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Geometric lattice models and irrational
conformal field theories

Abstract:

In this thesis we study several aspects of two-dimensional lattice models of statistical physics
with non-unitary features. This bottom-up approach, starting from discrete lattice models,
is helpful to understand the features of the associated conformal field theories. They are non-
unitary and often irrational, logarithmic or even non-compact. First, we study the problem
of the entanglement entropy in non-unitary spin chains and its interpretation in loop models.
We discuss the role of the effective central charge, a relevant quantity to study the next
problems in this thesis. We then address two problems related to the Chalker-Coddington
model, an infinite-dimensional supersymmetric chain important for the study of the plateau
transition in the integer quantum Hall effect. Since the model has an infinite number of
degrees of freedom, it has been proposed to study it with a series of truncations. We present
new results based on this approach and extend this methodology to the case of Brownian
motion in its supersymmetric formulation. Next, a new model is proposed to interpolate
between class A and class C. The Chalker-Coddington model is a particular realisation of
class A whereas class C, describing the physics of the spin quantum Hall effect, can be
related to a model of percolation. This interpolating model provides an example of a RG-
flow between a non-compact CF'T and compact one. The last part of this thesis deals with the
problem of classifying observables in lattice models with discrete symmetries. The process
is illustrated on the Potts model and its symmetry under the group of permutations and
previous results are extended for non-scalar operators. This approach is important to study
indecomposability of non-unitary models and can be used to study models such as percolation
in higher dimensions.



Modéles géométriques sur réseau et théories
conformes irrationnelles

Résumé :

Dans cette thése nous étudions différents aspects des modéles critiques non-unitaires de
physique statistique en deux dimensions. Notre approche, partant de modéles discrets sur
le réseau, permet d’en apprendre plus sur les théories conformes associées. Celles-ci sont
non-unitaires et souvent irrationnelles, logarithmiques ou encore non-compactes. Pour com-
mencer, le probléme de ’entropie d’intrication dans des chaines de spin non-unitaires et son
interprétation dans les modéles de boucles sont considérés. Le role de la charge centrale ef-
fective, une quantité pertinente pour étudier aussi d’autres problémes de ce manuscrit, y est
discuté. Ensuite, nous regardons deux problémes liés au modéle de Chalker-Coddington, une
chaine de spin supersymétrique de dimension infinie, importante pour 1’étude de la transition
entre plateaux dans l'effet Hall quantique entier. Puisque ce modéle a un nombre infini de
degrés de liberté, il a été proposé de considérer une série de troncations. Nous présentons
de nouveaux résultats basés sur cette approche et développons cette méthode dans le cadre
du mouvement Brownien dans sa formulation supersymétrique. Ensuite, un nouveau modéle
est proposé pour interpoler la classe A et la classe C de l'effet Hall quantique. Le modéle de
Chalker-Coddington est une réalisation particuliére de la classe A tandis que la classe C, qui
décrit la physique de I'effet Hall quantique de spin, est relié & un modéle de percolation. Ce
modeéle donne un exemple de flot sous ’action du groupe de renormalisation entre une théorie
conforme compacte et non-compacte. La derniére partie de cette thése discute la classification
des observables sur réseau avec une symétrie discréte. Le processus est illustré sur le modéle
de Potts avec sa symétrie sous 'action du groupe des permutations et des résultats déja
connus sont étendus au cas des opérateurs non-scalaires. Cette approche est importante dans
I’étude de I'indécomposabilité des modéles non-unitaires et peut étre utilisée pour étudier la
percolation en dimension supérieure.
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1 Introduction to non-unitary critical phenomena

1.1 Universality and CFT

Many interesting problems in physics involve a large number of degrees of freedom and are
effectively described by a quantum field theory. The continuum limit of a generic system
is described by a massive field theory, where correlation functions decay exponentially with
a characteristic correlation length £&. However, at some particular values of the physical
parameters, a model can become critical and its correlation functions decay algebraically.
The field theory description becomes massless and scale invariant. The two-point function
of a local observable O(Z) has the following behaviour

(O@OF) ~ ﬁ (1.1)

where ¥ and i are positions such that |Z — ¢] is much larger than any microscopic scale, A is
an amplitude and Ay is the conformal dimension associated with 0. The set of conformal
dimensions, or critical exponents, is universal. In other words, the physical properties of the
system at large scale do not depend on the microscopic details but rather on qualitative prop-
erties such as symmetries or the dimension. The form of the correlation function (1.1) comes
from the underlying global symmetry that all critical systems share: scale invariance. In two
dimensions, the classification of scale invariant quantum field theory is strongly constrained
since, in most cases, systems are even invariant under local conformal transformations. These
transformations are functions preserving scale invariance locally such as translations, rota-
tions or dilatations. The general framework to describe critical systems is called Conformal
Field Theory (CFT) and was very successful after the pioneering work of Belavin, Polyakov
and Zamolodchikov [1]. In two dimensions, the conformal symmetry is infinite-dimensional
and encoded in the celebrated Virasoro algebra

Znn? = D)oo (1.2)

LnaLm: - an
[ = (n—m)Ln +12

where ¢ € R is the central charge, an universal parameter. Classifying conformal field theories
is reduced to the study of representations of this algebra. This led to the very famous minimal
models [2, 3], among them can be found very important universality class such as the Ising
model, the tricritical Ising model and the 3-state Potts model.

The origin of universality can be understood with the Renormalisation Group (RG),
formulated by Wilson [4,5]. Let us take a simple example and consider a square lattice
where each vertex is a small magnet (a spin). The RG procedure aims at describing the
system at a scale larger than the microscopic one. This is illustrated by the decimation
process. The large distance behaviour or correlation functions can be obtained by summing
over the interactions at small distance to obtain an effective description, only describing the
physics at a larger scale. In the square lattice of magnets, this is obtained by grouping
together spins in the same vicinity and averaging over the local magnetisation. The process
is iterative and at each step a new Hamiltonian is obtained. It defines a flow in the space



of coupling constants called renormalisation group flow. A critical theory is a scale invariant
fixed point of the RG-flow. Conformal field theory’s main goal is to provide a description of
fixed points under the action of the RG. It is thus not always useful to study two different
models if they, in the end, flow toward the same fixed point. The aim of the RG procedure
is to map the space of Hamiltonian and classify the different universality classes.

Despite many breakthroughs in statistical physics, condensed matter or string theory
that came from conformal field theory, the description of many complex systems remains
mysterious. In this thesis, we are interested in irrational non-unitary conformal field theories
and their lattice discretisations. Contrary to the unitarity case, many new properties make
this task intricate. Since this thesis is primarily concerned with non-unitary models, we start
by describing two examples of such models: the plateau transition in the quantum Hall effect
in section 1.2 and polymer models in section 1.3. Several specific properties of non-unitary
models, relevant for this thesis, are then presented section 1.4.

1.2 The quantum Hall effect

The integer quantum Hall effect is a phenomenon observed in a two-dimensional gas of
electrons subject to a strong magnetic field perpendicular to the sample (see figure 1.1a). In
the classical Hall effect the electrons, driven by the current, are deviated by the magnetic
field, thus creating a transverse current.

Figure 1.1 — On the left: Experimental setup to measure the Hall effect. A current goes
through a piece of metal subject to a perpendicular magnetic field B. A resulting voltage
Vi is measured in the transverse direction. On the right: resistance of a piece of metal as
a function of the amplitude of the magnetic field B. We observe a quantised resistance with
plateaux. The figures are taken from [6]

The transverse resistance p,, reads

B

=2 1.3
Py on (1.3)
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where B is the amplitude of the magnetic field, e is the electric charge and n the density of the
cloud of electrons. In 1980, Von Klitzing discovered experimentally the (integer) quantum
Hall effect [7]. In a regime of very strong magnetic field and low temperature, the transverse
resistance develops plateaux at the particular values

1k

Py — (1.4)

ne?’
where n is an integer called filling factor and h the Planck constant. Under a change of the
magnetic field B, the resistance forms plateaux as illustrated in figure 1.1b. The existence
of the plateau can be understood by considering the Hamiltonian H;, of a single electron in
a two-dimensional space with a perpendicular magnetic field

H, (ﬁ+ e%f)Z, (1.5)

" 2m
where the vector potential A is chosen in the Landau gauge A = (0, Bx,0) and p is the
momentum. The energies of eigenfunctions are called Landau levels and labelled by an
integer n

1

E, = hwg <n + 5) : (1.6)

where wp = |e| B/m is the cyclotron frequency. Each electron in a Landau band is delocalised.
The Landau levels have an enormous degeneracy N, identical for each level,

S
N (1.7)

proportional to the area S of the sample. Surprisingly the quantisation (1.4), one of the most
accurately measured universal phenomena, needs an other key component to be explained:
disorder. In practice the Hamiltonian reads

H=H, +V( (1.8)

where V' is a random potential created by the disorder. As a consequence, in a sample of
metal with impurities, the Landau levels widen and can even overlap (see figure 1.2a).

11



delocalised

localised

(a) (b)

Figure 1.2 — Spectrum of the system with F the energy and p(FE) the density. On the left:
In a pure system the (non-interactings) electrons fill the Landau bands that have a huge
degeneracy. All states are delocalised. On the right: in the presence of disorder the bands
widen and states are localised except near the original Landau levels.

The electrons fill the vacant eigenstates up to a certain level called Fermi level. States
between two Landau levels are localised around extrema of V', hence they do not contribute
to the conductivity. However, eigenstates with the energy of a Landau level are delocalised
and provide a current. Notice that the degeneracy, and so the density of the bands, can
be changed by varying the magnetic field. This affects the Fermi level. As a consequence,
jumps are observed whenever the Fermi level crosses the middle of a Landau band, creating
a sudden change in the conductivity. This simplistic explanation gives a picture of what
happens but does not explain why the jumps are exactly multiples of h/e?. We refer to good
reviews such as [8| for more details.

The presence of plateaux, and the amplitude of the jumps are perfectly understood.
However, the physics at the transition [9] remains mysterious. This plateau transition is
believed to be described by a second order phase transition where the localisation length &
of a wave function at the Fermi energy E diverges as it comes close to a Landau energy FE,,

1

{x E— B,

(1.9)

The critical exponent v, called the localisation length exponent, is independent of the Landau
band index n. Its value has been the subject of many investigations over the years. Experi-
mental works report a value close to v = 2.38, using a heterostructure GaAs-AlGaAs [10,11].
A lattice model was proposed by Chalker and Coddington in 1988 [12] to study the critical
properties of the transition. Recent numerical simulations report an exponent v in the range
2.55—2.6 [13—17|. Many exacts approaches were proposed such as: conformal restriction [18§],
non-linear ¢ model description [19].

There exists a second kind of plateau transition called spin quantum Hall effect (SQHE)
[20,21]. It is the analog of the IQHE but charge transport is replaced by spin transport. The
spin Hall conductance measures the spin current created in the system by a spatially varying

12



Zeeman magnetic field. The spin conductivity o, is defined by

Ji = Oy (—diZ;y)) (1.10)

with j, the spin current in the direction x and B* the Zeeman field perpendicular to the
sample in the direction z. The role of the electric field in the IQHE is played by the derivative
of the Zeeman field.

The IQHE and SQHE plateau transitions are quantum systems in a two dimensional
space. Therefore the field theory describing the system can naturally be expected to be a
2+ 1D quantum or a 3D Euclidean field theory. However it is possible to take advantage that
electrons are not interacting to reduce the problem to a 14+ 1D quantum or 2D Euclidean field
theory. This is explained in an example later in this manuscript. Therefore all the machinery
of conformal field theory in two dimensions can be applied to this phase transition. From
the point of view of quantum mechanics the system is perfectly unitary. However we are left
with one difficulty to overcome, the presence of disorder. Conformal field theory describes
long range features and correlation functions averaged over the random potential. The two
possibilities to deal with this complication are the replica trick and the supersymmetric
method [22-25]. Later in this thesis, the second one is explored. However using those methods
to deal with the disorder breaks the unitarity of the model. The conformal field theory
obtained is a textbook case exhibiting many non-unitary features. A lattice regularisation
of this universality class, known as the Chalker-Coddington model, gives a description in
terms of a network model. The main difficulty comes from its supersymmetric formulation,
where each site (in a 1D quantum chain) has an infinite dimensional representation of the
superalgebra gl(2]2). The model is said to be non-compact since, even in finite-size, there is
an infinite number of degrees of freedom. It is thus a rich laboratory to develop the formalism
of non-unitary conformal field theory.

1.3 Geometric systems and polymers

Many geometrical models in two dimensional statistical physics are described by a non-
unitary conformal field theory. In many cases, it can be traced back to the non-local nature
of the objects of interest. For example, a typical observable in percolation [26,27], a system
of uncorrelated bonds, is the probability of having two given sites in the same cluster (see
figure 1.3a). This probability defines a correlation function that cannot be described in a
unitary conformal field theory. In many cases, the apparent non-locality of the model can
be replaced with a perfectly local description where some Boltzmann weights are negative
or complex [28]. One of the most famous example is the relation between the Potts model
described in terms of Fortuin-Kasteleyn clusters [29], the 6-vertex model and loop models.
Many other geometrical models have a loop representation [30, 31|

13



Figure 1.3 — On the left: typical configuration of percolation on a two-dimensional square
lattice. At criticality, the objects considered are clusters that propagate on long distances.
A single cluster is drawn in red. On the right: a typical path of a self-avoiding walk.

Polymers models are also an interesting class with rich and diverse behaviours. They
describe very long chains made of monomers that interact with each other. This family of
systems has many connections with quantum systems, especially supersymmetric spin chains
[32]. Geometrically, a polymer does not close on itself and can be seen as the Feynman path
of bosons and fermions [33]. The connections between loop models and quantum mechanical
models are not restricted to polymers models, see for instance [34| for an application to
topological phases and quasiparticles in 2 + 1 dimensions. A famous example of a polymer
model is the self-avoiding walks (SAWs) (see figure 1.3b) where two monomers cannot be on
the same edge, corresponding to the O(n) model [35] in the limit n — 0 [36]. Its study is
very closely related to the problem of the plateau transition in the quantum Hall effect. We
will observe that the geometric description of the plateau transitions are in fact close to a
polymer system. In particular, an interesting problem is to study two interacting oriented
self-avoiding walks on a square lattice [37].

An additional aspect of polymer models is particularly intriguing. The phase diagram
of the O(n = 0) model has been studied for a while [38,39]. There exists an interesting
tri-critical line where two points are exactly solvable. The first, found by Blote and Nienhuis
and called point Ogy, is an interesting non-compact conformal field theory. On the other
hand, the point fpg was studied by Duplantier and Saleur [40] and found to correspond to
percolation, a compact conformal field theory. The behaviour of the O(n) models between
those two points is still not understood. It remains an important point to study the RG-
flow between those two universality classes. It would provide an interesting example of a
non-unitary RG-flow between two ¢ = 0 theories.
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1.4 Non-unitary features

In this subsection, several features of non-unitary models are presented. We will focus on
interesting properties, relevant to the models studied in the context of this thesis.

1.4.1 General considerations

Let us first start with general considerations. A non-unitary model is described by a transfer
matrix 7" in its two-dimensional description or by a one-dimensional quantum Hamiltonian
H. Both are, in general, related by what is called the anisotropic limit, where the contin-
uum limit in the 2d system is taken only in one spatial direction labelled as time. In a
classical model, non-unitarity can usually be detected if the local Boltzmann weights of some
configurations are negative or complex. Indeed the Osterwalder-Schrader reconstruction the-
orem [41] states that if the Euclidean correlators satisfy the condition of reflection positivity
then the quantum field theory is unitary. In general it is not satisfied if Boltzmann weights
are not positive or if correlators involve non-local objects. For many systems, there exists a
way to trade the apparent non-locality for the non-positivity of the local weights. An exam-
ple is provided in the second chapter where the identification between the loop model based
on the Temperley-Lieb algebra [42,43] and the 6-vertex model is detailed. For the quantum
system, the Hamiltonian is non-Hermitian

H'# H. (1.11)

In practice, having negative or complex weights leads to some difficulties in a numerical
approach. Moreover, even though a non-Hermitian Hamiltonian can be disconcerting or even
considered non physical, it is a very natural object in statistical physics.

1.4.2 Non-unitary representations of the Viraso algebra and negative conformal
dimensions

One of the most unnerving property of non-unitary systems is the possibility of having
negative conformal weights. Naively, a two-point correlator (1.1) with hp < 0 diverges as the
distance between the points grows. Of course this is very strange and, a priori, non physical.
The resolution of this apparent issue comes from the precise relation between a lattice model,
where a real correlation is measured, and the conformal field theory. Indeed, the conformal
vacuum |0) is assumed to exist and to satisfy the following contraints

L0y =0, n>—1, (1.12)

exactly as for a harmonic oscillator. In fact, the conformal vacuum is not the actual ground
state of the system since there is a state with a lower energy. Eigenvalues of the dilatation
operator Ly correspond to the energies and, in the radial quantization, L, satisfies

L0|0> = 07 LO‘hmin> = h’min|hmin>- (113)
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for hpnin < 0. As a consequence, a two-point function in the quantized language reads

<h’min’¢(0)¢(r)|hmin> (1.14)

where the expectation value of the operators is computed in the actual ground state and
not the conformal vacuum. It leads to correlation functions that decay effectively with the
distance. Nevertheless, the inner structure of CFT is profoundly modified by the non-unitary
representation of the Virasoro algebra. Note that the free energy of the system and its finite-
size corrections do not provide anymore a measure of the central charge as expected by the
usual formula [44]

L _ _Tc -1
JE = L= 22+ 0(L7), (1.15)
but instead
L _ L _ TCeff L_l 1.1

where f., is the bulk free energy and c.g is called the effective central charge and in many
cases is explicitly ceg = ¢ — 24hpmi, [45].

1.4.3 Indecomposability and logarithmic correlators

The loss of unitarity permits a CFT to be indecomposable. Logarithmic conformal field
theories have a non-diagonalisable dilatation operator Ly [46]. As an example, if it contains

a Jordan cell of rank 2
A1
Ly = ( 0 A ) . (1.17)

then there exists two fields ¢ and v, with the correlation functions

(W(0)y(r)) = 0, (1.18)

WOB0) = s (1.19)
2blogr

(0(0)o(r)) = T (1.20)

The quantity b is universal and called indecomposability parameter. Note that the normal-
isation in (1.18) is already fixed and it is impossible to simply renormalise ¢ to change b.
Since the pioneering work of Gurarie [47], LCFT has become a very active subject [48] and
much progress has been made thanks to the study of indecomposable algebras [49,50]. The
structure of the logarithmic correlation functions can involve higher ranks of Jordan cells,
making the study of the conformal field theory much more challenging. The representation is,
in the bulk case, believed to be wild [51], meaning that a given theory can contain arbitrary
large Jordan cells. Of course, an indecomposable representation of the Virasoro algebra is
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also non-unitary. Logarithmic conformal field theories are not simple curiosities with a few
scarce examples. Many non-unitary models are indecomposable and it is believed that not
being a LCFT is the exception rather than the rule. In particular, all non-trivial theories
at ¢ = 0 must be logarithmic, this is known as the ¢ — 0 catastrophe [52]|. Singularities
appear in the operator product expansions due to the collision of k (k being the rank of the
resulting Jordan cell) conformal dimensions in certain limits. These divergences can be fixed
by introducing logarithmic partners that mix in a Jordan cell as in (1.17). In the case of
¢ = 0 theories, a vanishing central charge implies that the stress energy tensor must have a
logarithmic partner. The set of correlations (1.18) is satisfied with 1 replaced by the energy
momentum tensor 7" and ¢ by its logarithmic partner ¢. The indecomposability parameter
is believed to be universal and its value is known in many cases. For example b = —5/8
for dilute critical polymers and b = 5/6 for percolation. The logarithmic structure and the
value of b can be extracted even in finite size by using the Hamiltonian or the transfer ma-
trix [53,54]. It is, however, hard to extract them directly because it requires large sizes and is
subject to a slow convergence even for the most simple cases. In many cases, the logarithmic
structure of LCFT can be studied as a limit of ordinary (non-unitary but not indecompos-
able) CFTs. This was realised first by Cardy [55,56] when he proposed a mechanism to
explain the appearance of logarithmic terms. Whenever, in a certain limit, two conformal
fields collide (have the same conformal dimension), a resonance phenomenon happens and a
log is produced in a correlation function. Those ideas, particularly powerful in the presence
of additional symmetries, were applied successfully to the Potts model (in its formulation in
terms of percolating clusters) [57,58] and to the plateau transition in the integer quantum
Hall effect [59].

1.4.4 Irrationality and non-compactness

The systematic characterisation of many CFTs is often made possible thanks to the ratio-
nality of the theories [60, Chapter 3|. A 2D conformal field theory is rational if it possesses
a finite number of primary fields of some extended algebra thus simplifying drastically the
analysis. The most famous examples of rational conformal field theories are the minimal
models [1]. Conversely, irrational conformal field theories have an infinite number of primary
fields and, because of their complexity, many aspects are not perfectly understood. On the
lattice, many geometrical models are discrete regularisations of non-rational CF'Ts and are
used to study them. For instance, most well-known logarithmic conformal field theories are
non-rational (see [61] for an exception). Some irrational CFTs are called quasi-rational [62]
if they are described by an infinite number of fusion rules but any fusion of two representa-
tions decomposes on a finite sum of representations. Particular extreme cases of irrational
models are the non-compact CFTs (see below) for which the set of primary fields is not even
countable.

Many interesting systems have an infinite number of degrees of freedom and are called
non-compact. A very simple example is the Brownian motion where each edge can be visited
an arbitrary number of times. It is also the case for the supersymmetric formulation of the
Chalker-Coddington model describing the plateau transition in the IQHE. In the continuum,
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a theory is said to be non-compact if described by a field living in a non-compact space. As
an example, the Brownian motion is described [63], by a bosonic field ¢ with free Euclidean
action

S = /de (Vo). (1.21)

The field ¢ lives on the real axis, which is non-compact. In practice, these theories have a
continuum of critical exponents, whereas in usual CF'T, the set of conformal dimensions is
discrete. The consequence on the lattice are very important. Given a lattice observable O, it
can usually be written as a sum over primary operators and their descendants. In the case of
a continuum of fields this sum becomes naturally an integral. As a consequence, a two-point
function has the form

o0

(OO atice — / dp()r—200+e? (1.22)

=0

where p plays the role of a non-universal density and 4 is the smallest conformal dimension
appearing in the decomposition of O on conformal fields. This is very different to what is
observed for compact theories where the largest contribution dominates all the subleading
terms. Here, for large distances r, the correlation functions have logarithmic corrections

(O(0)O(r) attice ~ 122 (log )™ (1.23)

where «, depends on the precise behaviour of p in the vicinity of x = 0. Let us emphasize
that the logarithmic part in the correlation function has a quite different origin than the
one encountered in logarithmic conformal field theory. It comes from the lattice discretisa-
tion whereas, for LCFTs, the logarithm correlation functions are intrinsic properties of the
continuum.

A few years ago, it was realised that a non-compact continuum limit can be obtained from
the thermodynamic limit of a compact lattice model. It is far from obvious that a model with
a finite number of degrees of freedom can flow toward a non-compact fixed point. The first
instance of this observation was in a paper [64| of Jacobsen, Read and Saleur where, in the
supersymmetric formulation of self-avoiding walks, they introduced the possibility of having
loop crossing. The critical point involves non compact bosonic fields despite the apparent
compactness of the model on the lattice. The same situation was later found in many models
such as the antiferromagnetic Potts model (and the staggered six-vertex model) [65], a pair
of coupled Potts models [66] or af,ll spin chains [67,68]. Non-compact continuum limits
are maybe more common than what was previously thought and not constrained to curious
non-unitary and non-physical models. An additional example is the 0gy point of polymers
related to the black hole theory SL(2,R)/U(1) [69].

As mentioned earlier, many systems of great interest are already non-compact (infinite-
dimensional) on the lattice. It is natural to hope that they can be studied using truncations
[37] where maybe the perturbation introduced is not relevant in the RG picture. Indeed,
compact lattice models are much more convenient from the point of view of numerics and
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exact methods (integrability). In general, the truncation changes of course the universality
class but the untruncated model could still be approached by a series of successive truncations.
In the case of the Brownian motion, this procedure is very easy to understand. Let us take a
Brownian path with the additional constraint that an edge can be visited at most k£ times. All
configurations of the usual Brownian motion are recovered in the limit £ — oo but the nature
of the model at finite k is far from being obvious. Note that the case of k = 1 is actually
well known since it corresponds to self-avoiding walks, a particular point of the O(n) model
discussed previously. The case of the Brownian motion is interesting since the untruncated
model is already known.

The situation is extremely different in the case of the plateau transition in the Integer
quantum Hall effect. Very few exact results were found for its CFT and critical exponents
remain unknown. This program of truncations was partially proposed by Marston and Tsai
[70]. They considered hard on-site truncations and approached the IQHE transition with a
series of non-critical truncations. This idea was pushed further in the recent work of Ikhlef,
Fendley and Cardy [37] where they proposed to define a series of critical truncations. The
first one was studied and found to be in a different universality class than the full theory.
Nevertheless, some aspects are related to the real plateau transition and, in particular, it is
non-compact in the continuum. We would like to push this program further and understand
the relation between a full non-compact model and its compact (in terms of the lattice degrees
of freedom) truncations.

1.4.5 PT symmetry and RG-flow

The Hermiticity of a Hamiltonian is not a necessary condition to have a valid quantum
system. However, it is required that the spectrum is real [71]. The class of quasi-Hermitian
Hamiltonians are non-Hermitian operators such that an invertible operator n exists and
satisfies

nH = H™n. (1.24)
This property ensures that H is Hermitian with respect to the inner product
(ulv), = (ulnlv). (1.25)

The Hamiltonian can be transformed to a Hermitian operator n'/2Hn~'/2. Note that such
maps are usually hard to find. The quasi-Hermiticity property ensures that the spectrum of
H is real. An important criterion to determine if a Hamiltonian is quasi-Hermitian is the
PT-symmetry. Let us first give some definitions and consider a spin chain of length L with
an on-site basis |i), ¢ = 1,...,d. The space reversal operator P is linear and acts on the
Hilbert space H = V®F as

Pliy,..yip) = |ig, ... i1). (1.26)
The time reversal operator 1" acts as the identity

Tlir, oovis) = lin, .. ,iz) (1.27)
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but is an antilinear operator. It means that any matrix operator M is transformed under the
action of T as

TMT = M~, (1.28)
with M* the conjugate operator of M. A Hamiltonian H is said to be PT-symmetric if
[PT,H]=0. (1.29)

This criterion is not exactly sufficient to obtain real spectra, the eigenstates of the Hamilto-
nian also need to be PT-invariant. This criterion is very useful in the context of the XXZ
spin chain and its loop representation [72,73] and many non-Hermitian systems are described
by a PT-symmetric Hamiltonian.

This extra symmetry permits the extension of several results obtained in unitary con-
formal field theory. In particular, a version of the celebrated c-theorem, found in 1986 by
Zamolodchikov [74], exists for PT-invariant Hamiltonian [75]. We first recall the classical
result in unitary CFT. The c-theorem states that, along an RG-flow, there exists a scaling
function ¢(s) that decreases monotonically. At a fixed point, ¢(s) corresponds to the central
charge of the universality class. In other words, an RG flow between two universality classes
always goes towards the theory with the smallest central charge. This very famous result is
true only in the unitary case. Different versions of this theorem exist and the function c¢(s)
is interpreted as a measurement of the number of degrees of freedom at a given scale s. Note
that equivalent results exist in higher dimension where the irreversibility of the flow is not
measured by c¢. Whether a similar theorem exists in the non-unitary case is an important
question. The breaking of unitarity allows a flow with increasing c(s).

A version of this theorem was recently proposed by Castro-Alvaredo, Doyon and Ravanini
in [75]. The generalisation of the c-theorem [75] to this class of models shows that the
irreversibility of the flow is measured by the effective central charge, mentioned earlier in
1.4.2. This important result shows that this quantity is important from a physical point of
view and a proper way to quantify the number of degrees of freedom.

1.5 The plan of this manuscript

In the second chapter, based on [76], the concept of entanglement entropy in non-unitary
CFTs is discussed. Ideas coming from quantum information have radically changed our
understanding of quantum systems. The entanglement entropy has many applications in
condensed matter and statistical physics. However, most of results are derived for unitary
systems where probabilities and norms are well-defined and the non-unitary case remained
unexplored until the last few years. After discussing the relation between conformal field
theory and quantum information theory we propose a new approach. The concept of quan-
tum group entanglement entropy is discussed and motivated by symmetries and geometrical
considerations. A link with loop models is established and a geometric way of computing
entanglement directly within this formalism is given. Our main toy model is the Potts model
in its vertex representation related to the U,sl(2) invariant XXZ chain. The quantum group
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entanglement entropy distinguishes the role of the central charge and the effective central
charge. The proposed approach is then applied to different systems such as the Restricted
Solid-on-Solid models or the supersymmetric spin chain si(2|1).

The third chapter, based on [77], discusses the truncations of the Chalker-Coddington
model. The beginning presents the network model and the first truncation introduced and
studied by Ikhlef, Fendley and Cardy. They considered in their paper an integrable deforma-
tion of this model in order to use usual techniques of integrability. The equivalence between
the integrable deformation and the first truncation is not obvious. We study their similarities
and differences. A generalisation of the procedure to higher levels of truncation is then given.
In parallel, a similar work is done for the Brownian motion to gain some insight about the
phenomenology of this approach.

In the fourth chapter, we propose to study a flow between class A and class C in the
plateau transition of the Hall effect. Even though they describe different physical quantities,
the two classes are formally very close in terms of their lattice description. Despite their
similarities, class C is solvable and found to be related to percolation. We take advantage
of the network formalism to propose a model with a RG-flow between the two universality
classes. The direction of the flow is studied numerically and the symmetries discussed. The
advantage of our approach is to be easily generalised to describe the flow between class C and
all the truncations of the Chalker-Coddington model. In particular, it is a good playground
to understand flows in non-unitary models and extension of the c-theorem of Zamolodchikov.

In the fifth and last chapter, following the articles [78,79]|, we use the Fortuin-Kasteleyn
formulation of the (Q-state Potts model, a generalisation of the concept of percolation clus-
ters, to study non-local observables. This approach, following the original work of Cardy,
uses the underlying discrete symmetry Sg to classify the operator content of the theory.
This is in particular very interesting from the point of view of indecomposability and pro-
vides very practical examples of logarithmic correlation functions in a model. Moreover, the
nature of the observables is related to the irrationality of the theory, a common feature of
non-unitary minimal models. Our contribution to this topic is the extension of the previous
analysis to a large new class of observables. Previous works were focused on operators trans-
forming purely symmetricaly under the action of the symmetric group. The classification is
extended to any representation of the group of permutations and provides lattice definition
of non-scalar operators. In two dimensions, a connection is made with conformal field theory
and the representation of the Jones-Temperley-Lieb algebra. In particular, the conformal
dimensions and the spins of many observables are identified exactly. This is satisfied nu-
merically using Monte-Carlo simulations for percolation and transfer matrix diagonalisation.
The present approach is however not limited to two dimensions. The same analysis holds
in three dimensions where the same classification is relevant. Of course, obtaining exactly
the conformal dimensions is out of reach. Nevertheless, it is possible to predict the presence
of Jordan cells in any dimension. This formalism is very promising to study Logarithmic
Conformal Field theory in d > 2.
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2 Entanglement in non-unitary critical systems

Ideas coming from both quantum information theory and field theory have profoundly af-
fected our understanding of quantum systems at criticality. Let us consider a partition of
a quantum system into two parts A and B. The quantity called entanglement entropy Sa
(or equivalently Sg) is a measurement of the entanglement between A and B. It has many
physical implications and, in particular, important consequences in numerical simulations.
Methods such as DMRG or more generally tensor networks [80,81] were developed thanks to
the improving understanding of entanglement. They are now applied to strongly correlated
systems with great success.

For non-critical (gapped) systems, the entanglement entropy satisfies the so called area
law [82-85]

Sy ~ k Area(0A) (2.1)

where k is non-universal. In other words, the entanglement entropy grows as the size of
the boundary between A and B. Indeed, in a gapped system, correlation functions decay
exponentially. As a consequence, on a lattice, a site in A and a site in B are entangled only if
they are close to each other. Globally, the entanglement between A and B is located near their
boundary and thus S4 grows with the size of JA. Of course, in the case of critical (gapless)
systems, this simple argument breaks down. Critical systems have long-range correlation
functions that decay only algebraically. Therefore, the area law is not satisfied anymore. It
was found [86,87], in the case of 1 + 1D critical systems where A in an interval of length L
in a infinite system, that

c L
SA ~ glogg, L>a (22)

where a is a lattice cutoff and c the central charge of the associated CFT. This scaling
relation involves a universal quantity and opens many possible connections between quantum
information and conformal field theory [88,89]. It is a very natural question to ask whether
this result holds for non-unitary systems. Different approaches [90] have been investigated in
order to derive (2.2). In several cases [91,92], it is expected for non-unitary systems to have
a modified scaling relation of the form

Co L
Sy~ ?ﬁlogg (2.3)

where cq is the effective central charge.

In this chapter, this result is revisited in practical examples. The focus of the discussion
is on systems with quantum group invariance or supergroup symmetry. In particular, the
XXZ spin chain with open boundary condition is considered with its quantum group U,sl(2)
invariance [93]. The first section introduces basic concepts and recalls the definition of entan-
glement entropy as well as its interpretation in conformal field theory. The XXZ spin chain
is then briefly presented in 2.2. Its physical relevance as a description of the Potts model is
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discussed and its correspondence with a loop model is detailed. The third section 2.3 intro-
duces a new quantity, called quantum group entanglement entropy. This concept, motivated
by the loop model, is shown to have interesting properties and simple illustrations are given.
The derivation of the scaling law within our framework is then presented using Coulomb gas
techniques. Other problems can be addressed using this approach, in particular, results for
RSOS models, supersymmetric spin chains or non-compact models are all derived. Lastly,
the similarities and differences between this work and other approaches are discussed.

2.1 Entanglement entropy
2.1.1 Definitions

Consider a quantum system described by a density matrix p. In this chapter, only pure
quantum states (associated to a normalised ket [¢))) are considered hence the density matrix
is simply

p =) (). (2.4)

The state |¢) lives in a Hilbert space H. Let us assume H to be a direct product of two
subspaces H, and Hp

=My Hp. (2.5)

The reduced density matrix p, is defined as the partial trace of p, over the degrees of freedom
in B,

pa = Trpp. (2.6)
The entanglement entropy, or von Neumann entropy, is defined by
Sa=—Tra(palogpa). (2.7)

This quantity measures effectively how much the subsystem A is entangled with the subsys-
tem B. In particular, when the ket is a product of a state [104) € H4 and a state |¢g) € Hp
then

Sa=95p=0 if ) = [¥a) ® [¢B). (2.8)

Other measures of entanglement are possible. In particular, the Rényi entropies

1
N
51(4 ) = TN log Tra (p1Y) (2.9)

are a generalisation of the von Neumann entropy. Indeed the definition (2.7) is recovered
in the limit N — 1. Note that the entanglement entropy (or more generally the Rényi
entropies) is not a good measurement of the entanglement in the case of mixed states. For

instance, when p is not the density matrix of a pure state, SgN) = SJ(BN) is not satisfied. Other
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measurements of the entanglement, such as the entanglement negativity, are also interesting.
It provides, for instance, a measure of the entanglement between two disjoint parts of a
system. This chapter focuses on the von Neumann entropy (and more generally the Rényi
entropies) and extensions to other measurements of the entanglement are not considered in
this work.

2.1.2 Conformal field theory interpretation

Let us first give a brief presentation of some connections between the entanglement entropy
and conformal field theory, following the ideas of Calabrese and Cardy [94]. In order to
provide a connection between the entanglement entropy and conformal field theory, let us
consider a 1 4+ 1D quantum system at finite inverse temperature 5 = 1/T described by a
Hamiltonian H. Its density matrix reads

1
p=—e Pt (2.10)

with Z ="Tr (e*ﬁH ) the partition function, appearing here to ensure the right normalisation
Trp = 1. Given two states |¢), |¢’), the matrix element p(¢, ') = (¢|p|¢’) is the overlap
between ¢ and ¢’ after a propagation, in imaginary time evolution, at a time 7 = (. It can
be represented by the picture 2.1a.

(a) (b)

Figure 2.1 — The left figure shows the diagrammatic representation of an element of matrix
p(¢,#"). The horizontal (resp. vertical) direction corresponds to the spatial (resp. time)
space. At finite temperature, the density matrix p connects two states by a slice of the
quantum system of height §. The right figure (b) shows a picture representing the reduced
density matrix when the subsystem A is a single interval. The two dashed line of left picture
are stitched together except along A.

The trace operation corresponds, in this picture, to sewing the two dashed edges in figure
2.1a. Thus the partition function is indeed a cylinder of circumference 3. The picture for
the partial trace is very similar. A partial trace over the subsystem B is diagrammatically
obtained by only stitching together the part of the dashed lines of figure 2.1a in B. In the
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case where A is an interval, there is a cut in the middle of the cylinder 2.1b. The resulting
operator, pa, connects quantum states of H4. At zero temperature for a cylinder of infinite
length, the circumference becomes infinite and we obtain a full plane with a cut in the middle.
Note that, in the case of a non-Hermitian Hamiltonian, the mapping between the density
matrix and its path integral picture is of course still valid for the density matrix (2.10).
However the limit at zero temperature is not simply p = |0)(0|, with |0) the ground state,
but

p=0r){0c| (2.11)

where we distinguish right and left ground states. Let us disregard this issue for now and
consider the case of a Hermitian Hamiltonian with |0) = |0g) = |0z). It is now possible to
give a path integral formulation of the entanglement entropy. The idea, known as the replica
trick, is to consider the Rényi entropy for integer N. The object Tr pYY can be computed by
considering N copies of the system where each copy is connected to an other on one side of
the cut. A picture is given in the case N = 2 figure 2.2.

Figure 2.2 — Riemann surface with 2 replicas. The two blue planes are infinite and are stitched
together at their cut. Periodic boundary condition is enforced by the trace therefore the two
red lines are identified.

The quantity Tr p?Y corresponds (up to a normalisation factor) to the partition function
Zn on a N-sheeted Riemann surface. The normalisation factor for each p4 is the simple
partition function Z; on a single plane. Therefore we are left with the quantity

(2.12)



to compute. This analysis is valid for all integer values of N > 1 and the von Neumann
entropy can be derived by considering the analytic continuation in the limit N — 1

Sp=— ]1[1211 On log (%) . (2.13)

In the following, the concept of twist fields is briefly presented. The goal of this section
is not to provide a detailed mathematical description of this object and of the cyclic orbifold
but to show that computing the partition function on a N-sheeted Riemann surface can be
re-expressed as a correlation function of some operators. In particular, the derivation of the
conformal dimension of the twist field using Ward identities is not recalled since a different
approach using Coulomb gas methods is presented later in this chapter. The simple case
of a cut corresponding to a single interval [u,v] is considered. Let us take a very general
Lagrangian L[p](x, 7) for a field ¢. The Lagrangian on the Riemann surface with NV replicas
reads

N
2= [ Tage fosr(Eacsien 210
C

N =1
where the N fields {¢;} are coupled by the conditions
0i(x,07) = i (2,07), x€uw], i=1,...,N (2.15)

that are included in the definition of the domain Cy. This condition encodes the continuity
of the fields in the vicinity of the cuts. This condition on the integral domain can be re-
expressed using two fields Ty and Ty, called twist fields [95], acting respectively at the branch
points of the cut. The partition function is now a two-point function where the condition on
the integral domain is dropped

N
Zn = / T oo () Tos () e o r (= Lleem) (2.16)
i=1
Therefore the task is now to compute the two-point function
VAN, ~
ﬁ - <TN(U)TN(U)> (2.17)

where the conformal dimension of the twist field is left to be determined exactly. In general,
this can be done by considering the conformal mapping

. (Z_U)I/N (2.18)

Z—U

that transforms the N-sheeted Riemann surface to a plane (the N cuts are mapped toward
infinite lines going from the origin to the infinity). The conformal dimension Az, is computed
using Ward identities, it was found that

c 1
hry, = 21 <N — N) (2.19)
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where ¢ is the central charge of the original conformal field theory. The scaling of the
entanglement entropy can now be derived since

A
Tryply = —x oc (T (2.20)
Z
with ¢ = |u — v| being the length of the cut. Computing the Rényi entropies (2.9) is now
straightforward

(N +1)c

S(N) _
6N

A T 1-N

log Tr 4 plY ~ log//a (2.21)
with a a microscopic cut-off. The von Neumann entropy is derived by the analytic continu-
ation for real N and taking the limit N — 1

Sy~ glogf/a. (2.22)

2.1.3 The non-unitary case: first observations

The naive extension to non-unitary case is now discussed. Before considering a specific model,
we discuss the apparent issues with the scaling (2.22) and review some results found in the
literature.

First, as it was hinted earlier, the definition of the density matrix must distinguish between
right and left eigenvectors. Indeed, the field theory interpretation holds only if it is possible to
write the density matrix as the zero temperature limit of the evolution operator in imaginary
time. This definition may seem curious from the point of view of pure quantum information.
Indeed the von Neumann entropy measures the entanglement within a given quantum state
and it is, a priori, acceptable to study a naive entropy where p = [0g)(Og|.

A second apparent difference comes from the prefactor of the scaling law (2.22). In a
unitary CFT, a non trivial theory has a strictly positive central charge hence equation (2.22)
is in a perfect agreement with the fact that the von Neumann entropy is a positive quantity.
However in a non-unitary system, the central charge can be zero or negative. The simplest
cases of such systems are the non-unitary minimal models. A famous member of this class
of model is the Yang-Lee model [96,97] with ¢ = —22/5. The minimal models M(p,p’) are
a series of conformal field theories with a finite number of primary fields with integer p and
p’ coprime such that 2 < p < p’. The central charge is given by

6(p — p')?
pr

c=1- (2.23)

and the conformal weights are

(pr—p's)* = (p—p)°

hrs:
4pp’

i

, 1<r<p -1, 1<s<p-—-1 (2.24)
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In the non-minimal series [p—p/| > 1, it is important to notice that their conformal spectrum
contains a negative conformal weight. The smallest conformal weight h.,;, is given by
1— 2 \2
P b 2 (2.25)
4pp’

Therefore, the ground-state of the theory is no longer the conformal vacuum. The par-
tition function (on a N-sheeted Riemann surface) interpretation as a two points correlation
function (2.17) is thus a little bit more subtle. The so-called effective central charge can be
defined

6
Coft = € — 24hpin =1 — — (2.26)
pp
which is positive. This universal quantity appears for instance in the scaling of the energy
per unit of length on a cylinder of circumference L [45]
VST Ceft

E=— . 2.2
24L (227)

The scaling of the entanglement entropy was found to hold if ¢ is replaced by ceg within the
framework of RSOS models [98]|. The goal of this chapter is to revisit this problem in a more
general case. In particular we are not restricted to non-unitary minimal models. Connections
with loop models are going to be detailed. The twist field analysis in particular is going to
be connected to a Coulomb gas analysis.

2.2 The XXZ spin chain

The Potts model is introduced in this section. Its mappings to a loop model and a vertex
model are discussed. We show explicitly the connection between both and derive the quan-
tum Hamiltonian associated. The XXZ Hamiltonian is recovered with Hermiticity breaking
boundary terms. It is symmetric under the action of the quantum group U,sl(2), a deforma-
tion of si(2).

2.2.1 Potts model

The @-state Potts model is a lattice model of interacting spins. Considering a graph G =
(V, E) with vertex set V' and edge set E. To each vertex i € V' we associate a spin o; that
can take () possible states, o; = 1,2,...,Q. The interaction between two spins, o; and o},
linked by an edge (ij) € £, adds a contribution —Kd,, ,, to the total energy of the system,
where ¢ is the Kronecker symbol. Hence the partition function is

Z=>" T ", (2.28)

{o} Gg)eE

where {0} = {0;}iev denotes all the possible spin configurations of the system. Let us
emphasise that for now we do not make any particular assumptions about the graph G,
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neither about the regularity of the lattice, nor about the number of dimensions d into which
it can be embedded.

The above partition function can be expanded in terms of the Fortuin-Kasteleyn (FK) clus-
ters [29]. Since the interaction energy between two spins has only two possible values, we use
the identity e®%7 =1 + V0g;,0;, With v = e — 1, to transform the product over the edges
into a sum over subsets A C E of edges. A connected component of the subgraph (V, A) is
called an FK cluster. Then, by performing the sum over {o}, we arrive at

Z =Y Q"M (2.29)

ACE

where k(A) denotes the number of connected components in the subgraph (V, A) with |A|
edges.

We notice that all the spins within a same FK cluster take the same spin value. However,
the spins of two different clusters are independent; in particular they may take the same
value even if the two clusters are adjacent.

Thanks to the formulation (2.29) of the ()-state Potts model, the definition of the partition
function can now be extended to real values of (). This makes it possible to approach physical
situations (for which @ is a non-negative integer) via a limiting procedure. The models of
main interest stand at () = 0 (spanning trees and forests), () = 1 (percolation) and @ = 2
(Ising model). For @ < 2 they have non-trivial critical points for 2 < d < 6 (99, 100]. In
d = 2, the model on a regular square lattice can be mapped to a 6-vertex model [101] and is
critical for 0 < @ <4 [102].

2.2.2 Loop model formulation

We now study the Potts model in d = 2 on a square lattice with open boundary conditions.
Starting from its formulation in terms of clusters (2.29), a loop model is obtained by drawing
the surroundings (inner and outer) on the medial graph for each cluster. This is illustrated
figure 2.3 on an arbitrary configuration.

More precisely, the partition function (2.29) can be written, using topological identities,
as

A
7= V12 S gt (L) 2.30
Q AQZEQ 7o (2.30)

where ¢(A) is the number of closed loops. On a square lattice, the isotropic critical point of
the Potts model is obtained at v = /@ simplifying again the partition function which, up to
an overall factor, is

Z=>Y n'" (2.31)

ACE

with n = /@ the loop fugacity. Still on a square lattice, it is convenient to write the transfer
matrix and the Hamiltonian in terms of the Temperley-Lieb (TL) algebra [42]. For M
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Figure 2.3 — Typical configuration of FK-clusters on a square lattice. The inner and outer
boundaries of each cluster form loops on the medial graph.

integer and ¢ a complex number of modulus 1, the TL algebra T'L, 2as has 2M —1 generators
{€;}iz1,..am—1 satistying the relations

[eia ej] = 0, ’Z - ]| > 2, (232)
el = ne, (2.33)
€iCi+1€; = € (2.34)

with n = ¢+¢~!. It has a diagrammatic interpretation allowing a direct connection with the
loop configurations of the Potts model. The generator e; is represented by the diagram

- .
7
1+ 1

Multiplication of words in the algebra is done by stacking the diagrams. Two diagrams are
identical if the connectivities are the same. Each time a closed loop is generated, it is removed
and a weight n is produced.

2.2.3 The six-vertex model and the XXZ Hamiltonian.

The last useful representation of the Potts model needed in this chapter is the 6-vertex model
and its XXZ quantum Hamiltonian. Writing the loop fugacity n as the sum of two conjugate
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complex numbers, n = e + e~ with ¢ = €*, leads to an interesting mapping with oriented
loops. An un-oriented loop is the superposition of the two orientations

n q q’l

The non-local fugacity of loops can be traded for a local complex weight: a loop turning of
an angle £7/2 at a vertex gets a local weight e*/4, At a vertex on the medial square lattice,
6 configurations of arrows are possible due to the conservation of incoming/outgoing arrows.
They are given figure 2.4 and generate the 6-vertex model.

IS SE SR SEE SE
R

%1 ) Wws Wy Ws We

Figure 2.4 — Vertices of the six-vertex model.

The weights obtained by the mapping with the loop models are given by
Wiy we = 1, 1,2,x, e 4pe /2 o712 4 g6/ (2.37)

These weights are obtained by drawing all local loop configurations possible with the orien-
tation of the arrows. The parameter x measures the anisotropy in the system (see [42] for
details) and is useful to derive the quantum Hamiltonian. The decomposition of the vertices
wy and ws are given below as examples.

e

w1 /4y o= 1v/4 Ws re /4y o= 1v/4 eV/4 ¢ piv/4

This reformulation as a vertex model provides a local description where each edge is
associated with a two-dimensional vector space V' = {|1),|])}. The transfer matrix 7" for a
system of size 2M with open boundary conditions is

M

T = ﬂ (1+ zezin) [ [ (1 + we) (2.39)

i=1 =1
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Z,Y,2
1

where e; are complex matrices acting on site ¢ and 7 4+ 1. Let o
on space 7, the element e; is

be Pauli matrices acting

e = —% oot +alal, + %q_lwfafﬂ ~ 1)+ ‘j_l (07 — 07,1) (2.40)
In the basis [11), [T)), 1), [{4) it reads explicitly
0 0 0 0
e; = 8 4 q_ll 8 (2.41)
0 0 0 O

As the notation suggests, these operators satisfy the Temperley-Lieb relations. The anisotropic
limit is obtained by considering x — 0. The 1+ 1D quantum Hamiltonian H associated with
this 6-vertex model is obtained from the expansion of the transfer matrix around x = 0.

T=1-xH+O(2?) (2.42)

which gives

L—1
H=— Z e;. (2.43)
=1

This Hamiltonian can be written in terms of Pauli matrices

L-1 ~1 1

1 T _x q + q z _z q— qi z 2
Hxxz = B Z (Ui Oiy +ojol + 5 i ai+1> + 5 (07 —07) (2.44)
i=1

up to a constant term. The famous XX7 Hamiltonian can be recognised with anisotropy
parameter A = (q + ¢~')/2. Note that, despite its name, A is not related at all to the
parameter x measuring the anisotropy in the two dimensional lattice description. The only
difference with the usual unitary XXZ chain comes from the boundary term. It breaks the
Hermiticity of the Hamiltonian but is very important in terms of symmetry since it ensures
the commutation of H with the generators of the quantum group U,sl(2) [93].

2.2.4 Quantum group

As mentioned, the Hamiltonian (2.43) is symmetric under the action of the quantum group
U,sl(2). This symmetry is essential in the relation between the spin % representation of the
XXZ spin chain and the loop model. In particular, for ¢ root of unity, the representation
theory of U,sl(2) plays an important role in the analysis of indecomposability.

The generators of sl(2), S* and S, satisfy the relations

[ST,57] =257, (5%, 5F] = +£5%. (2.45)
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This algebra is the symmetry of the XXX spin chain. The XXZ is a generalisation of this
Heisenberg model, the symmetry now being encoded in the quantum-group U,sl(2), a quan-
tum deformation of sl(2). The generators satisfy the relations

28 —28%

T—gq

st =1
5757 ===

. [57,5F] = £5*. (2.46)
The usual sl(2) algebra is restored in the limit ¢ — 1. The quantum group can be seen as the
universal enveloping algebra of sl(2). In the spin 1/2 representation, the above generators
have the form [93]

1

5 = 5>0f (2.47)
1 z z z z

St = §§ q01/2®_”®q"¢71/2®g;‘®q_0i+1/2®,,,®q_02k1/2 (2.48)
1 z z z z

57 = 5 0Pe e e g e .9 Tl (2.49)

and commutes with the XXZ Hamiltonian [Hxxz, ST %] = 0. Note that quantum groups
play an important role in the search of integrable model [103]. Interactions, encoded in
the R-matrix satisfying Yang-Baxter equations, can be constructed from its representation
theory [104].

2.3 Quantum group entanglement entropy

This first section presents our approach to the entanglement entropy in the XXZ model.
A new quantity, called quantum group entanglement entropy is introduced. This choice is
first motivated by a simple case on two sites for the vertex model. The same calculations
are performed in the loop model. In particular, it is shown that the entanglement entropy
has a straightforward interpretation with loop connectivities. General definitions are then
given and motivated by the correspondance between the two representations. Then a more
complex example on four sites is detailed. In the end of the section, a few properties of
this modified entanglement entropy are given. First we show that the definition respects the
U,sl(2) symmetry of the model and discuss the several required properties of an entropy.

2.3.1 Pedagogical example on 2 sites

Let us start the discussion with the simple example of 2M = 2 spin, for pedagogical purposes.
The XXZ Hamiltonian is H = —ey, with e; the unique TL generator given equation (2.41).
The parameter ¢ = e is chosen such that v € [0, 7/2[, leading to a positive loop fugacity
n = 2cosvy. In the sector of zero magnetisation, there are 2 distinct eigenenergies Fy, =
—(q+q') = —n and E; = 0. The right ground state, defined as H|0g) = Ey|0g) reads

0g) = %Wﬂ 1) — g2 1)), (2.50)
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In this section, we use the (standard) convention that complex numbers are conjugated when
calculating the bra associated with a given ket. Therefore |0g) is normalized: (0g|0g) = 1.
We assume for now that the density matrix is

0 0 0 0

B 1o 1 —¢to
p = [0r){0r| = 5o =g 1 o0 (2.51)

0 0 0 0

It is, of course, correctly normalized. Taking subsystem A as the left spin and subsystem B
as the right spin, the resulting reduced density operator p4 is

pA:%<(1](1)). (2.52)

It leads to a von Neumann entropy (2.7) equal to

Sy =log?2 (2.53)

where the entropy of a %—spin singlet is recognised. This result is obviously independent
of ¢ and identical to the well known result for the XXX case, where the non-Hermiticity
problem disappears. However the behaviour of the entanglement is expected to change when
the central charge is varied. Since the universality class is a function of ¢, this simple
computation on two sites is not particularly representative. It turns out that for larger
systems, the entropy has a weak dependence on ¢ that disappears in the scaling limit.

An alternative definition is now proposed, motivated by the symmetries of the Hamilto-
nian and its loop model representation. First, as mentioned earlier, the Hamiltonian H = —e;
is not Hermitian. To make the connection with conformal field theory, the distinction be-
tween right and left eigenvectors is required. They are defined by H|EgR) = E|Eg) and
(Er|H = E{Ey| (corresponding to H'|E.) = E|EL) since the energies E are all real). The

two eigenvectors in the sector of zero magnetisation (S* = 0) are

= ; -1/2 o 1/2
15) = ﬁ (2 14 + /2| 1)) (2.55)

where |Og) denotes the right eigenstate associated with the lowest energy Ey and |1g) the
right eigenstate associated with excitation F;. Similarly the left eigenstates are

1
0,) = — (¢'? —q V2 2.56
1p) = ;_1 (9_1/2| )+ q'?| m). (2.57)
q+q
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The right and left states are carefully normalized such that

(irlir) =1, (izljr) =0, i#j. (2.58)

With this choice, the Hamiltonian takes the simple form

H=>" Elip)iL|- (2.59)

i=0,1

Note that (Og|1g) # 0. A projector on an eigenstate can only be built using left and right
eigenstates. The proper density operator is now defined as

0O 0 0 0
- 1 0 ¢t =10
p=MM%Fw+T1 0 -1 ¢ 0 (2.60)
0O 0 0 0
To proceed, let us take the following definition for the reduced density matrix
. ez 1 10
pa="Trg (g 2p)_m(0 1). (2.61)

The use of a modified trace is justified in the next sections with geometrical as well as
quantum group theoretic considerations. This property is explicitly discussed later in this
section. The operator p,4 is normalized for the modified trace: Try (/3 Aq"f) = 1. We now
define the entanglement as

Sa=—=Tra (¢ palnpa) =In(g+q"). (2.62)

This entropy value is potentially more appealing than (2.53): not only it depends on ¢, it
involves also explicitly the combination n = ¢ + ¢~!, which is the quantum dimension of the
spin 1/2 representation of U,sl(2).

2.3.2 Entanglement in the loop model and Markov Trace

The same analysis is possible in the loop formalism. On L = 2 sites, the Hamiltonian is
again given by the only TL generator, which diagrammatically reads

/
He o= (2.63)
M

In loop models, the equivalent of a quantum state is called a link state. It is a non-crossing
link pattern where sites are connected by pairs. In fact, a link between two sites represents
the formation of a singlet. There are different kinds of link states and it is possible to have
defects if a site is not connected in a pair. In the following, only the sector with zero defects
(equivalently the sector with zero magnetisation in the vertex model) is considered because
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it contains the ground state. For L = 2 there is only one link state |1) with zero defect
corresponding to an arc connecting the two sites

1) = % \_J (2.64)

In the loop formalism, a bra is obtained from a ket by flipping and stacking the two drawings.
The scalar product is obtained by gluing the diagrams and counting the number of closed
loops. For instance, it is straightforward that |1) is well normalized.

am =5 ()= (2.65)

Moreover, |1) is the ground state of the Hamiltonian (2.63) since H|1) = —n|1)

-/
H|1) = —eq|1) = ~ L =-n = (2.66)
RO

Of couse the connection with equations (2.54) and (2.56) comes from Hxxz being a projector
on the U,sl(2) singlet. The loop model provides a compact way to describe the action of the
Hamiltonian annihilating and creating U,sl(2) singlets.

The density matrix, given by p = [1)(1], reads in terms of diagrams

1/ 1
p=— = —e; (2.67)
n m n
where equation (2.60) can be recognised. The next task, computing the reduced density
matrix, involves the (partial) trace operator. For loop models, tracing is performed by
connecting the top and the bottom of a diagram. The resulting number of closed loops gives
the value of the trace. It is called the Markov trace (MTr) and for any diagram w it is formaly

MTr(u) = u : (2.68)

Note that this definition is consistent with the calculation of a scalar product where the
link states are glued together (illustrated equation (2.65)). The Markov trace ensures, on a
cylinder, that every closed loop has a weight n. The partial Markov trace is defined similarly
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by connecting only certain sites. The reduced density matrix p4, obtained by taking the
Markov trace over the second site (2.67) reads

S|

1
pa = MTry(p) = - = (2.69)

A single line in a diagram acts as the identity. The equation (2.61) is thus recognised. The
computation to obtain the von Neumann entropy is straightforward, given that the usual
trace is replaced by the Markov trace.

1 1
SA:—MTrApAlogpA:——log—XQ:bgn (2.70)
n o on

The result found in the last subsection, for the XXZ spin chain, is recovered. The key
ingredient is to count the number of loops formed by the trace with the right fugacity n.

2.3.3 Definition of the quantum group entanglement entropy and motivations

The general definition for the modified entanglement entropy in the XXZ spin chain is now
discussed. For a chain, with open boundary conditions and L sites, let us consider a subsystem
A made of M neighbour spins. Its complement B is made of two parts, By, on the left and
By on the right, so that B = B, UBr and H = Hp, @ Ha ® Hp,. The right and left ground
states are distinguished so the density matrix p reads

p = 10r)(0c, (2.71)

with |0g) and (0| the right and left ground states. The modified reduced density p, matrix
is defined as

pa = Trpq™ 5% (2.72)

where S35 = 33, B, 0; and Sp = T3 By 07 are the magnetisations in the respective
subsystems. The Quantum Group Entanglement Entropy, or QG EE, is defined by

Sy=—Tr¢*4p,1log pa. (2.73)

The phases ensure that all loops, in the mapping to the geometrical representation, have
the right fugacity. On a N-sheeted Riemann surface, a loop can propagate on the successive
replicas and close on itself without being contractible. This is also the case on a cylinder.
The figure 2.5a shows an example of configuration.
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(a) (b)

Figure 2.5 — On the left: a non-contractible loop on a cylinder. In the vertex formulation, if
no twist is added, this loop gets a weight n = 2 instead of n. The right figure show a similar
situation on the N = 2-sheeted Riemann surface. A non contractible loop of this form does
two full turns and get a weight n = 2 cos 2 instead of n.

A loop winding around the periodic direction of the cylinder can be decomposed into
two oriented loops. Since they are not globally turning to close on themselves, they do not
acquire the phase ¢ or ¢~! but simply 1. In the end the loop fugacity is wrongly counted as
n =141 = 2. On the Riemann surface with /N replicas, an oriented loop can wind around a
branch point and form a closed loop after a turning of an angle +27/N. In the vertex model,
these oriented loops get a weight ¢*V and the un-oriented loop a fugacity 2 cos Nv. Ensuring
that all loops have the same weight is exactly the role of the Markov Trace. The twist in the
trace of the vertex model plays this role. The geometrical definition in terms of loops is thus
very natural. The QG EE can be computed exactly in the loop model. Taking p = |0)(0] as
the density matrix of the system, the reduced density matrix is

pa=MTrgp (2.74)
and the entanglement entropy is simply
SA = —MTrApAlogpA (275)

or for general Rényi entropies

1
N
51(4 ) = TN I log MTr4 pfY. (2.76)

Another important property of the definition (2.72) is that it respects the symmetry of
the quantum group restricted on the subsystem A. This is developed further later in this
section.
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2.3.4 A more complex example: 2M = 4 sites

As a more complicated example for the loop entanglement entropy, we propose to perform
the computation of entanglement in the case of 2M = 4 sites. The two possible link states
with zero defects are.

= U/ 2= \\ky (2.77)

The hamiltonian H = —e; —e3 —e3 has the following ground state |0) = 4(a|1) +2)), where
N? =n?a? + 2na + n? and o = (n + v/n? + 8)/2. The density matrix p is

\/ \J o | -/
=m0 X R e PR v oA =),

Consider first a bipartition in which A is the first site, and B the remainder. Take the
partial Markov trace over the three last sites, the reduced density operator is

N -

S|

1
pA = NZ(an+2a+n)‘:

This leads to Sy = log n, the same result found for 2M = 2 spins.
Next, let us take A as the first two sites and compute the entanglement at the middle of

the system. We trace the density operator over the two last sites:
pa = <||—|— (@®n +2a)< )

S(I+ (a®n + 2a)eq) . (2.79)

2| -2 -

The logarithm of the operator p4 must be computed. The identity
1
exp(aer) =1+ —(exp(an) — 1)ey, (2.80)
n
where e; = %, can be demonstrated by expanding the exponential. It follows

log pa = —logN2H+ log(1+an) (2.81)

and thus we can compute p4log pa.

log N2 —log A/ 2
palogps = — W | |+ (T(azn—l—Qa)—l—n—mlog(lean)
+ /\/2 —(a’n + 2a) log(1 + an))X. (2.82)
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Tracing over A finally leads to

21 2 1 2
Sy = —MTrApAlogpA:%—T% 752'/\/ ( n+ 2a)
+ N2 log(1 + an) + m(a n+ 2a) log(1 + om))
= (1.—|/—V’—om) log(1 + an)? + log N2 (2.83)

This expression coincides with the result obtained by using the modified trace in the vertex
model. Note also that this results agrees with the computations done in the Potts spin
representation for () = n? integer, not presented in this thesis [76].

For larger M it is hard to compute this final partial trace directly, since the form of
log pa will be substantially more complicated than (2.81). A much more convenient option
is to recall that gluing corresponding sites on top and bottom of any word in the TL algebra
means technically to take the so-called Markov trace MTr. This in turn can be resolved as
follows

MTr =) [2j + 1], Try, (2.84)
J
where Try is the usual matrix trace over the (standard) module V; with 25 defect lines, and
k], = qq qq_l are g-deformed numbers such that the loop weight n = [2], = ¢+ ¢ .
In the simple 2M = 4 case considered above, A has just two sites so that V, and V); are

both one-dimensional with bases {~'} and {| [} respectively. Thus we have the matrices

1
paly, = Ng(l +n (o?n+ 204))] ;o paly, = L\W}
and

MTrapalogpa = Try, palogpa

+ (n* —1)Try, palogpa. (2.85)
We find in the end
14+ an 1+ an)?
MTrg palogpa = ( e ) log ( e )
1 1

which is the same as (2.83) after simplification.

Similar computations were made for L = 6 sites, for all choices of the bipartition A U B,
finding again perfect agreement between the results from the loop model (with the Markov
trace) and the vertex model (with the modified trace).
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2.3.5 Properties of the entropy

In this subsection, two properties of the entanglement entropy are discussed. First the
reduced density matrix p4, with the twist in the trace, is found to have the right symmetries
with respect to the action of the quantum group restricted to the subsystem A. The second
interesting property is the expected relation S4 = Sp that holds with our definition.

Commutation with U,sl(2) generators The definition of the quantum group entangle-
ment entropy S4 relies on the use of a deformed trace where a twist ¢~255 is inserted under
the usual trace symbol. To ensure that the resulting reduced density operator p4 makes sense
in the quantum group formalism, it must commute with the generators of U,sl(2).

The Hamiltonian commutes with the following generators:

2 1 z
s = 23 (2.87)
1 z z zZ z
gt = 5} q”1/2®n_@q"i—l/Q®g;‘®qfai+l/2®_,.®q702M/2 (288)

1 z z z z
ST = 24080 oy 9g I @..0q N (2.89)

The generators and the Hamiltonian share the same right and left eigenvectors. As a conse-
quence they commute with the density operator p

(8%, 01 =0,  p=1|0r)(O]. (2.90)

We split the spin chain in two parts A, B and define the reduced density operator p4 using
a twisted trace over the part B. We consider the case where A is in the middle of the chain
between By, and Bg, so that B = By, U By and H = Hp, ® Ha ® Hp,. Thus

pa=Trp ¢*5 *Brj,  with S = Zaf. (2.91)
i€EB

Let us check that the generators of U,sl(2) on the subsystem A commute with the reduced
density operator p4. We have the following relations:

= G 914 @lp, +1p ©5,0 15, +1p @140 55, (2.92)

gt _ S§Lq_sfz“_S§R—|—qSJZBLqu_S’ZBR+qS§L+Sf‘S§R.
Consider first S%:
Sipa = Trp (S3¢" ) (2.93)

— Trg ((sz 85— 85 )q S ,3) .
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Obviously 5%, , Sg., 5S4 and S* commute. Since S* also commutes with p:

Sipa = Tro (0750 557) — Top (525, )
— Trp <QQS%L725§L55§L) :

For the two last terms a cyclic permutation under the trace is performed. We can now sum
all terms and this proves [S%, p4] = 0. Next the same is done for S7:

Stpa = Tip (SX;S q”izL—?%R)
= Trp (¢ st - sy
_qsg +53, SER)ﬁqQSEL fzng>
= (1)—(2)—(3). (2.94)
The first term (1) of the right-hand side reads
(1) = Trp <qfs}gL+ng S+ﬁq2sgszng>
— Tip (qzsgL—2ngﬁS+q—sgL+ng>

thanks to the cyclic permutation under the trace and the commutation of p and S*. We
then deal with the second term (2) involving Sj :

(2) = TI'B <q_S‘Z4_S‘z3L SELﬁQQS%L_QSgR>
o + 8% ~ S% —25%
= Trp (SBLQ Apq- P BR)
= Trp <q_SzBR+SZBL g5 5h SEL)

—25% 425% ~op  —Si—S3
= Trp <q BR BLpSBLq A BL)7

thanks to cyclic permutations of the operators over the subsystem B, the commutation of S*
with p and the commutation of S with S% and S% . Similarly for the term (3) involving
St

R

(3) = Trp(q™ " ns, pa*h )
— Trg <q_zszBR+zsgL F SERqu-&-SgR) .

By regrouping the terms we find the desired property Stpa = paSh. A very similar compu-
tation can be done for S.
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Sa = Sg for the QG EE. A meaningful entanglement entropy must satisfy, at the very
least, the symmetry property S, = Sp, meaning that subsystem A is as entangled with B, as
B with A. We now show that this is the case for the quantum group entanglement entropy.
Let us consider the case ¢ € R. The proof is then simple and can be extended by analytic
continuation to complex ¢. In this case the Hamiltonian is symmetric, and |0) = |Or) = |0p).
We again divide our system in two pieces A and B with a cut in the middle (for more
complicated cuts the argument is similar) and write the state in the following way:

= Z¢i,j’i>A|j>B- (2.95)

The bases |i) 4 and |j)p can be chosen such that they have a well-defined magnetization. As
a consequence, since the groundstate |0) is in the zero-magnetization sector, we can define
those bases such that the matrix 1); ; is block-diagonal and where each block correspond to a
sector of A and B with a well-defined magnetization. A singular value decomposition (SVD)
is performed, leading to the Schmidt decomposition

10) =) " sala)ala)s, (2.96)

where |a)4 and |a)p are eigenvectors of S4 and Sp; they form orthonormal bases of A and
B. The density matrix p is

p=> sasala)ala)s(a’a{e|5. (2.97)

The reduced density matrices p4 and pg read
pa = Trpq?Pp = ZSiq‘QS%IM (@],

pp = Traq 245 = Z 2 25A|oz (o] p -

Since the ground state is in the S = 0 sector ¢*% = ¢~ and thus the two reduced density
operators have the same spectra and define the same entropy. This proves the statement
Sy = Sp in the case of a cut in the middle of the system.

2.4 The scaling relation of the quantum group entanglement en-
tropy

This section presents the derivation of the scaling relation for the quantum group entangle-
ment entropy. We start with a brief reminder on Coulomb gas and the computation of the
scaling law of the entanglement is performed in this formalism. The quantum group entan-
glement entropy is shown to behave as expected in unitary conformal field theory with the
true central charge. Numerical analysis using DMRG is given at the end of this section.
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2.4.1 A brief introduction to Coulomb Gas

The Coulomb gas approach is useful to describe the continuum limit of two-dimensional loop
models [28,31,105]. In particular, it is particularly powerful to describe systems such as the
Potts model (like in this chapter) or the O(n) model. Suppose the system is on a cylinder, the
Coulomb gas method describes a soup of oriented loops, that are level lines of a compactified
height field. In the continuum, it is described by a field ¢(z) with the action

S = % / A2z (V)2 . (2.98)

which is the Euclidean action of a free compactified boson ¢(z) 4+ 27 = ¢(z). The parameter
g controls the rigidity of the height surface and is related to the loop fugacity by

n = —2cosmy. (2.99)

The central charge of this theory is simply ¢ = 1. In this formalism, the non-contractible
loops encircling the cylinder do not have the fugacity n. This is solved by introducing an
electric background charge at both infinite ends of the cylinder, which introduces a term in
the action of the form
Sp = 2 | @z ¢(2)R(z) (2.100)
47
where R is the scalar curvature. On a cylinder, it takes the simple form Sg = ieg(p(x, 00) —
¢(z, —o0) where the charges are located at both infinite ends of the cylinder. On the lattice it
creates a twist similar to what has been described in different geometries earlier. The central
charge of the twisted theory is
6 2
c=1-X% (2.101)
g

with eg =1 —g.

2.4.2 The replica trick and the modified scaling relation

We now claim that for the critical quantum group invariant XX7 chain with Hamiltonian
H = —> e;, the Rényi and Von-Neumann entropies scale as expected in a conformal field
theory, with the true central charge. The simplest argument for this relies on a field theoretic
analysis. We follow the Cardy and Calabrese [94] replica calculation extended to the non
unitary case, the density operator is p = |0g){(0L].

With N replicas in the Coulomb Gas formalism, there are N bosonic fields ¢1,...¢x. An
essential complication arises because of the cut: the loops winding N times around one of
the extremities should still have weight n, while, due to the collection of phases gathered in
the winding, the complex Boltzmann weights conspire to give them the weight n = 2 cos N~.
This issue was discussed earlier and a picture was given figure 2.5b. The problem of the non-
contractible loops fugacity can be repaired by the introduction of electric charges at the two
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extrem