H. Wagele, M. Ballesteros, and C. Avila, Defensive Glandular Structures in Opisthobranch Molluscs-from Histology to Ecology. Oceanogr, Mar. Biol, vol.44, 0197.

J. R. Pawlik, M. R. Kernan, T. F. Molinski, M. K. Harper, and D. J. Faulkner, Defensive Chemicals of the Spanisch Dancer Nudibranch Hexabranchus Sanguineus and Its Egg Ribbons: Macrolides Derived from a Sponge Diet, J. Exp. Mar. Biol. Ecol, vol.119, issue.2, pp.99-109, 1988.

J. Hellou, R. J. Andersen, and J. E. Thompson, Terpenoids from the Dorid Nudibranch Cadlina Luteomarginata, Tetrahedron, vol.1982, issue.13, pp.1875-1879

J. E. Thompson, R. P. Walker, S. J. Wratten, and D. J. Faulkner, A Chemical Defense Mechanism for the Nudibranch Cadlina Luteomarginata, Tetrahedron, vol.38, issue.13, pp.1865-1873, 1982.

Y. H. Kim, R. J. Nachman, L. Pavelka, H. S. Mosher, F. A. Fuhrman et al., 1-Methylisoguanosine, from Anisodoris Nobilis; Structure, Pharmacological Properties and Synthesis, J. Nat. Prod, vol.44, issue.2, pp.206-214, 1981.

M. R. Hagadone, B. J. Burreson, P. J. Scheuer, J. S. Finer, and J. Clardy, Defense Allomones of the Nudibranch Phyllidia Varicosa Lamarck 1801, Helv. Chim. Acta, vol.62, issue.7, pp.2484-2494, 1979.

D. Castiello, G. Cimino, S. De-rosa, S. De-stefano, and G. Sodano, High Molecular Weight Polyacetylenes from the Nudibranch Peltodoris Actromaculata and the Sponge Petrosia Ficiformis, Tetrahedron Lett, vol.21, issue.52, pp.5047-5050, 1980.

S. C. Pennings, S. R. Pablo, V. J. Paul, and J. Duffy, Effects of Sponge Secondary Metabolites in Different Diets on Feeding by Three Groups of Consumers, J. Exp. Mar. Biol. Ecol, vol.180, issue.1, pp.137-149, 1994.

B. Carté and D. J. Faulkner, Role of Secondary Metabolites in Feeding Associations between a Predatory Nudibranch, Two Grazing Nudibranchs, and a Bryozoan, J. Chem. Ecol, vol.12, issue.3, pp.795-804, 1986.

M. Carbone, C. Irace, F. Costagliola, F. Castelluccio, G. Villani et al., A New Cytotoxic Tambjamine Alkaloid from the Azorean Nudibranch Tambja Ceutae, Bioorg. Med. Chem. Lett, issue.8, pp.2668-2670, 2010.

V. Paul, N. Lindquist, and W. Fenical, Chemical Defenses of the Tropical Ascidian Atapozoa Sp. and Its Nudibranch Predators Nembrotha Spp, Mar. Ecol. Prog. Ser, vol.59, pp.109-118, 1990.

C. Avila, K. Iken, A. Fontana, and G. Cimino, Chemical Ecology of the Antarctic Nudibranch Bathydoris Hodgsoni Eliot, 1907: Defensive Role and Origin of Its Natural Products, J. Exp. Mar. Biol. Ecol, vol.252, issue.1, pp.27-44, 2000.

K. Iken, C. Avila, M. L. Ciavatta, A. Fontana, and G. Cimino, Hodgsonal, a New Drimane Sesquiterpene from the Mantle of the Antarctic Nudibranch Bathydoris Hodgsoni, Tetrahedron Lett, issue.31, pp.5635-5638, 1998.

M. Nusnbaum and C. D. Derby, Ink Secretion Protects Sea Hares by Acting on the Olfactory and Nonolfactory Chemical Senses of a Predatory Fish, Anim. Behav, issue.5, pp.1067-1076, 2010.

C. E. Kicklighter and C. D. Derby, Multiple Components in Ink of the Sea Hare Aplysia Californica Are Aversive to the Sea Anemone Anthopleura Sola, J. Exp. Mar. Biol. Ecol, vol.334, issue.2, pp.256-268, 2006.

M. Kamio, T. V. Grimes, M. H. Hutchins, R. Van-dam, and C. D. Derby, The Purple Pigment Aplysioviolin in Sea Hare Ink Deters Predatory Blue Crabs through Their Chemical Senses, Anim. Behav, vol.80, issue.1, pp.89-100, 2010.

P. M. Johnson, Packaging of Chemicals in the Defensive Secretory Glands of the Sea Hare Aplysia Californica, J. Exp. Biol, vol.209, issue.1, pp.78-88, 2006.

C. D. Derby, Escape by Inking and Secreting: Marine Molluscs Avoid Predators through a Rich Array of Chemicals and Mechanisms, Biol. Bull, vol.213, issue.3, pp.274-289, 2007.

C. E. Kicklighter, S. Shabani, P. M. Johnson, and C. D. Derby, Sea Hares Use Novel Antipredatory Chemical Defenses, Curr. Biol, vol.15, issue.6, pp.549-554, 2005.

J. Prince, T. G. Nolen, and L. Coelho, Defensive Ink Pigment Processing and Secretion in Aplysia Californica: Concentration and Storage of Phycoerythrobilin in the Ink Gland, J. Exp. Biol, vol.201, issue.10, pp.1595-1613, 1998.

S. C. Pennings, V. J. Paul, D. C. Dunbar, M. T. Hamann, W. A. Lumbang et al., Unpalatable Compounds in the Marine Gastropod Dolabella Auricularia: Distribution and Effect of Diet, J. Chem. Ecol, vol.25, issue.4, pp.735-755, 1999.

D. R. Appleton, R. C. Babcock, and B. R. Copp, Novel Tryptophan-Derived Dipeptides and Bioactive Metabolites from the Sea Hare Aplysia Dactylomela, Tetrahedron, vol.57, issue.51, pp.10181-10189, 2001.

M. Kamio, C. E. Kicklighter, L. Nguyen, M. W. Germann, and C. D. Derby, Isolation and Structural Elucidation of Novel Mycosporine-Like Amino Acids as Alarm Cues in the Defensive Ink Secretion of the Sea Hare Aplysia Californica, Helv. Chim. Acta, vol.94, issue.6, pp.1012-1018, 2011.

D. W. Ginsburg and V. J. Paul, Chemical Defenses in the Sea Hare Aplysia Parvula: Importance of Diet and Sequestration of Algal Secondary Metabolites, Mar. Ecol. Prog. Ser, vol.215, pp.261-274, 2001.

C. N. Rogers, R. De-nys, T. S. Charlton, and P. D. Steinberg, Dynamics of Algal Secondary Metabolites in Two Species of Sea Hare, J. Chem. Ecol, vol.26, issue.3, pp.721-744, 2000.

R. De-nys, P. Steinberg, C. Rogers, T. Charlton, and M. Duncan, Quantitative Variation of Secondary Metabolites in the Sea Hare Aplysia Parvula and Its Host Plant, Delisea Pulchra, Mar. Ecol. Prog. Ser, vol.130, pp.135-146, 1996.

W. H. Gerwick and G. Whatley, Aplysia Sea Hare Assimilation of Secondary Metabolites from Brown Seaweed, Stypopodium Zonale, J. Chem. Ecol, vol.15, issue.2, pp.677-683, 1989.

E. Quiñoa, L. Castedo, and R. Riguera, The Halogenated Monoterpenes of Aplysia Punctata. A Comparative Study, Comp. Biochem. Physiol. Part B Comp. Biochem, vol.92, issue.1, pp.99-101, 1989.

S. C. Pennings and T. H. Carefoot, Post-Ingestive Consequences of Consuming Secondary Metabolites in Sea Hares (Gastropoda: Opisthobranchia), Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol, vol.111, issue.2, pp.249-256, 1995.

M. O. Stallard, ;. Faulkner, and D. , Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica-I. Importance of Diet, Comp. Biochem. Physiol. Part B Comp. Biochem, vol.49, issue.1, pp.25-35, 1974.

V. J. Paul and S. C. Pennings, Diet-Derived Chemical Defenses in the Sea Hare Stylocheilus Longicauda (Quoy et Gaimard 1824), J. Exp. Mar. Biol. Ecol, vol.151, issue.2, pp.227-243, 1991.

S. C. Pennings and V. J. Paul, Secondary Chemistry Does Not Limit Dietary Range of the Specialist Sea Hare Stylocheilus Longicauda (Quoy et Gaimard 1824), J. Exp. Mar. Biol. Ecol, vol.174, issue.1, pp.97-113, 1993.

S. C. Pennings, A. M. Weiss, and V. J. Paul, Secondary Metabolites of the Cyanobacterium Microcoleus Lyngbyaceus and the Sea Hare Stylocheilus Longicauda: Palatability and Toxicity, Mar. Biol, vol.126, issue.4, pp.735-743, 1996.

D. G. Nagle, F. T. Camacho, and V. J. Paul, Dietary Preferences of the Opisthobranch Mollusc Stylocheilus Longicauda for Secondary Metabolites Produced by the Tropical Cyanobacterium Lyngbya Majuscula, Mar. Biol, vol.132, issue.2, pp.267-273, 1998.

A. Capper, I. R. Tibbetts, J. M. Neil, and G. R. Shaw, The Fate of Lyngbya Majuscula Toxins in Three Potential Consumers, J. Chem. Ecol, issue.7, pp.1595-1606, 2005.

S. C. Pennings and V. J. Paul, Sequestration of Dietary Secondary Metabolites by Three Species of Sea Hares: Location, Specificity and Dynamics, Mar. Biol, vol.117, issue.4, pp.535-546, 1993.

S. Pennings, S. Nastisch, and V. Paul, Vulnerability of Sea Hares to Fish Predators: Importance of Diet and Fish Species, Coral Reefs, vol.20, issue.3, pp.320-324, 2001.

Y. Nakao, W. Y. Yoshida, C. M. Szabo, B. J. Baker, and P. J. Scheuer, More Peptides and Other Diverse Constituents of the Marine Mollusk Philinopsis Speciosa, J. Org. Chem, vol.63, issue.10, pp.3272-3280, 1998.

A. Spinella, L. A. Alvarez, and G. Cimino, Predator -Prey Relationship between Navanax Inermis and Bulla Gouldiana : A Chemical Approach, Tetrahedron, issue.15, pp.3203-3210, 1993.

G. Cimino, G. Sodano, and A. Spinella, New Propionate-Derived Metabolites from Aglaja Depicta and from Its Prey Bulla Striata (Opisthobranch Mollusks), J. Org. Chem, issue.24, pp.5326-5331, 1987.

C. D. Harvell, The Ecology and Evolution of Inducible Defenses, Q. Rev. Biol, vol.65, issue.3, pp.323-340, 1990.

I. T. Baldwin, E. A. Schmelz, and T. E. Ohnmeiss, Wound-Induced Changes in Root and Shoot Jasmonic Acid Pools Correlate with Induced Nicotine Synthesis inNicotiana Sylvestris Spegazzini and Comes, J. Chem. Ecol, vol.20, issue.8, pp.2139-2157, 1994.

C. M. Lively, Competition, Comparative Life Histories, and Maintenance of Shell Dimorphism in a Barnacle, Ecology, vol.67, issue.4, pp.858-864, 1986.

C. M. Lively, Predator-Induced Shell Dimorphism in the Acorn Barnacle Chthamalus Anisopoma, Evolution, vol.40, issue.2, p.232, 1986.

C. D. Harvell, Predator-Induced Defense in a Marine Bryozoan, Science, vol.224, issue.4655, pp.1357-1359, 1984.

C. D. Harvell, The Ecology and Evolution of Inducible Defenses in a Marine Bryozoan: Cues, Costs, and Consequences, Am. Nat, vol.128, issue.6, pp.810-823, 1986.

R. S. Steneck and W. H. Adey, The Role of Environment in Control of Morphology in Lithophyllum Congestum, a Caribbean Algal Ridge Builder, vol.19, 1976.

K. L. Van-alstyne, Herbivore Grazing Increases Polyphenolic Defenses in the Intertidal Brown Alga Fucus Distichus, Ecology, vol.69, issue.3, pp.655-663, 1988.

G. B. Toth and H. Pavia, Water-Borne Cues Induce Chemical Defense in a Marine Alga (Ascophyllum Nodosum), Proc. Natl. Acad. Sci. U. S. A, issue.26, pp.14418-14420, 2000.

R. A. Coleman, S. J. Ramchunder, A. J. Moody, and A. Foggo, An Enzyme in Snail Saliva Induces Herbivore-Resistance in a Marine Alga, Funct. Ecol, issue.1, p.21, 2007.

T. P. Clausen, P. B. Reichardt, J. P. Bryant, R. A. Werner, K. Post et al., Chemical Model for Short-Term Induction in Quaking Aspen (Populus Tremuloides) Foliage against Herbivores, J. Chem. Ecol, vol.15, issue.9, pp.2335-2346, 1989.

J. P. Bryant, F. D. Provenza, J. Pastor, P. B. Reichardt, T. P. Clausen et al., Interactions Between Woody Plants and Browsing Mammals Mediated by Secondary Metabolites, Annu. Rev. Ecol. Syst, vol.22, issue.1, pp.431-446, 1991.

K. L. Van-alstyne and V. J. Paul, Chemical and Structural Defenses in the Sea Fan Gorgonia Ventalina: Effects against Generalist and Specialist Predators, Coral Reefs, vol.11, issue.3, pp.155-159, 1992.

A. Kessler and I. T. Baldwin, Plant Responses to Insect Herbivory: The Emerging Molecular Analysis, Annu. Rev. Plant Biol, vol.53, issue.1, pp.299-328, 2002.

L. M. Schulte, M. Krauss, S. Lötters, T. Schulze, and W. Brack, Decoding and Discrimination of Chemical Cues and Signals: Avoidance of Predation and Competition during Parental Care Behavior in Sympatric Poison Frogs, PLOS ONE, vol.10, issue.7, p.129929, 2015.

S. Steiger, T. Schmitt, and H. M. Schaefer, The Origin and Dynamic Evolution of Chemical Information Transfer, Proc. R. Soc. B Biol. Sci, vol.278, pp.970-979, 1708.

C. M. De-moraes, W. J. Lewis, P. W. Paré, H. T. Alborn, and J. H. Tumlinson, Herbivore-Infested Plants Selectively Attract Parasitoids, Nature, vol.393, issue.6685, pp.570-573, 1998.

T. C. Turlings, J. H. Tumlinson, and W. J. Lewis, Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps, Science, vol.250, issue.4985, pp.1251-1253, 1990.

N. Engene, H. Choi, E. Esquenazi, E. C. Rottacker, M. H. Ellisman et al., Underestimated Biodiversity as a Major Explanation for the Perceived Rich Secondary Metabolite Capacity of the Cyanobacterial Genus Lyngbya: Secondary Metabolite Diversity of Lyngbya, Environ. Microbiol, vol.13, issue.6, pp.1601-1610, 2011.

A. Capper, A. A. Erickson, R. Ritson-williams, M. A. Becerro, K. A. Arthur et al., Palatability and Chemical Defences of Benthic Cyanobacteria to a Suite of Herbivores, J. Exp. Mar. Biol. Ecol, vol.474, pp.100-108, 2016.

E. Cruz-rivera and V. J. Paul, Chemical Deterrence of a Cyanobacterial Metabolite against Generalized and Specialized Grazers, J. Chem. Ecol, vol.33, issue.1, pp.213-217, 2006.

A. Capper, E. Cruz-rivera, V. J. Paul, and I. R. Tibbetts, Chemical Deterrence of a Marine Cyanobacterium against Sympatric and Non-Sympatric Consumers, Hydrobiologia, vol.553, issue.1, pp.319-326, 2006.

A. Capper, I. R. Tibbetts, J. M. Neil, and G. R. Shaw, Dietary Selectivity for the Toxic Cyanobacterium Lyngbya Majuscula and Resultant Growth Rates in Two Species of Opisthobranch Mollusc, J. Exp. Mar. Biol. Ecol, vol.331, issue.2, pp.133-144, 2006.

R. P. Croll and . Gastropod-chemoreception, Biol. Rev, vol.58, issue.2, pp.293-319, 1983.

B. F. Murphy and M. G. Hadfield, Chemoreception in the Nudibranch Gastropod Phestilla Sibogae, Comp. Biochem. Physiol. A Physiol, vol.118, issue.3, pp.727-735, 1997.

R. P. Croll, D. Y. Boudko, A. Pires, and M. G. Hadfield, Transmitter Contents of Cells and Fibers in the Cephalic Sensory Organs of the Gastropod Mollusc Phestilla Sibogae, Cell Tissue Res, vol.314, issue.3, pp.437-448, 2003.

A. Wertz, W. Rössler, M. Obermayer, and U. Bickmeyer, Functional Neuroanatomy of the Rhinophore of Aplysia Punctata, Front Zool, issue.6, p.3, 2006.

G. Bicker, W. J. Davis, E. M. Matera, M. P. Kovac, and D. J. Stormogipson, Chemoreception and Mechanoreception in the Gastropod molluscPleurobranchaea Californica: I. Extracellular Analysis of Afferent Pathways, J. Comp. Physiol. A, vol.1982, issue.2, pp.221-234

S. D. Painter, B. Clough, R. W. Garden, J. V. Sweedler, and G. T. Nagle, Characterization of Aplysia Attractin, the First Water-Borne Peptide Pheromone in Invertebrates, Biol. Bull, vol.194, issue.2, pp.120-131, 1998.

S. D. Painter, B. Clough, S. Black, and G. T. Nagle, Behavioral Characterization of Attractin, a Water-Borne Peptide Pheromone in the Genus Aplysia, Biol. Bull, vol.205, issue.1, pp.16-25, 2003.

S. F. Cummins, A. E. Nichols, C. H. Schein, and G. T. Nagle, Newly Identified Water-Borne Protein Pheromones Interact with Attractin to Stimulate Mate Attraction in Aplysia, Peptides, vol.27, issue.3, pp.597-606, 2006.

K. R. Jensen, Chemoreception as a Factor in Food Location of Elysia Cauze Marcus (Opisthobranchia, Ascoglossa), Mar. Behav. Physiol, vol.8, issue.3, pp.205-218, 1982.

K. R. Jensen, Chemoreception in Six Species of Florida Ascoglossa (Mollusca: Opisthobranchia), a Comparative Study of Responses to Homogenates of Food and Non-Food Plants, Ophelia, vol.28, issue.3, pp.231-242, 1988.

F. Chia and R. Koss, Fine Structure of the Larval Rhinophores of the Nudibranch, Rostanga Pulchra, with Emphasis on the Sensory Receptor Cells, Cell Tissue Res, vol.225, issue.2, pp.235-248, 1982.

L. R. Mcedward, Reproductive Strategies of Marine Benthic Invertebrates Revisited: Facultative Feeding by Planktotrophic Larvae, Am. Nat, vol.150, issue.1, pp.48-72, 1997.

R. Ritson-williams, S. M. Shjegstad, and V. J. Paul, Larval Metamorphosis of Phestilla Spp. in Response to Waterborne Cues from Corals, J. Exp. Mar. Biol. Ecol, vol.375, issue.1-2, pp.84-88, 2009.

J. R. Pawlik, Chemical Ecology of the Settlement of Benthic Marine Invertebrates. Oceanogr, Mar. Biol. Annu. Rev, vol.30, pp.273-335, 1992.

P. J. Krug and R. K. Zimmer, Larval Settlement: Chemical Markers for Tracing Production, Transport, and Distribution of a Waterborne Cue, Mar. Ecol. Prog. Ser, vol.207, pp.283-296, 2000.

P. J. Krug, Bet-Hedging Dispersal Strategy of a Specialist Marine Herbivore: A Settlement Dimorphism among Sibling Larvae of Alderia Modesta, Mar. Ecol. Prog. Ser, vol.213, pp.177-192, 2001.

P. J. Krug and A. E. Manzi, Waterborne and Surface-Associated Carbohydrates as Settlement Cues for Larvae of the Specialist Marine Herbivore Alderia Modesta, Biol. Bull, vol.197, issue.1, pp.94-103, 1999.

M. G. Hadfield, A. Faucci, and M. A. Koehl, Measuring Recruitment of Minute Larvae in a Complex Field Environment: The Corallivorous Nudibranch Phestilla Sibogae (Bergh), J. Exp. Mar. Biol. Ecol, vol.338, issue.1, pp.57-72, 2006.

R. Ritson-williams, S. Shjegstad, and V. Paul, Host Specificity of Four Corallivorous Phestilla Nudibranchs (Gastropoda: Opisthobranchia), Mar. Ecol. Prog. Ser, vol.255, pp.207-218, 2003.

, Chemical Mediation as a Structuring Element in Marine Gastropod Predator -Prey Interactions 59

R. D. Burke, Pheromonal Control of Metamorphosis in the Pacific Sand Dollar, Dendraster Excentricus, Science, vol.225, issue.4660, pp.442-443, 1984.

C. Avila, C. T. Tamse, and A. M. Kuzirian, Induction of Metamorphosis in Hermissenda Crassicornis Larvae (Molluscs: Nudibranchia) by GABA, Choline and Serotonin. Invertebr. Reprod. Dev, vol.29, issue.2, pp.127-141, 1996.

C. Avila, Competence and Metamorphosis in the Long-Term Planktotrophic Larvae of the Nudibranch Mollusc Hermissenda Crassicornis (Eschscholtz, 1831), J. Exp. Mar. Biol. Ecol, vol.231, issue.1, pp.81-117, 1998.

E. J. Hubbard, Larval Growth and the Induction of Metamorphosis of a Tropical Sponge-Eating Nudibranch, J. Molluscan Stud, vol.54, issue.3, pp.259-269, 1988.

F. S. Chia and R. Koss, Development and Metamorphosis of the Planktotrophic Larvae of Rostanga Pulchra (Mollusca: Nudibranchia), Mar. Biol, vol.46, issue.2, pp.109-119, 1978.

F. Chia and R. Koss, Induction of Settlement and Metamorphosis of the Veliger Larvae of the Nudibranch, Onchidoris Bilamellata, Int. J. Invertebr. Reprod. Dev, vol.14, issue.1, pp.53-69, 1988.

W. J. Lambert, C. D. Todd, and J. D. Hardege, Partial Characterization and Biological Activity of a Metamorphic Inducer of the Dorid Nudibranch Adalaria Proxima (Gastropoda: Nudibranchia)

, Invertebr. Biol, vol.116, issue.2, p.71, 1997.

W. J. Lambert and C. D. Todd, Evidence for a Water-Borne Cue Inducing Metamorphosis in the Dorid Nudibranch Mollusc Adalaria Proxima (Gastropoda: Nudibranchia), Mar. Biol, vol.120, issue.2, pp.265-271, 1994.

J. R. Pawlik, Larvae of the Sea Hare Aplysia Californica Settle and Metamorphose on an Assortment of Macroalgal Species, Mar. Ecol. Prog. Ser. Oldendorf, vol.51, issue.1, pp.195-199, 1989.

M. Switzer-dunlap and M. G. Hadfield, Observations on Development, Larval Growth and Metamorphosis of Four Species of Aplysiidae (Gastropoda: Opisthobranchia) in Laboratory Culture, J. Exp. Mar. Biol. Ecol, vol.29, issue.3, pp.245-261, 1977.

R. D. Roberts, M. F. Barker, and P. Mladenov, Is Settlement of Haliotis Iris Larvae on Coralline Algae Triggered by the Alga or Its Surface Biofilm?, J. Shellfish Res, vol.29, issue.3, pp.671-678, 2010.

M. Davis, Short-Term Competence in Larvae of Queen Conch Strombus Gigas: Shifts in Behavior, Morphology and Metamorphic Response, Mar. Ecol.-Prog. Ser, vol.104, pp.101-101, 1994.

A. A. Boettcher and N. M. Targett, Induction of Metamorphosis in Queen Conch, Strombus Gigas Linnaeus, Larvae by Cues Associated with Red Algae from Their Nursery Grounds, J. Exp. Mar. Biol. Ecol, vol.196, issue.1-2, pp.29-52, 1996.

B. L. Mcgee and N. M. Targett, Larval Habitat Selection in Crepidula (L.) and Its Effect on Adult Distribution Patterns, J. Exp. Mar. Biol. Ecol, vol.131, issue.3, pp.195-214, 1989.

N. Taris, T. Comtet, R. Stolba, R. Lasbleiz, J. A. Pechenik et al., Experimental Induction of Larval Metamorphosis by a Naturally-Produced Halogenated Compound (Dibromomethane) in the Invasive Mollusc Crepidula Fornicata (L.), J. Exp. Mar. Biol. Ecol, vol.393, issue.1-2, pp.71-77, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01218853

B. E. Seavy and G. Muller-parker, Chemosensory and Feeding Responses of the Nudibranch Aeolidia Papillosa to the Symbiotic Sea Anemone Anthopleura Elegantissima, Invertebr. Biol, vol.121, issue.2, pp.115-125, 2005.

E. Tyndale, C. Avila, and A. M. Kuzirian, Food Detection and Preferences of the Nudibranch Mollusc Hermissenda Crassicornis: Experiments in a Y-Maze, Biol. Bull, vol.187, issue.2, pp.274-275, 1994.

V. Noboa and R. Gillette, Selective Prey Avoidance Learning in the Predatory Sea Slug Pleurobranchaea Californica, J. Exp. Biol, vol.216, issue.17, pp.3231-3236, 2013.

J. Y. Leung, B. D. Russell, S. D. Connell, J. C. Ng, and M. M. Lo, Acid Dulls the Senses: Impaired Locomotion and Foraging Performance in a Marine Mollusc, Anim. Behav, vol.106, pp.223-229, 2015.

M. Davies and P. Beckwith, Role of Mucus Trails and Trail-Following in the Behaviour and Nutrition of the Periwinkle Littorina Littorea, Mar. Ecol. Prog. Ser, vol.179, pp.247-257, 1999.

M. S. Davies and J. Blackwell, Energy Saving through Trail Following in a Marine Snail, Proc. R. Soc. B Biol. Sci, vol.274, pp.1233-1236, 1614.

M. Edwards and M. Davies, Functional and Ecological Aspects of the Mucus Trails of the Intertidal Prosobranch Gastropod Littorina Littorea, Mar. Ecol. Prog. Ser, vol.239, pp.129-137, 2002.

K. Johannesson, J. N. Havenhand, P. R. Jonsson, M. Lindegarth, A. Sundin et al., Male Discrimination of Female Mucous Trails Permits Assortative Mating in a Marine Snail Species, Evol. Int. J. Org. Evol, vol.62, issue.12, pp.3178-3184, 2008.

J. Erlandsson and V. Kostylev, Trail Following, Speed and Fractal Dimension of Movement in a Marine Prosobranch, Littorina Littorea, during a Mating and a Non-Mating Season, Mar. Biol, vol.122, issue.1, pp.87-94, 1995.

J. Erlandsson, V. Kostylev, and E. Rolan-alvarez, Mate Search and Aggregation Behaviour in the Galician Hybrid Zone of Littorina Saxatilis, J. Evol. Biol, vol.12, issue.5, pp.891-896, 1999.

N. Hutchinson, M. S. Davies, J. S. Ng, and G. A. Williams, Trail Following Behaviour in Relation to Pedal Mucus Production in the Intertidal Gastropod Monodonta Labio (Linnaeus), J. Exp. Mar. Biol. Ecol, vol.349, issue.2, pp.313-322, 2007.

T. P. Ng, M. S. Davies, R. Stafford, and G. A. Williams, Mucus Trail Following as a Mate-Searching Strategy in Mangrove Littorinid Snails, Anim. Behav, vol.82, issue.3, pp.459-465, 2011.

C. Kuanpradit, M. J. Stewart, P. S. York, B. M. Degnan, P. Sobhon et al., Characterization of Mucus-Associated Proteins from Abalone (Haliotis) -Candidates for Chemical Signaling: Proteins in Abalone Mucus Trails, FEBS J, vol.2012, issue.3, pp.437-450

I. D. Mcfaruume, Trail-following and Trail-searching Behaviour in Homing of the Intertidal Gastropod Mollusc, Onchidium Verruculatum, Mar. Behav. Physiol, vol.7, issue.1, pp.95-108, 1980.

D. D. Bretz and R. V. Dimock, Behaviorally Important Characteristics of the Mucous Trail of the Marine Gastropod Ilyanassa Obsoleta (Say), J. Exp. Mar. Biol. Ecol, vol.71, issue.2, pp.181-191, 1983.

Y. Nakashima, Mucous Trail Following in 2 Intertidal Nudibranchs, J. Ethol, vol.13, issue.1, pp.125-128, 1995.

G. Cimino, A. Passeggio, G. Sodano, A. Spinella, and G. Villani, Alarm Pheromones from the Mediterranean opisthobranchHaminoea Navicula, Experientia, vol.47, issue.1, pp.61-63, 1991.

A. M. Burja, B. Banaigs, E. Abou-mansour, J. Burgess, and P. C. Wright, Marine Cyanobacteria-a Prolific Source of Natural Products, Tetrahedron, vol.57, issue.46, pp.9347-9377, 2001.

R. E. Moore, Cyclic Peptides and Depsipeptides from Cyanobacteria: A Review, J. Ind. Microbiol, vol.16, issue.2, pp.134-143, 1996.

L. T. Tan, Filamentous Tropical Marine Cyanobacteria: A Rich Source of Natural Products for Anticancer Drug Discovery, J. Appl. Phycol, vol.22, issue.5, pp.659-676, 2010.

H. L. Condurso and S. D. Bruner, Structure and Noncanonical Chemistry of Nonribosomal Peptide Biosynthetic Machinery, Nat. Prod. Rep, vol.2012, issue.10, p.1099

S. A. Sieber and M. A. Marahiel, Molecular Mechanisms Underlying Nonribosomal Peptide Synthesis: Approaches to New Antibiotics, Chem. Rev, vol.105, issue.2, pp.715-738, 2005.

N. Engene, H. Choi, E. Esquenazi, E. C. Rottacker, M. H. Ellisman et al., Underestimated Biodiversity as a Major Explanation for the Perceived Rich Secondary Metabolite Capacity of the Cyanobacterial Genus Lyngbya: Secondary Metabolite Diversity of Lyngbya, Environ. Microbiol, vol.13, issue.6, pp.1601-1610, 2011.

B. Banaigs, I. Bonnard, A. Witczak, and N. Inguimbert, Marine Peptide Secondary Metabolites, Outstanding Marine Molecules
URL : https://hal.archives-ouvertes.fr/hal-01301162

L. Barre, S. Kornprobst, and J. , , pp.285-318, 2014.

W. P. Frankmölle, G. Knübel, R. E. Moore, and G. M. Patterson, Antifungal Cyclic Peptides from the Terrestrial Blue-Green Alga Anabaena Laxa. II. Structures of Laxaphycins A, B, D and E, J. Antibiot, vol.45, issue.9, pp.1458-1466, 1992.

I. Bonnard, M. Rolland, J. Salmon, E. Debiton, C. Barthomeuf et al., Total Structure and Inhibition of Tumor Cell Proliferation of Laxaphycins, J. Med. Chem, issue.6, pp.1266-1279, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01636364

J. B. Macmillan, M. A. Ernst-russell, J. S. De-ropp, T. F. Molinski, and . Lobocyclamides-a-c, Lipopeptides from a Cryptic Cyanobacterial Mat Containing Lyngbya Confervoides, J. Org. Chem, issue.23, pp.8210-8215, 2002.

S. Luo, A. Krunic, H. Kang, W. Chen, J. L. Woodard et al., Trichormamides A and B with Antiproliferative Activity from the Cultured Freshwater Cyanobacterium Trichormus Sp. UIC 10339, J. Nat. Prod, vol.77, issue.8, pp.1871-1880, 2014.

S. Luo, H. Kang, A. Krunic, W. Chen, J. Yang et al., Cyclic Lipopeptides from the Cultured Freshwater Cyanobacterium Cf. Oscillatoria Sp. UIC 10045, Bioorg. Med. Chem, issue.13, pp.3153-3162, 2015.

N. Maru, O. Ohno, and D. Uemura, Novel Cytotoxic Peptides from Marine Cyanobacteria Lyngbya Sp, Tetrahedron Lett, issue.49, pp.6384-6387, 2010.

O. Zhaxybayeva, Phylogenetic Analyses of Cyanobacterial Genomes: Quantification of Horizontal Gene Transfer Events, Genome Res, vol.16, issue.9, pp.1099-1108, 2006.

S. C. Pennings, S. R. Pablo, and V. J. Paul, Chemical Defenses of the Tropical, Benthic Marine Cyanobacterium Hormothamnion Enteromorphoides: Diverse Consumers and Synergisms, Limnol. Oceanogr, vol.42, issue.5, pp.911-917, 1997.

J. Mare?, J. Hájek, P. Urajová, J. Kopecký, and P. Hrouzek, A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the ?-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum Alatosporum, PLoS ONE, vol.2014, issue.11, p.111904

B. C. Hoefler, K. V. Gorzelnik, J. Y. Yang, N. Hendricks, P. C. Dorrestein et al., Enzymatic Resistance to the Lipopeptide Surfactin as Identified through Imaging Mass Spectrometry of Bacterial Competition, Proc. Natl. Acad. Sci. U. S. A, vol.2012, issue.32, pp.13082-13087

J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. Munro, and M. R. Prinsep, Marine Natural Products, Nat. Prod. Rep, vol.31, issue.2, pp.160-258, 2014.

D. Skropeta, Deep-Sea Natural Products, Nat. Prod. Rep, vol.25, issue.6, p.1131, 2008.

L. T. Tan, Bioactive Natural Products from Marine Cyanobacteria for Drug Discovery, Phytochemistry, vol.68, issue.7, pp.954-979, 2007.

L. T. Tan, Filamentous Tropical Marine Cyanobacteria: A Rich Source of Natural Products for Anticancer Drug Discovery, J. Appl. Phycol, vol.22, issue.5, pp.659-676, 2010.

B. Banaigs, I. Bonnard, A. Witczak, and N. Inguimbert, Marine Peptide Secondary Metabolites, Outstanding Marine Molecules
URL : https://hal.archives-ouvertes.fr/hal-01301162

L. Barre, S. Kornprobst, and J. , , pp.285-318, 2014.

M. A. Fischbach and C. T. Walsh, Assembly-Line Enzymology for Polyketide and Nonribosomal Peptide Antibiotics: Logic, Machinery, and Mechanisms, Chem. Rev, vol.106, issue.8, pp.3468-3496, 2006.

S. A. Sieber and M. A. Marahiel, Molecular Mechanisms Underlying Nonribosomal Peptide Synthesis: Approaches to New Antibiotics, Chem. Rev, vol.105, issue.2, pp.715-738, 2005.

H. L. Condurso and S. D. Bruner, Structure and Noncanonical Chemistry of Nonribosomal Peptide Biosynthetic Machinery, Nat. Prod. Rep, vol.2012, issue.10, p.1099

I. Bonnard, M. Rolland, J. Salmon, E. Debiton, C. Barthomeuf et al., Total Structure and Inhibition of Tumor Cell Proliferation of Laxaphycins, J. Med. Chem, issue.6, pp.1266-1279, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01636364

W. P. Frankmölle, G. Knübel, R. E. Moore, and G. M. Patterson, Antifungal Cyclic Peptides from the Terrestrial Blue-Green Alga Anabaena Laxa. II. Structures of Laxaphycins A, B, D and E, J. Antibiot, vol.45, issue.9, pp.1458-1466, 1992.

W. H. Gerwick, Z. D. Jiang, S. K. Agarwal, and B. T. Farmer, Total Structure of Hormothamnin A, A Toxic Cyclic Undecapeptide from the Tropical Marine Cyanobacterium Hormothamnion Enteromorphoides, Tetrahedron, vol.48, issue.12, pp.2313-2324, 1992.

J. B. Macmillan, M. A. Ernst-russell, J. S. De-ropp, T. F. Molinski, and . Lobocyclamides-a-c, Lipopeptides from a Cryptic Cyanobacterial Mat Containing Lyngbya Confervoides, J. Org. Chem, issue.23, pp.8210-8215, 2002.

J. C. Grewe, Cyanopeptoline Und Scytocyclamide: Zyklische Peptide Aus Scytonema Hofmanni PCC7110

B. Struktur-und and . Aktivität, , 2005.

S. Luo, A. Krunic, H. Kang, W. Chen, J. L. Woodard et al., Trichormamides A and B with Antiproliferative Activity from the Cultured Freshwater Cyanobacterium Trichormus Sp. UIC 10339, J. Nat. Prod, vol.77, issue.8, pp.1871-1880, 2014.

S. Luo, H. Kang, A. Krunic, W. Chen, J. Yang et al., Cyclic Lipopeptides from the Cultured Freshwater Cyanobacterium Cf. Oscillatoria Sp. UIC 10045, Bioorg. Med. Chem, issue.13, pp.3153-3162, 2015.

O. Zhaxybayeva, Phylogenetic Analyses of Cyanobacterial Genomes: Quantification of Horizontal Gene Transfer Events, Genome Res, vol.16, issue.9, pp.1099-1108, 2006.

L. Bornancin, F. Boyaud, Z. Mahiout, I. Bonnard, S. Mills et al., Isolation and Synthesis of Laxaphycin B-Type Peptides: A Case Study and Clues to Their Biosynthesis, Mar. Drugs, vol.13, issue.12, pp.7285-7300, 2015.

K. Fujii, Y. Ikai, T. Mayumi, H. Oka, M. Suzuki et al., A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Elucidation of Limitations of Marfey's Method and of Its Separation Mechanism, Anal. Chem, vol.69, issue.16, pp.3346-3352, 1997.

K. Fujii, Y. Ikai, H. Oka, M. Suzuki, and K. Harada, A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Combination of Marfey's Method with Mass Spectrometry and Its Practical Application, Anal. Chem, vol.69, issue.24, pp.5146-5151, 1997.

Z. Lu, R. M. Van-wagoner, M. K. Harper, H. L. Baker, J. N. Hooper et al., HIV-Inhibitory Depsipeptides from the Sponge Stelletta Clavosa, J. Nat. Prod, vol.74, issue.2, pp.185-193, 2011.

J. Mare?, J. Hájek, P. Urajová, J. Kopecký, and P. Hrouzek, A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the ?-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum Alatosporum, PLoS ONE, vol.2014, issue.11, p.111904

B. C. Hoefler, K. V. Gorzelnik, J. Y. Yang, N. Hendricks, P. C. Dorrestein et al., Fraction B was fractioned, in turn, with flash chromatography and RP18 silica gel column with a gradient of H 2 O-CH 3 CN to give 7 fractions. Fractions 2 and 4 were subjected to HPLC purification (Phenomenex Gemini C6-phenyl, 110Å, 250 x 10 mm, 5 µm) using different isocratic conditions of water and acetonitrile acidified with 0.1% formic acid. Fraction 2 was eluted with 32% CH 3 CN at a flow rate of 4 mL/min and gave laxaphycin 1211 (4.5 mg, rt = 21.5 min) and laxaphycin 1195 (6.5 mg, rt = 27, Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.32, 2012.

, NMR spectroscopy 1D-NMR and 2D-NMR experiments were acquired on a Jeol ECZ 500 spectrometer, all compounds solubilizated in DMSO-d 6 (500 ?L) at 303 K. All chemical shifts were calibrated on the residual solvent peak

R. P. Ferrer and R. K. Zimmer, Community Ecology and the Evolution of Molecules of Keystone Significance, Biol. Bull, vol.2012, issue.2, pp.167-177

R. P. Ferrer and R. K. Zimmer, Molecules of Keystone Significance: Crucial Agents in Ecology and Resource Management, BioScience, vol.2013, issue.6, pp.428-438

V. J. Paul, K. E. Arthur, R. Ritson-williams, C. Ross, and K. Sharp, Chemical Defenses: From Compounds to Communities, Biol. Bull, vol.213, issue.3, pp.226-251, 2007.

R. M. Brooker, P. L. Munday, D. P. Chivers, and G. P. Jones, You Are What You Eat: Diet-Induced Chemical Crypsis in a Coral-Feeding Reef Fish, Proc. R. Soc. B Biol. Sci, vol.2014, pp.20141887-20141887, 1799.

F. Cortesi and K. L. Cheney, Conspicuousness Is Correlated with Toxicity in Marine Opisthobranchs, J. Evol. Biol, issue.7, pp.1509-1518, 2010.

V. J. Paul, M. P. Puglisi, and R. Ritson-williams, Marine Chemical Ecology, Nat. Prod. Rep, vol.23, issue.2, pp.153-180, 2006.

V. J. Paul, R. Ritson-williams, and K. Sharp, Marine Chemical Ecology in Benthic Environments, Nat. Prod. Rep, vol.28, issue.2, pp.345-387, 2011.

M. P. Puglisi, J. M. Sneed, K. H. Sharp, R. Ritson-williams, and V. J. Paul, Marine Chemical Ecology in Benthic Environments, Nat Prod Rep, vol.31, issue.11, pp.1510-1553, 2014.

V. J. Paul and S. C. Pennings, Diet-Derived Chemical Defenses in the Sea Hare Stylocheilus Longicauda (Quoy et Gaimard 1824), J. Exp. Mar. Biol. Ecol, vol.151, issue.2, pp.227-243, 1991.

S. C. Pennings and V. J. Paul, Secondary Chemistry Does Not Limit Dietary Range of the Specialist Sea Hare Stylocheilus Longicauda (Quoy et Gaimard 1824), J. Exp. Mar. Biol. Ecol, vol.174, issue.1, pp.97-113, 1993.

S. C. Pennings, A. M. Weiss, and V. J. Paul, Secondary Metabolites of the Cyanobacterium Microcoleus Lyngbyaceus and the Sea Hare Stylocheilus Longicauda: Palatability and Toxicity, Mar. Biol, vol.126, issue.4, pp.735-743, 1996.

D. G. Nagle, F. T. Camacho, and V. J. Paul, Dietary Preferences of the Opisthobranch Mollusc Stylocheilus Longicauda for Secondary Metabolites Produced by the Tropical Cyanobacterium Lyngbya Majuscula, Mar. Biol, vol.132, issue.2, pp.267-273, 1998.

N. Engene, H. Choi, E. Esquenazi, E. C. Rottacker, M. H. Ellisman et al., Underestimated Biodiversity as a Major Explanation for the Perceived Rich Secondary Metabolite Capacity of the Cyanobacterial Genus Lyngbya: Secondary Metabolite Diversity of Lyngbya, Environ. Microbiol, vol.13, issue.6, pp.1601-1610, 2011.

S. C. Pennings and V. J. Paul, Sequestration of Dietary Secondary Metabolites by Three Species of Sea Hares: Location, Specificity and Dynamics, Mar. Biol, vol.117, issue.4, pp.535-546, 1993.

S. W. Geange and A. C. Stier, Charismatic Microfauna Alter Cyanobacterial Production through a Trophic Cascade, Coral Reefs, vol.29, issue.2, pp.393-397, 2010.

I. Bonnard, M. Rolland, J. Salmon, E. Debiton, C. Barthomeuf et al., Total Structure and Inhibition of Tumor Cell Proliferation of Laxaphycins, J. Med. Chem, issue.6, pp.1266-1279, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01636364

S. D. Painter, B. Clough, S. Black, and G. T. Nagle, Behavioral Characterization of Attractin, a Water-Borne Peptide Pheromone in the Genus Aplysia, Biol. Bull, vol.205, issue.1, pp.16-25, 2003.

S. Bunyajetpong, W. Y. Yoshida, N. Sitachitta, K. Kaya, and . Trungapeptins-a?c, Cyclodepsipeptides from the Marine Cyanobacterium Lyngbya Majuscula, J. Nat. Prod, vol.69, issue.11, pp.1539-1542, 2006.

F. Wan and K. L. Erickson, Serinol-Derived Malyngamides from an Australian Cyanobacterium, J. Nat. Prod, vol.62, issue.12, pp.1696-1699, 1999.

S. Luo, A. Krunic, H. Kang, W. Chen, J. L. Woodard et al., Trichormamides A and B with Antiproliferative Activity from the Cultured Freshwater Cyanobacterium Trichormus Sp. UIC 10339, J. Nat. Prod, vol.77, issue.8, pp.1871-1880, 2014.

H. Kang, A. Krunic, and J. Orjala, Stigonemapeptin, an Ahp-Containing Depsipeptide with Elastase Inhibitory Activity from the Bloom-Forming Freshwater Cyanobacterium Stigonema Sp, J. Nat. Prod, vol.2012, issue.4, pp.807-811

J. B. Macmillan, M. A. Ernst-russell, J. S. De-ropp, T. F. Molinski, and . Lobocyclamides-a-c, Lipopeptides from a Cryptic Cyanobacterial Mat Containing Lyngbya Confervoides, J. Org. Chem, issue.23, pp.8210-8215, 2002.

M. Kamio, T. V. Grimes, M. H. Hutchins, R. Van-dam, and C. D. Derby, The Purple Pigment Aplysioviolin in Sea Hare Ink Deters Predatory Blue Crabs through Their Chemical Senses, Anim. Behav, vol.80, issue.1, pp.89-100, 2010.

M. Ghiselin and G. Cimino, Marine Natural Products Chemistry as an Evolutionary Narrative, In Marine Chemical Ecology

J. Mcclintock and B. Baker, , pp.115-154, 2001.

G. Cimino, G. Sodano, and A. Spinella, New Propionate-Derived Metabolites from Aglaja Depicta and from Its Prey Bulla Striata (Opisthobranch Mollusks), J. Org. Chem, issue.24, pp.5326-5331, 1987.

A. Spinella, L. A. Alvarez, and G. Cimino, Predator -Prey Relationship between Navanax Inermis and Bulla Gouldiana : A Chemical Approach, Tetrahedron, issue.15, pp.3203-3210, 1993.

W. J. Freeland and D. H. Janzen, Strategies in Herbivory by Mammals: The Role of Plant Secondary Compounds, Am. Nat, vol.108, issue.961, pp.269-289, 1974.

E. E. Sotka and K. E. Whalen, Herbivore Offense in the Sea: The Detoxifi Cation and Transport of Secondary Metabolites, In Algal Chemical Ecology

C. D. Amsler and . Ed, , pp.203-228, 2008.

A. Parkinson, Biotransformation of Xenobiotics, 2001.

X. Li, M. A. Schuler, and M. R. Berenbaum, Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics, Annu. Rev. Entomol, vol.52, pp.231-253, 2007.

S. C. Pennings, M. T. Nadeau, and V. J. Paul, Selectivity and Growth of the Generalist Herbivore Dolabella Auricularia Feeding Upon Complementary Resources, Ecology, vol.74, issue.3, p.879, 1993.

K. E. Whalen, A. L. Lane, J. Kubanek, and M. E. Hahn, Biochemical Warfare on the Reef: The Role of Glutathione Transferases in Consumer Tolerance of Dietary Prostaglandins, PLoS ONE, vol.2010, issue.1, p.8537

M. Trute, B. Gallis, C. Doneanu, S. Shaffer, D. Goodlett et al., Characterization of Hepatic Glutathione S-Transferases in Coho Salmon (Oncorhynchus Kisutch), Aquat. Toxicol. Amst. Neth, vol.81, issue.2, pp.126-136, 2007.

I. Kostaropoulos, A. I. Papadopoulos, A. Metaxakis, and E. Boukouvala, Insect Biochem. Mol. Biol, vol.31, issue.4-5, pp.313-319, 2001.

J. N. Ketley, W. H. Habig, and W. B. Jakoby, Binding of Nonsubstrate Ligands to the Glutathione S-Transferases, J. Biol. Chem, issue.22, pp.8670-8673, 1975.

A. Capper, I. R. Tibbetts, J. M. Neil, and G. R. Shaw, The Fate of Lyngbya Majuscula Toxins in Three Potential Consumers, J. Chem. Ecol, issue.7, pp.1595-1606, 2005.

W. A. Gallimore, D. L. Galario, C. Lacy, Y. Zhu, and P. J. Scheuer, Two Complex Proline Esters from the Sea Hare Stylocheilus Longicauda, J. Nat. Prod, vol.63, issue.7, pp.1022-1026, 2000.

W. H. Fischer and J. Spiess, Identification of a Mammalian Glutaminyl Cyclase Converting Glutaminyl into Pyroglutamyl Peptides, Proc. Natl. Acad. Sci. U. S. A, vol.84, issue.11, pp.3628-3632, 1987.

W. H. Busby, G. E. Quackenbush, J. Humm, W. W. Youngblood, and J. S. Kizer, An Enzyme(s) That Converts Glutaminyl-Peptides into Pyroglutamyl-Peptides. Presence in Pituitary, Brain, Adrenal Medulla, and Lymphocytes, J. Biol. Chem, vol.262, issue.18, pp.8532-8536, 1987.

S. Schilling, C. Wasternack, and H. Demuth, Glutaminyl Cyclases from Animals and Plants: A Case of Functionally Convergent Protein Evolution, Biol. Chem, issue.8, p.389, 2008.

Y. D. Liu, A. M. Goetze, R. B. Bass, and G. C. Flynn, N-Terminal Glutamate to Pyroglutamate Conversion in Vivo for Human IgG2 Antibodies, J. Biol. Chem, issue.13, pp.11211-11217, 2011.

C. M. Paumi, P. K. Smitherman, A. J. Townsend, C. S. Morrow, and . Glutathione-s-transferases, GSTs) Inhibit Transcriptional Activation by the Peroxisomal Proliferator-Activated Receptor Gamma (PPAR Gamma) Ligand, 15-Deoxy-Delta 12,14prostaglandin J2 (15-D-PGJ2), Biochemistry (Mosc, issue.8, pp.2345-2352, 2004.

C. D. Harvell, Predator-Induced Defense in a Marine Bryozoan, Science, vol.224, issue.4655, pp.1357-1359, 1984.

C. D. Harvell, The Ecology and Evolution of Inducible Defenses in a Marine Bryozoan: Cues, Costs, and Consequences, Am. Nat, vol.128, issue.6, pp.810-823, 1986.

R. S. Steneck and W. H. Adey, The Role of Environment in Control of Morphology in Lithophyllum Congestum, a Caribbean Algal Ridge Builder, vol.19, 1976.

K. L. Van-alstyne, Herbivore Grazing Increases Polyphenolic Defenses in the Intertidal Brown Alga Fucus Distichus, Ecology, vol.69, issue.3, pp.655-663, 1988.

D. B. Rasher, E. P. Stout, S. Engel, T. L. Shearer, J. Kubanek et al., Marine and Terrestrial Herbivores Display Convergent Chemical Ecology despite 400 Million Years of Independent Evolution, Proc. Natl. Acad. Sci, vol.112, pp.12110-12115, 2015.

S. Figure, Orbitrap MS/MS spectrum of, vol.16

, 01 M formic acid at 0.3 mL/min over 70 min (2) Gradient 2: from 10% CH3CN-..% 0.01 M formic acid to 50% CH3CN-50% 0.01 M formic acid at 0.3 mL/min over 70 min, % 0.01 M formic acid to 60% CH3CN-40% 0, p.80

, A1181B high New MS2_RB3_01_13389.d: +MS2(591.8601), 70.0eV, vol.9, pp.3-9

, Les cyanobactéries sont reconnues pour produire principalement des lipopeptides cycliques, contenant des acides aminés non-protéinogéniques. Les voies de biosynthèses de ce type de composé font intervenir différentes classes d'enzymes multifonctionnelles, tels que les NRPS (Non Ribosomal Peptide Synthetases) responsables de la modification d'acide aminé en configuration D, N-methylé, ?-hydroxylé ou déshydratés. Les PKS (PolyKetide Synthetases), parfois associé avec d'autres enzymes tels que les FAAL (Fatty Acyl-AMP ligase), sont impliqués dans la formation et l'insertion d'acide gras ?-aminé. Les laxaphycines sont une famille de lipopeptides cycliques contenant des acides aminés non-protéinogéniques tel qu'un acide gras ?-aminé et des acides aminés D et sont divisé en deux sous familles. Les peptides de la sous familles des laxaphycines A contiennnent onze acides aminé tandis que les laxaphycines B présentent un cylce à douze résidues. Ces métabolites secondaires sont produits par différentes espèces de cyanobactéries telles que Anabaena cf torulosa, Caractérisations des laxaphycines Les organismes marins sont une source importante de métabolites secondaires pouvant jouer un rôle écologique, en étant toxiques ou répulsifs, et possédant des activités biologiques diverses tels qu'antibactériennes, anti-tumorales ou anti-fongiques

, étant séquestrés ou biotransfomés, mais également de déterminer leurs activités tant pharmacologiques qu'écologiques

S. Bien-que-considéré-comme-un-spécialiste-dans-la-litterature, striatus consomme différentes cyanobactéries et semble se comporter comme les lièvres de mer généralistes du genre Aplysia. B. orientalis, collecté sur L. majuscula, ne montre pas non plus un comportement généraliste en consommant sans contraintes les métabolites secondaires de la cyanobactérie A. cf torulosa dans les expériences de choix de nourriture. La façon dont S. striatus manipule une variété de métabolites secondaires en les séquestrant et les biotransformant montre qu'il est capable de s'adapter à des sources de nourriture variées

G. De-manière, Cependant nous pouvons suggérer que les espèces généralistes, tel que S. striatus, peuvent s'habituer à consommer une proie, éduquer leur sens de perceptions et ainsi être capable de repérer à distance cette source de nourriture qui peut également lui fournir un abri. D'autre part, une espèce généraliste peut montrer une préférence pour une source de nourriture et se rabattre sur une nourriture alternative en cas d'absence de la première. Dans notre modèle, A. cf torulosa pourrait être une nourriture de substitution pour S. striatus mais peut également être un avantage adaptatif pour S. striatus afin d'éviter la prédation de G. ceylonica et T. coerulipes, aucune interaction entre cyanobactérie et herbivores spécialistes n'a été observé, l'association de plusieurs espèces dans les efflorescences et leur éphémérité pouvant en être la raison

, L'absence de ses prédateurs sur d'autres producteurs primaires suggère que les métabolites secondaires régissent des interactions plus complexes

, L'écologie chimique marine est encore a ses débuts mais la médiation chimique dans les écosystèmes marins est souvent sous estimée. Des molécules clés peuvent en effet régir