K. Aas, C. Czado, A. Frigessi, and H. Bakkend, Pair-copula constructions of multiple dependence, Insurance: Mathematics and Economics, vol.44, issue.2, pp.182-198, 2009.

I. Abdallah, C. Lataniotis, and B. Sudret, Parametric hierarchical kriging for multi-fidelity aero-servo-elastic simulators-application to extreme loads on wind turbines, Prob. Eng. Mech, vol.55, pp.67-77, 2019.

A. H. Abdelaziz, S. Watanabe, J. R. Hershey, E. Vincent, and D. Kolossa, Uncertainty propagation through deep neural networks, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01162550

N. A. Agbayani, Defects, damage, and repairs subject to high-cycle fatigue: Examples from wind farm tower design, Forensic, pp.546-555, 2009.

M. A. Alam and K. Fukumizu, Hyperparameter selection in kernel principal component analysis, Journal of Computer Science, vol.10, issue.7, pp.1139-1150, 2014.

A. Ang and W. Tang, Probability concepts in engineering: emphasis on applications to civil and environmental engineering, 2007.

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, pp.40-79, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00407906

, Standard Practices for Cycle Counting in Fatigue Analysis, ASTM E1049, p.85, 2017.

F. Bachoc, Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model misspecifications, Comput. Stat. Data Anal, vol.66, pp.55-69, 2013.

F. Bachoc, G. Bois, J. Garnier, and J. Martinez, Calibration and improved prediction of computer models by universal Kriging, Nucl. Sci. Eng, vol.176, pp.91-97, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01020594

J. Bect and E. Vazquez, STK: a Small (Matlab/Octave) Toolbox for Kriging, 2014.

T. Bedford and R. M. Cooke, Vines-a new graphical model for dependent random variables, The Annals of Statistics, vol.30, issue.4, pp.1031-1068, 2002.

M. Belkin and P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in neural information processing systems, pp.585-591, 2002.

Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux et al., Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering, Advances in neural information processing systems, pp.177-184, 2004.

B. Berglind, J. D. Jesus, and R. Wisniewski, Representation of fatigue for wind turbine control, Wind Energy, vol.19, issue.12, pp.2189-2203, 2016.

D. P. Bertsekas, Nonlinear programming, 1999.

M. Berveiller, B. Sudret, and M. Lemaire, Stochastic finite elements: a non intrusive approach by regression, Eur. J. Comput. Mech, vol.15, issue.1-3, pp.81-92, 2006.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), 2006.

G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440197

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Prob. Eng. Mech, vol.25, pp.183-197, 2010.

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on Least Angle Regression, J. Comput. Phys, vol.230, pp.2345-2367, 2011.

Y. Boureau and Y. L. Cun, Sparse feature learning for deep belief networks, Advances in neural information processing systems, pp.1185-1192, 2008.

R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth, , 2016.

, Manifold Gaussian processes for regression, Neural Networks (IJCNN), 2016 International Joint Conference on, pp.3338-3345

F. Camastra, Data dimensionality estimation methods: a survey, Pattern recognition, vol.36, issue.12, pp.2945-2954, 2003.

M. Chen, K. Weinberger, F. Sha, and Y. Bengio, Marginalized denoising auto-encoders for nonlinear representations, International Conference on Machine Learning, pp.1476-1484, 2014.

M. Chevreuil, R. Lebrun, A. Nouy, and P. Rai, A least-squares method for sparse low rank approximation of multivariate functions, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00861913

A. J. Siam/, Uncertainty Quantification, vol.3, issue.1, pp.897-921

A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, and R. Tempone, Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.3, pp.815-837, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01352276

M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-liehr, Time series feature extraction on basis of scalable hypothesis tests (tsfresha python package), Neurocomputing, vol.307, pp.72-77, 2018.

P. G. Constantine, E. Dow, and Q. Wang, Active subspace methods in theory and practice: applications to kriging surfaces, SIAM Journal on Scientific Computing, vol.36, issue.4, pp.1500-1524, 2014.

I. Couckuyt, T. Dhaene, and P. Demeester, ooDACE Toolbox: A Flexible Object-Oriented Kriging Implementation, Journal of Machine Learning Research, vol.15, pp.3183-3186, 2014.

T. F. Cox and M. Cox, Multidimensional Scaling, 2000.

N. A. Cressie, Statistics for Spatial Data, Statistics for Spatial Data, pp.1-26, 1993.

A. Damianou and N. Lawrence, Deep Gaussian processes, Artificial Intelligence and Statistics, pp.207-215, 2013.

M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, Handbook of Uncertainty Quantification, pp.311-428, 2017.

E. De-rocquigny, La maîtrise des incertitudes dans un contexte industriel : 1 e partie -Une approche méthodologique globale basée sur des exemples, J. Soc. Française Stat, vol.147, issue.3, pp.33-71, 2006.

E. De-rocquigny, La maîtrise des incertitudes dans un contexte industriel : 2 e partie -Revue des méthodes de modélisation statistique, physique et numérique, J. Soc. Française Stat, vol.147, issue.3, pp.73-106, 2006.

, Uncertainty in industrial practice -A guide to quantitative uncertainty management, 2008.

G. Deman, K. Konakli, B. Sudret, J. Kerrou, P. Perrochet et al., Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model, Reliab. Eng. Sys. Safety, vol.147, pp.156-169, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01432217

C. V. Deutsch and A. G. Journel, Geostatistical software library and user's guide, vol.119, p.147, 1992.

D. Dheeru and E. K. Taniskidou, UCI machine learning repository, 2017.

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.1, pp.269-271, 1959.

O. Ditlevsen and H. Madsen, Structural reliability methods, 1996.

J. Djolonga, A. Krause, and V. Cevher, High-dimensional Gaussian process bandits, Advances in Neural Information Processing Systems, pp.1025-1033, 2013.

O. Dubrule, Cross validation of Kriging in a unique neighborhood, J. Int. Assoc Math. Geology, vol.15, issue.6, pp.687-699, 1983.

D. Dupuy, C. Helbert, and J. Franco, DiceDesign and DiceEval: Two R packages for design and analysis of computer experiments, Journal of Statistical Software, vol.65, issue.11, pp.1-38, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02065877

N. Durrande, D. Ginsbourger, and O. Roustant, Additive covariance kernels for high-dimensional Gaussian process modeling, Annales de la Faculté de Sciences de Toulouse, vol.21, p.481, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00644934

B. Echard, N. Gayton, and M. Lemaire, AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation, Structural Safety, vol.33, issue.2, pp.145-154, 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, Annals of Statistics, vol.32, pp.407-499, 2004.

M. S. Eldred, L. W. Ng, M. F. Barone, and S. P. Domino, Multifidelity uncertainty quantification using spectral stochastic discrepancy models, Handbook of Uncertainty Quantification, 2016.

. European, Energy road map 2050, 2011.

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2005.

R. W. Floyd, Algorithm 97: Shortest path, Commun. ACM, vol.5, issue.6, p.345, 1962.

M. Fornasier, K. Schnass, and J. Vybiral, Learning functions of few arbitrary linear parameters in high dimensions, Foundations of Computational Mathematics, vol.12, issue.2, pp.229-262, 2012.

A. Forrester, A. Sobester, and A. Keane, Engineering design via surrogate modelling: a practical guide, 2008.

K. Fukunaga, Introduction to statistical pattern recognition, 2013.

W. Gautschi, Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation, 2004.

R. Ghanem and P. Spanos, Stochastic finite elements -A spectral approach, 1991.

D. Ghiocel and R. Ghanem, Stochastic finite element analysis of seismic soil-structure interaction, J. Eng. Mech, vol.128, pp.66-77, 2002.

A. Ghodsi, Dimensionality reduction a short tutorial, 2006.

X. Glorot, A. Bordes, and Y. Bengio, Domain adaptation for largescale sentiment classification: A deep learning approach, Proceedings of the 28th international conference on machine learning (ICML-11), pp.513-520, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00752091

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng, Measuring invariances in deep networks, Advances in neural information processing systems, pp.646-654, 2009.

. Gpy, GPy: A Gaussian process framework in python, 2012.

F. Grasse, V. Trappe, S. Thöns, and S. Said, Structural health monitoring of wind turbine blades by strain measurement and vibration analysis, 2011.

S. Günter, N. N. Schraudolph, and S. V. Vishwanathan, Fast iterative kernel principal component analysis, J. Mach. Learn. Res, vol.8, pp.1893-1918, 2007.

M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De-jesús, Neural network design, vol.20, 1996.

N. Halko, Y. P.-g.-martinsson, M. Shkolnisky, and . Tygert, An algorithm for the principal component analysis of large data sets, SIAM Journal on Scientific computing, vol.33, issue.5, pp.2580-2594, 2011.

Z. Han, R. Zimmerman, and S. Görtz, Alternative cokriging method for variable-fidelity surrogate modeling, AIAA journal, vol.50, issue.5, pp.1205-1210, 2012.

T. Hastie, J. Taylor, R. Tibshirani, and G. Walther, Forward stagewise regression and the monotone lasso, Electronic Journal of Statistics, vol.1, pp.1-29, 2007.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: Data mining, inference and prediction, 2001.

J. C. Helton, R. L. Iman, and J. B. Brown, Sensitivity analysis of the asymptotic behavior of a model for the environmental movement of radionuclides, Ecological modelling, vol.28, issue.4, pp.243-278, 1985.

G. E. Hinton, A practical guide to training restricted boltzmann machines, Neural Networks: Tricks of the Trade, vol.7700, pp.599-619, 2012.

G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets, Neural computation, vol.18, issue.7, pp.1527-1554, 2006.

G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol.313, issue.5786, pp.504-507, 2006.

H. Hoffmann, Kernel PCA for novelty detection, Pattern Recogn, vol.40, issue.3, pp.863-874, 2007.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural networks, vol.2, issue.5, pp.359-366, 1989.

W. Huang, D. Zhao, F. Sun, H. Liu, and E. Y. Chang, Scalable Gaussian process regression using deep neural networks, IJCAI, pp.3576-3582, 2015.

A. Hyvärinen and E. Oja, One-unit learning rules for independent component analysis, Advances in neural information processing systems, pp.480-486, 1997.

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods. In Uncertainty management in simulation-optimization of complex systems, pp.101-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00975701

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods. In Uncertainty Management in Simulation-Optimization of Complex Systems, pp.101-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00975701

J. Jakeman, M. Eldred, and K. Sargsyan, Enhancing 1 -minimization estimates of polynomial chaos expansions using basis selection, J. Comput. Phys, vol.289, pp.18-34, 2015.

H. Joe, Dependence modeling with copulas, 2015.

B. J. Jonkman, Turbsim user's guide: Version 1.50, 2009.

J. Jonkman, The new modularization framework for the fast wind turbine cae tool, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p.202, 2013.

J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-mw reference wind turbine for offshore system development, 2009.

J. Kauzlarich, The palmgren-miner rule derived, In Tribology Series, vol.14, pp.175-179, 1989.

A. Keese and H. Matthies, Hierarchical parallelisation for the solution of stochastic finite element equations, Computers & Structures, vol.83, pp.1033-1047, 2005.

P. Kersaudy, B. Sudret, N. Varsier, O. Picon, and J. Wiart, A new surrogate modeling technique combining Kriging and polynomial chaos expansions -Application to uncertainty analysis in computational dosimetry, J. Comput. Phys, vol.286, pp.103-117, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01143146

L. Knockaert, . B.-de, D. Backer, and . Zutter, SVD compression, unitary transforms, and computational complexity, IEEE transactions on signal processing, vol.47, issue.10, pp.2724-2729, 1999.

K. Konakli and B. Sudret, Global sensitivity analysis using low-rank tensor approximations, Reliab. Eng. Sys. Safety, vol.156, pp.64-83, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428988

K. Konakli and B. Sudret, Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions, J. Comput. Phys, vol.321, pp.1144-1169, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01432141

K. Konakli, B. Sudret, J. Kerrou, P. Perrochet, and H. Benabderrahmane, Reliability analysis of high-dimensional models using low-rank tensor approximations, Prob. Eng. Mech, vol.46, pp.18-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428991

J. Koomey, S. Berard, M. Sanchez, and H. Wong, Implications of historical trends in the electrical efficiency of computing, IEEE Annals of the History of Computing, vol.33, issue.3, pp.46-54, 2011.

D. G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Southern African Institute of Mining and Metallurgy, vol.52, issue.6, pp.119-139, 1951.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, vol.25, pp.1097-1105, 2012.

D. Kuzmin and M. K. Warmuth, Online kernel pca with entropic matrix updates, ACM International Conference Proceeding Series, vol.227, pp.465-472, 2007.

J. T. Kwok and I. W. Tsang, The pre-image problem in kernel methods, Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp.408-415, 2003.

C. Lataniotis, S. Marelli, and B. Sudret, The Gaussian process modelling module in UQLab, Soft Comput. Civil Eng, vol.2, issue.3, pp.91-116, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901966

C. Lataniotis, S. Marelli, and B. Sudret, UQLab user manual -Kriging (Gaussian process modelling), Safety & Uncertainty Quantification, 2019.

C. Lataniotis, E. Torre, S. Marelli, and B. Sudret, UQLab user manual -The Input module, Safety & Uncertainty Quantification, 2019.

N. Lawrence, Probabilistic non-linear principal component analysis with Gaussian process latent variable models, Journal of Machine Learning Research, vol.6, pp.1783-1816, 2005.

L. Gratiet, L. , S. Marelli, and B. Sudret, Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428947

O. Le-maître, M. Reagan, H. Najm, R. Ghanem, and O. Knio, A stochastic projection method for fluid flow -II. Random process, J. Comput. Phys, vol.181, pp.9-44, 2002.

R. Lebrun and A. Dutfoy, A generalization of the Nataf transformation to distributions with elliptical copula, Probabilistic Engineering Mechanics, vol.24, issue.2, pp.172-178, 2009.

M. Lemaire, Structural reliability, 2009.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural networks, vol.6, issue.6, pp.861-867, 1993.

C. Li and A. Der-kiureghian, Optimal discretization of random fields, J. Eng. Mech, vol.119, issue.6, pp.1136-1154, 1993.

A. Lima, H. Zen, Y. Nankaku, C. Miyajima, K. Tokuda et al., On the use of kernel PCA for feature extraction in speech recognition, 2003.

J. Lin, Divergence measures based on the shannon entropy, IEEE Transactions on Information theory, vol.37, issue.1, pp.145-151, 1991.

S. N. Lophaven, H. B. Nielsen, and J. Sondergaard, Aspects of the Matlab toolbox DACE, Informatics and Mathematical Modelling, 2002.

S. Marelli, C. Lamas, K. Konakli, C. Mylonas, P. Wiederkehr et al., UQLab user manual -Sensitivity analysis, Safety & Uncertainty Quantification, 2019.

S. Marelli, R. Schöbi, and B. Sudret, Chair of Risk, Safety and Uncertainty Quantification, 2019.

S. Marelli and B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, Vulnerability, Uncertainty, and Risk (Proc. 2nd, 2014.

. Int and . Conf, on Vulnerability, Risk Analysis and Management (ICVRAM2014), pp.2554-2563

S. Marelli and B. Sudret, Chair of Risk, Safety & Uncertainty Quantification, 2018.

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics & Data Analysis, vol.52, issue.10, pp.4731-4744, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00239492

M. Inc, MATLAB and Statistics and Machine Learning Toolbox Release, 2017.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.2, pp.239-245, 1979.

R. Melchers, Structural reliability analysis and prediction, 1999.

M. A. Miner, Cumulative damage in fatigue, J. Appl. Mech, issue.9, pp.159-164, 1945.

M. Yang, N. Ahuja, and D. Kriegman, Face recognition using kernel eigenfaces, Proceedings. 2000 International Conference on, vol.1, pp.37-40, 2000.

G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, On the number of linear regions of deep neural networks, Advances in neural information processing systems, pp.2924-2932, 2014.

M. Moustapha, B. Sudret, J. Bourinet, and B. Guillaume, Quantilebased optimization under uncertainties using adaptive Kriging surrogate models, Struct. Multidisc. Optim, 2016.

M. Moustapha, B. Sudret, J. Bourinet, and B. Guillaume, Comparative study of Kriging and support vector regression for structural engineering applications, Paper #04018005, vol.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01893274

K. P. Murphy, Machine learning: A probabilistic perspective. adaptive computation and machine learning, 2012.

A. Nataf, Détermination des distributions dont les marges sont données, C. R. Acad. Sci. Paris, vol.225, pp.42-43, 1962.

R. B. Nelsen, An introduction to copulas, Lecture Notes in Statistics, vol.139, 2006.

B. A. Olshausen and D. J. Field, Sparse coding with an overcomplete basis set: A strategy employed by v1?, Vision research, vol.37, issue.23, pp.3311-3325, 1997.

M. Partridge and R. A. Calvo, Fast dimensionality reduction and simple PCA, Intelligent Data Analysis, vol.2, issue.1-4, pp.203-214, 1998.

E. Parzen, On estimation of a probability density function and mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.

C. Paulson and G. Ragkousis, pyKriging: A Python Kriging Toolkit, 2015.

K. Pearson, On lines and planes of closest fit to systems of points in space, Phil. Mag, vol.6, issue.2, pp.559-572, 1901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikitlearn: Machine learning in python, Journal of machine learning research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

V. Picheny, D. Ginsbourger, and O. Roustant, DiceOptim: Kriging-Based Optimization for Computer Experiments, 2016.

J. G. Proakis and D. G. Manolakis, Principles, Algorithms, and Applications, 1996.

C. Rasmussen and C. Williams, Gaussian processes for machine learning. Adaptive computation and machine learning, 2006.

C. E. Rasmussen and H. Nickisch, Gaussian Processes for Machine Learning (GPML) Toolbox, Journal of Machine Learning Research, vol.11, pp.3011-3015, 2010.

N. Ricker, Wavelet functions and their polynomials, Geophysics, vol.9, issue.3, pp.314-323, 1944.

S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, Contractive auto-encoders: Explicit invariance during feature extraction, Proceedings of the 28th International Conference on International Conference on Machine Learning, pp.833-840, 2011.

B. D. Ripley, Stochastic simulation, vol.316, 2009.

V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component analysis, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.3, pp.1100-1124, 2009.

M. Rosenblatt, Remarks on a multivariate transformation, The Annals of Mathematical Statistics, vol.23, pp.470-472, 1952.

M. Rosenblatt, Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics, pp.832-837, 1956.

O. Roustant, D. Ginsbourger, and Y. Deville, DiceKriging, DiceOptim : Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00495766

S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, vol.290, pp.2323-2326, 2000.

I. Rychlik, A new definition of the rainflow cycle counting method, International journal of fatigue, vol.9, issue.2, pp.119-121, 1987.

J. Sacks, W. Welch, T. Mitchell, and H. Wynn, Design and analysis of computer experiments, Stat. Sci, vol.4, pp.409-435, 1989.

, Sensitivity analysis, 2000.

T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, 2003.

R. Schöbi, S. Marelli, and B. Sudret, UQLab user manual -Polynomial chaos Kriging, Chair of Risk, Safety & Uncertainty Quantification, 2019.

R. Schöbi, B. Sudret, and J. Wiart, Polynomial-chaos-based Kriging, Int. J. Uncertainty Quantification, vol.5, issue.2, pp.171-193, 2015.

B. Schölkopf, A. Smola, and K. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput, vol.10, issue.5, pp.1299-1319, 1998.

R. Sheikholeslami, S. Razavi, H. V. Gupta, W. Becker, and A. Haghnegahdar, Global sensitivity analysis for high-dimensional problems: How to objectively group factors and measure robustness and convergence while reducing computational cost. Environmental modelling & software 111, pp.282-299, 2019.

B. W. Silverman, Density estimation for statistics and data analysis, 2018.

A. Sklar, Fonctions de répartition à n dimensions et leurs marges, vol.8, p.11, 1959.

J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms, Advances in neural information processing systems, pp.2951-2959, 2012.

&. Sobol and I. , Sensitivity estimates for nonlinear mathematical models, Math. Modeling & Comp. Exp, vol.1, pp.407-414, 1993.

C. Soize and R. Ghanem, Physical systems with random uncertainties: chaos representations with arbitrary probability measure, SIAM J. Sci. Comput, vol.26, issue.2, pp.395-410, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00686211

C. Soize and R. Ghanem, Polynomial chaos representation of databases on manifolds, J. Comp. Phys, vol.335, pp.201-221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01448413

M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, 1999.

H. Strange and R. Zwiggelaar, A generalised solution to the out-ofsample extension problem in manifold learning, Twenty-Fifth AAAI Conference on Artificial Intelligence, pp.293-296, 2011.

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods, 2007.

J. Sun, C. Fyfe, and M. Crowe, Extending Sammon mapping with Bregman divergences, Information Sciences, vol.187, pp.72-92, 2012.

S. Suresh, Fatigue of materials, 1998.

J. B. Tenenbaum, V. D. Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.

L. Theis, W. Shi, A. Cunningham, and F. Huszár, Lossy image compression with compressive autoencoders, 2017.

R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Royal Stat. Soc., Series B, vol.58, pp.267-288, 1996.

R. J. Tibshirani and R. Tibshirani, A bias correction for the minimum error rate in cross-validation, The Annals of Applied Statistics, pp.822-829, 2009.

M. E. Tipping, Sparse kernel principal component analysis, Advances in Neural Information Processing Systems, vol.13, pp.633-639, 2001.

M. E. Tipping and C. M. Bishop, Mixtures of probabilistic principal component analyzers, Neural computation, vol.11, issue.2, pp.443-482, 1999.

M. E. Tipping and C. M. Bishop, Probabilistic principal component analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.3, pp.611-622, 1999.

E. Torre, S. Marelli, P. Embrechts, and B. Sudret, A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas, Prob. Eng. Mech, vol.55, pp.1-16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901982

E. Torre, S. Marelli, P. Embrechts, and B. Sudret, Data-driven polynomial chaos expansion for machine learning regression, J. Comp. Phys, vol.388, pp.601-623, 2019.

E. Torre, S. Marelli, and B. Sudret, Chair of Risk, Safety & Uncertainty Quantification, 2019.

R. Tripathy, I. Bilionis, and M. Gonzalez, Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation, J. Comp. Phys, vol.321, pp.191-223, 2016.

Y. Tsompanakis and N. , Structural design optimization considering uncertainties, 2008.

W. Vachon, Long-term o&m costs of wind turbines based on failure rates and repair costs, Proceedings WINDPOWER, American Wind Energy Association annual conference, pp.2-5, 2002.

L. Van-der-maaten, E. Postma, J. Van-den, and . Herik, Dimensionality reduction: a comparative review, J Mach Learn Res, vol.10, pp.66-71, 2009.

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

V. N. Vapnik, Statistical Learning Theory, 1998.

M. Verleysen and D. François, The curse of dimensionality in data mining and time series prediction, Computational Intelligence and Bioinspired Systems, vol.3512, pp.758-770, 2005.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, pp.1096-1103, 2008.

N. Wahlström, T. B. Schön, and M. P. Deisenroth, Learning deep dynamical models from image pixels, IFAC-PapersOnLine, vol.48, issue.28, pp.1059-1064, 2015.

K. Q. Weinberger, F. Sha, and L. K. Saul, Learning a kernel matrix for nonlinear dimensionality reduction, Proceedings of the twenty-first international conference on Machine learning, p.106, 2004.

W. Welch, R. Buck, J. Sacks, H. Wynn, T. Mitchell et al., , 1992.

, Screening, predicting, and computer experiments, Technometrics, vol.34, pp.15-25

J. Weston, B. Schölkopf, and G. H. Bakir, Learning to find pre-images, Advances in neural information processing systems, pp.449-456, 2004.

J. Wilkes, J. Moccia, P. Wilczek, R. Gruet, V. Radvilaitè et al., EU energy policy to 2050-achieving 80-95% emissions reduction, 2011.

C. K. Williams, On a connection between kernel PCA and metric multidimensional scaling, Machine Learning, vol.46, issue.1, pp.11-19, 2002.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, Deep kernel learning, Artificial Intelligence and Statistics, pp.370-378, 2016.

C. J. Wu and M. Hamada, Experiments: Planning. Analysis, and Parameter Design Optimization, 2000.

J. Xie, L. Xu, and E. Chen, Image denoising and inpainting with deep neural networks, Advances in neural information processing systems, pp.341-349, 2012.

D. Xiu, Numerical methods for stochastic computations -A spectral method approach, 2010.

D. Xiu and J. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput, vol.27, issue.3, pp.1118-1139, 2005.

D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput, vol.24, issue.2, pp.619-644, 2002.

X. Yang, W. Li, and A. Tartakovsky, Sliced-inverse-regressionaided rotated compressive sensing method for uncertainty quantification, 2018.

. Siam/asa, Journal on Uncertainty Quantification, vol.6, issue.4, pp.1532-1554

Z. Zhang, L. T.-w.-weng, and . Daniel, Big-data tensor recovery for high-dimensional uncertainty quantification of process variations, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.7, issue.5, pp.687-697, 2017.