P. Devillier, H. Salvator, E. Naline, L. J. Couderc, and S. Grassin-delyle, Metabolomics in the diagnosis and pharmacotherapy of lung diseases, vol.23, pp.2050-2059, 2017.

L. Guo, M. V. Milburn, J. A. Ryals, S. C. Lonergan, M. W. Mitchell et al., Plasma metabolomic profiles enhance precision medicine for volunteers of normal health, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.4901-4910, 2015.

S. Boudah, M. F. Olivier, S. Aros-calt, L. Oliveira, F. Fenaille et al., Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry, J. Chromatogr. B Anal. Technol. Biomed. Life Sci, vol.966, pp.34-47, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01664192

K. Contrepois, L. Jiang, and M. Snyder, Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)-mass spectrometry, Mol. Cell. Proteomics, vol.14, pp.1684-1695, 2015.

D. Q. Tang, L. Zou, X. X. Yin, and C. N. Ong, HILIC-MS for metabolomics: an attractive and complementary approach to RPLC-MS, Mass Spectrom. Rev, vol.35, pp.574-600, 2016.

C. Virgiliou, H. G. Gika, and G. A. Theodoridis, HILIC-MS/MS multi-targeted method for metabolomics applications, Methods Mol. Biol, vol.1738, pp.65-81, 2018.

B. O. Keller, J. Sui, A. B. Young, and R. M. , Interferences and contaminants encountered in modern mass spectrometry, Anal. Chim. Acta, vol.627, pp.71-81, 2008.

F. Fall, Journal of Chromatography B, vol.1128, p.121780, 2019.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

R. Zhang, D. G. Watson, L. Wang, G. D. Westrop, G. H. Coombs et al., Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites, J. Chromatogr. A, vol.1362, pp.168-179, 2014.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, vol.24, pp.2534-2536, 2008.

G. Libiseller, M. Dvorzak, U. Kleb, E. Gander, T. Eisenberg et al., IPO: a tool for automated optimization of XCMS parameters, BMC Bioinf, vol.16, p.118, 2015.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem, vol.78, pp.779-787, 2006.

R. Tautenhahn, C. Bottcher, and S. Neumann, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinf, vol.9, p.504, 2008.

O. D. Myers, S. J. Sumner, S. Li, S. Barnes, and X. Du, One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks, Anal. Chem, vol.89, pp.8696-8703, 2017.

H. Rutters, T. Mohring, J. Rullkotter, J. Griep-raming, and J. O. Metzger, The persistent memory effect of triethylamine in the analysis of phospholipids by liquid chromatography/mass spectrometry, Rapid Commun. Mass Spectrom, vol.14, pp.122-123, 2000.

C. Ranninger, L. E. Schmidt, M. Rurik, A. Limonciel, P. Jennings et al., Improving global feature detectabilities through scan range splitting for untargeted metabolomics by high-performance liquid chromatography-Orbitrap mass spectrometry, Anal. Chim. Acta, vol.930, pp.13-22, 2016.

F. Tugizimana, P. A. Steenkamp, L. A. Piater, and I. A. Dubery, Mass spectrometry in untargeted liquid chromatography/mass spectrometry metabolomics: electrospray ionisation parameters and global coverage of the metabolome, Rapid Commun. Mass Spectrom, vol.32, pp.121-132, 2018.

F. Fall, Journal of Chromatography B, vol.1128, p.121780, 2019.

S. Grassin-delyle, C. Abrial, H. Salvator, M. Brollo, E. Naline et al., The Role of

, Toll-Like Receptors in the Production of Cytokines by Human Lung Macrophages, J Innate Immun, vol.2018, pp.1-11

C. Abrial, S. Grassin-delyle, H. Salvator, M. Brollo, E. Naline et al., 15-Lipoxygenases regulate the production of chemokines in human lung macrophages, British journal of pharmacology, vol.172, issue.17, p.4556470, 2015.

A. Iwasaki and R. Medzhitov, Control of adaptive immunity by the innate immune system

, Nature immunology, vol.16, issue.4, pp.343-53, 2015.

P. Central and P. , , p.4507498

C. Pinheiro, A. Monteiro, F. F. Dutra, M. T. Bozza, M. Peters-golden et al., Short-Term Regulation of FcgammaR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products, Mediators Inflamm, p.2086840, 2017.

P. Central and P. ,

S. K. Biswas and A. Mantovani, Orchestration of metabolism by macrophages, Cell metabolism, vol.15, issue.4, pp.432-439, 2012.

Z. Zaslona, E. M. Palsson-mcdermott, D. Menon, M. Haneklaus, E. Flis et al.,

, The Induction of Pro-IL-1beta by Lipopolysaccharide Requires Endogenous Prostaglandin E2

, J Immunol, vol.198, issue.9, pp.3558-64, 2017.

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, vol.496, issue.7444, p.4031686, 2013.

E. L. Mills, B. Kelly, A. Logan, A. Costa, M. Varma et al.,

, Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, vol.167, issue.2, p.5863951, 2016.

B. A. Fensterheim, J. D. Young, L. Luan, R. R. Kleinbard, C. L. Stothers et al., The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism, J Immunol, vol.200, issue.11, p.5964009, 2018.

L. E. Gleeson, F. J. Sheedy, E. M. Palsson-mcdermott, D. Triglia, S. M. O'leary et al., Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication, J Immunol, vol.196, issue.6, pp.2444-2453, 2016.

E. L. Mills, D. G. Ryan, H. A. Prag, D. Dikovskaya, D. Menon et al., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1, Nature, vol.556, issue.7699, p.6047741, 2018.

D. G. Ryan, M. P. Murphy, C. Frezza, H. A. Prag, E. T. Chouchani et al., Coupling Krebs cycle metabolites to signalling in immunity and cancer, Nat Metab, vol.1, p.6485344, 2019.

A. F. Mcgettrick and L. A. O'neill, How metabolism generates signals during innate immunity and inflammation, J Biol Chem, vol.288, issue.32, p.3743468, 2013.

D. E. Byers and M. J. Holtzman, Alternatively activated macrophages and airway disease, Chest, vol.140, issue.3, pp.768-74, 2011.


P. Dasgupta and A. D. Keegan, Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men, J Innate Immun, vol.4, issue.5-6, pp.478-88, 2012.

E. Y. Kim, J. T. Battaile, A. C. Patel, Y. You, E. Agapov et al., Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease, Nat Med, vol.14, issue.6, pp.633-673, 2008.

M. Benoit, B. Desnues, and J. L. Mege, Macrophage polarization in bacterial infections

, Immunol, vol.181, issue.6, pp.3733-3742, 2008.

. Pubmed,

M. Bafadhel, S. Mckenna, S. Terry, V. Mistry, C. Reid et al., Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers, p.32

, American journal of respiratory and critical care medicine, vol.184, pp.662-71, 2011.

W. W. Busse, R. F. Lemanske, J. Gern, and J. E. , Role of viral respiratory infections in asthma and asthma exacerbations, Lancet, vol.376, issue.9743, pp.61380-61383, 2010.

. Pubmed,

N. Xie, H. Cui, J. Ge, S. Banerjee, S. Guo et al., Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis. American journal of physiology Lung cellular and molecular physiology, vol.313, pp.834-878, 2017.

K. J. Mould, L. Barthel, M. P. Mohning, S. M. Thomas, A. L. Mccubbrey et al., Cell Origin Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury. American journal of respiratory cell and molecular biology, vol.57, pp.294-306, 2017.

L. E. Gleeson, S. M. O'leary, D. Ryan, A. M. Mclaughlin, F. J. Sheedy et al.,

, Smoking Impairs the Bioenergetic Immune Response to Mycobacterium tuberculosis Infection

, American journal of respiratory cell and molecular biology, vol.59, issue.5, pp.572-581, 2018.

F. Fall, N. Lenuzza, E. Lamy, M. Brollo, E. Naline et al., A split-range acquisition method for the non-targeted metabolomic profiling of human plasma with hydrophilic interaction chromatography -high-resolution mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, vol.1128, p.121780, 2019.

C. Kuhl, R. Tautenhahn, C. Bottcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Analytical chemistry, vol.84, issue.1, p.3658281, 2012.

Y. Guitton, M. Tremblay-franco, L. Corguille, G. Martin, J. F. Petera et al., Create, run, share, publish, and reference your
URL : https://hal.archives-ouvertes.fr/hal-01574351

, Int J Biochem Cell Biol, vol.93, pp.89-101, 2017.

F. Giacomoni, L. Corguille, G. Monsoor, M. Landi, M. Pericard et al.,

, Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics, vol.31, pp.1493-1498, 2015.

S. Li, Y. Park, S. Duraisingham, F. H. Strobel, N. Khan et al., Predicting network activity from high throughput metabolomics, PLoS Comput Biol, vol.9, issue.7, p.1003123, 2013.

R. Chaleckis, I. Meister, P. Zhang, and C. E. Wheelock, Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics, Curr Opin Biotechnol, vol.55, pp.44-50, 2019.

D. S. Wishart, Y. D. Feunang, A. Marcu, A. C. Guo, K. Liang et al., HMDB 4.0: the human metabolome database for 2018, Nucleic Acids Res, vol.46, issue.D1, pp.608-625, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01712873

J. Kopka, N. Schauer, S. Krueger, C. Birkemeyer, B. Usadel et al.,

, GMD@CSB.DB: the Golm Metabolome Database, vol.21, pp.1635-1643, 2005.

K. Suzuki, T. Yamamoto, A. Sato, T. Murayama, R. Amitani et al.,

, Lipopolysaccharide primes human alveolar macrophages for enhanced release of superoxide anion and leukotriene B4: self-limitations of the priming response with protein synthesis

, American journal of respiratory cell and molecular biology, vol.8, issue.5, pp.500-508, 1993.

M. G. O'sullivan, F. H. Chilton, E. M. Huggins, J. Mccall, and C. E. , Lipopolysaccharide priming of

, The Journal of biological chemistry, vol.267, issue.21, pp.14547-50, 1992.

J. A. Rankin, I. Sylvester, S. Smith, T. Yoshimura, and E. J. Leonard, Macrophages cultured in vitro release leukotriene B4 and neutrophil attractant/activation protein (interleukin 8) sequentially in response to stimulation with lipopolysaccharide and zymosan, J Clin Invest, vol.86, issue.5, p.296903, 1990.

M. J. Coffey, S. M. Phare, and M. Peters-golden, Prolonged exposure to lipopolysaccharide inhibits macrophage 5-lipoxygenase metabolism via induction of nitric oxide synthesis, Journal of immunology, vol.165, issue.7, pp.3592-3600, 2000.

S. L. Hempel, M. M. Monick, and G. W. Hunninghake, Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes, J Clin Invest, vol.93, issue.1, pp.391-397, 1994.

A. K. Jha, S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al.,

, Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, vol.42, issue.3, pp.419-449, 2015.

S. X. Adamson, R. Wang, W. Wu, B. Cooper, and J. Shannahan, Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36, PLoS One, vol.13, issue.11, p.207042, 2018.

C. Zhao, Z. Tang, J. Yan, J. Fang, H. Wang et al., Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis, Sci Total Environ, vol.592, pp.357-65, 2017.

S. C. Sapcariu, T. Kanashova, M. Dilger, S. Diabate, S. Oeder et al., Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW

, Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel, PLoS One, vol.11, issue.6, p.4922672, 2016.

X. Wu, H. Cao, L. Zhao, J. Song, Y. She et al., Metabolomic analysis of glycerophospholipid signatures of inflammation treated with non-steroidal anti-inflammatory drugs-induced-RAW264.7 cells using (1), J Chromatogr B

, Analyt Technol Biomed Life Sci, vol.1028, pp.199-215, 2016.

K. M. Rattigan, A. W. Pountain, C. Regnault, F. Achcar, I. M. Vincent et al.,

, Metabolomic profiling of macrophages determines the discrete metabolomic signature and 37 metabolomic interactome triggered by polarising immune stimuli, PLoS One

, , vol.13, p.194126

J. A. Hollenbaugh, C. Montero, R. F. Schinazi, J. Munger, and B. Kim, Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages, Virology, vol.491, p.4834987, 2016.

P. J. Groot-kormelink, L. Fawcett, P. D. Wright, M. Gosling, and T. C. Kent, Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

, BMC Immunol, vol.13, p.57, 2012.

T. Victoni, H. Salvator, C. Abrial, M. Brollo, L. Porto et al., Human lung and monocyte-derived macrophages differ with regard to the effects of beta2-adrenoceptor agonists on cytokine release, Respiratory research, vol.18, issue.1, p.126, 2017.

. Pubmed, , p.5480184

S. K. Gill, Y. Yao, L. J. Kay, M. A. Bewley, H. M. Marriott et al., The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor, Br J Pharmacol, vol.173, issue.21, p.5056231, 2016.

M. A. Birrell, S. A. Maher, B. Dekkak, V. Jones, S. Wong et al., Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype, Thorax, vol.70, issue.8, pp.740-747, 2015.

M. J. Ratcliffe, A. Walding, P. A. Shelton, A. Flaherty, and I. G. Dougall, Activation of E-prostanoid4 and E-prostanoid2 receptors inhibits TNF-alpha release from human alveolar macrophages, Eur Respir J, vol.29, issue.5, pp.986-94, 2007.

G. Briend and P. Devillier, Implication de la voie des kynurénines dans la polarisation des macrophages pulmonaires humains, Rev Mal Respir, vol.31, issue.9, p.879, 2014.

D. Alberati-giani, P. Ricciardi-castagnoli, C. Kohler, and A. M. Cesura, Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells, J Neurochem, vol.66, issue.3, pp.996-1004, 1996.

S. M. Lee, H. Y. Park, Y. S. Suh, E. H. Yoon, J. Kim et al., Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway, Proc Natl Acad Sci, vol.114, issue.29, p.5530642, 2017.

B. Maneglier, B. Malleret, G. J. Guillemin, O. Spreux-varoquaux, P. Devillier et al.,

C. , Modulation of indoleamine-2,3-dioxygenase expression and activity by HIV-1 in human macrophages, Fundam Clin Pharmacol, vol.23, issue.5, pp.573-81, 2009.

F. Ajamian, Y. Wu, C. Ebeling, R. Ilarraza, S. O. Odemuyiwa et al., Respiratory syncytial virus induces indoleamine 2,3-dioxygenase activity: a potential novel role in the development of allergic disease, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology, vol.45, issue.3, pp.644-59, 2015.

M. A. Meier, M. Ottiger, A. Vogeli, C. Steuer, L. Bernasconi et al., Activation of the Serotonin Pathway is Associated with Poor Outcome in COPD Exacerbation: Results of a Long-Term Cohort Study, Lung, vol.195, issue.3, pp.303-314, 2017.

Y. Suzuki, T. Suda, K. Yokomura, M. Suzuki, M. Fujie et al., Serum activity of indoleamine 2,3-dioxygenase predicts prognosis of community-acquired pneumonia, J Infect, vol.63, issue.3, pp.215-237, 2011.

A. J. Rogers, M. Mcgeachie, R. M. Baron, L. Gazourian, J. A. Haspel et al.,

, Metabolomic derangements are associated with mortality in critically ill adult patients, PloS one

, , vol.9, p.87538

B. G. Cosio, L. Tsaprouni, K. Ito, E. Jazrawi, I. M. Adcock et al., Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages, J Exp Med, vol.200, issue.5, pp.689-95, 2004.

S. Hodge, G. Matthews, V. Mukaro, J. Ahern, A. Shivam et al., Cigarette smokeinduced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. American journal of respiratory cell and molecular biology, vol.44, pp.673-81, 2011.

H. Chen, M. J. Cowan, J. D. Hasday, S. N. Vogel, and A. E. Medvedev, Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-kappaB in alveolar macrophages stimulated with TLR2 and TLR4 agonists, J Immunol, vol.179, issue.9, pp.6097-106, 2007.

J. Armstrong, C. Sargent, and D. Singh, Glucocorticoid sensitivity of lipopolysaccharidestimulated chronic obstructive pulmonary disease alveolar macrophages, Clin Exp Immunol, vol.158, issue.1, p.2759061, 2009.

J. Armstrong, C. Harbron, S. Lea, G. Booth, P. Cadden et al., Synergistic effects of p38 mitogen-activated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease, J Pharmacol Exp Ther, vol.338, issue.3, pp.732-772, 2011.

A. Higham, G. Booth, S. Lea, T. Southworth, J. Plumb et al., The effects of corticosteroids on COPD lung macrophages: a pooled analysis, Respiratory research, vol.16, p.98, 2015.

S. Gordon, Elie Metchnikoff: Father of natural immunity, Eur. J. Immunol, vol.38, issue.12, pp.3257-3264, 2008.

A. Shapouri-moghaddam, Macrophage plasticity, polarization, and function in health and disease, J. Cell. Physiol, vol.233, issue.9, pp.6425-6440, 2018.

A. Sica, P. Invernizzi, and A. Mantovani, Macrophage plasticity and polarization in liver homeostasis and pathology, Hepatology, vol.59, issue.5, pp.2034-2042, 2014.

F. Bosque, The biology of macrophages, Pathol. Biol. (Paris), vol.45, issue.2, pp.103-109, 1997.

S. Gordon, Alternative activation of macrophages, Nat. Rev. Immunol, vol.3, issue.1, pp.23-35, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474829

A. B. Van-oud-alblas and R. Van-furth, Origin, Kinetics, and characteristics of pulmonary macrophages in the normal steady state, J. Exp. Med, vol.149, issue.6, pp.1504-1518, 1979.

S. Gordon, The macrophage: past, present and future, Eur. J. Immunol, vol.37, pp.9-17, 2007.

S. Epelman, K. J. Lavine, and G. J. Randolph, Origin and Functions of Tissue Macrophages, Immunity, vol.41, issue.1, pp.21-35, 2014.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol, vol.11, issue.11, pp.723-737, 2011.

G. W. Hunninghake, J. E. Gadek, O. Kawanami, V. J. Ferrans, and R. G. , Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage, Am. J. Pathol, vol.97, issue.1, pp.149-206, 1979.

A. J. Byrne, T. M. Maher, and C. M. Lloyd, Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease?, Trends Mol. Med, vol.22, issue.4, pp.303-316, 2016.

M. Naito, Macrophage differentiation and function in health and disease, Pathol. Int, vol.58, issue.3, pp.143-155, 2008.

P. J. Barnes, Alveolar macrophages in chronic obstructive pulmonary disease (COPD), Cell. Mol. Biol. Noisy--Gd. Fr, vol.50, pp.627-637, 2004.

P. J. Barnes, The cytokine network in chronic obstructive pulmonary disease, Am. J. Respir. Cell Mol. Biol, vol.41, issue.6, pp.631-638, 2009.

A. P. Moreira and C. M. Hogaboam, Macrophages in allergic asthma: fine-tuning their pro-and anti-inflammatory actions for disease resolution, J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res, vol.31, issue.6, pp.485-491, 2011.

S. Gordon, Pattern recognition receptors: doubling up for the innate immune response, Cell, vol.111, issue.7, pp.927-930, 2002.

M. L. Lohmann-matthes, C. Steinmüller, and G. Franke-ullmann, Pulmonary macrophages, Eur. Respir. J, vol.7, issue.9, pp.1678-1689, 1994.

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol. Baltim. Md, vol.136, issue.7, pp.2348-2357, 1950.

C. Porta, E. Riboldi, A. Ippolito, and A. Sica, Molecular and epigenetic basis of macrophage polarized activation, Semin. Immunol, vol.27, issue.4, pp.237-248, 2015.

N. Wang, H. Liang, and K. Zen, Molecular Mechanisms That Influence the Macrophage M1-M2 Polarization Balance, Front. Immunol, vol.5, 2014.

C. F. Nathan, H. W. Murray, M. E. Wiebe, and B. Y. Rubin, Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity, J. Exp. Med, vol.158, issue.3, pp.670-689, 1983.

M. Stein, S. Keshav, N. Harris, and S. Gordon, Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation, J. Exp. Med, vol.176, issue.1, pp.287-292, 1992.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000Prime Rep, vol.6, 2014.

C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J. Immunol. Baltim. Md, vol.164, issue.12, pp.6166-6173, 1950.

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, issue.12, pp.677-686, 2004.

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Front. Biosci. J. Virtual Libr, vol.13, pp.453-461, 2008.

C. J. Ferrante and S. J. Leibovich, Regulation of Macrophage Polarization and Wound Healing, Adv. Wound Care, vol.1, issue.1, pp.10-16, 2012.

A. Mantovani, A. Sica, and M. Locati, Macrophage Polarization Comes of Age, Immunity, vol.23, issue.4, pp.344-346, 2005.

D. M. Mosser, The many faces of macrophage activation, J. Leukoc. Biol, vol.73, issue.2, pp.209-212, 2003.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, vol.8, issue.12, pp.958-969, 2008.

F. O. Martinez, L. Helming, and S. Gordon, Alternative activation of macrophages: an immunologic functional perspective, Annu. Rev. Immunol, vol.27, pp.451-483, 2009.

M. L. Novak and T. J. Koh, Macrophage phenotypes during tissue repair, J. Leukoc. Biol, vol.93, issue.6, pp.875-881, 2013.

S. Colin, G. Chinetti-gbaguidi, and B. Staels, Macrophage phenotypes in atherosclerosis, Immunol. Rev, vol.262, issue.1, pp.153-166, 2014.

L. Wang, S. Zhang, H. Wu, X. Rong, and J. Guo, M2b macrophage polarization and its roles in diseases, J. Leukoc. Biol, vol.0, issue.0

E. Obeid, R. Nanda, Y. Fu, and O. I. Olopade, The role of tumor-associated macrophages in breast cancer progression (review), Int. J. Oncol, vol.43, issue.1, pp.5-12, 2013.

J. Mege and C. Capo, La polarisation des macrophages, le noeud gordien des infections bactériennes ?, médecine/sciences, vol.26, pp.83-88, 2010.

T. R?szer, Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms, Mediators Inflamm, vol.2015, 2015.

M. Benoit, B. Desnues, and J. Mege, Macrophage Polarization in Bacterial Infections, J. Immunol, vol.181, issue.6, pp.3733-3739, 2008.

A. Vazquez-torres, Salmonella Pathogenicity Island 2-Dependent Evasion of the Phagocyte NADPH Oxidase, Science, vol.287, issue.5458, pp.1655-1658, 2000.

A. Refai, S. Gritli, M. Barbouche, and M. Essafi, Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Proinflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype, Front. Cell. Infect. Microbiol, vol.8, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02014338

G. Lugo-villarino, C. Vérollet, I. Maridonneau-parini, and O. Neyrolles, Macrophage Polarization: Convergence Point Targeted by Mycobacterium Tuberculosis and HIV, Front. Immunol, vol.2, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02348631

S. K. Pathak, Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages, Nat. Immunol, vol.8, issue.6, pp.610-618, 2007.

C. Lobry and R. Weil, Mécanismes régulateurs de la voie NF-?B dans les lymphocytes T, médecine/sciences, vol.23, pp.857-861, 2007.

B. H. Miller, Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection, Infect. Immun, vol.72, issue.5, pp.2872-2878, 2004.

J. Dornand, A. Gross, V. Lafont, J. Liautard, J. Oliaro et al., The innate immune response against Brucella in humans, Vet. Microbiol, vol.90, issue.1-4, pp.383-394, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00194008

A. C. Labonte, A. Tosello-trampont, and Y. S. Hahn, The Role of Macrophage Polarization in Infectious and Inflammatory Diseases, Mol. Cells, vol.37, issue.4, pp.275-285, 2014.

D. Raoult, T. Marrie, and J. Mege, Natural history and pathophysiology of Q fever, Lancet Infect. Dis, vol.5, issue.4, pp.219-226, 2005.

M. Benoit, B. Barbarat, A. Bernard, D. Olive, and J. Mege, Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages, Eur. J. Immunol, vol.38, issue.4, pp.1065-1070, 2008.

Z. Huang, Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro, PLoS ONE, vol.10, issue.6, 2015.

Y. Sang, L. C. Miller, and F. Blecha, Macrophage Polarization in Virus-Host Interactions, J. Clin. Cell. Immunol, vol.6, issue.2, 2015.

L. Cassetta, M1 polarization of human monocyte-derived macrophages restricts pre and postintegration steps of HIV-1 replication, AIDS, vol.27, issue.12, p.1847, 2013.

A. Massimo, G. Francesca, G. Luca, and P. Guido, Macrophage Polarization at the Crossroad Between HIV-1 Infection and Cancer Development, Arterioscler. Thromb. Vasc. Biol, vol.33, issue.6, pp.1145-1152, 2013.

A. Sica, M. Erreni, P. Allavena, and C. Porta, Macrophage polarization in pathology, Cell. Mol. Life Sci, vol.72, issue.21, pp.4111-4126, 2015.

P. J. Barnes, Cellular and molecular mechanisms of asthma and COPD, Clin. Sci, vol.131, issue.13, pp.1541-1558, 2017.

A. Saradna, D. C. Do, S. Kumar, Q. Fu, and P. Gao, Macrophage polarization and allergic asthma, Transl. Res. J. Lab. Clin. Med, vol.191, pp.1-14, 2018.

M. Fricker and P. G. Gibson, Macrophage dysfunction in the pathogenesis and treatment of asthma, Eur. Respir. J, vol.50, issue.3, p.1700196, 2017.

Y. Liu, X. Zou, Y. Chai, and Y. Yao, Macrophage Polarization in Inflammatory Diseases, Int. J. Biol. Sci, vol.10, issue.5, pp.520-529, 2014.

Z. Jiang and L. Zhu, Update on the role of alternatively activated macrophages in asthma, J. Asthma Allergy, vol.9, pp.101-107, 2016.

P. Robbe, Distinct macrophage phenotypes in allergic and nonallergic lung inflammation, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.308, issue.4, pp.358-367, 2015.

C. Draijer, P. Robbe, C. E. Boorsma, M. N. Hylkema, and B. N. Melgert, Characterization of Macrophage Phenotypes in Three Murine Models of House-Dust-REFERENCES 137

M. Asthma, Mediators of Inflammation, p.20, 2013.

E. Y. Kim, Persistent activation of an innate immune axis translates respiratory viral infection into chronic lung disease, Nat. Med, vol.14, issue.6, pp.633-640, 2008.

K. Yamasaki and S. F. Van-eeden, Lung Macrophage Phenotypes and Functional Responses: Role in the Pathogenesis of COPD, Int. J. Mol. Sci, vol.19, issue.2, 2018.

M. S. Eapen, Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD), Sci. Rep, vol.7, issue.1, p.13392, 2017.

Y. Kaku, Overexpression of CD163, CD204 and CD206 on Alveolar Macrophages in the Lungs of Patients with Severe Chronic Obstructive Pulmonary Disease, PLoS ONE, vol.9, issue.1, 2014.

E. Bazzan, Dual polarization of human alveolar macrophages progressively increases with smoking and COPD severity, Respir. Res, vol.18, 2017.

S. He, L. Xie, J. Lu, and S. Sun, Characteristics and potential role of M2 macrophages in COPD, Int. J. Chron. Obstruct. Pulmon. Dis, vol.12, pp.3029-3039, 2017.

R. Shaykhiev, Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease, J. Immunol. Baltim. Md, vol.183, issue.4, pp.2867-2883, 1950.

S. A. Almatroodi, C. F. Mcdonald, and D. S. Pouniotis, Alveolar Macrophage Polarisation in Lung Cancer, Lung Cancer Int, vol.2014, 2014.

S. R. Nielsen and M. C. Schmid, Macrophages as Key Drivers of Cancer Progression and Metastasis, Mediators Inflamm, vol.2017, 2017.

M. Najafi, Macrophage polarity in cancer: A review, J. Cell. Biochem, vol.120, issue.3, pp.2756-2765, 2019.

H. Yanagawa, Production of interleukin-10 by alveolar macrophages from lung cancer patients, Respir. Med, vol.93, issue.9, pp.666-671, 1999.

R. Nabioullin, Interleukin-10 is a potent inhibitor of tumor cytotoxicity by human monocytes and alveolar macrophages, J. Leukoc. Biol, vol.55, issue.4, pp.437-442, 1994.

A. R. Poh and M. Ernst, Targeting Macrophages in Cancer: From Bench to Bedside, Front. Oncol, vol.8, 2018.

Q. Liu, The CXCL8-CXCR1/2 pathways in cancer, Cytokine Growth Factor Rev, vol.31, pp.61-71, 2016.

J. J. Chen, Up-Regulation of Tumor Interleukin-8 Expression by Infiltrating Macrophages: Its Correlation with Tumor Angiogenesis and Patient Survival in Non-Small Cell Lung Cancer, Clin. Cancer Res, vol.9, issue.2, pp.729-737, 2003.

G. Genard, S. Lucas, and C. Michiels, Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo-and Immunotherapies, Front. Immunol, vol.8, 2017.

A. Vidyarthi, TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-?? Signaling and Restricts Tumor Progression, Front. Immunol, vol.9, 2018.

F. J. Van-dalen, M. H. Van-stevendaal, F. L. Fennemann, M. Verdoes, and O. Ilina, Molecular Repolarisation of Tumour-Associated Macrophages, Molecules, vol.24, issue.1, 2018.

A. Geelhaar-karsch, Evaluation of arginine metabolism for the analysis of M1/M2 macrophage activation in human clinical specimens, Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al, vol.62, issue.9, pp.865-869, 2013.

S. K. Biswas and A. Mantovani, Orchestration of metabolism by macrophages, Cell Metab, vol.15, issue.4, pp.432-437, 2012.

G. Cairo, S. Recalcati, A. Mantovani, and M. Locati, Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype, Trends Immunol, vol.32, issue.6, pp.241-247, 2011.

M. Rath, I. Müller, P. Kropf, E. I. Closs, and M. Munder, Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages, Front. Immunol, vol.5, 2014.

A. K. Jha, Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization, Immunity, vol.42, issue.3, pp.419-430, 2015.

P. C. Rodriguez, A. C. Ochoa, and A. A. Al-khami, Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity, vol.8, 2017.

J. Macmicking, Q. W. Xie, and C. Nathan, Nitric oxide and macrophage function, Annu. Rev. Immunol, vol.15, pp.323-350, 1997.

S. Galván-peña and L. A. O'neill, Metabolic Reprograming in Macrophage Polarization, Front. Immunol, vol.5, 2014.

M. Munder, K. Eichmann, and M. Modolell, Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype, J. Immunol. Baltim. Md, vol.160, issue.11, pp.5347-5354, 1950.

I. M. Corraliza, G. Soler, K. Eichmann, and M. Modolell, Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrowderived macrophages, Biochem. Biophys. Res. Commun, vol.206, issue.2, pp.667-673, 1995.

C. D. Mills, M1 and M2 Macrophages: Oracles of Health and Disease, Crit. Rev. Immunol, vol.32, issue.6, pp.463-488, 2012.

L. Campbell, C. R. Saville, P. J. Murray, S. M. Cruickshank, and M. J. Hardman, Local arginase 1 activity is required for cutaneous wound healing, J. Invest. Dermatol, vol.133, issue.10, pp.2461-2470, 2013.

Q. Xu, NADPH Oxidases Are Essential for Macrophage Differentiation, J. Biol. Chem, vol.291, issue.38, 2016.

F. Jiang, Y. Zhang, and G. J. Dusting, NADPH Oxidase-Mediated Redox Signaling: Roles in Cellular Stress Response, Stress Tolerance, and Tissue Repair, Pharmacol. Rev, vol.63, issue.1, pp.218-242, 2011.

Y. Zhang, S. Choksi, K. Chen, Y. Pobezinskaya, I. Linnoila et al., ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages, Cell Res, vol.23, issue.7, pp.898-914, 2013.

H. Tan, N. Wang, S. Li, M. Hong, X. Wang et al., The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases, Oxidative Medicine and Cellular Longevity, p.16, 2016.

N. Marques, C. Terret, and P. A. Cassier, Rôle des monocytes et macrophages dans le microenvironnement tumoral, p.5, 2015.

J. Canton, Phagosome maturation in polarized macrophages, J. Leukoc. Biol, vol.96, issue.5, pp.729-738, 2014.

Y. Zhou, G. Lin, and M. P. Murtaugh, Interleukin-4 suppresses the expression of macrophage NADPH oxidase heavy chain subunit (gp91-phox), Biochim. Biophys. Acta BBA -Mol. Cell Res, vol.1265, issue.1, pp.40-48, 1995.

M. D. Kraaij, K. M. Koekkoek, S. W. Van-der-kooij, K. A. Gelderman, and C. Van-kooten, Subsets of human type 2 macrophages show differential capacity to produce reactive oxygen species, Cell. Immunol, vol.284, issue.1, pp.1-8, 2013.

J. Rodríguez-prados, Substrate Fate in Activated Macrophages: A Comparison between Innate, Classic, and Alternative Activation, J. Immunol, vol.185, issue.1, pp.605-614, 2010.

J. Blagih and R. G. Jones, Polarizing Macrophages through Reprogramming of Glucose Metabolism, Cell Metab, vol.15, issue.6, pp.793-795, 2012.

L. Zhu, Q. Zhao, T. Yang, W. Ding, and Y. Zhao, Cellular Metabolism and Macrophage Functional Polarization, Int. Rev. Immunol, vol.34, issue.1, pp.82-100, 2015.

F. Santa, L. Vitiello, A. Torcinaro, and E. Ferraro, The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration, Antioxid. Redox Signal, 2018.

G. M. Tannahill, Succinate is an inflammatory signal that induces IL-1? through HIF-1?, Nature, vol.496, issue.7444, pp.238-242, 2013.

C. Diskin and E. M. Pålsson-mcdermott, Metabolic Modulation in Macrophage Effector Function, Front. Immunol, vol.9, 2018.

L. A. O'neill, A Broken Krebs Cycle in Macrophages, Immunity, vol.42, issue.3, pp.393-394, 2015.

A. Haschemi, The Sedoheptulose Kinase CARKL Directs Macrophage Polarization through Control of Glucose Metabolism, Cell Metab, vol.15, issue.6, pp.813-826, 2012.

E. L. Pearce and E. J. Pearce, Metabolic Pathways In Immune Cell Activation And Quiescence, Immunity, vol.38, issue.4, pp.633-643, 2013.

D. Vats, Oxidative metabolism and PGC-1? attenuate macrophage-mediated inflammation, Cell Metab, vol.4, issue.1, pp.13-24, 2006.

J. Van-den-bossche, Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages, Cell Rep, vol.17, issue.3, p.2016

A. Remmerie and C. L. Scott, Macrophages and lipid metabolism, Cell. Immunol, vol.330, pp.27-42, 2018.

C. E. Chalfant and S. Spiegel, Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling, J. Cell Sci, vol.118, pp.4605-4612, 2005.

A. D. Dobrian, D. C. Lieb, B. K. Cole, D. A. Taylor-fishwick, S. K. Chakrabarti et al., Functional and pathological roles of the 12-and 15-lipoxygenases, Prog. Lipid Res, vol.50, issue.1, pp.115-131, 2011.

S. J. Wuest, M. Crucet, C. Gemperle, C. Loretz, and M. Hersberger, Expression and regulation of 12/15-lipoxygenases in human primary macrophages, Atherosclerosis, vol.225, issue.1, pp.121-127, 2012.

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression, J. Immunol, vol.177, issue.10, pp.7303-7311, 2006.

K. M. Rattigan, Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli, REFERENCES, vol.13, issue.3, 2018.

N. Braidy, R. Grant, B. J. Brew, S. Adams, T. Jayasena et al., Effects of Kynurenine Pathway Metabolites on Intracellular NAD+ Synthesis and Cell Death in Human Primary Astrocytes and Neurons, Int. J. Tryptophan Res. IJTR, vol.2, pp.61-69, 2009.

R. Schwarcz, The kynurenine pathway of tryptophan degradation as a drug target, Curr. Opin. Pharmacol, vol.4, issue.1, pp.12-17, 2004.

F. Moroni, Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites, Eur. J. Pharmacol, vol.375, issue.1, pp.87-100, 1999.

R. Dick, B. P. Murray, M. J. Reid, and M. A. Correia, Structure--function relationships of rat hepatic tryptophan 2,3-dioxygenase: identification of the putative heme-ligating histidine residues, Arch. Biochem. Biophys, vol.392, issue.1, pp.71-78, 2001.

M. Fukunaga, Studies on tissue and cellular distribution of indoleamine 2,3-dioxygenase 2: the absence of IDO1 upregulates IDO2 expression in the epididymis, J. Histochem. Cytochem. Off. J. Histochem. Soc, vol.60, issue.11, pp.854-860, 2012.

Y. Murakami, M. Hoshi, Y. Imamura, Y. Arioka, Y. Yamamoto et al., Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases, Mediators Inflamm, vol.2013, 2013.

P. Bortolotti, Implications de la production de kynurénines par pseudomonas aeruginosa dans la relation hôte-pathogène, 2016.

B. Heng, C. K. Lim, D. B. Lovejoy, A. Bessede, L. Gluch et al., Understanding the role of the kynurenine pathway in human breast cancer immunobiology, Oncotarget, vol.7, issue.6, pp.6506-6520, 2015.

T. Regan, Effects of anti-inflammatory drugs on the expression of tryptophanmetabolism genes by human macrophages, J. Leukoc. Biol, vol.103, issue.4, pp.681-692, 2018.

C. K. Lim, Characterization of the Kynurenine Pathway and Quinolinic Acid Production in Macaque Macrophages, Int. J. Tryptophan Res. IJTR, vol.6, pp.7-19, 2013.

K. F. Van-der-sluijs, Systemic tryptophan and kynurenine catabolite levels relate to severity of rhinovirus-induced asthma exacerbation: a prospective study with a parallel-group design, Thorax, vol.68, issue.12, pp.1122-1130, 2013.

A. A. and -. Badawy, Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects, Int. J. Tryptophan Res. IJTR, vol.10, 2017.

G. Briend and P. Devillier, Implication de la voie des kynurénines dans la polarisation des macrophages pulmonaires humains, Rev. Mal. Respir, vol.31, issue.9, p.879, 2014.

S. Lee, Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway, Proc. Natl. Acad. Sci, vol.114, pp.5881-5890, 2017.

L. Gaelings, Regulation of kynurenine biosynthesis during influenza virus infection, FEBS J, vol.284, issue.2, pp.222-236, 2017.

A. J. Rogers, Metabolomic Derangements Are Associated with Mortality in Critically Ill Adult Patients, PLOS ONE, vol.9, issue.1, p.87538, 2014.

Y. Suzuki, Serum activity of indoleamine 2,3-dioxygenase predicts prognosis of community-acquired pneumonia, J. Infect, vol.63, issue.3, pp.215-222, 2011.

M. A. Meier, Activation of the Serotonin Pathway is Associated with Poor Outcome in COPD Exacerbation: Results of a Long-Term Cohort Study, Lung, vol.195, issue.3, pp.303-311, 2017.

D. Lütjohann, Sterol autoxidation: from phytosterols to oxyphytosterols, Br. J. Nutr, vol.91, issue.1, pp.3-4, 2004.

Z. Hu, B. He, L. Ma, Y. Sun, Y. Niu et al., Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae, Indian J. Microbiol, vol.57, issue.3, pp.270-277, 2017.

A. Vejux, T. Montange, L. Martine, A. Zarrouk, J. Riedinger et al., Absence of oxysterol-like side effects in human monocytic cells treated with phytosterols and oxyphytosterols, J. Agric. Food Chem, vol.60, issue.16, pp.4060-4066, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01594323

C. Adcox, L. Boyd, L. Oehrl, J. Allen, and G. Fenner, Comparative Effects of Phytosterol Oxides and Cholesterol Oxides in Cultured Macrophage-Derived Cell Lines, J. Agric. Food Chem, vol.49, issue.4, pp.2090-2095, 2001.

M. Valerio, Phytosterols ameliorate clinical manifestations and inflammation in experimental autoimmune encephalomyelitis, Inflamm. Res, vol.60, issue.5, pp.457-465, 2011.

R. Liu, ?-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice, Pharm. Biol, vol.57, issue.1, pp.161-168, 2019.

N. J. Spann and C. K. Glass, Sterols and oxysterols in immune cell function, Nat. Immunol, vol.14, issue.9, pp.893-900, 2013.

Y. Sakakura, Sterol Regulatory Element-Binding Proteins Induce an Entire Pathway of Cholesterol Synthesis, Biochem. Biophys. Res. Commun, vol.286, issue.1, pp.176-183, 2001.

E. J. Zerenturk, L. J. Sharpe, E. Ikonen, and A. J. Brown, Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis, Prog. Lipid Res, vol.52, issue.4, pp.666-680, 2013.

, Cholesterol: Synthesis, Metabolism, Regulation, p.7, 2019.

V. M. Olkkonen, O. Béaslas, and E. Nissilä, Oxysterols and Their Cellular Effectors, Biomolecules, vol.2, issue.1, pp.76-103, 2012.

V. M. Olkkonen and R. Hynynen, Interactions of oxysterols with membranes and proteins, Mol. Aspects Med, vol.30, issue.3, pp.123-133, 2009.

A. J. Brown and W. Jessup, Oxysterols: Sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis, Mol. Aspects Med, vol.30, issue.3, pp.111-122, 2009.

N. Abudu, J. J. Miller, and S. S. Levinson, Lipoprotein Oxidation Products and Arteriosclerosis: Theory and Methods with Applicability to the Clinical Chemistry Laboratory, Advances in Clinical Chemistry, vol.38, pp.1-35, 2004.

G. Testa, D. Rossin, G. Poli, F. Biasi, and G. Leonarduzzi, Implication of oxysterols in chronic inflammatory human diseases, Biochimie, vol.153, pp.220-231, 2018.

B. Sottero, P. Gamba, S. Gargiulo, G. Leonarduzzi, and G. Poli, Cholesterol oxidation products and disease: an emerging topic of interest in medicinal chemistry, Curr. Med. Chem, vol.16, issue.6, pp.685-705, 2009.

M. Souidi, Les oxystérols : métabolisme, rôles biologiques et pathologies associées, 2008.

D. W. Russell, Oxysterol biosynthetic enzymes, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, vol.1529, issue.1, pp.126-135, 2000.

C. R. Pullinger, Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype, J. Clin. Invest, vol.110, issue.1, p.142, 2002.

A. Rutkowska, S. A. O'sullivan, I. Christen, J. Zhang, A. W. Sailer et al., The EBI2 signalling pathway plays a role in cellular crosstalk between astrocytes and macrophages, Sci. Rep, vol.6, p.25520, 2016.

S. Sun and C. Liu, 7?, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases, Front. Pharmacol, vol.6, 2015.

U. Diczfalusy, H. Nylén, P. Elander, and L. Bertilsson, 4?-hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans, Br. J. Clin. Pharmacol, vol.71, issue.2, pp.183-189, 2011.

N. J. Spann, Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses, Cell, vol.151, issue.1, pp.138-152, 2012.

J. G. Cyster, E. V. Dang, A. Reboldi, and T. Yi, 25-Hydroxycholesterols in innate and adaptive immunity, Nat. Rev. Immunol, vol.14, issue.11, pp.731-743, 2014.

E. S. Gold, 25-Hydroxycholesterol acts as an amplifier of inflammatory signaling, Proc. Natl. Acad. Sci, vol.111, pp.10666-10671, 2014.

D. R. Bauman, A. D. Bitmansour, J. G. Mcdonald, B. M. Thompson, G. Liang et al., 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production, Proc. Natl. Acad. Sci, vol.106, issue.39, pp.16764-16769, 2009.

A. Reboldi, E. V. Dang, J. G. Mcdonald, G. Liang, D. W. Russell et al., Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon, Science, vol.345, issue.6197, pp.679-684, 2014.

M. C. Englund, A. L. Karlsson, O. Wiklund, G. Bondjers, and B. G. Ohlsson, 25-hydroxycholesterol induces lipopolysaccharide-tolerance and decreases a lipopolysaccharide-induced TNF-alpha secretion in macrophages, Atherosclerosis, vol.158, issue.1, pp.61-71, 2001.

U. Diczfalusy, Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide, J. Lipid Res, vol.50, issue.11, pp.2258-2264, 2009.

A. Koarai, 25-Hydroxycholesterol enhances cytokine release and Toll-like receptor 3 response in airway epithelial cells, Respir. Res, vol.13, p.63, 2012.

S. Dzeletovic, O. Breuer, E. Lund, and U. Diczfalusy, Determination of Cholesterol Oxidation Products in Human Plasma by Isotope Dilution-Mass Spectrometry, Anal. Biochem, vol.225, issue.1, pp.73-80, 1995.

P. Italiani, Transcriptomic Profiling of the Development of the Inflammatory Response in Human Monocytes In Vitro, PLOS ONE, vol.9, issue.2, p.87680, 2014.

R. D. Stout and J. Suttles, Functional plasticity of macrophages: reversible adaptation to changing microenvironments, J. Leukoc. Biol, vol.76, issue.3, pp.509-513, 2004.

T. Victoni, Human lung and monocyte-derived macrophages differ with regard to the effects of ?2-adrenoceptor agonists on cytokine release, Respir. Res, vol.18, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619481

P. J. Groot-kormelink, L. Fawcett, P. D. Wright, M. Gosling, and T. C. Kent, Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates, BMC Immunol, vol.13, issue.1, p.57, 2012.

A. Lescoat, Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement, Distinct Properties of Human M-CSF and GM-CSF, vol.19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744218

C. H. Johnson, J. Ivanisevic, and G. Siuzdak, Metabolomics: beyond biomarkers and towards mechanisms, Nat. Rev. Mol. Cell Biol, vol.17, issue.7, pp.451-459, 2016.

A. Scalbert, Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research, Metabolomics, vol.5, issue.4, pp.435-458, 2009.

F. J. Martin, A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model, Mol. Syst. Biol, vol.3, 2007.

E. Roepenack-lahaye, Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-offlight mass spectrometry, Plant Physiol, vol.134, issue.2, pp.548-559, 2004.

F. Courant, J. Antignac, G. Dervilly-pinel, and B. L. Bizec, Basics of mass spectrometry based metabolomics, Proteomics, vol.14, issue.21-22, pp.2369-2388, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01928516

K. Suhre and C. Gieger, Genetic variation in metabolic phenotypes: study designs and applications, Nat. Rev. Genet, vol.13, issue.11, pp.759-769, 2012.

S. Park, Y. Kim, J. Kim, and J. Kim, Age-associated changes in fat metabolism in the rat and its relation to sympathetic activity, Life Sci, vol.79, issue.23, pp.2228-2233, 2006.

M. P. Hodson, A gender-specific discriminator in Sprague-Dawley rat urine: The deployment of a metabolic profiling strategy for biomarker discovery and identification, Anal. Biochem, vol.362, issue.2, pp.182-192, 2007.

M. Dumas, Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study, Anal. Chem, vol.78, issue.7, pp.2199-2208, 2006.

J. M. Barca, D. Mirebeau-prunier, V. Moal, P. Reynier, R. Garnotel et al., Metabolome and mass spectrometry: new biomedical analysis perspectives, Ann. Biol. Clin, issue.1, pp.20151-20153

K. Kim, Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment, PloS One, vol.9, issue.1, p.86223, 2014.

K. Bando, Influences of biofluid sample collection and handling procedures on GC-MS based metabolomic studies, J. Biosci. Bioeng, vol.110, issue.4, pp.491-499, 2010.

R. P. Maharjan and T. Ferenci, Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli, Anal. Biochem, vol.313, issue.1, pp.145-154, 2003.

C. L. Winder, Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites, Anal. Chem, vol.80, issue.8, pp.2939-2948, 2008.

X. Duportet, R. B. Aggio, S. Carneiro, and S. G. , The biological interpretation of metabolomic data can be misled by the extraction method used, Metabolomics, vol.8, issue.3, pp.410-421, 2012.

E. G. Bligh and W. J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol, vol.37, issue.8, pp.911-917, 1959.

F. Fei, D. M. Bowdish, and B. E. Mccarry, Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS, Anal. Bioanal. Chem, vol.406, issue.15, pp.3723-3733, 2014.

L. Lin, Z. Huang, Y. Gao, X. Yan, J. Xing et al., LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery, J. Proteome Res, vol.10, issue.3, p.144, 2011.

X. Cai and R. Li, Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS, Sci. Rep, vol.6, p.36490, 2016.

X. Cai, Analysis of highly polar metabolites in human plasma by ultraperformance hydrophilic interaction liquid chromatography coupled with quadrupoletime of flight mass spectrometry, Anal. Chim. Acta, vol.650, issue.1, pp.10-15, 2009.

B. Hounoum, H. Blasco, P. Emond, and S. Mavel, Liquid chromatographyhigh-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications, TrAC Trends Anal. Chem, vol.75, pp.118-128, 2016.

E. Cequier-sánchez, C. Rodríguez, A. G. Ravelo, and R. Zárate, Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures, J. Agric. Food Chem, vol.56, issue.12, pp.4297-4303, 2008.

H. Bi, K. W. Krausz, S. K. Manna, F. Li, C. H. Johnson et al., Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MSbased metabolomic analysis of adherent mammalian cancer cells, Anal. Bioanal. Chem, vol.405, issue.15, pp.5279-5289, 2013.

J. C. García-cañaveras, S. López, J. V. Castell, M. T. Donato, and A. Lahoz, Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells, Anal. Bioanal. Chem, vol.408, issue.4, pp.1217-1230, 2016.

D. Vuckovic, Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry, Anal. Bioanal. Chem, vol.403, issue.6, pp.1523-1548, 2012.

F. Tugizimana, P. A. Steenkamp, L. A. Piater, and I. A. Dubery, Mass spectrometry in untargeted liquid chromatography/mass spectrometry metabolomics: Electrospray ionisation parameters and global coverage of the metabolome, Rapid Commun. Mass Spectrom. RCM, vol.32, issue.2, pp.121-132, 2018.

C. Ranninger, Improving global feature detectabilities through scan range splitting for untargeted metabolomics by high-performance liquid chromatography-Orbitrap mass spectrometry, Anal. Chim. Acta, vol.930, pp.13-22, 2016.

O. Fiehn, Metabolomics by Gas Chromatography-Mass Spectrometry: the combination of targeted and untargeted profiling, Curr. Protoc. Mol. Biol. Ed. Frederick M Ausubel Al, vol.114, 2016.

H. Lu, Y. Liang, W. B. Dunn, H. Shen, and D. B. Kell, Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS, TrAC Trends Anal. Chem, vol.27, issue.3, pp.215-227, 2008.

R. Verpoorte, Y. H. Choi, N. R. Mustafa, and H. K. Kim, Metabolomics: back to basics, Phytochem. Rev, vol.7, issue.3, pp.525-537, 2008.

M. Vinaixa, E. L. Schymanski, S. Neumann, M. Navarro, R. M. Salek et al., Mass spectral databases for LC/MS-and GC/MS-based metabolomics: State of the field and future prospects, TrAC Trends Anal. Chem, vol.78, pp.23-35, 2016.

J. M. Halket, D. Waterman, A. M. Przyborowska, R. K. Patel, P. D. Fraser et al., Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS, J. Exp. Bot, vol.56, issue.410, pp.219-243, 2005.

J. M. Halket and V. G. Zaikin, Derivatization in Mass Spectrometry-1. Silylation, Eur. J. Mass Spectrom, vol.9, issue.1, pp.1-21, 2003.

S. Kumari, D. Stevens, T. Kind, C. Denkert, and O. Fiehn, Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry, Anal. Chem, vol.83, issue.15, pp.5895-5902, 2011.

H. Kanani, P. K. Chrysanthopoulos, and M. I. Klapa, Standardizing GC-MS metabolomics, J. Chromatogr. B, vol.871, issue.2, pp.191-201, 2008.

D. Tang, L. Zou, X. Yin, and C. N. Ong, HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS, Mass Spectrom. Rev, vol.35, issue.5, pp.574-600, 2016.

G. Theodoridis, H. G. Gika, and I. D. Wilson, Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies, Mass Spectrom. Rev, vol.30, issue.5, pp.884-906, 2011.

G. A. Theodoridis, H. G. Gika, E. J. Want, and I. D. Wilson, Liquid chromatography-mass spectrometry based global metabolite profiling: A review, Anal. Chim. Acta, vol.711, pp.7-16, 2012.

A. Lafaye, J. Labarre, J. Tabet, E. Ezan, and C. Junot, Liquid Chromatography?Mass Spectrometry and 15N Metabolic Labeling for Quantitative Metabolic Profiling, Anal. Chem, vol.77, issue.7, pp.2026-2033, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021893

E. Eckert, H. Drexler, and T. Göen, Determination of six hydroxyalkyl mercapturic acids in human urine using hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-ESI-MS/MS), J. Chromatogr. B, vol.878, issue.27, pp.2506-2514, 2010.

J. Martens-lobenhoffer, A. Surdacki, and S. M. Bode-böger, Fast and Precise Quantification of l-Homoarginine in Human Plasma by HILIC-Isotope Dilution-MS-MS, Chromatographia, vol.76, issue.23, pp.1755-1759, 2013.

A. Conventz, Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci, vol.860, issue.1, pp.78-85, 2007.

N. Sriboonvorakul, Liquid chromatographic-mass spectrometric method for simultaneous determination of small organic acids potentially contributing to acidosis in severe malaria, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci, vol.941, pp.116-122, 2013.

M. Scherer, K. Leuthäuser-jaschinski, J. Ecker, G. Schmitz, and G. Liebisch, A rapid and quantitative LC-MS/MS method to profile sphingolipids, J. Lipid Res, vol.51, issue.7, 2001.

P. Kiefer, J. Portais, and J. A. Vorholt, Quantitative metabolome analysis using liquid chromatography-high-resolution mass spectrometry, Anal. Biochem, vol.382, issue.2, pp.94-100, 2008.

S. Boudah, Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry, J. Chromatogr. B, vol.966, pp.34-47, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01664192

K. Contrepois, L. Jiang, and M. Snyder, Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry, Mol. Cell. Proteomics MCP, vol.14, issue.6, pp.1684-1695, 2015.

J. Ivanisevic, Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism, Anal. Chem, vol.85, issue.14, pp.6876-6884, 2013.

T. J. Comi, T. D. Do, S. S. Rubakhin, and J. V. Sweedler, Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry, J. Am. Chem. Soc, vol.139, issue.11, pp.3920-3929, 2017.

M. Cuperlovi?-culf, D. A. Barnett, A. S. Culf, and I. Chute, Cell culture metabolomics: applications and future directions, Drug Discov. Today, vol.15, pp.610-621, 2010.

C. A. Sellick, Effective Quenching Processes for Physiologically Valid Metabolite Profiling of Suspension Cultured Mammalian Cells, Anal. Chem, vol.81, issue.1, pp.174-183, 2009.

S. X. Adamson, R. Wang, W. Wu, B. Cooper, and J. Shannahan, Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36, PLoS ONE, vol.13, issue.11, 2018.

C. Zhao, Z. Tang, J. Yan, J. Fang, H. Wang et al., Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis, Sci. Total Environ, vol.592, pp.357-365, 2017.

J. A. Hollenbaugh, C. Montero, R. F. Schinazi, J. Munger, and B. Kim, Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages, Virology, vol.491, pp.106-114, 2016.

S. Forcisi, F. Moritz, B. Kanawati, D. Tziotis, R. Lehmann et al., Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling, J. Chromatogr. A, vol.1292, pp.51-65, 2013.

, Le couplage entre la chromatographie liquide et la spectrometrie de masse

W. C. Byrdwell, Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids, Lipids, vol.36, issue.4, pp.327-346, 2001.

J. Lembcke, U. Ceglarek, G. M. Fiedler, S. Baumann, A. Leichtle et al., Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS, J. Lipid Res, vol.46, issue.1, pp.21-26, 2005.

M. Takino, S. Daishima, and T. Nakahara, Determination of chloramphenicol residues in fish meats by liquid chromatography-atmospheric pressure photoionization mass spectrometry, J. Chromatogr. A, vol.1011, issue.1, pp.67-75, 2003.

N. Yoshioka, Y. Akiyama, and K. Teranishi, Rapid simultaneous determination of ophenylphenol, diphenyl, thiabendazole, imazalil and its major metabolite in citrus fruits by liquid chromatography-mass spectrometry using atmospheric pressure photoionization, J. Chromatogr. A, vol.1022, issue.1, pp.145-150, 2004.

E. A. Straube, W. Dekant, and W. Völkel, Comparison of electrospray ionization, atmospheric pressure chemical ionization, and atmospheric pressure photoionization for the analysis of dinitropyrene and aminonitropyrene LC-MS/MS, J. Am. Soc. Mass Spectrom, vol.15, issue.12, pp.1853-1862, 2004.

A. O. Nier, A Mass Spectrometer for Isotope and Gas Analysis, Rev. Sci. Instrum, vol.18, issue.6, pp.398-411, 1947.

E. Werner, Analyse du métabolome par chromatographie liquide couplée à la spectrométrie de masse : application à la recherche de biomarqueurs indirects d'induction enzymatique, 2011.

M. , Apports des évolutions de la spectrométrie de masse pour l'étude statique et dynamique du métabolisme des lipides et des lipoprotéines, thesis, 2017.

A. Makarov, Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis, Anal. Chem, vol.72, issue.6, pp.1156-1162, 2000.

, Dispositifs à piégeage d'ions

B. O. Keller, J. Sui, A. B. Young, and R. M. , Interferences and contaminants encountered in modern mass spectrometry, Anal. Chim. Acta, vol.627, issue.1, pp.71-81, 2008.

C. L. Stumpf and J. Goshawk, MarkerLynx Application Manager: Informatics for Mass Spectrometric Metabonomic Discovery, p.4

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem, vol.78, issue.3, pp.779-787, 2006.

A. Lommen, MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing, Anal. Chem, vol.81, issue.8, pp.3079-3086, 2009.

M. Katajamaa and M. Oresic, Processing methods for differential analysis of LC/MS profile data, BMC Bioinformatics, vol.6, p.179, 2005.

R. Tautenhahn, C. Böttcher, and S. Neumann, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinformatics, vol.9, issue.1, p.504, 2008.

G. Libiseller, IPO: a tool for automated optimization of XCMS parameters, BMC Bioinformatics, vol.16, 2015.

F. Giacomoni, Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics, Bioinformatics, vol.31, issue.9, pp.1493-1495, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214152

Y. Wu and L. Li, Sample normalization methods in quantitative metabolomics, J. Chromatogr. A, vol.1430, pp.80-95, 2016.

C. Kuhl, R. Tautenhahn, C. Böttcher, T. R. Larson, and S. Neumann, CAMERA: An integrated strategy for compound spectra extraction and annotation of LC/MS data sets, Anal. Chem, vol.84, issue.1, pp.283-289, 2012.

M. R. Viant, I. J. Kurland, M. R. Jones, and W. B. Dunn, How close are we to complete annotation of metabolomes?, Curr. Opin. Chem. Biol, vol.36, pp.64-69, 2017.

R. Chaleckis, I. Meister, P. Zhang, and C. E. Wheelock, Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics, Curr. Opin. Biotechnol, vol.55, pp.44-50, 2019.

L. W. Sumner, Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI), Metabolomics Off. J. Metabolomic Soc, vol.3, issue.3, pp.211-221, 2007.

W. B. Dunn, Mass appeal: metabolite identification in mass spectrometryfocused untargeted metabolomics, Metabolomics, vol.9, issue.1, pp.44-66, 2013.

F. Fenaille, P. Saint-hilaire, K. Rousseau, and C. Junot, Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometrybased metabolomics: Where do we stand?, J. Chromatogr. A, vol.1526, pp.1-12, 2017.

J. Chong, MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis, Nucleic Acids Res, vol.46, issue.W1, pp.486-494, 2018.

S. Li, Predicting Network Activity from High Throughput Metabolomics, PLoS Comput. Biol, vol.9, issue.7, 2013.

S. Jeyaseelan, Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against Escherichia coli lipopolysaccharide and viable REFERENCES 148

E. Coli, J. Immunol. Baltim. Md, vol.175, issue.11, pp.7484-7495, 1950.

A. Buenestado, Roflumilast inhibits the release of chemokines and TNF-? from human lung macrophages stimulated with lipopolysaccharide, Br. J. Pharmacol, vol.165, issue.6, pp.1877-1890, 2012.

A. Kalli, G. T. Smith, M. J. Sweredoski, and S. Hess, Evaluation and Optimization of Mass Spectrometric Settings during Data-Dependent Acquisition Mode: Focus on LTQ-Orbitrap Mass Analyzers, J. Proteome Res, vol.12, issue.7, pp.3071-3086, 2013.

R. Adusumilli and P. Mallick, Data Conversion with ProteoWizard msConvert, Methods Mol. Biol. Clifton NJ, vol.1550, pp.339-368, 2017.

R. Wehrens, G. Weingart, and F. Mattivi, metaMS: an open-source pipeline for GC-MS-based untargeted metabolomics, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci, vol.966, pp.109-116, 2014.

P. Rinaudo, S. Boudah, C. Junot, and E. A. Thévenot, biosigner: A New Method for the Discovery of Significant Molecular Signatures from Omics Data, Front. Mol. Biosci, vol.3, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01869335

R. G. Brereton and G. R. Lloyd, Partial least squares discriminant analysis: taking the magic away: PLS-DA: taking the magic away, J. Chemom, vol.28, issue.4, pp.213-225, 2014.

J. G. Mcdonald and D. W. Russell, Editorial: 25-Hydroxycholesterol: a new life in immunology, J. Leukoc. Biol, vol.88, issue.6, pp.1071-1072, 2010.

W. J. Griffiths, J. Abdel-khalik, P. J. Crick, E. Yutuc, and Y. Wang, New methods for analysis of oxysterols and related compounds by LC-MS, J. Steroid Biochem. Mol. Biol, vol.162, pp.4-26, 2016.

J. G. Mcdonald, C. L. Cummins, R. M. Barkley, B. M. Thompson, and H. A. Lincoln, Identification and Quantitation of Sorbitol-Based Nuclear Clarifying Agents Extracted from Common Laboratory and Consumer Plasticware Made of Polypropylene, Anal. Chem, vol.80, issue.14, pp.5532-5541, 2008.

J. G. Mcdonald, D. D. Smith, A. R. Stiles, and D. W. Russell, A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma, J. Lipid Res, vol.53, issue.7, pp.1399-1409, 2012.

J. B. Lin, Oxysterol Signatures Distinguish Age-Related Macular Degeneration from Physiologic Aging, EBioMedicine, vol.32, pp.9-20, 2018.

P. J. Crick, T. W. Bentley, Y. Wang, and W. J. Griffiths, Revised sample preparation for the analysis of oxysterols by enzyme-assisted derivatisation for sterol analysis (EADSA), Anal. Bioanal. Chem, vol.407, issue.17, pp.5235-5239, 2015.

V. Mutemberezi, B. Buisseret, J. Masquelier, O. Guillemot-legris, M. Alhouayek et al., Oxysterol levels and metabolism in the course of neuroinflammation: insights from in vitro and in vivo models, J. Neuroinflammation, vol.15, 2018.

M. Haid, Long-Term Stability of Human Plasma Metabolites during Storage at ?80 °C, J. Proteome Res, vol.17, issue.1, pp.203-211, 2018.

Y. Ni, Metabolic profiling using combined GC-MS and LC-MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat, FEBS Lett, vol.581, issue.4, pp.707-711, 2007.

M. Ciborowski, Combination of LC-MS-and GC-MS-based Metabolomics to Study the Effect of Ozonated Autohemotherapy on Human Blood, J. Proteome Res, vol.11, issue.12, pp.6231-6241, 2012.

L. Housley, Untargeted Metabolomic Screen Reveals Changes in Human Plasma Metabolite Profiles Following Consumption of Fresh Broccoli Sprouts, Mol. Nutr. Food Res, vol.62, issue.19, p.1700665, 2018.

M. Jové, A plasma metabolomic signature discloses human breast cancer, Oncotarget, vol.8, issue.12, pp.19522-19533, 2017.

H. Zhou, Prognostic biomarkers of cervical squamous cell carcinoma identified via plasma metabolomics, Medicine (Baltimore), vol.98, issue.26, 2019.

N. G. Mahieu and G. J. Patti, Systems-Level Annotation of a Metabolomics Data Set Reduces 25,000 Features to Fewer than 1,000 Unique Metabolites, Anal. Chem, vol.89, issue.19, pp.10397-10406, 2017.

W. A. Scott, J. M. Zrike, A. L. Hamill, J. Kempe, and Z. A. Cohn, Regulation of arachidonic acid metabolites in macrophages, J. Exp. Med, vol.152, issue.2, pp.324-335, 1980.

J. W. Ashley, Polarization of Macrophages toward M2 Phenotype Is Favored by Reduction in iPLA2? (Group VIA Phospholipase A2), J. Biol. Chem, vol.291, issue.44, pp.23268-23281, 2016.

C. A. Sorgi, Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid, Sci. Rep, vol.7, issue.1, p.10981, 2017.

S. E. Wenzel, Arachidonic acid metabolites: mediators of inflammation in asthma, Pharmacotherapy, vol.17, issue.1, pp.3-12, 1997.

J. J. Laskin and A. B. Sandler, The importance of the eicosanoid pathway in lung cancer, Lung Cancer, vol.41, pp.73-79, 2003.

T. Hida, Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas, Cancer Res, vol.58, issue.17, pp.3761-3764, 1998.

R. N. Gomes, S. F. Da-costa, and A. Colquhoun, Eicosanoids and cancer, Clinics, vol.73, 2018.

K. , Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung, J. Allergy Clin. Immunol, vol.137, issue.3, pp.833-843, 2016.

A. P. Van-der-leek, Y. Yanishevsky, and A. L. Kozyrskyj, The Kynurenine Pathway As a Novel Link between Allergy and the Gut Microbiome, Front. Immunol, vol.8, 2017.

F. Ajamian, Respiratory syncytial virus induces indoleamine 2,3-dioxygenase activity: a potential novel role in the development of allergic disease, Clin. Exp. Allergy, vol.45, issue.3, pp.644-659, 2015.

Y. Shi and W. Fang, Hypoxia-inducible factor-1 in tumour angiogenesis, World J. Gastroenterol, vol.10, issue.8, pp.1082-1087, 2004.

A. Palazon, A. W. Goldrath, V. Nizet, and R. S. Johnson, HIF Transcription Factors, Inflammation, and Immunity, Immunity, vol.41, issue.4, pp.518-528, 2014.

A. J. Byrne, S. A. Mathie, L. G. Gregory, and C. M. Lloyd, Pulmonary macrophages: key players in the innate defence of the airways, Thorax, vol.70, issue.12, pp.1189-1196, 2015.