, Considered voxels are the remaining in/out or out/in ones. This step treats rather thin areas

, Considered voxels are any other inconsistent ones. This steps finalizes the resolution and treats very thin areas with no more (in, out) or (out, in) voxel

, Une des évolutions possibles serait de modifier ce choix et de mettre en oeuvre une approche de la seconde classe, les plus pertinentes et l'orientation locale de la surface

Y. I. Abdel-aziz and H. M. Karara, Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry, Proceedings of the Symposium on Close-Range photogrammetry, vol.1, p.18, 1971.

L. An, Y. Jia, J. Wang, X. Zhang, and M. Li, An efficient rectification method for trinocular stereovision, Proceedings of the 17th International Conference on Pattern Recognition, ICPR, vol.4, pp.56-59, 2004.

N. Ayache and C. Hansen, Rectification of images for binocular and trinocular stereovision, 9th International Conference on Pattern Recognition, vol.1, pp.11-16, 1988.
URL : https://hal.archives-ouvertes.fr/inria-00075694

H. H. Baker and T. O. Binford, Depth from edge and intensity based stereo, Proceedings of the 7th International Joint Conference on Artificial Intelligence, vol.2, pp.631-636, 1981.

L. Blache, C. Loscos, and L. Lucas, Robust motion flow for mesh tracking of freely moving actors. The Visual Computer journal, vol.32, pp.205-216, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01692614

A. F. Bobick and S. S. Intille, Large occlusion stereo, Int. J. Comput. Vision, vol.33, pp.181-200, 1999.

E. Boyer, INRIA Rhône Alpes Grenoble 4D modeling platform, 2015.

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1124-1137, 2004.

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell, vol.23, issue.11, pp.1222-1239, 2001.

G. Bradski, Camera calibration and 3D reconstruction, Dr. Dobb's Journal of Software Tools, 2000.

F. Caillette, Real-time markerless 3D human body tracking, 2006.

G. K. Cheung, T. Kanade, J. Y. Bouguet, and M. Holler, A real time system for robust 3D voxel reconstruction of human motions, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.714-720, 2000.

C. H. Chien and J. K. Aggarwal, Volume/surface octrees for the representation of threedimensional objects, CVGIP, vol.36, pp.100-113, 1986.

R. T. Collins, A space-sweep approach to true multi-image matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p.358, 1996.

I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs, A maximum likelihood stereo algorithm, Computer Vision and Image Understanding journal, vol.63, pp.542-567, 1996.

G. Cross and A. Zisserman, Surface reconstruction from multiple views using apparent contours and surface texture, Conference of Computer Vision and Computer Graphics, vol.84, pp.25-47, 2000.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput, vol.23, issue.4, pp.864-894, 1994.

P. E. Debevec, C. J. Taylor, and J. Malik, Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach, Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp.11-20, 1996.

S. Fan and F. P. Ferrie, Photo hull regularized stereo. Canadian Conference on Computer and Robot Vision, p.18, 2006.

O. D. Faugeras, Three-dimensional computer vision: A geometric viewpoint, pp.475-475, 1993.

O. D. Faugeras, Q. Luong, and T. Papadopoulou, The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications, 2001.

D. R. Ford and D. R. Fulkerson, Flows in Networks, 2010.

Y. Furukawa and J. Ponce, Accurate, dense, and robust multiview stereopsis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.8, pp.1362-1376, 2010.

A. Fusiello, E. Trucco, and A. Verri, A compact algorithm for rectification of stereo pairs. Machine Vision and Applications journal, vol.12, pp.16-22, 2000.

P. Gargallo and P. Sturm, Bayesian 3D modeling from images using multiple depth maps, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.885-891, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00524394

M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz, Multi-view stereo for community photo collections, Proceedings of IEEE 11th International Conference on Computer Vision, pp.1-8, 2007.

C. Hane, C. Zach, J. Lim, A. Ranganathan, and M. Pollefeys, Stereo depth map fusion for robot navigation, IROS, pp.1618-1625, 2011.

C. E. Hernàndez and F. Schmitt, Silhouette and stereo fusion for 3D object modeling, Computer Vision and Image Understanding journal, vol.96, issue.3, pp.367-392, 2004.

A. Hilton and J. Starck, Multiple view reconstruction of people, 2nd International Symposium on 3D Data Processing, Visualization and Transmission, vol.3, pp.357-364, 2004.

A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, Local stereo matching using geodesic support weights, 16th IEEE International Conference on Image Processing, pp.2093-2096, 2009.

M. H. Ju and H. B. Kang, Constant time stereo matching. International Machine vision and Image Processing conference, pp.13-17, 2009.

S. B. Kang, R. Szeliski, and J. Chai, Handling occlusions in dense multi-view stereo, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1: I-103-I-110, 2001.

S. B. Kang and R. Szeliski, Extracting view-dependent depth maps from a collection of images, Int. J. Comput. Vision, vol.58, pp.139-163, 2004.

Y. Kang, C. Lee, and Y. Ho, An efficient rectification algorithm for multi-view images in parallel camera array. 3DTV Conference: The True Vision -Capture, Transmission and Display of 3D Video, pp.61-64, 2008.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vision, vol.1, issue.4, pp.321-331, 1988.

Z. Ke, G. Lafruit, R. Lauwereins, and G. L. Van-gool, Joint integral histograms and its application in stereo matching, 17th IEEE International Conference on Image Processing, ICIP, pp.817-820, 2010.

A. Klaus, M. Sormann, and K. Karner, Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure, Proceedings of the 18th International Conference on Pattern Recognition, vol.03, pp.15-18, 2006.

V. Kolmogorov and R. Zabih, Computing visual correspondence with occlusions using graph cuts, Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol.2, pp.508-515, 2001.

V. Kolmogorov and R. Zabih, Multi-camera scene reconstruction via graph cuts, Proceedings of the 7th European Conference on Computer Vision-Part III, pp.82-96, 2002.

K. N. Kutulakos and S. M. Seitz, A theory of shape by space carving, Int. J. Comput. Vision, vol.38, issue.3, pp.199-218, 2000.

S. Lazebnik, Y. Furukawa, and J. Ponce, Projective visual hulls, Int. J. Comput. Vision, vol.74, issue.2, pp.137-165, 2007.

M. Li, H. Schirmacher, M. Magnor, and H. P. Siedel, Combining stereo and visual hull information for on-line reconstruction and rendering of dynamic scenes, Workshop on IEEE Multimedia Signal Processing, pp.9-12, 2002.

L. Lucas, P. Souchet, M. Ismael, O. Nocent, C. Niquin et al., RECOVER3D: A hybrid multi-view system for 4d reconstruction of moving actors, 4th International Conference and Exhibition on 3D Body Scanning Technologies (3DBST), pp.219-230, 2013.

Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu, Constant time weighted median filtering for stereo matching and beyond, Proceedings of IEEE International Conference on Computer Vision, pp.49-56, 2013.

K. Matsuda and N. Ukita, Direct shape carving: Smooth 3D points and normals for surface reconstruction, IEICE Trans. on Information and Systems, pp.1811-1818, 2011.

K. P. Murphy, Y. Weiss, and M. I. Jordan, Loopy belief propagation for approximate inference: An empirical study, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp.467-475, 1999.

K. S. Narayan, J. Sha, A. Singh, and P. Abbeel, Range sensor and silhouette fusion for high-quality 3D scanning, IEEE International Conference on Robotics and Automation, ICRA, pp.3617-3624, 2015.

P. J. Narayanan, P. W. Rander, and T. Kanade, Constructing virtual worlds using dense stereo, Proceedings of the Sixth International Conference on Computer Vision, p.3, 1998.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim et al., KinectFusion: Real-time dense surface mapping and tracking, Proceedings of 10th IEEE International Symposium on Mixed and Augmented Reality, pp.127-136, 2011.

C. Niquin, Reconstruction du relief et mixage réel virtuel par caméras relief multipoints de vues, 2011.

C. Niquin, S. Prévost, and Y. Rémion, An occlusion approach with consistency constraint for multiscopic depth extraction, Int. J. Digital Multimedia Broadcasting, 2010.

M. Okutomi and T. Kanade, A multiple-baseline stereo, IEEE Trans. Pattern Anal. Mach. Intell, vol.15, issue.4, pp.353-363, 1993.

N. Papadakis and V. Caselles, Multi-label depth estimation for graph cuts stereo problems, Journal of Mathematical Imaging and Vision, vol.38, issue.1, pp.70-82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00596140

S. Paris, P. Kornprobst, and J. Tumblin, Bilateral Filtering, 2009.

J. Pearl, Reverend bayes on inference engines: A distributed hierarchical approach, Proceedings of the American Association of Artificial Intelligence National Conference on AI, pp.133-136, 1982.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 2007.

C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast cost-volume filtering for visual correspondence and beyond, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.3017-3024, 2011.

C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. A. Dodgson, Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid, Proceedings of the European Conference on Computer Vision, p.6313, 2010.

S. Roy, Stereo without epipolar lines: A maximum-flow formulation, Int. J. Comput. Vision, vol.34, issue.2-3, pp.147-161, 1999.

D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Int. J. Comput. Vision, vol.47, issue.1-3, pp.7-42, 2002.

D. Scharstein, R. Szeliski, and H. Hirschmüller, Middlebury stereo vision site, 2002.

S. M. Seitz and C. R. Dyer, Photorealistic scene reconstruction by voxel coloring, Int. J. Comput. Vision, vol.35, issue.2, pp.151-173, 1999.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, A comparison and evaluation of multi-view stereo reconstruction algorithms, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp.519-528, 2006.

D. Snow, P. Viola, and R. Zabih, Exact voxel occupancy with graph cuts, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp.345-352, 2000.

P. Song, X. Wu, and M. Wang, Volumetric stereo and silhouette fusion for image-based modeling. The Visual Computer journal, vol.26, pp.1435-1450, 2010.

J. Starck, S. Nobuhara, A. Maki, A. Hilton, and T. Matsuyama, The multiple camera 3D production studio, IEEE Trans. Circuits and Systems for Video Technology, vol.19, pp.856-869, 2009.

C. Stauffer and W. E. Grimson, Adaptive background mixture models for realtime tracking, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, 1999.

E. Steinbach, B. Girod, P. Eisert, and A. Betz, 3D reconstruction of real-world objects using extended voxels, International Conference on Image Processing Proceeding, vol.1, pp.569-572, 2000.

C. Sun, Uncalibrated three-view image rectification, International Conference Image and Vision Computing, vol.21, pp.259-269, 2003.

J. Sun, N. Zheng, and H. Shum, Stereo matching using belief propagation, IEEE Trans. Pattern Anal. Mach. Intell, vol.25, issue.7, pp.787-800, 2003.

R. Szeliski, Rapid octree construction from image sequences, CVGIP: Image Underst, vol.58, issue.1, pp.23-32, 1993.

R. Szeliski, A multi-view approach to motion and stereo, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, p.163, 1999.

R. Szeliski, Computer Vision: Algorithms and Applications, 2010.

R. Szeliski and P. Golland, Stereo matching with transparency and matting, Int. J. Comput. Vision, vol.32, issue.1, pp.45-61, 1999.

C. J. Taylor, Surface reconstruction from feature based stereo, Proceedings of the Ninth IEEE International Conference on Computer Vision, vol.2, p.184, 2003.

O. Veksler, Stereo correspondence by dynamic programming on a tree, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.384-390, 2005.

O. Veksler, Stereo correspondence by dynamic programming on a tree, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.384-390, 2005.

G. Vogiatzis, P. H. Torr, and R. Cipolla, Multi-view stereo via volumetric graph-cuts, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.391-398, 2005.

C. Wang, N. Komodakis, and N. Paragios, Markov random field modeling, inference and learning in computer vision and image understanding: A survey, Computer Vision and Image Understanding journal, vol.117, issue.11, pp.1610-1627, 2013.

L. Wang, R. Yang, M. Gong, and M. Liao, Real-time stereo using approximated joint bilateral filtering and dynamic programming, J. Real-Time Image Process, vol.9, issue.3, pp.447-461, 2014.

Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér, Stereo matching with colorweighted correlation, hierarchical belief propagation, and occlusion handling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.3, pp.492-504, 2009.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Generalized belief propagation. Neural Information Processing Systems, pp.689-695, 2000.

K. Yoon and I. S. Kweon, Adaptive support-weight approach for correspondence search, IEEE Trans. PAMI, vol.28, pp.650-656, 2006.

K. J. Yoon and I. S. Kweon, Locally adaptive support-weight approach for visual correspondence search, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, pp.924-931, 2005.

Z. Zhang, Chapter 2, camera calibration, emerging topics in computer vision, pp.4-43, 2004.

Z. Zivkovic, Improved adaptive gaussian mixture model for background subtraction, Proceedings of the 17th International Conference on Pattern Recognition, ICPR, vol.2, pp.28-31, 2004.