S. Kaptoge, Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: Individual participant meta-analysis of 154,211 adults in 31 prospective studies, Am. J. Epidemiol, vol.166, pp.867-879, 2007.

J. D. Mills, R. A. Ariëns, M. W. Mansfield, and P. J. Grant, Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease, Circulation, vol.106, pp.1938-1942, 2002.

J. P. Collet, Y. Allali, C. Lesty, M. L. Tanguy, J. Silvain et al., Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis, Arterioscler. Thromb. Vasc. Biol, vol.26, pp.2567-2573, 2006.

A. Undas, K. Zawilska, M. Ciesla-dul, A. Lehmann-kopyd?owska, A. Skubiszak et al., Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives, Blood, vol.114, pp.4272-4278, 2009.

B. Savage, E. Saldívar, and Z. M. Ruggeri, Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor, Cell, vol.84, pp.289-297, 1996.

Z. M. Ruggeri, The role of von Willebrand factor in thrombus formation

, Thromb. Res, vol.120, 2007.

L. Motte-mohs, R. N. Herer, E. Zúñiga-pflücker, J. C. Dc, W. Motte-mohs et al., Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro, Analysis, vol.105, pp.1431-1439, 2011.

R. F. Zwaal, P. Comfurius, and E. M. Bevers, Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids

, Biochimica et Biophysica Acta -Molecular and Cell Biology of Lipids, vol.1636, pp.119-128, 2004.

J. S. Bennett, Structure and function of the platelet integrin

O. D. Ratnoff and E. W. Davie, Waterfall Sequence for Intrinsic Blood Clotting, Science, vol.145, pp.1310-1312, 1964.

Y. Nemerson and D. Repke, Tissue factor accelerates the activation of coagulation factor VII: The role of a bifunctional coagulation cofactor, Thromb. Res, vol.40, pp.351-358, 1985.

L. M. Haynes, Y. C. Dubief, and K. G. Mann, Membrane binding events in the initiation and propagation phases of tissue factor-initiated zymogen activation under flow, J. Biol. Chem, vol.287, pp.5225-5234, 2012.

T. A. Drake, J. H. Morrissey, and T. S. Edgington, Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis, Am. J. Pathol, vol.134, pp.1087-1097, 1989.

B. G. Morrissey, . Neuenschwander, . Comp, and J. H. Pc, Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation, Blood, vol.81, pp.734-744, 1993.

S. Kondo and W. Kisiel, Regulation of factor VIIa activity in plasma: evidence that antithrombin III is the sole plasma protease inhibitor of human factor VIIa, Thromb. Res, vol.46, pp.325-335, 1987.

U. Seligsohn and C. K. Kasper, Activated factor VII: Presence in factor IX concentrates and persistence in the circulation after infusion, Blood, vol.53, 1979.

G. Van-dieijen, G. Tans, J. Rosing, and H. C. Hemker, The role of phospholipid and factor VIII(a) in the activation of bovine factor X, J. Biol. Chem, vol.256, pp.3433-3442, 1981.

J. Rosing, G. Tans, J. W. Goversriemslag, R. F. Zwaal, and H. C. Hemker, Role of phospholipids and factor-Va in the prothrombinase complex, J. Biol. Chem, vol.255, pp.274-283, 1980.

A. H. Schmaier, The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities, Journal of Thrombosis and Haemostasis, vol.14, pp.28-39, 2016.

M. Samuel, R. Pixleys, M. Villanuevas, R. Colmans, and G. Villanuevasli, Human factor XII (Hageman Factor) autoactivation by dextran sulfate, J. Biol. Chem, vol.267, pp.19691-19697, 1992.

G. Miller, M. Silverberg, and A. P. Kaplan, Autoactivatability of human Hageman factor (factor XII), Biochem. Biophys. Res. Commun, vol.92, pp.803-810, 1980.

M. Schapira, C. F. Scott, A. James, L. D. Silver, F. Kueppers et al., High molecular weight kininogen or its light chain protects human plasma kallikrein from inactivation by plasma protease inhibitors, Biochemistry, vol.21, pp.567-572, 1982.

C. F. Scott, M. Schapira, H. L. James, A. B. Cohen, and R. W. Colman, Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen, J. Clin. Invest, vol.69, pp.844-52, 1982.

H. Pauer, T. Renné, B. Hemmerlein, T. Legler, S. Fritzlar et al., Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo, Thromb. Haemost, vol.92, pp.503-511, 2004.

T. Renné, M. Pozgajová, S. Grüner, K. Schuh, H. Pauer et al., Defective thrombus formation in mice lacking coagulation factor XII, J. Exp. Med, vol.202, pp.271-281, 2005.

K. Matsumoto, T. Yamamoto, R. Kamata, and H. Maeda, Pathogenesis of serratial infection: Activation of the hageman factor-prekallikrein cascade by serratial protease, J. Biochem, vol.96, pp.739-749, 1984.

A. Molla, T. Yamamoto, T. Akaike, S. Miyoshi, and H. Maeda, Activation of Hageman factor and prekallikrein and generation of kinin by various microbial proteinases, J. Biol. Chem, vol.264, pp.10589-10594, 1989.

H. Herwald, M. Mörgelin, A. Olsén, M. Rhen, B. Dahlbäck et al., Activation of the contact-phase system on bacterial surfaces-a clue to serious complications in infectious diseases, Nat. Med, vol.4, pp.298-302, 1998.

P. E. Van-der-meijden, I. C. Munnix, J. M. Auger, J. W. Govers-riemslag, J. M. Cosemans et al., Dual role of collagen in factor XII-dependent thrombus formation, Blood, vol.114, pp.881-890, 2009.

R. W. Colman and A. H. Schmaier, Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes, Blood, vol.90, pp.3819-3843, 1997.

R. W. Colman, Activation of plasminogen by human plasma kallikrein

, Biochem. Biophys. Res. Commun, vol.35, pp.273-279, 1969.

G. H. Goldsmith, H. Saito, and O. D. Ratnoff, The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments, J. Clin. Invest, vol.62, pp.54-60, 1978.

G. J. Broze and J. P. Miletich, Isolation of the tissue factor inhibitor produced by HepG2 hepatoma cells, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.1886-90, 1987.

W. F. Novotny, S. G. Brown, J. P. Miletich, D. J. Rader, and G. J. Broze, Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples, Blood, vol.78, pp.387-393, 1991.

T. J. Girard, L. A. Warren, W. F. Novotny, K. M. Likert, S. G. Brown et al., Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor, Nature, vol.338, pp.518-520, 1989.

J. T. Crawley and D. A. Lane, The haemostatic role of tissue factor pathway inhibitor, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, pp.233-242, 2008.

A. E. Mast and G. J. Broze, Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase, Blood, vol.87, pp.1845-50, 1996.

K. M. Brinkhous, H. P. Smith, E. D. Warner, and W. H. Seegers, Heparin and Blood Clotting, Science, vol.90, p.539, 1939.

C. B. Peterson and M. N. Blackburn, Isolation and characterization of an antithrombin III variant with reduced carbohydrate content and enhanced heparin binding, J. Biol. Chem, vol.260, pp.610-615, 1985.

G. Murano, L. Williams, M. Miller-andersson, D. L. Aronson, and C. King, Some properties of antithrombin-III and its concentration in human plasma, Thromb. Res, vol.18, pp.259-262, 1980.

V. J. Marder, W. C. Aird, J. S. Bennet, S. Schulman, I. I. White et al., Hemostasis and Thrombosis, basic principles and clinical practic, 2012.

P. E. Stein, A. G. Leslie, J. T. Finch, W. G. Turnell, P. J. Mclaughlin et al., Crystal structure of ovalbumin as a model for the reactive centre of serpins, Nature, vol.347, pp.99-102, 1990.

V. R. Picard, P. Marque, F. Paolucci, M. Aiach, and B. F. Le-bonniec, Topology of the stable serpin-protease complexes revealed by an autoantibody that fails to react with the monomeric conformers of antithrombin, J. Biol. Chem, vol.274, pp.4586-93, 1999.

E. Stratikos and P. G. Gettins, Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.4808-4821, 1999.

J. A. Huntington, S. T. Olson, B. Fan, and P. G. Gettins, Mechanism of heparin activation of antithrombin. Evidence for reactive center loop preinsertion with expulsion upon heparin binding, Biochemistry, vol.35, pp.8495-8503, 1996.

G. Mertens, J. J. Cassiman, H. Van-den-berghe, J. Vermylen, and G. David, Cell surface haparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties

, J.Biol.Chem, vol.267, pp.20435-20443, 1992.

K. Ishiguro, T. Kojima, K. Kadomatsu, Y. Nakayama, A. Takagi et al., Complete antithrombin deficiency in mice results in embryonic lethality, J. Clin. Invest, vol.106, pp.873-878, 2000.

L. O. Mosnier, B. V. Zlokovic, and J. H. Griffin, The cytoprotective protein C pathway, Blood, vol.109, pp.3161-3172, 2007.

E. F. Mammen, W. R. Thomas, and W. H. Seegers, Activation of purified prothrombin to autoprothrombin I or autoprothrombin II (platelet cofactor II or autoprothrombin II-A), Thromb. Diath. Haemorrh, vol.5, pp.218-267, 1960.

J. Stenflo, A new vitamin K-dependent protein. Purification from bovine plasma and preliminary characterization, J. Biol. Chem, vol.251, pp.355-363, 1976.

D. J. Stearns-kurosawa, S. Kurosawa, J. S. Mollica, G. L. Ferrell, and C. T. Esmon, The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.10212-10218, 1996.

F. Saller, A. C. Brisset, S. N. Tchaikovski, M. Azevedo, R. Chrast et al., & Angelillo-Scherrer, A. Generation and phenotypic analysis of protein S-deficient mice, Blood, vol.114, pp.2307-2314, 2009.

S. Gandrille, Activated protein C: From structure/function relationship to the design of recombinant proteins with targeted activities, Hematologie, vol.18, pp.96-108, 2012.

B. Polack, Un nouveau dysfibrinogène: le fibrinogene grenoble, 1983.

K. Koie, K. Ogata, T. Kamiya, J. Takamatsu, and M. Kohakura, & 2-Plasmininhibitor deficiency (Miyasato disease), Lancet, vol.312, pp.1334-1336, 1978.

N. Aoki, H. Saito, T. Kamiya, K. Koie, Y. Sakata et al., Congenital deficiency of & 2-plasmin inhibitor associated with severe hemorrhagic tendency, J. Clin. Invest, vol.63, pp.877-884, 1979.

N. A. Booth, B. Bennett, G. Wijngaards, and J. H. Grieve, A new life-long hemorrhagic disorder due to excess plasminogen activator, Blood, vol.61, pp.267-75, 1983.

D. Raum, D. Marcus, C. A. Alper, R. Levey, P. D. Taylor et al., Synthesis of human plasminogen by the liver, Science, vol.208, pp.1036-1037, 1980.

T. E. Petersen, M. R. Martzen, A. Ichinose, and E. W. Davie, Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system, J. Biol. Chem, vol.265, pp.6104-6111, 1990.

B. Wiman and P. Wallén, The specific interaction between plasminogen and fibrin. A physiological role of the lysine binding site in plasminogen, Thromb. Res, vol.10, pp.213-222, 1977.

J. H. Verheijen, M. P. Caspers, G. T. Chang, G. A. De-munk, P. H. Pouwels et al., Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin, EMBO J, vol.5, pp.3525-3555, 1986.

V. Fleury, H. R. Lijnen, and E. Anglés-cano, Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis, J. Biol. Chem, vol.268, pp.18554-18559, 1993.

C. Longstaff, C. Thelwell, S. C. Williams, M. M. Silva, L. Szabó et al., The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies, Blood, vol.117, pp.661-668, 2011.

V. Fleury and E. Anglés-cano, Characterization of the binding of plasminogen to fibrin surfaces: The role of carboxy-terminal lysines, Biochemistry, vol.30, pp.7630-7638, 1991.

J. W. Weisel, C. Nagaswami, B. Korsholm, L. C. Petersen, and E. Suenson, Interactions of plasminogen with polymerizing fibrin and its derivatives, monitored with a photoaffinity cross-linker and electron microscopy, J. Mol. Biol, vol.235, pp.1117-1135, 1994.

Y. Veklich, C. W. Francis, J. White, and J. W. Weisel, Structural studies of fibrinolysis by electron microscopy, Blood, vol.92, pp.4721-4730, 1998.

E. Mihalyi, R. M. Weinberg, D. W. Towne, and M. E. Friedman, Proteolytic fragmentation of fibrinogen. I. Comparison of the fragmentation of human and bovine fibrinogen by trypsin or plasmin, Biochemistry, vol.15, pp.5372-5381, 1976.

J. W. Weisel and R. I. Litvinov, Fibrin formation, structure and properties, Subcell. Biochem, vol.82, pp.405-456, 2017.

D. Collen and B. Wiman, Fast-acting plasmin inhibitor in human plasma, Blood, vol.51, pp.563-572, 1978.

B. Bennett, A. Croll, K. Ferguson, and N. A. Booth, Complexing of tissue plasminogen activator with PAI-1, alpha 2-macroglobulin, and C1-inhibitor: studies in patients with defibrination and a fibrinolytic state after electroshock or complicated labor, Blood, vol.75, pp.671-676, 1990.

L. O. Mosnier and B. N. Bouma, Regulation of fibrinolysis by Thrombin Activatable Fibrinolysis Inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, pp.2445-2453, 2006.

L. Bajzar, J. Morser, and M. Nesheim, TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombinthrombomodulin complex, J. Biol. Chem, vol.271, pp.16603-16608, 1996.

L. Bajzar, M. Nesheim, J. Morser, and P. B. Tracy, Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of Thrombin-Activable Fibrinolysis Inhibitor*, J. Biol. Chem, 1997.

E. Ángles-cano, L. Plawinski, and E. Angles-cano, Fibrinolysis, new : fibrinolytic microvesicles, Rev. Hematol, vol.114, pp.55-64, 2013.

E. Fressinaud and D. M. La-maladie-de-willebrand, du diagnostic au traitement. in Hématologie, vol.1, pp.199-208, 1995.

M. Hanss, Anomalies constitutionnelles de la fibrinolyse et syndromes hémorragiques, Revue Francophone des Laboratoires, vol.2012, pp.39-45, 2012.

P. E. Morange, J. Emmerich, and D. A. Tregouet, Les facteurs de risque génétique de la thrombose veineuse: Où en sommes nous, Sang Thrombose Vaisseaux, vol.22, pp.421-427, 2010.

U. Seligsohn and A. Lubetsky, Genetic susceptibility to venous thrombosis, N. Engl. J. Med, vol.344, pp.1222-1231, 2001.

H. C. Hemker, P. Giesen, R. Al-dieri, V. Regnault, E. De-smedt et al., Calibrated automated thrombin generation measurement in clotting plasma, Pathophysiol. Haemost. Thromb, vol.33, pp.4-15, 2003.

E. Castoldi and J. Rosing, Thrombin generation tests, Thromb. Res, vol.127, pp.21-25, 2011.

H. Hartert, Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren, Klin. Wochenschr, vol.26, pp.577-583, 1948.

E. N. Lipets and F. I. Ataullakhanov, Global assays of hemostasis in the diagnostics of hypercoagulation and evaluation of thrombosis risk, Thrombosis Journal, vol.13, p.4, 2015.

S. Roullet, E. De-maistre, B. Ickx, N. Blais, S. Susen et al., Le Congrès Conférence d'Essentiel Place de la thromboélastographie, 2017.

M. Gill, The TEG ® 6s on shaky ground? A novel assessment of the TEG ® 6s

. Extracorpor, J Extra Corpor Technol, vol.4949, pp.26-926, 2017.

N. Tynngård, T. L. Lindahl, and S. Ramström, Assays of different aspects of haemostasis -what do they measure?, Thrombosis Journal, vol.13, 2015.

B. Blombäck and M. Okada, Fibrin gel structure and clotting time, Thromb. Res, vol.25, pp.51-70, 1982.

M. Pieters, A. Undas, R. Marchi, M. P. De-maat, J. W. Weisel et al., An international study on the standardization of fibrin clot permeability measurement: Methodological considerations and implications for healthy control values, J. Thromb. Haemost, vol.10, pp.2179-2181, 2012.

J. Collet, J. Soria, M. Mirshahi, M. Hirsch, F. B. Dagonnet et al., Dusart syndrome: a new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure, Blood, vol.82, pp.2462-2469, 1993.

R. Signer and H. Egli, Sedimentation von Makromolekülen und Durchströmung von Gelen, Recl. des Trav. Chim. des Pays-Bas, vol.69, pp.45-58, 1950.

F. H. Nestler, Analysis of fibrous network fluid permeation data using the theory of ultracentrifugation: Application to fibrin gels, Biophys. Chem, vol.81, pp.1-6, 1999.

M. E. Carr, L. L. Shen, and J. Hermans, Mass-length ratio of fibrin fibers from gel permeation and light scattering, Biopolymers, vol.16, pp.1-15, 1977.

M. Minsky, Microscopy apparatus. United States Pat. Off, 1961.

R. Yuste, Fluorescence microscopy today, Nature Methods, vol.2, 2005.

A. Shihavuddin, S. Basu, E. Rexhepaj, F. Delestro, N. Menezes et al., Smooth 2D manifold extraction from 3D image stack, Nat. Commun, vol.8, p.15554, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02425382

G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett, vol.56, pp.930-933, 1986.

G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Phys. Rev. Lett, vol.49, p.57, 1982.

S. Kasas, La microscopie à force atomique dans la recherche en biologie

E. I. Sinauridze, T. A. Vuimo, I. D. Tarandovskiy, R. A. Ovsepyan, S. S. Surov et al., Thrombodynamics, a new global coagulation test: Measurement of heparin efficiency, Talanta, vol.180, pp.282-291, 2018.

N. P. Soshitova, S. S. Karamzin, A. N. Balandina, O. A. Fadeeva, A. V. Kretchetova et al., Predicting prothrombotic tendencies in sepsis using spatial clot growth dynamics, Blood Coagul. Fibrinolysis, vol.23, pp.498-507, 2012.

M. V. Ovanesov, J. V. Krasotkina, L. I. Ul'yanova, K. V. Abushinova, O. P. Plyushch et al., Hemophilia A and B are associated with abnormal spatial dynamics of clot growth, Biochim. Biophys. Acta -Gen. Subj, vol.1572, pp.45-57, 2002.

R. R. Hantgan and J. Hermans, Assembly of fibrin. A light scattering study, J. Biol. Chem, vol.254, pp.11272-11281, 1979.

A. Antovic, The overall hemostasis potential: A laboratory tool for the investigation of global hemostasis, Seminars in Thrombosis and Hemostasis, vol.36, pp.772-779, 2010.

N. A. Goldenberg, W. E. Hathaway, L. Jacobson, and M. J. Manco-johnson, A new global assay of coagulation and fibrinolysis, Thromb. Res, vol.116, pp.345-356, 2005.

P. O. Sevenet and F. Depasse, Clot waveform analysis: Where do we stand in 2017?, International Journal of Laboratory Hematology, vol.39, pp.561-568, 2017.

T. Matsumoto, M. Shima, M. Takeyama, K. Yoshida, I. Tanaka et al., The measurement of low levels of factor VIII or factor IX in hemophilia A and hemophilia B plasma by clot waveform analysis and thrombin generation assay, J. Thromb. Haemost, vol.4, pp.377-384, 2006.

C. H. Toh, J. Samis, C. Downey, J. Walker, L. Becker et al., Biphasic transmittance waveform in the APTT coagulation assay is due to the formation of a Ca++-dependent complex of Creactive protein with very-low-density lipoprotein and is a novel marker of impending disseminated intravascular coagulation, Blood, vol.100, pp.2522-2529, 2002.

M. Shima, J. Thachil, S. C. Nair, and A. Srivastava, Scientific and Standardization Committee. Towards standardization of clot waveform analysis and recommendations for its clinical applications, J. Thromb. Haemost, vol.11, pp.1417-1420, 2013.

C. Yeromonahos, B. Polack, and F. Caton, Nanostructure of the fibrin clot, Biophys. J, vol.99, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00816904

C. Yeromonahos, Nanostructure des fibres de fibrine, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00639435

X. Garcia, Influence of the nature of fibrinogen on the structure and mechanics of fibrin clots, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01693034

C. L. Dassi and . Fibrinographie, Une méthode multi-longueurs d'ondes pour la détermination de la structure du caillot en plasma, 2016.

A. S. Wolberg, D. A. Gabriel, and M. Hoffman, Analyzing fibrin clot structure using a microplate reader, Blood Coagul. Fibrinolysis, vol.13, pp.533-539, 2002.

C. Dassi, L. Seyve, X. García, E. Bigo, R. Marlu et al., Fibrinography: A multiwavelength light-scattering assay of fibrin structure, HemaSphere, vol.3, p.166, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02406331

A. Henschen, J. Mcdonagh, . Fibrinogen, and . Xiii, New Compr. Biochem, vol.13, pp.171-241, 1986.

C. E. Hall, The Fibrinogen Molecule: Its Size, Shape, and Mode of Polymerization, J. Cell Biol, vol.5, pp.11-27, 1959.

V. Nussenzweig, M. Seligmann, J. Pelmont, and P. Grabar, The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties, Ann. Inst. Pasteur (Paris), vol.100, pp.377-389, 1961.

G. Spraggon, S. J. Everse, and R. F. Doollttle, Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin, Nature, vol.389, pp.455-462, 1997.

J. Madrazo, J. H. Brown, S. Litvinovich, R. Dominguez, S. Yakovlev et al., Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-Å resolution, Proc. Natl. Acad. Sci, vol.98, pp.11967-11972, 2001.

J. H. Brown, N. Volkmann, G. Jun, A. H. Henschen-edman, and C. Cohen, The crystal structure of modified bovine fibrinogen, Proc. Natl. Acad. Sci, vol.97, pp.85-90, 2000.

Z. Yang, J. M. Kollman, L. Pandi, and R. F. Doolittle, Crystal structure of native chicken fibrinogen at 2.7Å resolution, Biochemistry, vol.40, pp.12515-12523, 2001.

A. Z. Budzynski, S. A. Olexa, and B. V. Pandya, Fibrin polymerization sites in fibrinogen and fibrin fragments, Ann. N. Y. Acad. Sci, vol.408, pp.301-314, 1983.

A. P. Laudano and R. F. Doolittle, Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers, Proc. Natl. Acad. Sci. U. S. A, vol.75, pp.3085-3089, 1978.

L. Medved and J. W. Weisel, Recommendations for nomenclature on fibrinogen and fibrin, Journal of Thrombosis and Haemostasis, vol.7, pp.355-359, 2009.

J. W. Weisel, Y. Veklich, and O. Gorkun, The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots, J. Mol. Biol, vol.232, pp.285-97, 1993.

H. P. Erickson and W. E. Fowler, Electron Microscopy Of Fibrinogen, It's Plasmic Fragments And Small Polymers, Ann. N. Y. Acad. Sci, vol.408, pp.146-163, 1983.

T. Riedel, J. Suttnar, E. Brynda, M. Houska, L. Medved et al., Fibrinopeptides A and B release in the process of surface fibrin formation, Blood, vol.117, pp.1700-1705, 2011.

A. Zhmurov, A. D. Protopopova, R. I. Litvinov, P. Zhukov, A. R. Mukhitov et al., Structural Basis of Interfacial Flexibility in Fibrin Oligomers. Structure, vol.24, pp.1907-1917, 2016.

T. Sasaki, I. H. Page, and J. R. Shainoff, Stable complex of fibrinogen and fibrin, Science, vol.152, pp.1069-1071, 1966.

J. R. Shainoff, G. B. Smejkal, P. M. Dibello, B. Chase, O. Mitkevich et al., The Fibrin Intermediate

, Ann. N. Y. Acad. Sci, vol.936, pp.147-66, 2001.

S. J. Everse, G. Spraggon, L. Veerapandian, M. Riley, and R. F. Doolittle, Crystal structure of fragment double-D from human fibrin with two different bound ligands, Biochemistry, vol.37, pp.8637-8642, 1998.

R. C. Marchi, Z. Carvajal, C. Boyer-neumann, E. Anglés-cano, and J. W. Weisel, Functional characterization of fibrinogen Bicêtre II: A 308 AsnuLys mutation located near the fibrin D:D interaction sites, Blood Coagul. Fibrinolysis, vol.17, pp.193-201, 2006.

S. R. Bowley, N. Okumura, and S. T. Lord, Impaired protofibril formation in fibrinogen N308K is due to altered D:D and « A:a » interactions, Biochemistry, vol.48, pp.8656-8663, 2009.

J. W. Weisel, C. Nagaswami, and L. Makowski, Twisting of fibrin fibers limits their radial growth, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.8991-8995, 1987.

L. Medved, T. Ugarova, Y. Veklich, N. Lukinova, J. Weisel et al., Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers, J. Mol. Biol, vol.216, pp.503-509, 1990.

I. N. Chernysh, C. Nagaswami, and J. W. Weisel, Visualization and identification of the structures formed during early stages of fibrin polymerization, Blood, vol.117, pp.4609-4614, 2011.

W. E. Fowler, R. R. Hantgan, J. Hermans, and H. P. Erickson, Structure of the fibrin protofibril, Proc. Natl. Acad. Sci, vol.78, pp.4872-4876, 1981.

J. D. Ferry, The Mechanism of Polymerization of Fibrinogen, Proc. Natl. Acad. Sci. U. S. A, vol.38, pp.566-575, 1952.

Z. Yang, I. Mochalkin, and R. F. Doolittle, A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides, Proc. Natl. Acad. Sci, vol.97, pp.14156-14161, 2000.

R. I. Litvinov, O. V. Gorkun, D. K. Galanakis, S. Yakovlev, L. Medved et al., Polymerization of fibrin: Direct observation and quantification of individual B:b knob-hole interactions, Blood, vol.109, pp.130-138, 2007.

R. De-cristofaro and E. Di-cera, Phenomenological analysis of the clotting ¢ ¤ curve, J. Protein Chem, vol.10, pp.455-468, 1991.

B. Blombäck, B. Hessel, D. Hogg, and L. Therkildsen, A two-step fibrinogenfibrin transition in blood coagulation, Nature, vol.275, pp.501-505, 1978.

N. Okumura, F. Terasawa, A. Haneishi, N. Fujihara, M. Hirota-kawadobora et al., B:b interactions are essential for polymerization of variant fibrinogens with impaired holes 'a, J. Thromb. Haemost, vol.5, pp.2352-2359, 2007.

J. W. Weisel, Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides, Biophys. J, vol.50, pp.1079-1093, 1986.

M. W. Mosesson, J. P. Diorio, M. F. Müller, J. R. Shainoff, K. R. Siebenlist et al., Studies on the ultrastructure of fibrin lacking fibrinopeptide B (beta-fibrin), Blood, vol.69, pp.1073-81, 1987.

D. Galanakis, S. Spitzer, and I. Scharrer, Unusual A alpha 16Arg->Cys dysfibrinogenaemic family: absence of normal A alpha-chains in fibrinogen from two of four heterozygous siblings, Blood Coagul. Fibrinolysis, vol.4, pp.67-71, 1993.

J. L. Mullin, O. V. Gorkun, and S. T. Lord, Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism, Biochemistry, vol.39, pp.9843-9849, 2000.

M. Hirota-kawadobora, F. Terasawa, O. Yonekawa, N. Sahara, E. Shimizu et al., Fibrinogens Kosai and Ogasa: BS15GlyuCys (GGTuTGT) substitution associated with impairment of fibrinopeptide B release and lateral aggregation, J. Thromb. Haemost, vol.1, pp.275-283, 2003.

Y. I. Veklich, O. V. Gorkun, L. V. Medved, W. Nieuwenhuizen, and J. W. Weisel, Carboxyl-terminal portions of the & chains of fibrinogen and fibrin

, J. Biol. Chem, vol.268, pp.13577-13585, 1993.

J. P. Collet, J. L. Moen, Y. I. Veklich, O. V. Gorkun, S. T. Lord et al., , 2010.

A. G. Loewy, S. Matacic, and J. H. Darnell, Transamidase activity of the enzyme responsible for insoluble fibrin formation, Arch. Biochem. Biophys, vol.113, pp.435-438, 1966.

S. Matacic and A. G. Loewy, Transglutaminase activity of the fibrin crosslinking enzyme, Biochem. Biophys. Res. Commun, vol.24, 1966.

L. Lorand and H. H. Ong, Studies on fibrin crosslinking. Nature of the acceptor groups in transpeptidation, Biochem. Biophys. Res. Commun, vol.23, pp.188-193, 1966.

R. F. Doolittle and G. M. Fuller, Quantitative determination of amino-terminal amino acids in crosslinked and non-crosslinked fibrin, Biochem. Biophys. Res. Commun, vol.26, pp.327-333, 1967.

R. Chen and R. F. Doolittle, Cross-linking sites in human and bovine fibrin

, Biochemistry, vol.10, pp.4486-4491, 1971.

L. Purves, M. Purves, and W. Brandt, Cleavage of fibrin-derived D-dimer into monomers by endopeptidase from puff adder venom (Bitis arietans) acting at cross-linked sites of the gamma-chain. Sequence of carboxyterminal cyanogen bromide gamma-chain fragments, Biochem istry, vol.26, pp.4640-4646, 1987.

J. W. Weisel, Cross-linked -chains in fibrin fibrils bridge transversely between strands: No, J. Thromb. Haemost, vol.2, pp.394-399, 2004.

M. W. Mosesson, Cross-linked -chains in fibrin fibrils bridge transversely between strands: Yes, J. Thromb. Haemost, vol.2, pp.388-393, 2004.

A. N. Shchegolikhin, E. A. Kostanova, M. A. Rosenfeld, V. B. Leonova, A. Bychkova et al., Covalent structure of single-stranded fibrin oligomers cross-linked by FXIIIa, Biochem. Biophys. Res. Commun, vol.461, pp.408-412, 2015.

Y. V. Matsuka, L. V. Medved, M. M. Migliorini, and K. C. Ingham, Factor XIIIacatalyzed cross-linking of recombinant & C fragments of human fibrinogen

, Biochemistry, vol.35, pp.5810-5816, 1996.

K. F. Standeven, A. M. Carter, P. J. Grant, J. W. Weisel, I. Chernysh et al., Functional analysis of fibrin -chain cross-linking by activated factor XIII: Determination of a cross-linking pattern that maximizes clot stiffness, Blood, vol.110, pp.902-907, 2007.

T. Tamaki and N. Aoki, Cross-linking of & 2-plasmin inhibitor to fibrin catalyzed by activated fibrin-stabilizing factor, J. Biol. Chem, vol.257, pp.14767-14772, 1982.

Z. Valnickova and J. J. Enghild, Human procarboxypeptidase U, or thrombinactivable fibrinolysis inhibitor, is a substrate for transglutaminases: Evidence for transglutaminase-catalyzed cross-linking to fibrin, J. Biol. Chem, vol.273, pp.27220-27224, 1998.

H. Ritchie, L. A. Robbie, S. Kinghorn, R. Exley, and N. A. Booth, Monocyte plasminogen activator inhibitor 2 (PAI-2) inhibits u-PA-mediated fibrin clot lysis and is cross-linked to fibrin, Thromb. Haemost, vol.81, pp.96-103, 1999.

R. Tran, D. R. Myers, J. Ciciliano, E. L. Trybus-hardy, Y. Sakurai et al., Biomechanics of haemostasis and thrombosis in health and disease: from the macro-to molecular scale, J. Cell. Mol. Med, vol.17, pp.579-596, 2013.

R. A. Campbell, M. Aleman, L. D. Gray, M. R. Falvo, and A. S. Wolberg, Flow profoundly influences fibrin network structure: implications for fibrin formation and clot stability in haemostasis, Thromb. Haemost, vol.104, pp.1281-1285, 2010.

M. R. Martinez, A. Cuker, A. M. Mills, A. Crichlow, R. T. Lightfoot et al., Enhanced lysis and accelerated establishment of viscoelastic properties of fibrin clots are associated with pulmonary embolism, Am. J. Physiol. Cell. Mol. Physiol, vol.306, pp.397-404, 2014.

M. J. Lawrence, A. Sabra, G. Mills, S. G. Pillai, W. Abdullah et al., A new biomarker quantifies differences in clot microstructure in patients with venous thromboembolism. Br

, J. Haematol, vol.168, pp.571-575, 2015.

N. A. Davies, N. K. Harrison, R. H. Keith-morris, S. Noble, M. J. Lawrence et al., Fractal dimension (df ) as a new structural biomarker of clot microstructure in different stages of lung cancer, Thromb. Haemost, vol.114, pp.1251-1259, 2015.

W. Liu, L. M. Jawerth, E. A. Sparks, M. R. Falvo, R. R. Hantgan et al., Fibrin fibers have extraordinary extensibility and elasticity, Science, vol.313, p.634, 2006.

A. E. Brown, R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel, Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water, Science, vol.325, pp.741-744, 2009.

I. K. Piechocka, R. G. Bacabac, M. Potters, F. C. Mackintosh, and G. H. Koenderink, Structural Hierarchy Governs Fibrin Gel Mechanics, Biophys. J, vol.98, pp.2281-2289, 2010.

J. W. Weisel and R. I. Litvinov, The Biochemical and Physical Process of Fibrinolysis and Effects of Clot Structure and Stability on the Lysis Rate

, Cardiovasc. Hematol. Agents Med. Chem, vol.6, pp.161-180, 2008.

J. W. Weisel, Structure of fibrin: Impact on clot stability, Journal of Thrombosis and Haemostasis, vol.5, pp.116-124, 2007.

D. A. Gabriel, K. Muga, and E. M. Boothroyd, The effect of fibrin structure on fibrinolysis, J. Biol. Chem, vol.267, pp.24259-24263, 1992.

C. Longstaff and K. Kolev, Basic mechanisms and regulation of fibrinolysis, J. Thromb. Haemost, vol.13, pp.98-105, 2015.

J. P. Collet, G. Montalescot, C. Lesty, and J. W. Weisel, A Structural and Dynamic Investigation of the Facilitating Effect of Glycoprotein IIb/IIIa Inhibitors in Dissolving Platelet-Rich Clots, Circ. Res, vol.90, pp.428-434, 2002.

I. Varju, P. Sotonyi, R. Machovich, L. Szabo, K. Tenekedjiev et al., Hindered dissolution of fibrin formed under mechanical stress, J. Thromb. Haemost, vol.9, pp.979-986, 2011.

C. W. Francis, V. J. Marder, S. E. Martin, and N. York, Demonstration of a large molecular weight variant of the chain of normal human plasma fibrinogen

, Biol. Chem, vol.255, pp.5599-5604, 1980.

D. W. Chung and E. W. Davie, Gamma and gamma' chains of human fibrinogen are produced by alternative mRNA processing, Biochemistry, vol.23, pp.4232-4238, 1984.

K. C. Gersh, C. Nagaswami, J. W. Weisel, and S. T. Lord, The presence of á

P. J. Grant, Fibrinogen gamma-chain splice variant gamma' alters fibrin formation and structure, Blood, vol.102, pp.535-540, 2003.

M. M. Domingues, F. L. Macrae, C. Duval, H. R. Mcpherson, K. I. Bridge et al., Thrombin and fibrinogen á impact clot structure by marked effects on intrafibrillar structure and protofibril packing, Blood, vol.127, pp.487-495, 2016.

L. A. Falls and D. H. Farrell, Resistance of gammaA/gamma' fibrin clots to fibrinolysis, J. Biol. Chem, vol.272, pp.14251-14257, 1997.

R. S. Lovely, L. A. Falls, H. A. Al-mondhiry, C. E. Chambers, G. J. Sexton et al., Association of gammaA/gamma' fibrinogen levels and coronary artery disease, Thromb. Haemost, vol.88, pp.26-31, 2002.

S. Uitte-de-willige, M. C. De-visser, J. J. Houwing-duistermaat, F. R. Rosendaal, H. L. Vos et al., Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen ' levels, Blood, vol.106, pp.4176-4183, 2005.

M. N. Mannila, R. S. Lovely, S. C. Kazmierczak, P. Eriksson, A. Samnegard et al., Elevated plasma fibrinogen gamma' concentration is associated with myocardial infarction: effects of variation in fibrinogen genes and environmental factors, J. Thromb. Haemost, vol.5, pp.766-773, 2007.

E. Y. Cheung, H. L. Vos, M. J. Kruip, H. M. Den-hertog, J. W. Jukema et al., Elevated fibrinogen ' ratio is associated with cardiovascular diseases and acute phase reaction but not with clinical outcome, Blood, vol.114, pp.4603-4604, 2009.

R. A. Ariëns, T. Lai, J. W. Weisel, C. S. Greenberg, and P. J. Grant, Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms, Blood, vol.100, pp.743-54, 2002.

E. M. Scott, R. A. Ariëns, and P. J. Grant, Genetic and Environmental Determinants of Fibrin Structure and Function, Arterioscler. Thromb. Vasc. Biol, vol.24, pp.1558-1566, 2004.

A. H. Henschen-edman, Fibrinogen Non-Inherited Heterogeneity and Its Relationship to Function in Health and Disease, Ann. N. Y. Acad. Sci, vol.936, pp.580-593, 2001.

A. Casini, C. Duval, X. Pan, V. Tintillier, C. Biron-andreani et al., Fibrin clot structure in patients with congenital dysfibrinogenaemia, Thromb. Res, vol.137, pp.189-195, 2016.

H. R. Roberts, T. E. Stinchcombe, and D. A. Gabriel, The dysfibrinogenaemias, Br. J. Haematol, vol.114, pp.249-257, 2001.

M. Matsuda and T. Sugo, Hereditary Disorders of Fibrinogen, Ann. N. Y. Acad. Sci, vol.936, pp.65-88, 2001.

P. De-moerloose and M. Neerman-arbez, Congenital fibrinogen disorders, Semin. Thromb. Hemost, vol.35, pp.356-366, 2009.

R. Asselta, S. Duga, and M. L. Tenchini, The molecular basis of quantitative fibrinogen disorders, Journal of Thrombosis and Haemostasis, vol.4, pp.2115-2129, 2006.

P. De-moerloose, A. Casini, and M. Neerman-arbez, Congenital Fibrinogen Disorders: An Update, Semin. Thromb. Hemost, vol.39, pp.585-595, 2013.

R. Asselta, M. Platè, M. Robusto, M. Borhany, I. Guella et al., Clinical and molecular characterisation of 21 patients affected by quantitative fibrinogen deficiency, Thromb. Haemost, vol.113, pp.567-576, 2015.

A. Casini, M. Neerman-arbez, R. A. Ariëns, and P. De-moerloose, Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management, J. Thromb. Haemost, vol.13, pp.909-919, 2015.

C. H. Nair, G. A. Shah, and D. P. Dhall, Effect of temperature, ph and ionic strength and composition on fibrin network structure and its development, Thromb. Res, vol.42, pp.809-816, 1986.

M. E. Carr, D. A. Gabriel, and J. Mcdonagh, Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels, Biochem. J, vol.239, pp.513-519, 1986.

M. E. Carr and J. Hermans, Size and density of fibrin fibers from turbidity, Macromolecules, vol.11, pp.46-50, 1978.

B. Blombäck, K. Carlsson, B. Hessel, A. Liljeborg, N. Åslund et al., Native fibrin gel networks observed by 3D microscopy, permeation and turbidity, Biochim. Biophys. Acta -Protein Struct. Mol. Enzymol, vol.997, pp.96-110, 1989.

A. S. Wolberg, Thrombin generation and fibrin clot structure, Blood Rev, vol.21, pp.131-142, 2007.

J. W. Weisel, . Fibrinogen, and . Fibrin, Advances in Protein Chemistry, vol.70, pp.247-299, 2005.

K. C. Gersh, C. Nagaswami, and J. W. Weisel, Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes, Thromb. Haemost, vol.102, pp.1169-75, 2009.

F. Swieringa, C. C. Baaten, R. Verdoold, T. G. Mastenbroek, N. Rijnveld et al.,

P. E. Meijden, Platelet control of fibrin distribution and microelasticity in thrombus formation under flow, Arterioscler. Thromb. Vasc. Biol, vol.36, pp.692-699, 2016.

K. B. Neeves, D. A. Illing, and S. L. Diamond, Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow, Biophys. J, vol.98, pp.1344-1352, 2010.

K. C. Gersh, K. E. Edmondson, and J. W. Weisel, Flow rate and fibrin fiber alignment, J. Thromb. Haemost, vol.8, pp.2826-2828, 2010.

M. L. Simpson, N. A. Goldenberg, L. J. Jacobson, C. G. Bombardier, W. E. Hathaway et al., Simultaneous thrombin and plasmin generation capacities in normal and abnormal states of coagulation and fibrinolysis in children and adults, Thromb. Res, vol.127, pp.317-323, 2011.

L. Seyve, C. Richarme, B. Polack, and R. Marlu, Impact of four direct oral anticoagulants on rotational thromboelastometry (ROTEM), Int. J. Lab
URL : https://hal.archives-ouvertes.fr/hal-01958965

. Hematol, , vol.40, pp.84-93, 2018.

M. Molteni, D. Magatti, B. Cardinali, M. Rocco, and F. Ferri, Fast twodimensional bubble analysis of biopolymer filamentous networks pore size from confocal microscopy thin data stacks, Biophys. J, vol.104, pp.1160-1169, 2013.

S. Münster and B. Fabry, A simplified implementation of the bubble analysis of biopolymer network pores, Biophys. J, vol.104, pp.2774-2779, 2013.

E. De-smedt, Advanced thrombinoscopy, 2007.

K. G. Mann, K. Brummel, and S. Butenas, What is all that thrombin for?, Journal of Thrombosis and Haemostasis, vol.1, pp.1504-1514, 2003.

R. M. Kremers, R. J. Wagenvoord, and H. C. Hemker, The effect of fibrin(ogen) on thrombin generation and decay, Thromb. Haemost, vol.112, pp.486-494, 2014.

R. J. Wagenvoord, J. Deinum, M. Elg, and H. C. Hemker, The paradoxical stimulation by a reversible thrombin inhibitor of thrombin generation in plasma measured with thrombinography is caused by & 2-macroglobulin-thrombin

, Thromb. Haemost, vol.8, pp.1281-1289, 2010.

T. Furugohri, N. Sugiyama, Y. Morishima, and T. Shibano, Antithrombinindependent thrombin inhibitors, but not direct factor Xa inhibitors, enhance thrombin generation in plasma through inhibition of thrombin-thrombomodulinprotein C system, Thromb. Haemost, vol.106, pp.1076-1083, 2011.

C. Kamisato, T. Furugohri, and Y. Morishima, A direct thrombin inhibitor suppresses protein C activation and factor Va degradation in human plasma: Possible mechanisms of paradoxical enhancement of thrombin generation

, Thromb. Res, vol.141, pp.77-83, 2016.

N. R. Lang, S. Münster, C. Metzner, P. Krauss, S. Schürmann et al., Estimating the 3D pore size distribution of biopolymer networks from directionally biased data, Biophys. J, vol.105, pp.1967-1975, 2013.

M. C. Naski and J. A. Shafer, A kinetic model for the alpha-thrombin-catalyzed conversion of plasma levels of fibrinogen to fibrin in the presence of antithrombin III, J. Biol. Chem, vol.266, pp.13003-13013, 1991.

H. J. Tapp, C. Grundmann, M. Kusch, and H. Konig, Calibrating Thrombin Generation in Different Samples: Less Effort with a Less Efficient Substrate. Open Atheroscler, Thromb. J, vol.2, pp.6-11, 2009.