
HAL Id: tel-02908637
https://hal.science/tel-02908637

Submitted on 29 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical and computational studies of the
thermomechanics of magnetic materials

Thomas Nussle

To cite this version:
Thomas Nussle. Theoretical and computational studies of the thermomechanics of magnetic materials.
Materials Science [cond-mat.mtrl-sci]. Université de Tours, 2019. English. �NNT : �. �tel-02908637�

https://hal.science/tel-02908637
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE TOURS
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les personnes sans lesquelles cela n’aurait pas été possible. J’espère, dans ce qui suit,
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même si ce n’est pas aussi fréquent que ce que je souhaiterais.
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Résumé

Le magnétisme est l’un des plus anciens phénomènes rapportés de l’histoire des sciences
naturelles et probablement l’un des plus fascinants. Véritable manifestation macroscopique
de la physique quantique, il subit en s’y couplant, l’influence de nombreux réservoirs
énergétiques et statistiques, dont ceux de la thermique et de la mécanique.

En remarquant qu’un moment magnétique élémentaire est un objet composite formé
grâce à des variables anticommutantes inobservables, on peut engendrer une dynamique
Hamiltonienne couplant ce degré de liberté à ceux provenant des autres réservoirs, eux-
mêmes décrits par la dynamique de variables aléatoires.

La première étape est d’étudier la dynamique d’un moment magnétique, vu comme
un spin classique dans de tels bains. À cette fin on considère un bain magnétique afin
d’évaluer la possibilité de mimer les effets de couplage entre moments magnétiques ainsi
que le couplage magnétoélastique par un tel modèle effectif.

Par la suite, nous montrons que la précession d’un spin classique peut être modélisée
par une dynamique de Nambu qui facilite la description de la nature, additive ou multi-
plicative, des couplages stochastiques. La dynamique ainsi produite est d’abord étudiée
numériquement de façon stochastique en moyennant les différentes réalisations obtenues;
ensuite, un modèle déterministe sur la hiérarchie des moments statistiques est établi puis
fermé afin de développer une méthode à la fois plus rapide, mais également déterministe
de déduction des propriétés magnétiques.

Finalement, pour illustrer la pertinence tangible de toutes ces notions, nous con-
struisons une dynamique étendue de particules “fictives” portant à la fois un moment
magnétique et une déformation mécanique locaux exprimant la magnétoélasticité, d’une
part dans une approche Lagrangienne puis Hamiltonienne. Pour chacune des deux ap-
proches nous étudierons la dynamique du retournement ultrarapide d’aimantation pour
NiO, oxyde antiferromagnétique prototype, sous sollicitations mécanique et électrique.

Le formalisme, exposé ici, aussi bien conceptuel qu’informatique, ne sert pas, seule-
ment, comme un exemple de l’état de l’art, mais permet une description des propriétés
des milieux magnétiques, qui est fondamentale aussi bien pour la conception de nouveaux
matériaux, que comme modèle pour aborder d’autres questions portant sur l’interaction
entre bruit et variables dynamiques, plus généralement.

Mots clés : Dynamique stochastique de spin, fermeture de hiérarchie, magnétoélasticité,
couplages magnétomécanique Lagrangien et Hamiltonien, dynamique de Nambu, antifer-
romagnétisme, intégration symplectique/géométrique, retournement du paramètre d’ordre
de Néel, couple de transfert de spin.
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Abstract

One of the utmost interesting properties of matter is magnetism. This property, which
is a macroscopic consequence of quantum physics, is subjected and couples to several
reservoirs. Among them, two are most relevant, namely the thermal and mechanical
reservoirs. We build a Hamiltonian model for the coupling between – classical – magnetism
and elasticity, which relies on the – underlying – anticommuting nature of spin, so as to
describe the coupled dynamics of these degrees of freedom.

The first step is to study the behavior of the classical spin – or magnetic moment –
when coupled to different – stochastic – baths. First a spin bath, so as to investigate if
and how such an effective model can mimic the couplings, to different magnetic moments
but also to the elastic structure of the compound. A different approach is then followed
where, through a Nambu dynamics model for spin precession, the ways in which this spin
can be coupled to a bath, additively or multiplicatively, are studied in order to make out
which is better suited to describe coupling phenomena in magnetism. Those are then
studied numerically, initially stochastically, with the appropriate averaging procedure over
different realizations and then deterministically, by building an effective model for the
moments of the statistical distributions. This model is obtained by truncating the thus
derived hierarchy of moments, so as to construct a quicker and deterministic method to
deduce magnetic properties of a system.

The second step is to construct models for magnetoelastic coupling, which we do via
“virtual” particles carrying both localized magnetic moment and mechanical strain tensor.
We begin by a Lagrangian formulation for the precession of spin, which is coupled to a
dynamical elastic solid by a magnetoelastic coupling term. This enables us to study their
coupled dynamics in a way that is fully consistent with all the symmetries, which ensures
a consistent description.

We then shift to a Hamiltonian description where spin is interpreted as a composite
– commuting – variable, which is a product of underlying and not observable – anticom-
muting – variables. Such a spin interacts with a couple of canonically conjugate variables
representing the elastic medium, in an extended Poisson structure. Finally, for each of
these two models, we numerically study the influence of an external stress on the switch-
ing behavior of the Néel order parameter and spin accumulation for a NiO toy model
antiferromagnet, induced by an external spin-transfer-torque.

Keywords : Stochastic spin dynamics, hierarchy closing, magnetoelasticity, Lagrangian
and Hamiltonian magnetomechanical coupling, Nambu dynamics, antiferromagnetism,
symplectic/geometric integration, Néel order parameter switching, spin transfer torque.
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Introduction

Qu’est-ce qu’une théorie effective ? Dans le contexte de la physique, il s’agit d’un
formalisme qui décrit des effets à une échelle donnée, sans tenir compte explicitement de
ce qui se passe à des échelles plus petites ou plus grandes. En d’autres termes, il s’agit
de répondre plutôt à la question “qu’est-ce qui se passe et comment ?” qu’à la question
“pourquoi est-ce que ça se passe ?”. En ce sens, toute la physique moderne repose sur
des approches effectives. Que ce soit pour les échelles les plus petites ou bien les échelles
les plus grandes, il y a toujours des hypothèses sous-jacentes qui expriment un certain
degré de subjectivité. Ce qu’il faut retenir de cela est qu’il est complexe de construire
un modèle théorique qui explique réellement pourquoi quelque chose se produit afin de
déterminer comment cela se réalise. Ainsi, la procédure habituelle est de fournir une
interprétation a des résultats expérimentaux afin d’établir un formalisme théorique afin de
tenter d’expliquer comment d’autres expériences, similaires, devraient se comporter. C’est
également ce qui a été le cas pour la théorie du magnétisme.

Bien que nous comprenions aujourd’hui que ce phénomène est une manifestation macro-
scopique des propriétés quantiques de la matière [1], nombreuses sont les applications pour
lesquelles les échelles considérées impliquent qu’un modèle classique ne tenant pas compte
d’effets quantiques est suffisant.

Néanmoins, ces dernières décennies, avec les progrès expérimentaux en termes de
réduction d’échelle, les ordres de grandeur des effets quantiques deviennent de plus en
plus proches de ceux d’autres perturbations, comme par exemples thermiques ou liés au
désordre.

De ce fait, il semble important de clairement définir les échelles des phénomènes
auxquels nous nous intéressons et de construire un modèle pouvant décrire les propriétés
magnétiques d’un tel objet. Malgré les premières observations des phénomènes magnétiques
et les premières ébauches théoriques qui datent du XV Ie siècle, les théories plus modernes
pour les moments magnétiques ont été construites de façon semi-empirique, sur des fon-
dations de mécanique quantique. En effet le modèle de précession, déduit de l’algèbre
de spin, ½ a été complété par un terme de couple. Ce terme, introduit pour reproduire
les comportements expérimentaux, induit un “amortissement” pour la dynamique d’un
moment magnétique vers un état d’équilibre, en général aligné avec le champ magnétique
local dominant. Ultérieurement, et ce afin d’implémenter la prise en compte d’effets de
température, une approche stochastique [2–4] a été construite.

Pour ce genre d’approche, l’idée est que la dynamique d’aimantation est gouvernée par
des degrés de liberté qui ne sauraient être résolus au-delà de leur distribution statistique
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Formellement, l’expression de la distribution de probabilité pour un moment magnétique
en équilibre avec le bain dans lequel il est plongé est donnée par

P (s) = Z−1e−
∫
dt dt′ 1

2{e(s)−1( dsdt+A(s))(t)G(t−t′)e−1(s)( dsdt+A(s))(t′)}
∣∣∣∣det δηI(t)

δsJ(t′)

∣∣∣∣ (1)

Bien évidemment, le défi est de réussir à donner un sens à cette expression. En pratique,
la méthode est de travailler plutôt avec les moments de la distribution afin d’éviter d’avoir
à manipuler cette formule. De fait, cette thèse s’intéresse aux conséquences de cette
expression par l’intermédiaire de ses moments.

Ainsi on ne détermine pas la dynamique de l’aimantation elle-même, mais plutôt les
propriétés de sa distribution à travers une hiérarchie ouverte d’équations différentielles
pour ses moments. Dans ce cas, afin de pouvoir obtenir des observables à calculer, il faut
procéder à la fermeture de cette hiérarchie par des hypothèses et des méthodes appropriées.

Des études récentes sur le retournement d’aimantation, des phénomènes liés au trans-
port de l’aimantation ou plus généralement des propagations d’onde de spin (i.e., magnons)
ont fait émerger un nouveau type d’électronique : la spintronique. On entend même au-
jourd’hui, de plus en plus souvent, le terme magnonique, à savoir une électronique qui
reposerait sur la propagation d’ondes de spin. Tous ces phénomènes sont sensibles à divers
effets de couplage (entre moments magnétiques, structures mécaniques, distributions de
charges ...), en plus bien sûr des effets thermiques, à savoir, par exemple, le couplage de
l’aimantation à la structure mécanique des composés étudiés. Il a été montré en effet que
certains matériaux changent de propriétés mécaniques lorsqu’ils sont exposés à un champ
électrique et inversement (i.e., la piézo-électricité [5]) et des observations similaires ont
montré également ce genre de comportement pour des matériaux magnétiques exposés à
des champs magnétiques externes. Ce phénomène est appelé la magnétostriction [6]. Dans
ce cadre, des modèles théoriques relativement performants ont été développés, mais pour
la plupart, ils reposent sur des approches énergétiques à l’équilibre qui ne s’intéressent
pas à la dynamique des systèmes étudiés. Cela ne permet pas non plus de décrire cor-
rectement les aspects dynamiques liés à l’évolution temporelle de la structure mécanique.
Ce que nous souhaitons donc construire, c’est un modèle dynamique de couplage entre
les déformations mécaniques d’un réseau et les moments magnétiques d’un modèle de
dynamique de spin atomique par une description locale de ces deux grandeurs. Ceci ap-
parâıt aujourd’hui comme nécessaire, car les échelles de temps des phénomènes deviennent
très petites, comme par exemple pour les phénomènes de désaimantation ultrarapide, et
la dépendance aux phénomènes thermiques requiert un modèle sensible aux fluctuations
hors équilibre pour tous ces réservoirs énergétiques []. Sachant cela, nous avons développé
un outil numérique pour lequel à chaque site d’une simulation (type dynamique de spin
atomique), nous ajoutons une déformation mécanique locale. Les paramètres spécifiques
à chaque composé doivent être déduits d’autres modèles ab initio ou à partir de données
expérimentales. L’outil fournit ensuite l’évolution temporelle pour le moment magnétique
et la déformation mécanique pour ce système couplé.

À cette fin, nous préparons cette étude avec un rappel des techniques existantes
(chapitre 1). Dans ce cadre, la première étape est l’analyse détaillée des mouvements de
précessions afin d’aboutir à une modélisation de la précession amortie expérimentalement
constatée pour le moment magnétique. Nous retraçons ensuite les origines de la dy-
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namique moléculaire magnétique qui permet de reproduire un couplage entre magnétisme
et mécanique en permettant explicitement aux ”porteurs” de spin de se déplacer au sein
du composé, ainsi que leurs implémentations numériques, à l’aide de schémas d’intégration
symplectique, ceux-ci préservant le volume de l’espace des phases et l’énergie d’un système
fermé. Puis nous étudions les techniques de dynamique de spin atomique utilisées notam-
ment pour prédire les courbes d’aimantation de Curie. Nous nous intéressons également à
la manière d’implémenter des effets de température finie dans ces modèles. La suite logique
est donc d’étudier comment les systèmes magnétiques peuvent être couplés à des bains plus
généraux et comment cela conduit soit à obtenir des systèmes d’équations stochastiques
dépendant explicitement d’un bruit ou des systèmes d’équations déterministes sur les mo-
ments. Dans ce cadre nous nous intéressons également à la manière dont ces distributions
statistiques ont été modifiées afin de mieux reproduire des effets quantiques, plus par-
ticulièrement à faible température. Ensuite, nous présentons quelques propriétés de la
dynamique de Nambu et des crochets de Nambu-Poisson afin de décrire la précession du
spin et nous donnons quelques interprétations intéressantes des symétries dans l’espace
des phases du spin pour ce modèle. La partie suivante de cette revue concerne plus par-
ticulièrement l’élasticité mécanique et sa contribution à l’énergétique d’un système. Ici,
nous étudierons brièvement des méthodes de couplages entre degrés de liberté mécanique
et magnétique afin d’introduire la magnétoélasticité. Le dernier aspect traite de variables
de Grassman (anticommutantes) et pourquoi celles-ci permettent de décrire les degrés de
liberté de spin. Un bref résumé de l’émergence de couplage supersymétrique entre degrés
de liberté spatiaux et de ces variables anticommutantes représentant le spin est également
effectué.

Le (chapitre 2) commence par la présentation d’une méthode alternative pour décrire
la dynamique d’aimantation d’un moment magnétique, couplé à une collection de mo-
ments magnétiques se comportant quant à eux comme un “bain macroscopique de spin”.
Le nom qui nous a semblé le plus approprié pour cette approche est celui de modèle de
spin “lourd” et de spin “léger”. La dynamique couplée pour ces deux objets se modélise par
un ensemble d’équations différentielles stochastiques que nous résolvons numériquement
à l’aide d’un schéma d’intégration symplectique. De même, nous construisons un modèle
effectif déterministe pour les moments des distributions statistiques de ces deux moments
magnétiques, en précisant des hypothèses de fermetures de hiérarchie et ce modèle est
également intégré afin de pouvoir obtenir des résultats plus rapidement qu’avec l’approche
stochastique. Ces deux méthodes sont ensuite comparées et nous évaluons si elles peu-
vent reproduire les effets attendus d’un couplage magnétoélastique. Ces travaux ont fait
l’oeuvre de la publication [7]

Le (chapitre 3) est la construction d’une approche Lagrangienne pour le couplage
magnétoélastique dans un modèle de dynamique de spin atomique. Dans cette approche,
l’espace des phases étudié est constitué, pour chaque objet, d’un moment magnétique et
d’un tenseur de déformation mécanique. Un Lagrangien est défini pour ce système et
les équations du mouvement couplées sont obtenues. Une extension pour un modèle à
plusieurs particules en interaction par échange magnétique est ensuite introduite. Nous
en présentons la description à un modèle jouet pour simuler la dynamique de retourne-
ment ultrarapide de NiO. En particulier, nous étudions le retournement du paramètre de
Néel sous contrainte mécanique externe pour ce système par l’application d’un couple de
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transfert de spin. Ces travaux ont été publiés dans la référence [8].
Le (chapitre 4) présente une extension dissipante et fluctuante à la dynamique de

Nambu pour la dynamique d’aimantation, qui implémente naturellement les contraintes
de cette dernière. Dans ce contexte, nous étudions les différences entre bruit additif et bruit
multiplicatif dans le cadre de systèmes magnétiques en étendant la dynamique de Nambu
à des systèmes dissipants, dans le cas particulier de systèmes magnétiques dissipatifs .
Pour cela, nous exposons comment déduire une dynamique de précession à partir d’un
modèle de Nambu simple à deux Hamiltoniens. Ce modèle est ensuite complété par des
termes dissipatifs. Ceux-ci sont identifiés avec les modèles habituels de dissipation afin
de les interpréter comme issus d’une dynamique de Nambu dissipative. Nous introduisons
ensuite des termes de fluctuations additives et multiplicatives afin de déterminer quelle
forme est la plus adaptée à l’étude des fluctuations des systèmes magnétiques. Ces travaux
ont été publiés sous la référence [9].

L’aboutissement de cette étude est l’établissement d’un modèle Hamiltonien pour
décrire le couplage magnétoélastique (chapitre 5). Dans cette partie, nous commençons
par construire un modèle de précession du spin en considérant que la variable de spin
classique commutante (i.e., dans le sens qu’elle satisfait des relations de commutation) est
en fait une variable composée de deux variables anticommutantes (de Grassman,i.e., dans
le sens qu’elles satisfont des relations d’anticommutation) pour lesquelles nous montrons
que l’algèbre associée décrit une précession. Grâce à ce formalisme, nous construisons
un crochet de Poisson pour l’espace étendu des phases formé d’un vecteur de spin, d’un
tenseur de déformation mécanique et de son tenseur conjugué. Une fois ce crochet établi,
nous construisons un Hamiltonien pour le système couplé, afin de déduire les équations
du mouvement pour celui-ci. Ensuite, comme dans le chapitre 2, ce modèle est étendu
à des situations multi particulaires par un terme d’échange magnétique entre sites d’un
réseau, chaque site portant son propre ensemble de variables dynamique et d’équations du
mouvement correspondantes. Nous présentons ensuite un schéma d’intégration numérique
symplectique pour ce système couplé. Cet outil est, de nouveau, utilisé pour étudier le
retournement du paramètre de Néel pour NiO sous contrainte mécanique externe par un
couple de transfert de spin. Ces résultats sont comparés à ceux du chapitre 1. Ces travaux
ont été soumis et sont actuellement en cours d’évaluation pour “the Physical Review B”.
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What is an effective approach ? Within the mind frame of physics, it consists of an
approach which describes effects at a given scale without explicitly taking into account
what happens at smaller or larger scale, yet delivers accurate results for calculations at
this given scale. In other words, it answers the question “what ?” instead of “why ?”
In this sense, all of modern physics is built through effective approaches. Even for the
smallest or largest scales, there are always underlying assumptions which reflect at least
some subjective views. The important idea to extract from this is that it is really difficult
to build a theory which accurately answers the question “why ?” in order to be able to
answer the question “what ?” So what is generally done is to interpret experimental results
in some way which allows building a theoretical framework to try and explain how similar
experiences should behave. This has been the case for the theory of magnetism.

Although, fundamentally, we understand that magnetism is an expression of the quan-
tum nature of matter [1], many practical applications take place at scales, where the
quantum effects, in fact, are not relevant and a classical description is appropriate, in
terms of quantities, that do satisfy classical thermodynamics, as Curie and Weiss, already
noticed.

However, since that time it has become possible to control matter at scales, where
quantum effects, not only, cannot be neglected, but they become comparable to the host
of perturbations, such as thermal or due to disorder.

Hence the smarter idea is to clearly define the scales for which we want to do com-
putations, and then construct a model which enables us to study the magnetic properties
and behavior reasonably. Even though the first observations of these phenomena are far
from recent and scientists already speculated on magnetism, as early as the 16th century
(though the word is due to Thales, when coming across substances, found in ancient “Mag-
nesia”) the modern theories for the dynamics of magnetic moments have been constructed,
mostly, by empirical approaches, though based on quantum mechanical foundations. The
precessional model deduced from the spin ½ algebra was extended by adding a torque
term. This term induces a “damping” for the dynamics of the magnetic moment towards
an equilibrium state, aligned with the dominant magnetic field. In later studies, in order
to implement thermal effects, a stochastic approach relying on Langevin dynamics [2–4]
has been constructed.

It is remarkable that the expression for the probability distribution of a magnetic
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moment, in equilibrium with its fluctuations, can be written, formally, in one line:

P (s) = Z−1e−
∫
dt dt′ 1

2{e(s)−1( dsdt+A(s))(t)G(t−t′)e−1(s)( dsdt+A(s))(t′)}
∣∣∣∣det δηI(t)

δsJ(t′)

∣∣∣∣ (2)

The challenge is to render this expression meaningful. In practice this is achieved by
reconstructing it through its moments, in order to avoid dealing with it explicitly and this
thesis focuses on ways of understanding its implications from the moments.

Thus what is finally computed for the magnetization itself refers to the properties of its
statistical distribution, which can be encoded in an open hierarchy of ordinary differential
equations–for a single spin, partial differential equations for a field–for the moments. For
explicit calculations, beyond the Gaussian case, one therefore has to close said hierarchy
using appropriate assumptions and methods that can, thus, shed light into understanding
the implications of the distribution itself.

This is particularly cogent for magnetic materials, where exceptional breakthroughs in
their experimental control have occurred in the last decades.

For instance, experimental studies on magnetic materials involving magnetization switch-
ing, magnetic transport and more general spin waves (i.e., magnons) have given birth to
a new kind of electronics i.e., Spintronics. Even beyond this, one nowadays hears the
term Magnonics more and more often, but these phenomena are most sensitive to cou-
pling effects, different from thermal ones, namely coupling to the mechanical structures of
the compounds. Indeed, in addition to thermal effects, experimental studies have revealed
that some materials display a striking change in their mechanical properties, when exposed
to an electrical field, i.e., piezoelectric effects [5] and similar observations have been made
for magnetic materials exposed to a magnetic induction.

This phenomenon is called magnetostriction and other similar names such as magneto-
elasticity have also emerged lately. Theoretical models have already been developed and
have proven to be quite accurate. However, they mostly focus on the internal energy, which
means that they only focus on equilibrium configurations and do not give much insight
into fluctuations. This makes it complicated to describe dynamical aspects, related to the
evolution of the mechanical structure of the compound system, taking into account how
magnetic effects affect mechanical response and vice versa.

One of the objectives in this work is to construct a framework for describing models
that can consistently take into account the mechanical deformation of a lattice at the
scale of atomistic spin dynamics, by realizing a local description for both fields. This is
necessary because, the timescales for the phenomena become very short, as for example in
the case of ultrafast demagnetization. Furthermore, the dependence on thermal aspects
as well, requires a model which is sensitive to the out of equilibrium fluctuations of these
reservoirs. With this in mind, we set up a numerical toolkit for describing a crystal lattice
with atomistic spins at each node, and we add a local mechanical deformation for each
node as well. The properties of each structure are deduced from other ab initio calculations
and experimental data and then the toolkit provides the time evolution for the coupled
system.

We begin with an overview of existing techniques (chapter 1), recall the physical con-
cepts necessary for our model. We review precessional models so as to recover damped
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spin precession. We then recall the origins of magnetic molecular dynamics and how these
have been implemented numerically, using symplectic integration schemes so as to preserve
the phase space and the energy of the studied systems. Next, we study atomistic spin dy-
namics techniques for the study of magnetization dynamics and magnetization curves. We
also investigate how to implement thermal effects in these models. The following step
is to study how magnetic systems can be coupled to baths and how this leads to either
deterministic equations on the moments of the distributions or stochastic equations on
the noises. We also investigate how the distributions of these magnetic moments have
been tampered with so as to recover quantum properties, especially at low temperatures.
We then recall some features of Nambu dynamics and Nambu-Poisson brackets so as to
describe spin precession and interesting physical interpretations of the spin phase space in
this framework. The next part of this review deals with elasticity and more specifically
on its contribution to the energy. Here we also review the coupling between magnetism
and elasticity so as to introduce magnetoelasticity. The last part of the review focuses on
Grassman – anticommuting – variables and how to describe spin degrees of freedom with
it. A brief overview of the emerging coupled dynamics between spatial and spin degrees
of freedom is also given.

Our study in proper begins in chapter 2, where we present an alternative method of
describing magnetization dynamics, focusing on a single spin, coupled to a collection of
spins behaving as a single macroscopic “spin-bath” variable. We call this the “light”-spin,
“heavy”-spin model. We define the dynamics for both objects through a set of coupled
stochastic equations of motion which we then solve numerically using a symplectic inte-
gration scheme. We also build an effective deterministic model for the moments of both
statistical distributions from this stochastic system, using several motivated assumptions
and then also integrate these so as to compare both dynamics and understand how accu-
rately the stochastic approach can describe expected effects of magnetoelastic coupling.
We also want to understand how close the resulting dynamics for both the stochastic and
deterministic approaches are, as the deterministic model is quite likely much faster. This
work has been published in [7].

We proceed in chapter 3 with the implementation of a Lagrangian approach to magneto-
mechanically coupled atomistic spin-dynamics. In this model we introduce a phase space,
for describing the state of a magnetic moment and a strain tensor degree of freedom. We
show how an interaction Lagrangian for this coupled system can be defined and we obtain
the equations of motion and thus, a description of the dynamics. We then generalize this
model to multi-particle systems, which are taken to interact through magnetic exchange.
We then show how this framework can be used for studying interesting properties of the
antiferromagnetic compound NiO. In particular, we study the switching of the Néel or-
der parameter for this system, that is triggered by an external spin transfer torque and
the influence of external stress on the switching time and behavior. This work has been
published in [9].

We then proceed to a systematic study of the influence of multiplicative vs. additive
noise on magnetic systems, in particular, by generalizing Nambu dynamics to dissipative
systems and illustrate this in the specific case of dissipative magnetic systems (chapter 4).
To this end, we recall how to deduce spin precession from a simple – two-Hamiltonian
– Nambu model, before extending this framework to include dissipative terms. We then
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identify these terms with usual magnetic dissipation terms such as Landau-Lifshitz-Gilbert
damping, so as to interpret dissipating magnetic systems as emerging from dissipative
Nambu dynamics. We then introduce fluctuations in both additive and multiplicative
fashion in order to evaluate which of these are best suited to describe magnetic fluctuations.
This work has been published in [8].

The main study of this thesis is the Hamiltonian approach to magnetoelasticity (chap-
ter 5). In this chapter we start by building the precessional model, by considering the –
commuting (i.e., satisfying commutation relations) – spin as a composite variable of two
– anticommuting (Grassman) (i.e., satisfying anticommutation relations) – variables, for
which we show that we have a precessional algebra. Using this mixed anticommuting/-
commuting formalism, we build a Poisson Bracket for the phase space of the spin vector,
the strain and the strain-rate tensors. Once this bracket is constructed, we build a Hamil-
tonian for the coupling of these three objects, so as to deduce equations of motion for
their coupled dynamics. Then, as we have done in chapter 1, we extend this single-particle
model to multi-particle systems by introducing a magnetic exchange interaction between
sites of a lattice, each site carrying its set of the single-particle equations of motion. We
then build a numerical integration scheme using a symplectic integrator for the time evo-
lution of the damped precessional motion of each spin for the mechanical – strain and
strain-rate – system. We then implement this in our antiferromagnetic NiO compound toy
model so as to compare our results. This work has been submitted and is currently under
review for the Physical Review B.
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Chapter 1

State of the art

Résumé
• Nous étudions l’émergence d’un modèle classique de précession, à partir de la

description quantique du spin et comment ce modèle peut être étendu pour
décrire des moments magnétiques en précession amortie.

• Nous rappelons les origines de la dynamique moléculaire magnétique et com-
ment celle-ci a été implémentée numériquement en utilisant des schémas
d’intégration symplectique.

• Nous faisons un rappel de la méthode de dynamique de spin atomique. Nous
rappelons également comment inclure des effets thermiques à ce genre de
simulations.

• Nous étudions ensuite comment les systèmes magnétiques peuvent être couplés
à des bains (thermiques ou non) puis étudiés, de façon stochastique ou
déterministe et comment modifier le couplage au bain(s) pour tenir compte
d’effets quantiques à basse température.

• Nous rappelons le formalisme de la dynamique de Nambu et comment celui-ci
peut permettre simplement de construire et de comprendre la précession non
amortie d’un moment magnétique dans un champ externe.

• Nous nous intéressons ensuite aux effets de l’élasticité d’un composé et au cou-
plage de ceux-ci aux effets magnétiques afin d’introduire la magnétoélasticité.

• Nous étudions finalement la description du spin comme variable – anticommu-
tante – de Majorana et la construction d’une dynamique qui couple les degrés
de liberté spatiaux à ceux du spin par ce formalisme.
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1.1. PRECESSIONAL MODELS

1.1 Precessional models

Cohen-Tannoudji et al. wrote a well–known textbook on quantum mechanics [10]. One
section is particularly relevant for understanding models of precession of spinning particles.
In the fourth chapter of the first volume, one can find a thorough study of the spin−1

2
algebra. The first step is to start with a vector operator S = (Sx, Sy, Sz) in the basis
of eigenvectors of Sz, namely {| ↑〉, | ↓〉} which are the spin up and down – eigenstates.
Then a complete set of commuting observables S2 and Sz is chosen with the following
eigenvector/eigenvalue equations


Sz| ↑〉 = +~

2 | ↑〉

Sz| ↓〉 = −~
2 | ↓〉

(1.1)

If an external magnetic field along the z-axis is added, then the Zeeman Hamiltonian reads
as follows

H = ω0Sz (1.2)

where ω0 is the frequency of the external field also expressed in terms of an external
magnetic field B as

ω0 ≡
gµB
~
B (1.3)

Here µB is the Bohr magneton, ~ the reduced Planck constant and g the Landé factor.This
yields the following eigenvector/eigenvalue for H


H| ↑〉 = ~ω0

2 | ↑〉

H| ↓〉 = −~ω0
2 | ↓〉

(1.4)

The state vector |ψ〉 can be expressed in the basis of eigenstates of the spin using polar
angles θ and φ

|ψ〉 = cos
(
θ

2

)
exp

(−iφ
2

)
| ↑〉+ sin

(
θ

2

)
exp

(
iφ

2

)
| ↓〉 (1.5)

The time evolution is formally given through the exponentiation of the Hamiltonian e−iHt
which is diagonal in the chosen basis and thus equivalent to the exponentiation of the
eigenvalues, which in the Schrödinger picture can be expressed as

|ψ(t)〉 = cos
(
θ

2

)
exp

(−i (φ+ ω0t)
2

)
| ↑〉+ sin

(
θ

2

)
exp

(
i (φ+ ω0t)

2

)
| ↓〉 (1.6)
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Combining all this in taking the expectation values of the components of S such as
〈ψ(t)|Si|ψ(t)〉 ≡ 〈Si〉 we get the following system

〈Sx〉 = ~
2 sin (θ) cos (φ+ ω0t)

〈Sy〉 = ~
2 sin (θ) sin (φ+ ω0t)

〈Sz〉 = ~
2 cos (θ)

(1.7)

which – indeed – is a precession motion in the spin space and, as is implied by Ehrenfest’s
theorem, the expectation value for the spin operator satisfies the same dynamics as the
classical variable. By switching back to the Heisenberg picture, when only the operators
are time-dependent, one can express this as

ı~
∂S

∂t
= [H,S]⇒ ı~

∂〈S〉
∂t

= 〈[H,S]〉 (1.8)

where the notation 〈S〉 stands for 〈ψ|S|ψ〉. It is straightforward to show that this, in turn,
implies

ı~
∂S

∂t
= ı~ω0

 Sy
−Sx

0

 = ı~S × ω (1.9)

where
ω = ω0z (1.10)

as ω is independent of S one can indeed deduce from eq. (1.9) the evolution equation for
the classical spin 〈S〉

∂〈S〉
∂t

= 〈S〉 × ω (1.11)

This exhibits the quantum “origin” of the precession of magnetization, which yields the
Larmor precession eq. (1.11).

However, in the presence of a magnetic field, the magnetization of a magnetic medium
does not simply precess, but also relaxes towards the dominant field [11], which implies
the presence of additional terms, that should be added to eq. (1.11).

One way of describing the appearance of such terms is by the interaction of the magne-
tization with external fields, produced by the medium. In addition, it should be stressed
that the non-relativistic approximation used above can break down in real materials; how-
ever the medium defines a preferred frame and, in this way, it is possible to develop more
sophisticated models that take into account such effects, in order to understand the dy-
namics of real particles carrying –classical– spins (or magnetic moments) in the presence
of an external field.

The prototypical example is in the paper by Bargmann et al. [12], for investigating
the precession of the spin of a point particle in a homogeneous magnetic field in a fully
relativistic framework.
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They start with the 4-vector S, such as

S = (s0, s) (1.12)

where s is the classical magnetic moment. In the rest frame of the particle, the time
component of such a 4-vector is zero i.e.,

S = (0, s) (1.13)

In addition, a precession equation for the space components of the spin is postulated using
the quantum-mechanical equivalent form

ds

dτ
= ge

2ms×H (1.14)

where H is the external (magnetic) field, τ is the proper time of the rest frame of the
particle, m its mass, e its electric charge and g its Landé factor. They then compute the
equations of motion (EOM) in the relativistic case for an arbitrary – moving – frame.
They obtain the following expression

dS

dτ
= ge

2m
[ ¯̄FS +

(
S ¯̄Fu

)
u
]
−
[
du

dτ
S

]
· u (1.15)

where ¯̄F is the electromagnetic tensor, u is the 4-velocity of the moving frame. They then
recast their expressions in terms of two unit polarization 4-vectors el (longitudinal) and
et (transverse)–with respect to the external field–in the laboratory frame, as

S√
−S · S

= el cos(φ) + et sin(φ) (1.16)

where  el = γ

(
v,
v

v

)
et = (0,n)

(1.17)

such that n.n = 1 and n.v = 0. Here, γ is the Lorentz factor, and v the relative velocity.
In this description, they define the rate Ω = dφ

dt = dφ
γdτ at which longitudinal polarization

is transformed into transverse polarization. They obtain the following expression

Ω = e

m

{
E · n

v

[(
g

2 − 1
)
− g

2γ2

]
+
(
v

v
· (H × n)

)(
g

2 − 1
)}

(1.18)

where E is the electric field. In usual terms, the fact that transverse polarization is
transformed into longitudinal polarization can be understood as the relaxation of the
polarization towards the “longitudinal axis” i.e. damping. More detailed calculations,
describing the significance of this effect for the dynamics of the classical magnetic moment
in the laboratory frame for a relativistic magnetic moment can be found in [13] as well as
in the textbook [14]. Even though the interpretation of this term is not straightforward, it
already provides a first hint towards identifying damping in magnetic systems. The origin
of this term is, however, due to relativistic effects, and although this can be relevant for
some magnetic moments, for example close to the Fermi surface [15], this is not the only
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plausible “fundamental” way to understand damping in magnetic materials. We shall thus
investigate a different formulation of dissipation in magnetic systems through a Lagrangian
approach, in which it is possible to investigate relativistic and non-relativistic effects in a
unified way. This approach has the advantage of computational ease, as well as conceptual
clarity.

In 2011, Bose et al. [16] considered a Lagrangian formulation for dissipative magnetic
systems. Their approach follows the idea of a classical magnetic system, described by m,
whose phase space is enlarged by bath variables – of undefined origin – σ. They start
by presenting symmetry arguments enabling them to construct the following Lagrangian
density

L[m, ṁ,∇m;σ,∇σ] = L(m)[m, ṁ,∇m] + L(σ)[∇σ] + L(mσ)[ṁ,∇m;σ,∇σ] (1.19)

that comprises three terms, respectively the magnetic term, the (vector)bath term, and
the coupling term. 

L(m) = 1
2J

(m)
αβ

∂mν

∂xα

∂mν

∂xβ
+Aν(m)ṁν

L(σ) = 1
2J

(σ)
αβ

∂σν
∂xα

∂σν
∂xβ

L(mσ) = J
(mσ)
αβ

∂mν

∂xα

∂σν
∂xβ

+Bν(σ)ṁν

(1.20)

where J (m)
αβ is the magnetic exchange coupling, J (σ)

αβ is the coupling within the bath and
J

(mσ)
αβ is the coupling between the magnetic and bath degrees of freedom. In the isotropic

case, all these are diagonal matrices. A and B are vector potentials for the couplings
which imply that L(m) and L(mσ) are not gauge fixed. Furthermore, they assume that
small, local, variations of the bath are related to small variations of the magnetization i.e.,
δσβ = −κδmβ, κ > 0. By taking {

Bν = −cσν
Jαβ = Jδαβ

(1.21)

time-reversal symmetry is broken, thus leading to a net flow (in phase space). They then
deduce the equations of motion as constrained Euler-Lagrange equations. They end up
with the following expression for the magnetization dynamics

∂m

∂t
= 1
g

(m×Heff)− κc

g

(
m× ∂m

∂t

)
(1.22)

where one has 
g = −1

γ

κc

g
= −α

(1.23)

and
Heff = (J (m) − κJ (mσ))∆m− cσ̇ + (J (mσ) − κJ (σ))∆σ (1.24)
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Here γ is the gyromagnetic ration and α the Gilbert damping parameter. As one can
notice, this is very similar to the LLG [17] equation which reads

ṁ = γB ×m+ αm× ṁ (1.25)

where B is the magnetic field.
The formalisms described in this chapter are, however, intended to describe either single

particles, as for example a single electron of spin ½, or domains which can be considered
as single isolated magnetic moments in a magnetic field. What is also interesting to notice
is that in the last part of this section, the “microscopic” degrees of freedom, that make
up the bath itself remain undefined. There have been attempts to exploit similar models
with thermal baths described by a collection of harmonic oscillators [18]. However, in
many cases, such descriptions are insufficient, since they neglect the back reaction of,
either a collection of magnetic moments, or of magnetic moments, interacting with the
medium in which they are embedded. In the next section, we will thus investigate how
one can describe the coupled evolution of a collection of moving magnetic moments using
the framework of magnetic molecular dynamics.

1.2 Magnetic molecular dynamics

In 1980 Yang et al. [19] and Ruijgrok et al. [20], independently, published papers, in
which they investigated generalizations of Poisson brackets that include spin variables. 1

They begin by recalling the equations of motion, which can be deduced from the Breit-
Pauli Hamiltonian H,

dsj
dt

= −sj ×
∂H
∂sj

(1.26)

where H is a function of positions {rj}, conjugate momenta {pj} and spins {sj}. These
equations are canonical, since the Hamiltonian structure is preserved i.e.,

∂H
∂pj

= drj
dt

∂H
∂rj

= −dpj
dt

(1.27)

Applying the chain rule for the time derivative of H to positions qj , momenta pj and spin
variables sj , they find that

dH
dt

= ∂H
∂t

+
∑
j

(
dpj
dt
· ∂H
∂pj

+ drj
dt
· ∂H
∂rj

+ dsj
dt
· ∂H
∂sj

)
(1.28)

Because H does not explicitly depend on time, their expression for the “extended” Poisson
bracket, which includes spin, reads as follows

{f, g} =
∑
j

(
∂f

∂rj
· ∂g
∂pj
− ∂f

∂pj
· ∂g
∂rj

+ sj ·
(
∂f

∂sj
× ∂g

∂sj

))
(1.29)

1Their approach is quite different from that of Casalbuoni [21] Berezin and Marinov [22] or Brink et al.
[23]. Their approach shall be reviewed in section 1.7
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1.2. MAGNETIC MOLECULAR DYNAMICS

for solutions of the equations of motion (1.26).
Moreover, they show that this bracket satisfies all the properties of a Lie bracket:

{f, g} = −{g, f} (Antisymmetry)
{af + bg, h} = a{f, h}+ b{g, h} ∀a, b ∈ R (Bilinearity)
{hf, g} = h{f, g}+ {h, g}f (Leinbiz rule)
{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0 (Jacobi identity)

(1.30)

Therefore the equations of motion can be expressed as

drj
dt

= {rj ,H}

dpj
dt

= {pj ,H}

dsj
dt

= {sj ,H}

(1.31)

and they preserve the volume in the extended phase space i.e.,

∑
I,j

∂ṡIj
∂sIj

+
∂ṙIj
∂rIj

+
∂ṗIj
∂pIj

= 0 (1.32)

where the upper indices stand for the components of each variable and the lower indices
are labels for the different sites. This bracket is the foundation for what later turned
into magnetic molecular dynamics (MMD), where the phase space of molecular dynamics
is extended by the spin variables and hence leads to a way to describe the interaction
between mechanical and magnetic degrees of freedom. The Hamiltonian, that describes
the dynamics need not be of Breit-Pauli type, of course.

The next step was thus to study specific magnetic systems – numerically – through
this approach. For this, efficient and consistent integration schemes are required.

These were developed by Beaujouan et al. [24] for the study of thermally induced
dynamics of a Cobalt nanowire on a (111)Pt substrate. They describe their approach
as an effective model in which magnetic moments, moving through an “active” medium,
interact with each other through magnetic exchange. In order to take into account the
back reaction of the medium, they supplement their description by effective anisotropy
terms, which also allow them to account for magnetostrictive effects. In order to describe
the dynamics of their system, they use the following Hamiltonian

H =
N∑
i=1

||pi||2

2mi
+

N∑
i<j

(V (rij)− J(rij)si · sj −K(rij) [(r̂ij · si)(r̂ij · sj)])

+
N∑
i<j

(
−1

3(si · sj) +D(rij) · (si × sj)
)
− gµBµ0Hext ·

N∑
i=1
si

(1.33)

where, V (rij) is a potential term, rij is the distance–in the medium–between particles i
and j, r̂ij is the corresponding unit vector, K(rij) is the diagonal exchange interaction
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and D(rij) is the Dzyaloshinskii-Moriya vector. They take a Bethe-Slater form for the
isotropic exchange function J(rij) such that

J(rij) = −4ε
(
− r

2

σ2 + δ
r4

σ4

)
exp

(
− r

2

σ2

)
Θ(Rc − rij) (1.34)

where Rc is a cutoff scale, taken up to second and third nearest neighbors, which has to
be parametrized properly, using ab initio calculations. They use the expression for the
Poisson bracket eq. (1.29) to derive the equations of motion (EOM) for {ri(t),pi(t), si(t)}
from their Hamiltonian eq. (1.33). They then focus on how to solve these EOM numerically
by implementing a symplectic/geometric integration scheme: For any function ρ ≡ ρ(t)

dρ(t)
dt

= {ρ(t),H} ≡ (Lr + Lp + Ls)ρ(t) (1.35)

where the corresponding time evolution operators Lr, Lp and Ls are

Lr =
N∑
i=1

dri
dt
· ∂
∂ri

, Lp =
N∑
i=1

dpi
dt
· ∂

∂pi
and Ls =

N∑
i=1

dsi
dt
· ∂
∂si

(1.36)

One can formally find a solution for the time evolution of ρ(t) starting from an initial
condition ρ(0) such that

ρ(τ) = exp [τ(Ls + Lr + Lp)] ρ(0) (1.37)

which is approximated by the Suzuki-Trotter (ST) decomposition

exp [τ(Ls + Lr + Lp)] = exp
(
τ

2Lp
)

exp
(
τ

2Lr
)

exp(τLs) exp
(
τ

2Lr
)

exp
(
τ

2Lp
)

+O(τ3)
(1.38)

Moreover, the time evolution operators satisfy exp(τLr) = ∏N
i=1 exp(τLri) and exp(τLp) =∏N

i=1 exp(τLpi). This is not true for the spins, however, thus a ST decomposition up to
the same order is also considered for exp(τLs) i.e.,

exp(τLs) = exp
(
τ

2Ls1

)
. . . exp

(
τ

2LsN−1

)
exp (τLsN ) exp

(
τ

2LsN−1

)
. . . exp

(
τ

2Ls1

)
+O(τ3)
(1.39)

This enables the construction of a robust integration algorithm which preserves the phase
space volume and structure of the equation hence minimizing the propagated error. This
formalism enabled them to simulate Cobalt nanowires, and obtain magnetization curves
for different structures, hence demonstrating the usefulness of this approach.

Recent implementations of similar approaches [25] have been shown to properly de-
scribe the spin-orbit coupling, due to the coupling between the atomic and electronic
subsystems and symmetry breaking due to phonons and defects. Indeed, as both subsys-
tems can exchange angular momentum, this formalism is required, in order to correctly
capture the fluctuations and nonequilibrium processes, that are of interest in magnetic
materials. In addition, structural phase transitions in Fe have been shown to be captured
by such an approach [26]. One issue, however, is that the strength of the interactions is en-
coded in the distances between the particles which makes approximation schemes, such as
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the “Verlet-radius choice” for nearest neighbors difficult to apply and computationally less
efficient. More generally, this approach is difficult to scale up to large – supra-nanoscopic
– systems, even though there are attempts to adapt these methods in such a fashion that
they can be scaled up to much larger systems, for example by developing parallelization
algorithms which highly enhance its efficiency [27].

1.3 Atomistic spin dynamics

In 2008, Skubic et al. [28] presented a method for performing atomistic spin dynamics
and showed how it could be implemented computationally. This method is inspired by
previous implementations of ab initio approaches [29] for constructing the equations of
motion for the dynamics of spin systems from general principles.

The first step is to use the Born-Oppenheimer approximation, which disentangles the
atomistic spins (slow) from the electronic motion (fast); this amounts to solving the equa-
tions of motion (EOM) for both systems separately. The starting point is the dynamical
evolution of the quantum spin operator Ŝ, given by

∂Ŝ

∂t
= 1
ı~

[Ŝ,HKS ] (1.40)

where HKS is the Kohn-Sham Hamiltonian of density functional theory. They show that
this yields the following EOM of the spin moment Si (expectation value) where i labels
each atom of the atomistic simulation.

∂Si
∂t

= −γSi(t)×Bi (1.41)

Bi being some effective field at site i and γ the gyromagnetic ratio. They define the
relation between field and frequency by the Ansatz

Bi = ∂H
∂Si

(1.42)

where H is a Hamiltonian, that consists of standard terms

H = Hiex +Hma +Hdd +Hext (1.43)

describing, namely, interatomic exchange (Heisenberg), magnetic anisotropy (uniaxial),
dipolar interactions and the Zeeman term for interaction with the external magnetic
field. Finally, they add a phenomenologically motivated damping term, consistent with
the Landau-Lifshitz form, in order to take into account energy and angular momentum
dissipation, without providing, however, too much detail on why this particular term is
introduced

∂Si
∂t

= −γSi ×Bi − γ
α

S
[Si × [Si ×Bi]] (1.44)

where S is the norm of the spin and α the damping parameter.
The fluctuation dissipation theorem implies relations between the dissipative processes

of a physical system and the fluctuations of the corresponding degrees of freedom. Such
relations can be illustrated when discussing thermal fluctuations.
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In the case at hand, three thermal reservoirs are introduced, corresponding, to the
electronic, the lattice and the spin degrees of freedom; the corresponding characteristic
timescales are given in Figure 1.1.

Figure 1.1: Characteristic interaction and relaxation timescales for thermodynamic elec-
tron, lattice and spin reservoirs

Following [30], thermal effects can be taken into account by using a stochastic formu-
lation through a vector bath variable bi drawn from a Gaussian stochastic process such
that

〈bi,µ(t)〉 = 0, 〈bi,µ(t)bj,ν(s)〉 = 2Dδijδµνδ(t− s) (1.45)

where the expression for D is given through the fluctuation dissipation theorem (as dis-
cussed in the appendix of the paper, which describes calculations using the Langevin
formalism and Fokker-Planck equation, which spell out the relation between D and the
temperature T ). Now taking into account the scales of the different relaxation times,
namely that one only needs to distinguish the dynamics for the lattice and the electronic
system when timescales are significantly below picoseconds, it is possible to deduce the
EOM at finite temperature

∂Si
∂t

= −γSi × [Bi + bi(t)]

− γαe
S
Si × [Si × [Bi + bi(t)]]

− γαl
S
Si × [Si × [Bi + bi(t)]]

(1.46)

where αe is the electronic damping parameter and αl is the lattice damping parameter. It
is, thus, possible to extract information for specific systems from atomistic spin dynam-
ics simulations, namely, from phase space trajectories, magnetization curves, correlations
between magnetic moments and energy distributions. This method is also applied for
the description of the magnetic switching of bcc Fe under strong magnetic fields, where
previous macrospin approaches are not sufficient for obtaining accurate results, because
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the emergence of spin wave instabilities alters the macrospin size, especially for large
anisotropy. This approach is, however, inconsistent when trying to reproduce low – much
below Curie – temperature effects, as it has been shown [31] not to reproduce the exper-
imental “plateau” for magnetization curves at very low temperatures, that can be taken
to be T = 0K in the simulations.

In 2015, Evans et al. [32] also used atomistic spin dynamics to investigate temperature
dependent properties. They begin by imposing the usual constraints of atomistic spin
dynamics namely

Si = µssi and |si| = 1 (1.47)

where µs is the magnetic moment, and quickly focus on how to reproduce low temperature
– quantum – effects as in this kind of scheme, basically any spin orientation is possible,
whereas quantum mechanics is drastically less permissive. One consequence is that the
statistical laws behave very differently. For low temperature, the classical magnetization
satisfies

mc(T ) ≈ 1− 1
3
T

Tc
, (1.48)

where
mc = M(T )

M(0) (1.49)

with M the magnetization and TC the Curie temperature. The quantum law, which is
more accurate for low temperatures, yields

mq(T ) = 1− 1
3s
(
T

Tc

)3/2
(1.50)

where s is a slope factor given by

s = S1/2(2πW )−3/2ζ

(3
2

)
(1.51)

with S being the spin quantum number, ζ(x) is the Riemann ζ function and W is a Watson
integral. For the whole range of T , up to TC , they propose the following rescaling for the
magnetization depending on τ = T

Tc

m(τ) = (1− τα)β (1.52)

where β ≈ 1/3 is the critical exponent and α is a single empirical constant used for
better fitting. Typical values for α are 2.37 for Co and 2.32 for Ni. In order to check the
magnetization curves, they compare them to those obtained from another rescaling model
by Kuz’min [33] given by

m(τ) =
[
1− sτ3/2 − (1− s)τp

]β
(1.53)

Next they carry out simulations for Co, Fe, Ni and Gd using a nearest neighbor exchange
model. They show that indeed, their model is able to predict the correct magnetization
curves, as the model which was developed by Kuz’min, but with fewer parameters, hence a
more effective fit. They also show how to use this model in practice to fit the α parameter.
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They end by performing a more elaborate simulation, that involves coupling the electron
and the lattice thermodynamic reservoirs to the spin reservoir in order to predict the
correct demagnetization curves for Ni, shown in Figure 1.2, where the EOM for each spin
site is the stochastic Landau-Lifshitz-Gilbert equation

∂Si
∂t

= − γe
1 + λ2

[
Si ×H i

eff + λSi ×
(
Si ×H i

eff

)]
(1.54)

Here λ is the Gilbert damping factor, H the magnetic field and γe the gyromagnetic
ratio. In their framework, the time evolution for the electronic T exp

e and the lattice T exp
l

temperatures are given by a 2-temperature model

Figure 1.2: Demagnetization of Ni : classical vs. rescaled thermostat


Ce
∂T exp

e

∂t
= −G(T exp

e − T exp
l ) + φ(t)

Cl
∂T exp

l

∂t
= −G(T exp

l − T exp
e )

(1.55)

where φ(t) is a time-dependent Gaussian light pulse, Ce the specific heat for the electronic
system, G is the electron-lattice coupling constant and Cl the specific heat of the lattice.
They show that indeed their rescaled model is in better agreement with experimental data
than the classical atomistic spin dynamics simulation.

In this context, one can explore finite temperature effects for spin dynamics simulations
in a deterministic fashion. There are however different approaches to the implementation
of these in which the coupling to thermal degrees of freedom is realized by stochastic
noises, defined by bath variables [34]. Whereas the deterministic models imply either that
one builds effective 2 or even 3-temperature models [35] for each subsystem’s reservoir to
properly describe the dynamics or that one focuses rather on the equilibrium magnetization
than the actual approach to it; the stochastic models allow for a more natural definition of
the temperature through fluctuation-dissipation relations, and also, they make it possible
to follow the actual time evolution of the spin dynamics, modified by the coupling to
thermal reservoirs, as we shall see in the next section.
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1.4 Noisy dynamics

In 2012, Thibaudeau et al. [36] published an article in which they investigated forced
thermalization of a spin system in an extended phase space, whose symmetry is deliber-
ately broken, in order to simulate overdamped spin dynamics. Their starting point is a
Hamiltonian, which includes only a Heisenberg exchange term. Their formulation leads to
the following equations of motion for each spin on sites i of a regular lattice

ṡi = {si,H} = Gij (sk)ωj (sk) (1.56)

where Gij = Cijksk is an antisymmetric Poisson tensor.
They, then, couple their model to a heat bath through a function g(ζ), where ζ is a

pseudo friction term or “demon”, such that

ṡi = Gij (sk) (ωj (sk)− g(ζ)Aj) (1.57)

since this equation cannot be recast in Hamiltonian form by a redefinition of variables.
Here A is a vector field through which the coupling is achieved.

It is straightforward to generalize this expression to any number of such friction terms
and if g(ζ) is constant in time, one recovers the Landau-Lifshitz form [37]. They then
introduce a canonical probability distribution that describes the new ensemble

f({si}, ζ) = f0 exp (−βH− G(ζ)) (1.58)

and they derive equations of motion for the bath variable ζ, which enables them to recover,
at equilibrium (i.e when ζ̇ = 0), the expected spin temperature

Ts =
~
(
ωiωi − (ωlsl)2

)
3kbωjsj

(1.59)

Once this is established, they focus on building a symplectic numerical scheme to integrate
their equations of motion. In particular they derive an exact expression for the precession of
a single spin around a fixed axis ω, such that ||ω|| = ω, depending on the bath realization.

s(t) = A(t)s(0) +B(t)ω
ω

+ C(t)s(0)× ω
ω

(1.60)

where

A(t) = 2 cos(ωt) exp(−ζωt)
1 + exp(−2ζωt) + χ(1− exp(−2ζωt))

B(t) = 1− exp(−2ζωt) + χ(1 + exp(−2ζωt))− 2χ cos(ωt) exp(−ζωt)
1 + exp(−2ζωt) + χ(1− exp(−2ζωt))

C(t) = 2 sin(ωt) exp(−ζωt)
1 + exp(−2ζωt) + χ(1− exp(−2ζωt))

(1.61)

and χ = s(0) · ωω . By introducing a second bath variable and hence building a chain of
thermostats, they show that this procedure is a fast alternative to previous methods in de-
termining thermal equilibrium solutions. An issue of this method is that it “fakes” quicker
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dynamics in order to fall into an energy well, hence only focusing on the “destination” and
not on the “journey”. An alternative which preserves the averaged path of the dynamics
for the spin variables is to study the moments of the distribution so as to build an effective
– deterministic – model for the dynamics of the stochastic variables.

Later, Tranchida et al. [38] considered stochastic magnetization dynamics through an
effective – deterministic – approach. They begin with the standard damped precession
equation in the form of the Landau-Lifshitz-Gilbert equation (cast in the Landau-Lifshitz
form)

∂si
∂t

= 1
1 + λ2 εijk [ωj + ω̃j − λεjlmωlsm] sk (1.62)

where ω̃j are the components of a stochastic Ornstein-Uhlenbeck noise distribution satis-
fying

〈ω̃i(t)ω̃j(t′)〉 = D

τ
δij exp

(
−|t− t

′|
τ

)
(1.63)

to get from the stochastic system eq. (1.62) to a deterministic hierarchy of moments

∂〈si〉
∂t

= 1
1 + λ2 εijk [ωj〈sk〉+ 〈ω̃jsk〉 − λεjlmωl〈smsk〉]

∂〈sisj〉
∂t

= 1
1 + λ2 εjkl (ωk〈sisl〉+ 〈ω̃ksisl〉 − λεlmnωm〈sislsn〉) + (i↔ j)

. . .

(1.64)

and they take advantage of the noise distribution to use the Shapiro-Loginov formula [39]
to express mixed moments between the noise and the spin components such that

∂ω̃isj
∂t

= 〈ω̃i
∂sj
∂t
〉 − 1

τ
〈ω̃isj〉 (1.65)

Assuming that the third order cumulants vanish (Gaussian closing [40]) it is possible to
close the hierarchy eq. (1.64) and a deterministic system on the first and second-order
moments of the spin distribution is obtained. This system is integrated numerically and
compared to the stochastic integration of eq. (1.62). All this enables them to construct a
deterministic model which amounts to the Landau-Lifshitz-Bloch [41] equation, without
the need for imposing a longitudinal dissipation term ad-hoc. On top of this, this frame-
work enables the study of effects of colored noise distributions on magnetic systems in a
manner which is independent of the number of realizations of the noise and thus is sig-
nificantly faster for resolving the properties of the statistical distribution of the magnetic
system. The limitations, which are highlighted by the authors, amount to the Gaussian
closure, in particular whether the distribution does become Gaussian at long times.

A further issue is that this closure assumption leads to the conclusion that the average
value satisfy the classical equations of motion, which at low temperature is expected to
break down anyway, since it amounts to neglecting quantum correlations, arising from the
intrinsic quantum nature of magnetic properties. Such properties are usefully described
in terms of magnons, when these can be resolved.
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Coherent superpositions of magnons (i.e., spin waves) are typical excitations of mag-
netic materials [42]. At low occupation number, the individual magnons can be resolved
and their statistical distribution becomes relevant.

According to the Holstein-Primakoff representation, their statistical distribution is of
Bose-Einstein form (see [43] for a thorough review on this subject).

However it is possible to describe them in terms of an effective angular momentum
algebra. In terms of this algebra, the statistic distribution is, in fact “intermediate”, an
example of anyons, cf. [44].

The Bose–Einstein distribution was used by Woo et al. [31] in order to study the
effects of the noise field at low temperatures, with the aim of improving the simulations
for the behavior of magnetic materials, below the Curie point. After a brief review on noisy
spin-lattice dynamics and temperature dependence of phonons and magnons, a modified
quantum fluctuation-dissipation relation (QFDR) for the lattice is computed. The kinetic
energy is found to be given by the expression 〈Ek〉 = 3Nηl

2 where ηL(T ) is given by the
expression

ηL(T ) =
∫ ∞

0
~ω
[ 1
e~ω/kBT − 1

+ 1
2

]
gP (ω, T )dω (1.66)

and the phonon density of states (DOS) is of the form

gP (ω(k), T ) = 4πk2Ω
(2π)3 [∇kω(T )]−1 (1.67)

~ is the reduced Planck constant, N the number of particles, ω the frequency, kB the Boltz-
mann constant, k stands for the kth mode, Ω is the atomic volume. A similar expression
holds for the spin part, where 〈E〉 = NηS − 1

2NH0S,

ηS(T ) =
∫ ∞

0

~ω
e~ω/kBT − 1

gm(ω, T )dω (1.68)

and the magnon DOS is given by

gm(ω, T ) = Ω
(2π)3

4πk2

∇kω(T ) (1.69)

This enables them to study specific cases such as Debye crystals or other low-temperature
models for which they have an analytic expression respectively for the phonon and magnon
DOS so as to obtain QFDR modified heat capacities for the lattice and spin parts of the
system. They show that, indeed, their modified QFDR is better suited for the description
of the low temperature magnon energy and the magnetization, especially for obtaining
vanishing slope close to 0 K and also for describing the low-temperature magnon heat
capacity. They end their discussion by a dynamical spin-lattice simulation of bcc Fe in
which they show that their model can reproduce low-temperature behavior, measured in
experiments, in particular the vanishing slope at T = 0K for the magnetization curve.
This effective approach is thus capable of describing, certain, quantum effects at low
temperatures, without any extra computational cost.

In the above sections, the methods which were used to describe spin dynamics were
all, somehow, relying on a Hamiltonian, or equivalently Lagrangian description. In this
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1.5. NAMBU MECHANICS

context, the classical spin dynamics realizes constraints that, for example, imply the con-
servation of the norm of the spin. These constraints can be encoded much more naturally
in a more general framework which is Nambu mechanics, a generalization of Hamiltonian
dynamics [45] to phase spaces of arbitrary – including odd – dimensions. What is interest-
ing is that the same is true for Nambu dynamics and higher order (i.e., N + 1 dimensional
phase space, where N is the dimension of the corresponding Nambu phase space) Hamil-
tonian dynamics which in turn can encode the constraints of the initial Nambu dynamics
[46]. In the following section, we will thus proceed to review some properties of Nambu
dynamics and how this framework more naturally allows for the construction of undamped
precessional spin dynamics.

1.5 Nambu mechanics

In 2009, Axenides et al. [47] published an article in which the main focus is the
quantization of Nambu dynamics. What is more interesting here is that they begin by
recalling the main features of Nambu dynamics. In R3, the time evolution for a variable
x implicitly depending on time and living in a Nambu phase space is given by

ẋi ≡ {xi, H1, H2} (1.70)

where H1 and H2 are the two conserved quantities, the Nambu Hamiltonians. The bracket,
on the RHS, is a generalization of the Poisson Bracket, to more than two entries:

{f, g, h} = εijk
∂f

∂xi

∂g

∂xj

∂h

∂xk
(1.71)

As in the case of Hamiltonian dynamics, such a Nambu bracket must satisfy a certain set
of properties :

• It is antisymmetric for any functions f, g and h of the phase space variables

{f, g, h} = −{f,−g, h} = {f,−g,−h} = −{−f,−g,−h} (1.72)

• It satisfies the Leinbiz property

{f, g, hj} = {f, g, h}j + h{f, g, j} (1.73)

• It satisfies a generalization of the Jacobi identity, called the Fundamental Identity

{{f1, f2, f3}, f4, f5}+{f1, {f4, f2, f3}, f5}+{f1, f4, {f5, f2, f3}} = {{f1, f4, f5}, f2, f3}
(1.74)

It is possible to describe the precession dynamics of a magnetic moment as an example
of a linear Nambu flow. For this, they take H1 = a · x and H2 = 1

2x · Bx. Here a is a
real–valued vector and B is a real, symmetric matrix. This yields the following dynamics

ẋi = εijkajBklxl (1.75)
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1.6. FROM ELASTICITY TO MAGNETOELASTICITY

If one now takes a ≡ ω the precession frequency, B ≡ 1 the identity matrix and x ≡ s
the classical spin – or magnetic moment, we recover

ṡ = ω × s (1.76)

which is, up to a possible numerical factor, the usual precession equation for a classical –
undamped – spin.

Even though this formalism has been developed more than forty years ago, it has been
forgotten for quite a while, apart from applications to fluid mechanics [48, 49]. It was
revived in the context of the description of membranes in the so–called Bagger–Lambert–
Gustafsson approach to multiple M2-branes [50], but was, once more, forgotten, when the
expected relation between classical bracket and quantum commutator turned out to be
much more difficult to establish than expected–and, indeed, it remains an open problem
to this day.

What is interesting about linear Nambu flows that are relevant for spin precession is
that it is possible to evade the problem of constructing the quantum Nambu bracket, since
it is possible to construct the unitary evolution operator itself.

On the other hand, already at the classical level, how to describe dissipative effects
in Nambu mechanics, that could be used to understand quantum fluctuations for deter-
ministically chaotic systems, has provided insights for magnetic systems. We may cite
here [51, 52]. It should be stressed that Nambu’s original motivation was to describe the
phase space of extended objects and it is noteworthy that the classical formalism has been
applied to elastic strings [53] which can be identified as Goto–Nambu strings. Interest-
ingly, a common way to study the coupling between mechanical and magnetic degrees of
freedom has been derived from fluid dynamics [54]. However, these approaches often rely
on studying the extrema of an appropriate energy functional, without paying attention
to the dynamics. So, while they can provide useful insights for the couplings between
magnetism and elasticity, also known as magnetostriction, they do not allow us to explore
the phase space as fully as desired. Our aim being the study of the dynamical interplay
between magnetism and elasticity, the next section’s focus will be how to describe these
couplings in a different fashion, namely from the symmetries that constrain the interaction
between magnetic moments and mechanical strain tensors [6].

1.6 From elasticity to magnetoelasticity

In a review article about ferromagnetic domains, Kittel [55] focuses an entire section on
how “magnetoelasticity”, the interaction between magnetic and elastic DOF contributes
to the total energy of a magnetic material. In this section, the magnetoelastic energy is
defined as the energy arising from the interaction of the magnetization and the mechanical
strain. For a crystal with cubic symmetry, a useful starting point consists in defining the
elastic energy density as

fel = c11
2 (e2

xx + e2
yy + e2

zz) + c44
2 (e2

xy + e2
yz + e2

zx) + c12(eyyezz + exxezz + exxeyy) (1.77)

where the cij are the elastic moduli and the eij are the mechanical strain tensor compo-
nents. Here one may recall that, usually [56–58], the coupling between magnetism and
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1.6. FROM ELASTICITY TO MAGNETOELASTICITY

strain is due to the shape of the crystal, hence it is interpreted as a modification of the
magnetic anisotropy which depends on the strain. By expanding the effective magnetic
anisotropy energy fk in a Taylor series of the mechanical strain, it is possible to define

fk = (fk)0 +
∑
i≥j

(
∂fk
∂eij

)
0
eij + . . . (1.78)

where (fk)0 is the strain–independent part of this effective magnetic anisotropy. The
different terms which are to be taken into account are

∂fk
∂exx

= B1α
2
1; ∂fk

∂eyy
= B1α

2
2;

∂fk
∂ezz

= B1α
2
3; ∂fk

∂exy
= B2α1α2;

∂fk
∂eyz

= B2α2α3; ∂fk
∂exz

= B2α1α3

(1.79)

The B’s are called magnetoelastic constants, and the α’s are the direction cosines of the
magnetization 

α1 = sin(θ) cos(φ)
α2 = sin(θ) sin(φ)
α3 = cos(θ)

(1.80)

where, θ and φ are the spherical angles for the magnetization direction. Hence the total
energy including strain, anisotropy and magnetoelastic terms, for a crystal displaying cubic
symmetry reads

f = K(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) +B1(α2

1exx + α2
2eyy + α2

3ezz)
+ B2(α1α2exy + α2α3eyz + α3α1ezx) + c11

2 (e2
xx + e2

yy + e2
zz)

+ c44
2 (e2

xy + e2
yz + e2

zx) + c12(eyyezz + exxezz + exxeyy)
(1.81)

Now for more general systems [59] – beyond cubic symmetry –, the mechanical strain
energy fel is given by

fel = 1
2Cijkleijekl (1.82)

where the Cijkl is the tensor of elastic constants and, in a similar fashion, for crystals with
lower symmetry, one can define a more general expression for the linear magnetoelastic
energy [6]

fmel = Bijkleijsksl (1.83)
where s are the components of the magnetization vector.

A key aspect of this approach is that it does not simply couple vector to vector but
instead allows for a more subtle directional dependence through tensor quantities which
can encode the direction with respect to the surroundings as well. But even though these
structures are mathematically quite different, of course, they remain very similar as, they
commute pointwise, viz., eijekl = ekleij . (This, of course, does not mean that the matrices
commute.)
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What is interesting is that the spin degrees of freedom are qualitatively different, since
their equations of motion–that describe precession–are first order. To handle the con-
straints that this implies, it is fascinating that other algebraic structures, namely Grass-
mann variables, turn out to be of practical relevance [21, 22]. Through these, it turns out
to be possible to represent spin systems either using non-local, but commuting, variables;
or by using local, but, anticommuting, variables. Thus, in the next section, we will review,
how spin systems can be described in terms of Grassmann variables. In this way, it is
possible to understand how a new kind of symmetry, called supersymmetry, appears, that
mixes together commuting and anticommuting variables in a way that has quite profound
implications for physics–especially for magnetic materials.

1.7 Grassmann variables and supersymmetry

Berezin et al. [22] proposed to use Grassmann variables for describing the dynamics of
classical spinning point particles. They begin by introducing the notion of anticommuting
c-numbers (complex numbers) using the Grassmann algebra formalism, which is presented
in textbooks for fermionic field theories [60]. The particularity is that Grassmann algebras
do not involve commutators, but anticommutators. The corresponding generalizations of
Lie algebras are known as graded Lie algebras or superalgebras [61].

It is possible to summarize the work of Berezin and Marinov by stating the salient
results, namely the action principle for the spinning particle in an external field.

The appropriate description for a spinning particle, indeed, turns out to involve func-
tions of time, ξi(t), that realize a Clifford algebra

ξiξj + ξjξi = 2δij (1.84)

The reason, that took some time to be understood properly (in particular through the
subsequent work of Brink et al.) is that it is indeed this algebra, rather than the usual
Grassmann algebra

ξiξj + ξjξi = 0 (1.85)

that ensures that the target space can describe the propagation of spinning particles,
thanks to the consistent realization of the appropriate constraints.

The classical action on any time interval [ti, tf ] is given by the expression

Aξ(ti, tf ) =
∫ tf

ti

dt

[1
2 ω̃klξkξ̇l −H(ξ)

]
(1.86)

where ω̃ is a symmetric imaginary matrix (i.e., antihermitian) for which the simplest
possible form is taken, as ω̃kl = ıδkl and H(ξ) is an even polynomial (of degree lower or
equal to 3), because an even product of odd numbers is an even number, as is required by
the first term in the integral of the LHS of eq. (1.86). Hence

H(ξ) = −ı2 εklmBkξlξm (1.87)
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and the Bk’s are real. Thus the equations of motion deduced from the requirement that
the action eq. (1.86) be extremal are

ξ̇k = iH
←−
∂ k = εklmBlξm (1.88)

where the A←−∂ k notation simply denotes a derivative which acts on the right of the term
A instead of on the left of it (as would the −→∂ kA), which one needs to specify, as the ξ’s
anticommute. Thus

(ξjξl)
←−
∂ k = ξjδkl − ξlδkj = −−→∂ k(ξjξl) (1.89)

Equations (1.88) can be identified as describing spin precession in an external field B in
analogy with eq. (1.76). The appropriate generalization of the Poisson bracket turns out
to be

{f, g}P.B. ≡ ı(f
←−
∂ k)(

−→
∂ kg) (1.90)

One can then define the rotation group in the extended phase space by the action of the
spin angular momentum as

Sk = −ı2 εklmξlξm (1.91)

Indeed it is the fact that the ξl generate a Clifford algebra that implies that the Sk generate
the algebra of rotations.

Hence, the most general expression for the action, that describes the motion of a
spinning particle in an external field, in this extended phase space (which, in fact, is a
“superspace”) {q,p, ξ} is described by

A (ti, tf ) =
∫ tf

ti

dt

[
p · q̇ + ı

2ξ · ξ̇ −
p2

2m − V0(q)− (L · S)V1(q)− S ·B(q)
]

(1.92)

where L = q × p is the angular momentum, V0 and V1 are potential functions and B is
the external field. We have used the notation f · g ≡ ∑3

i=1 figi. This action yields the
following equations of motion

q̇ = p

m
+ (S × q)V1,

ṗ = −∇V0 − (L · S)∇V1 + (S × p)V1 −∇(S ·B),

ξ̇ = (L× ξ)V1 + (B × ξ)

(1.93)

where −∇V0 is the field generated by the potential V0,

(S × q)V1, (L · S)∇V1, (S × p)V1, (L× ξ)V1 (1.94)

describe the spin-orbit interaction and

∇(S ·B), (B × ξ) (1.95)

correspond to the interaction with the external field B. One interesting aspect to notice
is that the dynamics for the spin itself is described by Grassmann variables ξ, that satisfy
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anticommutation relations, even though the coupling to the “spatial” degrees of freedom
is done through the composite variables S, that satisfy commutation relations. Through
this formalism it has been possible to construct, from first principles, a representation of
the algebra of the dynamical DOFs, that include position, momentum and spin in one
multiplet, and define a Hamiltonian function and an appropriate graded Poisson bracket,
thus defining the dynamical evolution for the system. Furthermore, such a description
allows a smoother transition to describing fluctuations in general, more particularly quan-
tum properties and how classical symmetries get realized [62]. This in turn implies a more
straightforward implementation of the relations between the couplings, that are an expres-
sion of such symmetries. For instance, one can now see that the coupling of {q,p} to the
composite variable S is not simply to be imposed ad hoc but can be understood in terms
of “deeper” symmetries. In this thesis we shall show in a specific example, pertaining to
magnetostriction, how this formalism can be put to practical use in understanding the
symmetries of the magnetoelastic interaction.

In this brief overview, we have seen different approaches describing spin dynamics,
either for single – isolated – particles or for collections of them, in both cases interacting
with an external field. For these methods we have seen that there are several issues, such
as requiring a lot of computational power or failing to describe effects due to temperature
or more general couplings. We have, thus, also investigated how these spin DOF’s can
then be coupled either to a thermal (or generic) noise reservoir or to the strains of the
medium in which they are embedded. Current models for coupling to strains neither focus
on the dynamical interplay between strains and spins nor consider any back reaction of
the spins on the strains. In addition, we have investigated alternative, more natural, ways
to take into account the constraints of spin degrees of freedom, depending on their bosonic
or fermionic nature, through using Nambu mechanics or Grassmann – anticommuting –
variables. These tools are not especially recent but what has not been considered thor-
oughly is how to use them together in a common approach describing finite temperature
magneto-elasticity. Current advances in material science now open the possibility of study-
ing matter under conditions, where fluctuations can be probed to unprecedented precision,
which requires a good description of their dynamics. As our aim is to study the coupling
between thermal, mechanic and magnetic degrees of freedom, these tools shall prove, in-
deed, particularly useful in building numerical methods to investigate their dynamics and
dynamical interplay.
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Summary
• Precession as an emergent property of the quantum nature of spin and the

generalization of this simple model to describe damped precession of magnetic
moments by equations such as LL or LLG.

• Construction of a consistent magnetic molecular dynamics and a review of
how the framework can be used to numerically study magnetic materials.
How symplectic integration schemes can be constructed in this context.

• A review of the atomistic spin dynamics model for numerical simulations of
magnetic structures and the implementation of thermal effects in this method.

• Coupling of magnetic systems to baths and the quantitative description, ei-
ther in terms of a stochastic dynamics, which needs to be averaged, or in
terms of a deterministic – effective – approach for the moments of the dis-
tribution. We also investigated how to recover quantum effects, especially at
low temperature, through an effective model of the fluctuations.

• A review of some interesting features of Nambu dynamics and Nambu brack-
ets. We have shown how this framework can describe spin precession and how
this can bring forth interesting physical interpretations.

• We reviewed some properties of elasticity and the description in terms of an
energy functional and how the couplings between magnetism and elasticity
give rise to magnetoelasticity, the dynamic alter ego to magnetostriction.

• Finally, we have presented Grassmann – anticommuting – variables and how
to use them to describe spins and their coupling to mechanical degrees of
freedom.
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Chapter 2

Simulating
magneto-thermo-mechanical
dynamics through a
spin/spin-bath coupling model

Résumé
• Nous construisons un modèle théorique stochastique pour le couplage d’un

spin à un bain de spins afin d’explorer comment modéliser les effets de
la magnétoélasticité. Ce modèle est décrit par des équations différentielles
stochastiques.

• Nous établissons un modèle déterministe pour les moments de la distribu-
tion du spin, à partir du modèle stochastique. Ce modèle est décrit par des
équations différentielles ordinaires, où les effets stochastiques sont implicites.

• Nous développons un intégrateur numérique stochastique pour simuler le com-
portement du premier système. Pour cela, nous utilisons un schéma symplec-
tique/géométrique qui conserve le volume de l’espace des phases et permet de
garder l’énergie du système bornée.

• Nous développons un intégrateur pour le système effectif – déterministe – à
l’aide des bibliothèques GSL afin d’explorer dans quelle mesure ce système
peut reproduire les propriétés du modèle stochastique, de façon plus rapide et
explicite.
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2.1. HOW TO DEFINE A THEORETICAL MODEL FOR THE SPIN/SPIN-BATH
COUPLING

In the field of magnetic materials, “effective” theories are quite common. In order to
take into account thermal effects, for example, one can construct a model for the interaction
of a macroscopic magnetic moment with a stochastic bath, whose statistical properties
define the “physical” temperature of the system [63], but whose degrees of freedom are
not and need not be specified. Thus, one can understand the macroscopic behavior of
a system in terms of this effective model, whose purpose is to “mimic” the influence of
temperature on the initial system. In this chapter, we will, therefore, propose a model,
which is based on this idea. In fact, we shall describe the way of coupling a magnetic
moment (or spin) not only to a thermal bath, but, also, to another spin, which behaves as
a collection of them (i.e., a spin bath [64]). Our aim is to have a way to take into account
not only thermal effects but, also, the interaction between magnetic degrees of freedom,
where we can single out some of them, with respect to others (that define the bath). In
addition, we shall explore the effects of the elastic medium in which the magnetic moment
is embedded [65] and construct the corresponding magneto-elastic interaction [18]. Thus
in what follows, we will build a theoretical model for coupling a spin to a thermal bath, a
spin bath and a reactive medium, so as to explore new ways for understanding dissipation
in magnetic materials [66].

2.1 How to define a theoretical model for the spin/spin-bath
coupling

For a classical spin (or magnetic moment) s(t) the simplest evolution model describes
a precession [12] motion around a field ω such that

ṡ(t) = ω × s(t) (2.1)

When one wants to couple this system to a bath, one can either introduce an additive
ω × s → ω × s + η or a multiplicative noise ω × s → (ω + η) × s, depending on the
physical interpretation and the intrinsic properties of the system [67], where η is a vector
of random variables, drawn from a fixed distribution that defines the bath. This induces a
map between the probability distributions of the variables s and of the variables η. These
can be reconstructed from the moments 〈si . . . sn〉 defined as

〈si . . . sn〉 =
∫
DηP[η]si[η]...sn[η]∫

DηP[η] (2.2)

where P[η] is the noise probability density and if it is normalized, then one simply has∫
DηP[η] = 1.

By assuming that the studied system is ergodic, which is by no means trivial [68], we
will rather use the more convenient definition

〈si[η]〉 = lim
N→∞

1
N

N∑
j=1

s̃
(j)
i [η] (2.3)

where the s̃(j) label each stochastic realization. In order not to overload the notation, we
will drop this specific distinction and simply keep in mind that the variables in brackets
are averages, and the variables by themselves describe individual stochastic realizations.
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COUPLING

Such a stochastic approach has been shown to be able to describe spin relaxation [69],
for instance, by imposing a fluctuating field described by a Langevin equation. The proba-
bility distribution for the spin can then be determined as the solution to the corresponding
Fokker-Planck equation, and a fluctuation-dissipation theorem can be shown to hold. In
a “high-temperature” limit, this model was shown to produce LL or Bloch equations.

One shortcoming of this approach is that dissipation is introduced ad hoc. This partic-
ularly annoying for the Bloch equation, where the longitudinal damping is introduced by
hand. It would be useful to have a framework for describing the stochastic properties of
the spin, whatever the particular way dissipation may be realized. In particular, we would
like to find a framework, where the longitudinal damping is the output, rather than the
input.

One way to set up such a stochastic framework is to separate the spin variables into
two classes s and S, where S is drawn from a stochastic “spin” distribution. We will thus
introduce the following system {

ṡ = ω[s,S]× s
Ṡ = Ω[s,S,η]× S (2.4)

The immediate consequence is that {
s · ṡ = 0
S · Ṡ = 0 (2.5)

i.e., the norms of s and S are constant over time. The approach constructed throughout
this chapter introduces a “light” spin s, representing a single magnetic moment, interacting
with a “heavy” spin S [70], behaving as a collection of spins which can be resolved only
through their statistical distribution.
This is represented if Figure 2.1. The red spin represents the single light magnetic moment,
taken independently among all the spins. The bigger blue spin represents the heavy spin
which mimics the interaction with the collection of the other (gray) spins. The idea is that
the coupling between the noise and the heavy spin should encode the structural changes
of the gray lattice so as to describe both, purely magnetic, as well as magnetoelastic,
effects. Indeed, instead of directly having access to all the positions and orientations of
the small magnetic moments, the heavy spin encodes this information as if it were only
possible to detect the statistical properties of the noise induced by them. Thus different
mechanical and magnetic structures are to be “translated” into statistical moments of the
noise distribution.

So, the first property we want this system to reflect is that for each realization of the
noise, the norm of the magnetic moment has to be conserved over time, since; otherwise, we
would have introduced dissipation by hand. This rules out additive noise for the precession
equation and calls for implementing multiplicative noise[28]{

ṡ = ω[s,S]× s
Ṡ = (Ω[s,S] + η)× S (2.6)

Next we must discuss how to define the interaction between the light s and heavy S spins.
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COUPLING

Figure 2.1: Light spin depicted in red and heavy spin depicted in blue, representing the
collective effects of all the gray collection of spins.

We shall do this by introducing an exchange coupling constant J such that{
ṡ = (ω[s] + JS)× s
Ṡ = (Ω[S] + Js+ η)× S (2.7)

For simplicity, we take the same constant for both equations. We will, also, implement
the usual Gilbert term (as a torque: −αṠ × S) [71]–for the heavy spin, only, as it does
describe collective, rather than individual, behavior:

Ṡ =
(
Ω[S]− αṠ + Js+ η

)
× S (2.8)

Since these equations conserve the norm of the spins, we can set the initial value for
them so that s2 = 1 and S2 = 1; and, then, we can recast eq. (2.8)in the more familiar
Landau-Lifshitz form

Ṡ = 1
1 + α2 (Ωeff − αΩeff × S)× S (2.9)

where the effective frequency is given by

Ωeff = Ω + Js+ η (2.10)

Bertotti et al. [72] have shown that the noise term can be omitted in the effective frequency
Ωeff for the double cross product, without any incidence on the dynamics. Hence the
coupled system we will consider is given by

ṡ = (ω + JS)× s

Ṡ = 1
1 + α2 [(Ω + Js+ η)− α (Ω + Js)× S]× S

(2.11)
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from which it is straightforward to compute the variation in the phase space volume

∂Ṡi
∂Si

+ ∂ṡi
∂si

= − 2α
1 + α2 (Js+ Ω) · S (2.12)

and find that it does not vanish. This means that the combined system is not closed.
In addition, this implies that, depending on the orientation between (Js+ Ω) and S the
volume of the phase space can either contract, or expand, which indicates the possibility
for instabilities of the dynamical system. While this is a fascinating topic, it is beyond the
subject of this thesis.

Explicit solutions of this system of equations are not available, for the noise distri-
butions of interest, so a numerical treatment will be presented in section 2.3; but it is
interesting to note that an alternative way to understand the behavior of this system is
available: we can also determine the properties of the statistical distributions for the light
and heavy spins, or equivalently the hierarchy of moments [73], which we shall study in
the next section.

2.2 The hierarchy, its closure and the equivalent determin-
istic system

As mentioned before, once a random variable is introduced, the dynamical variables,
depending on it , also become random and the system becomes stochastic. This means
that computing the time evolution for one realization of the noise no longer has physical
meaning. The quantities which express Ehrenfest’s theorem are the averages over the noise
〈s〉 and 〈S〉 or, to be even more precise

d

dt
〈s〉 = 〈(ω + JS)× s〉

d

dt
〈S〉 = 1

1 + α2 〈[(Ω + Js+ η)− α (Ω + Js)× S]× S〉
(2.13)

It is possible to gain considerable insight into the properties of these equations, under the
assumption that Ω and ω be “external,” fields which do not depend on s and S. A further
simplification, without any loss of generality, is that they are, indeed, constant vectors.

As such we can rewrite eq. (2.13)
d

dt
〈s〉 = ω × 〈s〉+ J〈S × s〉

d

dt
〈S〉 = 1

1 + α2 [Ω× 〈S〉+ J〈s× S〉+ 〈η × S〉 − α (J〈(s× S)× S〉 −Ω× 〈S × S〉)]
(2.14)

and we immediately notice a problem: these equations do not define a closed hierarchy.
They depend on higher order (as well as mixed) moments of these spins, namely 〈sisj〉,
〈siSj〉, 〈SiSj〉, 〈siSjSk〉, . . . which in turn implies that we need equations of motion for
all these moments as well.
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To attempt to “close” this hierarchy, we proceed as follows:
We shall use the Ansatz that the averaging procedure and time derivative commute,

which implies, for example

d

dt
〈siSj〉 = 〈ṡiSj〉+ 〈siṠj〉 (2.15)

By replacing ṡ and Ṡ in the resulting expressions, we end up with the following system
for the second-order moments

d

dt
〈sisj〉 = 〈εilm (ωl + JSl) smsj〉+ 〈siεjlm (ωl + JSl) sm〉

d

dt
〈siSj〉 = 〈εilm (ωl + JSl) smSj〉

+
〈
si

( 1
1 + α2 εjlp [(Ωm + Jsm + ηm)− αεlmn (Ωm + Jsm)Sn]Sp

)〉
d

dt
〈SiSj〉 =

〈( 1
1 + α2 εilp [(Ωl + Jsl + ηl)− αεlmn (Ωm + Jsm)Sn]Sp

)
Sj

〉
+
〈
Si

( 1
1 + α2 εjlp [(Ωl + Jsl + ηl)− αεlmn (Ωm + Jsm)Sn]Sp

)〉

(2.16)

which involve even higher-order moments, namely 〈siSjSkSl〉. If we tried to continue to
write down equations of motion for these moments, we would only find even higher-order
moments, thus giving rise to an infinite hierarchy of equations [73]. What is now required
is a way to consistently truncate this hierarchy in order to keep only a finite number of
terms. Here we chose a “Gaussian closure,” which implies that the third-order cumulants
vanish:

〈〈Fi[η]Gj [η]Hk[η]〉〉 = 0. (2.17)

where F [η], G[η] and H[η] are general functionals of the noise. This is a highly non-trivial
choice, which we make in order to keep things simple enough to be computed within a
reasonable amount of time. However the consistency of this choice can be checked much
more easily. This has been thoroughly investigated [38]. The closure assumption, in
particular, means that one can rewrite the third- and fourth-order moments as functions
of the first and second order ones

CABCijk = 〈AiBj〉〈Ck〉+ 〈AiCk〉〈Bj〉 (2.18)
+ 〈BjCk〉〈Ai〉 − 2〈Ai〉〈Bj〉〈Ck〉,

EABCDijkl = 〈AiBj〉〈CkDl〉 (2.19)
+ 〈AiCk〉〈BjDl〉+ 〈AiDl〉〈BjCk〉
− 2〈Ai〉〈Bj〉〈Ck〉〈Dl〉.

where we introduce the following notation to keep the expressions as compact as possible:
{A,B,C,D} are to be chosen in {s,S}. As an example CsSsijk ≡ 〈siSjsk〉. In this way, we
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can express the components of the first-order moments as



d

dt
〈si〉 = εijk (ωj〈sk〉+ J〈Sjsk〉)

d

dt
〈Si〉 = 1

1 + α2

{
εijk

(
Ωj〈Sk〉+ J〈sjSk〉+ 〈ηjSk〉

)}

− α

1 + α2

[
Ωm〈SmSi〉 − Ωi + J

(
CsSSmmi − 〈si〉

)] (2.20)

and the full expression for the components of the second-order moments are given by



d

dt
〈sism〉 = εijk

{
ωj〈sksm〉+ JCSssjkm

}
+ εmjk

{
ωj〈sksi〉+ JCSssjki

}
d

dt
〈siSm〉 = εijk

{
ωj〈skSm〉+ JCSsSjkm

}
+ εmlp

1 + α2

{
Ωl〈siSp〉

+ JCssSilp + 〈siηl〉〈Sp〉+ 〈Spηl〉〈si〉
}

− α

1 + α2

[
ΩpCsSSimp + JEssSSipmp − Ωm〈si〉 − J〈sism〉

]
d

dt
〈SiSm〉 = εmlp

1 + α2

{
Ωl〈SiSp〉+ JCSsSilp + 〈Siηl〉〈Sp〉

+ 〈Spηl〉〈Si〉
}

+ εilp
1 + α2

{
Ωl〈SmSp〉+ JCSsSmlp

+ 〈Smηl〉〈Sp〉+ 〈Spηl〉〈Sm〉
}
− α

1 + α2

{
2ΩpCSSSimp

+ 2JESsSSipmp − Ωm〈Si〉 − Ωi〈Sm〉

− J

[
〈siSm〉+ 〈smSi〉

]}

(2.21)

The next step which remains to be elucidated is how to perform averages involving mixed
components of the spins and the noise, such as 〈ηisj〉 and 〈ηiSj〉 and, also to this end, which
kind of noise to consider. Obviously, these are very tricky questions and can significantly
enhance, or mitigate, the difficulty of the analysis of these kinds of systems. We will in-
vestigate ways to study a relatively simple noise distribution and review the mathematical
tricks which will help us to have a better grasp on how this system relates to usually more
ad hoc, although experimentally more widely used, approaches. An example of the noise
distribution that’s simple enough for analytical treatment, but, also, of physical relevance,
is the Ornstein-Uhlenbeck distribution, whose salient features we review now.

The next few subsections are quite technical in character and involve describing how
the mixed spin–noise moments are computed. They can be skipped on first reading, and
one may jump directly to subsection 2.2.4.
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2.2.1 The Ornstein-Uhlenbeck noise distribution

There are two very different kinds of noise distributions. The first kind describes
so-called white noise, which is uncorrelated. This simply means that their components
are independent at different times and for different components. A notable example is
the Gaussian white noise distribution (which we can assume of mean zero), where each
component is defined by the probability distribution of standard deviation

√
2D

P (x) = 1√
4πD

e
− x

2

4D (2.22)

with D > 0 and such that ∫ ∞
−∞

P (x)dx = 1 (2.23)

This distribution can, equivalently, be defined in terms of its first- and second-order mo-
ments {

〈ηi(t)〉 = 0
〈ηi(t)ηj(t′)〉 = 2Dδijδ(t− t′)

(2.24)

There are, however, noise distributions, for which the different components, or the same
components at different times, are no longer independent, i.e., they are correlated [38].
An example of these “colored” noises is the Ornstein-Uhlenbeck process

〈η(t)〉 = 0

〈ηi(t)ηj(t′)〉 = D

τ
exp

(−|t− t′|
τ

)
δij

(2.25)

where τ is the autocorrelation time of the process. One reason why we are particularly
interested in this process is that, in the limit τ → 0, we recover the Gaussian white noise
given by eq. (2.24). A very interesting feature of this process is that it no longer involves
distributions but only analytical, and more importantly, differentiable functions. This
means that one can more easily differentiate and manipulate these moments and recover
a Gaussian white noise by taking the aforementioned limit.

Now that we have defined the Ornstein-Uhlenbeck process and its limit when τ → 0,
namely the Gaussian (normal) distribution, we shall continue with the next step, for
computing the mixed moments of spin and noise, 〈ηiSj〉 . To this end, we use the Shapiro-
Loginov theorem [39], which we describe in the following section.

2.2.2 Applying the Shapiro-Loginov theorem to compute derivatives of
the noise for the spin bath

In order to close the established hierarchy, we need to have evolution equations for
every quantity which remains after truncation and approximation. For the case at hand,
we need them for 〈si〉, 〈Si〉, 〈siSj〉, 〈sisj〉, 〈SiSj〉, 〈ηisj〉 and 〈ηiSj〉. For those last two
expressions, the mixed moments involving the noise, we need to compute d

dt
〈ηiSj〉 and

d

dt
〈ηisj〉.
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In this section we will focus on 〈ηiSj〉. The Shapiro-Loginov theorem [74], which yields
a formula of differentiation for averages enables us to write, for the case of the Ornstein-
Uhlenbeck process,

d

dt
〈ηiSj〉 = 〈ηi

dSj
dt
〉 − 1

τ
〈ηiSj〉 (2.26)

If we replace Ṡj by its expression in eq. (2.26), we get

d

dt
〈ηiSj〉 =

〈
ηi

1 + α2 εjrp [(Ωr + Jsr + ηr)− αεrlm (Ωl + Jsl)Sm]Sp
〉
− 1
τ
〈ηiSj〉

(2.27)
What is interesting to notice is that there is only one term in the RHS of eq. (2.27), which
is linear in 1

τ
, namely,

εjrp
1 + α2 〈ηiηrSp〉 ∝

1
τ

(2.28)

Here, once more, we apply the Gaussian closure, where the third-order moment of any
function of the noise can be expressed in terms of products of the first- and second-order
moments or equivalently, the third-order cumulant vanishes as given by eq. (2.17). This
in turn means that 〈ηiηrSp〉 = 〈ηiηr〉〈Sp〉, since the other terms vanish. We end up with

〈ηi(t)ηr(t′)Sp(t)〉 = D

τ
exp

(−|t− t′|
τ

)
δij〈Sp(t)〉 (2.29)

The idea is to multiply eq. (2.27) by τ and then take the limit τ → 0 to recover the
Gaussian white noise, which leads to the following expression

〈ηi(t)Sj(t)〉 = −D
1 + α2 εijk〈Sk(t)〉 (2.30)

Now we can simply replace this expression in eqs. (2.20) and (2.21), instead of computing
d

dt
〈ηiSj〉. As elementary functional analysis tells us, it is not generally true that one can

simply commute averaging (i.e., integration) and differentiation especially as the behavior
of some terms in the τ → 0 can be subtle [75] but here, as a simplifying hypothesis, for
this first step, it is postulated that these assumptions hold. It should be stressed that this
simplification does not prejudge the properties of the long-time limit, which, however, can
be checked a posteriori.

Now that we have managed to express 〈ηiSj〉 in terms of available quantities, we shall
turn our attention towards 〈ηisj〉 for which, as we shall see in the next section, we will
need to make use of the Furutsu-Novikov-Donsker theorem in the case of a Gaussian white
noise.

2.2.3 Using the Furutsu-Novikov-Donsker theorem to compute deriva-
tives of the noise for the spin

The simplification of 〈ηisj〉 requires a bit more work. One could ask why we do not
use the same procedure as previously with the Shapiro-Loginov approach for 〈ηiSj〉. The
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reason is that there is no explicit dependence on the noise in the expression for ṡi; thus
we cannot apply the same procedure.

We are thus going to use another tool which is the Furutsu-Novikov-Donsker theorem
[76], which yields a formula for Gaussian noise path integrals of functional derivatives.

In our case it reads

〈ηi(t)sj(t)〉 =
∫
dt′〈ηi(t)ηl(t′)〉

〈
δsj(t)
δηl(t′)

〉
(2.31)

What remains to be computed is the functional derivative δsj(t)
δηl(t′)

. One way to do this is

to use the chain rule [77] for functional differentiation〈
δsi(t)
δηj(t′)

〉
=
∫
dt′′

〈
δsi(t)
δSk(t′′)

δSk(t′′)
δηj(t′)

〉
. (2.32)

The evaluation of the derivatives on the RHS is quite delicate:
Formally one can always write{

si(t) = si(0) +
∫ t

0 dt
′ṡi(t′)

Si(t) = Si(0) +
∫ t

0 dt
′Ṡi(t′)

(2.33)

As implied by the different integral, the times t, t′ and t′′ are ordered as shown in Figure
2.2

0 t’t’’t

Figure 2.2: Timeline for the times t, t′ and t′′

One can now obtain expressions for the functional derivatives of si and Si as
δsi(t)
δSk(t′′)

= J

∫ t

0
dt′

δṡi(t′)
δSk(t′′)

= J

2 εikm
∫ t

0
dt′sm(t′)δ(t′ − t′′)

δSk(t′′)
δηj(t′)

=
∫ t′′

0
dt
δṠk(t)
δηj(t′)

= εkjp
2 (1 + α2)

∫ t′′

0
dtδ(t− t′)Sp(t)

(2.34)

keeping in mind that 〈ηi(t)ηl(t′)〉 = 2Dδ(t − t′)δil, for a white noise, we get the full
expression for the mixed moment of the noise with the light spin

〈ηi(t)sj(t)〉 = JD

2 (1 + α2) (〈Sj(t)si(t)〉 − δij〈Sm(t)sm(t)〉) (2.35)

Using these tools we can, finally, write down a completely closed system of equations,
which involve only the first and second moments of the corresponding distributions. For
the benefit of the reader, who only wishes to use the equations, we write them out in the
following subsection.
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2.2.4 The equations for the closed system

We, now, can write the completely closed system of equations for the first and second
moments of the distributions. For the first moments, we have

d

dt
〈si〉 = εijk (ωj〈sk〉+ J〈Sjsk〉)

d

dt
〈Si〉 = 1

1 + α2

{
εijk

[
Ωj〈Sk〉+ J〈sjSk〉

]}
− 2D

(1 + α2)2 〈Si〉

− α

1 + α2

[
Ωm〈SmSi〉 − Ωi + J

(
CsSSmmi − 〈si〉

)] (2.36)

and for the second, including mixed, moments, we have

d

dt
〈sism〉 = εijk

{
ωj〈sksm〉+ JCSssjkm

}
+ εmjk

{
ωj〈sksi〉+ JCSssjki

}
d

dt
〈siSm〉 = εijk

{
ωj〈skSm〉+ JCSsSjkm

}
+ εmlp

1 + α2

{
Ωl〈siSp〉

+JCssSilp + JD

2(1 + α2) (〈Sisl〉 − δil〈Snsn〉) 〈Sp〉 −
D

1 + α2 εlpn〈Sn〉〈si〉
}

− α

1 + α2

[
ΩpCsSSimp + JEssSSipmp − Ωm〈si〉 − J〈sism〉

]
d

dt
〈SiSm〉 = εmlp

1 + α2

{
Ωl〈SiSp〉+ JCSsSilp − D

1 + α2 εlin〈Sn〉〈Sp〉

− D

1 + α2 εlpn〈Sn〉〈Si〉
}

+ εilp
1 + α2

{
Ωl〈SmSp〉

+ JCSsSmlp −
D

1 + α2 εlmn〈Sn〉〈Sp〉 −
D

1 + α2 εlpn〈Sn〉〈Sm〉
}

− α

1 + α2

{
2ΩpCSSSimp + 2JESsSSipmp − Ωm〈Si〉 − Ωi〈Sm〉

− J

[
〈siSm〉+ 〈smSi〉

]}

(2.37)

where the expressions for C and E are given in eq. (2.18).
Now that we have consistently closed this hierarchy we can check the validity of our

closure assumptions and ancillary hypotheses, we need to solve these equations. Obtaining
analytical solutions for this effective system, for arbitrary couplings and conditions is not
an easy task. There are, however, ways to solve them, numerically, and this is what we will
focus on in the next sections. Solving equations numerically, of course, is an experimental
task, as one has to check that the solutions to the numerical approximations actually are
approximations to the solutions of the original equations. In order to have a reference
point to compare the solutions for the effective, deterministic, system, we will start by
integrating the stochastic system. To this end it is necessary to construct an appropriate
numerical integrator for this spin/spin-bath coupling model. This is the topic to which we
now turn.
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2.3 A stochastic numerical integrator for the spin/spin-bath
dynamics

In this section, we will turn our focus back to the initial, stochastic, system eq. (2.11).
In order to solve these equations, we shall study only white noise, so as to keep things
simple. We define two effective precession frequencies, Ωeff and ωeff, such that{

ṡi = εijkω
eff
j sk

Ṡi = εijkΩeff
j Sk

(2.38)

These equations can be identified as Liouville equations [78], by defining operators Ls and
LS 

Ls ≡ ṡi(t)
∂

∂si(t)

LS ≡ Ṡi(t)
∂

∂Si(t)

(2.39)

where i ∈ {1, 2, 3} and summation over repeated indices is implied. It is possible to show
that the operators Ls and LS do, indeed, satisfy the properties expected of Liouville
operators.

Applying these operators on the heavy and light spin directly yields{
ṡ(t) = [Ls] s(t)
Ṡ(t) = [LS ]S(t) (2.40)

Formally, one can integrate these equations using operator exponentials, since the time
evolution depends only on the initial conditions {s(0),S(0)} s(t) =

[
etLs

]
s(0)

S(t) =
[
etLS

]
S(0)

(2.41)

A consequence of the fact that these are Liouville operators is that their exponentials are
symplectic operators.

Therefore, the complete solution is given by

{s(t),S(t)} = eLt{S(0), s(0)} (2.42)

where L = Ls + LS . There is, however, a remaining issue. These operators do not
commute, as the time evolution for each spin depends on the other. This can be shown
by a direct computation of the commutator, [LS ,Ls]f [s,S]

Ls(LS(f [s,S]))− LS(Ls(f [s,S])) = ṡj
∂Ṡi
∂sj

∂f [s,S]
∂Si

− Ṡj
∂ṡi
∂Sj

∂f [s,S]
∂si

(2.43)

Since ṡ depends on S and Ṡ depends on s, this expression does not vanish for arbitrary
functions f [S, s]. Hence, the exponential of the sum, is not the product of the exponential
of each operator

et(Ls+LS) 6= etLsetLS (2.44)
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There is, however, an approximation scheme based on the so-called Magnus expansion [79],
which has the appealing property of defining a symplectic/geometric integration scheme.
An example is given by

etL = e
t
2LsetLSe

t
2Ls +O(t3) (2.45)

Explicit expressions for the time evolution, defined by this scheme for a precession field,
which can vary at each time step, are given in reference [36].

The implementation of this integration scheme consists of several steps.

• We begin by computing the effective field for the first spin. Once this is done, the
new orientation for the spin is computed by letting it precess around its effective
field for half the integration time step.

• We then proceed to compute the effective field for the other spin. We then, again,
compute its dynamics for the time step.

• Finally, we repeat the first step.

This whole procedure is repeated until the chosen final time step. In this way, we manage
to compute the dynamics for both spins from the initial time to the final time.

These computations are done for a fixed realization of the noise.
In order to perform an average over the noise, we repeat the whole procedure several

times, depending on how many realizations of the noise we want to average over. In order
to know whether or not the average is being performed over enough realizations, we study
the convergence of this averaging procedure. When having more and more realizations for
the averaging no longer significantly enhances precision (i.e., results do not differ much
from an average over fewer realizations), we stop increasing the number of realizations.
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Computing effective field 

for first spin

Precession for first spin
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Computing effective field 

for second spin

Precession for second spin
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Computing effective field 

for first spin

Precession for first spin

half timestep

Repeat from initial

to final time

Repeat whole procedure

for different

noise realizations

Figure 2.3: Symplectic/geometric integration algorithm. Averaging over the noises to be
repeated until convergence is attained

The whole procedure is summarized in Figure 2.3. There are, of course, other methods
for integrating Stochastic Differential Equations (SDE) such as the Heun method [80], but
these have been shown to present issues such as not preserving the phase space structure
or the symmetries of the problem [78, 81].

Finally, because the two operators Ls and LS do not commute, there are two possible
ordering schemes for the numerical method:

etL ≈
{
etLs/2etLSetLs/2

etLS/2etLsetLS/2
(2.46)

Of course, in the “continuum limit” both should give equivalent results–but, at a finite
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time step size, they will not. Therefore, it is of interest to understand, whether one is
more efficient/accurate than the other.

This is what we shall discuss in the next section, by providing methods for evaluating
the “optimal ordering” of these symplectic operators in the integration scheme.

2.3.1 Optimizing code by symplectic operator ordering

Let us study the operator ordering issue in more detail. The two choices, at least up
to order O(t3), where t is the time step, can be written as



e
t
2Ls{s(0),S(0)} =

{
s

(
t

2

)
,S(0)

}
etLS

{
s

(
t

2

)
,S(0)

}
=
{
s

(
t

2

)
,S(t)

}
e
t
2Ls

{
s

(
t

2

)
,S(t)

}
= {s(t),S(t)}

(2.47)

(which we shall call light-heavy-light or lhl scheme) and the second possibility is


e
t
2LS{S(0), s(0)} =

{
S

(
t

2

)
, s(0)

}
etLs

{
S

(
t

2

)
, s(0)

}
=
{
S

(
t

2

)
, s(t)

}
e
t
2LS

{
S

(
t

2

)
, s(t)

}
= {S(t), s(t)}

(2.48)

(which we shall call heavy-light-heavy or hlh scheme)
The key difference is in the computation of the effective field at each time step. Indeed,

once the effective field is computed, both operators act on their respective spin in the same
fashion. However, computing the effective field for the heavy spin requires more numerical
operations, which means we should avoid algorithms where the heavy spin is evolved more
often. But, on the other hand, it might also be that the effective field for the heavy spin
is stronger, and thus the computation would be more accurate if this effective field is
computed more often. We shall use a test case for both options and average over 102,
103 and 104 realizations of the noise, for each of them. On top of comparing how these
schemes converge, depending on the number of noise realizations, we will also check how
fast they are by comparing how long each of those schemes takes to produce the plotted
data. Results are given in Figures 2.4 and 2.5. Running times for the different schemes and
number of realizations are given in Tables 2.1 and 2.2. The results show that, as expected,
the first scheme is a little bit faster, but the second scheme converges faster, for the same
number of noise realizations. This is why we choose the second scheme for the rest of this
chapter, as averaging over a larger number of realizations of the noise is more expensive,
computationally, than the additional cost of the second, namely heavy-light-heavy, scheme.
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Figure 2.4: Scheme for light-heavy-light spin operators order for (from top to bottom)
102, 103 and 104 realizations of the noise. Conditions: {s(0) = x,S(0) = −x,ω =
2πzGHz,Ω = π

2zGHz, J = 0.1 GHz, α = 0.3, D = 0.3 GHz}.

realizations runtime
102 1.87s
103 21.00s
104 3m43.66s

Table 2.1: Running times for 102, 103 and 104 realizations for the l-h-l scheme
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Figure 2.5: Scheme for heavy-light-heavy spin operators order for (from top to bottom)
102, 103 and 104 realizations of the noise. Conditions: {s(0) = x,S(0) = −x,Ω =
2πzGHz,ω = π

2zGHz, J = 0.1 GHz, α = 0.3, D = 0.3 GHz}.

realizations runtime
102 2.43s
103 24.91s
104 4m24.42s

Table 2.2: Running times for 102, 103 and 104 realizations for the h-l-h scheme
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A useful quality check for our integrator is to monitor the energy of our system over
time

E ∝ ω · s+ Ω · S + Js · S (2.49)
Results for the light-heavy-light scheme are given in Figure 2.6; an estimation of the error
is provided by

dE = 2σ√
N

(2.50)

where σ is the standard deviation about the average for the energy

σ =
√
〈E2〉 − 〈E〉2 (2.51)

Since we have a symplectic integration scheme, if the system reaches an equilibrium config-
uration with respect to the noise, then we should see the energy relax towards a “plateau,”
which is indeed what one can see on the curves. This convergence is not as obvious for
102 realizations of the noise but already becomes noticeable for 103 realizations. And we
can also see that the energy converges towards the same value for 104 realizations, which
is another consistency check, namely that the convergence, at least after some threshold,
does not depend on the number of realizations, only its fluctuations do. In order for the
relative error to be below 1% at all times , we choose to average over 105 realizations of
the noise, for which the energy is plotted by the cyan curve of Figure 2.6.
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Figure 2.6: Energy convergence (light-heavy-light spin operator order) check for 102, 103

and 104 realizations of the noise. Conditions: {s(0) = x,S(0) = −x,Ω = 2πzGHz,ω =
π

2zGHz, J = 0.1 GHz, α = 0.3, D = 0.3 GHz}.

Now that we have selected which scheme is most suitable for our problem, i.e the
heavy-light-heavy integration scheme, we proceed to use it for the dynamics of the first-
order moments, for the light and heavy spin, for three test configurations, in order to have
a baseline for comparison with the effective model.
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2.3.2 Comparing code runs to test configurations

As mentioned in the previous section, we will now proceed to test our stochastic inte-
gration scheme on three test cases.

We want to study solutions which relax towards equilibrium, which if the spins both
align with an effective field, can be summarized by

˙seq = ˙Seq = 0 (2.52)

Recalling eq. (2.11) we have
seq = A (ω + JSeq)

Seq = B

1 + α2 [(Ω + Jseq + η)− α (Ω + Jseq)× Seq]
(2.53)

where A and B characterize which is the dominant dynamics which rules the final equi-
librium. Replacing seq in the expression for Seq in 2.53 we obtain

Seq = B

1 + α2

[
Ω + JAω + J2ASeq + η − α(Ω + JAω + J2ASeq)× Seq

]
(2.54)

As our assumption is that both spins would relax towards their respective effective field,
we will choose ω and Ω to be collinear for our numerical studies, this means any cross
product between any of the spins and any of the effective field vanishes, once equilibrium
is reached, thus yielding

seq = A

(
ω + JB

1 + α2 −BJ2A
[Ω + JAω + η]

)
Seq = B

1 + α2 −BJ2A
[Ω + JAω + η]

(2.55)

Once we average over the noise, we find
〈seq〉 = A

[
ω + JB

1 + α2 −BJ2A
(Ω + JAω)

]
〈Seq〉 = B

1 + α2 −BJ2A
[Ω + JAω]

(2.56)

This means that, for long times, we can expect to find an equilibrium solution, where
both spins are aligned with the axis of Ω and ω. If we take for example, A = B = 1,
α = J = 0.01, Ω = −ω = z then we get

〈seq〉 = 0.9901z

〈Seq〉 = −0.99z
(2.57)
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for which both spins indeed align with their external fields with slightly lower norm (both
similar) than initially. if we take different values for both fields, i.e., ω = −0.5z and Ω = z
then we get 

〈seq〉 = −0.49z

〈Seq〉 = 0.995z
(2.58)

Here again both spins align with their external fields with lower than initial norm. The
spins thus tend to try and reach the equilibrium given by their respective effective fields.

We will thus take different amplitudes for the external fields in order to determine
how they compete, and we will also study how the exchange influences the dynamics, and
whether or not this can prevent the system from reaching equilibrium.

Initial conditions for the spins for each case are generated randomly. We choose loga-
rithmic timescales to display long time behavior such that tlog = ln( tt0 ) and t0 = 1 ps.

• Our first test configuration will be a softly damped (α = 0.2) system with noise
amplitude D = 0.3 GHz, results and numerical parameters are displayed in Figure
2.7. After some transient period when both spins display very similar behavior, as is
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Figure 2.7: Stochastic solutions (105 realizations of the noise) with the conditions :
{sx(0) = −0.172098, sy(0) = 0.409099, sz(0) = −0.896114, Sx(0) = −0.165619,
Sy(0) = −0.528101, Sz(0) = −0.832874, D = 0.3 GHz, α = 0.2, ω = 2πz GHz, Ω = 2πz
GHz and J = 0.3 GHz}

to be expected because ω = Ω, one can see that the averages for both the heavy and
the light spin seem to reach an equilibrium state where the norm of each of them
is lower than their initial norm; thus, both systems seem to display longitudinal
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damping (||〈s〉(∞)|| < ||〈s〉(0)||), without imposing it ad hoc, although there is no
explicit coupling to the noise for the light spin, only through exchange with the heavy
spin. For reference, this curve has been produced in a little over 10 hours, for 105

realizations of the noise. To compare to our analytical simplified model eq. (2.56),
the equilibrium can be described by A ≈ 0.115 and B ≈ 0.120. These results will
serve as a reference case for the next chapter in order to check the differences with
the deterministic model.

• In the second test case, we begin by imposing two different external fields, as ω = 2πz
GHz and Ω = 2π

7 z GHz. Results are displayed in Figure 2.8. For the heavy spin,
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Figure 2.8: Stochastic solutions (105 realizations of the noise) with the conditions {sx(0) =
−0.551323, sy(0) = −0.790046, sz(0) = 0.268087, Sx(0) = −0.589254, Sy(0) = −0.385068,
Sz(0) = −0.710283, D = 0.3 GHz, α = 0.2, ω = 2πz GHz, Ω = 2π

7 z GHz and J = 0.3
GHz}, On the lower set, effective solutions with the same conditions as on the upper one
with {〈sisj〉(0) = si(0)sj(0), 〈siSj〉(0) = si(0)Sj(0), 〈SiSj〉(0) = Si(0)Sj(0)}

as in the previous case, we can see that, after some transient period, it reaches an
equilibrium with lower norm (for the average). The situation is different for the light
spin, however. It seems that no equilibrium is reached within the simulation time.
One also notices that the heavy spin’s precession frequency progressively becomes
equal to that of the light spin, after a short transient period, where one can see a
superposition of both frequencies for the heavy spin–i.e., beats.

• For the third test case, displayed in Figure 2.9, a stronger exchange coupling is
chosen, as this should result in a situation more difficult to obtain with the effective
model, for which Gaussian closure relies (partly) on the fact that the noise amplitude
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Figure 2.9: On the upper set, stochastic solutions (1.2 × 104 realizations of the noise)
with the conditions: {sx(0) = −0.054083, sy(0) = −0.797312, sz(0) = 0.601140, Sx(0) =
−0.951202, Sy(0) = 0.124420, Sz(0) = −0.282373, D = 0.3 GHz, α = 0.2, ω = 2πz GHz,
Ω = 2π

7 z GHz and J = 0.5 GHz}. On the bottom set, diagonal third order cumulants for
the light and heavy spin distributions are displayed.
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is small. This is done in order to probe the limits of this effective model. We also
display one of the third order cumulants for both the heavy and light spins, in
order to check if, and for how long, the third order vanishing cumulant assumption
remains valid. Here, although the two external fields are not the same, as in the
second test case, both the light and heavy spin seem to reach an equilibrium state
after some transient period. Here again, the analytical simplified model eq. (2.56)
provides the same results as the numerical stochastic model, when taking A ≈ 0.118
and B ≈ 0.231. One can see, however, that the third order cumulants are growing
over time and become noticeably non-zero. The heavy spin third order cumulant
grows more and faster than the light spin one, as can be expected from the fact that
the heavy spin is directly coupled to the noise. This in turn means, indeed, that we
should encounter problems with the effective approach after some time, which makes
the long time limit of the Gaussian closure problematic.

Now that we have the stochastic results for our three test cases, we will proceed to evaluate
numerical solutions for the moment hierarchy eqs. (2.36) and (2.37). To this end we will
discuss the issues pertaining to setting up a numerical integrator for it.

2.4 A numerical integrator for the moment hierarchy

We now proceed to solve the effective system given by eqs. (2.36) and (2.37). This
system deals with deterministic quantities and, as such, is different from the stochastic
system. Conversely to what has been done in section 2.3.2, instead of the initial stochastic
system, which then had to be averaged to obtain the moments, we directly solve the
dynamics of the aforementioned moments. This, however, means that we now have to solve
a non-linear, coupled ODE system to obtain the aforementioned dynamics. We cannot
proceed as in the previous sections as the equations on the moments do not preserve the
geometric properties which were preserved for each realization of the stochastic eq. (2.11).
As solving this kind of equations is already a vast subject [78, 82, 83], and not the focus
of this study, we will use the GSL [84] library as a “black box.”

Using the GSL libraries significantly simplifies the task of integrating this system. One
just has to code the system of equations and define a set of parameters which are then
used by the GSL integration engine. As there are many available choices, we chose an
explicit embedded Runge-Kutta Prince-Dormand 8–9 method [85]. We will, thus, proceed
to use the code to integrate our effective system and get numerical results for the same
three cases studied with the stochastic integration scheme (cf. section 2.3.2).

In this way, we check the validity of our assumptions for the effective system, namely
Gaussian closure and small correlation time limits.

• Results for the first case can be found in Figure 2.10. For reference, for the effective
solutions the computing time is around a minute, on the exact same computer as
for the stochastic solutions. Here the results are very similar to Figure 2.7 for the
transient régime (at short times). One can even see what seems to be a first hint
of relaxing towards an equilibrium but, as expected, the integration scheme seems
to break down, as suddenly the norm grows very quickly. We will check with the
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third case whether or not this can be related to the third-order cumulants becoming
non-zero. The behavior for the heavy spin is very similar to the stochastic curve
for the same case, as we can observe a transient relaxation period towards the same
equilibrium. Only after some time, when the light spin solution seems to diverge
around tlog = 3 (as this is a rather qualitative than quantitative study, it is difficult
to define a precise moment when the integration scheme is no longer valid), the
heavy spin solution slowly seems to diverge as well, but as the components are much
smaller, the effects are less noticeable and do not grow as quickly.
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Figure 2.10: Effective solutions with conditions: {sx(0) = −0.172098, sy(0) = 0.409099,
sz(0) = −0.896114, Sx(0) = −0.165619, Sy(0) = −0.528101, Sz(0) = −0.832874, D = 0.3
GHz, α = 0.2, ω = 2πz GHz, Ω = 2πz GHz and J = 0.3 GHz, 〈sisj〉(0) = si(0)sj(0),
〈siSj〉(0) = si(0)Sj(0), 〈SiSj〉(0) = Si(0)Sj(0)}

• For the second case, results are displayed in Figure 2.11. Here we can see that as
for the stochastic solution, no equilibrium is reached, not even for a short time, but
a strange “oscillation” where the norm blows up before becoming smaller again and
so forth seems to appear. This could be related to the fact that the external fields
are different and would some time act in opposition but we will have to verify if this
is also true for the last case. The heavy spin, again, displays very similar behavior
to the stochastic case with the notable difference though that the oscillations with
the light spin frequency remain visible for a longer time in the effective case before
they fade away. It is very likely that the noise averages out those small oscillations,
which the effective system displays longer.
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Figure 2.11: Effective solutions with conditions: {sx(0) = −0.551323, sy(0) = −0.790046,
sz(0) = 0.268087, Sx(0) = −0.589254, Sy(0) = −0.385068, Sz(0) = −0.710283, D = 0.3
GHz, α = 0.2, ω = 2πz GHz, Ω = 2π

7 z GHz and J = 0.3 GHz, 〈sisj〉(0) = si(0)sj(0),
〈siSj〉(0) = si(0)Sj(0), 〈SiSj〉(0) = Si(0)Sj(0)}

• The last test case, for which results can be found in Figure 2.12, with a larger coupling
constant J seems to reach an equilibrium for the stochastic solution of the light spin
but not for the heavy one anymore, this means that the difference in external fields is
not what caused this lack of equilibrium state earlier. Also, it seems that here, even
the heavy spin effective solution breaks down at the end of the integration window.
Of course, the stronger coupling makes the whole system more sensitive to non-linear
effects which bring the integration scheme to collapse. Moreover, if we have a look
at the third-order cumulants (see Figure 2.9) of the light spin, we can see that the
more this cumulant moves away from zero, the less accurate the effective solution
becomes, when compared to the stochastic one. For the heavy spin, however, even
though this cumulant grows faster and more strongly, the solution seems to remain
much more similar to the stochastic case. This can, however, be attributed to the
fact that the heavy spin is experiencing a more direct damping, which would quickly
erase small differences, whereas the light spin only inherits the damping through the
coupling and the averaging.
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Figure 2.12: Effective solution with conditions: {sx(0) = −0.054083, sy(0) = −0.797312,
sz(0) = 0.601140, Sx(0) = −0.951202, Sy(0) = 0.124420, Sz(0) = −0.282373, D = 0.3
GHz, α = 0.2, ω = 2πz GHz, Ω = 2π

7 z GHz and J = 0.5 GHz, 〈sisj〉(0) = si(0)sj(0),
〈siSj〉(0) = si(0)Sj(0), 〈SiSj〉(0) = Si(0)Sj(0)}.

It is worth noting that although smaller time steps have been investigated, there was no
significant change in the plotted curves, even for much smaller integration steps. In order
to remain as efficient as possible, we chose to keep a time step of 10−5 ps.

To sum up, there are several interesting conclusions that can be drawn.
As long as the Gaussian approximation remains valid, i.e., the third order cumulant

can be assumed to vanish, our effective model seems to work pretty well and is wildly more
efficient as the 10 hours vs. 1 minute unarguably demonstrate. In both cases, one can
see that although the light spin is not directly coupled to the noise, but only indirectly
through the heavy spin exchange, it displays not only transverse damping, as does the
heavy spin (which includes it explicitly), but also longitudinal damping, as does the heavy
spin, without the need for imposing a Bloch-like longitudinal damping term, either on the
heavy or on the light spin.

In the stochastic case, on top of the emergence of this longitudinal damping, for some
initial conditions and parameters, we can see equilibrated long time solutions where the
spins relax to the respective external field’s axis with a norm, at equilibrium, which is
smaller than the initial norm, thereby describing longitudinal damping.

This particular behavior can be found in magnetostrictive materials where the coupling
between magnetic and mechanical degrees of freedom is a possible candidate for such
effects [6]. This means that by suitable choice of parameters, for example by choosing the
statistical properties of the noise, such an approach should indeed effectively be able to
reproduce real magneto-elastic effects.
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2.4. A NUMERICAL INTEGRATOR FOR THE MOMENT HIERARCHY

Now one could argue that these properties of the equilibrium long-time solutions are not
as readily deduced from the solutions to the moment hierarchy. Indeed, the non-linearity
of the moment equations makes it highly non-trivial to reach long time predictions and
one would have to study a variety of initial conditions, in particular for the second-order
moments, to detect whether or not it would be possible to effectively reach equilibrium
with these, too.

Such considerations provide, however, the motivation and the opportunity for asking
more complicated questions such as, which kind of noise distribution would have to be
used, in order for different initial conditions to be appropriate and also which kinds of
different closure schemes for the hierarchies should be investigated. It seems unavoidable
that in order to build the deterministic equivalent model as efficiently as possible, these
closing schemes have to be adapted to each family of cases i.e., one has to very carefully
check whether or not the hypotheses remain valid and for how long. This makes it a
highly efficient approach for very specific cases, but the stochastic approach seems to
be much more versatile. One, however, has to have at least one assumption for the
stochastic approach which is that the whole system is ergodic [86], namely that it is
equivalent to reproduce one experience several times, or to do many experiments just
once, before averaging the results. However this approach cannot hope to do more than
mimic the behavior of a magneto elastic compound by imposing a statistical distribution
for the noise, in order to do so, it would have to be properly “fitted” using an appropriate
reference magneto-elastic system. Furthermore, the effects of the mechanical strain are
just effectively mimicked by this approach and thus its dynamics is not computed, this
means that it does not seem possible to obtain information on the change of shape of a
compound from this effective formalism.

As has been covered in the State of the Art, there have been similar approaches [16]
where dissipation effects were obtained by introducing the coupling to a noise reservoir of
undefined nature. Also, following an inverse approach of ours, the coupling to tensorial
elastic degrees of freedom [18] has been investigated through introducing the normal modes
expansion of the strain. Some information is lost on the elastic reservoir, but effectively
this resembles our approach. The major difference is that in our case, the “microscopic”
nature of the noise is not defined and instead of a scalar noise for each equation, we have a
vector noise i.e., a spin bath. The spin/spin bath approach is thus interesting and a quite
efficient way to simulate thermal or mechanical effects in magnetic materials, as long as
one has a method to properly calibrate it beforehand, just as spin dynamics requires other
ab initio methods such as DFT [87] to be calibrated.

To go further and to study ways to make the interplay between magnetic and me-
chanical degrees of freedom more transparent, one would need an approach where the
parameters and the evolution of both systems can be described on an equal footing. This
is why we shall now go on to our next step which is simulating magneto-elasticity through
a Lagrangian model.
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Summary
• The stochastic model reproduces expected behavior where the system relaxes

towards an equilibrium of lower norm for the spin averages of both light and
heavy spin, thus indicating longitudinal dissipation

• The effective model displays similar transient behavior but cannot reproduce
long time effects, the Gaussian closure assumption seems to break down. They,
however, seem to indicate equilibrium solutions before the numerical system
becomes unstable.

• Not all configurations relax towards equilibrium, stochastically. This relax-
ation depends on initial conditions for the spin but also on the external field
configuration and on the exchange and noise intensity, as the phase space
volume dynamics depends on these quantities.

• Stronger exchange coupling makes the systemic error for the effective model
bigger. This is consistent with the fact that the stronger the coupling, the more
the coupled effective system should become sensitive to non-linear effects.
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Chapter 3

A Lagrangian approach to
magnetoelasticity

Résumé
• Nous construisons une théorie de champs pour l’interaction d’un spin et de la

déformation mécanique d’un milieu élastique, par une approche Lagrangienne.

• Nous en déduisons les équations du mouvement en prenant soin de définir
convenablement la variable de spin.

• Nous proposons un modèle à plusieurs particules en interaction purement
magnétique en “colorant” les équations du mouvement précédentes.

• Nous résolvons numériquement les équations obtenues afin de modéliser le
retournement du paramètre d’ordre de Néel pour un “modèle jouet” de NiO
antiferromagnétique
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What is usually done in Lagrangian mechanics is to postulate a Lagrangian density
L (t, qi, q̇i), depending on the coordinates q of the system, their time derivatives q̇, pos-
sibly explicitly on time t and which expresses the symmetries of this system. From the
Lagrangian, one defines the action S as

S =
∫

L dt (3.1)

which contains more “global” information than the Lagrangian itself.
The equations of motion are obtained by extremizing the action, i.e., from the condition

dS = 0. These are the Euler-Lagrange equations, which read

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (3.2)

It is useful to separate the “potential” (no time derivatives) and “kinetic” (contain time
derivatives) contributions, as for example

L = q̇2

2 − V (q) (3.3)

In terms of these, the Euler-Lagrange equations of motion take the form

q̈ + ∂V (q)
∂q

= 0 (3.4)

and it is interesting to note that they are of second order in the positions.
What is striking is that this is not the case for Larmor spin (s) precession around an

external field (ω), which is of first order in the dynamical variable, s:

ṡ = ω × s (3.5)

and it does not seem useful to define s ≡ τ̇ , for instance. There is not any notion of a
“position” whose “velocity” would be the spin variable, in the same way as is the case for
the “true” position of a particle.

This has the following, interesting, consequence: if the Lagrangian can be expressed
as

L = (ṡ−A(s))2 (3.6)
where A(s) is identified with a “vector potential,” that cannot be written as the gradient
of a scalar ( i.e., the magnetic field is non-zero), then it is obvious that a way to extremize
the Action is to note that this Lagrangian vanishes and the action attains its minimum,
when

ṡ = A(s) (3.7)
which now indeed is a first order equation of motion. This is, indeed, what is appropriate
for an (electrically) charged particle in a magnetic field and is equivalent to the usual
equation of motion, that is of second order in the “position.”

While there are different ways to obtain first-order EOM, nevertheless it is this feature,
which motivated us to search for different Lagrangian formulations for magnetism and for
ways to couple magnetic and mechanical DOF through such an approach.
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3.1. CONSTRUCTING A LAGRANGIAN MODEL IN TERMS OF SPIN AND
“LOCAL-VIRTUAL” MECHANICAL STRAINS

In order to acquire a better understanding of the interplay between magnetic and
mechanical degrees of freedom, we have to build a model for their interaction, thereby
setting the results of the previous chapter in a broad framework.

Where previous approaches have been dealing with magnetic interactions depending
on distances between magnetic particles, such as magnetic molecular dynamics, we shall
build the simplest classical field theory to describe the consequences of local interactions
between these magnetic and mechanical degrees of freedom in a different fashion. Indeed,
the framework of magnetic molecular dynamics imposes that one change each particle’s
position during the dynamics and compute nearest neighbors at each time step, which is
expensive in computational resources. The idea here will be to build two field theories,
one for the spin, the other for the lattice, and then build an interaction term in the
language of field theory. While this approach is identical to molecular dynamics for the
one–particle case, though it provides insight into the symmetries more directly; it proves
particularly effective in the many-particle case, since the field equations do not evolve
individual particles, but fields, that are superpositions thereof.

This is what we shall now proceed to do by building a Lagrangian model for the spin
and the mechanical strain.

3.1 Constructing a Lagrangian model in terms of spin and
“local-virtual” mechanical strains

We begin with a simple model, where we have point-like objects, carrying, either, a
classical spin vector s, or a mechanical strain tensor ε; these are the dynamical variables
that depend only on time. So, in the simplest case, we have two “particles” and we shall
apply the rules discussed above to construct the corresponding Lagrangians for the free
particles and then, their interaction.

The full Lagrangian L is, thus, built as a sum of three terms. The magnetic part Ls,
the mechanical part Lm, and the coupling term Lsm. The magnetic part depends on the
spin s(t) and its velocity ṡ(t) in such a way that, as is usual, one has a kinetic energy term
ms
2 ṡ2, a potential energy Vs.

In order to describe precession, what is needed is a “vector potential,” mimicking the
dynamics of an electrically charged particle in a magnetic field [88, 89], as per eq. (3.6).

The mechanical part Lm describes the dynamics of the strain tensor ε(t), along with
its “velocity” ε̇(t).

It is interesting that a corresponding kinetic term mε
2 ε̇

2 and a potential energy Vε [90]
can be defined for it. Since the strain tensor is a two–index object, what is implied in
these expressions is the trace–in full:

Lm = Tr
[1

2 ε̇
Tε̇− V (εTε)

]
(3.8)

where the notation εT stands for the transposed tensor of ε.
In order to keep things simple for the mechanical part, we will take the potential V
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3.1. CONSTRUCTING A LAGRANGIAN MODEL IN TERMS OF SPIN AND
“LOCAL-VIRTUAL” MECHANICAL STRAINS

to be quadratic in the strain; this describes an extension of Hooke’s law to the dynamical
case [91].

We can introduce anisotropy and/or inhomogeneity in the medium by writing the
potential V as

Vε ≡
1
2Cijklεijεkl (3.9)

where Latin indices range from 1 to 3. Here C is the elastic stiffness tensor. It is possible
to define the so-called elastic compliance tensor S [59] through the relation

CijklSijmn = 1
2 (δkmδln + δknδlm) (3.10)

Let us now discuss how symmetry principles constrain the possible interaction terms be-
tween the s(t) and the ε(t) “particles.”

Since they describe effects that mix magnetism and elasticity, these are more commonly
known as “magnetoelastic terms” [6].

Since we want to highlight the fact that the spin satisfies first-order equations of motion,
while the strain satisfies second-order equations of motion, this will affect the way the
symmetries affect the interactions.

We will, therefore couple spin and strain in a slightly different fashion than what’s done
in the literature: instead of coupling s and ε, we will couple the strain to ṡ, following, in
fact, ref. [23].

We shall, thus, introduce a matrix B, such that

Lsm = −1
2Bijklṡiṡjεkl

which provides a definition of the magneto-elastic constants.
This trick allows us to write an equation of motion, which is of first order, for the spin.
The full Lagrangian can, therefore, be written as

Ls = ms

2 ṡ2
i + ṡiAi[s]− Vs[s]

Lm = mε

2 ε̇2ij − Vε[ε]

Lsm = −1
2Bijklṡiṡjεkl

(3.11)

where ms can be interpreted as the gyromagnetic ratio and mε as an effective inertia for
the strain. Thus the total Lagrangian is given by

Ltot = Ls + Lm + Lsm + dU

dt
(3.12)

where one should recall that any total derivative dU

dt
added to the Lagrangian will yield

exactly the same equations of motion. In the next section, we focus on the equations of
motion, that include the interaction terms and discuss the physics they encode.
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3.2. COMPUTING THE EQUATIONS OF MOTION IN TERMS OF AUXILIARY
VARIABLES

3.2 Computing the equations of motion in terms of auxiliary
variables

Now that we have a Lagrangian system, we can deduce equations of motion for our
system. This is done in the usual fashion, namely by identifying them as the Euler-
Lagrange equations: 

∂Ltot

∂s
− d

dt

∂Ltot

∂ṡ
= 0

∂Ltot

∂ε
− d

dt

∂Ltot

∂ε̇
= 0

(3.13)

Thus the EOM given by the Lagrangian eq. (3.12) read as follows

mss̈i +

(
∂Ai
∂sj
− ∂Aj
∂si

)
ṡj + ∂Vs

∂si
−Bijkl (s̈jεkl + ṡj ε̇kl) = 0

mεε̈ij + ∂Vε
∂εij

+ 1
2Bklij ṡkṡl = 0

(3.14)

As mentioned in section 3.1, the variable we are interested in is ṡ. By focusing on the
time derivative of s instead of s itself, we end up with a first-order ODE for the spin. This
introduces some subtleties, especially for the coupling. One could argue that this is not,
at least historically, how this coupling has been introduced [6]. The idea is to interpret
what we call spin as an “emergent” property, depending on underlying “hidden” variables
[22, 92]. Indeed, as s does display hysteresis effects [93], which implies that it depends
on its own history, motivates describing this property in terms of a “hidden” variable.
Thus we introduce a variable µ ≡ ṡ, which we shall call spin as is usually – classically
– considered. We would like to insist here that this variable µ is to be compared to the
usual spin, and not the actual time derivative. The reason why we introduce this is simple.
The coupling in the case of the charged particle in an electromagnetic field relies on the
fact that there are point–like electric charges. There are, however, no magnetic – local
– charges, i.e., monopoles. But, by introducing the variable µ as the velocity of s, we
introduce exactly what we needed, namely that the variable is nonlocal, thereby describing
how s depends on the whole history of µ

s(t)− s(0) =
∫ t

0
ṡ(τ)dτ ⇔

∫ t

0
µ(τ)dτ (3.15)

where s(0) needs to be explicitly given. We will choose s(0) = 0 in order not to have to
keep track of this constant during the calculations.

A remarkable property of (3.14) is that they remain invariant, if we add the gradient
of a function to the “vector potential,” i.e., A(s) → A(s) + ∂sf(s). This motivates
introducing the antisymmetric Faraday tensor Fij by

Fij = ∂Ai
∂sj
− ∂Aj
∂si

(3.16)
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3.2. COMPUTING THE EQUATIONS OF MOTION IN TERMS OF AUXILIARY
VARIABLES

We can thus rewrite eqs. (3.14) in terms of µ
msµ̇i + Fijµj + ∂Vs

∂si
−Bijkl (µ̇jεkl + µj ε̇kl) = 0

mεε̈ij + ∂Vε
∂εij

+ 1
2Bklijµkµl = 0

(3.17)

While these equations do describe the consistent interaction of spin and strain, they do
not take into account non–conservative effects. Such effects are described by terms that
appear on the RHS of the Euler–Lagrange equations and cannot be described by either a
scalar or a vector potential. They’re of great practical relevance, of course, and describe
how the system relaxes to equilibrium. It is possible to describe their effects, without
having to specify in detail the microscopic degrees of freedom that define them.

Indeed, magnetic systems can exchange energy with other systems for example either
by being driven by an external field, or by radiating thermally. This is why, in the following
section, we will introduce the corresponding terms that can describe such dissipative effects
and non–conservative terms, more generally.

3.2.1 Introducing dissipation and non-conservative terms through losses
and sources

Conventionally, the Lagrangian or equivalently the Hamiltonian framework are – in-
herently – conservative approaches [94], which means that they cannot describe non–
conservative terms, by definition. To describe non–conservative terms requires some
care [95]. They are defined by sources.

The expression for the sources, Lsources can be written as

Lsources = −jext
i [s]ṡi − σext

ij εij (3.18)

since these are the only terms that are linear in the dynamical variables and invariant
under rotations. Further properties reflect the dynamics.

Here jext
i is a conserved – magnetic – current, which does not give rise to spin transfer

torque and σext
ij is an external, spatially uniform and instantaneous mechanical stress

tensor. We do not consider cases of non-instantaneous or non-uniform sources in this
study.

For the losses, it is, still, a non–trivial problem to write down the corresponding terms
in full generality, except for Rayleigh damping. To overcome this issue, we choose to define
the losses and sources through their derivatives as

∂Llosses
∂µ̇i

= ∂Llosses
∂s̈i

= αεijkṡj s̈k + J(ṡiṡjpj − piṡj ṡj)

∂Llosses
∂ε̇ij

= γε̇ij

(3.19)

These terms turn out to have a clear physical interpretation: α is the Gilbert damping
coefficient, J is the Spin Transfer Torque (STT) intensity and p is the STT direction.
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Here we introduce this STT as an external source, thus anticipating on later sections
where this external torque will serve as a trigger for the switching of the magnetization.
The coefficient γ is a mechanical damping parameter. This term is necessary in order for
the mechanical system not to oscillate infinitely but rather to relax towards an equilibrium
position.

Therefore, the EOM, including the dissipative – non-conservative [95] – parts read as
follows 

∂L

∂si
− d

dt

(
∂L

∂ṡi

)
= ∂Lsources

∂ṡi
+ ∂Llosses

∂s̈i
∂L

∂εij
− d

dt

(
∂L

∂ε̇ij

)
= ∂Lsources

∂εij
+ ∂Llosses

∂ε̇ij

(3.20)

More explicitly: 
msµ̇i + Fijµj + ∂Vs

∂si
−Bijkl (µ̇jεkl + µj ε̇kl) = ji

mεε̈ij + ∂Vε
∂εij

+ 1
2Bklijµkµl = σij

(3.21)

where ji = jext
i + αεijkµjµ̇k + J(µiµjpj − piµjµj) and σij = σext

ij − γε̇ij .
For the simplest case i.e., Vs = 0, B = 0 and j = 0 and Fij = εijkωk, we recover a

precession equation for the magnetic system µ as

msµ̇ = ω × µ (3.22)

and if we also have Vε = 0 and σij constant, then

mεε̈ij = σij (3.23)

which describes a set of harmonic oscillators for the mechanical system ε. Now, one can
compute the variation of the phase space volume by computing

∂µ̇i
∂µi

+ ∂ε̇ij
∂εij

= 1
ms

(2Jµjpj +Bjjklε̇kl)−
γ

mε
(3.24)

where repeated indices are summed over. This means that over time, the volume of our
phase space is not conserved. If this variation is negative, then we should move towards
a stable equilibrium state. If it is positive, however, then our system may “run away”
and never reach a definite equilibrium state. Whether it may reach a “strange attractor”
remains a possibility. This will have to be kept in mind in the following sections. One
should also recall that as our systems are respectively first and second order ODE for the
spin and for the strain, in order to solve these, one must provide initial conditions for µ(0),
εij(0) and ε̇ij(0).

Now that we have the EOM for a single particle system, we need to implement the
description to larger – many particles – objects. One way to do this is through a magnetic
exchange interaction.
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3.3. EXTENDING THE MODEL TO MULTI-PARTICLE SYSTEMS THROUGH A
MAGNETIC EXCHANGE INTERACTION

3.3 Extending the model to multi-particle systems through
a magnetic exchange interaction

In order to describe larger systems, we will define several domains with uniform mag-
netic and mechanical properties by introducing several particle-like sites. Hence, we will
describe this collection of domains by a “colored” set of equations, by introducing a label,
L, that takes values 1 to N , in the expressions (3.21).

mL
s µ̇

L
i + Fijµ

L
j + ∂Vs

∂sLi
−Bijkl

(
µ̇Lj ε

L
kl + µLj ε̇

L
kl

)
= jLi

mL
ε ε̈
L
ij + ∂Vε

∂εLij
+ 1

2Bklijµ
L
kµ

L
l = σLij

(3.25)

as well as initial conditions for µ(L)(0), ε(L)
ij (0) and ε̇

(L)
ij (0).

The way the “particles,” labeled by L, interact can be described as follows:
As the main aspect we are interested in is the magnetic behavior, we shall introduce a

simple coupling through a magnetic exchange given by

ωLeff = ωL + ωLE
∑

P∈NN
sP − ωLanL

(
nL.s

)
(3.26)

where ωLE is the exchange frequency and P ∈ NN stands for the sum over all nearest
neighbors. And we have also introduced a global magnetic anisotropy with frequency
ωLa and direction nL in order to favor relaxation towards a given local easy-axis and
equilibrium solutions. Here we made a non-trivial choice, namely having an ultra-local
mechanical interaction, having only a self-interaction on each site through the mechanical
potential. This is a simplifying assumption as this would introduce much more complicated
features such as Edwards field theories and granular field theories [96] for non-local strains
and stresses correlations.

Now that we have constructed a – multi-particle – interacting model, we shall go on to
study the simplest case, that of two particles, i.e., L = 2. This case is relevant for describ-
ing the switching behavior for the magnetization for a toy model of an antiferromagnet,
namely NiO, that’s driven by an external STT. This STT can be for example generated by
a spin polarized current (not a “simple” electric current), which acts on a given magnetic
moment as a torque term. Though this is a simple, mean field model, that describes an
antiferromagnet by two subdomains of opposite magnetization, it, nonetheless, captures
the salient features of the physics and is based on the Néel model[97].

3.4 The switching of magnetization of a toy model AF for
NiO through an external STT

As mentioned in section 3.3, we shall describe here a test case where L = 2, as this
is the simplest case for an antiferromagnet, with two magnetic sublattices. As a further
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3.4. THE SWITCHING OF MAGNETIZATION OF A TOY MODEL AF FOR NIO
THROUGH AN EXTERNAL STT

simplification, we chose to study cases where the spin potential does not act on each lattice
site and there is not any external magnetic current i.e.

∂Vs
∂sLi

= 0

jext = 0

(3.27)

We shall also define, for convenience, for the magnetic part, the net magnetization m as

m ≡ 1
2
(
µ1 + µ2

)
(3.28)

and the Néel order parameter l [98–101], as

l ≡ 1
2
(
µ1 − µ2

)
(3.29)

For the mechanical part, we shall define the ferromagnetic “net strain” matrix εij

εij ≡
1
2
(
ε1ij + ε2ij

)
(3.30)

As for the magnetic part, one could also define the antiferromagnetic Néel strain matrix
ηij

ηij ≡
1
2
(
ε1ij − ε2ij

)
(3.31)

Now in order to make the precession effects easier to see, we can write down the spin part
of eq. (3.21) in the Landau-Lifshitz-Gilbert-Slonczewski form as

ML
ij µ̇

L
j +DL

ijµ
l
j = jLi (3.32)

with ML
ij ≡ δijm

L
s − BijklεLkl and DL

ij ≡ Fij − Bijklε̇Lkl. If B vanishes, then DL
ij is totally

antisymmetric, and when j = 0, we recover the usual spin precession equation. If the
medium under study is isotropic, then we can express C – the elastic stiffness tensor –
and B – the magnetoelastic constants – using only two independent material constants for
each: [6] {

Bijkl = B0δijδkl +B1(δikδjl + δilδjk)
Cijkl = C0δijδkl + C1(δikδjl + δilδjk)

(3.33)

Here C0 and C1 are more commonly known as the Lamé coefficients [59]. Consequently,
these relations hold for a material with spherically symmetric elastic properties. These
constants can be recast in more familiar form as

C0 + 2C1
3 ≡ κ bulk modulus

C1 ≡ G shear modulus

C1(3C0 + 2C1)
C0 + C1

≡ E Young modulus

(3.34)
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These quantities are usually derived either by ab initio methods or experimentally. In
order for these quantities to be dimensionless, we divide σext

ij , B0, B1, C0 and C1 by µ0M
2
s

– where Ms is the saturation magnetization – . To sum up, we get the following expression

∂Vε
∂εij

= 2Cijklεkl = C0δijεkk + 2C1εij

Bijkl
(
µ̇Lj ε

L
kl + µLj ε̇

L
kl

)
= B0 (µ̇iεkk + µi ˙εkk) + 2B1 (µ̇kεik + 2B1µk ˙εik)

Bklijµkµl = B0δijµkµk + 2B1µiµj

(3.35)

And given these expressions the final system we will consider is

msµ̇
L
i + Fijµ

L
j −

[
B0
(
µ̇Li ε

L
kk + µLi ε̇

L
kk

)
+ 2B1

(
µ̇Lk ε

L
ik + 2B1µ

L
k ε̇
L
ik

)]
= αεijkµ

L
j µ̇

L
k + J(µLi µLj pj − piµLj µLj )

mεε̈
L
ij + C0δijε

L
kk + 2C1ε

L
ij + B0

2 δijµ
L
kµ

L
k +B1µ

L
i µ

L
j = σext

ij − γε̇Lij

(3.36)

Where L = {1, 2} for the two sub lattices. Now that we have the final form for the EOM,
we want to study how the magnetization switches in this system, due to the spin transfer
torque. Indeed, as eq. (3.24) shows, the STT provides a way to enlarge the phase space.
The new states describe configurations, where both spins are no longer aligned with the
easy axis. Once the STT pulse is over, however, the spins may relax towards alignment
with the easy axis again, but in the opposite direction. This is called switching.

We will study the magnetization switching by numerical integration of the coupled
EOM.

3.4.1 Studying the magnetization switching by numerical integration of
the coupled EOM

We now proceed with the numerical integration of the equations of motion. We start
with the simplest antiferromagnetic (AF) model, with two spins. They are coupled by
an AF exchange and both have the same easy axis so as to favor the same direction,
but the opposite sign for the magnetization. As a further simplification, we chose the
strain inertia mε = 0, so as to prevent the mechanical system from oscillating. Indeed,
we are only interested in the relaxation of the mechanical system and its influence on the
magnetization.

We now proceed with the description of the numerical integration scheme.
We use a Runge-Kutta 4-5 order integration scheme with adaptive time step. We

checked higher order integration schemes as well, in order to verify the validity of the
numerical results. The results were virtually identical as is illustrated by Figure 3.1, thus
we used the lower order scheme for efficiency.
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Figure 3.1: Difference between lx computed with the Runge-Kutta 4-5 order (lx(rk4−5))
and the 7-8 order (lx(rk7−8)) methods.

How the switching appears is illustrated in Figure 3.2.
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Figure 3.2: How the switching appears, for the AF NiO, by an external STT. At first,
the two sublattices have opposite magnetization. Then the STT pushes the magnetization
out of the (x, y) plane. Due to the strong AF exchange, the magnetization for both
sublattices precesses and if the STT is timed correctly, both magnetization vectors return
to the easy-axis opposite to their initial orientation.
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We begin by studying the purely magnetic case i.e., with B0 = B1 = 0 and compare it
to the coupled case by choosing B0 and B1 such that they to describe the magnetoelastic
coupling for NiO.

Polycrystalline NiO has been investigated as a candidate for antiferromagnetic switch-
ing in ref. [101]. The idea is to try and switch the Néel order parameter l by an electric
STT pulse. To show that this is possible in our model, we plot the Néel order parameter
along the easy axis n, and the net magnetization along the STT pulse direction p. Results
– which are identical to [101] – are displayed in Figure 3.3, on the black curve, for an STT
pulse along the z-axis.

-1
-0.5

0
0.5

1

lx (a)
lx (b)

-0.001
0

0.001
0.002
0.003

mz (a)
mz (b)

0 10 20 30 40 50 60 70 80 90
time (ps)

0

0.001

0.002

0.003

electric current

Figure 3.3: Out-of-plane magnetization mz, Néel order parameter lx (along the easy axis)
and STT pulse along the z-axis as functions of time. {ms = 1, mε = 0, C0 = 5.1 × 105,
C1 = 3.5×105, for (a) B0 = B1 = 0 and for (b) B0 = 7.7, B1 = −23, γ = 2×106, α = 0.005,
J = 0.0034rad.THz, ωa = 2πrad.GHz, ωE=172.16 rad.THz, Ms = 5.105A.m−1}. Initial
conditions: s1(0) = −s2(0) = x̂. (a) is the uncoupled situation and (b) is coupled with
σ

ext(b)
11 = σ

ext(b)
22 = σ

ext(b)
33 = 3× 104.

One can see that the Néel order parameter indeed switches within 12ps for a 10ps
pulse duration, and, as can be expected, there is a noticeable spin accumulation along
the pulse’s direction. On the red curve, we have enabled magneto-elastic coupling and
imposed a homogeneous isostatic pressure stress. The result is that the switching, for
the same pulse, seems to happen more quickly, now within 10ps. One can also see that,
when the medium is compressed, the spin accumulation is about twice as strong. For both
curves, we also apply the same pulse again, in order to understand, whether or not the
system is symmetric under time-reversal symmetry. The main difference one notices, apart
from how fast the switching is, is that the Néel order parameter relaxes towards a lower
value, along the x-axis. In both cases, the STT acts as a strong damping, thus forcing
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the magnetization to move from the easy axis; but including the magnetoelastic coupling
and imposing an external pressure seems to make the system more sensitive to this torque
term.

The next step is to focus on the mechanical part. Thus, in order to evaluate the
constants C0 and C1, we used references [59, 102, 103]. One can also relate the constants
B0 and B1 to the more traditional magnetostriction coefficients which are defined by

λs = βiεijβj , (3.37)

where β is the unit vector along which the strain is projected. If one takes only the
magnetoelastic coupling into account for the equilibrated strain equations (i.e., ˙εeq

ij =
¨εeq
ij = 0) then one has

Cijklε
eq
kl ≈ −

Bklij
2 µeq

k µ
eq
l (3.38)

By recalling the definition of the stiffness tensor Sijkl as the inverse of the elastic constants
Cijkl and considering only the mechanical constants (C0, C1), we have

Sijkl = −C0
2C1(3C0 + 2C1)δijδkl + 1

4C1
(δikδjl + δilδjk) (3.39)

Inverting this relation thus yields

εeq
kl ≈ −Sijuv

Bkluv
2 µeq

k µ
eq
l (3.40)

and now, keeping only the magnetoelastic constants (B0, B1), one can express the equilib-
rium strain components as

εeq
ij ≈

1
2

(
C0B1
C1
−B0

)
3C0 + 2C1

δij −
B1
2C1

µeq
i µ

eq
j (3.41)

if the sample is magnetically saturated along the x-axis (i.e., µeq
x = 1 and µeq

y = µeq
z = 0),

then we find 
λLs = εeq

xx ≈
1
2

(
C0B1
C1
−B0

)
3C0 + 2C1

− B1
2C1

λTs = λLs + B1
2C1

(3.42)

Where λLs is the longitudinal magnetostriction and λTs is the transverse magnetostriction.
These relations can be inverted so as to find expressions for B0 and B1 such that

B0 =
C0
(
2C1(λTs + λLs )

)
C1

−
(
λLs + 2C1(λTs + λLs )

2C1

)
(6C0 + 4C1)

B1 = 2C1(λTs + λLs )

(3.43)

If the magnetoelastic coupling is neglected, then the new equilibrium strain is given by

εeq
ij =

σext
ij

3C0 + 2C1
(3.44)
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or, as expected, in terms of the bulk modulus κ

εeq
ij = 1

3κσ
ext
ij (3.45)

as the magnetoelastic constants are much smaller than the mechanical ones, this equi-
librium strain should be a good approximation of the computed one, displayed in Figure
3.4.
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Figure 3.4: Diagonal strain components as functions of time. Conditions are identical to
Figure 3.3(a).

Indeed, as can be derived from eq. (3.44), the strain components are of order 10−5.
One can see the reaction of the elastic medium to the STT pulse, even though the strains
are quite small. This, however, can be understood by the fact that polycrystalline NiO
is known for being only weakly magnetostrictive. Thus the response of the mechanical
system is not as strong as what can be expected in materials where magnetostriction
is stronger. One can, however, already see that the coupling between mechanical and
magnetic degrees of freedom changes the equilibrium for the mechanical system, as the ε1,1
component converges to a different value than the two other ones displayed. Moreover,
one can see that the STT tries to push the mechanical strains away from equilibrium,
towards which they relax, as soon as the pulse is over. Conversely to the Néel parameter,
the dynamics for the strain remains very similar for both pulse except the initial very fast
relaxation towards equilibrium. Now something interesting happens if we consider shear
instead of tensile stress, as is displayed in Figure 3.5.
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Figure 3.5: Out-of-plane magnetization mz, Néel order parameter lx (along the easy axis)
and STT pulse (along the z-axis) as functions of time. Numerical constants are identical to
Figure 3.3 except for the external stress where non-zero components are σext(a)

12 = σ
ext(a)
21 =

100 for (a) and σ
ext(b)
12 = σ

ext(b)
21 = 5000 for (b).

Here one can see that the switching is indeed quicker for the red curve, as it was the
case in Figure 3.3 but the required threshold for the shear stress is much lower than for
the compression. Indeed for Figure 3.3 we had σii components of 3.104 which corresponds
to an external pressure of 30GPa. For Figure 3.5 we have σ12 = σ21 = 5.103. This seems
to indicate that this system is less sensitive to tensile or compressive stresses than to
shear stresses which can make the switching faster with a much smaller applied external
stress. Obviously, materials with much stronger magnetoelastic coupling – such as galfenol
[104, 105] – should be investigated but they require much more complicated mechanical and
magnetic structures than our simple model with only two spins representing two magnetic
sublattices of opposite magnetization [26].

If we sum up, this approach enables us to describe magnetoelastic compounds, at least
simple ones, in a way, that’s complementary to usual approaches. Indeed, what is usually
considered is simply effective anisotropy fields due to shape or mechanical structure. Our
approach goes beyond that, even though it needs several parameters which have to be
previously determined such as mechanical and magnetoelastic constants. This approach
could be complementary to molecular dynamics, or even magnetic molecular dynamics to
numerically compute these constants.

Hence we have built a model which allows tracking the intricate dynamics of mag-
netic and mechanical degrees of freedom without encoding these in the distances between
neighbors as does magnetic molecular dynamics. This means that, for larger simulations,
one does not have to compute distances to nearest neighbors at each step, as this step is
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replaced by the coupling term in the field theory formalism. On top of this, conversely
to what most models coupling magnetism and mechanics do, our model allows for a back
reaction of the mechanical strain on the magnetic DOF. Unfortunately, the Lagrangian
approach does not easily allow implementing coupling to baths and interpretation of phys-
ically relevant temperatures related to these baths [106]. This is why in the following
section, we will focus on simpler magnetic systems and especially on the coupling to baths
and their influence on these systems. Furthermore, we shall see that precessional mo-
tion can more naturally be described by an extension of Hamiltonian dynamics, known as
Nambu dynamics. Thus we will try a novel approach and build a generalization of Nambu
mechanics, that incorporates stochastic and, more particularly, dissipative effects.

Summary
• The vector potential which is coupled to the spin to induce precession depends

– non-locally – on the variable which we relabeled spin, µ ≡ ṡ.

• We were able to numerically produce the switching of the Néel order parameter
for a toy model AF NiO.

• The magnetoelastic coupling enables enhancing of the switching of this pa-
rameter for compression and shear stress.

• Shear stress seems to be more efficient than compression in order to accelerate
the switching process, although it breaks – even if only slightly – the time
reversal symmetric behavior which was noticed in the case of a compression.
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Chapter 4

The influence of noise on a
magnetic system within stochastic
and dissipative generalizations of
Nambu mechanics

Résumé
• Nous construisons une généralisation de la dynamique de Nambu afin de

décrire la précession amortie d’un spin dans un champ magnétique.

• Nous introduisons dans ce modèle un couplage à un bain thermique et discu-
tons dans quelle mesure ceci décrit un bruit additif ou un bruit multiplicatif.

• Nous construisons à partir des systèmes stochastiques des modèles effectifs,
déterministes pour les moments de leur distributions, à partir d’hypothèses
pour la fermeture des hiérarchies obtenues.

• Nous simulons les cas de bruits additifs et multiplicatifs à travers les propriétés
des modèles stochastiques et déterministes correspondants.
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As mentioned in section 3.4.1, we now study the evolution of the magnetization, within
the context of Nambu mechanics, a generalization of Hamiltonian mechanics. In Nambu
mechanics, there are no longer one, but several Hamiltonians.

More precisely, for Hamiltonian mechanics, one can write the evolution equation for a
variable x and its canonically conjugate partner, p, as{

ẋ = {x,H}
ṗ = {p,H} (4.1)

which implies that any function, f(x, p) evolves according to

ḟ = {f,H} (4.2)

This has as consequence that Ḣ = {H,H} = 0.
This formalism requires that every dynamical variable has a conjugate partner, thus

imposing an even number of DOF for the phase-space of Hamiltonian systems.
There are, however, examples [107] of mechanical systems which can be difficult to

describe in the Hamiltonian framework–notably, those with constraints.
Indeed the Euler rigid-body equations

I1Ω̇1 = (I2 − I3)Ω2Ω3
I2Ω̇2 = (I3 − I1)Ω3Ω1
I3Ω̇3 = (I1 − I2)Ω1Ω2

(4.3)

where Ω is the body’s angular velocity and I are constants (moments of inertia) which
depend on the shape and mass distribution of the body. One can see that this system
presents an odd number of equations, as such it cannot be put into canonical Hamiltonian
form. There are however ways to cast this problem into a Hamiltonian (or equivalently
Lagrangian) form by describing its motion in terms of the Euler angles (θ, φ, ψ) and their
respective velocities (θ̇, φ̇, ψ̇), thus recovering an even number of DOF for the phase space.
Hence, an odd number of degrees of freedom does not necessarily imply that one cannot
use Hamiltonian dynamics. However, as presented in section 1.5, there are more conve-
nient ways to generalize the Hamiltonian framework, in particular to phase spaces of odd
numbers of DOF.

And as there is no quantity conjugate to spin, this proves to be particularly useful for
describing its phase-space. Moreover, Nambu dynamics more naturally implements the
constraints which are inherent to vector (i.e., an odd number of) DOF.

The simplest case for the equations of motion for Nambu dynamics [45, 108], is given
by an expression similar to (4.1), and for a variable s they read as follows

ṡ = {s, H1, H2} (4.4)

where now H1 and H2 are the two Hamiltonians of the system and the three-legged bracket
is the Nambu bracket presented in section 1.5. In this fashion, one can easily describe the
precession of a magnetic moment – or classical spin – s where the two Hamiltonians are
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given by 
H1 = 1

~
ω · s

H2 = s2

2

(4.5)

as both of these quantitiesH1 andH2 are conserved (indeed, {H1, H1, H2} = {H2, H1, H2} =
0), we indeed recover a precession around the axis of ω. We would like to emphasize that
the bracket is homogeneous to an action, which is illustrated by the 1

~ factor present in
H1. If we chose ω aligned with the z-axis, then the phase space of this magnetic moment
s can be represented by the intersection between the sphere or radius ||s|| and the plane
normal to ω at z = ω · s. This is illustrated in Figure 4.1

Figure 4.1: Spin of radius ||s|| cut by the plane defined by ω · s, illustrating the spin
precession in the framework of Nambu dynamics.

It should be stressed, however, that the appearance of ~ here is, solely, for dimensional
reasons–it is just a convenient name for a quantity that has the dimensions of angular
momentum and has, unfortunately, been used in the literature. It does not describe any
quantum effects whatsoever.

Equation (4.4) describes the spin precession equation

ṡ = ω × s (4.6)

This formulation, by construction is, of course, consistent with the usual conservation laws,
as one can, immediately, remark that

∂ṡi
∂si

= 0 (4.7)

hence, the phase-space velocity is divergenceless, which is consistent with Liouville’s the-
orem. This serves as an intuition as to why one can identify ṡ with the Nambu bracket
on the RHS of eq. (4.4).
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This, however, implies that is not possible to describe an experimentally very well-
established property of magnetic systems, namely damped precession towards the domi-
nant magnetic field.

This is why, in the next section, we will investigate how to introduce dissipation.

4.1 Building a dissipative extension to Nambu mechanics

Indeed, our aim is to describe damped magnetic motion through a damped precession.
As Nambu mechanics is inherently a conservative framework, it is not possible to use it
without modifications to describe dissipative motion, as it is, even though it is tempting
to simply change the Hamiltonian ω · s, by imposing for example that ω ≡ ω(t), thus
simply shifting this plane upward until its intersection with the sphere comprises only a
single point, this is shown in figure 4.2.

Figure 4.2: The plane ω · s shifts up, as does the intersection with the sphere

While one might think that this indeed describes the motion represented in Figure 4.3,
in fact, it does not, since (ω(t)×s) ·s = 0, whatever the time dependence, as long as ω(t)
does not change direction. What the time dependence achieves is modifying the density
on the circle, not its position.
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Figure 4.3: Schematic view of a magnetic moment’s s damped precession towards an
effective field ω

Similarly as what occurs in Hamiltonian mechanics, we need to find terms that can-
not be reabsorbed by a redefinition of the bracket, whether Poisson or Nambu. The
key observation is that the bracket defines a divergence–less vector field and dissipation
is described by the non–zero divergence of a vector field. So we shall generalize the
Clebsch-Monge/Helmholtz/Hodge decomposition of a vector field into a curl (that’s lo-
cally divergence-free) and a gradient (that’s, locally, curl–free).

4.1.1 Using the Helmholtz and Monge gauge so as to find out how to
plug in a dissipative term

In three dimensions, there are several ways to decompose a given vector field V (s),
two of which can be understood as special cases of Hodge decomposition [109]. The first
one, is the Helmholtz representation [107] such that

Vi ≡ εijk
∂Aj
∂sk

+ ∂φ

∂si
(4.8)

which is unique, up to a gradient of an “arbitrary” function ψ and any constant term φ0
such that A → A + ∇sψ and φ → φ + φ0. In this representation, the vector field V is
decomposed into a purely rotational part and a purely gradient part. Thus A is a vector
potential and φ is a scalar potential.

The second – less-common – representation, is the Monge representation, [110] such
that

Vi ≡
∂C1
∂si

+ C2
∂C3
∂si

(4.9)
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Where C1, C2 and C3 are the so–called Clebsch-Monge Potentials. This decomposition is
not unique, either, [111], and equation (4.9) is known as the Lamb form.

Another example is the Keller form

vi ≡
∂C1
∂si

+ 1
2

(
C2
∂C3
∂si
− C3

∂C2
∂si

)
(4.10)

If we identify these potentials as C1 = D, C2 = H1 and C3 = H2

Vi = ∂D

∂si
+H1

∂H2
∂si

(4.11)

Because A is also a vector field, we express it using the Monge (Lamb) representation
(4.9). Furthermore, we express ṡ using the Helmholtz decomposition (4.8)

ṡi = εijk
∂

∂sj

(
∂D

∂sk
+H1

∂H2
∂sk

)
+ ∂φ

∂si

⇒ ṡi = εijk
∂H1
∂sj

∂H2
∂sk

+ ∂φ

∂si

(4.12)

which can be shown to hold for both the Lamb (eq. (4.9)) and Keller (eq. (4.10)) choices
of Monge decomposition. This last expression is equivalent to

ṡ = {s, H1, H2}+ ∇sφ (4.13)

This means that what can be added to the Nambu formalism if we want to be able to
describe dissipation, is the second term of the RHS of (4.13), namely ∇sφ. In a more
general fashion [51, 112] the evolution equation for any function F (s) can be deduced
from

dF

dt
= ∂F

∂si
ṡi = ∂F

∂si
{si, H1, H2}+ ∂φ

∂si

∂F

∂si
(4.14)

which leads to the expression

Ḟ = {F,H1, H2}+ ∂φ

∂si

∂F

∂si
(4.15)

Now that we have managed to find out how any vector can be related to an extended
Nambu description, we will introduce a plausible candidate for the damping.

4.1.2 Introducing LLG damping as a fitting candidate for the model

As we remarked, above, it’s not enough for the frequency to be time–dependent, unless
its direction, also, changes. Such a change in direction can be described by a dependence
on the magnetization itself ω ≡ ω[s] [72] such that

ṡ = ω[s]× s (4.16)

While such an Ansatz does preserve the norm, since s · ṡ = 0, this does not mean that
damping does not occur, since the sphere need not be uniformly sampled.
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It is interesting that this expression contains, as a special case, the Landau-Lifshitz
(LL) equation

ṡ = ω × s+ α (s× (ω × s)) (4.17)
simply by taking ω → ω − αω × s.

Another special case is the so-called Landau-Lifshitz-Gilbert (LLG) equation, originally
proposed for strongly damped systems:

ṡ = ω × s+ α (s× ṡ) (4.18)

This equation seems quite complicated, the complication, however, is illusory.
It can be recast into a LL form as

ṡ = 1
1 + α2 (ω × s) + α

1 + α2 (s× (ω × s)) (4.19)

Let us now define two “damping” terms D⊥ and D‖ such that

ṡi = {si, H1 +D⊥, H2}+
∂D‖
∂si

(4.20)

then, using the linearity of the bracket, we have

ṡi = {si, H1, H2}+ {si, D⊥, H2}+
∂D‖
∂si

(4.21)

Thus in what follows, we will identify the extension of the Nambu expression to this
dissipation term

∇sφ→
α

1 + α2 (s× (ω × s)) (4.22)

where one can show that the two terms on the RHS can be identified with the Gilbert
damping, namely, as

{si, D⊥, H2}+
∂D‖
∂si
≡ 1

1 + α2 (ω × s) (4.23)

We would like to stress that any form {si, H1 +D
(1)
⊥ , H2 +D

(2)
⊥ } would be relevant as well,

which is why we do not want to focus on the exact expression for these terms. Concerning
the regular precession part, we simply choose

{s, H1, H2} ≡
1

1 + α2 (ω × s) (4.24)

Now that we have managed to extend our Nambu description of this system so as
to include dissipation, the next question which flows from this is how to describe the
fluctuations, as the fluctuation dissipation theorem imposes that any dissipating system
must also be subjected to fluctuations.

To this end it is useful to recall the geometry of the problem, namely the tip of the
magnetization vector is a particle that explores a sphere, which is a curved surface. Motion
on such a surface involves describing its geometry in parametric form, in particular, in
order to allow it to fluctuate. The most straightforward way to realize this is through the
so–called noise-vielbein.
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4.2 Introducing stochastic effects through a vielbein-noise
coupling

In this section we will couple (4.19) linearly to a stochastic process η(t) with a given
law of probability,P (η).

The evolution equation for the spin, s(t), can be written as a Langevin equation,

ṡ = 1
1 + α2 (ω × s) + α

1 + α2 (s× (ω × s)) + eij(s)ηj(t) (4.25)

where eij(s) is the vielbein [113] on a manifold described by the dynamical variables s.
Here the latin indices are coordinate indices (not lattice sites). Because s(t) is now defined
by equation (4.25), it becomes a stochastic process for which we can define the conditional
probability Pη(s, t; s0, t0) which corresponds to the probability of finding a state s at a
time t, knowing that one started from a state s0 at time t0 for one realization of the noise
η(t) (i.e., a particular trajectory in phase space). One often omits the initial conditions
by writing P (s, t), defined by

P (s, t) =
∫

[Dη(t)]P (η) δ (s− sη(t))︸ ︷︷ ︸
Pη(s,t)

(4.26)

where sη(t) denotes a solution of (4.25), corresponding to the realization, {η(t)}, of the
noise. One can show that it satisfies a continuity equation in configuration space.

∂Pη(s, t)
∂t

+ ∂ (ṡiPη(s, t)))
∂si

= 0. (4.27)

To be specific, we consider an Ornstein-Uhlenbeck process [114] of intensity ∆ and auto-
correlation time τ 

〈ηi(t)〉 = 0

〈ηi(t)ηj(t′)〉 = ∆
τ
δije

− |t−t
′|

τ

(4.28)

and higher-order correlation functions are given by Wick’s theorem. Now that we have
introduced how to implement stochasticity, we will compare additive and multiplicative
noise couplings.

In this framework, the first difference between additive and multiplicative noises is the
form taken by the vielbein eij . For the additive noise, it can be identified as eij ≡

δij
1 + α2

(we would like to stress that, in particular, it should not be a function of s). If one
takes the white noise limit for the Ornstein-Uhlenbeck process i.e. τ → 0, then one can
take advantage of the Shapiro-Loginov theorem [39] and (4.27) in order to express mixed
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moments of the noise and the probability distribution as

d

dt
〈ηi(t)Pη(s, t)〉 =

〈
ηi(t)

∂Pη(s, t)
∂t

〉
− 1
τ
〈ηi(t)Pη(s, t)〉

= −
〈
ηi(t)

∂(ṡjPη(s, t))
∂sj

〉
− 1
τ
〈ηi(t)Pη(s, t)〉

= −
〈
ηi(t)ṡj(t)

∂Pη(s, t)
∂sj

〉
−
〈
ηi(t)Pη(s, t)

∂ṡj(t)
∂sj

〉
− 1
τ
〈ηi(t)Pη(s, t)〉

(4.29)
assuming Gaussian closure, i.e., that third order moments can be expressed in terms of
first and second order moments as

〈f1(η)f2(η)f3(η)〉 = 〈f1(η)f2(η)〉 〈f3(η)〉+ 〈f1(η)f3(η)〉 〈f2(η)〉+
〈f2(η)f3(η)〉 〈f1(η)〉 − 2 〈f1(η)〉 〈f2(η)〉 〈f3(η)〉 (4.30)

where f1(η), f2(η) and f3(η) are functions of the noise, we have (keeping only terms which
can lead to a factor 1

τ
(i.e., linear in the noise) and replacing sj(t) by the corresponding

term in (4.25))

−
〈
ηi(t)ṡj(t)

∂Pη(s, t)
∂sj

〉
= −〈ηi(t)ṡj(t)〉

〈
∂Pη(s, t)
∂sj

〉
+O(τn)

= −〈ηi(t)ejl(s)ηl(t)〉
〈
∂Pη(s, t)
∂sj

〉
+O(τn)

(4.31)

where n is any positive integer (including 0), as we omit all terms which do not lead to a
factor 1

τ
. Here, by recalling ejl ≡

δjl
1 + α2 we get

−〈ηi(t)ejl(s)ηl(t)〉
〈
∂Pη(s, t)
∂sj

〉
= − 1

1 + α2 〈ηi(t)ηj(t)〉
〈
∂Pη(s, t)
∂sj

〉
+O(τn)

= − ∆
τ(1 + α2)

∂P (s, t)
∂si

+O(τn)
(4.32)

returning to (4.29) and keeping only terms with a factor 1
τ

for the RHS, we get the following
expression

d

dt
〈ηi(t)Pη(s, t)〉 = − ∆

τ(1 + α2)
∂P (s, t)
∂si

− 1
τ
〈ηi(t)Pη(s, t)〉+O(τn) (4.33)

now multiplying both sides of (4.33) by τ and taking the limit τ → 0 yields

〈ηi(t)Pη(s, t)〉 = −∆̃∂P (s, t)
∂si

(4.34)

where each tilde in the notation stands for a 1
1 + α2 factor (i.e., ∆̃ = ∆

1 + α2 ). Now by
defining the damped current vector J as

J ≡ 1
1 + α2 (ω × s) + α

1 + α2 (s× (ω × s)) (4.35)
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and including (4.25) in (4.27), one gets the following expression for P (s, t)

∂P (s, t)
∂t

+ ∂

∂si
(JiP (s, t))− ˜̃∆∂2P (s, t)

∂si∂si
= 0 (4.36)

which is of the Fokker-Planck form [115] as has initially been remarked by Walton [116]
when introducing additive noise into an LLG equation. We recall that each tilde stands
for a factor 1

1 + α2 , as such ˜̃∆ = ∆
(1 + α2)2 . The average value, 〈si〉 is expressed in terms

pf P (s, t) by the expression

d〈si〉
dt

= −
∫
ds si

∂P (s, t)
∂t

= 〈Ji〉 . (4.37)

In a similar fashion
d〈sisj〉
dt

= −
∫
ds sisj

∂P (s, t)
∂t

(4.38)

which implies that
d〈sisj〉
dt

= 〈ṡisj〉+ 〈siṡj〉 (4.39)

For the LLG equation in a field B or equivalently a frequency ω = γB this yields the
following equations for the first and second order moments for the spin

d

dt
〈si〉 = εijkω̃j〈sk〉+ α[ω̃i〈sjsj〉 − ω̃j〈sjsi〉]

d

dt
〈sisj〉 = ω̃l (εilk〈sksj〉+ εjlk〈sksi〉) + α [ω̃i〈slslsj〉+ ω̃j〈slslsi〉 − 2ω̃l〈slsisj〉]− 2 ˜̃∆δij

(4.40)
In order to close the system (4.40), we shall impose Gaussian closure i.e. 〈〈sisjsk〉〉 = 0.
Under this condition, the third-order moments can be expressed in terms of the first and
second order moments of the spin distribution as

〈sisjsk〉 = 〈sisj〉〈sk〉+ 〈sisk〉〈sj〉+ 〈sjsk〉〈si〉 − 2〈si〉〈sj〉〈sk〉 (4.41)

This yields the following effective system of the first and second order moments of the spin
coupled to an additive noise



d

dt
〈si〉 = εijkω̃j〈sk〉+ α[ω̃i〈sjsj〉 − ω̃j〈sjsi〉]

d

dt
〈sisj〉 = ω̃l (εilk〈sksj〉+ εjlk〈sksi〉) + α

[
ω̃i (〈slsl〉〈sj〉+ 〈slsj〉〈sl〉+ 〈slsj〉〈sl〉 − 2〈sl〉〈sl〉〈sj〉)

+ ω̃j (〈slsl〉〈si〉+ 〈slsi〉〈sl〉+ 〈slsi〉〈sl〉 − 2〈sl〉〈sl〉〈si〉)− 2ω̃l
(
〈slsi〉〈sj〉

+ 〈slsj〉〈si〉+ 〈sisj〉〈sl〉 − 2〈sl〉〈si〉〈sj〉
)]

+ 2 ˜̃∆δij

(4.42)
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Now for the case of a multiplicative noise, the first non-trivial proposition was made by
Brown [30] for the LLG equation in the form

eij(s) = εijk
sk

1 + α2 (4.43)

where it is of interest to note that it is present even if α = 0 i.e. without Gilbert damping.
Furthermore, this vielbein is not invertible, but what does matter is that it preserves the
norm of the spin, given that the dissipation term φ is also chosen to preserve this property
(which is the case for LLG) in the same – white-noise – limit, we now have

〈ηiPη(s, t)〉 = −∆̃ ∂

∂sj
(ejiP (s, t)) , (4.44)

which transforms the final equation for P (s, t) into

∂P (s, t)
∂t

+ ∂

∂si
(JiP (s, t))− ˜̃∆ ∂

∂si

(
eij

∂

∂sk
(ekjP (s, t))

)
= 0. (4.45)

this yields the following expression for the time evolution of the averaged spin

d〈si〉
dt

= 〈Ji〉+ ˜̃∆
〈
∂eil
∂sk

ekl

〉
. (4.46)

To be more specific, for the vielbein proposed by Brown, and a constant external field, we
have, for the first and second order moments

d〈si〉
dt

= εijkω̃j〈sk〉+ α (ω̃i〈sjsj〉 − ω̃j〈sjsi〉)− 2 ˜̃∆〈si〉.

d〈sisp〉
dt

= εijk
(
ω̃j〈sksp〉+ ˜̃∆ (εkjm〈sm〉〈sp〉+ εpjm〈sm〉〈sk〉) + εklmω̃l〈smsjsp〉

)
+ εpjk

(
ω̃j〈sksi〉+ ˜̃∆ (εkjm〈sm〉〈si〉+ εijm〈sm〉〈sk〉) + εklmω̃l〈smsjsi〉

)
(4.47)

Under the same closing assumptions as for the additive case, i.e. 〈〈sisjsk〉〉 = 0



d〈si〉
dt

= εijkω̃j〈sk〉+ α (ω̃i〈sjsj〉 − ω̃j〈sjsi〉)− 2 ˜̃∆〈si〉.

d〈sisp〉
dt

= εijk

(
ω̃j〈sksp〉+ ˜̃∆ (εkjm〈sm〉〈sp〉+ εpjm〈sm〉〈sk〉)

+ εklmω̃l
(
〈smsj〉〈sp〉+ 〈smsp〉〈sj〉+ 〈sjsp〉〈sm〉 − 2〈sm〉〈sj〉〈sp〉

))

+ εpjk

(
ω̃j〈sksi〉+ ˜̃∆ (εkjm〈sm〉〈si〉+ εijm〈sm〉〈sk〉)

+ εklmω̃l
(
〈smsj〉〈si〉+ 〈smsi〉〈sj〉+ 〈sjsi〉〈sm〉 − 2〈sm〉〈sj〉〈si〉

))

(4.48)
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We, therefore have a closed system of equations for the flow of the moments of magnetiza-
tion, in presence of additive or multiplicative noise. In the next section, we shall proceed
to study the properties of their solutions and, in particular, compare the results of the
moment equations, with those of the stochastic equations.

4.3 Comparing effective and stochastic models by simulat-
ing additive and multiplicative noise

In the previous section we have focused on computing the equations of motion for the
stochastic systems and their deterministic counterparts, which we obtained by imposing
several closing assumptions on the hierarchy of moments. We shall now proceed to in-
tegrate them, numerically, in the same fashion as in the previous chapters, both for the
stochastic systems and the effective systems.

4.3.1 The case of additive noise

We start by simulating the case, when the noise is additive, as described by equations
(4.42) for the deterministic model, and (4.25) and eij ≡

δij
1 + α2 .

Our first simulation results are given in Figure 4.4. As we have chosen an additive
noise here, the norm of the spin is not conserved for each realization of the noise. Indeed
by taking the scalar product of (4.25) with s, we have

1
2
ds2

dt
= s · ṡ = s · η

1 + α2 (4.49)

which has no particular reason to vanish at all times. The averaging procedure tends to
smooth out the effects of this variation of the norm but only for short times and low values
of the noise intensity ∆. Thus in Figure 4.4, where both the stochastic and deterministic
models are in quite good agreement, as the simulation time is short and the noise intensity
small, the norm remains within reasonable bounds and its variation is barely noticeable
on the curves. It is however, slightly more noticeable on the deterministic curves (b) where
the z-component of the spin grows beyond the value of 1. Obviously the difference between
these curves grows for larger values of the noise intensity, as the arguments for the closing
assumptions are no longer valid.

However as shown in reference [38] one can work around this by changing the closing
relations and by imposing, for example 〈〈sisjsk〉〉 = Cijk(∆).
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Figure 4.4: Magnetization dynamics of a paramagnetic spin in a constant magnetic field,
connected to an additive noise. The upper graphs (a) plot some of the first–order moments
of the averaged magnetization vector over 102 realizations of the noise, when the lower
graphs (b) plot the associated model closed to the third-order cumulant (see text). Param-
eters of the simulations : {∆ = 0.13 rad.GHz; α = 0.1; ω = (0, 0, 18) rad.GHz; timestep
∆t = 10−4 ns}. Initial conditions: s(0) = (1, 0, 0), 〈si(0)sj(0)〉 = 0 but 〈s1(0)s1(0)〉 = 1.

What is of more direct interest to us is the influence of the initial conditions. In Figure
4.5 we chose a non-zero component along the external field axis, however of opposite sign
as s(0) = (1/

√
2, 0,−1/

√
2) and by taking all the initial correlations accordingly

〈si(0)sj(0)〉 =

 1
2 0 −1

2
0 0 0
−1

2 0 1
2

 (4.50)

We also chose a larger time-window so as to demonstrate the issue with the conservation
of the norm. One can see more easily here, that the norm tends to diverge slowly, which
is not in agreement with experiment. This holds for both the stochastic and deterministic
models. Indeed in the case of additive noise one can write the time derivative of the
averaged norm of the spin as

d

dt

〈
s2
〉

= 2〈siηi〉
1 + α2 . (4.51)
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Figure 4.5: Magnetization dynamics of a paramagnetic spin in a constant magnetic field,
connected to an additive noise. The upper graphs (a) plot some of the first–order moments
of the averaged magnetization vector over 103 realizations of the noise, when the lower
graphs (b) plot the associated model closed to the third-order cumulant (see text). Param-
eters of the simulations : {∆ = 0.0655 rad.GHz; α = 0.1; ω = (0, 0, 18) rad.GHz; timestep
∆t = 10−4 ns, s(0) = 〈s(0)〉 = (1/

√
2, 0,−1/

√
2), 〈sisj〉(0) = 0 except for (11)=1/2,

(13)=(31)=-1/2, (33)=1/2 }.

In the white noise limit, using the Shapiro-Loginov formula in the same fashion as in
previous chapters, one gets

d

dt
〈sisi〉 = 6 ˜̃∆ (4.52)

which yields the following relation for the value of the norm over time

〈
s2(t)

〉
= s2(0) + 6 ˜̃∆t, (4.53)

This is clearly in agreement with Figure 4.6 where increasing the number of realizations
implies that the variation of the norm becomes closer and closer to the expected diffusion
regime.
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Figure 4.6: Mean square norm of the spin in the additive white noise case for the following
conditions: integration step of 10−4ns; ∆ = 0.0655 rad.GHz; s(0) = (0, 1, 0); α = 0.1;
ω = (0, 0, 18) rad.GHz compared to the expected diffusion regime (see text).

In summary, we have seen that coupling our damped Nambu system to an additive noise
can describe the precession of magnetic moments for small noise intensities and over short
periods of time and the effective – deterministic – model, as does the stochastic averaged
model, but faster, can describe the dynamics of this damped and fluctuating system.
However for larger time-windows or noise intensities, this additive noise coupling cannot be
chosen to describe magnetic systems as it inherently implies a diffusion regime on the norm
of the magnetic moment which is simply not in agreement with experimental observations.
In order to evaluate whether or not a different noise coupling is more appropriate to
describe magnetic systems, we shall now proceed to investigate the multiplicative noise
coupling by simulating, again, the corresponding stochastic model and the effective –
deterministic – one.

4.3.2 The case of multiplicative noise

We now consider multiplicative noise [30], with again, both respectively the determin-
istic and stochastic models provided by equations (4.48) and (4.25) with the multiplicative
vielbein eij ≡

εijksk
1+α2 .

If we keep only the first order moment of the hierarchy, or equivalently only small
fluctuations so as to keep the distribution of the spin Gaussian (〈〈sisj〉〉 = 0), we can
deduce from (4.48) that there is a longitudinal relaxation time τL described by the term
2 ˜̃∆

τL = (1 + α2)2

2∆ (4.54)
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Indeed, as can be seen in Figure 4.7 and conversely to what was observed in the addi-
tive noise case, here we can see that, even though the norm of the spin is not necessarily
conserved, it converges to an equilibrium value. As the noise intensity is small, the con-
vergence is indeed in agreement with the relaxation time τL. What is also remarkable is
that, although the dynamics of both cases are quite similar, qualitatively, they differ quite
a lot quantitatively.

Figure 4.7: Magnetization dynamics of a paramagnetic spin in a constant magnetic field,
connected to a multiplicative noise. The upper graphs (a) plot some of the first–order
moments of the averaged magnetization vector over 102 realizations of the noise, when the
lower graphs (b) plot the associated model closed to the third-order cumulant (see text).
Parameters of the simulations : {∆ = 0.65 rad.GHz; α = 0.1; ω = (0, 0, 18) rad.GHz;
timestep ∆t = 10−4 ns}. Initial conditions: s(0) = (1, 0, 0), 〈si(0)sj(0)〉 = 0 but
〈sx(0)sx(0)〉 = 1.

This becomes more obvious in Figure 4.8 where simulations over longer times have been
performed, for different initial conditions. Here we can see that the spin becomes aligned
with the external field and the z-component of the spin is lower than 1, even though the
initial conditions have a non zero z-component as in Figure 4.5. The root mean square
errors (error bars) are also much larger for the multiplicative noise than for additive noise
1. This is expected as the noise dependence is much more intricate in the multiplicative
noise case, which explains that one requires more realizations for the average to be as
accurate as in the additive case.

1In a similar fashion to subsection 2.3.1, the convergence of this model depending on the number of
realizations N can be checked, by using another error estimator, such as σ√

N
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Figure 4.8: Magnetization dynamics of a paramagnetic spin in a constant magnetic field,
connected to a multiplicative noise. The upper graphs (a) plot some of the first–order
moments of the averaged magnetization vector over 104 realizations of the noise, when the
lower graphs (b) plot the associated model closed to the third-order cumulant (see text).
Parameters of the simulations : {∆ = 0.65 rad.GHz; α = 0.1; ω = (0, 0, 18) rad.GHz;
timestep ∆t = 10−4 ns}. Initial conditions: s(0) =

(
1/
√

2, 0, 1/
√

2
)
, 〈si(0)sj(0)〉 = 0

except for 〈s1(0)s1(0)〉 = 〈s1(0)s3(0)〉 = 〈s3(0)s3(0)〉 = 1/2.

We have thus shown that, it is possible to describe dissipation in magnetic systems, by
an extension of Nambu mechanics. The fluctuations, however, are consistently described
only using multiplicative noise, as the additive noise coupling induces a diffusion regime
where the norm of the spin grows (positively or negatively, according to the sign of the
intensity) indefinitely. The coupling of the magnetization to multiplicative noise can be
schematized in the following way. As the external field ω is supplemented by the noise
η, it behaves as if the Nambu phase space, which in the non dissipating case is built by
the intersection of the two surfaces described in the Figure 4.1, was now constructed by
the intersection of the sphere described by H2 and a “fuzzy”-plane describe by H1. In the
case where the norm of the spin is conserved, the intersection of the “fuzzy”-plane and the
sphere can, while remaining on the sphere, travel up and down, as if the plane was vibrating
up and down. This illustrates how fluctuations can imply transverse dissipation for this
description of magnetic systems. If now we also allow the sphere to be “fuzzy” then this
description can transform constant angle precession as described by the Larmor equation,
into longitudinally and transversely damped precession as described by stochastic-LLG
equation.

Now that we have a better understanding of how dissipating and fluctuating magnetic
systems can emerge from our framework, we can take into account the mechanical degrees
of freedom. Indeed, one issue we have remarked upon, in previous sections, when describing
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spin degrees of freedom, was the emergence of non-local quantities. When dealing with
non-local quantities, especially with spins, there are two ways to proceed. Either indeed,
work with non-local quantities and commuting variables, or work with local quantities
but non-commuting variables. This is why in the next chapter, we will build a coupled
model for magnetic and elastic degrees of freedom, through a Hamiltonian approach using
anticommuting and commuting variables.

Summary
• An extension for Nambu dynamics to include dissipative phenomena is con-

structed, for the special case of magnetic systems whose time evolution is
given by the LLG equation.

• The geometry is described by a linear noise vielbein, corresponding to the
case of additive and/or multiplicative noise and a system of equations for the
moments of the distribution are deduced for both cases.

• The hierarchies of the moments for both cases are truncated by closure as-
sumptions, so as to obtain effective deterministic systems, which describe the
dynamics of the moments of the distributions.

• Both the effective – deterministic – and stochastic models are simulated, both
for additive and multiplicative noise couplings. The multiplicative noise is
more suitable for describing the dissipation and fluctuations of magnetic sys-
tems and its consistent description can be provided within Nambu mechanics.
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Chapter 5

A Hamiltonian approach for
magnetoelasticity, combining
anticommuting and commuting
variables

Résumé
• Nous employons des variables commutantes et anticommutantes pour

réinterpréter la précession d’un moment magnétique et construire un crochet
de Poisson pour un système magnétoélastique.

• Nous définissons un Hamiltonien, cohérent avec ce crochet et en déduisons les
équations du mouvement qui décrivent la dynamique couplée des degrés de
liberté magnétiques et mécaniques.

• Nous étendons ce modèle–à une particule–au cas de plusieurs particules, en
interaction, pour pouvoir décrire des systèmes magnétiques plus intéressants,
tels que les antiferromagnétiques

• Nous étudions numériquement le retournement de l’aimantation d’un modèle
jouet d’AF NiO par couple de transfert de spin
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5.1. INTERPRETING PRECESSION USING POISSON BRACKETS AND THEIR
GENERALIZATIONS FOR ANTICOMMUTING VARIABLES

In the previous chapters, we have presented several methods for describing the dynam-
ics of magnetic degrees of freedom, either for undamped precessional motion of a single
moment, or for a collection of interacting magnetic moments, that satisfy appropriate gen-
eralizations of the LLG equation. Our approach amounts to building an effective model
for the coupling of a spin to a “spin bath” in chapter 2, a Lagrangian model in chapter 3
and a generalization of Nambu dynamics, in chapter 4.

The Lagrangian approach, which described the coupling to the mechanical DOF most
explicitly, however, implies a nonlocal description in terms of the magnetic moments – or
spin – variables themselves, that satisfy the commutation relations of the rotation group.

In this chapter we will review that this non–locality can be expressed using anticom-
muting variables (in terms of which the spin degrees of freedom satisfy the expected,
commutation relations of the rotation group). To this end we will begin by introducing
a model for describing precessional motion through anticommuting variables. This was
proposed by Berezin and Marinov in the 1970s [22]. There was, also, considerable activity
in formal developments by the Firenze group [21]. What, however, remained dormant all
these years, is putting these insights into use for describing effects in real materials–in
particular regarding dissipation. This is the focus of this chapter and of the paper [117].

5.1 Interpreting precession using Poisson brackets and their
generalizations for anticommuting variables

In section section 1.1, we have reviewed, how (classical) precession motion for the
spin can emerge from quantum mechanics. Within non–relativistic quantum mechanics,
the dynamics of spin must be described separately from that of the mechanical degrees
of freedom, that carry it, since there isn’t any spin–statistics relation in this case. In
particular, while spin can take integer and half–integer values only, as a consequence of
the properties of the rotation group, there does not seem to be any constraint on the value
of the spin.

When relativistic effects become significant, the situation changes dramatically and
consistent interactions, for spinning degrees of freedom, can be formulated, in terms of
particles, only for spin 0, spin 1/2, 1, 3/2 and 2. For higher values of spin, that were
encountered in the experiments in hadronic physics in the 1960s [118] the consistent for-
mulation turned out to involve extended objects, namely strings–and the absence of a
massless resonance of spin 2 became the motivation for reinterpreting the string theory
for hadronic resonances as a theory of gravity, since the graviton is a massless particle of
spin 2.

While this effort is, still, a work in progress, what has happened, much more re-
cently, is that it has become possible to control the spin degrees of freedom at the scale of
atoms and molecules in condensed matter systems with a precision that has surpassed all
expectations–and this has proved crucial to imagining and developing new materials and
new phases thereof. This has led to “spintronics,” in particular [119, 120].

This has made the theoretical developments of the 1970s and 1980s [121, 122] in par-
ticular regarding the Hamiltonian description of spinning particles [123], very topical for
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practical applications to new materials. In this framework, what is fascinating is that
the “relativistic” features are “emergent” at the scale where baths are relevant, but their
constituents cannot be resolved.

Let us, therefore, recall that one example, describing the dynamics of spin ½ variables
are spinors, in the context of the Dirac equation [124].

Another one, which proves to be particularly useful for coupling magnetic to mechanical
DOF, as we have seen in section section 1.7, is the description in terms of Majorana
fermions [125], in which the spin variable S

SI = −ı2 εIJKξIξJ (5.1)

in terms of a set of three anticommuting variables ξI such that

ξIξJ + ξJξI = 2δIJ (5.2)

The ξI thus generate a Clifford algebra.
Interestingly, this spin, even though constructed using anticommuting variables, satis-

fies
[SI , SJ ] = ıεIJKSK (5.3)

and can thus be understood to define a representation of the Lie group of SU(2). An
interpretation of this representation is that the spin S is in fact a composite object whose
underlying “fundamental” building blocks are the ξ. The motivation behind this [92] is
similar to section 3.1 where we introduced µ = ṡ; indeed the notion of hidden variables in
this specific context was proposed by [22] as we have seen in section 1.7.

An interesting question is whether it is possible to work with the ξ and the usual,
commuting, positions and momenta in phase space, in a unified way, thereby enlarging
the phase space into a supermanifold. The answer is, indeed, affirmative, as was shown
in [126]. The appropriate generalization of the Poisson brackets turns out to be graded
Poisson brackets of functions f and g of ξ that satisfy a relation of the following kind

{f(ξ), g(ξ)}PB ≡
ı

~
f(ξ)

←−
∂

∂ξK

−→
∂

∂ξK
g(ξ), (5.4)

where the left derivation ←−∂ simply means that one applies the derivation operator from
the left to the right −→∂ and conversely for the right derivation. This bracket satisfies all
relevant properties with a generalization of the Jacobi identity as a graded Jacobi identity
[127]. Applying this bracket to the spin variables defined by eq. (5.1) yields the following
relation

{SI , SJ} = 1
~
εIJKSK (5.5)

Now the fact that the ξ anticommute implies that any function of them can only be, at
most, quadratic.

It should be stressed at this point that the appearance of ~ in this–and the following–
relation(s) is purely of dimensional origin and does not imply that any quantum effects
are present.
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If we chose f and g, as functions of ξ, to have vanishing linear part – i.e., to be
expressed only as functions of the S – then one can rewrite the bracket eq. (5.4) as

{f(S), g(S)}PB = ı

~
∂f

∂SI
SI

←−
∂

∂ξK

−→
∂

∂ξK
SJ

∂g

∂SJ

= {SI , SJ}PB
∂f

∂SI

∂g

∂SJ
= 1

~
εIJKSK

∂f

∂SI

∂g

∂SJ
,

(5.6)

This bracket can clearly be identified with the “spinning part” of the Poisson bracket
proposed by Yang and Hirschfelder [19] and Ruijgrok and Van der Vlist [20] in the context
of magnetized fluid dynamics

{A,B}PB ≡
∂A

∂qI

∂B

∂pI
− ∂A

∂pI

∂B

∂qI
− 1

~
εIJKSI

∂A

∂SJ

∂B

∂SK
. (5.7)

where qI are the position and pI are the conjugate momenta of the moving particles. The
spin part of this bracket enforces the constraint that the spin be on a sphere, of fixed radius.
Indeed, by recalling section 1.5 and chapter 3 one can see that, if we define H2 = 1

2S
2
K ,

we can write
{A,B,H2}NB = 1

~
εIJK

∂A

∂SI

∂B

∂SJ

∂C2
∂SK

= −{A,B}PB (5.8)

where {A,B,H2}NB is the Nambu bracket, which preserves H2.
In order for this bracket to describe the intricate dynamics between mechanical and

spin degrees of freedom, one must, therefore, construct a new bracket, that combines
the properties of the “spinning” bracket, just reviewed with those of the, usual, Poisson
bracket. This can be achieved as follows:

{A,B}PB ≡
∂A

∂εIJ

∂B

∂πIJ
− ∂A

∂πIJ

∂B

∂εIJ

+ 1
~
εIJKSI

∂A

∂SJ

∂B

∂SK
,

(5.9)

This is possible because εIJ and πIJ can be identified with the position and momentum of
a “particle,” whose dynamics captures the elastic degrees of freedom, where the magnetic
moment is embedded.

πij , the canonically conjugate variable to the strain tensor εij , can be, indeed, understood–
as expected, through the relation

πIJ = ∂L
∂ε̇IJ

(5.10)

where L is the Lagrangian of this system, an example being found in chapter 3. For ε and
π the bracket satisfies the following relations

{εIJ , πKL}PB = δIJKL, (5.11)
{εIJ , εKL}PB = {πIJ , πKL}PB = 0 (5.12)
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where the notation δIJKL can be understood as

δIJKL =


δIJδKL
δIJδLK
δJIδLK
δJIδKL

(5.13)

The definition of a canonical bracket for such tensors is, of course, by no means unique; the
canonical transformations, that these define have been studied in [128–130], for instance.

Using this Poisson bracket, one can now obtain the EOM for the full phase space
variables in the usual form as

ε̇IJ = {εIJ ,H}PB = ∂H
∂πIJ

π̇IJ = {πIJ ,H}PB = − ∂H
∂εIJ

ṠI = {SI ,H}PB = 1
~
εIJKSJ

∂H
∂SK

(5.14)

where H is the Hamiltonian, which is a function of ε, π and S only.
Now that the Poisson bracket has been defined for the commuting alter ego S of the

anticommuting, underlying variables ξ and for the mechanical strain tensor ε (and its
conjugate momenta π), we need to construct an appropriate Hamiltonian for the magne-
toelastic system that can capture its dynamics.

5.2 Constructing the Hamiltonian for a magnetoelastic sys-
tem.

The Hamiltonian of the magnetoelastic system will be expressed in terms of the mag-
netic – S – and mechanical – ε and π – variables. We will begin by building the free parts,
i.e., that describe the magnetic and mechanical parts without any interaction.

5.2.1 Defining the free Hamiltonian

The first contribution for the purely magnetic part of our system [1] is the Zeeman
term:

Hz = −~ωISI (5.15)

This term represents the magnetic energy of the system. In fact, the effective frequency
ω, in this expression, can be a function of S, thereby generalizing the purely Zeeman
expression, where it is a constant.

The next term is the internal mechanical energy [131, 132], for which we keep only the
lowest, non-trivial, i.e., quadratic terms

Hmech = V0
2 CIJKLεIJεKL (5.16)
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The CIJKL are the elastic constants of the material, that are packaged in a 3× 3× 3× 3
tensor, which is consistent with the Bravais symmetries, and V0 is a reference volume, so
that the expression for the Hamiltonian scales like an energy. For a homogeneous medium,
the elastic constants can be expressed in terms of the two Lamé parameters [133] (C0, C1).
In Cartesian coordinates these are related as

CIJKL = C0δIJδKL + C1 (δIKδJL + δILδJK) (5.17)

As we have introduced πIJ as the canonically conjugate “momenta” to the strain tensor
εIJ , we also define a kinetic term for the mechanical system as

Hkinetic = 1
2πIJM

−1
IJKLπKL (5.18)

In this expression, the MIJKL is a 3× 3× 3× 3 mass tensor which verifies

MIJKL = MKLIJ = MJIKL = MIJLK (5.19)

and describes the inertia of the mechanical response. Again, for isotropic media, we will
assume a Lamé-like form, given by

MIJKL = M0δIJδKL +M1 (δIKδJL + δILδJK) (5.20)

Here, M0 is the effective inertia for the frequency of longitudinal waves and M1 the effective
inertia for the frequency of transverse waves, when the description is generalized to an
extended medium, described by more than one “particle,” carrying the mechanical and
spin DOF.

We shall use the inverse of M , M−1, further on; it can be computed from the relation

MIJKLM
−1
IJMN = 1

2 (δKMδLN + δKNδLM ) (5.21)

in a similar fashion as the elastic compliances tensor [133] can be deduced from the elastic
constants tensor (cf. chapter 3). This yields the following expression for the components
of M−1

M−1
IJKL = −M0

2M1(3M0 + 2M1)δIJδKL

+ 1
4M1

(δIKδJL + δILδJK)
(5.22)

We will also add a mechanical source term that describes an external (uniform in space
and time) stress σext

IJ to the Hamiltonian,viz.

Hext = −V0σ
ext
IJ εJI . (5.23)

Together, eqs. (5.16), (5.23) and (5.18) represent the total mechanical energy of our
system, in the absence of interactions, in particular, between the mechanical and magnetic
parts. Since we do want to study their intricate/coupled dynamics, we have to introduce
an interaction term in the Hamiltonian, in a way that’s consistent with the symmetries.
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5.2.2 Local, magnetoelastic interactions

Now we proceed with the last step, which is to construct the interaction Hamiltonian.
It must, of course, contain both ε and S. Of course, this, simply, represents a choice of
coordinates in phase space, since it isn’t possible to invariantly distinguish the canonically
conjugate variables from each other.

Experiments show that only the axis and the intensity–but not the direction–of the
magnetic field affect how it controls magnetostrictive behavior [6]. Thus the interaction
Hamiltonian must be an even function of the magnetization S.

To lowest order, we can, therefore, keep only the quadratic terms for the magnetization
(as long as we can neglect morphic effects, which can arise in experiments, but are described
by higher order terms [6]).

For the strain, on the other hand, no symmetry arguments impose that the interaction
Hamiltonian be an even function thereof.

This implies that the lowest order magnetoelastic interaction term is given by

Hme = BIJKLεIJSKSL (5.24)

where BIJKL are the components of the 3× 3× 3× 3 tensor of magnetoelastic constants
. This is the usual form which has been considered in the literature on models of magne-
toelasticity [134–136].

The main difference here is that ε and S are variables which have a non–trivial time
dependence.

Again, if the system is isotropic these can be written as

BIJKL = B0δIJδKL +B1 (δIKδJL + δILδJK) (5.25)

We now face a problem. The equation (5.1) imposes that SISJ = 0, or a constant,
since the ξ generate a Clifford algebra. However for lattice dynamics, or more precisely,
Atomistic Spin Dynamics (ASD) the physical interpretation for the magnetization on
each site depends on the spatial scale in the simulation–whether it represents a single
magnetic moment, or the average over a domain. Usually, the magnetization Seff

I at each
simulation site I is an average over the magnetization of several “physical” sites i, to which
is associated a local magnetization vector SiI . This can formally be written as

Seff
I = 〈SiI〉i (5.26)

Since the ξI on different sites span a much larger space, their anticommutation relations
allow a correspondingly larger number of multilinears, before triviality sets in. So, the
Seff
I , even though they represent one site, are, in fact, averages over several sites. This

in turn means that the Seff
I S

eff
J no longer require to vanish identically (or be constants).

Equation (5.24) can, in fact, be identified with the expression over two sites, as introduced
by [137].

We have thus defined all the terms in our Hamiltonian and with the Poisson bracket (5.9)
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we can write the equations of motion for our system which read



ε̇IJ = M−1
IJKLπKL

π̇IJ = −V0CIJKLεKL + V0σ
ext
IJ −BIJKLSKSL

ṠI = εIJK
(
ωJ − 2

~BABJCεABSC
)
SK

(5.27)

where remarkably, the last equation still is a precession equation for the spin, where the
precession frequency is modified by the magnetoelastic coupling. By construction, this is
a Hamiltonian dynamical system which preserves the extended phase space volume as one
can show by checking

∂ε̇IJ
∂εIJ

+ ∂π̇IJ
∂πIJ

+ ∂ṠI
∂SI

= 0 (5.28)

Now this system only describes a single domain, carrying both the magnetic moment
S and the strain and conjugate tensors {εIJ , πIJ} depicted in Figure 5.1. Schematically,
π can be thought of as the reciprocal volume of ε.

Figure 5.1: Schematic representation of the coupled strain and magnetization for a finite
volume V0 magnetoelastic solid

Therefore, the description presented here describes single domains and cannot capture
phenomena that involve exchange interactions between domains, for example. In order to
describe such larger systems, we thus need to extend this model to take into account the
fact that sites need not be equivalent. This, in particular, will allow us to describe how
sublattices can interact, which is useful for antiferromagnets.
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5.3 Extending the model to multi-particle magneto-elastic
solids

The first step towards a multi–domain and, therefore, “multi–particle” description is
to introduce a label, for each lattice site: i = 1..N in (5.27).

We have decided not to “decorate” the constants M , C and B, which appear in this
system, so as to keep things simple; but this would not cause any conceptual issues. Despite
this simplification, this framework, nonetheless, allows the quantitative study of materials
with homogeneous properties. In equations:



ε̇iIJ = M−1
IJKLπ

i
KL

π̇iIJ = −V0CIJKLε
i
KL + V0σ

ext
IJ −BIJKLSiKSiL

ṠiI = εIJK

(
ωiJ + ∂ωiI

∂SiL
SiL −

2
~
BABJCε

i
ABS

i
C

)
SiK

(5.29)

where one has to add the term ∂ωiI
∂SiL

SiL, to take into account possible dependence of the

field ωi on Si.
This system describes a set of non-interacting particles, evolving according to the same

EOM.
In order for this new set to describe interacting particles, we need to introduce a way

for having different labels.
We choose to encode the interaction through an effective frequency, ωieff , by adding a

purely magnetic exchange term over the nearest neighbors j :

ωieff I = 1
~
∑
j∈nn

J ijSjI (5.30)

where J ij is the exchange matrix for the different sites, and is assumed to be symmetric
(i.e., symmetric exchange). We chose not to implement a mechanical interaction between
different sites as we want to focus rather on how the magnetic response is modified by
the coupling to the mechanical system. Generalizations of this formalism for taking into
account such “back reaction” effects have, however, been explored in [138] and [139].

We have now generalized our model in a way that is appropriate for describing the
dynamics of interacting, multi-“particle” systems, consisting of lattice sites, each carrying
a magnetic moment S and the conjugate mechanical variables {εIJ , πIJ}. The sites can
now interact through a magnetic exchange interaction. In this fashion we can therefore
hope to describe more complex magnetic systems such as ferromagnets or antiferromagnets.
As the latter, in particular, have recently drawn a lot of interest in the quest for developing
fast spintronic devices [140, 141], in the next section we will show how to use our framework
to understand magnetoelastically coupled antiferromagnets.
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5.4 The magnetoelasticity of antiferromagnets

In section 5.3 we have introduced a magnetic exchange interaction between sites of
a lattice. A particularly interesting application is to systems, whose magnetic degrees
of freedom can display antiferromagnetic order. The simplest AF system consists of two
sites, interacting through AF exchange and thus of opposite local magnetization, along
the same axis.

A practical application is to the case of NiO.
In this case we need, also, to introduce a local easy axis, by adding an anisotropy term

to the effective frequency

ωieff I = 1
~
∑
j∈nn

J ijSjI + K

~
nJnIS

i
J (5.31)

In this expression, n describes the orientation of the easy axis and K is the uniaxial
anisotropy constant. In this fashion, we can define a toy model for an AF NiO-like solid
by studying a N = 2 sites, where the sites now are to be identified with the sublattices of
NiO. This model is depicted in Figure 5.2.

Figure 5.2: Schematic representation for an AF NiO like toy model, magnetoelastically
coupled.
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At this point, our system is defined by the following set of EOM.

ε̇iIJ = M−1
IJKLπ

i
KL

π̇iIJ = −V0CIJKLε
i
KL + V0σ

ext
IJ −BIJKLSiKSiL

ṠiI = εIJK

1
~
∑
j∈nn

J ijSjJ + K

~
nKnJS

i
K −

2
~
BABJCε

i
ABS

i
C

SiK
(5.32)

The dynamics described by eq. (5.32) is elucidated by solving these equations numerically.
As we have done in the chapter 3, we will set up a symplectic integration scheme for the
coupled system.

5.4.1 A symplectic integration scheme for the magneto-elastically cou-
pled dynamics

We proceed to the numerical integration of eq. (5.32). The method is similar to chapter
3 but there is one key difference, which is the appearance of the strain-rate tensor πIJ ,
since we are using a Hamiltonian formalism (recall that the spin DOF is self–conjugate).

The first step, as usual, is to write eq. (5.32) in terms of Liouville operators – L – that
act on the phase-space variables as

ε̇ = Lεε,
π̇ = Lππ,
Ṡ = LSS.

(5.33)

These Liouville operators are defined for any phase space variable x through

Lx = ẋ
∂

∂x
(5.34)

Applying such an operator to the variable x yields

[Lx]x = ẋ (5.35)

as expected. Hence, for any function f ≡ f(s(t), ε(t),π(t)) the total derivative (which we
shall write by the dot notation) can be expressed as

ḟ = ε̇IJ
∂f

∂εIJ
+ π̇IJ

∂f

∂πIJ
+ ṠI

∂f

∂SI
≡ [L]f. (5.36)

where we have defined the (total) Liouville operator L by

L = ε̇IJ
∂

∂εIJ
+ π̇IJ

∂

∂πIJ
+ ṠI

∂

∂SI
= Lε + Lπ + LS (5.37)

The solutions of eq. (5.33) can, at least formally, be given at any time by

f(ε(t),π(t),S(t)) = eLtf(ε(0),π(0),S(0)). (5.38)
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There is, however, an issue with the exponentiation of operators. Indeed, if these operators
do not commute

eLt = eLεt+Lπt+LSt 6= eLεteLπteLSt. (5.39)

One can easily show that this is, in fact, the case for Lε and LS

[LS ,Lε] = ṠI
∂ε̇AB
∂SI

∂

∂εAB
− ε̇AB

∂ṠI
∂εAB

∂

∂SI
6= 0 (5.40)

and for Lε and Lπ

[Lε,Lπ] = ε̇AB
∂π̇CD
∂εAB

∂

∂πCD
− π̇CD

∂ε̇AB
∂πCD

∂

∂εAB
6= 0 (5.41)

An example of the consequences of non-commutativity of operators can be given by the
rotations around different axis. An illustration is found in Figure 5.3.

Figure 5.3: Example of non-commuting rotations for a 6 faced dice

One can see that indeed, the result of the combination of two rotations depends on the
ordering of these rotations.

Now we would like to be able to act with the individual exponentials of the Liouville
operators, since these act “simply” on the phase space variables. Since we are, anyway,
interested in a numerical treatment, we would like to use a scheme that allows us this
flexibility. Such schemes can be constructed using the Magnus expansion [79].

This expansion allows us, in particular, to express any operator as a product of its
“parts” in powers of the time step, according to the splitting-method presented, for in-
stance, in [78]. This has the virtue of preserving the phase space volume. For a time step
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τ , one has
eLτ = eLS

τ
4 eLπ

τ
2 eLS

τ
4 eLετeLS

τ
4 eLπ

τ
2 eLS

τ
4 +O(τ3), (5.42)

What is of practical interest, now, is that there are several possibilities for the decompo-
sition, that allow the same error at any given order; a list of those that allow for the same
O(τ3) error, for instance, is presented in Table 5.1

A τ
4

τ
2

τ
4 τ τ

4
τ
2

τ
4

1 S π S ε S π S
2 S ε S π S ε S
3 π ε π S π ε π
4 π S π ε π S π
5 ε π ε S ε π ε
6 ε S ε π ε S ε

Table 5.1: Decomposition table of symplectic integrators

The choice of the ordering will have consequences on how often a particular effective
field is computed during the integration process, which in practice, should be adapted
to its amplitude. Because of the Poisson bracket we introduced, the one–step evolution
operators for ε and π are shifts of their tensor components, whereas the one–step evolution
operator for S describes rotations.

Thus applying these operators on the phase space for any given time τ yields

eLετ (ε(t),π(t),S(t)) = (ε(t) + τ ε̇(t),π(t),S(t)) (5.43)
eLπτ (ε(t),π(t),S(0)) = (ε(t),π(t) + τ π̇(t),S(t)) (5.44)
eLSτ (ε(t),π(t),S(t)) = (ε(t),π(t),S(t+ τ)︸ ︷︷ ︸

R(τ)S(t)

) (5.45)

and S(t+ τ) = R(τ)S(t) is expressed by the Rodrigues rotation formula [36, 142, 143] for
a spin vector around a given precession vector ωeff(t).

Here we should briefly recall that as we study the N = 2 case, we have two spins for
which the operators do not commute, as

[LS(1) ,LS(2) ] = Ṡ
(1)
I

∂S
(2)
J

∂S
(1)
I

∂

∂S
(2)
J

− Ṡ(2)
J

∂S
(1)
I

∂S
(2)
J

∂

∂S
(1)
I

(5.46)

because the effective field ωieff depends on the other spin through the exchange interaction.
This means that here, as well, we have to approximate the exponentiation of the LS
operator as

eLSτ = eLS(1)
τ
2 eLS(2)τeLS(1)

τ
2 +O(τ3) (5.47)

where we define the (total) spin Liouville operator LS = LS(1) + LS(2) . As the evolution
equations for εiIJ and πiIJ do not explicitly depend on each other, their Liouville operators
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commute and can simply be factorized as

{
eLετ = eLε(1)τeLε(2)τ

eLπτ = eLπ(1)τeLπ(2)τ
(5.48)

where we define the (total) strain Liouville operator Lε = Lε(1)+Lε(2) and Lε = Lπ(1)+Lπ(2) .
In order to adapt the time step of the integration to the required precision, we also

implement a variable time step for the integration by implementing a quality factor Q. To
do this, we verify that at each time step when computing the effective precession fields
ωieff, the time step for the current integration step, corresponds to 1

Q of the period of the
largest effective precession field

τ

Q
= min

(
1

||ωieff||

)
(5.49)

Now, we just need to choose a decomposition and apply it for each time step to the
phase space variables {εiIJ , πiIJ ,Si}.

As a test of our approach, we simulate the switching of magnetization of a NiO AF
toy model through an external STT.

5.4.2 Simulating switching of the magnetization in a NiO AF through
an external STT

In the previous section we have set up a framework for simulating the coupled dynamics
of magnetoelastic materials, described by magnetization S, strain ε and strain-rate π. In
order to check the quality of the framework, we shall apply it to the simulation of the
switching of the magnetization in two–sublattice model, that’s appropriate for NiO.

Specifically, we will simulate how the Néel vector of the magnetization switches orien-
tation, under an external stress, that’s generated by an external STT pulse. This pulse
can experimentally be realized, for example, by a laser pulse, that produces a field-induced
STT. This simulation is illustrated in Figure 5.4.
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Figure 5.4: Schematic representation of the spin transfer torque magnetization switching
for the antiferromagnetic NiO toy model. The two different colors represent the two
opposite magnetizations of the sub-lattices and the box represent the localized strains and
their time evolution.

It is possible to gain some physical insights, by realizing that there are two factors
at work here: The strong exchange interaction in AFs, along with the anisotropy. Their
combination gives rise to an effective inertia, that produces a time scale, for the response,
significantly longer than the pulse itself. After the pulse, the magnetization of each sub-
lattice follows a natural path, slightly out of the easy plane, and relaxes to other, more
favorable, magnetic configurations.

This results in the switching of the magnetization of the two sub-lattices, in the opposite
direction. This is known as ultrafast AF switching [101]. During this switching phenomena,
the AF acquires a small–net–magnetization, generally in the direction of the STT. This
“spin-accumulation,” can be transferred to a magnetic material to produce a spin current
via scattering of electrons. The innovation here is to consider an external stress, that can
enhance–or inhibit–this switching.

In order to compare our results to chapter 3 and to introduce the STT into our model,
we will add a torque term T , consisting of a “damping-like” STT term and a damping
term for the magnetic part, viz.

T iI = αεIJKS
i
J Ṡ

i
K +G

(
SiIS

i
JpJ − pISiJSiJ

)
(5.50)
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Thus the final form for the EOM is given by inserting eq. (5.50) into eq. (5.32), yielding



ε̇iIJ = M−1
IJKLπ

i
KL

π̇iIJ = −V0CIJKLε
i
KL + V0σ

ext
IJ −BIJKLSiKSiL

ṠiI = εIJK

1
~
∑
j∈nn

J ijSjJ + K

~
nKnJS

i
K −

2
~
BABJCε

i
ABS

i
C

SiK + T iI

(5.51)

These are the equations which are being solved hereafter, by using the approach detailed
in the previous section. It is useful to remark that T iI can also be recast into an additional
contribution for the effective precession frequency as

T iI = −εIJK
(
αṠJ +GεJLMSLpM

)
SK (5.52)

so that

ṠiI = εIJK

(1
~
∑
j∈nn

J ijSjJ + K

~
nKnJS

i
K

− 2
~
BABJCε

i
ABS

i
C − εIJK

(
αṠJ +GεJLMSLpM

))
SiK

(5.53)

As in chapter 3, for the magnetization, we plot the average magnetization m =
1
2
(
S1 + S2) and the Néel vector l = 1

2
(
S1 − S2); the latter is the quantity that describes

the switching.
Results for the uncoupled, i.e., purely magnetic problem, are given in Figure 5.5.
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Figure 5.5: Average magnetization (upper panel) and Néel order parameter components
(middle panel) for uncoupled switching with parameters : {α = 0.5, K = 2πrad.GHz,
J=172.16 rad.THz, Ms = 5.105A.m−1}. Initial conditions: {S1(0) = −S2(0) = x̂}. The
lower panel displays the STT pulses. The figures agree with the reference [101] because
the magnetoelastic constants are set to zero.

Here the results are identical to reference [101] and subsection 3.4.1 in Figure 3.3 for
the uncoupled curves. The only notable difference is that all the components are plotted,
both for the Néel vector and the average magnetization. This is a first consistency check of
our framework. Now in the coupled case, results are different and can be found in Figure
5.6.
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Figure 5.6: Average magnetization (upper panel) and Néel order parameter components
(middle panel) for a coupled switching with parameters : {α = 0.5, K = 2πrad.GHz,
J=172.16 rad.THz, Ms = 5.105A.m−1}. Initial conditions: {S1(0) = −S2(0) = x̂,
εiIJ(0) = 0}. The lower panel displays the STT pulses. Here B0 = 7.7µ0M

2
s and

B1 = −23µ0M
2
s .

Conversely to what we observed in Chapter 3, the required stress to enhance the
switching speed, even for the purely transverse (compression/tensile stress) stress, is quite
small, around 30µ0M

2
S . A second notable difference is the oscillatory behavior, which is

more noticeable for the average magnetization. This is due to the fact that in the case at
hand, we have taken into account mechanical inertia effects and also have not imposed a
damping term on the mechanical part.

This leads to another interesting question which is how the switching time is affected
by the values taken by either B0 and B1, i.e., the magnetoelastic constants, that are the
coefficients of the interaction between magnetic moment(s) and strain (cf. (5.24)).

We have checked that changing B0 has no influence on the switching time, because
this coefficient does not appear in the precession equation. It does give rise to the Joule
magnetostriction effects, as, already, mentioned in reference [6].

However, changing B1 does have a strong influence.
In Figure 5.7 we display the switching time as a function of R, defined as the ratio of

B̃1 over the reference value which we obtained for NiO, namely, B1 = −23

R = B̃1
B1

(5.54)

We performed different simulations, for each value of R and recorded the time at which
the x-component of the Néel vector crosses over to negative values.
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One can see that this time decreases, with increasing R, which makes sense, as this
enhances the effects of the tensile stress.

When R becomes lower than 1, the effect is opposite. One aspect which is, however,
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Figure 5.7: Switching time (in ps) as a function of varying B1 over its natural value in
NiO.

surprising is that there is a quick drop of the switching time for R ≈ 4.
This can be explained as due to the oscillations of the magnetization, induced by the

elastic coupling. As this coupling becomes stronger, one of the peaks of this Néel vector
dips below 0 and thus the switching time appears to drop in a discontinuous fashion. This
is another interesting consequence of the interplay of the magnetization and the strain,
that could be captured in real experiments.

Nonetheless, the profile of the magnetization seems to indicate that the magnetization
itself has acquired an inertia. It seems that this behavior is specific to AF systems [144],
quite likely because of the strength of the exchange interaction in these materials. Results
for the strain dynamics in the coupled case, corresponding to the alter ego to Figure 5.6
are given in Figure 5.8
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Figure 5.8: Strain components as a function of time with the magnetoelastic constants
turned on. Parameters identical to Figure 5.6

Indeed, the mechanical part displays the expected oscillatory behavior due to the
quadratic contributions (namely that the equations of motion take the form of two coupled
first-order equations for εIJ and πIJ). As the dynamics is not damped, the system keeps
oscillating. The specific time scales for which this is a valid hypothesis are very much
material dependent and still need to be investigated, in practice.

In the present case, as this behavior is expected, it serves as another consistency check
of our framework.

One can also see the influence of the STT pulse on the mechanical structure. Indeed the
external stress initiates the oscillations and during the pulse, one can clearly see the strain
grows along the x-axis direction and diminish along the y-axis. When the pulse stops, the
strain relaxes towards the stress induced deformation. After the second pulse the strain
again shifts before relaxing to a similar state than after the first switching, although the
amplitude is different. What is further interest is that these mechanical oscillations should
be related to the sound velocity of the medium [145], which is controlled by the constants
M0 and M1. In the present study, we have chosen M0 = 0 and M1 = 10000, but there
should be a way to obtain these coefficients of the mass matrix more efficiently, in order
to describe these oscillations more accurately from experimentally easily accessible data.

Let us now discuss the checks we have carried out, in order to ensure the consistency
of our code.

We monitor the variation of the total energy of the system which should be conserved
over time, since there isn’t any damping and whose variation can only be due to the
external torque. Results for different quality factors of the variable time step integration
scheme are found in Figure 5.9
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Figure 5.9: Single-site total energy as a function of both time and variable time step
Q for scheme SπSεSπS. Conditions of the simulation are expressed in reduced units:
2C0/µ0M

2
s = 5.1× 105, 2C1/µ0M

2
s = 3.5× 105, M1V0µ0M

2
s /2~2 = 1000, ωDC = (0, 0, 2π)

rad.GHz, π11(0) = 1, s(0) = (1, 0, 0). All the other parameters not reported, included
initial conditions are zero.

We have verified that π(1)(t) = π(2)(t) and ε(1)(t) = ε(2)(t), because there is no non-
local mechanical interaction and each site has the same magnetoelastic constants B0 and
B1. For Figure 5.9 we can verify that, indeed, the energy converges to a constant value, in

the present simulation π2
11(0)
4M1

, which is another quality check of our algorithm. Now the
last check which remains is to evaluate the influence of the chosen scheme on the quality
of the integration by comparing the dynamics. Results are depicted in Figure 5.10.
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Figure 5.10: Single-site strain components as a function of time for various numerical
schemes. Conditions of the simulation are identical to those for Figure 5.9 and the results
are produced for Q = 0.0025 only.

To obtain these curves, we proceeded in the following way. First, we plotted the
ε
(1)
11 (t) and ε(1)

22 (t) (red and black curves) with the integration scheme corresponding to the
operator ordering of the first line of Table 5.1. We then proceeded to plot them again, but
with the ordering corresponding to the second line of Table 5.1 (red and black points),
so as to compare the results. Although previous studies [146, 147] seemed to indicate a
noticeable influence of the integration scheme on the results, here the influence is below
1%.
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Summary
• We have defined a Poisson bracket for the coupled magnetoelastic dynamics

by using anticommuting variables.

• We have constructed a Hamiltonian for the description of the coupled dynam-
ics for the magnetic and mechanical degrees of freedom and have deduced the
equations of motion for this system using the corresponding Poisson bracket.

• We have shown how to generalize the one–particle model in order to describe
the interaction of many “particles,” that stand for domains in the material.
In particular, we showed how to couple these particles by a purely magnetic
exchange interaction, that’s relevant for describing two magnetically inequiv-
alent sites, as in AFs.

• We simulated the switching of the magnetization, by an external STT, for the
case of a model for the NiO AF and showed that it is possible to obtain the
influence of external stress on the switching speed. It appears that through
this external stress it is possible to adjust the switching speed.
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Conclusion

The focus of this study was to contribute to improving our understanding of the prop-
erties of magnetic materials, as these are probed by external stimuli such as temperature,
pressure and magnetic fields. To this end we have developed a new conceptual framework,
that is the basis for our computational methods.

The object of our study is the probability distribution for the magnetization, P (s),
that, formally, can be written as a path integral:

P (s) = Z−1e−
∫
dt dt′ 1

2{e(s)−1( dsdt+A(s))(t)G(t−t′)e−1(s)( dsdt+A(s))(t′)}
∣∣∣∣det δηI(t)

δsJ(t′)

∣∣∣∣ (5.55)

where η(t) denotes the bath, to which the magnetic moment, s is coupled. This is the
result of the stochastic description of the dynamics in terms of the Langevin equation.

The challenge is to understand how to make sense of this expression and to describe
the appropriate generalization for describing many-body systems.

In real–and numerical–experiments, this is achieved by computing its moments. We
have developed the conceptual and computational tools for doing so, under controlled
approximations and our results allow insights into its properties.

In particular, we have developed the Hamiltonian formalism of Berezin and Marinov
and of Casalbuoni, for including the spin degrees of freedom, on equal footing with those
of the medium, in which the magnetic moment(s) are embedded into an efficient compu-
tational framework.

We have, also, developed the generalization of Hamiltonian mechanics, known as
Nambu mechanics, in order to take into account dissipative effects in magnetic materi-
als.

We have shown how to test our approximations, both through consistency checks and
comparison with real experiments, in particular regarding how to describe switching of the
magnetization in the presence of elastic effects.

Let us summarize the results of our work:
In chapter 2 we investigated a model of magnetization dynamics where a “light” spin

is interacting with a “heavy” spin, the latter defining a spin bath for the former. This
approach was first considered to check if and how it can simulate the coupling between
magnetism and elasticity by reproducing effects expected for this coupling (i.e., longitudi-
nal damping and long-term equilibrium with lower norm for both spins), and, on the other
hand, to compare stochastic and effective – deterministic – calculations, respectively on
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the averaged realizations for the spins and for the moments of their distributions. Indeed,
even if the deterministic model is conceptually much more complicated to construct, the
stochastic model is computationally much more demanding. We then have been able to
show that through this model, longitudinal damping can emerge for both light and heavy
spins and depending on initial conditions and simulation parameters, one can even con-
verge to an equilibrium solution for the norm of both light and heavy spins, which is lower
than the initial norm, without imposing an ad hoc longitudinal Bloch-like damping term
on either of both spins. The deterministic computations on the moments using Gaussian
closure and independent initial correlators between the light and heavy spins, seem to re-
produce a similar behavior even though they diverge at longer time, because the Gaussian
closure approximation seems to break down as is shown by the fact that the third-order
cumulants grow significantly. Better closing assumptions and initial correlations between
the light and heavy spins could be investigated and should allow better agreement between
the stochastic and deterministic approaches, for longer simulation times. Another issue is
that, even though this model displays longitudinal damping and, depending on simulation
parameters, long time equilibrium with lower norm for both spins, which is expected of
magnetoelastic coupling, it is not completely trivial how to parametrize these to “mimic”
a specific material’s properties. An example of a similar approach is given in reference [18]
where the properties of the bath are described in terms of the normal sound propagation
modes of a given compound. Furthermore, once the relevant parameters are identified,
this approach requires preliminary ab initio simulations to properly fit these parameters
for a given compound. Finally, one may have to consider more noises, suitable to exper-
iments, to describe some materials properties which could make establishing a formula
much more complicated as the SL formula and the FND theorem take up different forms
for non-Gaussian noise sources.

Subsequently, in chapter 3, to circumvent this difficulty, we studied a Lagrangian
model, where we showed that a particular coupling between magnetic and elastic de-
grees of freedom could be most helpful. We construct the Lagrangian, that describes the
precession of a localized magnetic moment around an effective frequency. Next, we de-
fined the Lagrangian for the elastic degrees of freedom, which produces the dynamics for a
localized strain tensor and, finally, we constructed the interaction term, that can describe
magnetoelasticity. This model is first constructed for a single particle (i.e., single domain),
carrying a local magnetization – or spin depending on the scale – and a local strain tensor.
The peculiarity of this model is that the spin is not described directly by the variable s but
rather by its time derivative, hence being sensitive to the whole history of the underlying
variable s. This allowed us to obtain first-order EOM for the spin part of ME systems.
This model is then extended to multiple interacting particles, by introducing a magnetic
exchange between the nearest neighbors, which is expected to be the dominant interaction.
We then investigate the magnetic and elastic behavior of a simple toy model for AF NiO
and simulate the influence of an external stress on the switching of the Néel order pa-
rameter by an external STT pulse. We showed that the switching speed can be improved
by an external compression stress but that the required stress is quite large. Conversely,
using a shear stress appears to be much more efficient to improve the switching speed,
depending on the sign of the ME constants. This model also shows that the equilibrium
norm of the spin can be lower than the initial value as both the mechanical and spin sys-
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tems exchange energy, resulting in different equilibrium states before and after the STT
pulse. This is in agreement with what was observed in chapter 3, where a bath of spins
was investigated. This remains true for the second applied pulse, switching the system
back to the initial orientation but with still a slightly lower value for the spin norm than
initially. This method, however, has some issues. One issue is the non-locality due to the
description in terms of ṡ makes it impossible to give a simple expression for the magnetic
induction B, or the vector potential A (which yields the effective precession frequency)
.It is, however, this same non-locality which makes the identification possible in the first
place. Another problem is that this model does not preserve the phase-space volume and
the energy, making it difficult to have feedback on the stability of the integration scheme
over time.

In chapter 4, we study the influence of external or internal noise and the way these
can be implemented in magnetic systems. First, we explore Nambu dynamics, which
naturally takes into account constraints for spinning particles. Here we show how to
describe simple – conservative – precession, i.e., Larmor-like precession, by a Nambu
model describing the spin phase space as the intersection between a sphere (which encodes
the constant norm of the spin) and a plane (representing the constant energy surface). We
also inspect ways to extend this model to include dissipation of energy so as to describe
damped magnetization precession. We then identify this dissipation implementation with
an LLG damping term so as to recover previously well-known dynamics. We then probe
the differences between additive and multiplicative noise implementation so as to find out
which is better suited for describing the fluctuations of magnetic DOF. We show that
in the case of magnetization dynamics, the multiplicative noise implementation is more
adapted and through this we present a fluctuating and dissipating Nambu system for the
description of the phase space of magnetic degrees of freedom. We then focus on comparing
the dynamics for averages of the stochastic realizations of the spins to a deterministic
model for the moments of their statistical distributions, obtained by Gaussian closure.
The deterministic approach being independent of any number of realizations is much more
efficient (i.e., requires less computational resources). However, this deterministic method
seems to require stronger closure assumptions than Gaussian closure, for the multiplicative
noise, whereas this assumption appears to be strong enough for additive noises. It would
be interesting to study further under which assumptions the deterministic model can be
accommodated to describe larger amplitudes of multiplicative noises. This implementation
for Nambu dynamics gives rise to interesting physical interpretation of the magnetization
phase space where regular damping towards an axis can be understood as the plane shifting
up until the intersection with a sphere is simply a point, and “fuzzy” surfaces, due to
the multiplicative noise coupling, whose “fuzzy” intersection explains how longitudinal
damping can emerge.

Finally, in chapter 5, we set up the Hamiltonian formalism for the coupled dynamics
of magnetic and elastic degrees of freedom in which each single domain carries a local
(uniform) magnetization (or spin), a local (uniform) strain tensor and a local (uniform)
strain-rate tensor. In this model, the classical – commuting – spin variable is constructed
on the ground of anticommuting – Grassmann – variables. This in turn enables us to
reconstruct the spin part of the Poisson bracket developed before to explain why there
cannot be a conjugate variable for the spin (except itself), as the conjugate variable to
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the Grassmann variable is proportional to itself. Using this, we extend the graded Pois-
son Bracket to a canonical pair conjugate variables (strain/strain-rate tensors) which can
now be used to obtain equations of motion for ME media. The next step was to build a
Hamiltonian including all the physics necessary to describe ME media. Combining these
two steps, we obtain the magnetoelastic equations of motion for a single domain that are
consistent with well-reported equilibrium situations. This model is extended to multiple
particle systems, by considering a magnetic exchange interaction only. We then adapt
this model to the study of the same AF NiO toy model (chapter 3) to cross-check these
two approaches. Here again, we managed to probe the influence of external stress on the
switching behavior of the Néel order parameter by an external STT pulse. The observa-
tions were the same as in the Lagrangian case, namely that the switching speed can be
improved by the external stress, with significantly lower threshold values than required
for the Lagrangian model. The main advantages of the Hamiltonian description is that it
does not present any non-locality issues and that the energy is conserved over time, which
makes it easier to track integration scheme failure. In this specific case, as the integration
scheme is symplectic it preserves the phase-space volume which was tracked over time as
well in further studies. An issue is that the oscillation frequencies of the elastic medium
introduced by the inertia term appear to be very high, which indicates sound velocity
much larger than expected. This is due to some arbitrariness of the “mass”-matrix, which
could be adapted by studying experimental sound velocity diagrams for specific materials,
hence yielding the physically correct oscillations and improving the quality of the simula-
tion scheme altogether. One could also improve this model by implementing a dissipation
term for the elastic medium so as to force relaxed oscillations towards an equilibrium state
for the mechanical system as well.

Concerning purely mechanical DOF, there are models such as granular field theories
and models, that focus on the mechanical degrees of freedom, which can describe spa-
tially correlated strains and effects in solids, beyond elasticity, but these are beyond the
scope of this thesis. It would, however, be interesting to study more detailed systems by
defining larger lattices using for example “enlarged” ASD models where the elastic be-
havior is introduced in the fashion we described and where more attention is given to the
parametrization of the mass matrix. These results could then, in theory, be compared to
experimental magnetization curves or strain mediated switching experiments. It would
then also be of interest to couple these models to external baths so as to include thermal
effects, induced, for example, by a thermal gradient producing a spin current, and have
a better grasp on how a measure of non-equilibrium entropy production can emerge. In-
deed, one may wonder how the thermal bath couples to the mechanical DOF, the magnetic
system or both, maybe even with two thermostats, thus yielding two different tempera-
tures, as experimental “many temperatures” models seem to indicate. By trying to study
directly the moments of the thus obtained distributions, one could formulate effective, de-
terministic, models for such thermal dynamics, but this will have to be the focus of future
works.

138



Conclusion

Le but de cette étude a été de développer une meilleure compréhension théorique des
propriétés des matériaux magnétiques afin de pouvoir élaborer des simulations numériques
de leur comportement temporel lorsqu’existent des contraintes externes telles qu’une température,
une pression ou un champ magnétique.

Comme présenté en introduction, on peut formellement résumer l’objectif de cette
thèse à “donner” sens à la distribution de probabilité pour un moment magnétique s à
l’équilibre avec le bain η(t) dans lequel il est plongé

P (s) = Z−1e−
∫
dt dt′ 1

2{e(s)−1( dsdt+A(s))(t)G(t−t′)e−1(s)( dsdt+A(s))(t′)}
∣∣∣∣det δηI(t)

δsJ(t′)

∣∣∣∣ (5.56)

En pratique, on travaillera plutôt avec les moments de cette distribution et l’objectif
de cette thèse a été de développer des outils numériques, dans le cadre d’approximations
dont les conséquences sont contrôlées.

À cette fin, nous avons, dans la continuité des travaux de Berezin, Marinov et Casal-
buoni, développé un formalisme Hamiltonien qui permet de traiter les degrés de liberté
magnétiques au même niveau que les degrés de liberté du milieu dans lequel ceux-ci
“vivent”.

Nous avons également développé le formalisme de Nambu, une généralisation du for-
malisme Hamiltonien, pour tenir compte des effets de dissipation au sein de matériaux
magnétiques.

De même, nous avons développé des outils permettant de vérifier la validité de nos
approximations de manière auto cohérente, mais aussi en les confrontant à des données
expérimentales dans le cadre de l’étude du retournement de l’aimantation pour un système
magnétoélastique.

Voici un résumé des travaux de cette thèse :
Dans le chapitre 2, nous avons établi un modèle dans lequel un spin “léger” interagit

avec un spin “lourd”, ce dernier définissant un bain de spin. Nous avons développé cette
approche afin de tenter d’obtenir un modèle effectif qui reproduit les effets du couplage
magnétoélastique à savoir un amortissement longitudinal pour la norme du spin et la
possibilité d’atteindre un état d’équilibre pour lequel la norme des deux spins est inférieure
à leur norme initiale. Nous avons construit ensuite, à partir de ce modèle stochastique,
un modèle déterministe sur les moments des distributions des deux spins et nous avons pu
reproduire un amortissement longitudinal, à la fois pour le spin léger et le spin lourd. De
plus, en fonction des conditions initiales et des autres paramètres matériaux de simulation
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(constantes de couplage magnétoélastique, d’élasticité, d’échange magnétique ...), nous
avons montré qu’il était possible d’obtenir une solution convergeant vers un état d’équilibre
pour lequel la norme des deux spins est inférieure à la norme initiale, sans imposer de façon
ad hoc une dissipation de Bloch. Les simulations du modèle déterministe, obtenues à partir
d’une hypothèse de fermeture Gaussienne et de corrélations initiales nulles, reproduisent
un comportement initialement tout à fait similaire au modèle stochastique, mais divergent
pour des temps longs, les hypothèses de fermeture n’étant plus valides pour ces temps longs
comme le montre la courbe du cumulant qui crôıt significativement. Il semblerait qu’il
faille ici introduire des hypothèses de fermeture plus complexes ainsi que des corrélations
initiales non triviales entre les spins léger et lourd, pour pouvoir recouvrir les résultats du
modèle stochastique pour des temps longs. Cette approche reproduit les effets attendus
du couplage magnétoélastique, à savoir la dissipation longitudinale et l’émergence d’état
d’équilibre à norme inférieure à l’état initial, pour les deux spins, mais il n’est néanmoins
pas évident de savoir comment les paramétrer pour décrire les propriétés d’un matériau
donné. Un exemple d’interprétation est donné dans [18] où la paramétrisation du bain
correspond aux modes normaux de propagations du son dans le composé étudié. De
plus cette approche doit s’appuyer sur une étude préliminaire qui puisse permettre ce
paramétrage afin de mimer un système élastique équivalent donné. Une autre voie ouverte
pour ce modèle est de choisir d’étudier des bruits colorés dans ce modèle, mais ceci implique
des formes différentes notamment pour les formules de SL et de FND qui sont nettement
plus difficiles à manipuler pour ce genre de bruits non Gaussiens. Afin d’outrepasser ces
limites, nous avons ensuite développé une approche Lagrangienne pour laquelle les degrés
de liberté mécaniques sont étudiés de façon plus explicite.

Dans le (chapitre 3), nous avons bâti un modèle Lagrangien pour le couplage entre
les degrés de liberté magnétiques et mécaniques, à partir de 3 termes. Le premier est
le Lagrangien magnétique qui décrit la précession d’un moment magnétique local autour
d’une pulsation effective. Le second est le Lagrangien élastique qui décrit la dynamique
d’un tenseur de déformation mécanique également local. Le dernier est le Lagrangien du
couplage magnétoélastique. Dans un premier temps, ce modèle a été construit pour une
particule isolée, portant un moment magnétique et un tenseur de déformation mécanique
tout deux locaux. La particularité de ce modèle est que le spin n’est pas représenté
directement par la variable, s mais plutôt sa dérivée temporelle µ = ṡ, et la dynamique
est de ce fait sensible à tout l’historique de s. Ceci nous a permis d’obtenir des équations
du mouvement du premier ordre pour le spin dans ce système magnétoélastique. Ce
modèle est ensuite étendu au cas multi particulaire en implémentant un échange purement
magnétique entre sites (plus proches voisins), interaction estimée prédominante dans notre
modèle. Ce modèle est ensuite utilisé pour étudier un modèle jouet antiferromagnétique
appliqué à NiO afin de simuler l’influence d’une contrainte mécanique externe sur la vitesse
de retournement du paramètre de Néel par un couple de transfert de spin. Nous avons
pu montrer que le retournement pouvait être accéléré par une compression, mais que
l’intensité requise est élevée. Inversement, nous avons pu montrer des effets similaires
pour une contrainte de cisaillement avec une intensité requise nettement plus faible. Ce
modèle montre également que la norme du moment magnétique peut diminuer par rapport
à sa valeur initiale, les systèmes mécaniques et magnétiques échangeant de l’énergie après
l’application du couple de transfert de spin, et se relaxent vers un état d’équilibre différent
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de l’état initial. Ces observations concordent avec le chapitre 2 pour lequel nous avons
également observé une relaxation du système vers un état d’équilibre de norme inférieur
à la norme initiale pour les deux spins (léger et lourd). Pour la seconde application
du couple de transfert de spin, on observe une dynamique similaire, mais bien qu’il y ait
retournement dans la direction initiale, l’état d’équilibre n’est pas identique à l’état initial.
Cette méthode présente néanmoins des problèmes conceptuels. Puisque la description en
µ implique une non-localité en s, il est difficile de fournir une expression simple pour le
potentiel vecteur A (ou le champ magnétique B) qui engendrent la pulsation effective de
précession ω, malgré le fait que ce soit cette non-localité qui permette de relier ω et A. Un
autre problème est que ce modèle ne permette pas de construire un système fermé, ce qui
rend plus difficile d’évaluer la stabilité du schéma d’intégration en analysant l’évolution
temporelle de l’énergie, par exemple. Pour aller plus loin et tenir compte des effets de
température pour les propriétés de matériaux magnétiques, une méthode possible est le
couplage à un bain stochastique.

Dans le chapitre 4, afin d’étudier l’influence de bruits et de leur implémentation sur
les systèmes magnétiques, nous nous sommes intéressés à la dynamique de Nambu qui
permet naturellement de traiter les contraintes inhérentes à la description Hamiltonienne
de degrés de liberté vectoriels, à savoir la dynamique d’espaces des phases à nombres
de degrés de liberté impairs. Dans cette partie nous avons montré comment décrire une
précession conservative (à la Larmor), par une dynamique de Nambu dont l’espace des
phases est décrit par l’intersection d’un plan et d’une sphère. Nous avons également
évalué comment implémenter au sein de ce formalisme des termes dissipatifs afin de décrire
la précession amortie de l’aimantation d’un domaine. Ces termes sont ensuite identifiés
comme un terme de LLG afin de décrire la dynamique relaxée d’un moment magnétique
d’une manière physiquement réaliste. Nous avons évalué les différences entre bruits ad-
ditifs et multiplicatifs afin de déterminer lequel est le plus adapté à la description de
fluctuations pour les milieux magnétiques. Nous avons montré que pour ces derniers,
l’implémentation multiplicative semble être la plus adaptée. Nous avons ainsi obtenu
pour la première fois une dynamique de Nambu fluctuante et dissipante pour la descrip-
tion de l’espace des phases de degrés de liberté magnétiques. Nous avons ensuite pour-
suivi cette étude en comparant la dynamique stochastique d’un moment magnétique à un
modèle déterministe sur les moments de sa distribution statistique obtenu en imposant
une hypothèse de fermeture Gaussienne. Cette dernière, étant indépendante du nombre
de réalisations, est numériquement nettement plus efficace. Cependant, cette approche
semble indiquer qu’il faille des hypothèses nettement plus élaborées pour la fermeture
d’un système à bruit multiplicatif que pour un système à bruit additif. Une extension de
ce travail serait d’observer sous quelles hypothèses de fermeture il serait possible d’étudier
des bruits multiplicatifs d’amplitude plus élevée. Cette dynamique de Nambu a donné lieu
néanmoins à des interprétations intéressantes dans l’espace des phases de l’aimantation
où l’amortissement transverse peut être vu comme un plan qui s’élève et dont le cercle
d’intersection avec la sphère se réduit progressivement jusqu’à n’être plus qu’un point, d’où
la position d’équilibre alignée avec le champ dominant. Sans le cas de surfaces (sphère
et plan) bruitées, leur intersection est plus diffuse et fournit une explication plausible des
phénomènes d’amortissement longitudinaux, puisque s’il y a intersection en dehors de la
sphère, la norme n’est pas conservée. Dans le chapitre 3, une description non locale en
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termes de s a été présentée. Une alternative à cette description non locale en termes de
variables commutantes est une description locale en termes de variables anticommutantes.

Finalement (chapitre 5), nous avons construit un modèle Hamiltonien pour la dy-
namique couplée des degrés de liberté magnétiques et élastiques. Dans celui-ci, chaque
site d’un réseau porte un moment magnétique, une déformation mécanique et un tenseur
conjugué. Le spin classique (commutant) est construit à partir de variables sous-jacentes
(anticommutantes, de Grassmann). Ceci nous permet de produire simplement la partie
incluant le spin dans un crochet de Poisson construit par Yang et Hirschfelder et ainsi
de fournir par la même occasion une explication pour l’absence de variable conjuguée au
spin. Dans ce formalisme, le spin est sa propre variable conjuguée (à un facteur constant
près). À partir de ce crochet, nous avons construit un crochet de Poisson pour l’espace des
phases étendu à la déformation mécanique, son tenseur conjugué et le spin. Ce crochet
a été utilisé pour déterminer les équations du mouvement d’un système magnétoélastique
couplé. Nous avons ensuite établi un Hamiltonien pour un système magnétoélastique.Nous
avons pu déterminer les équations du mouvement pour la dynamique couplée pour une
telle particule. Comme dans le chapitre 3, nous avons étendu ce modèle à plusieurs partic-
ules, en introduisant un échange purement magnétique entre particules. L’étape suivante
fut d’utiliser ce modèle pour étudier le modèle jouet de NiO antiferromagnétique, afin de
comparer nos résultats au chapitre 3. Nous avons pu évaluer ici encore l’influence d’une
contrainte mécanique externe sur le retournement du paramètre de Néel par un couple
de transfert de spin. Nous avons pu constater que la vitesse de retournement peut être
accélérée par une contrainte mécanique, mais avec un seuil nettement plus faible que pour
le modèle Lagrangien. Ceci peut s’expliquer par l’absence d’implémentation de terme
d’amortissement pour les degrés de liberté élastiques. Un des avantages de cette formula-
tion, par rapport à la description Lagrangienne, est qu’elle est locale. Un autre avantage
est qu’elle constitue un système fermé pour lequel l’énergie est conservée, ce qui rend plus
aisé d’évaluer la stabilité des schémas d’intégration numérique. Dans le cas présent, le
schéma d’intégration étant symplectique, il doit conserver le volume de l’espace des phases
en plus de l’énergie, ce qui pourrait être vérifié en simulant l’évolution temporelle de la
variation du volume de l’espace des phases. Un problème est que les oscillations du mi-
lieu élastique semblent se produire à des fréquences très élevées, ce qui devrait impliquer
une vitesse de propagation du son dans ce milieu nettement supérieur à la valeur atten-
due. Ceci est en partie dû aux constantes de la matrice de masse (qui ne de rapport avec
une “vraie” masse que le fait qu’elles décrivent une inertie en modulant les oscillations
mécaniques caractéristiques du matériau considéré), qui pourraient être adaptées pour des
matériaux spécifiques (pour dépasser le modèle jouet), en utilisant par exemple des données
expérimentales de vitesse du son dans un matériau étudié. Ceci permettrait de décrire ces
oscillations de façon plus réaliste. Une autre voie d’amélioration serait d’implémenter un
terme de dissipation mécanique afin de forcer le système à relaxer vers un état d’équilibre
mécanique.

Bien évidemment, il existe des modèles de descriptions pour les degrés de liberté
mécaniques telles que les théories de champ granulaire ou des modèles non linéaires de
déformations qui permettent de décrire des corrélations spatiales pour les contraintes
mécaniques dans un solide ou encore des effets au-delà de l’élasticité, mais ceux-ci dépassent
le cadre des présents travaux de thèse. Il serait néanmoins intéressant d’étudier des
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systèmes plus complexes, notamment avec plus d’une particule, à la manière d’une dy-
namique de spin atomique ”augmentée”, où la partie mécanique et le couplage sont in-
troduits de la manière décrite dans le chapitre 5, en accordant plus d’importance à la
paramétrisation de la matrice de masse. Ces résultats pourraient ensuite être comparés à
des données expérimentales de courbes d’aimantation ou de retournement d’aimantation
par contrainte mécanique. Pour aller plus loin encore, l’approche Hamiltonienne pourrait
être couplée à des bains, notamment thermiques, afin de permettre de donner un sens
physique à la notion de température au sein de chaque sous-partie de ce système. On
peut se demander en effet si l’implémentation de températures finies passe par le couplage
du seul système magnétique à un bain, ou s’il faut coupler les deux systèmes à des bains
de nature différente. Il semble en effet que les interprétations expérimentales définissent
plusieurs températures, une pour chacun des sous-systèmes, indiquant plutôt un argument
en faveur de la seconde option. Une fois un tel modèle obtenu, il pourrait être intéressant
également d’en construire le modèle déterministe équivalent pour ses moments.
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Articles and communications

A.1 Articles

• T. Nussle, P. Thibaudeau, S. Nicolis, Dynamic magnetostriction for antiferromag-
nets, ArXiv:1907.01857 [Cond-Mat, Physics:Physics] (2019), accepted for publication
in Physical Review B

• T. Nussle, P. Thibaudeau, S. Nicolis, Probing magneto-elastic phenomena through
an effective spin-bath coupling model, Eur. Phys. J. B. 92 (2019) 29

• T. Nussle, P. Thibaudeau, S. Nicolis, Coupling magneto-elastic Lagrangians to spin
transfer torque sources, J. Magn. Magn. Mater. 469 (2019) 633–637

• P. Thibaudeau, T. Nussle, S. Nicolis, Nambu mechanics for stochastic magnetization
dynamics, J. Magn. Magn. Mater. 432 (2017) 175–180

• S. Nicolis, P. Thibaudeau, T. Nussle, A Group Action Principle for Nambu Dynamics
of Spin Degrees of Freedom, in: Quantum Theory and Symmetries with Lie Theory
and Its Applications in Physics, Dobrev, Vladimir, QTS-X/LT-XII, Varna, Bulgaria,
2017: pp. 411–420

A.2 Oral communications

• “Magnetoelastic Hamiltonian coupling in antiferromagnets”, August 28th 2019, Joint
European Magnetic Symposia, Uppsala, Sweden

• “Une approche Hamiltonienne du couplage magnéto-élastique”, May 17th 2019, Col-
loque Louis Néel, Toulouse, France

• “Modélisation de comportements magnétiques sous contrainte mécanique et ther-
mique”, Journées des Jeunes Scientifiques du CEA, November 15th 2018, Blois,
France

• “Thermomécanique dynamique à grande échelle des matériaux magnétiques”, Novem-
ber 16th 2017, Journée des Doctorants de l’Institut Denis Poisson, Tours, France
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A.3. POSTER COMMUNICATIONS

• “Coupling magnetoelastic Lagrangians with spin transfer torque sources”, October
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• “A spin-spin bath coupling : comparing the stochastic and deterministic approaches”,
September 18th 2018, European School on Magnetism, Krakow, Poland

• “Probing magneto-elastic phenomena through an effective spin-bath coupling”, Au-
gust 7th 2018, Physics and Application of Spin Phenomena in Solids 10, Linz, Austria
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[127] J. Gomis, J. Paŕıs, and S. Samuel, Physics Reports 259, 1 (1995).

[128] J. E. Marsden, R. Montgomery, P. J. Morrison, and W. B. Thompson, Annals of
Physics 169, 29 (1986).

[129] J. Kijowski and W. Szczyrba, Communications in Mathematical Physics 46, 183
(1976).

[130] W. Szczyrba, Communications in Mathematical Physics 51, 163 (1976).

[131] B. K. D. Gairola, Physica Status Solidi (b) 85, 577 (1978).

[132] A. C. Eringen, ed., Nonlocal Continuum Field Theories (Springer New York, New
York, NY, 2004).

[133] L. D. Landau, E. M. Lifshitz, and L. D. Landau, Theory of Elasticity, 3rd ed.,
Course of Theoretical Physics No. Vol. 7 (Elsevier, Amsterdam, 2008).

155

http://dx.doi.org/10.1142/9789814602136_0002
http://dx.doi.org/10.1142/9789814602136_0002
http://dx.doi.org/10.1016/0375-9601(85)90538-9
http://dx.doi.org/10.1103/PhysRev.36.823
http://dx.doi.org/10.1016/0304-8853(86)90169-1
http://arxiv.org/abs/1907.01857
http://dx.doi.org/10.1103/RevModPhys.47.123
http://dx.doi.org/10.1103/PhysRevB.39.4828
http://dx.doi.org/10.1103/PhysRevB.39.4828
http://dx.doi.org/10.1103/PhysRevLett.61.2472
http://dx.doi.org/10.1016/0370-2693(83)91210-8
http://dx.doi.org/10.1016/0370-2693(83)90781-5
http://dx.doi.org/10.1016/0550-3213(77)90278-4
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1007/BF02748689
http://dx.doi.org/10.1016/0370-1573(94)00112-G
http://dx.doi.org/10.1016/0003-4916(86)90157-0
http://dx.doi.org/10.1016/0003-4916(86)90157-0
http://dx.doi.org/10.1007/BF01608496
http://dx.doi.org/10.1007/BF01608496
http://dx.doi.org/10.1007/BF01609347
http://dx.doi.org/10.1002/pssb.2220850221
http://dx.doi.org/10.1007/b97697


BIBLIOGRAPHY

[134] J. H. van Vleck, Physical Review 52, 1178 (1937).
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Moléculaire Magnétique, Ph.D. thesis, Université Paris Sud, Orsay (2012).
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Notations

• DOS : Density Of States

• DOF : Degrees Of Freedom

• QFDR : Quantum Fluctuation Dissipation Relation

• AF : AntiFerromagnetic

• EOM : Equation(s) Of Motion

• MMD : Magnetic Molecular Dynamics

• STT : Spin Transfer Torque

• RHS : Right-Hand-Side

• LHS : Left-Hand-Side

• LL : Landau-Lifshitz

• LLG : Landau-Lifshitz-Gilbert

• LLB : Landau-Lifshitz-Bloch

• RK : Runge-Kutta
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NOTATIONS

• GSL : GNU Scientific Library

• ODE : Ordinary Differential Equation

• GNU : GNU is Not Unix

• SL : Shapiro-Loginov

• FND : Furutsu-Novikov-Donsker

• ME : magnetoelastic
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Résumé :
Le magnétisme est l’un des plus anciens phénomènes rapportés de l’histoire des sciences naturelles et prob-

ablement l’un des plus fascinants. Véritable manifestation macroscopique de la physique quantique, il subit en
s’y couplant, l’influence de nombreux réservoirs énergétiques et statistiques, dont ceux de la thermique et de la
mécanique.

En remarquant qu’un moment magnétique élémentaire est un objet composite formé grâce à des variables
anticommutantes inobservables, on peut engendrer une dynamique Hamiltonienne couplant ce degré de liberté à
ceux provenant des autres réservoirs, eux-mêmes décrits par la dynamique de variables aléatoires.

La première étape est d’étudier la dynamique d’un moment magnétique, vu comme un spin classique dans de
tels bains. À cette fin on considère un bain magnétique afin d’évaluer la possibilité de mimer les effets de couplage
entre moments magnétiques ainsi que le couplage magnétoélastique par un tel modèle effectif.

Par la suite, nous montrons que la précession d’un spin classique peut être modélisée par une dynamique de
Nambu qui facilite la description de la nature, additive ou multiplicative, des couplages stochastiques. La dynamique
ainsi produite est d’abord étudiée numériquement de façon stochastique en moyennant les différentes réalisations
obtenues; ensuite, un modèle déterministe sur la hiérarchie des moments statistiques est établi puis fermé afin de
développer une méthode à la fois plus rapide, mais également déterministe de déduction des propriétés magnétiques.

Finalement, pour illustrer la pertinence tangible de toutes ces notions, nous construisons une dynamique étendue
de particules “fictives” portant à la fois un moment magnétique et une déformation mécanique locaux exprimant
la magnétoélasticité, d’une part dans une approche Lagrangienne puis Hamiltonienne. Pour chacune des deux
approches nous étudierons la dynamique du retournement ultrarapide d’aimantation pour NiO, oxyde antiferro-
magnétique prototype, sous sollicitations mécanique et électrique.

Le formalisme, exposé ici, aussi bien conceptuel qu’informatique, ne sert pas, seulement, comme un exemple
de l’état de l’art, mais permet une description des propriétés des milieux magnétiques, qui est fondamentale aussi
bien pour la conception de nouveaux matériaux, que comme modèle pour aborder d’autres questions portant sur
l’interaction entre bruit et variables dynamiques, plus généralement.

Mots clés :
Dynamique stochastique de spin, fermeture de hiérarchie, magnétoélasticité, couplages magnétomécanique La-

grangien et Hamiltonien, dynamique de Nambu, antiferromagnétisme, intégration symplectique/géométrique, re-
tournement du paramètre d’ordre de Néel, couple de transfert de spin.

Abstract :
One of the utmost interesting properties of matter is magnetism. This property, which is a macroscopic

consequence of quantum physics, is subjected and couples to several reservoirs. Among them, two are most relevant,
namely the thermal and mechanical reservoirs. We build a Hamiltonian model for the coupling between – classical
– magnetism and elasticity, which relies on the – underlying – anticommuting nature of spin, so as to describe the
coupled dynamics of these degrees of freedom.

The first step is to study the behavior of the classical spin – or magnetic moment – when coupled to different
– stochastic – baths. First a spin bath, so as to investigate if and how such an effective model can mimic the
couplings, to different magnetic moments but also to the elastic structure of the compound. A different approach
is then followed where, through a Nambu dynamics model for spin precession, the ways in which this spin can
be coupled to a bath, additively or multiplicatively, are studied in order to make out which is better suited to
describe coupling phenomena in magnetism. Those are then studied numerically, initially stochastically, with the
appropriate averaging procedure over different realizations and then deterministically, by building an effective model
for the moments of the statistical distributions. This model is obtained by truncating the thus derived hierarchy of
moments, so as to construct a quicker and deterministic method to deduce magnetic properties of a system.

The second step is to construct models for magnetoelastic coupling, which we do via “virtual” particles carrying
both localized magnetic moment and mechanical strain tensor. We begin by a Lagrangian formulation for the
precession of spin, which is coupled to a dynamical elastic solid by a magnetoelastic coupling term. This enables us
to study their coupled dynamics in a way that is fully consistent with all the symmetries, which ensures a consistent
description.

We then shift to a Hamiltonian description where spin is interpreted as a composite – commuting – variable,
which is a product of underlying and not observable – anticommuting – variables. Such a spin interacts with a
couple of canonically conjugate variables representing the elastic medium, in an extended Poisson structure. Finally,
for each of these two models, we numerically study the influence of an external stress on the switching behavior
of the Néel order parameter and spin accumulation for a NiO toy model antiferromagnet, induced by an external
spin-transfer-torque.

Keywords :
Stochastic spin dynamics, hierarchy closing, magnetoelasticity, Lagrangian and Hamiltonian magnetomechanical

coupling, Nambu dynamics, antiferromagnetism, symplectic/geometric integration, Néel order parameter switching,
spin transfer torque.
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