A. Abanda, U. Mori, and J. A. Lozano, A review on distance based time series classification, Data Mining and Knowledge Discovery, vol.33, issue.2, p.46, 2019.

M. D. Addlesee, A. Jones, F. Livesey, and F. Samaria, The orl active floor [sensor system, IEEE Personal Communications, vol.4, issue.5, p.59, 1997.

M. Aharon, M. Elad, and A. Bruckstein, rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on signal processing, vol.54, issue.11, p.113, 2006.

S. Al-stouhi and C. K. Reddy, Transfer learning for class imbalance problems with inadequate data, Knowledge and Information Systems, vol.48, issue.1, pp.201-228, 0104.

M. Alwan, P. Rajendran, S. Kell, D. Mack, S. Dalal et al., A smart and passive floor-vibration based fall detector for elderly, vol.1, p.40, 2006.

M. G. Amin, Y. D. Zhang, F. Ahmad, and K. C. Ho, Radar signal processing for elderly fall detection: The future for in-home monitoring, IEEE Signal Processing Magazine, vol.33, issue.2, p.55, 2016.

J. An and S. Cho, Variational autoencoder based anomaly detection using reconstruction probability, Special Lecture on IE, vol.2, issue.1

E. K. Antonsson and R. W. Mann, The frequency content of gait, Journal of biomechanics, vol.18, issue.1, p.63, 1985.

B. Ao, Y. Wang, H. Liu, D. Li, L. Song et al., Context impacts in accelerometerbased walk detection and step counting, Sensors, vol.18, issue.11

N. Asadi, A. Mirzaei, and E. Haghshenas, Creating discriminative models for time series classification and clustering by hmm ensembles, IEEE Transactions on Cybernetics, vol.46, issue.12, p.43, 2016.

M. Atiq, Transfer algorithms on decision trees with class imbalance, vol.87, p.101

E. Auvinet, F. Multon, A. Saint-arnaud, J. Rousseau, and J. Meunier, Fall detection with multiple cameras: An occlusion-resistant method based on 3-d silhouette vertical distribution, IEEE Transactions on Information Technology in Biomedicine, vol.15, issue.2, p.53, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640199

J. Bae and M. Tomizuka, Gait phase analysis based on a hidden markov model, Mechatronics, vol.21, issue.6, p.113, 2011.

P. Barralon, N. Vuillerme, and N. Noury, Walk detection with a kinematic sensor: Frequency and wavelet comparison, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, p.113, 2006.

R. K. Begg, M. Palaniswami, and B. Owen, Support vector machines for automated gait classification, IEEE Transactions on Biomedical Engineering, vol.52, issue.5, p.68, 2005.

M. Bekkar, H. Djema, and T. Alitouche, Evaluation measures for models assessment over imbalanced data sets, Journal of Information Engineering and Applications, vol.3, issue.104, pp.27-38, 2013.

S. Ben-david, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira et al., A theory of learning from different domains, Machine Learning, vol.79, p.89, 2010.

D. J. Berndt and J. Clifford, Using dynamic time warping to find patterns in time series, KDD workshop, vol.10, p.43, 1994.

F. Bianchi, S. J. Redmond, M. R. Narayanan, S. Cerutti, and N. H. Lovell, Barometric pressure and triaxial accelerometry-based falls event detection, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, issue.6, p.54, 2010.

A. Bifet, G. Holmes, B. Pfahringer, and E. Frank, Fast perceptron decision tree learning from evolving data streams, Advances in Knowledge Discovery and Data Mining, p.91, 2010.

R. J. Bolton and D. J. Hand, Statistical fraud detection: A review, Statistical Science, vol.17, issue.3, pp.235-249

A. K. Bourke and G. M. Lyons, A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor, Medical engineering & physics, vol.30, issue.1, p.54, 2008.

A. K. Bourke, J. V. O'brien, and G. M. Lyons, Evaluation of a threshold-based triaxial accelerometer fall detection algorithm, Gait & Posture, vol.26, issue.2, p.39, 2007.

A. K. Bourke, P. W. Van-de-ven, A. E. Chaya, G. M. Olaighin, and J. Nelson, Testing of a long-term fall detection system incorporated into a custom vest for the elderly, Conf Proc IEEE Eng Med Biol Soc, vol.50, p.54, 2008.

A. K. Bourke, P. Van-de-ven, M. Gamble, R. O'connor, K. Murphy et al., Evaluation of waist-mounted triaxial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities, Journal of biomechanics, vol.43, issue.15, p.54, 2010.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, vol.3, p.120, 2011.

A. Brajdic and R. Harle, Walk detection and step counting on unconstrained smartphones, Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pp.225-234, 2013.

L. Breiman, Random forests, Machine Learning, vol.45, p.70, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, p.65, 1984.

M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying density-based local outliers, SIGMOD Rec, vol.29, issue.2, p.45, 2000.

H. Bristow, A. Eriksson, and S. Lucey, Fast convolutional sparse coding, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.120, p.122, 2013.

S. Brownsell and M. S. Hawley, Automatic fall detectors and the fear of falling, Journal of Telemedicine and Telecare, vol.10, issue.5, p.31, 2004.

Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, A unified multi-scale deep convolutional neural network for fast object detection, European conference on computer vision, p.114, 2016.

W. M. Campbell, D. E. Sturim, D. A. Reynolds, and A. Solomonoff, Svm based speaker verification using a gmm supervector kernel and nap variability compensation, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol.1, 1951.

, Injury Prevention & Control. Fatal Injury Data, Centers for Disease Control and Prevention, vol.20, p.30

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Smote: synthetic minority over-sampling technique, Journal of artificial intelligence research, vol.16, p.90, 2002.

J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy, Wearable sensors for reliable fall detection, IEEE Engineering in Medicine and Biology 27th Annual Conference, p.39, 2005.

J. Chua, Y. C. Chang, and W. K. Lim, A simple vision-based fall detection technique for indoor video surveillance. Signal, Image and Video Processing, vol.9, p.53, 1938.

T. Fu, A review on time series data mining, Engineering Applications of Artificial Intelligence, vol.24, issue.1, p.43, 2011.

M. Corduas and D. Piccolo, Time series clustering and classification by the autoregressive metric, Computational Statistics & Data Analysis, vol.52, issue.4, p.43, 2008.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, Optimal transport for domain adaptation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.9, p.89, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377220

J. Dai, X. Bai, Z. Yang, Z. Shen, and D. Xuan, Perfalld: A pervasive fall detection system using mobile phones, 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), vol.39, p.54, 2010.

W. Dai, Q. Yang, G. Xue, and Y. Yu, Boosting for transfer learning, Proceedings of the 24th International Conference on Machine Learning, ICML '07, p.88, 2007.

H. Daumé, Frustratingly easy domain adaptation, Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, p.88, 2007.

N. Dave, Feature extraction methods lpc, plp and mfcc in speech recognition, International Journal For Advance Research in Engineering And Technology, vol.1, pp.7-2013

O. Day and T. M. Khoshgoftaar, A survey on heterogeneous transfer learning, Journal of Big Data, vol.4, issue.1, p.88, 2017.

T. Degen, H. Jaeckel, M. Rufer, and S. Wyss, Speedy: A fall detector in a wrist watch, ISWC, vol.50, p.54, 2003.

Y. S. Delahoz and M. A. Labrador, Survey on fall detection and fall prevention using wearable and external sensors, Sensors, vol.14, issue.10, p.36, 2014.

M. O. Derawi, Accelerometer-based gait analysis, a survey. Nor Informasjonssikkerhetskonferanse NISK, p.112, 2010.

S. L. Dockstader, M. J. Berg, and A. M. Tekalp, Stochastic kinematic modeling and feature extraction for gait analysis, IEEE Transactions on Image Processing, vol.12, issue.8, p.113, 2003.

C. Doukas and I. Maglogiannis, Advanced patient or elder fall detection based on movement and sound data, Second International Conference on Pervasive Computing Technologies for Healthcare, vol.49, p.54, 2008.

D. Dua and E. K. Taniskidou, UCI machine learning repository, p.103, 2017.

A. Dubois and F. Charpillet, A gait analysis method based on a depth camera for fall prevention, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.112, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069640

A. Dubois and F. Charpillet, Measuring frailty and detecting falls for elderly home care using depth camera, Journal of ambient intelligence and smart environments, vol.9, issue.4, p.39, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657234

N. El-bendary, Q. Tan, F. C. Pivot, and A. Lam, Fall detection and prevention for the elderly: A review of trends and challenges, International Journal on Smart Sensing & Intelligent Systems, vol.6, issue.3, p.36, 2013.

J. Fagert, M. Mirshekari, S. Pan, P. Zhang, and H. Y. Noh, Characterizing left-right gait balance using footstep-induced structural vibrations, Sensors and Smart Structures Technologies for Civil, vol.10168, p.112, 2017.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, Unsupervised visual domain adaptation using subspace alignment, 2013 IEEE International Conference on Computer Vision, p.89, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869417

Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, vol.55, issue.1, p.88, 1997.

L. P. Fried, C. M. Tangen, J. Walston, A. B. Newman, C. Hirsch et al., Frailty in older adults: evidence for a phenotype, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.56, issue.3, p.30, 2001.

B. D. Fulcher and N. S. Jones, Highly comparative feature-based time-series classification, IEEE Transactions on Knowledge and Data Engineering, vol.26, issue.12, p.44, 2014.

B. D. Fulcher, M. A. Little, and N. S. Jones, Highly comparative time-series analysis: the empirical structure of time series and their methods, Journal of The Royal Society Interface, issue.83, p.44

A. Gabell and U. Nayak, The effect of age on variability in gait, Journal of gerontology, vol.39, issue.6, p.122, 1984.

C. Garcia-cardona and B. Wohlberg, Convolutional dictionary learning: A comparative review and new algorithms, IEEE Transactions on Computational Imaging, vol.4, issue.3, p.120, 2018.

S. Gasparrini, E. Cippitelli, S. Spinsante, and E. Gambi, A depth-based fall detection system using a kinect® sensor, Sensors, vol.14, issue.2, p.53, 2014.

P. Germain, A. Habrard, F. Laviolette, and E. Morvant, Pac-bayes and domain adaptation. Neurocomputing, vol.379, p.89, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01563152

R. Girshick, Fast r-cnn, 2015 IEEE International Conference on Computer Vision (ICCV), vol.149, p.150, 2015.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, 2014 IEEE Conference on Computer Vision and Pattern Recognition, p.114, 2014.

H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck et al., Adaptive random forests for evolving data stream classification, Machine Learning, vol.106, p.91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01689026

R. C. González, A. M. López, J. Rodriguez-uría, D. Álvarez, and J. C. Alvarez, Realtime gait event detection for normal subjects from lower trunk accelerations, Gait and Posture, vol.31, issue.3, p.113, 2010.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, vol.148, p.149, 2016.

B. Gregorutti, B. Michel, and P. Saint-pierre, Correlation and variable importance in random forests, Statistics and Computing, vol.27, issue.3, p.137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01935918

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, vol.46, p.70, 2002.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, vol.67, p.68

S. Hawkins, H. He, G. Williams, and R. Baxter, Outlier detection using replicator neural networks, Data Warehousing and Knowledge Discovery, p.45, 2002.

L. Hazelhoff, J. Han, and P. H. De-with, Video-based fall detection in the home using principal component analysis, Advanced Concepts for Intelligent Vision Systems, p.53, 2008.

H. He and E. A. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and Data Engineering, vol.21, issue.9, p.104, 2009.

R. Henry, L. Matti, and S. Raimo, Human tracking using near field imaging, Second International Conference on Pervasive Computing Technologies for Healthcare, p.112, 2008.

F. Hijaz, N. Afzal, T. Ahmad, and O. Hasan, Survey of fall detection and daily activity monitoring techniques, 2010 International Conference on Information and Emerging Technologies, p.36, 2010.

R. H. Hnery, L. Matti, and S. Raimo, Human tracking using near field imaging, Second International Conference on Pervasive Computing Technologies for Healthcare, vol.41, p.58, 2008.

M. K. Holden, K. M. Gill, M. R. Magliozzi, J. Nathan, and L. Piehl-baker, Clinical gait assessment in the neurologically impaired: reliability and meaningfulness, Physical therapy, vol.64, issue.1, p.122, 1984.

J. Hosang, R. Benenson, P. Dollár, and B. Schiele, What makes for effective detection proposals?, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, p.149, 2016.

H. Hu, J. Zheng, E. Zhan, and L. Yu, Curve similarity model for real-time gait phase detection based on ground contact forces, Sensors, vol.19, issue.14

J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf, Correcting sample selection bias by unlabeled data, Proceedings of the 19th International Conference on Neural Information Processing Systems, p.88, 2006.

G. Hulten, L. Spencer, and P. Domingos, Mining time-changing data streams, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p.91, 2001.

R. Igual, C. Medrano, and I. Plaza, Challenges, issues and trends in fall detection systems, Biomedical engineering online, vol.12, issue.1, p.36, 2013.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol.37, p.148, 2015.

A. Jeon, J. Kim, I. Kim, J. Jung, S. Ye et al., Implementation of the personal emergency response system using a 3-axial accelerometer, 6th International Special Topic Conference on Information Technology Applications in Biomedicine, vol.49, p.54, 2007.

H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, Smart home based on wifi sensing: A survey, IEEE Access, vol.6, p.112, 2018.

M. Kangas, I. Vikman, J. Wiklander, P. Lindgren, L. Nyberg et al., Sensitivity and specificity of fall detection in people aged 40 years and over, Gait & Posture, vol.29, issue.4, p.54, 2009.

S. S. Khan and J. Hoey, Review of fall detection techniques: A data availability perspective, Medical engineering & physics, vol.39, p.36, 2017.

S. Khojasteh, J. Villar, C. Chira, V. González, E. De-la et al., Improving fall detection using an on-wrist wearable accelerometer, Sensors, vol.18, issue.5, p.39, 2018.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations, pp.12-2014

S. Kiranyaz, T. Ince, and M. Gabbouj, Real-time patient-specific ecg classification by 1-d convolutional neural networks, IEEE Transactions on Biomedical Engineering, vol.63, issue.3, p.114, 2015.

L. Klack, C. Möllering, M. Ziefle, and T. Schmitz-rode, Future care floor: A sensitive floor for movement monitoring and fall detection in home environments, Wireless Mobile Communication and Healthcare, p.41, 2011.

B. Krawczyk and P. Skryjomski, Cost-sensitive perceptron decision trees for imbalanced drifting data streams, Machine Learning and Knowledge Discovery in Databases, p.91, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, p.119, 2012.

M. Kukar and I. Kononenko, Cost-sensitive learning with neural networks, ECAI, vol.98, p.90, 1998.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, p.114, 2015.

T. Lee and A. Mihailidis, An intelligent emergency response system: preliminary development and testing of automated fall detection, Journal of Telemedicine and Telecare, vol.11, issue.4, p.53, 2005.

D. Li, D. Chen, B. Jin, L. Shi, J. Goh et al., Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks, Artificial Neural Networks and Machine Learning -ICANN 2019: Text and Time Series, p.45, 2019.

M. Li, S. Tian, L. Sun, and X. Chen, Gait analysis for post-stroke hemiparetic patient by multi-features fusion method, Sensors, vol.19, issue.7

Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach et al., Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information, Sixth International Workshop on Wearable and Implantable Body Sensor Networks, p.39, 2009.

Y. Li, K. C. Ho, and M. Popescu, A microphone array system for automatic fall detection, IEEE Transactions on Biomedical Engineering, vol.59, issue.5, p.55, 1940.

Y. Li, K. C. Ho, and M. Popescu, Efficient source separation algorithms for acoustic fall detection using a microsoft kinect, IEEE Transactions on Biomedical Engineering, vol.61, issue.3, p.55, 1940.

X. Lian and J. Liu, Revisit batch normalization: New understanding and refinement via composition optimization, Proceedings of Machine Learning Research, vol.89, p.148, 2019.

J. Lin, Divergence measures based on the shannon entropy, IEEE Transactions on Information theory, vol.37, issue.1, p.94, 1991.

J. Lines, L. Davis, J. Hills, and A. Bagnall, A shapelet transform for time series classification, vol.46, pp.289-297, 2012.

F. T. Liu, K. M. Ting, and Z. Zhou, Isolation forest, Eighth IEEE International Conference on Data Mining, p.44, 2008.

L. Liu, M. Popescu, M. Skubic, M. Rantz, T. Yardibi et al., Automatic fall detection based on doppler radar motion signature, 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, vol.51, p.55, 2011.

I. C. Lopes, B. Vaidya, and J. J. Rodrigues, Towards an autonomous fall detection and alerting system on a mobile and pervasive environment, Telecommunication Systems, vol.52, issue.4, p.39, 2013.

S. R. Lord, C. Sherrington, H. B. Menz, and J. C. Close, Falls in Older People: Risk Factors and Strategies for Prevention, vol.31, p.77, 1921.

O. P. Mahela, A. G. Shaik, and N. Gupta, A critical review of detection and classification of power quality events, Renewable and Sustainable Energy Reviews, vol.41, p.46, 2015.

J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, Supervised dictionary learning, Advances in neural information processing systems, p.113, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00322431

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research, vol.11, p.113, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

Y. Mansour, M. Mohri, and A. Rostamizadeh, Domain adaptation: Learning bounds and algorithms, COLT 2009 -The 22nd Conference on Learning Theory, pp.2-2009

J. S. Mcphee, D. P. French, D. Jackson, J. Nazroo, N. Pendleton et al., Physical activity in older age: perspectives for healthy ageing and frailty, Biogerontology, vol.17, issue.3, p.112, 1921.

S. ,

P. Miaou, C. Sung, and . Huang, A customized human fall detection system using omni-camera images and personal information, 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2, vol.47, p.53, 2006.

S. G. Miaou, P. H. Sung, and C. Y. Huang, A customized human fall detection system using omni-camera images and personal information, Conference Proceedings -1st

, Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, vol.2, p.38, 2006.

L. Minvielle and J. Audiffren, Nursenet: Monitoring elderly levels of activity with a piezoelectric floor, Sensors, vol.19, issue.18

L. Minvielle, M. Atiq, R. Serra, M. Mougeot, and N. Vayatis, Fall detection using smart floor sensor and supervised learning, 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3445-3448, 1957.

L. Minvielle, M. Atiq, S. Peignier, and M. Mougeot, Transfer learning on decision tree with class imbalance, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), p.84, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02369044

A. Morales-esteban, F. Martínez-Álvarez, A. Troncoso, J. Justo, and C. Rubio-escudero, Pattern recognition to forecast seismic time series, Expert Systems with Applications, vol.37, issue.12, p.42, 2010.

J. E. Morley, B. Vellas, G. A. Van-kan, S. D. Anker, J. M. Bauer et al., Frailty consensus: a call to action, Journal of the American Medical Directors Association, vol.14, issue.6, p.30, 2013.

M. Mubashir, L. Shao, and L. Seed, A survey on fall detection: Principles and approaches, Neurocomputing, vol.100, p.40, 2013.

A. Muro-de-la-herran, B. Garcia-zapirain, and A. Mendez-zorrilla, Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications, Sensors, vol.14, issue.2, p.112, 2014.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th international conference on machine learning (ICML-10), p.117, 2010.

Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence o (1/k?2), Doklady AN USSR, vol.269, p.147, 1983.

Y. Nizam, M. N. Mohd, and M. M. , Human fall detection from depth images using position and velocity of subject, IEEE International Symposium on Robotics and Intelligent Sensors, vol.105, p.53, 2016.

N. Noury, P. Fleury, .. K. Rumeau, G. Bourke, V. Laighin et al., Fall detection -Principles and Methods, Conf Proc IEEE-EMBS, p.36, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00201202

M. Nyan, F. Tay, A. Tan, and K. Seah, Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization, Medical Engineering and Physics, vol.28, issue.8, p.54, 2006.

R. J. Orr and G. D. Abowd, The smart floor: A mechanism for natural user identification and tracking, CHI '00 Extended Abstracts on Human Factors in Computing Systems, CHI EA '00, p.59, 2000.

M. Otero, Application of a continuous wave radar for human gait recognition, Signal Processing, Sensor Fusion, and Target Recognition XIV, vol.5809, p.112, 2005.

W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo et al., Deepid-net: Deformable deep convolutional neural networks for object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, p.114, 2015.

M. Paajanen, J. Lekkala, and K. Kirjavainen, Electromechanical film (emfi) -a new multipurpose electret material, Sensors and Actuators A: Physical, vol.84, issue.1, p.60, 2000.

K. K. Pal and K. Sudeep, Preprocessing for image classification by convolutional neural networks, 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), p.119, 2016.

S. Pan, T. Yu, M. Mirshekari, J. Fagert, A. Bonde et al., Footprintid: Indoor pedestrian identification through ambient structural vibration sensing, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol.1, p.112, 2017.

S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.10, pp.1345-1359, 2010.

N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, Automatic fall monitoring: a review, Sensors, vol.14, issue.7, p.52, 2014.

S. Peignier, Transfer learning synthetic data generator, vol.87, p.102

J. T. Perry, S. Kellog, S. M. Vaidya, J. Youn, H. Ali et al., Survey and evaluation of real-time fall detection approaches, 6th International Symposium on High Capacity Optical Networks and Enabling Technologies (HONET), p.36, 2009.

M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, A review of novelty detection, Signal Processing, vol.99, p.44, 2014.

N. Poschadel, S. Moghaddamnia, J. C. Alcaraz, M. Steinbach, and J. Peissig, A dictionary learning based approach for gait classification, 2017 22nd International Conference on Digital Signal Processing (DSP), vol.113, p.122, 2017.

V. Radha and C. Vimala, A review on speech recognition challenges and approaches, World of Computer Science and Information Technology Journal (WCSIT), vol.2, issue.1, p.42, 2012.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, vol.114, p.149, 2016.

S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, vol.114, p.150, 2015.

R. M. Rifkin, Everything old is new again: a fresh look at historical approaches in machine learning, p.124, 2002.

H. Rimminen, J. Lindström, and R. Sepponen, Positioning accuracy and multi-target separation with a human tracking system using near field imaging, International Journal on Smart Sensing and Intelligent Systems, vol.2, issue.1, p.112, 2009.

H. Rimminen, J. Lindström, M. Linnavuo, and R. Sepponen, Detection of falls among the elderly by a floor sensor using the electric near field, IEEE Transactions on Information Technology in Biomedicine, vol.14, issue.6, p.55, 2010.

J. L. Robinson and G. L. Smidt, Quantitative gait evaluation in the clinic, Physical Therapy, vol.61, issue.3, p.122, 1981.

R. V. Rodríguez, R. P. Lewis, J. S. Mason, and N. W. Evans, Footstep recognition for a smart home environment, International Journal of Smart Home, vol.2, issue.2, p.113, 2008.

C. Rougier, J. Meunier, A. St-arnaud, and J. Rousseau, Monocular 3d head tracking to detect falls of elderly people, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, p.47, 2006.

C. Rougier, J. Meunier, A. St-arnaud, and J. Rousseau, Fall detection from human shape and motion history using video surveillance, 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), vol.47, p.53, 2007.

C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and J. Meunier, Fall detection from depth map video sequences, Proceedings of the 9th International Conference on Toward Useful Services for Elderly and People with Disabilities: Smart Homes and Health Telematics, vol.38, p.53, 2011.

J. Rubin, S. Parvaneh, A. Rahman, B. Conroy, and S. Babaeizadeh, Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ecg recordings, Computing in Cardiology (CinC), p.114, 2017.

R. Rubinstein, M. Zibulevsky, and M. Elad, Double sparsity: Learning sparse dictionaries for sparse signal approximation, IEEE Transactions on signal processing, vol.58, issue.3, p.119, 2009.

I. D. Sacco and A. C. Amadio, A study of biomechanical parameters in gait analysis and sensitive cronaxie of diabetic neuropathic patients, Clinical Biomechanics, vol.15, issue.3, p.113, 2000.

B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-taylor, and J. C. Platt, Support vector method for novelty detection, Advances in neural information processing systems, p.44, 2000.

N. Segev, M. Harel, S. Mannor, K. Crammer, and R. El-yaniv, Learn on source, refine on target: A model transfer learning framework with random forests, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.9, p.94, 2017.

R. Serra, Développement et caractérisation d'un système de sol piézoélectrique intelligent. Application à la détection des chutes, p.62, 2017.

R. Serra, D. Knittel, P. D. Croce, and R. Peres, Activity recognition with smart polymer floor sensor: Application to human footstep recognition, IEEE Sensors Journal, vol.16, issue.14, p.116, 2016.

S. Sinha and S. Deb, Depth sensor based skeletal tracking evaluation for fall detection systems, International Journal of Computer Trends and Technology, vol.9, issue.7, p.39, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, vol.15, issue.56, p.148, 2014.

K. Sternickel, Automatic pattern recognition in ecg time series, Computer Methods and Programs in Biomedicine, vol.68, issue.2, p.46, 2002.

E. E. Stone and M. Skubic, Fall detection in homes of older adults using the microsoft kinect, IEEE Journal of Biomedical and Health Informatics, vol.19, issue.1, p.53, 2015.

B. Y. Su, K. C. Ho, M. J. Rantz, and M. Skubic, Doppler radar fall activity detection using the wavelet transform, IEEE Transactions on Biomedical Engineering, vol.62, issue.3, p.55, 1940.

K. Suder, F. R. Drepper, M. Schiek, and H. Abel, One-dimensional, nonlinear determinism characterizes heart rate pattern during paced respiration, American Journal of Physiology-Heart and Circulatory Physiology, vol.275, issue.3, p.114, 1998.

Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, Cost-sensitive boosting for classification of imbalanced data, Pattern Recognition, vol.40, issue.12, p.90, 2007.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, On the importance of initialization and momentum in deep learning, Proceedings of the 30th International Conference on Machine Learning, vol.28, pp.1139-1147, 2013.

J. Suutala and J. Röning, Methods for person identification on a pressure-sensitive floor: Experiments with multiple classifiers and reject option. Information Fusion, Special Issue on Applications of Ensemble Methods, vol.9, issue.1, p.113, 2008.

J. Suutala, K. Fujinami, and J. Röning, Gaussian process person identifier based on simple floor sensors, Smart Sensing and Context, vol.59, p.112, 2008.

J. Taborri, E. Palermo, S. Rossi, and P. Cappa, Gait partitioning methods: A systematic review, Sensors, vol.16, issue.1, p.113, 2016.

O. Tanaka, T. Ryu, A. Hayashida, V. G. Moshnyaga, and K. Hashimoto, A smart carpet design for monitoring people with dementia, Progress in Systems Engineering, vol.60, p.112, 2015.

B. B. Thompson, R. J. Marks, J. J. Choi, M. A. El-sharkawi, M. Huang et al., Implicit learning in autoencoder novelty assessment, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02, vol.3, p.45, 2002.

M. Tolkiehn, L. Atallah, B. Lo, and G. Yang, Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.39, 2011.

T. Tommasi, F. Orabona, and B. Caputo, Safety in numbers: Learning categories from few examples with multi model knowledge transfer, p.89, 2010.

C. Truong, R. Barrois-müller, T. Moreau, C. Provost, A. Vienne-jumeau et al., A Data Set for the Study of Human Locomotion with Inertial Measurements Units, Image Processing On Line, vol.9, p.32, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02442702

C. Truong, L. Oudre, and N. Vayatis, Selective review of offline change point detection methods, Signal Processing, vol.167, p.43, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02442692

H. Tzeng, M. Chen, and J. Chen, Design of fall detection system with floor pressure and infrared image, 2010 International Conference on System Science and Engineering, p.41, 2010.

J. R. Uijlings, K. E. Van-de-sande, T. Gevers, and A. W. Smeulders, Selective search for object recognition, International Journal of Computer Vision, vol.104, issue.2, p.149, 2013.

T. T. Um, F. M. Pfister, D. Pichler, S. Endo, M. Lang et al., Data augmentation of wearable sensor data for parkinson's disease monitoring using convolutional neural networks, Proceedings of the 19th ACM International Conference on Multimodal Interaction, p.119, 2017.

, United Nations, Department of Economic and Social Affairs, Population Division, vol.20, p.30, 2019.

P. Vallabh and R. Malekian, Fall detection monitoring systems: a comprehensive review, Journal of Ambient Intelligence and Humanized Computing, vol.9, issue.6, p.40, 2018.

M. Valtonen, J. Maentausta, and J. Vanhala, Tiletrack: Capacitive human tracking using floor tiles, 2009 IEEE International Conference on Pervasive Computing and Communications, vol.58, p.112, 2009.

B. Vellas, Implementing frailty screening, assessment, and sustained intervention: the experience of the gérontopôle. The journal of nutrition, health & aging, vol.19, p.112, 1921.

V. Vishwakarma, C. Mandal, and S. Sural, Automatic detection of human fall in video, Pattern Recognition and Machine Intelligence, vol.38, p.53, 2007.

H. Wang, D. Zhang, Y. Wang, J. Ma, Y. Wang et al., Rt-fall: A real-time and contactless fall detection system with commodity wifi devices, IEEE Transactions on Mobile Computing, vol.16, issue.2, p.55, 1941.

W. Wang, A. X. Liu, and M. Shahzad, Gait recognition using wifi signals, Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, p.112, 2016.

Y. Wang, K. Wu, and L. M. Ni, Wifall: Device-free fall detection by wireless networks, IEEE Transactions on Mobile Computing, vol.16, issue.2, p.55, 1941.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, A survey of transfer learning, Journal of Big data, vol.3, issue.1, p.87, 2016.

K. R. Weiss and T. M. Khoshgoftaar, Investigating transfer learners for robustness to domain class imbalance, 15th IEEE International Conference on Machine Learning and Applications (ICMLA), vol.90, p.103, 2016.

K. R. Weiss and T. M. Khoshgoftaar, Comparing transfer learning and traditional learning under domain class imbalance, 16th IEEE International Conference on Machine Learning and Applications (ICMLA), p.103, 2017.

F. Werner, J. Diermaier, S. Schmid, and P. Panek, Fall detection with distributed floormounted accelerometers: An overview of the development and evaluation of a fall detection system within the project ehome, 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, vol.50, p.55, 1940.

B. Wohlberg, Efficient convolutional sparse coding, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.121, 2014.

B. Wohlberg, Sporco: A python package for standard and convolutional sparse representations, Proceedings of the 15th Python in Science Conference, p.122, 2017.

, World Health Organization. WHO Global Report on Falls Prevention in Older Age, Community Health, vol.21, p.59, 2007.

H. Wu, B. Salzberg, and D. Zhang, Online event-driven subsequence matching over financial data streams, Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD '04, pp.23-34, 2004.

J. Xiaodan-zhuang, G. Huang, M. Potamianos, and . Hasegawa-johnson, Acoustic fall detection using gaussian mixture models and gmm supervectors, IEEE International Conference on Acoustics, Speech and Signal Processing, vol.49, p.55, 1940.

T. Xu, Y. Zhou, and J. Zhu, New advances and challenges of fall detection systems: A survey, Applied Sciences, vol.8, issue.3, p.52, 2018.

L. S. Yaeger, R. F. Lyon, and B. J. Webb, Effective training of a neural network character classifier for word recognition, Advances in neural information processing systems, p.69, 1997.

J. Yang, R. Yan, and A. G. Hauptmann, Cross-domain video concept detection using adaptive svms, Proceedings of the 15th ACM international conference on Multimedia, p.89, 2007.

L. Ye and E. Keogh, Time series shapelets: A new primitive for data mining, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09, p.43, 2009.

H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek, Automatic step detection in the accelerometer signal, 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), p.113, 2007.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks?, Advances in neural information processing systems, p.118, 2014.

M. Yu, Y. Yu, A. Rhuma, S. M. Naqvi, L. Wang et al., An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment, IEEE Journal of Biomedical and Health Informatics, vol.17, issue.6, p.53, 1947.

X. Yu, Approaches and principles of fall detection for elderly and patient, Health-Com 2008-10th International Conference on e-health Networking, Applications and Services, vol.36, p.38, 2008.

J. Yun, W. Woo, and J. Ryu, User identification using user's walking pattern over the ubifloorii, Computational Intelligence and Security, vol.59, p.112, 2005.

C. Zhang, W. Liu, H. Ma, and H. Fu, Siamese neural network based gait recognition for human identification, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.113, 2016.

Y. Zhang, P. O. Ogunbona, W. Li, B. Munro, and G. G. Wallace, Pathological gait detection of parkinson's disease using sparse representation, 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), vol.113, p.122, 2013.

Z. Zhang, C. Conly, and V. Athitsos, A survey on vision-based fall detection, Proceedings of the 8th ACM international conference on PErvasive technologies related to assistive environments, vol.36, p.38, 2015.

X. Zhao, Awesome domain adaptation, p.88, 2019.

F. Zhuang, Transfer learning toolkit, p.88, 2019.

F. Zhuang, K. Duan, T. Guo, Y. Zhu, D. Xi et al., Transfer learning toolkit: Primers and benchmarks, p.88, 2019.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu et al., A comprehensive survey on transfer learning, vol.87, p.89, 2019.

Y. Zigel, D. Litvak, I. Gannot, and *. , A method for automatic fall detection of elderly people using floor vibrations and sound-proof of concept on human mimicking doll falls, IEEE Transactions on Biomedical Engineering, vol.56, issue.12, p.55, 1940.