C. R. Gerfen and D. J. Surmeier, Modulation of striatal projection systems by dopamine, Annu Rev Neurosci, vol.34, pp.441-466, 2011.

P. De-deurwaerdère, D. Giovanni, G. Millan, and M. J. , Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry, Progress in Neurobiology, vol.151, pp.57-100, 2017.

E. J. Nestler, ?FosB: a transcriptional regulator of stress and antidepressant responses, European Journal of Pharmacology, vol.753, pp.66-72, 2015.

M. Andersson, A. Hilbertson, and M. A. Cenci, Striatal fosB Expression Is Causally Linked with l-DOPA-Induced Abnormal Involuntary Movements and the Associated Upregulation of Striatal Prodynorphin mRNA in a Rat Model of Parkinson's Disease, Neurobiology of Disease, vol.6, issue.6, pp.461-474, 1999.

M. Andersson, J. E. Westin, and M. A. Cenci, Time course of striatal ?FosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment, European Journal of Neuroscience, vol.17, issue.3, pp.661-666, 2003.

P. Huot, T. H. Johnston, J. B. Koprich, S. H. Fox, and J. M. Brotchie, The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson's Disease, Pharmacological Reviews, vol.65, issue.1, pp.171-222, 2013.

K. Mizushima, Y. Miyamoto, F. Tsukahara, M. Hirai, Y. Sakaki et al., A Novel G-Protein-Coupled Receptor Gene Expressed in Striatum, Genomics, vol.69, issue.3, pp.314-321, 2000.

S. F. Logue, S. M. Grauer, and J. Paulsen, The orphan GPCR, GPR88, modulates function of the striatal dopamine system: A possible therapeutic target for psychiatric disorders?, Molecular and Cellular Neuroscience, vol.42, issue.4, pp.438-447, 2009.

A. Quintana, E. Sanz, and W. Wang, Lack of GPR88 enhances medium spiny neuron activity and alters motorand cue-dependent behaviors, Nat Neurosci, vol.15, issue.11, pp.1547-1555, 2012.

R. Massart, J. Guilloux, M. V. Pierre, S. , and J. D. , Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents, European Journal of Neuroscience, vol.30, issue.3, pp.397-414, 2009.

R. Massart, P. Sokoloff, and J. Diaz, Distribution and Regulation of the G Protein-Coupled Receptor Gpr88 in the Striatum:Relevance to Parkinson's Disease. In: Dushanova J, ed. Mechanisms in Parkinson's Disease -Models and Treatments, pp.393-406, 2012.

M. Ingallinesi, L. Bouil, L. , F. Biguet, and N. , Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats, Mol Psychiatry, vol.20, issue.8, pp.951-958, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02361884

J. Do, J. Kim, J. Bakes, K. Lee, and B. Kaang, Functional roles of neurotransmitters and neuromodulators in the dorsal striatum, Learning & Memory, vol.20, issue.1, pp.21-28, 2013.

R. Meloni and K. Gale, Pharmacological evidence for feedback regulation of dopamine metabolism in solid fetal substantia nigra transplants, J Pharmacol Exp Ther, vol.253, issue.3, pp.1259-1264, 1990.

V. Zennou, C. Serguera, and C. Sarkis, The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain, Nat Biotechnol, vol.19, issue.5, pp.446-450, 2001.

M. Castaing, A. Guerci, J. Mallet, P. Czernichow, P. Ravassard et al., Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells, Diabetologia, vol.48, issue.4, pp.709-719, 2005.

A. Mura, M. Mintz, and J. Feldon, Behavioral and Anatomical Effects of Long-Term l-Dihydroxyphenylalanine (L-DOPA) Administration in Rats with Unilateral Lesions of the Nigrostriatal System, Experimental Neurology, vol.177, issue.1, pp.252-264, 2002.

M. A. Cenci, C. S. Lee, and A. Bjorklund, L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin-and glutamic acid decarboxylase mRNA, Eur J Neurosci, vol.10, issue.8, pp.2694-2706, 1998.

M. A. Cenci and M. Lundblad, Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson's disease in rats and mice, Curr Protoc Neurosci, vol.9, p.25, 2007.

C. R. Gerfen and C. J. Wilson, Chapter II The basal ganglia, Handbook of Chemical Neuroanatomy, pp.371-468, 1996.

R. Schwarting and J. P. Huston, The unilateral 6-hydroxydopamine lesion model in behavioral brain research, Progress in Neurobiology, vol.50, issue.2-3, pp.275-331, 1996.

E. Santini, C. Alcacer, and S. Cacciatore, L-DOPA activates ERK signaling and phosphorylates histone H3 in the striatonigral medium spiny neurons of hemiparkinsonian mice, J Neurochem, vol.108, issue.3, pp.621-633, 2009.

N. Pavon, A. B. Martin, A. Mendialdua, and R. Moratalla, ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice, Biol Psychiatry, vol.59, issue.1, pp.64-74, 2006.

G. W. Duncan, T. K. Khoo, A. J. Yarnall, J. T. O'brien, S. Y. Coleman et al., Health-related quality of life in early Parkinson's disease: The impact of nonmotor symptoms, Mov. Disord, vol.29, pp.195-202, 2014.

M. Sierra, S. Carnicella, A. P. Strafella, A. Bichon, E. Lhommée et al., Apathy and impulse control disorders: Yin & yang of dopamine dependent behaviors, J. Parkinsons. Dis, vol.5, pp.625-636, 2015.

A. H. Schapira, K. R. Chaudhuri, and P. Jenner, Non-motor features of Parkinson disease, Nat. Rev. Neurosci, vol.18, pp.435-450, 2017.

J. Pagonabarraga, J. Kulisevsky, A. P. Strafella, and P. Krack, Apathy in Parkinson's disease: clinical features, neural substrates, diagnosis, and treatment, Lancet. Neurol, vol.14, pp.518-549, 2015.

J. B. Anang, J. Gagnon, J. Bertrand, S. R. Romenets, V. Latreille et al., Predictors of dementia in Parkinson disease: A prospective cohort study, vol.83, pp.1253-1260, 2014.

N. Carriere, P. Besson, K. Dujardin, A. Duhamel, L. Defebvre et al., Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: A magnetic resonance imaging shape analysis, Mov. Disord, vol.29, pp.897-903, 2014.

D. H. Ffytche, B. Creese, M. Politis, K. R. Chaudhuri, D. Weintraub et al., The psychosis spectrum in Parkinson disease, Nat. Rev. Neurol, vol.13, pp.81-95, 2017.

D. Aarsland, K. Andersen, J. P. Larsen, and A. Lolk, Prevalence and Characteristics of Dementia in Parkinson Disease, Arch. Neurol, vol.60, p.387, 2003.

U. E. , M. M. , M. K. , A. S. , L. I. et al.,

I. Anderson, P. G. Litvan, P. Como, K. L. Auinger, J. C. Chou et al., Incidence of and risk factors for cognitive impairment in an early parkinson disease clinical trial cohort, Neurology, vol.73, pp.1469-1477, 2009.

K. Dujardin, C. Langlois, L. Plomhause, A. S. Carette, M. Delliaux et al., Apathy in untreated early-stage Parkinson disease: Relationship with other non-motor symptoms, Mov. Disord, vol.29, pp.1796-1801, 2014.

S. K. Darweesh, V. J. Verlinden, B. H. Stricker, A. Hofman, P. J. Koudstaal et al., Trajectories of prediagnostic functioning in Parkinson ' s disease, pp.1-13, 2016.

D. Aarsland, K. Brønnick, G. Alves, O. B. Tysnes, K. F. Pedersen et al., The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, vol.80, pp.928-930, 2009.

M. C. Rodriguez-oroz, M. Jahanshahi, P. Krack, I. Litvan, R. Macias et al., Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms, Lancet Neurol, vol.8, pp.1128-1139, 2009.

J. Pagonabarraga, S. Martinez-horta, R. Fernández-de-bobadilla, J. Pérez, R. Ribosa-nogué et al., Minor hallucinations occur in drug-naive Parkinson's disease patients, even from the premotor phase, Mov. Disord, vol.31, pp.45-52, 2016.

K. R. Chaudhuri, D. G. Healy, and H. Schapira, Non-motor symptoms of Parkinson's disease: diagnosis and management, Lancet Neurol, vol.5, pp.235-245, 2006.

C. Vriend, T. Pattij, Y. D. Van-der-werf, P. Voorn, J. Booij et al., Depression and impulse control disorders in Parkinson's disease: two sides of the same coin?, Neurosci. Biobehav. Rev, vol.38, pp.60-71, 2014.

P. Svenningsson, E. Westman, C. Ballard, and D. Aarsland, Cognitive impairment in patients with Parkinson's disease: Diagnosis, biomarkers, and treatment, Lancet Neurol, vol.11, pp.697-707, 2012.

M. Zompo, G. Severino, R. Ardau, C. Chillotti, M. Piccardi et al., Genome-scan for bipolar disorder with sib-pair families in the Sardinian population: A new susceptibility locus on chromosome 1p22-p21?, Am. J. Med. Genet. Part B Neuropsychiatr. Genet, vol.153, pp.1200-1208, 2010.

M. Zompo, J. Deleuze, C. Chillotti, E. Cousin, D. Niehaus et al., Association study in three different populations between the GPR88 gene and major psychoses, Mol. Genet. genomic Med, vol.2, pp.152-161, 2014.

F. Alkufri, A. Shaag, B. Abu-libdeh, and O. Elpeleg, Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities, Neurol. Genet, vol.2, pp.64-64, 2016.

B. Conti, R. Maier, A. M. Barr, M. C. Morale, X. Lu et al., Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine, Mol. Psychiatry, vol.12, pp.167-189, 2007.

S. F. Logue, S. M. Grauer, J. Paulsen, R. Graf, N. Taylor et al., The orphan GPCR, GPR88, modulates function of the striatal dopamine system: A possible therapeutic target for psychiatric disorders?, Mol. Cell. Neurosci, vol.42, pp.438-447, 2009.

R. Massart, J. P. Guilloux, V. Mignon, P. Sokoloff, and J. Diaz, Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents, Eur. J. Neurosci, vol.30, pp.397-414, 2009.

K. Mizushima, Y. Miyamoto, F. Tsukahara, M. Hirai, Y. Sakaki et al., A Novel G-Protein-Coupled Receptor Gene Expressed in Striatum, Online, vol.321, pp.314-321, 2000.

C. Jin, A. M. Decker, X. Huang, B. P. Gilmour, B. E. Blough et al., Synthesis, Pharmacological Characterization, and Structure-Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor, vol.5, pp.576-587, 2014.

A. C. Meirsman, J. L. Merrer, L. P. Pellissier, J. Diaz, D. Clesse et al., Mice Lacking GPR88 Show Motor Deficit, Improved Spatial Learning, and Low Anxiety Reversed by Delta Opioid Antagonist, Biol. Psychiatry, vol.79, pp.917-927, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594891

J. Lau, A. Farzi, R. F. Enriquez, Y. C. Shi, and H. Herzog, GPR88 is a critical regulator of feeding and body composition in mice, Sci. Rep, vol.7, 2017.

A. Quintana, E. Sanz, W. Wang, G. P. Storey, A. D. Güler et al., Lack of GPR88 enhances medium spiny neuron activity and alters motor-and cue-dependent behaviors, Nat. Neurosci, vol.15, pp.1547-55, 2012.

A. C. Meirsman, J. L. Merrer, L. P. Pellissier, J. Diaz, D. Clesse et al., Mice Lacking GPR88 Show Motor Deficit, Improved Spatial Learning, and Low Anxiety Reversed by Delta Opioid Antagonist, Biol. Psychiatry, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594891

T. Arefin, A. E. Mechling, C. A. Meirsman, T. Bienert, N. S. Huebner et al., Remodeling of Sensorimotor Brain Connectivity in Gpr88 deficient mice, Brain Connect, vol.7, pp.526-540, 2017.

A. Rainwater, E. Sanz, R. D. Palmiter, and A. Quintana, Striatal GPR88 Modulates Foraging Efficiency, J. Neurosci, vol.37, pp.7939-7947, 2017.

G. Maroteaux, T. M. Arefin, L. Harsan, E. Darcq, S. Ben-hamida et al., Lack of anticipatory behavior in Gpr88 knockout mice revealed by automatized home cage phenotyping, Brain Behav, p.12473, 2018.

M. Ingallinesi, L. L. Bouil, N. Biguet, A. Thi, C. Mannoury-la-cour et al., Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats, Mol. Psychiatry, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02361884

S. Ben-hamida, S. Mendonça-netto, T. M. Arefin, M. T. Nasseef, L. Boulos et al.,

L. Clarke, A. Moquin, E. Gratton, L. A. Darcq, R. Harsan et al., Increased Alcohol Seeking in Mice Lacking Gpr88 Involves Dysfunctional Mesocorticolimbic Networks, Biol. Psychiatry, 2018.

P. K. Morrish, G. Sawle, and D. J. Brooks, Clinical and [18F] dopa PET findings in early Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, vol.59, pp.597-600, 1995.

P. K. Morrish, J. S. Rakshi, D. L. Bailey, G. V. Sawle, and D. J. Brooks, Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F] dopa PET, J. Neurol. Neurosurg. Psychiatry, vol.64, pp.314-319, 1998.

M. Ghaemi, R. Hilker, J. Rudolf, J. Sobesky, and W. D. Heiss, Differentiating multiple system atrophy from parkinson's disease: Contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging, J. Neurol. Neurosurg. Psychiatry, vol.73, pp.517-523, 2002.

N. Pavese, M. Rivero-bosch, S. J. Lewis, A. L. Whone, and D. J. Brooks, Progression of monoaminergic dysfunction in Parkinson's disease: A longitudinal 18F-dopa PET study, Neuroimage, vol.56, pp.1463-1468, 2011.

S. J. Kish, K. Shannak, and O. Hornykiewicz, Uneven Pattern of Dopamine Loss in the Striatum of Patients with Idiopathic Parkinson's Disease, N. Engl. J. Med, vol.318, pp.876-880, 1988.

M. Ingallinesi, L. L. Bouil, N. F. Biguet, C. Thi, M. J. Mannoury-la-cour et al., Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats, Mol. Psychiatry, vol.20, pp.951-958, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02361884

M. A. Qamar, A. Sauerbier, M. Politis, H. Carr, P. Loehrer et al., Presynaptic dopaminergic terminal imaging & non-motor symptoms assessment of Parkinson's disease: Evidence for dopaminergic basis?, Parkinsons. Dis, vol.3, pp.1-19, 2017.

F. Faul, E. Erdfelder, A. Lang, A. Buchner, and G. Power, A flexible statistical power analysis program for the social, behavioral, and biomedical sciences, Behav. Res. Methods, vol.39, pp.175-191, 2007.

G. Paxinos, C. R. Watson, and P. C. Emson, AChE-stained horizontal sections of the rat brain in stereotaxic coordinates, J. Neurosci. Methods, vol.3, pp.129-149, 1980.

B. Valsamis and S. Schmid, Habituation and prepulse inhibition of acoustic startle in rodents, J. Vis. Exp, pp.1-10, 2011.

D. Slattery and J. F. Cryan, Using the rat forced swim test to assess antidepressant-like activity in rodents, Nat. Protoc, vol.7, pp.1009-1014, 2012.

L. I. Perrotti, R. R. Weaver, B. Robison, W. Renthal, I. Maze et al., Distinct patterns of ?FosB induction in brain by drugs of abuse, Synapse, vol.62, pp.358-369, 2008.

E. M. Schneider-gasser, C. J. Straub, P. Panzanelli, O. Weinmann, M. Sassoè-pognetto et al., Immunofluorescence in brain sections: simultaneous detection of presynaptic and postsynaptic proteins in identified neurons, Nat. Protoc, vol.1, pp.1887-97, 2006.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. Dezonia, A. E. Walter et al., ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, vol.18, pp.1-26, 2017.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., An open source platform for biological image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

G. Drui, S. Carnicella, C. Carcenac, M. Favier, S. Bertrand et al., Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson's disease, Mol Psychiatry, vol.19, pp.358-367, 2014.

S. J. Kish, K. Shannak, and O. Hornykiewicz, Uneven Pattern of Dopamine Loss in the Striatum of Patients with Idiopathic Parkinson's Disease, N. Engl. J. Med, vol.318, pp.876-880, 1988.

J. Terranova, C. Chabot, M. Barnouin, G. Perrault, R. Depoortere et al., SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist, alleviates disturbances of novelty discrimination in a social context in rats, a putative model of selective attention deficit, Psychopharmacology (Berl), vol.181, pp.134-144, 2005.

V. Vialou, M. Thibault, S. Kaska, S. Cooper, P. Gajewski et al., Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress, Neuropharmacology, vol.99, pp.28-37, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01542315

C. Lever, S. Burton, and J. ?'keefe, Rearing on Hind Legs, Environmental Novelty, and the Hippocampal Formation, Rev. Neurosci, vol.17, pp.111-133, 2006.

F. Cathomas, M. N. Hartmann, E. Seifritz, C. R. Pryce, and S. Kaiser, The translational study of apathy-an ecological approach, Front. Behav. Neurosci, vol.9, p.241, 2015.

Y. Ang, P. L. Lockwood, A. Kienast, O. Plant, D. Drew et al., Differential impact of behavioral, social, and emotional apathy on Parkinson's disease, pp.1-6, 2018.

Y. S. Ang, P. Lockwood, M. A. Apps, K. Muhammed, and M. Husain, Distinct subtypes of apathy revealed by the apathy motivation index, PLoS One, vol.12, pp.1-15, 2017.

K. Dujardin, A. F. Leentjens, C. Langlois, A. J. Moonen, A. A. Duits et al., The spectrum of cognitive disorders in Parkinson's disease: A data-driven approach, Mov. Disord, vol.28, pp.183-189, 2013.

C. Pont-sunyer, A. Hotter, C. Gaig, K. Seppi, Y. Compta et al., The onset of nonmotor symptoms in parkinson's disease (the ONSET PD study), Mov. Disord, vol.30, pp.229-237, 2015.

M. Bubser and M. Koch, Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex, Psychopharmacology (Berl), vol.113, pp.487-492, 1994.

A. C. Issy, F. E. Padovan-neto, M. Lazzarini, M. Bortolanza, and E. Del-bel, Disturbance of sensorimotor filtering in the 6-OHDA rodent model of Parkinson's disease, Life Sci, vol.125, pp.71-78, 2015.

R. M. Santiago, J. Barbiero, R. W. Gradowski, S. Bochen, M. M. Lima et al., Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin, Behav. Brain Res, vol.259, pp.70-77, 2014.

J. F. Poulin, S. Laforest, and G. Drolet, Enkephalin downregulation in the nucleus accumbens underlies chronic stress-induced anhedonia, Stress, vol.17, pp.88-96, 2014.

M. Zoetmulder, H. B. Biernat, M. Nikolic, L. Korbo, L. Friberg et al., Prepulse inhibition is associated with attention, processing speed, and 123I-FP-CIT SPECT in Parkinson's Disease, J. Parkinsons. Dis, vol.4, pp.77-87, 2014.

H. Steiner and C. R. Gerfen, Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior, Exp. Brain Res, vol.123, pp.60-76, 1998.

S. Consolo, M. Morelli, M. Rimoldi, S. Giorgi, and G. D. Chiara, Increased striatal expression of glutamate decarboxylase 67 after priming of 6-hydroxydopamine-lesioned rats, Neuroscience, vol.89, pp.1183-1187, 1999.

R. C. Helmich, L. C. Derikx, M. Bakker, R. Scheeringa, B. R. Bloem et al., Spatial remapping of corticostriatal connectivity in parkinson's disease, vol.20, pp.1175-1186, 2010.

M. Sharman, R. Valabregue, V. Perlbarg, L. Marrakchi-kacem, M. Vidailhet et al., Parkinson's disease patients show reduced cortical-subcortical sensorimotor connectivity, Mov. Disord, vol.28, pp.447-454, 2013.

.. C. Meirsman, J. L. Merrer, L. P. Pellissier, J. Diaz, D. Clesse et al., Mice lacking GPR88 show motor deficit, improved spatial learning and low anxiety reversed by delta opioid antagonist, Biol. Psychiatry, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594891

E. J. Nestler, ?fosB: A transcriptional regulator of stress and antidepressant responses, Eur. J. Pharmacol, vol.753, pp.66-72, 2015.

E. J. Nestler, ?fosB: A transcriptional regulator of stress and antidepressant responses, Eur. J. Pharmacol, vol.753, pp.66-72, 2015.

H. S. Lindgren, D. Rylander, H. Iderberg, M. Andersson, S. S. O'sullivan et al., Putaminal upregulation of FosB/?FosB-like immunoreactivity in Parkinson's disease patients with Dyskinesia, J. Parkinsons. Dis, vol.1, pp.347-357, 2011.

E. Saka, B. Elibol, S. Erdem, and T. Dalkara, Compartmental changes in expression of c-Fos and FosB proteins in intact and dopamine-depleted striatum after chronic apomorphine treatment, Brain Res, vol.825, pp.104-114, 1999.

S. J. Crocker, M. Morelli, N. Wigle, Y. Nakabeppu, and G. S. Robertson, D1-receptor-related priming is attenuated by antisense-meditated "knockdown" of fosB expression, Mol. Brain Res, vol.53, pp.69-77, 1998.

D. Wirtshafter, G. Schardt, and K. E. Asin, Compartmentally specific effects of quinpirole on the striatal Fos expression induced by stimulation of D1-dopamine receptors in intact rats, Brain Res, vol.771, pp.271-277, 1997.

C. Winkler, D. Kirik, A. Björklund, and M. A. Cenci, l-DOPA-Induced Dyskinesia in the Intrastriatal 6-Hydroxydopamine Model of Parkinson's Disease: Relation to Motor and Cellular Parameters of Nigrostriatal Function, Neurobiol. Dis, vol.10, pp.165-186, 2002.

S. Mounayar, S. Boulet, D. Tandé, C. Jan, M. Pessiglione et al., A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery, Brain, vol.130, pp.2898-2914, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00391588

K. H. Taber and R. A. Hurley, Volume Transmission in the Brain: Beyond the Synapse, J. Neuropsychiatry Clin. Neurosci, vol.26, pp.1-4, 2014.

M. Feyder, E. Södersten, E. Santini, V. Vialou, Q. Laplant et al., A Role for Mitogen-and Stress-Activated Kinase 1 in L-DOPA Induced Dyskinesia and ?FosB Expression, Biol. Psychiatry, vol.79, pp.362-371, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01541323

R. Erro, C. Vitale, M. Amboni, M. Picillo, M. Moccia et al., The Heterogeneity of Early Parkinson's Disease: A Cluster Analysis on Newly Diagnosed Untreated Patients, PLoS One, vol.8, pp.1-8, 2013.

M. Moccia, S. Pappatà, M. Picillo, R. Erro, A. R. Coda et al., Dopamine transporter availability in motor subtypes of de novo drug-naïve Parkinson's disease, J. Neurol, vol.261, pp.2112-2118, 2014.

J. Spiegel, D. Hellwig, S. Samnick, W. Jost, M. O. Möllers et al., Striatal FP-CIT uptake differs in the subtypes of early Parkinson's disease, J. Neural Transm, vol.114, pp.331-335, 2007.

Z. Qamhawi, D. Towey, B. Shah, G. Pagano, J. Seibyl et al., Clinical correlates of raphe serotonergic dysfunction in early Parkinson's disease, vol.138, pp.2964-2973, 2015.

R. Magnard, Y. Vachez, C. Carcenac, P. Krack, O. David et al., What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease?, Transl. Psychiatry, vol.6, p.753, 2016.

P. Redgrave, M. Rodriguez, Y. Smith, M. C. Rodriguez-oroz, S. Lehericy et al., Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease, Nat. Rev. Neurosci, vol.11, pp.760-772, 2010.

D. Belin, A. Belin-rauscent, J. E. Murray, and B. J. Everitt, Addiction: failure of control over maladaptive incentive habits, Curr. Opin. Neurobiol, pp.564-572, 2013.

E. Burguière, P. Monteiro, L. Mallet, G. Feng, and A. M. Graybiel, Striatal circuits, habits, and implications for obsessive-compulsive disorder, Curr. Opin. Neurobiol, vol.30, pp.59-65, 2015.

M. Cabanas, F. Bassil, N. Mons, M. Garret, and Y. H. Cho, Changes in striatal activity and functional connectivity in a mouse model of Huntington's disease, vol.12, pp.1-19, 2017.

S. Palfi, J. M. Gurruchaga, G. S. Ralph, H. Lepetit, S. Lavisse et al.,

P. A. Mazarakis, R. Radcliff, S. M. Harrop, O. Kingsman, S. Rascol et al., Long-term safety and tolerability of ProSavin , a lentiviral vector-based gene therapy for Parkinson ' s disease : a dose escalation , open-label, vol.383, p.61939, 2014.

S. Palfi, J. Gurru, H. Le, K. Howard, G. S. Ralph et al., Long-term follow up of a phase 1/2 study of ProSavin, a lentiviral vector gene therapy for Parkinson's disease, Hum, Gene Ther. Clin. Dev, vol.33, 2018.

J. Parkinson, An essay on the shaking palsy, J Neuropsychiatry Clin, vol.14, pp.223-236, 2002.

J. M. Charcot, Lectures on the disease of the nervous system, New Sydenham Soc. XC, Plate V, 1877.

E. Brissaud, Leçons sur les maladies nerveuses, Masson, vol.2, 1899.

C. Trétiakoff, Contribution a l'etude l'anatomie pathologique du locus Niger de soemmering: avec quelques déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson, 1919.

H. Ehringer and O. Hornykiewicz, Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system, Park. Relat. Disord, vol.4, pp.53-57, 1998.

A. J. Lees, E. Tolosa, and C. W. Olanow, Four pioneers of L-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr, Mov. Disord, vol.30, pp.19-36, 2015.

, Parkinson's Foundation. at <parkinson.org> 8. Association France Parkinson

A. Ascherio and M. A. Schwarzschild, The epidemiology of Parkinson's disease: risk factors and prevention, Lancet Neurol, vol.15, pp.1257-1272, 2016.

L. S. Ishihara, A. Cheesbrough, C. Brayne, and A. Schrag, Estimated life expectancy of Parkinson's patients compared with the UK population, J. Neurol. Neurosurg. Psychiatry, vol.78, pp.1304-1309, 2007.

P. A. Fall, A. Saleh, M. Fredrickson, J. E. Olsson, and A. K. Granérus, Survival time, mortality, and cause of death in elderly patients with Parkinson's disease: A 9-year follow-up, Mov. Disord, vol.18, pp.1312-1316, 2003.

L. V. Kalia and A. E. Lang, Parkinson's disease, Lancet, vol.386, pp.896-912, 2015.

J. A. Obeso, Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy, Mov. Disord, vol.32, pp.1264-1310, 2017.

G. W. Duncan, Health-related quality of life in early Parkinson's disease: The impact of nonmotor symptoms, Mov. Disord, vol.29, pp.195-202, 2014.

C. Pont-sunyer, The onset of nonmotor symptoms in parkinson's disease (the ONSET PD study), Mov. Disord, vol.30, pp.229-237, 2015.

A. H. Schapira, K. R. Chaudhuri, and P. Jenner, Non-motor features of Parkinson disease, Nat. Rev. Neurosci, vol.18, pp.435-450, 2017.

K. R. Chaudhuri, D. G. Healy, and H. Schapira, Non-motor symptoms of Parkinson's disease: diagnosis and management, Lancet Neurol, vol.5, pp.235-245, 2006.

K. Dujardin, Apathy in untreated early-stage Parkinson disease: Relationship with other non-motor symptoms, Mov. Disord, vol.29, pp.1796-1801, 2014.

J. Pagonabarraga, J. Kulisevsky, A. P. Strafella, and P. Krack, Apathy in Parkinson's disease: clinical features, neural substrates, diagnosis, and treatment, Lancet. Neurol, vol.14, pp.518-549, 2015.

R. Levy and B. Dubois, Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits, Cereb. Cortex, vol.16, pp.916-928, 2006.

J. Del-monte, S. Bayard, P. Graziani, M. C. Gély-nargeot, and . Cognitive, Emotional, and Auto-Activation Dimensions of Apathy in Parkinson's Disease, Front. Behav. Neurosci, vol.11, 2017.

K. Dujardin, P. Sockeel, M. Delliaux, A. Destée, and L. Defebvre, Apathy may herald cognitive decline and dementia in Parkinson's disease, Mov. Disord, vol.24, pp.2391-2397, 2009.

A. F. Leentjens, Apathy and Anhedonia Rating Scales in Parkinson's Disease: Critique and Recommendations, Mov. Disord, vol.23, 2004.

M. R. Lemke, H. M. Brecht, J. Koester, and H. Reichmann, Effects of the dopamine agonist pramipexole on depression, anhedonia and motor functioning in Parkinson's disease, J. Neurol. Sci, vol.248, pp.266-270, 2006.

M. Shiba, Anxiety disorders and depressive disorders preceding Parkinson's disease: a case-control study, Mov Disord, vol.15, pp.669-677, 2000.

D. Aarsland, The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, vol.80, pp.928-930, 2009.

S. K. Darweesh, Trajectories of prediagnostic functioning in Parkinson ' s disease, Brain, vol.1, p.13, 2016.

M. C. Rodriguez-oroz, Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms, Lancet Neurol, vol.8, pp.1128-1139, 2009.

K. Dujardin, The spectrum of cognitive disorders in Parkinson's disease: A data-driven approach, Mov. Disord, vol.28, pp.183-189, 2013.

K. Dujardin, Cognitive and SPECT characteristics predict progression of Parkinson's disease in newly diagnosed patients, J. Neurol, vol.251, pp.1383-1392, 2004.

K. Dujardin, Deficits in decoding emotional facial expressions in Parkinson's disease, Neuropsychologia, vol.42, pp.239-250, 2004.

M. Zoetmulder, Prepulse inhibition is associated with attention, processing speed, and 123I-FP-CIT SPECT in Parkinson's Disease, J. Parkinsons. Dis, vol.4, pp.77-87, 2014.

K. Dujardin, L. Defebvre, C. Grunberg, E. Becquet, and A. Destée, Memory and executive function in sporadic and familial Parkinson's disease, Brain, vol.124, pp.389-98, 2001.

P. Svenningsson, E. Westman, C. Ballard, and D. Aarsland, Cognitive impairment in patients with Parkinson's disease: Diagnosis, biomarkers, and treatment, Lancet Neurol, vol.11, pp.697-707, 2012.

D. H. Ffytche, The psychosis spectrum in Parkinson disease, Nat. Rev. Neurol, vol.13, pp.81-95, 2017.

J. Pagonabarraga, Minor hallucinations occur in drug-naive Parkinson's disease patients, even from the premotor phase, Mov. Disord, vol.31, pp.45-52, 2016.

J. H. Friedman, Fatigue in Parkinson's disease: A review, Mov. Disord, vol.22, pp.297-308, 2007.

A. G. Beiske, J. H. Loge, A. Rønningen, and E. Svensson, Pain in Parkinson's disease: Prevalence and characteristics, Pain, vol.141, pp.173-177, 2009.

R. Sakakibara, Questionnaire-based assessment of pelvic organ dysfunction in Parkinson's disease, Auton. Neurosci, vol.92, pp.76-85, 2001.

M. A. Hely, J. G. Morris, W. G. Reid, and R. Trafficante, Sydney Multicenter Study of Parkinson's disease: Non-L-dopa-responsive problems dominate at 15 years, Mov. Disord, vol.20, pp.190-199, 2005.

A. J. Espay, P. Brundin, and A. E. Lang, Precision medicine for disease modification in Parkinson disease, Nat. Rev. Neurol, vol.13, pp.119-126, 2017.

C. Marras and K. R. Chaudhuri, The Nonmotor Features of Parkinson's Disease, Mov. Disord, vol.31, 2015.

R. Erro, The Heterogeneity of Early Parkinson's Disease: A Cluster Analysis on Newly Diagnosed Untreated Patients, PLoS One, vol.8, pp.1-8, 2013.

A. Sauerbier, P. Jenner, A. Todorova, and K. R. Chaudhuri, Non motor subtypes and Parkinson's disease, Park. Relat. Disord, vol.22, pp.41-46, 2016.

J. S. Reijnders, U. Ehrt, R. Lousberg, D. Aarsland, and A. F. Leentjens, The association between motor subtypes and psychopathology in Parkinson's disease, Park. Relat. Disord, vol.15, pp.379-382, 2009.

P. Liu, T. Feng, Y. Wang, X. Zhang, and B. Chen, Clinical heterogeneity in patients with earlystage Parkinson's disease: a cluster analysis, J. Zhejiang Univ. Sci. B, vol.12, pp.694-703, 2011.

A. H. Rajput, A. Voll, M. L. Rajput, C. A. Robinson, and A. Rajput, Course in Parkinson's Disease Subtypes: A 39-year clinicopathological study, Neurology, vol.73, pp.206-212, 2009.

C. Marras and A. Lang, Parkinson's disease subtypes: Lost in translation?, J. Neurol. Neurosurg. Psychiatry, vol.84, pp.409-415, 2013.

M. Muñoz, Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank, Nat. Genet, vol.48, pp.980-983, 2016.

A. Verstraeten, J. Theuns, and C. Van-broeckhoven, Progress in unraveling the genetic etiology of Parkinson disease in a genomic era, Trends Genet, vol.31, pp.140-149, 2015.

S. Lerche, Polygenic load: Earlier disease onset but similar longitudinal progression in Parkinson's disease, Mov. Disord, 2018.

M. F. Keller, Using genome-wide complex trait analysis to quantify 'missing heritability' in Parkinson's disease, Hum. Mol. Genet, vol.21, pp.4996-5009, 2012.

M. Ferreira and J. Massano, An updated review of Parkinson's disease genetics and clinicopathological correlations, Acta Neurol. Scand, vol.135, pp.273-284, 2017.

M. Martins, Convergence of mirna expression profiling, ?-synuclein interacton and GWAS in Parkinson's disease, PLoS One, vol.6, 2011.

R. Von-coelln and L. M. Shulman, Clinical subtypes and genetic heterogeneity: Of lumping and splitting in Parkinson disease, Curr. Opin. Neurol, vol.29, pp.727-734, 2016.

S. P. Brooks and S. B. Dunnett, Cognitive deficits in animal models of basal ganglia disorders, Brain Res. Bull, vol.92, pp.29-40, 2013.

P. P. Michel, E. C. Hirsch, and S. Hunot, Understanding Dopaminergic Cell Death Pathways in Parkinson Disease, Neuron, vol.90, pp.675-691, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01348875

S. Przedborski, The two-century journey of Parkinson disease research, Nat. Rev. Neurosci, vol.18, pp.251-259, 2017.

H. Braak, Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol. Aging, vol.24, pp.197-211, 2003.

E. C. Hirsch, S. Vyas, and S. Hunot, Neuroinflammation in Parkinson's disease, Park. Relat. Disord, 2012.

J. Y. Li, Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest hostto-graft disease propagation, Nat. Med, vol.14, pp.501-503, 2008.

X. Mao, Pathological ?-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science (80-. ), vol.353, 2016.

A. Lionnet, Does Parkinson's disease start in the gut?, Acta Neuropathol, vol.135, 2018.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nat. Rev. Neurosci, vol.18, pp.101-113, 2017.

M. Takada and T. Hattori, Collateral projections from the substantia nigra to the cingulate cortex and striatum in the rat, Brain Res, vol.380, pp.331-335, 1986.

E. J. Nestler, S. E. Hyman, and R. C. Malenka, Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, 2008.

D. J. Brooks and N. Pavese, Imaging biomarkers in Parkinson's disease, Prog. Neurobiol, vol.95, pp.614-628, 2011.

P. K. Morrish, G. Sawle, and D. J. Brooks, Clinical and [18F] dopa PET findings in early Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, vol.59, pp.597-600, 1995.

M. Ghaemi, R. Hilker, J. Rudolf, J. Sobesky, and W. D. Heiss, Differentiating multiple system atrophy from parkinson's disease: Contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging, J. Neurol. Neurosurg. Psychiatry, vol.73, pp.517-523, 2002.

A. Brück, Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson's disease: A two-year follow-up study, Mov. Disord, vol.21, pp.958-963, 2006.

J. S. Rakshi, Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [18F]dopa-PET study, Brain, vol.122, pp.1637-1650, 1999.

V. Kaasinen, Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson's disease, Neurology, vol.54, pp.1482-1487, 2000.

V. Kaasinen, Increased frontal [(18)F]fluorodopa uptake in early Parkinson's disease: sex differences in the prefrontal cortex, Brain, vol.124, pp.1125-1130, 2001.

H. W. Berendse and M. M. Ponsen, Diagnosing premotor Parkinson's disease using a two-step approach combining olfactory testing and DAT SPECT imaging, Park. Relat. Disord, vol.15, pp.26-30, 2009.

D. Jennings, imaging prodromal Parkinson disease; the pasrkinsdon associated risk syndrome study, Neurology, vol.83, pp.1739-1746, 2014.

P. K. Morrish, J. S. Rakshi, D. L. Bailey, G. V. Sawle, and D. J. Brooks, Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F] dopa PET, J. Neurol. Neurosurg. Psychiatry, vol.64, pp.314-319, 1998.

S. J. Kish, K. Shannak, and O. Hornykiewicz, Uneven Pattern of Dopamine Loss in the Striatum of Patients with Idiopathic Parkinson's Disease, N. Engl. J. Med, vol.318, pp.876-880, 1988.

S. L. Alberico, M. D. Cassell, and N. S. Narayanan, The vulnerable ventral tegmental area in Parkinson's disease, Basal Ganglia, vol.5, pp.51-55, 2015.

J. H. Kordower, Disease duration and the integrity of the nigrostriatal system in Parkinson's disease, Brain, vol.136, pp.2419-2431, 2013.

B. Scatton, F. Javoy-agid, L. Rouquier, B. Dubois, and Y. Agid, Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease, Brain Res, vol.275, pp.321-328, 1983.

M. Politis and F. Niccolini, Serotonin in Parkinson's disease, Behav. Brain Res, vol.277, pp.136-145, 2015.

K. Strecker, Preserved serotonin transporter binding in de novo Parkinson's disease: Negative correlation with the dopamine transporter, J. Neurol, vol.258, pp.19-26, 2011.

N. Pavese, M. Rivero-bosch, S. J. Lewis, A. L. Whone, and D. J. Brooks, Progression of monoaminergic dysfunction in Parkinson's disease: A longitudinal 18F-dopa PET study, Neuroimage, vol.56, pp.1463-1468, 2011.

Z. Qamhawi, Clinical correlates of raphe serotonergic dysfunction in early Parkinson's disease, Brain, vol.138, pp.2964-2973, 2015.

M. Guttman, Brain serotonin transporter binding in non-depressed patients with Parkinson's disease, Eur. J. Neurol, vol.14, pp.523-528, 2007.

P. Remy, M. Doder, A. Lees, N. Turjanski, and D. Brooks, Depression in Parkinson's disease: Loss of dopamine and noradrenaline innervation in the limbic system, Brain, vol.128, pp.1314-1322, 2005.

S. J. Kish, Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease, Brain, vol.131, pp.120-131, 2008.

I. U. Isaias, Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease, BMC Neurol, vol.11, 2011.

D. C. German, Disease-specific patterns of locus coeruleus cell loss, Ann. Neurol, vol.32, pp.667-676, 1992.

D. Dautan, A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem, J. Neurosci, vol.34, pp.4509-4518, 2014.

H. Shimada, Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET, Neurology, vol.73, 2009.

N. I. Bohnen and R. L. Albin, The cholinergic system and Parkinson disease, Behav. Brain Res, vol.221, pp.564-573, 2011.

J. Ding, RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion, Nat. Neurosci, vol.9, pp.832-842, 2006.

F. Tagliavini, G. Pilleri, C. Bouras, and J. Constantinidis, The basal nucleus of Meynert in idiopathic Parkinson's disease, Acta Neurol. Scand, vol.70, pp.20-28, 1984.

R. M. Zweig, W. R. Jankel, J. C. Hedreen, R. Mayeux, and D. L. Price, The pedunculopontine nucleus in Parkinson's disease, Ann.Neurol, vol.26, pp.41-46, 1989.

Y. Ouchi, Microglial activation and dopamine terminal loss in early Parkinson's disease, Ann. Neurol, vol.57, pp.168-175, 2005.

A. Gerhard, In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease, Neurobiol. Dis, vol.21, pp.404-412, 2006.

M. Politis, Neuroimaging in Parkinson disease: from research setting to clinical practice, Nat. Rev. Neurol, vol.10, pp.708-722, 2014.

A. Hanganu, Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson's disease longitudinally, Brain, vol.137, pp.1120-1129, 2014.

I. Mavridis, E. Boviatsis, and S. Anagnostopoulou, The human nucleus accumbens suffers parkinsonism-related shrinkage: A novel finding, Surg. Radiol. Anat, vol.33, pp.595-599, 2011.

N. Carriere, Apathy in Parkinson's disease is associated with nucleus accumbens atrophy: A magnetic resonance imaging shape analysis, Mov. Disord, vol.29, pp.897-903, 2014.

E. Mak, Baseline and longitudinal grey matter changes in newly diagnosed Parkinson's disease: ICICLE-PD study, Brain, vol.138, pp.2974-2986, 2015.

R. C. Helmich, Spatial remapping of cortico-striatal connectivity in parkinson's disease, Cereb. Cortex, vol.20, pp.1175-1186, 2010.

M. Sharman, Parkinson's disease patients show reduced cortical-subcortical sensorimotor connectivity, Mov. Disord, vol.28, pp.447-454, 2013.

P. T. Bell, Dopaminergic basis for impairments in functional connectivity across subdivisions of the striatum in Parkinson's disease. Hum, Brain Mapp, vol.36, pp.1278-1291, 2015.

R. Lopes, Cognitive phenotypes in parkinson's disease differ in terms of brain-network organization and connectivity, Hum. Brain Mapp, vol.38, pp.1604-1621, 2017.

M. Moccia, Dopamine transporter availability in motor subtypes of de novo drug-naïve Parkinson's disease, J. Neurol, vol.261, pp.2112-2118, 2014.

J. Spiegel, Striatal FP-CIT uptake differs in the subtypes of early Parkinson's disease, J. Neural Transm, vol.114, pp.331-335, 2007.

C. Eggers, Parkinson Subtypes Progress Differently in Clinical Course and Imaging Pattern, PLoS One, vol.7, 2012.

A. Nahimi, Noradrenergic deficits in Parkinson's disease imaged with 11 C-MeNER, J. Nucl. Med. jnumed, vol.117, p.190975, 2017.

W. Paulus and K. Jellinger, The neuropathologic basis of different clinical subgroups of parkinson's disease, Journal of Neuropathology and Experimental Neurology, vol.50, pp.743-755, 1991.

C. Karachi, Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease, J. Clin. Invest, vol.120, pp.2745-2754, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00795787

U. Sabatini, Cortical motor reorganization in akinetic patients with Parkinson's disease, Brain, vol.123, pp.394-403, 2000.

G. Vervoort, Functional connectivity alterations in the motor and fronto-parietal network relate to behavioral heterogeneity in Parkinson's disease, Park. Relat. Disord, vol.24, pp.48-55, 2016.

M. A. Qamar, Presynaptic dopaminergic terminal imaging & non-motor symptoms assessment of Parkinson's disease: Evidence for dopaminergic basis?, Parkinsons. Dis, vol.3, pp.1-19, 2017.

P. Redgrave, Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease, Nat. Rev. Neurosci, vol.11, pp.760-772, 2010.

H. Green, Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson's disease, Proc. Natl. Acad. Sci, vol.114, pp.2735-2740, 2017.

A. Brück, S. Aalto, E. Nurmi, J. Bergman, and J. O. Rinne, Cortical 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson's disease, Neurobiol. Aging, vol.26, pp.891-898, 2005.

F. Nobili, Cognitive-nigrostriatal relationships in de novo, drug-na??ve Parkinson's disease patients: A [I-123]FP-CIT SPECT Study, Mov. Disord, vol.25, pp.35-43, 2010.

N. I. Bohnen, Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of parkinson disease and evidence of interaction effects, JAMA Neurol, vol.72, pp.194-200, 2015.

M. Hassan, Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson's disease, NeuroImage Clin, vol.14, pp.591-601, 2017.

E. M. Vazey and G. Aston-jones, The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease, Front. Behav. Neurosci, vol.6, pp.1-6, 2012.

B. J. Hunnicutt, A comprehensive excitatory input map of the striatum reveals novel functional organization, Elife, vol.5, p.19103, 2016.

L. Kiferle, Caudate dopaminergic denervation and visual hallucinations: Evidence from a 123I-FP-CIT SPECT study, Park. Relat. Disord, vol.20, pp.761-765, 2014.

N. Pavese, V. Metta, S. K. Bose, K. R. Chaudhuri, and D. J. Brooks, Fatigue in Parkinson's disease is linked to striatal and limbic serotonergic dysfunction, Brain, vol.133, pp.3434-3443, 2010.

R. Morigaki and S. Goto, Putaminal Mosaic Visualized by Tyrosine Hydroxylase Immunohistochemistry in the Human Neostriatum, Front. Neuroanat, vol.10, pp.1-12, 2016.

J. F. Keeler, D. O. Pretsell, and T. W. Robbins, Functional implications of dopamine D1 vs. D2 receptors: A 'prepare and select' model of the striatal direct vs, Neuroscience, vol.282, pp.156-175, 2014.

T. Macpherson, M. Morita, and T. Hikida, Striatal direct and indirect pathways control decisionmaking behavior, Front. Psychol, vol.5, pp.1-7, 2014.

S. B. Floresco, The Nucleus Accumbens: An Interface Between Cognition, Emotion, and Action, Annu. Rev. Psychol, vol.66, pp.25-52, 2015.

S. Navailles and P. De-deurwaerdère, Presynaptic control of serotonin on striatal dopamine function, Psychopharmacology (Berl), vol.213, pp.213-242, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01178533

M. C. Reed, H. F. Nijhout, and J. Best, Computational studies of the role of serotonin in the basal ganglia, Front. Integr. Neurosci, vol.7, p.41, 2013.

B. N. Mathur and D. M. Lovinger, Serotonergic action on dorsal striatal function, Parkinsonism Relat. Disord, vol.18, pp.129-131, 2012.

E. E. Benarroch, Effects of acetylcholine in the striatum: Recent insights and therapeutic implications, Neurology, vol.79, pp.274-281, 2012.

H. Steiner and C. R. Gerfen, Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior, Exp. Brain Res, vol.123, pp.60-76, 1998.

G. L. Gerdeman, J. Ronesi, and D. M. Lovinger, Postsynaptic endocannabinoid release is critical to long-term depression in the striatum, Nat. Neurosci, vol.5, pp.446-451, 2002.

M. Fouyssac, B. J. Everitt, and D. Belin, Cellular basis of the intrastriatal functional shifts that underlie the development of habits: relevance for drug addiction, Curr. Opin. Behav. Sci, vol.13, pp.144-151, 2017.

A. H. Gittis, A. B. Nelson, M. T. Thwin, J. J. Palop, and A. C. Kreitzer, Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways, J. Neurosci, vol.30, pp.2223-2234, 2010.

S. Taverna, E. Ilijic, and D. J. Surmeier, Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson's Disease, J. Neurosci, vol.28, pp.5504-5512, 2008.

W. Oertel and J. B. Schulz, Current and experimental treatments of Parkinson disease: A guide for neuroscientists, J. Neurochem, pp.325-337, 2016.

S. A. Bravo, C. Rangel-barajas, B. F. Garduño, and . Pathophysiology-of-l-dopa, D1/D3 Receptors and Their Signaling Pathway. A Synopsis Park. Dis, pp.1-28, 2014.

A. Sauerbier, Treatment of Nonmotor Symptoms in Parkinson's Disease. Parkinson's Disease, 2017.

V. Voon, Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update, Lancet Neurol, vol.16, pp.238-250, 2017.

P. De-deurwaerdère, G. Di-giovanni, and M. J. Millan, Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry, Prog. Neurobiol, vol.151, pp.57-100, 2017.

M. Sierra, Apathy and impulse control disorders: Yin & yang of dopamine dependent behaviors, J. Parkinsons. Dis, vol.5, pp.625-636, 2015.

P. Seeman, Parkinson's disease treatment may cause impulse-control disorder via dopamine D3 receptors, Synapse, vol.69, pp.183-189, 2015.

J. Houeto, R. Magnard, J. W. Dalley, D. Belin, and S. Carnicella, Trait Impulsivity and Anhedonia: Two Gateways for the Development of Impulse Control Disorders in Parkinson's Disease? Front, Psychiatry, vol.7, pp.1-13, 2016.

M. Emre, Long-term safety of rivastigmine in parkinson disease dementia: An open-label, randomized study, Clin. Neuropharmacol, vol.37, pp.9-16, 2014.

S. Palfi, Long-term safety and tolerability of ProSavin , a lentiviral vector-based gene therapy for Parkinson ' s disease : a dose escalation , open-label , phase 1 / 2 trial, vol.383, 2014.

S. Palfi, Long-term follow up of a phase 1/2 study of ProSavin, a lentiviral vector gene therapy for Parkinson's disease. Hum, Gene Ther. Clin. Dev, vol.33, 2018.

M. Del-zompo, Genome-scan for bipolar disorder with sib-pair families in the Sardinian population: A new susceptibility locus on chromosome 1p22-p21?, Am. J. Med. Genet. Part B Neuropsychiatr. Genet, vol.153, pp.1200-1208, 2010.

M. Del-zompo, Association study in three different populations between the GPR88 gene and major psychoses, Mol. Genet. genomic Med, vol.2, pp.152-161, 2014.

F. Alkufri, A. Shaag, B. Abu-libdeh, and O. Elpeleg, Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities, Neurol. Genet, vol.2, pp.64-64, 2016.

K. Mizushima, A Novel G-Protein-Coupled Receptor Gene Expressed in Striatum, Online, vol.321, pp.314-321, 2000.

H. Mi, PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements, Nucleic Acids Res, vol.45, pp.183-189, 2017.

A. T. Ehrlich, Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing, Brain Struct. Funct, 2017.

R. Massart, J. P. Guilloux, V. Mignon, P. Sokoloff, and J. Diaz, Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents, Eur. J. Neurosci, vol.30, pp.397-414, 2009.

R. Massart, Developmental and adult expression patterns of the G protein-coupled receptor GPR88 in the rat: establishment of a dual nuclear-cytoplasmic localization, J. Comp. Neurol. Res. Syst. Neurosci, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594963

V. Waes, . Van, K. Y. Tseng, and H. Steiner, GPR88: A putative signaling molecule predominantly expressed in the striatum: Cellular localization and developmental regulation, Basal Ganglia, vol.1, pp.83-89, 2011.

A. Quintana, Lack of GPR88 enhances medium spiny neuron activity and alters motorand cue-dependent behaviors, Nat. Neurosci, vol.15, pp.1547-55, 2012.

M. Heiman, A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types, Cell, vol.135, pp.738-748, 2008.

R. Massart, P. Sokoloff, and J. Diaz, Distribution and Regulation of the G Protein-Coupled Receptor Gpr88 in the Striatum: Relevance to Parkinson's Disease, 2012.

P. E. Brandish, Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex, Neuron, vol.45, pp.861-872, 2005.

C. A. Ogden, Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: An expanded convergent functional genomics approach, Mol. Psychiatry, vol.9, pp.1007-1029, 2004.

B. Conti, Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine, Mol. Psychiatry, vol.12, pp.167-189, 2007.

M. Ingallinesi, Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats, Mol. Psychiatry, vol.20, pp.951-958, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02361884

C. Jin, Synthesis, Pharmacological Characterization, and Structure-Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor, ACS Chem. Neurosci, vol.5, pp.576-587, 2014.

A. C. Meirsman, Mice lacking GPR88 show motor deficit, improved spatial learning and low anxiety reversed by delta opioid antagonist, Biol. Psychiatry, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01594891

J. M. Taymans, J. E. Leysen, and X. Langlois, Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: Clues for RGS2 and RGS4 functions, J. Neurochem, vol.84, pp.1118-1127, 2003.

I. J. Dripps, The role of regulator of G protein signaling 4 in delta-opioid receptormediated behaviors, Psychopharmacology (Berl), vol.234, pp.29-39, 2017.

T. Lerner and A. Kreitzer, RGS4 Is Required for Dopaminergic Control of Striatal LTD and Susceptibility to Parkinsonian Motor Deficits, Neuron, vol.73, pp.347-359, 2012.

M. Schwendt, S. A. Sigmon, and J. Mcginty, RGS4 overexpression in the rat dorsal striatum modulates mGluR5-and amphetamine-mediated behavior and signaling, Psychopharmacology (Berl), vol.221, pp.621-635, 2012.

S. F. Logue, The orphan GPCR, GPR88, modulates function of the striatal dopamine system: A possible therapeutic target for psychiatric disorders?, Mol. Cell. Neurosci, vol.42, pp.438-447, 2009.

A. C. Meirsman, A. De-kerchove-dexaerde, B. L. Kieffer, and A. M. Ouagazzal, GPR88 in A2Areceptor-expressing neurons modulates locomotor response to dopamine agonists but not sensorimotor gating, Eur. J. Neurol, pp.0-2, 2017.

P. Svenningsson, DARPP-32: An Integrator of Neurotransmission, Annu. Rev. Pharmacol. Toxicol, vol.44, pp.269-296, 2004.

T. Arefin, Remodeling of Sensorimotor Brain Connectivity in Gpr88 deficient mice, Brain Connect, vol.7, pp.526-540, 2017.

S. Ben-hamida, Increased Alcohol Seeking in Mice Lacking Gpr88 Involves Dysfunctional Mesocorticolimbic Networks, Biol. Psychiatry, 2018.

A. Rainwater, E. Sanz, R. D. Palmiter, and A. Quintana, Striatal GPR88 Modulates Foraging Efficiency, J. Neurosci, vol.37, pp.7939-7947, 2017.

G. Maroteaux, Lack of anticipatory behavior in Gpr88 knockout mice showed by automatized home cage phenotyping. Genes, Brain Behav, pp.0-2, 2018.

A. C. Meirsman, A. Robé, A. Kerchove, B. L. De-&amp;-kieffer, and . Gpr88, D2R-neurons enhances anxiety-like behaviors, 2016.

J. Lau, A. Farzi, R. F. Enriquez, Y. C. Shi, and H. Herzog, GPR88 is a critical regulator of feeding and body composition in mice, Sci. Rep, vol.7, 2017.

S. Ztaou, Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease, J. Neurosci, vol.36, pp.9161-9172, 2016.

P. De-deurwaerdère, G. Di-giovanni, and M. J. Millan, Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry, Prog. Neurobiol, vol.151, pp.57-100, 2017.

R. K. Schwarting and J. P. Huston, The unilateral 6-hydroxydopamine lesion model in behavioral brain research, Prog. Neurobiol, vol.50, pp.275-331, 1996.

R. Magnard, What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease?, Transl. Psychiatry, vol.6, p.753, 2016.

R. K. Schwarting and J. P. Huston, Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae, Prog. Neurobiol, vol.49, pp.215-266, 1996.

G. Drui, Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson's disease, Mol Psychiatry, vol.19, pp.358-367, 2014.

C. D. Novina and P. A. Sharp, The RNAi revolution, Nature, vol.430, pp.161-164, 2004.

C. Baum, O. Kustikova, U. Modlich, Z. Li, and B. Fehse, Mutagenesis and Oncogenesis by Chromosomal Insertion of Gene Transfer Vectors. Hum, Gene Ther, vol.17, pp.253-263, 2006.

C. E. Thomas, A. Ehrhardt, and M. A. Kay, Progress and problems with the use of viral vectors for gene therapy, Nat. Rev. Genet, vol.4, pp.346-358, 2003.

X. Cao, Striatal Overexpression of FosB Reproduces Chronic Levodopa-Induced Involuntary Movements, J. Neurosci, vol.30, pp.7335-7343, 2010.

E. Saka, B. Elibol, S. Erdem, and T. Dalkara, Compartmental changes in expression of c-Fos and FosB proteins in intact and dopamine-depleted striatum after chronic apomorphine treatment, Brain Res, vol.825, pp.104-114, 1999.

D. Wirtshafter, G. Schardt, and K. E. Asin, Compartmentally specific effects of quinpirole on the striatal Fos expression induced by stimulation of D1-dopamine receptors in intact rats, Brain Res, vol.771, pp.271-277, 1997.

S. J. Crocker, M. Morelli, N. Wigle, Y. Nakabeppu, and G. S. Robertson, D1-receptor-related priming is attenuated by antisense-meditated 'knockdown' of fosB expression, Mol. Brain Res, vol.53, pp.69-77, 1998.

A. Ghavami, Differential effects of regulator of G protein signaling (RGS) proteins on serotonin 5-HT1A, 5-HT2A, and dopamine D2 receptor-mediated signaling and adenylyl cyclase activity, Cell. Signal, vol.16, pp.711-721, 2004.

C. E. Beyer, Regulators of G-protein signaling 4: Modulation of 5-HT1A-mediated neurotransmitter release in vivo, Brain Res, vol.1022, pp.214-220, 2004.

A. M. Lione, M. Errico, S. L. Lin, and D. S. Cowen, Activation of extracellular signal-regulated kinase (ERK) and Akt by human serotonin 5-HT(1B) receptors in transfected BE(2)-C neuroblastoma cells is inhibited by RGS4, J. Neurochem, vol.75, pp.934-938, 2000.

Z. Gu, Q. Jiang, and Z. Yan, RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction in a rat model of schizophrenia, Mol. Pharmacol, vol.71, pp.1030-1039, 2007.

A. Virlogeux, Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington's Disease, Cell Rep, vol.22, pp.110-122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02091323

B. Deleglise, Dysregulated Neurotransmission induces Trans-synaptic degeneration in reconstructed, Neuronal Networks. Sci. Rep, vol.8, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01907549

J. M. Heisler, The Attentional Set Shifting Task: A Measure of Cognitive Flexibility in Mice, J. Vis. Exp, vol.2, issue.7, 2015.

M. Cabanas, F. Bassil, N. Mons, M. Garret, and Y. H. Cho, Changes in striatal activity and functional connectivity in a mouse model of Huntington's disease, PLoS One, vol.12, pp.1-19, 2017.

J. C. Stout, Neurocognitive Signs in Prodromal Huntington Disease, Neuropsychology, vol.25, pp.1-14, 2011.

D. Belin, A. Belin-rauscent, J. E. Murray, and B. J. Everitt, Addiction: failure of control over maladaptive incentive habits, Curr. Opin. Neurobiol, pp.564-572, 2013.

E. Burguière, P. Monteiro, L. Mallet, G. Feng, and A. M. Graybiel, Striatal circuits, habits, and implications for obsessive-compulsive disorder, Curr. Opin. Neurobiol, vol.30, pp.59-65, 2015.

D. A. Kupferschmidt, K. Juczewski, G. Cui, K. A. Johnson, D. M. Lovinger et al., but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning, vol.96, p.5, 2017.

J. O&apos;hare, N. Calakos, and H. H. Yin, Recent insights into corticostriatal circuit mechanisms underlying habits, Curr. Opin. Behav. Sci, vol.20, pp.40-46, 2018.

T. M. Furlong, L. H. Corbit, R. A. Brown, and B. W. Balleine, Methamphetamine promotes habitual action and alters the density of striatal glutamate receptor and vesicular proteins in dorsal striatum, Addict. Biol, vol.23, pp.857-867, 2018.

C. M. Gremel, Endocannabinoid Modulation of Orbitostriatal Circuits Gates Habit Formation, Neuron, vol.90, pp.1312-1324, 2016.

T. N. Lerner, Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits, Cell, vol.162, pp.635-647, 2015.

H. Ikeda, T. Saigusa, J. Kamei, N. Koshikawa, and A. R. Cools, Spiraling dopaminergic circuitry from the ventral striatum to dorsal striatum is an effective feed-forward loop, Neuroscience, vol.241, pp.126-134, 2013.

E. Burguière, P. Monteiro, G. Feng, and A. M. Graybiel, Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors, Science, vol.340, pp.1243-1246, 2013.

T. M. Furlong and L. Corbit, Goal-Directed Decision Making, 2018.

T. M. Furlong, A. S. Supit, L. H. Corbit, S. Killcross, and B. W. Balleine, Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamineinduced deficits in goal-directed action, Addict. Biol, vol.22, pp.172-183, 2015.