do
8: dk ← Decoder(dk)

The redundancy is not removed for the decoding. Instead we modify the algorithm to decode the

coefficients directly from Z/(2rq)Z to {0, 1}. The new decoder (Figure 6.11) returns 0 if the input lies

in the union of sets
⋃2r

i=0

[−q
4 + iq, q4 + iq

)
and returns 1 if the input is in

⋃2r

i=0

[q
4 + iq, 3q

4 + iq
)
.

100

Figure 6.10: Architecture with our redundant representation countermeasure. Before the decryption,
small r-bit random multiples of q are added to the coefficients of c1 and s. The operations in the
decryption function are performed in Z/(2rq)Z.

Decrypt Redundant
Decoder

w+r

w+r+

+

RAM

Mul
r w+r

r

w

TR 2r
Mul

w

Figure 6.11: Specialized decoder for r = 1. To decode some d ∈ Z/2qZ, the ring is divided up in 8
intervals.

q/4

0

3q/4
q/2

0q

5q/4

6q/4

7q/4

1
0
1

101

At each execution of the algorithm, the multipliers, adders and decoder are handling different

inputs. The computations (and the corresponding traces) are thus randomized. A total of 256r

random bits are added to the operands.

Validation through Correlation Power Analysis Simulations.

We evaluate the robustness of our countermeasure based on a redundant representation by simulating

power attacks under assumptions favorable to the attacker. The polynomial multiplication in the

NTT domain consists of n independent multiplications in Z/qZ. They are of the form c · s mod q,

where s is a coefficient of the secret key and c is a coefficient of the input ciphertext. We simulate

correlation attacks on one modular multiplication of a known input coefficient c with an unknown

secret key coefficient s.

We assume that the attacker observes the modular multiplication c · s mod q for a number of

different (known) inputs c. For each modular multiplication she/he obtains the exact Hamming weight

(HW) of the result. The attacker computes the “predictions”: the HW of the value c · s mod q for all

subkey candidates s ∈ Zq and for all inputs c. She/he evaluates the correlation between the observed

HW and the predictions. For each subkey possibility s̃ ∈ Zq, the Pearson’s correlation coefficient

between the observed HW and the predictions is computed. Without countermeasures, the highest

correlation is obtained for the correct subkey guess.

The inputs are randomized by adding a multiple of q and used in computations in Z/(2rq)Z for

some redundancy parameter r. The impact of our countermeasure on the effectiveness of the power

analysis can be seen (for q = 7681) in Figure 6.12. Without redundancy (r = 0), the attacker observes

the exact HW of the value c·s mod q for different values of c. These HWs coincide with the predictions

for the correct subkey guess, resulting in a correlation coefficient of 1. For higher levels of redundancy,

the average of the correlation coefficient for the correct subkey guess decreases.

The right side of Figure 6.12 shows that the maximum correlation is obtained for incorrect subkey

guesses for all r ≥ 1. We refer to subkey guesses that yield to a higher correlation coefficient than

the correct subkey guess as false positives. The number of these false positives increases with the

redundancy level. For r = 8 and r = 9 there are on average around q
2 subkey guesses, for one

coefficient of the secret key, that yield to a higher correlation coefficient than the correct key guess.

Our countermeasure ensures that an exponential number of up to
(q

2

)n
guesses have to be tested to

recover the complete secret key.

6.5 Comparison of all Protections

FPGA implementation results for RLWE solutions with various countermeasures are presented in

Table 6.1. Results from [102] are reported, and we also re-implemented their solution on an Artix-

7 XC7A200 (denoted “A7”) to provide fair comparisons. We also implemented the blinding and

102

Figure 6.12: Mean correlation over 1000 simulations between the correct subkey guess and the observed
HW as a function of the number of traces (left) and the number of redundant bits per coefficient
(right). Right: average (1000 simulations of 100 traces each) of the maximum correlation over all
subkey guesses is shown in red and the number of subkey guesses with higher correlation than the
correct secret key in green.

0 20 40 60 80 100

number of simulated traces

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

e
la

ti
o
n
 c

o
e
ff

.

r = 0
r = 1

r = 2
r = 3

r = 4
r = 5

r = 6

0 1 2 3 4 5 6 7 8

redundant bits per coefficient

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

e
la

ti
o
n
 c

o
e
ff

.

correct subkey guess

max. over all guesses

0

500

1000

1500

2000

2500

3000

3500

4000

fa
ls

e
 p

o
si

ti
v
e
s

higher PCC than sk

shifting methods from [106] and our shuffling methods. To the best of our knowledge, these are the

first FPGA implementations for these countermeasures. Finally, the results for masking with our

new masked decoder and our redundant randomized countermeasures are reported. The amount of

randomness added for each countermeasure is specified in the second column of the table.

We cannot directly compare our re-implementation of the masking from [102] and their original

results on a Virtex-II XC2VP7 (denoted “V2”). However, it can be seen that the impact of masking

on the performance of their V2 implementation is very high compared to our A7 re-implementation.

The computation time for decryption is tripled. This is probably because the number of arithmetic

operations in Zq is doubled while no parallelism is used. Moreover, it seems that their masked decoder

is implemented sequentially. In our re-implementation of the masked decoder from [102], we use

parallelism to significantly reduce the performance penalty of their 16-step decoder. This increases

the area.

Our new masked decoder is relatively simple and requires a small area (about 20% reduction

compared to the re-implementation of the decoder from [102]), with almost the performance of the

unprotected implementation. Compared to the unprotected solution, we use extra DSP blocks and

BRAMs to compute the decryptions of the two shares in parallel.

The blinding implementation gives a slightly slower solution. Its area overhead is smaller than

for both masking techniques. However, we stress that this blinding countermeasure should be used in

combination with another countermeasure (as specified in [91]), since the blinding factor is removed

before the decoding step. The shifting implementation yields to similar overhead (although with lower

103

Table 6.1: FPGA results for RLWE with various countermeasures and (q, n) = (7681, 256). The source
column refers to the work in which the countermeasure was first proposed in LWE context. Timing
and area results are for the decryption only.

Counter- Entropy Src. Impl. FPGA Lat. Clk. Time Slice, LUT, DSP,
measure added (bits) (ns) (µ s) BRAM

None 0 - [102]
V2

2800 8.3 23.5 -, 1713, 1, -
Masking 3328 [102] [102] 7500 10 75.2 -, 2014, 1, -

None 0 -

th
is

w
o
rk

A7

2357 3.3 7.8 483, 1163, 2, 3
Blinding 16 [106] 2768 3.8 10.6 941, 2284, 3, 4
Shifting 16 [106] 3138 4.7 14.8 832, 2150, 3, 4

Shift + Blind 32 [106] 3183 4.6 14.7 1063, 2781, 3, 4
Masking 3328 [102] 2517 4.0 10.1 2187, 5500, 5, 6

Our Mask. 3328

th
is

w
o
rk

2510 4.0 10.1 1722, 4269, 5, 6
Permutation 1280 2521 4.5 11.4 3183, 7385, 2, 4
LFSR ctr. 71 2846 3.6 10.3 1069, 2861, 2, 3
r = 1 256 2272 3.7 8.5 629, 1599, 2, 3
r = 2 512 2273 3.6 8.2 611, 1664, 2, 3
r = 3 768 2333 3.8 8.9 807, 2067, 2, 3
r = 4 1024 2338 3.6 8.5 872, 2285, 2, 3
r = 5 1280 2352 3.8 9.0 990, 2677, 2, 6
r = 6 1536 2394 3.9 9.4 1254, 3466, 3, 6
r = 7 1792 2410 3.9 9.4 1713, 5017, 3, 6
r = 8 2048 2426 3.9 9.5 2544, 7837, 3, 6

frequency) and its combination with blinding seems to be worthwhile. The permutation network is

relatively costly in area. The LFSR loop counter is cheaper and slightly faster.

Finally, our redundant randomized countermeasure does not need additional DSPs or BRAMs to

be implemented for small redundancy parameters (r ≤ 4) and can therefore be used as a cheap way

to secure the decryption. For higher redundancy levels the multiplication cannot be computed within

a single 18× 25 bits multiplier, as the ones hardwired in the Artix DSP blocks. A few additional DSP

blocks and BRAMs are needed.

6.6 Generalizing the Countermeasures to Apply to MLWE/LWE

In this section we describe how to apply similar protections to MLWE and LWE based implementa-

tions. This work was not part of our IndoCrypto 2019 publication [117].

6.6.1 Masking

MLWE In the MLWE based decryption algorithm the secret key consists of a vector s ∈ Rkq for

k > 1. The secret key s is split up into two parts s = s′+ s′′ for some uniformly random s′
$←− Rkq . For

104

the vector multiplication between the input ciphertext c1 (which is a row vector) and the secret key

(column vector), we then have:

c1s = c1(s′ + s′′)

= c1s
′ + c1s

′′

Vector multiplication is distributive with respect to addition, so no particular modification to the

masking scheme is needed. The only difference with the RLWE case is that we now need to sample a

uniform random s′ from Rkq instead of Rq. The masked decoding algorithm for RLWE described in

this chapter, can also be used for the MLWE case.

LWE The distributivity with respect to addition also holds for the LWE case, where the operands

are matrices over Zq. The decoding however, is slightly different. The parameters for LWE for which

we implemented the cryptosystem in the previous chapter, include the encoding parameter B. This

parameter determines how many plaintext bits are encoded in each coefficient of the ciphertext part

c2. In RLWE and MLWE, we have B = 0 such that each coefficient encodes B + 1 = 1 plaintext

bit. In LWE, the plaintext coefficients are (B + 1)-bit postive integers that are, once encoded, added

to the ciphertext part c2. For B = 1, the plaintext coefficients are in {0, 1, 2, 3} and are encoded to

0,
⌊ q

4

⌋
,
⌊ q

2

⌋
and

⌊
3q
4

⌋
respectively. To decode some d ∈ Zq, it has to be determined in which of the four

intervals
{⌊

i·q
4

⌋
−
⌊ q

8

⌋
, . . . ,

⌊
i·q
4

⌋
+
⌊ q

8

⌋}
for 0 ≤ i < 4 it lies. The masked decoder therefore defines 8

regions R0, . . . , R7, where Ri =
{⌊

iq
8

⌋
, . . . ,

⌊
(i+1)q

8

⌋
− 1
}

for 0 ≤ i < 8. If d′ ∈ Ri and d′′ ∈ Rj then:⌊
iq

8

⌋
≤ d′ <

⌊
(i+ 1)q

8

⌋
(6.5)

and ⌊
jq

8

⌋
≤ d′′ <

⌊
(j + 1)q

8

⌋
, (6.6)

from which it follows that:⌊
iq

8

⌋
+

⌊
jq

8

⌋
≤ d′ + d′′ <

⌊
(i+ 1)q

8

⌋
+

⌊
(j + 1)q

8

⌋
. (6.7)

Then we have ⌊
(i+ j)q

8

⌋
− 1 < d′ + d′′ <

⌊
(i+ j + 2)q

8

⌋
. (6.8)

This means that, similar to the case where B = 0, we have a useful property:

105

Figure 6.13: Refreshing the shares when B = 1 can be done by computing the distances to the interval
bounds.

q/4

0

3q/4

q/2

1
02

3

q/83q/8

5q/8 7q/8

d'

d''

Property 6.6.1. If d′ ∈ Ri and d′′ ∈ Rj then (d′ + d′′) ∈ Ri+j mod 8 ∪Ri+j+1 mod 8.

The unions of sets R2i−1 mod 8∪R2i contains all the pre-images of i under Encode1(·). Let d′ ∈ Ri
and d′′ ∈ Rj for some i, j < 8. If i+ j ≡ 1 mod 2, then the property allows to decode the two shares

without computing their sum. Their sum lies in Ri+j mod 8 ∪ Ri+j+1 mod 8, which can be written as

R2l−1 mod 8 ∪R2l for some integer l.

The hard cases are given by the (d′, d′′) ∈ Ri×Rj for which i+ j ≡ 0 mod 2. They can be reduced

to easy cases by refreshing the shares using the methods described in sections 6.2 and 6.3.1. The

resharing method from [102], which adds and subtracts some random constants from the two shares,

can be applied without modification. The specific values presented by [102] however, are optimized

for the case where B = 0, and they might be less effective for B > 0. The decryption failure rate

would then increase. To avoid this, one could adapt our deterministic masked decoding algorithm in

the following manner. Let (d′, d′′) ∈ Ri×Rj be a hard case and compute the distances with the region

bounds: δ′ =
⌊

(i+1)q
8

⌋
− d′ and δ′′ = d′′−

⌊
jq
8

⌋
. If δ′ < δ′′, then d′ can be shifted to an adjacent region

by adding the resharing constant δ′. The other share d′′ is still in the same region after subtracting

δ′, because ⌊
jq

8

⌋
= d′′ − δ′′ < d′′ − δ′ < d′′ <

⌊
(j + 1)q

8

⌋
. (6.9)

The refreshed shares then lie in Ri+1 and Rj respectively. The property 6.6.1 can be used to verify

that this is indeed an easy case. The same precautions from section 6.3.1 with respect to comparison

operators have to be applied. Figure 6.13 shows an example of a hard case with shares in R0 and R4.

According to property 6.6.1 the sum of the shares lies in R4 ∪R5, which can decode to either 2 or 3.

Shifting one share to the adjacent region and re-applying property 6.6.1 shows that the sum of the

shares lies in R5 ∪R6, and therefore decodes to 3.

106

The general case B > 1 is treated in the same manner. The ring Zq is divided up into 2B+2 regions

Ri =
{⌊

iq
2B+2

⌋
, . . . ,

⌊
(i+1)q
2B+2

⌋
− 1
}

for 0 ≤ i < 2B+2. The indices i and j of regions Ri and Rj for

which d′ ∈ Ri and d′′ ∈ Rj are determined. The analysis from equations (6.5), (6.6), (6.7) and (6.8),

can be generalized by simply changing the denominator, the equations remain valid. A generalization

of property 6.6.1 can thus be formulated:

Property 6.6.2. If d′ ∈ Ri and d′′ ∈ Rj then (d′ + d′′) ∈ Ri+j mod 2B+2 ∪Ri+j+1 mod 2B+2.

If i + j ≡ 1 mod 2, then the shares form an easy case that can be resolved by applying the

generalized property. The hard cases can be solved by shifting one of the shares to an adjacent region

while keeping the other in the same region.

6.6.2 Blinding

MLWE The blinding countermeasure can be implemented in exactly the same way as for RLWE.

The blinding scalars a and b are multiplied by vectors s =
(
s(i)
)

1≤i≤k and c1

(
c(i)
)

1≤i≤k. The vector

multiplication computes:

k∑
i=1

bc(i) · as(i) = ab

k∑
i=1

c(i) · s(i). (6.10)

It follows that the blinding can be undone by multiplying the result by the inverse of ab. The pre-

computed powers of the roots of unity can be used as blinding factors to avoid the modular inversion.

Note that for a given vector, each polynomial is multiplied by the same blinding constant. It is not

possible to use different blinding factors for each polynomial, since equation (6.10) would not hold

and it would therefore be impossible do undo the blinding.

LWE Scalar multiplication with the secret key matrix and the ciphertext input matrix have similar

behaviour as in Rq. The blinding can thus be implemented in the same way as for RLWE. For LWE

however, there are no pre-computed powers of the roots of unity. Moreover, since q is a power of

2, not all elements are invertible. One would need to implement an algorithm for modular inver-

sion of the invertible elements in Zq. Another option would be to pre-compute a list of the form

{g, g2, g3, . . . , gord(g)} for some g ∈ Zq of high order.

6.6.3 Shifting

MLWE Using the associativity of scalar multipication in Rkq , the shifting countermeasure can be

applied to MLWE by multiplying s and c1 by random powers a, b of x:

k∑
i=1

xac(i) · xbs(i) = xa+b
k∑
i=1

c(i) · s(i). (6.11)

107

Algorithms 19 and 20 can be generalized to the MLWE case by applying the shift (in the NTT

domain) to each polynomial seperately.

LWE The structure of the polynomial ring Rq is required to shift the coefficients in the coefficient

vectors. Due to the absence of such a structure in the case of LWE, this countermeasure cannot be

applied.

6.6.4 Shuffling

MLWE Shuffling can be applied on multiple levels in the MLWE decryption algorithm. Permutation

of the order of the computation of the point-wise multiplications and the butterfly operations, can be

used without any modification as described in section 6.4.1. Additionally, it is possible to shuffle the

operations on a vector level. That is, the multiplication

(
c(1) . . . c(k)

)
·


s(1)

...

s(k)

 = c(1)s(1) + · · ·+ c(k)s(k) (6.12)

can be shuffled by computing the partial products c(i)s(i) in a random order. To do this, a random

permutation σ : {1, . . . , k} → {1, . . . , k} has to be generated. Since k is very small (k = 2, 3 or 4), this

can be done at minimal cost.

LWE The matrix multiplication of the input ciphertext matrix with the secret key matrix can be

shuffled in multiple ways. On a matrix level:

CS =


c00 c01 . . . c0(k−1)

c10 c11 . . . c1(k−1)
...

...
...

...

c(m−1)0 c(m−1)1 . . . c(m−1)(k−1)

×


s00 . . . s0(m−1)

s10 . . . s0(m−1)

s20 . . . s0(m−1)
...

...
...

s(k−1)0 . . . s0(m−1)



= C×


s00

s10

...

s(k−1)0

+ C×


s01

s11

...

s(k−1)1

+ . . .

The m partial matrix-vector products can be computed in any order. A permutation σ of size m

can be used to randomize this order.

108

Each of these partial matrix-vector product consists of m partial vector-vector multiplications:

C×


s0i

s1i

...

s(k−1)i

 =
(
c00 c01 . . . c0(k−1)

)
×


s0i

s1i

...

s(k−1)i

+ . . .

Another random permutation τ of size m allows to randomize the order of these m operations as

well. And each vector multiplication consists of k modular multiplications:

(
cj0 cj1 . . . cj(k−1)

)
×


s0i

s1i

...

s(k−1)i

 = cj0s0i + cj1s1i + cj2s2i + . . .

A third permutation ρ of size k may be generated to randomize these modular multiplications.

6.6.5 Redundant number representation

The countermeasure adds a random multiple of the modulus q to each coefficient of the secret key and

the input ciphertext. This countermeasure operates on the coefficient level only and is independent

of the ring/module structure, so that it can be applied directly to both LWE and MLWE decryption.

6.7 Conclusion and Discussion

In this chapter, we compared several countermeasures against SCAs for RLWE from [102], [106] and

proposed new ones. Our first proposed countermeasure is an adaptation of [102] with a new masked

decoder which is deterministic. Our second one uses a redundant representation to randomize polyno-

mial coefficients. We also implemented two different methods for shuffling. All the countermeasures

(from literature and our ones) have been implemented on FPGA to evaluate the overhead compared

to a common reference implementation on the same FPGA. Our new decoder uses over 20% less slices

and LUTs than the one from [102]. To the best of our knowledge, we also present the first FPGA

implementations for the blinding and shifting countermeasures from [106], and a combination of the

two. Finally, our protection based on redundancy at ring level provides a cheap randomization method

with an adjustable security/overhead trade-off. We described the modifications to be applied to the

countermeasures in order to apply to LWE and MLWE cryptosystems.

109

Chapter 7

Conclusion

Post-quantum cryptography is becoming increasingly important as the development of quantum com-

puters continues to advance. Its deployment must take place well before the existence of quantum

computers that are sufficiently large to break RSA and ECC instances. This has led to the NIST

post-quantum contest, an effort to select and standardize public-key encryption and digital signa-

ture algorithms that can resist against quantum attacks. Candidate cryptosystems based on lattice

problems, in particular LWE and its variants over structured lattices, are among the most promising

contenders. The standardized algorithms will need to be implemented in constraint environments or

with strict timing and cost requirements. Hardware acceleration using FPGAs may provide a prac-

tical solution. It is therefore imperative to evaluate the implementation cost of the post-quantum

algorithms, and to analyse how the implementations can be protected against side-channel attacks.

In this thesis, we aimed to provide a fair and objective comparison between different cryptographic

algorithms contending in the NIST post-quantum contest. We used HLS tools to evaluate the perfor-

mance and implementation cost of the algorithms. We improved the performance of HLS generated

implementations for finite field arithmetic, crucial in PKC. This was achieved by replacing the basic

modular reduction operator in the C source code by customized algorithms, exploiting the fact that

the modulus is constant. We also showed how to change the coding style of the C source code in order

to obtain more performant implementations from HLS.

We implemented various lattice based cryptosystems on FPGA, and presented the first FPGA im-

plementation of MLWE based public-key encryption. We compared the performances of LWE, RLWE

and MLWE based algorithms. Our implementations have in many cases better computation time/area

trade-offs than the ones from the state of the art. Our CCA secure MLWE implementation for in-

stance, uses than 28 times fewer DSPs than the MLWR implementation from [44] while computing the

encryption algorithm faster. This may have implications in the NIST post-quantum contest, where

computation time and area utilization are important factors besides theoretical security. The MLWE

based KEM Kyber seems to be more efficient in hardware than the MLWR based Saber. We suspect

that the major cause of this difference is the fast polynomial multiplication using the NTT, which can

110

be used in MLWE based algorithms but not in MLWR. We also evaluated the efficiency of the use

of parallelism in the implementation of LWE, RLWE and MLWE. We found that LWE, while easily

parallelizable even for higher degrees of parallelism, still can not compete with the performances of

the NTT based algorithms in RLWE and MLWE. It will be difficult to see a practical application of

LWE in constraint environments. While its theoretical security inspires much confidence, its compu-

tation time is significantly higher than its counterparts computing over structured lattices. Another

interesting result from our hardware exploration is the difference in throughput between our paral-

lelized implementations of RLWE and MLWE. The structure of small vectors and matrices in MLWE

facilitates the parallelization of operations when implementing on FPGA. Polynomial arithmetic can

be computed independently for each of the vector indices, which means that these computations can

be performed concurrently. For a vector containing k polynomials, the NTT of all polynomials can

be computed simultaneously on k different DSP blocks. The computation time of such a parallelized

MLWE implementation then approaches the computation time of RLWE for much smaller (n = 256

instead of 1024) parameters. The absence of such a structure in RLWE limits its potential for par-

allelization. MLWE based algorithms, such as Kyber, thus have an advantage over RLWE based

algorithms such as NewHope.

We improved the robustness of our implementation of RLWE against side-channel attacks. To this

end, we implemented SCA countermeasures from the state of the art, such as masking, blinding and

shifting, and proposed various improvements, as well as new countermeasures at arithmetic level using

redundant number representation. Relatively cheap countermeasures, such as shifting and blinding

can be implemented by adding just one DSP block to compute the additional multiplications. We

proposed a combination of shifting and blinding, and showed that this increases the security at limited

cost in terms of area. The masking scheme from [102] made use of a non-deterministic decoder which

resulted in a higher computation time and a higher probability of decryption failure. We proposed

a deterministic decoder and implemented our solution on FPGA. Compared to a re-implementation

of the original masking scheme, the proposed algorithm is implemented on a reduced area. We also

proposed new countermeasures. The independence between certain operations in the decryption al-

gorithm, allows to randomize the computation order of these operations. We proposed two different

methods to randomize the computation order. The first one uses an LFSR in order to generate ran-

dom permutations in a cheap manner. Our second proposition uses a permutation network to sample

random permutations from a much larger subset of Σn. This is a more secure countermeasure, as it in-

troduces more entropy to the randomization. We found that the permutation network countermeasure

has a higher resource utilization when implemented on FPGA, compared to our LFSR countermeasure.

The computation time however, is only 10 percent higher, resulting in an interesting trade-off between

implementation cost and security againt side-channel attacks. We found similar trade-offs for our new

countermeasure using redundant number representations. We proposed to represent coefficients in Zq
by randomly picked elements in the same equivalence class. By randomizing the representation of the

111

secret key, side-channel attacks can be thwarted. Adding a higher degree of redundancy increases the

security, but comes at a higher cost. Arithmetic for larger integers has to be implemented, thereby

increasing the utilization of LUTs, DSPs and BRAMs.

112

Résumé en français

Introduction

La cryptographie permet, entre autres, l’échange sécurisé d’information. Supposons que deux person-

nes, Alice et Bob, souhaitent s’échanger une information confidentielle. L’échange se fait à distance,

donc le contenu est susceptible d’être intercepté par une personne tierce, Ève, qui n’est pas autorisée à

avoir accès au contenu. L’échange doit donc se faire d’une façon sécurisée, le contenu doit être protégé.

Le chiffrement est un outil cryptographique qui permet de cacher le contenu (le message) dans un

texte chiffré. Il nécessite une clé, permettant de chiffrer et déchiffrer des messages. Un texte chiffré ne

peut être déchiffré qu’avec cette clé seule. Uniquement les personnes disposant de cette clé peuvent

donc lire le contenu du message chiffré. De telles constructions relèvent de la cryptographie symétrique.

Des algorithmes tels que AES et DES peuvent être utilisés pour réaliser des échanges confidentiels, à

la condition qu’Alice et Bob disposent de la même clé. Le partage sécurisé d’une clé, un échange de

clés, fait l’objet de la cryptographie asymétrique. La difficulté d’un échange de clés vient du fait que

le contenu de cet échange risque également d’être intercepté par des personnes tierces. Le chiffrement

à clé publique se sert de fonctions mathématiques à sens unique à trappe afin de surmonter cette

difficulté. Un schéma de chiffrement à clé publique consiste en trois fonctions: la génération de clés

G, le chiffrement E et le déchiffrement D. La fonction G retourne un couple (k,K) d’une clé secrète

k et une clé publique K. Les fonctions doivent satisfaire la propriété de correction, c’est-à-dire, pour

tout message m:

D(k, E(K,m)) = m.

Autrement dit, le déchiffrement d’un texte chiffré est égal au message en clair. En outre, étant

donnée seulement la clé publiqueK et un texte chiffré c = E(K,m), il doit être pratiquement impossible

de calculer m. Seule la clé secrète permet de retrouver le message clair. Le premier exemple d’un

schéma de chiffrement à clé publique est le protocole RSA [104]. Dans RSA, la fonction G génère

deux grands nombres premiers p et q et un nombre K aléatoire et inversible modulo (p − 1)(q − 1),

et retourne la clé publique K et la clé secrète k = K−1 mod (p − 1)(q − 1). Le produit des nombres

premiers N = pq fait également partie de la clé publique. La fonction E prend en entrée un message en

113

clair m et calcule E(m,K) = mK mod N . Pour déchiffrer un texte chiffré c = mK mod N , on calcule

D(c, k) = ck mod N = m. Un attaquant qui ne dispose pas de la clé secrète, n’a pas d’autre choix

que de la calculer à partir de la clé publique, afin de déchiffrer un message. Pour cela, il a besoin de

p et q, qu’il pourrait obtenir en factorisant le paramètre public N = pq. Le problème mathématique

qui consiste à factoriser des grands nombres composés de nombres premiers, ne peut pas être résolu

en temps polynomial par des algorithmes classiques. Pour des p et q suffisamment grands, il est

donc quasiment impossible de trouver la clé secrète à partir de la clé publique. De même, il est

impossible en pratique de trouver le message clair à partir du message chiffré sans connâıtre la clé

secrète. Le cryptosystème RSA permet donc de réaliser des échanges de clé sécurisés. Dans le cas

de la cryptographie sur des courbes elliptiques (ECC) c’est le problème du logarithme discret sur les

courbes elliptiques qui garantit la sécurité théorique du cryptosystème.

Néanmoins, l’algorithme quantique de Shor [108] permet de résoudre le problème de factorisation en

temps polynomial, en utilisant un ordinateur quantique. En conséquence, RSA peut être cassé par des

attaquants disposant d’un ordinateur quantique. Il se trouve que d’autres protocoles d’échange de clé,

tels que Diffie-Helmann (sur certains groupes), peuvent également être attaqué en utilisant l’algorithme

de Shor. L’arrivée éventuelle d’un ordinateur quantique suffisamment performant, représenterait donc

une menace pour la confidentialité des échanges numériques. La solution consiste à développer des

protocoles d’échange de clé robustes face aux attaques quantiques. C’est pour cette raison qu’en

2016 le NIST a initié une compétition [36] pour des algorithmes cryptographiques post-quantiques, qui

a pour objectif de sélectionner les meilleures solutions. La sécurité de ces nouveaux protocoles doit

reposer sur la difficulté de problèmes mathématiques qui ne peuvent pas être résolus facilement par des

algorithmes quantiques. Parmi les exemples, on peut citer des problèmes sur les réseaux euclidéens, tel

que LWE [100]. Ce problème consiste à trouver un point du réseau s, étant donné une base aléatoire

A du réseau et une approximation du point As (voir la figure 7.1).

Les cryptosystèmes basés sur LWE, tel que FrodoKEM [28], ont un temps de calcul très élevé,

car le chiffrement utilise une multiplication matricielle de grande dimension. Afin de reduire le temps

de calcul, les variantes RLWE et MLWE du problème LWE ont été introduites par [81] et [75] re-

spectivement. Dans ces variantes, les réseaux sont munis d’une structure algébrique. Cette structure

algébrique permet de remplacer la multiplication matricielle par une multiplication polynomiale, qui

peut être calculée à l’aide d’algorithmes performants, tel que la NTT. NewHope [4], basé sur RLWE,

et Kyber [27], basé sur MLWE, sont deux cryptosystèmes présents dans la compétition du NIST.

En pratique, les applications qui requièrent l’utilisation d’algorithmes cryptographiques, ont des

contraintes en termes de temps de calcul. L’accélération matérielle consiste à implanter en matériel des

opérateurs dédiés, dans le but de reduire leur temps de calcul. La sécurité des implantations dépend

aussi de leur vulnérabilité face aux attaques par canaux auxiliaires [71]. Ce type attaque utilise de

l’information telle que le temps de calcul ou encore la consommation d’énergie, pour en déduire les

valeurs des secrets manipulés dans l’algorithme implanté. La clé secrète, utilisée pendant le calcul

114

5 4 3 2 1 0 1 2 3 4 5 6

4

3

2

1

0

1

2

3

4

5

6

a0

a1

b

As

Figure 7.1: Le problème LWE sur un réseau éuclidéen d’une dimension 2 sur Z12: étant donnée une
base aléatoire A = (a0,a1) et un point b proche du réseau, trouver s tel que As soit proche de b.

de la fonction de déchiffrement, peut ainsi être découverte par un attaquant ayant accès au dispositif

matériel.

Dans cette thèse, nous nous intéressons à l’accélération matérielle de schémas de chiffrement à clé

publique basés sur des réseaux euclidéens. Nous implantons sur FPGA des cryptosystèmes basés sur

LWE, RLWE et MLWE afin de comparer leurs performances. Nous étudions la sécurité matérielle

des implantations et proposons des protections contre les attaques par canaux auxiliaires. Nous

analysons les coûts et les performances de toutes nos implantations, dans le but de trouver les meilleurs

compromis entre le niveau de sécurité, la performance et la surface.

Contributions

Durant cette thèse, nous avons utilisé l’outil de synthèse de haut niveau Vivado HLS de Xilinx

pour implanter des algorithmes cryptographiques sur FPGA. Ces algorithmes nécessitent des cal-

culs arithmétiques dans des corps finis du type Fp pour un nombre premier p. Le calcul efficace

de la réduction modulaire n’est que minimalement supporté par l’outil de synthèse. L’opérateur de

réduction modulaire, représenté par le symbole % en language C, n’exploite pas le fait qu’un modulo

soit fixe, ou qu’il ait une structure particulière, tels que les moduli avec une décomposition binaire

très creuse. Nous avons donc amélioré la performance de l’implantation d’arithmétique modulaire en

tirant profit de ces propriétés. Ces travaux ont fait l’objet d’une publication à la conférence franco-

phone COMPAS [48]. Dans cet article, nous avons démontré que le temps de calcul et la surface des

implantations de l’arithmétique modulaire peuvent être réduits en utilisant des algorithmes tels que

Barrett [17], Montgomery [88] ou encore des algorithmes spécifiques dans le style de Solinas [109] pour

des moduli creux. Nous avons aussi étudié l’impact du niveau de parallélisme, des directives et du

115

style de code sur la performance des implantations obtenues avec l’outil HLS.

La deuxième contribution de cette thèse est l’optimisation et la comparaison d’implantations sur

FPGA de cryptosystèmes basés sur LWE, RLWE et MLWE, sécurisés contre les attaques à clair

connu (CPA) et les attaques à chiffré choisi (CCA). Nos implantations ont, dans la plupart des cas,

des meilleurs compromis entre le temps de calcul et la surface que celles de l’état de l’art. Nous avons

présenté la première implantation sur FPGA du cryptosystème basé sur MLWE. Cette implantation

utilise 28 fois moins de DSP blocs que l’implantation de MLWR par [44], tout en ayant un temps

de calcul plus faible. Il semble donc que la NTT, utilisée dans MLWE mais non pas dans MLWR,

soit le meilleur algorithme pour le calcul arithmétique dans les réseaux euclidéens avec une structure

algébrique favorable à l’utilisation de la NTT. Nous avons aussi étudié l’efficacité du parallélisme dans

les implantations LWE, RLWE et MLWE (voir la figure 7.2). L’implantation LWE peut facilement

être parallélisée, car l’opération principale du chiffrement LWE est une multiplication matricielle. Les

multiplications de vecteurs qui constituent la multiplication matricielle, sont indépendantes les unes des

autres, et peuvent donc être calculées en même temps. Cependant, même les implantations LWE qui

utilisent beaucoup de parallélisme sont toujours moins rapide que les implantations RLWE/MLWE.

Le chiffrement basé sur LWE ne convient donc pas pour les applications où il y a des contraintes

strictes sur le temps de calcul. En comparant RLWE et MLWE, nous avons trouvé que la structure

de MLWE permet un parallélisme plus efficace par rapport à RLWE. Les calculs dans le chiffrement

basé sur MLWE se font sur des vecteurs de petite taille contenant des polynômes. Comme c’était le

cas pour LWE, les opérations au niveau vecteur sont indépendantes les unes des autres, et peuvent

donc être calculées simultanément. Au contraire, dans le chiffrement basé sur RLWE, le calcul le plus

important en terme de complexité est la transformation NTT. Cette transformation, elle, est difficile

à paralléliser à cause du schéma d’accès à la mémoire, qui est différent pour chacune des log2(n)

étapes de la NTT. Nous concluons donc, que MLWE est mieux adapté aux applications où le temps

de calcul est prioritaire. Cette contribution fait l’objet d’une soumission au journal IEEE Transactions

on Computers.

La troisième contribution a été présentée à la conférence internationale IndoCrypt en 2019 [117].

Dans ce travail, nous avons amélioré la sécurité de nos implantations face aux attaques par canaux

auxiliaires. Pour cela, nous avons implanté plusieurs contremesures de l’état de l’art, telles que le

masquage [102] et le blinding et shifting [106]. Le masquage consiste à générer un polynôme aléatoire

s′ pour masquer la clé secrète s. On obtient ainsi deux polynômes aléatoires s′ et s′′ = s − s′ dont

la somme est égale à la clé secrète. L’algorithme de déchiffrement est alors utilisé deux fois: une

fois avec s′ comme clé secrète et après avec s′′. La dernière étape de l’algorithme de masquage de

[102] consiste en un décodage probabiliste qui combine les deux résultats afin d’obtenir le message en

clair. Nous avons amélioré cette étape de l’algorithme en proposant un algorithme déterministe, qui

est plus performant. L’implantation des deux solutions montre que notre amélioration utilise moins

de surface. Nos implantations du blinding et du shifting sont moins coûteuses en termes de surface

116

Figure 7.2: Nombre de chiffrements par seconde en fonction du nombre de blocs DSP utilisés.

0 5 10 15 20 25
DSP

0

5

10

15

20

25

30

35

40

45
O

p
s/

s
×

1
00

0

MLWE-512
MLWE-768
MLWE-1024
RLWE-1024
LWE-640
LWE-976
LWE-1344

que le masquage. Nous avons proposé une contremesure qui combine le blinding et le shifting, dont

l’implantation est aussi performante que celle de shifting, tout en apportant plus d’aléa et donc plus de

sécurité. Le shuffling est une contremesure qui a été suggérée par [99] pour contrer une attaque SPA.

Cette contremesure consiste à calculer les opérations dans un ordre aléatoire. Nous avons proposé deux

façons de réaliser le shuffling dans le contexte du déchiffrement RLWE. La première utilise un registre

à décalage à rétroaction linéaire (LFSR), qui remplace le compteur dans les boucles de multiplication

de vecteurs et dans les boucles à l’intérieur de la NTT. Cette proposition nécessite relativement peu de

bits aléatoires, et peut être implanté à bas coût, comme le montrent nos résultats d’implantation. La

seconde façon d’implanter le shuffling utilise un nouvel algorithme que nous avons proposé, qui permet

de générer des permutations aléatoires. La sortie de cet algorithme est uniforme sur un large sous-

ensemble de l’ensemble des permutations. Cette contremesure utilise jusqu’à trois fois plus de slices et

de LUTs que la solution LFSR. La dernière contremesure que nous avons proposée est basée sur une

représentation redondante des élements du corps fini Zq. Chacun de ses élements peut être représenté

par tous les membres de ses classes d’équivalence. En calculant avec l’arithmétique de l’anneau Z2rq

pour un entier r ≥ 0, chaque élement a 2r représentations différentes. Nous randomisons les calculs en

ajoutant des multiples aléatoires de q aux coefficients de la clé secrète, tout au début de l’algorithme de

déchiffrement. Nos simulations d’attaque montrent que cette contremesure arrive à réduire le taux de

réussite des attaques par corrélation. En plus, le choix du paramètre r permet une certaine flexibilité

: pour plus de robustesse face aux attaques, r peut être augmenté. Par contre, une telle augmentation

entrâıne un surcoût en terme de surface d’implantation. Selon l’application, une valeur convenable

117

de r peut être choisie en fonction des contraintes matérielles et de la vulnérabilité face aux attaques

SCA.

118

Bibliography

[1] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the 28th annual

ACM symposium on Theory of Computing, pages 99–108, 1996.

[2] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the shortest lattice

vector problem. In Proceedings of the 33rd annual ACM Symposium on Theory of Computing,

pages 601–610, 2001.

[3] S. Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson.

An efficient lattice-based signature scheme with provably secure instantiation. In Proceedings of

the 8th International Conference on Cryptology in Africa (AFRICACRYPT), pages 44–60, Fes,

Morocco, 2016. https://doi.org/10.1007/978-3-319-31517-1_3.

[4] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A New

Hope. In Proc. 25th USENIX Security Symposium, pages 327–343, 2016. https://www.usenix.

org/conference/usenixsecurity16/technical-sessions/presentation/alkim.

[5] Micha l Andrzejczak. The Low-Area FPGA Design for the Post-Quantum Cryptography Proposal

Round5. In Proc. Federated Conf. on Computer Science and Information Systems (FedCSIS),

pages 213–219. IEEE, 2019.

[6] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Löıc Bidoux, Olivier Blazy, Jean-

Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor,

Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, and Gilles Zémor.

BIKE: Bit Flipping Key Encapsulation, December 2017. https://hal.archives-ouvertes.

fr/hal-01671903.

[7] AC Atici, Lejla Batina, Benedikt Gierlichs, and Ingrid Verbauwhede. Power analysis on NTRU

implementations for RFIDs: First results. RFIDsec08 : Workshop on RFID Security, pages

1–11, 2008.

[8] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and J-P Seifert. Fault attacks

on RSA with CRT: Concrete results and practical countermeasures. In International Workshop

on Cryptographic Hardware and Embedded Systems (CHES), pages 260–275. Springer, 2002.

119

https://doi.org/10.1007/978-3-319-31517-1_3
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://hal.archives-ouvertes.fr/hal-01671903
https://hal.archives-ouvertes.fr/hal-01671903

[9] A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky. Horizontal side-channel

vulnerabilities of post-quantum key exchange protocols. In Proc. IEEE International Symposium

on Hardware Oriented Security and Trust (HOST), pages 81–88, May 2018. https://doi.org/

10.1109/HST.2018.8383894.

[10] Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali,

David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, et al. Supersingular isogeny key

encapsulation. Submission to the NIST Post-Quantum Standardization project, 2017.

[11] H. Baan, S. Bhattacharya, S. R. Fluhrer, Ó. Garćıa-Morchón, T. Laarhoven, R. Rietman, M.J.O.

Saarinen, L. Tolhuizen, and Zhenfei Zhang. Round5: Compact and fast post-quantum public-

key encryption. In Proceedings of 10th International Conference on Post-Quantum Cryptography

(PQCrypto), pages 83–102, 2019. https://doi.org/10.1007/978-3-030-25510-7_5.

[12] László Babai. On Lovász’lattice reduction and the nearest lattice point problem. Combinatorica,

6(1):1–13, 1986.

[13] Daniel V Bailey, Daniel Coffin, Adam Elbirt, Joseph H Silverman, and Adam D Woodbury. Ntru

in constrained devices. In International Workshop on Cryptographic Hardware and Embedded

Systems, pages 262–272. Springer, 2001.

[14] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In

Advances in Cryptology - EUROCRYPT 2012 - Proceedings of 31st Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,

2012. Proceedings, pages 719–737. 2012. https://doi.org/10.1007/978-3-642-29011-4_42.

[15] Elaine Barker. Recommendation for key management: Part 1 – general. NIST Special Publica-

tion 800-57 Part 1 Revision 5, May 2020. https://doi.org/10.6028/NIST.SP.800-57pt1r5.

[16] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis. Recommenda-

tion for pair-wise key-establishment schemes using discrete logarithm cryptography. NIST Spe-

cial Publication 800-56A Revision 3, 2018. https://doi.org/10.6028/NIST.SP.800-56Ar3.

[17] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on

a standard digital signal processor. In Proceedings of Conference on the Theory and Application

of Cryptographic Techniques, pages 311–323. Springer, 1986.

[18] A.G. Bayrak, N. Velickovic, P. Ienne, and W. Burleson. An architecture-independent instruction

shuffler to protect against side-channel attacks. ACM Trans. Archit. Code Optim., 8(4):20:1–

20:19, January 2012.

120

https://doi.org/10.1109/HST.2018.8383894
https://doi.org/10.1109/HST.2018.8383894
https://doi.org/10.1007/978-3-030-25510-7_5
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-56Ar3

[19] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor

searching with applications to lattice sieving. In Proceedings of the 27th annual ACM-SIAM

symposium on Discrete algorithms, pages 10–24, 2016.

[20] Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki, Ruben Nieder-

hagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, et al. Classic

McEliece: conservative code-based cryptography. Submission to the NIST post quantum stan-

dardization process, 2017.

[21] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal.

NTRU prime: reducing attack surface at low cost. In Proceedings of International Conference

on Selected Areas in Cryptography, pages 235–260. Springer, 2017.

[22] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT benchmarking of crypto-

graphic systems. https://bench.cr.yp.to, accessed 16 April 2020.

[23] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The keccak ref-

erence. Submission to NIST SHA-3 competition, 2011. https://keccak.team/files/

Keccak-reference-3.0.pdf.

[24] N. Bindel, J. Buchmann, and J. Kramer. Lattice-based signature schemes and their sensitivity

to fault attacks. In Proceedings of Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), volume 00, pages 63–77, Aug. 2016.

[25] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,

and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[26] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of checking cryp-

tographic protocols for faults. In Proceedings of International Conference on the Theory and

Applications of Cryptographic Techniques, pages 37–51. Springer, 1997.

[27] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler,

and D. Stehlé. CRYSTALS - Kyber: A CCA-secure module-lattice-based KEM. In Proc. IEEE

European Symposium on Security and Privacy (EuroS&P), pages 353–367, April 2018.

[28] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,

Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-

secure key exchange from LWE. In Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security, pages 1006–1018, October 2016. https://doi.org/10.1145/

2976749.2978425.

121

https://bench.cr.yp.to
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1145/2976749.2978425

[29] Joppe W Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn Stam. As-

sessing the feasibility of single trace power analysis of Frodo. In Proceedings of International

Conference on Selected Areas in Cryptography, pages 216–234. Springer, 2018.

[30] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leak-

age model. In Proceedings of International workshop on cryptographic hardware and embedded

systems (CHES), pages 16–29. Springer, 2004.

[31] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic. Field-

Programmable Gate Arrays. Kluwer Academic Publishers, USA, 1992.

[32] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, gauss, and reload - A cache

attack on the BLISS lattice-based signature scheme. In Proc. 18th International Conference on

Cryptographic Hardware and Embedded Systems (CHES), pages 323–345, August 2016.

[33] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deterministic lattice

signatures. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES),

pages 21–43, 2018.

[34] T. Chabrier and A. Tisserand. On-the-fly multi-base recoding for ECC scalar multiplication

without pre-computations. In Proc. 21st Symposium on Computer Arithmetic (ARITH), pages

219–228. IEEE Computer Society, April 2013.

[35] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In Proceedings of Inter-

national Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages 13–28.

Springer, 2002.

[36] L. Chen, S. Jordan, Yi-Kai Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone. Report

on post-quantum cryptography. Technical report, NIST, 2016. http://dx.doi.org/10.6028/

NIST.IR.8105.

[37] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security estimates. In Proceedings of

International Conference on the Theory and Application of Cryptology and Information Security,

pages 1–20. Springer, 2011.

[38] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and Vincent Verneuil.

Horizontal correlation analysis on exponentiation. In Proceedings of International Conference

on Information and Communications Security, pages 46–61. Springer, 2010.

[39] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen,

and Frederik Vercauteren. Handbook of elliptic and hyperelliptic curve cryptography. CRC press,

2005.

122

http://dx.doi.org/10.6028/NIST.IR.8105
http://dx.doi.org/10.6028/NIST.IR.8105

[40] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier

series. Mathematics of Computation, 19(90):297–301, 1965.

[41] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryp-

tosystems. In International workshop on cryptographic hardware and embedded systems, pages

292–302. Springer, 1999.

[42] Philippe Coussy and Adam Morawiec. High-level synthesis: from algorithm to digital circuit.

Springer Science & Business Media, 2008.

[43] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class relations and

application to ideal-SVP. In Proceedings of International Conference on the Theory and Appli-

cations of Cryptographic Techniques, pages 324–348. Springer, 2017.

[44] Viet B Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj. Implementing and Bench-

marking Three Lattice-Based Post-Quantum Cryptography Algorithms Using Software/Hard-

ware Codesign. In Proc. Int. Conf. on Field-Programmable Technology (ICFPT), pages 206–214.

IEEE, 2019.

[45] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren. Saber: Module-LWR based key

exchange, CPA-secure encryption and CCA-secure KEM. In Proc. 10th International Conference

Progress in Cryptology in Africa (AFRICACRYPT), pages 282–305, Marrakesh, Morocco, May

2018.

[46] Christophe De Cannière. Trivium: A stream cipher construction inspired by block cipher design

principles. In Proc. Int. Conf. on Information Security, pages 171–186. Springer, 2006.

[47] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, 1976.

[48] Libey Djath, Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. Comparaison d’algorithmes de

réduction modulaire en HLS sur FPGA. Conférence d’informatique en Parallélisme, Architecture

et Système (Compas), 2019.

[49] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal gaus-

sians. In Proc. 33rd Annual Cryptology Conference CRYPTO, pages 40–56, Santa Barbara, CA,

USA, August 2013. https://doi.org/10.1007/978-3-642-40041-4_3.

[50] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.

CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Transactions on Cryp-

tographic Hardware and Embedded Systems, 2018(1):238–268, 2018.

123

https://doi.org/10.1007/978-3-642-40041-4_3

[51] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren,

and Ingrid Verbauwhede. Decryption failure attacks on IND-CCA secure lattice-based schemes.

In IACR International Workshop on Public Key Cryptography, pages 565–598. Springer, 2019.

[52] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. The impact of error depen-

dencies on ring/mod-LWE/LWR based schemes. In International Conference on Post-Quantum

Cryptography, pages 103–115. Springer, 2019.

[53] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi. Side-channel attacks on BLISS lattice-

based signatures: Exploiting branch tracing against strongswan and electromagnetic emanations

in microcontrollers. In Proc. ACM SIGSAC Conference on Computer and Communications Secu-

rity (CCS), pages 1857–1874, November 2017. https://doi.org/10.1145/3133956.3134028.

[54] Thomas Espitau, Pierre-Alain Fouque, Benoit Gerard, and Mehdi Tibouchi. Loop-abort faults on

lattice-based signature schemes and key exchange protocols. IEEE Transactions on Computers,

67(11):1535–1549, 2018.

[55] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of short length in a

lattice, including a complexity analysis. Mathematics of Computation, 44(170):463–471, 1985.

[56] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric en-

cryption schemes. In Annual International Cryptology Conference, pages 537–554. Springer,

1999.

[57] Nicolas Gama, Phong Q Nguyen, and Oded Regev. Lattice enumeration using extreme pruning.

In Proceedings of Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 257–278. Springer, 2010.

[58] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve cryptography.

Springer Science & Business Media, 2006.

[59] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-based public key cryptosys-

tem. In Proceedings of International Algorithmic Number Theory Symposium, pages 267–288.

Springer, 1998.

[60] E. Homsirikamol and K. Gaj. Toward a new HLS-based methodology for FPGA benchmark-

ing of candidates in cryptographic competitions: The CAESAR contest case study. In Proc.

International Conference on Field Programmable Technology (ICFPT), pages 120–127, 2017.

[61] Ekawat Homsirikamol and Kris Gaj. Can high-level synthesis compete against a hand-written

code in the cryptographic domain? a case study. In Proceedings of International Conference on

ReConFigurable Computing and FPGAs (ReConFig14), pages 1–8. IEEE, 2014.

124

https://doi.org/10.1145/3133956.3134028

[62] Ekawat Homsirikamol and Kris Gaj. Hardware benchmarking of cryptographic algorithms us-

ing high-level synthesis tools: The SHA-3 contest case study. In Proceedings of International

Symposium on Applied Reconfigurable Computing, pages 217–228. Springer, 2015.

[63] J. Howe, C. Moore, M. O’Neill, F. Regazzoni, T. Güneysu, and K. Beeden. Lattice-based

encryption over standard lattices in hardware. In Proceedings of 53nd ACM/EDAC/IEEE Design

Automation Conference (DAC), pages 1–6, 2016.

[64] James Howe, Marco Martinoli, Elisabeth Oswald, and Francesco Regazzoni. Optimised lattice-

based key encapsulation in hardware. Second NIST Post-Quantum Cryptography Standardiza-

tion Conference, August 2019.

[65] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. Standard lattice-based key encap-

sulation on embedded devices. IACR Transactions on Cryptographic Hardware and Embedded

Systems, 2018(3):372–393, aug 2018. https://tches.iacr.org/index.php/TCHES/article/

view/7279.

[66] Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on NTRU prime. IACR

Transactions on Cryptographic Hardware and Embedded Systems (TCHES), pages 123–151, 2020.

[67] Marc Joye, Arjen K Lenstra, and Jean-Jacques Quisquater. Chinese remaindering based cryp-

tosystems in the presence of faults. Journal of cryptology, 12(4):241–245, 1999.

[68] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital numbers by

automatic computers. In Doklady Akademii Nauk, volume 145, pages 293–294. Russian Academy

of Sciences, 1962.

[69] Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid

Verbauwhede. Constant-time discrete gaussian sampling. IEEE Transactions on Computers,

67(11):1561–1571, 2018.

[70] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. Push-

ing the speed limit of constant-time discrete gaussian sampling. A case study on the falcon

signature scheme. In Proceedings of the 56th Annual Design Automation Conference, DAC, New

York, USA, 2019. ACM. https://doi.org/10.1145/3316781.3317887.

[71] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proc. 19th Annual International

Cryptology Conference (CRYPTO), pages 388–397, August 1999.

[72] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to differential

power analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011.

125

https://tches.iacr.org/index.php/TCHES/article/view/7279
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://doi.org/10.1145/3316781.3317887

[73] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems. In Proceedings of Annual International Cryptology Conference, pages 104–113. Springer,

1996.

[74] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng, Chen-Mou Cheng,

and Bo-Yin Yang. Post-quantum key exchange on FPGAs. IACR Cryptology ePrint Archive,

2017:690, 2017. http://eprint.iacr.org/2017/690.

[75] A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices. Designs,

Codes, and Cryptography, 75(3):565–599, 2015.

[76] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with

rational coefficients. Mathematische annalen, 261(ARTICLE):515–534, 1982.

[77] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill. Optimized schoolbook polynomial

multiplication for compact lattice-based cryptography on FPGA. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, pages 1–5, 2019.

[78] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, J. Großschädl, Howon Kim, and I. Verbauwhede.

Efficient ring-LWE encryption on 8-bit AVR processors. In Proc. 17th International Workshop

on Cryptographic Hardware and Embedded Systems (CHES), pages 663–682, September 2015.

[79] P. Longa and M. Naehrig. Speeding up the number theoretic transform for faster ideal lattice-

based cryptography. In Proc. 15th International Conference on Cryptology and Network Security

(CANS), pages 124–139, November 2016.

[80] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest proposal for

FFT hashing. In Proc. 15th International Workshop on Fast Software Encryption (FSE), pages

54–72, February 2008. https://doi.org/10.1007/978-3-540-71039-4_4.

[81] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.

In Proc. 29th Annual International Conference on the Theory and Applications of Cryptographic

Techniques (EUROCRYPT), pages 1–23. June 2010.

[82] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing the

secrets of smart cards, volume 31. Springer Science & Business Media, 2008.

[83] Grant Martin and Gary Smith. High-level synthesis: Past, present, and future. IEEE Design &

Test of Computers, 26(4):18–25, 2009.

[84] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of simple power analysis on

smartcards. In Proceedings of International Workshop on Cryptographic Hardware and Embedded

Systems, pages 78–92. Springer, 2000.

126

http://eprint.iacr.org/2017/690
https://doi.org/10.1007/978-3-540-71039-4_4

[85] Robert J McEliece. A public-key cryptosystem based on algebraic coding theory. The Deep

Space Network Progress Report, 42-44:114–116, 1978.

[86] Alfred J Menezes, Jonathan Katz, Paul C Van Oorschot, and Scott A Vanstone. Handbook of

applied cryptography. CRC press, 1996.

[87] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Sujoy Sinha Roy, and Ingrid

Verbauwhede. Compact domain-specific co-processor for accelerating module lattice-based key

encapsulation mechanism. IACR Cryptol. ePrint Arch., 2020:321, 2020. https://www.esat.

kuleuven.be/cosic/publications/article-3163.pdf.

[88] Peter L Montgomery. Modular multiplication without trial division. Mathematics of Computa-

tion, 44(170):519–521, 1985.

[89] Michele Mosca. Cybersecurity in an era with quantum computers: will we be ready? IEEE

Security & Privacy, 16(5):38–41, 2018.

[90] T. Oder and T. Güneysu. Implementing the NewHope-Simple key exchange on low-cost FPGAs.

In Proc. 5th International Conference on Cryptology and Information Security in Latin America

(LATINCRYPT), September 2017.

[91] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-secure and masked

ring-LWE implementation. IACR Transactions on Cryptographic Hardware and Embedded

Systems (TCHES), 2018(1):142–174, 2018. https://doi.org/10.13154/tches.v2018.i1.

142-174.

[92] M. C. Pease. An adaptation of the fast Fourier transform for parallel processing. J. ACM,

15(2):252–264, 1968.

[93] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To bliss-b or not to be: Attacking

strongswan’s implementation of post-quantum signatures. In Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security, pages 1843–1855, 2017.

[94] Peter Pessl and Robert Primas. More practical single-trace attacks on the number theoretic

transform. In Proceedings of International Conference on Cryptology and Information Security

in Latin America, pages 130–149. Springer, 2019.

[95] John M Pollard. The fast Fourier transform in a finite field. Mathematics of computation,

25(114):365–374, 1971.

[96] T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key encryption on re-

configurable hardware. In Proc. 20th International Conference on Selected Areas in Cryptography

(SAC), pages 68–85, August 2013.

127

https://www.esat.kuleuven.be/cosic/publications/article-3163.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3163.pdf
https://doi.org/10.13154/tches.v2018.i1.142-174
https://doi.org/10.13154/tches.v2018.i1.142-174

[97] T. Pöppelmann and T. Güneysu. Area optimization of lightweight lattice-based encryption on

reconfigurable hardware. In Proc. IEEE International Symposium on Circuits and Systemss

(ISCAS), pages 2796–2799, June 2014.

[98] T. Pöppelmann, T. Oder, and T. Güneysu. High-performance ideal lattice-based cryptography

on 8-bit ATxmega microcontrollers. In Proc. 4th International Conference on Cryptology and

Information Security in Latin America (LATINCRYPT), pages 346–365, August 2015.

[99] R. Primas, P. Pessl, and S. Mangard. Single-trace side-channel attacks on masked lattice-based

encryption. In Proc. 19th International Conference on Cryptographic Hardware and Embedded

Systems (CHES), pages 513–533, September 2017.

[100] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proc.

37th Annual ACM Symposium on Theory of Computing, pages 84–93, May 2005.

[101] O. Reparaz, S. Sinha Roy, R. de Clercq, F. Vercauteren, and I. Verbauwhede. Masking ring-

LWE. J. Cryptographic Engineering, 6(2):139–153, 2016. https://www.esat.kuleuven.be/

cosic/publications/article-2634.pdf.

[102] O. Reparaz, S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. A masked ring-LWE implemen-

tation. In Proc. 17th International Workshop on Cryptographic Hardware and Embedded Systems

(CHES), pages 683–702, September 2015. https://doi.org/10.1007/978-3-662-48324-4_34.

[103] Oscar Reparaz, Ruan Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.

Additively homomorphic ring-LWE masking. In Proceedings of the 7th International Workshop

on Post-Quantum Cryptography, PQCrypto, pages 233–244, Berlin, Heidelberg, 2016. Springer-

Verlag. https://www.esat.kuleuven.be/cosic/publications/article-2633.pdf.

[104] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[105] S. Sinha Roy, F. Vercauteren, N. Mentens, D. Donglong Chen, and I. Verbauwhede. Compact

Ring-LWE cryptoprocessor. In Proc. 16th International Workshop on Cryptographic Hardware

and Embedded Systems (CHES), pages 371–391, September 2014.

[106] M.-J. O. Saarinen. Arithmetic coding and blinding countermeasures for lattice signatures -

engineering a side-channel resistant post-quantum signature scheme with compact signatures. J.

Cryptographic Engineering, 8(1):71–84, 2018. https://doi.org/10.1007/s13389-017-0149-6.

[107] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical algorithms

and solving subset sum problems. Mathematical Programming, 66(1-3):181–199, 1994.

128

https://www.esat.kuleuven.be/cosic/publications/article-2634.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2634.pdf
https://doi.org/10.1007/978-3-662-48324-4_34
https://www.esat.kuleuven.be/cosic/publications/article-2633.pdf
https://doi.org/10.1007/s13389-017-0149-6

[108] P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM J. Sci. Statist. Comput., 26:1484, 1997.

[109] J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR-99-39, Center for Applied

Cryptographic Research, University of Waterloo, 1999.

[110] C. D. Walter. Montgomery’s multiplication technique: How to make it smaller and faster. In

Proc. First International Workshop on Cryptographic Hardware and Embedded Systems (CHES),

volume 1717 of LNCS, pages 80–93, Worcester, MA, USA, August 1999. Springer.

[111] An Wang, Xuexin Zheng, and Zongyue Wang. Power analysis attacks and countermeasures

on NTRU-based wireless body area networks. KSII Transactions on Internet & Information

Systems, 7(5), 2013.

[112] Xilinx. 7 Series DSP48E1 Slice (User Guide UG479, v1.10). 2018. https://www.xilinx.com/

support/documentation/user_guides/ug479_7Series_DSP48E1.pdf.

[113] Xilinx. High Level Synthesis (User Guide UG902, v2018.3). 2018.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/

ug902-vivado-high-level-synthesis.pdf.

[114] Xilinx. 7 Series FPGAs Memory Resources (User Guide UG473, v1.14). 2019.

https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_

Resources.pdf.

[115] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and Leibo Liu. Highly Efficient

Architecture of NewHope-NIST on FPGA using Low-Complexity NTT/INTT. IACR Trans. on

Cryptographic Hardware and Embedded Systems (TCHES), pages 49–72, 2020.

[116] Yuqing Zhang, Chenghua Wang, Dur E. Shahwar Kundi, Ayesha Khalid, Máire O’Neill, and

Weiqiang Liu. An efficient and parallel R-LWE cryptoprocessor. IEEE Transactions on Circuits

and Systems—II: Express Briefs, 67(5):886–890, 2020.

[117] Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. FPGA Implementation and Comparison of

Protections against SCAs for RLWE. In Proc. Int. Conf. on Cryptology in India (IndoCrypt),

December 2019. https://hal.archives-ouvertes.fr/hal-02309481/file/camera_ready.

pdf.

129

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://hal.archives-ouvertes.fr/hal-02309481/file/camera_ready.pdf
https://hal.archives-ouvertes.fr/hal-02309481/file/camera_ready.pdf

Titre : Accélérateurs matériels sécurisés pour la cryptographie post-quantique.

Mot clés : cryptographie à base de réseaux euclidiens, protections contre des attaques par
canaux auxiliaires, implantation matérielle HLS sur FPGA, LWE, RLWE, MLWE

Résumé : L’algorithme quantique de Shor
peut être utilisé pour résoudre le problème
de factorisation de grands entiers et le loga-
rithme discret dans certains groupes. La sé-
curité des protocoles cryptographiques à clé
publique les plus répandus dépend de l’hypo-
thèse que ces problèmes sont difficiles à ré-
soudre. La cryptographie post-quantique est
basée sur des problèmes mathématiques dif-
ficiles à résoudre même pour des ordina-
teurs quantiques, tels que Learning with Er-
rors (LWE) et ses variantes RLWE et MLWE.
Dans cette thèse, nous présentons et compa-
rons des implantations en HLS sur FPGA d’al-
gorithmes de chiffrement à clé publique ba-
sés sur LWE, RLWE et RLWE. Nous discu-

tons des compromis entre sécurité, temps de
calcul et coût en surface. Les implantations
sont parallélisées afin d’obtenir une accélé-
ration importante. Nous analysons la sécurité
matérielle de nos implantations, et proposons
des protections contre des attaques par ca-
naux auxiliares. Nous améliorons des contre-
mesures de l’état de l’art, telles que le mas-
quage, et nous proposons également de nou-
velles protections basées sur la représenta-
tion redondante des nombres et sur des per-
mutations aléatoires des opérations de calcul.
Toutes ces protections sont implantées et éva-
luées sur FPGA dans le but de comparer leurs
coûts et performances.

Title: Secure Hardware Accelerators for Post Quantum Cryptography.

Keywords: lattice based cryptography, protection against side-channel attacks, HLS hardware
implementation on FPGA, LWE, RLWE, MLWE

Abstract: Shor’s quantum algorithm can be
used to efficiently solve the integer factorisa-
tion problem and the discrete logarithm in cer-
tain groups. The security of the most com-
monly used public key cryptographic proto-
cols relies on the conjectured hardness of
exactly these mathematical problems. Post
quantum cryptography relies on mathemati-
cal problems that are computationally hard for
quantum computers, such as Learning with Er-
rors (LWE) and its variants RLWE and MLWE.
In this thesis, we present and compare FPGA
implementations using HLS of LWE, RLWE
and MLWE based public-key encryption algo-

rithms. We discuss various trade-offs between
security, computation time and hardware cost.
The implementations are parallelized in order
to obtain maximal speed-up. We also discuss
hardware security and propose countermea-
sures against side channel attacks. We con-
sider countermeasures from the state of the
art, such as masking, and propose improve-
ments to these algorithms. Moreover, we pro-
pose new countermeasures based on redun-
dant number representation and random shuf-
fling of operations. All our countermeasures
are implemented and evaluated on FPGA to
compare their cost and performance.

	Introduction
	Context
	Objective and outline of the thesis

	Definitions and Notations
	State of the Art
	Introduction
	Public-Key Encryption
	Lattice Problems
	Cryptosystem

	Ideal Lattices and RLWE
	CPA and CCA Security
	Generalization and Module LWE
	NTRU
	LWR

	Implementation of LWE-based Cryptography
	Modular arithmetic
	Polynomial arithmetic
	Lattice Cryptography on FPGA

	Side-Channel Attacks
	SCAs on Lattice Cryptography and Countermeasures

	Implementation Environment
	Introduction
	FPGAs
	High Level Synthesis
	HLS and Cryptography

	Finite-Field Arithmetic using HLS
	Implementation results

	Schoolbook Algorithm for Polynomial Multiplication

	LWE, RLWE and MLWE on FPGA
	Introduction
	Implementation of main operations
	FPGA Implementation of LWE
	Parameters used in the implementations
	Matrix arithmetic for LWE
	Parallelization using HLS
	Implementation results

	RLWE Implementations
	Optimizing the area utilization

	MLWE implementations and comparison
	Modifying the RLWE implementation
	Parallelization of operations in Rqk
	Parallelization using HLS
	Implementation results

	Randomness generation and CCA implementations
	Rejection sampling
	Alternative PRNG
	CCA secure implementations

	Comparison with other works
	Conclusion

	Countermeasures against Side-Channel Attacks
	Introduction
	Correlation Power Attack simulations in Python

	Countermeasures in the State of the Art
	New Variants of State of the Art Protections
	Masking with a New Masked Decoder
	Modified Shifting
	Blinding
	Shifting and Blinding Combined

	New Protections
	Shuffling
	Randomization using Redundant Number Representation

	Comparison of all Protections
	Generalizing the Countermeasures to Apply to MLWE/LWE
	Masking
	Blinding
	Shifting
	Shuffling
	Redundant number representation

	Conclusion and Discussion

	Conclusion
	Résumé en français

