, Previous work on electron property investigations

;. .. Magnetic-field-exploration, 118 6.3.1 Magnetic field intensity (ISCT200-GEO)

. .. , 125 6.4.2 Influence of the discharge voltage

. .. Isct200-ms), 131 6.5.2 Investigation at low discharge voltage with, Characterization of deviations from thermal equilibrium

, Conference proceedings

?. B. Vincent, S. Tsikata, G. C. Potrivitu, and S. Mazouffre, Incoherent Thomson scattering diagnostic development for plasma propulsion investigations, 35th International Electric Propulsion Conference, pp.2017-442, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791656

?. B. Vincent, S. Tsikata, S. Mazouffre, and C. Boniface, Thomson scattering investigations of a lowpower Hall thruster in standard and magnetically-shielded configurations, 36th International Electric Propulsion Conference, pp.2019-384, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346188

?. L. Garrigues, G. Sary, B. Vincent, S. Tsikata, and S. Mazouffre, Numerical modeling and incoherent Thomson scattering measurements of a 5A cathode with LaB6 emitter, 36th International Electric Propulsion Conference, pp.2019-783, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346196

?. S. Mazouffre, R. Joussot, B. Vincent, S. Tsikata, S. Oriol et al., Characterization of a 100A-class LaB6 hollow cathode for high-power Hall thrusters, 36th International Electric Propulsion Conference, pp.2019-776, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346197

M. Lyszyk, E. Klinger, O. Sécheresse, J. P. Bugeat, D. Valentian et al., Qualification status of the pps 1350 plasma thruster, 35th Joint Propulsion Conference and Exhibit, vol.110, 1999.

C. Ruggles and M. Cotte, Heritage Sites of Astronomy and Archaeoastronomy in the context of the UNESCO World Heritage Convention, ICOMOS, 2010.

O. Spaeth, Dating the Oldest Egyptian Star Map, Centaurus, vol.42, issue.3, pp.159-179, 2000.

J. P. Mallory and D. Q. Adams, The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European World, 2006.

D. W. Anthony and D. Ringe, The Indo-European Homeland from Linguistic and Archaeological Perspectives, Annual Review of Linguistics, vol.1, issue.1, pp.199-219, 2015.


F. R. Stephenson, D. M. Willis, and T. J. Hallinan, The earliest datable observation of the aurora borealis, Astronomy and Geophysics, vol.45, issue.6, pp.6-15, 2004.

E. P. Krider, Benjamin Franklin and lightning rods, Physics Today, vol.59, issue.1, pp.42-48, 2006.

B. Franklin and N. G. Goodman, The ingenious Dr. Franklin selected scientific letters of Benjamin Franklin, 1931.

W. Crookes, On radiant matter; a lecture delivered to the British Association for the Advancement of Science, American Journal of Science, vol.3, issue.106, pp.241-262, 1879.

J. J. Thomson, XL. Cathode Rays, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.44, issue.269, pp.293-316, 1897.

K. Birkeland, The Norwegian aurora polaris expedition, Christiania: H. Aschelhoug, pp.1902-1903, 1908.

I. Langmuir and H. M. Mott-smith, Langmuir probe technique, Gen. Elec. Rev, vol.27, p.449, 1924.

H. M. Mott-smith and I. Langmuir, The Theory of Collectors in Gaseous Discharges, Physical Review, vol.28, issue.4, pp.727-763, 1926.


I. Langmuir, Oscillations in Ionized Gases, Proceedings of the National Academy of Sciences, vol.14, issue.8, pp.627-637, 1928.

, Flames of Atomic Hydrogen 1, vol.2, pp.667-674, 1927.

I. Langmuir and P. P. Alexander, Method and apparatus for electric arc welding, 1930.

J. Lancaster, The physics of welding, Physics in Technology, vol.15, issue.2, pp.73-79, 1984.

J. Shohet, Plasma-aided manufacturing, IEEE Transactions on Plasma Science, vol.19, issue.5, pp.725-733, 1991.

E. Heinicke, K. Bethge, and H. Baumann, A universal ion source for tandem accelerators, Nuclear Instruments and Methods, vol.58, issue.1, pp.125-133, 1968.

S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches, Plasma Sources Science and Technology, vol.25, issue.3, p.33002, 2016.

D. Estublier, G. Saccoccia, and J. Amo, Electric propulsion on SMART-1 -a technology milestone, ESA Bulletin, vol.129, pp.40-46, 2007.

A. Bogaerts, T. Kozák, K. Van-laer, and R. Snoeckx, Plasma-based conversion of CO 2 : current status and future challenges, Faraday Discussions, vol.183, pp.217-232, 2015.

D. B. Graves, Low temperature plasma biomedicine: A tutorial review, Physics of Plasmas, vol.21, issue.8, p.80901, 2014.

E. Doyle, W. Houlberg, Y. Kamada, V. Mukhovatov, T. Osborne et al., Chapter 2: Plasma confinement and transport, Nuclear Fusion, vol.47, issue.6, pp.18-127, 2007.

A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, vol.91, 2004.

I. Mikellides, I. Katz, R. Hofer, D. Goebel, K. De-grys et al., Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, vol.110, pp.1-25, 2010.

V. V. Zhurin, H. R. Kaufman, and R. S. Robinson, Physics of closed drift thrusters, Plasma Sources Science and Technology, vol.8, issue.1, pp.1-20, 1999.

D. G. Swanson, Plasma Waves, vol.45, pp.1069-1069, 2003.

Y. Raitses, D. Staack, M. Keidar, and N. J. Fisch, Electron-wall interaction in Hall thrusters, Physics of Plasmas, vol.12, issue.5, p.57104, 2005.

M. I. Patino, R. E. Wirz, Y. Raitses, and B. E. Koel, Angular, temperature, and impurity effects on secondary electron emission from Ni(110), Journal of Applied Physics, vol.124, issue.9, p.93301, 2018.

A. Revel, T. Minea, and S. Tsikata, Pseudo -3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas, Physics of Plasmas, vol.23, issue.10, p.100701, 2016.

J. C. Adam, A. Héron, and G. Laval, Study of stationary plasma thrusters using two-dimensional fully kinetic simulations, Physics of Plasmas, vol.11, issue.1, pp.295-305, 2004.

Y. M. Kagan and V. I. Perel, Probe methods in plasma research, Soviet Physics Uspekhi, vol.6, issue.6, pp.767-793, 1964.


B. Reid and A. Gallimore, Langmuir Probe Measurements in the Discharge Channel of a 6-kW Hall Thruster, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, no. July, pp.1-14, 2008.

F. Magnus and J. T. Gudmundsson, Digital smoothing of the Langmuir probe I-V characteristic, Review of Scientific Instruments, vol.79, issue.7, 2008.

M. J. Druyvesteyn, Der Niedervoltbogen, Zeitschrift für Physik, vol.64, issue.11, pp.781-798, 1930.

L. Grimaud, A. Pétin, J. Vaudolon, and S. Mazouffre, Perturbations induced by electrostatic probe in the discharge of Hall thrusters, Review of Scientific Instruments, vol.87, issue.4, p.43506, 2016.

K. Dannenmayer and S. Mazouffre, Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume, Review of Scientific Instruments, vol.83, issue.12, 2012.

R. R. Arslanbekov, N. A. Khromov, and A. A. Kudryavtsev, Probe measurements of electron energy distribution function at intermediate and high pressures and in a magnetic field, Plasma Sources Science and Technology, vol.3, issue.4, pp.528-538, 1994.

E. Passoth, P. Kudrna, C. Csambal, J. F. Behnke, M. Tichý et al., An experimental study of plasma density determination by a cylindrical Langmuir probe at different pressures and magnetic fields in a cylindrical magnetron discharge in heavy rare gases, Journal of Physics D: Applied Physics, vol.30, issue.12, pp.1763-1777, 1997.

M. J. Seaton and D. E. Osterbrock, Relative [o II] Intensities in Gaseous Nebulae, The Astrophysical Journal, vol.125, issue.6, p.66, 1957.

A. K. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy, 2011.

R. Wilson, The spectroscopy on non-thermal plasmas, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.2, issue.4, pp.477-490, 1962.

U. Fantz, Basics of plasma spectroscopy, Plasma Sources Science and Technology, vol.15, issue.4, pp.137-147, 2006.

Y. H. Chiu, B. L. Austin, S. Williams, R. A. Dressler, and G. F. Karabadzhak, Passive optical diagnostic of Xe-propelled Hall thrusters. I. Emission cross sections, Journal of Applied Physics, vol.99, issue.11, p.113304, 2006.

G. F. Karabadzhak, Y. H. Chiu, and R. A. Dressler, Passive optical diagnostic of Xe propelled Hall thrusters. II. Collisional-radiative model, Journal of Applied Physics, vol.99, issue.11, 2006.

V. M. Donnelly, Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy, Journal of Physics D: Applied Physics, vol.37, issue.19, pp.217-236, 2004.

R. Mills and P. Ray, Extreme ultraviolet spectroscopy of heliumhydrogen plasma, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.1535-1542, 2003.

M. A. Biondi and S. C. Brown, Measurements of Ambipolar Diffusion in Helium, Physical Review, vol.75, issue.11, pp.1700-1705, 1949.

M. A. Biondi, Measurement of the electron density in ionized gases by microwave techniques, Review of Scientific Instruments, vol.22, issue.7, pp.500-502, 1951.

J. P. Gordon, H. J. Zeiger, and C. H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of, pp.282-284, 1954.

, The MaserNew Type of Microwave Amplifier, Frequency Standard, and Spectrometer, vol.99, pp.1264-1274, 1955.

D. E. Ashby and D. F. Jephcott, Measurement of plasma density using a gas laser as an infrared interferometer, Applied Physics Letters, vol.3, issue.1, pp.13-16, 1963.

R. Turner and T. O. Poehler, FarInfrared Laser Interferometry for Electron Density Measurements, Journal of Applied Physics, vol.39, issue.12, pp.5726-5731, 1968.


G. Neumann, U. Bänziger, M. Kammeyer, and M. Lange, Plasmadensity measurements by microwave interferometry and Langmuir probes in an rf discharge, Review of Scientific Instruments, vol.64, issue.1, pp.19-25, 1993.

M. Van-exter and D. Grischkowsky, Carrier dynamics of electrons and holes in moderately doped silicon, Physical Review B, vol.41, issue.17, pp.12-140, 1990.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter et al., How manyparticle interactions develop after ultrafast excitation of an electronhole plasma, Nature, vol.414, issue.6861, pp.286-289, 2001.

S. P. Jamison, J. Shen, D. R. Jones, R. C. Issac, B. Ersfeld et al., Plasma characterization with terahertz timedomain measurements, Journal of Applied Physics, vol.93, issue.7, pp.4334-4336, 2003.

A. Ando, T. Kurose, V. Reymond, K. Kitano, H. Kitahara et al., Electron density measurement of inductively coupled plasmas by terahertz time-domain spectroscopy (THz-TDS), Journal of Applied Physics, vol.110, issue.7, p.73303, 2011.

S. M. Meier, A. Hecimovic, T. V. Tsankov, D. Luggenhölscher, and U. Czarnetzki, First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy, Plasma Sources Science and Technology, vol.27, issue.3, pp.348-360, 2018.

S. M. Meier, T. V. Tsankov, D. Luggenhölscher, and U. Czarnetzki, Measurement of plasma densities by dual frequency multichannel boxcar THz time domain spectroscopy, Journal of Physics D: Applied Physics, vol.50, issue.24, p.245202, 2017.

J. J. Thomson, The corpuscular theory of matter, 1907.

A. Desilva, The Evolution of Light Scattering as a Plasma Diagnostic, vol.40, pp.23-35, 2000.

M. Van-de-sande, Laser scattering on low temperature plasmas High resolution and stray light rejection Laser scattering on low temperature plasmas High resolution and stray light rejection, vol.10, p.41, 2002.

S. H. Glenzer, D. H. Froula, N. C. Luhmann, and J. Sheffield, Plasma Scattering of Electromagnetic Radiation, vol.29, p.61, 2011.

K. L. Bowles, Observation of Vertical-Incidence Scatter from the Ionosphere at 41 Mc/sec, Physical Review Letters, vol.1, issue.12, pp.454-455, 1958.

V. C. Pineo, L. G. Kraft, and H. W. Briscoe, Some characteristics of ionospheric backscatter observed at 440 Mc/s, Journal of Geophysical Research, vol.65, issue.9, pp.2629-2634, 1960.

K. L. Bowles, Incoherent scattering by free electrons as a technique for studying the ionosphere and exosphere: some observations and theoretical considerations, Journal of Research of the National Bureau of Standards, Section D: Radio Propagation, vol.65, issue.1, p.1, 1961.

E. E. Salpeter, Electron density fluctuations in a plasma, Physical Review, vol.120, issue.5, pp.1528-1535, 1960.

F. J. Mcclung and R. W. Hellwarth, Giant Optical Pulsations from Ruby, Journal of Applied Physics, vol.33, issue.3, pp.828-829, 1962.

H. Iams and B. Salzberg, The Secondary Emission Phototube, Proceedings of the IRE, vol.23, issue.1, pp.55-64, 1935.

G. Fiocco and E. Thompson, Thomson Scattering of Optical Radiation from an Electron Beam, Physical Review Letters, vol.10, issue.3, pp.89-91, 1963.

H. Kunze, E. Fünfer, B. Kronast, and W. Kegel, Measurement of the spectral distribution of light scattered by a ?-pinch plasma, Physics Letters, vol.11, issue.1, pp.42-43, 1964.

A. W. Desilva, D. E. Evans, and M. J. Forrest, Observation of thomson and co-operative scattering of ruby laser light by a plasma, Nature, vol.203, issue.4952, pp.1321-1322, 1964.

T. S. Brown and D. J. Rose, Plasma diagnostics using lasers: Relations between scattered spectrum and electron-velocity distribution, Journal of Applied Physics, vol.37, issue.7, pp.2709-2714, 1966.

N. J. Peacock, D. C. Robinson, M. J. Forrest, P. D. Wilcock, and V. V. Sannikov, Measurement of the Electron Temperature by Thomson Scattering in Tokamak T3, Nature, vol.224, issue.5218, pp.488-490, 1969.

D. E. Evans, M. J. Forrest, and J. Katzenstein, Asymmetric Co-operative Scattered Light Spectrum in a Thetatron Plasma, Nature, vol.212, issue.5057, pp.21-23, 1966.

M. C. Van-de-sanden, G. M. Janssen, J. M. De-regt, D. C. Schram, J. A. Van-der-mullen et al., A combined ThomsonRayleigh scattering diagnostic using an intensified photodiode array, Review of Scientific Instruments, vol.63, issue.6, pp.3369-3377, 1992.

J. M. De-regt, R. A. Engeln, F. P. De-groote, J. A. Van-der-mullen, and D. C. Schram, Thomson scattering experiments on a 100 MHz inductively coupled plasma calibrated by Raman scattering, Review of Scientific Instruments, vol.66, issue.5, pp.3228-3233, 1995.

, , vol.47

M. D. Bowden, M. Kogano, Y. Suetome, T. Hori, K. Uchino et al., Comparison of electron property measurements in an inductively coupled plasma made by Langmuir probe and laser Thomson scattering techniques, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.17, issue.2, pp.493-499, 1999.

D. L. Crintea, U. Czarnetzki, S. Iordanova, I. Koleva, and D. Luggenhölscher, Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering, Journal of Physics D: Applied Physics, vol.42, issue.4, p.45208, 2009.

E. A. Carbone, S. Hübner, J. M. Palomares, and J. J. Van-der-mullen, The radial contraction of argon microwave plasmas studied by Thomson scattering, Journal of Physics D: Applied Physics, vol.45, issue.34, p.345203, 2012.

B. H. Seo, S. J. You, and J. H. Kim, Analysis of uncertainty of electron density and temperature using laser Thomson scattering in helicon plasmas, Japanese Journal of Applied Physics, vol.54, issue.8, p.86102, 2015.

E. A. Carbone, J. M. Palomares, S. Hübner, E. Iordanova, and J. J. Van-der-mullen, Revision of the criterion to avoid electron heating during laser aided plasma diagnostics (LAPD), Journal of Instrumentation, vol.7, issue.01, pp.1-016, 2012.

M. N. Shneider, Ponderomotive perturbations of low density low-temperature plasma under laser Thomson scattering diagnostics, Physics of Plasmas, vol.24, issue.10, p.100701, 2017.

, , vol.57

I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman, M. Cappelli et al.,

A. Metelmann, E. Mizuno, A. B. Moreau, B. A. Murphy, G. S. Niemira et al., The 2017 Plasma Roadmap: Low temperature plasma science and technology, Journal of Physics D: Applied Physics, vol.50, issue.32, p.323001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01895583

N. Brenning, J. T. Gudmundsson, M. A. Raadu, T. J. Petty, T. Minea et al., A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons, Plasma Sources Science and Technology, vol.26, issue.12, p.125003, 2017.

S. Janhunen, A. Smolyakov, O. Chapurin, D. Sydorenko, I. Kaganovich et al., Nonlinear structures and anomalous transport in partially magnetized EOEB plasmas, Physics of Plasmas, vol.25, issue.1, p.11608, 2018.

S. Tsikata and T. Minea, Modulated Electron Cyclotron Drift Instability in a High-Power Pulsed Magnetron Discharge, Physical Review Letters, vol.114, issue.18, p.185001, 2015.

, , vol.10

A. Revel, T. Minea, and C. Costin, 2D PIC-MCC simulations of magnetron plasma in HiPIMS regime with external circuit, Plasma Sources Science and Technology, vol.27, issue.10, p.105009, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02436555

O. Tuske, G. Adroit, O. Delferriere, D. De-menezes, Y. Gauthier et al., BETSI, a new test bench for ion sources optimization at CEA SACLAY, Review of Scientific Instruments, vol.79, issue.2, pp.2-710, 2008.

O. Delferrière, O. Tuske, G. Adroit, F. Harrault, D. De-menezes et al., A 140 mA cw deuteron electron cyclotron resonance source for the IFMIF-EVEDA project, Review of Scientific Instruments, vol.79, issue.2, p.11, 2008.

J. David and J. , Classical Electrodynamics, vol.17, 1998.

S. Tsikata, Small-scale electron density fluctuations in the Hall thruster, investigated by collective light scattering, vol.111, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00484027

M. Huang, K. Warner, S. Lehn, and G. M. Hieftje, A simple approach to deriving an electron energy distribution from an incoherent Thomson scattering spectrum, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.55, issue.9, pp.1397-1410, 2000.

B. Vincent, S. Tsikata, S. Mazouffre, T. Minea, and J. Fils, A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies, Plasma Sources Science and Technology, vol.27, issue.5, p.55002, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02409577

H. J. Van-der-meiden, R. S. Al, C. J. Barth, A. J. Donné, R. Engeln et al., High sensitivity imaging Thomson scattering for low temperature plasma, Review of Scientific Instruments, vol.79, issue.1, p.13505, 2008.

E. Carbone and S. Nijdam, Thomson scattering on non-equilibrium low density plasmas: principles, practice and challenges, Plasma Physics and Controlled Fusion, vol.57, issue.1, p.14026, 2015.

L. P. Bakker, J. M. Freriks, F. J. De-hoog, and G. M. Kroesen, Thomson scattering using an atomic notch filter, Review of Scientific Instruments, vol.71, issue.5, pp.2007-2014, 2000.

W. Lee and W. Lempert, Rubidium Vapor Filter Spectrally Filtered Thomson Scattering, 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, vol.40, 2002.


W. Lee, Development of Ramand and Thomson scattering diagnostics for study of energy transfer in nonequilibrium, molecular plasma, p.42, 2003.

M. Boguszko and G. Elliott, Property measurement utilizing atomic/molecular filter-based diagnostics, Progress in Aerospace Sciences, vol.41, issue.2, pp.93-142, 2005.

A. Pitzschke, Pedestal Characteristics and MHD Stability of H-Mode Plasmas in TCV, p.42, 2011.

M. Paillet, F. Meunier, M. Verhaegen, S. Blais-ouellette, and R. Martel, High performance resonance Raman spectroscopy using volume Bragg gratings as tunable light filters, Review of Scientific Instruments, vol.81, issue.5, p.53111, 2010.

B. L. Klarenaar, F. Brehmer, S. Welzel, H. J. Van-der-meiden, M. C. Van-de-sanden et al., Note: Rotational Raman scattering on CO 2 plasma using a volume Bragg grating as a notch filter, Review of Scientific Instruments, vol.86, issue.4, p.46106, 2015.

B. L. Klarenaar, Vibrational kinetics of CO 2 in non-thermal plasma, Eindhoven university of technology, p.42, 2018.

I. V. Ciapurin, Errata: Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors, Optical Engineering, vol.51, issue.5, p.59803, 2012.

A. L. Glebov, O. Mokhun, A. Rapaport, S. Vergnole, V. Smirnov et al., Volume Bragg gratings as ultra-narrow and multiband optical filters, vol.8428, p.84280, 2012.

R. Paschotta, Volume Bragg Gratings, vol.43, 2019.

J. M. Palomares, E. I. Iordanova, A. Gamero, A. Sola, and J. J. Mullen, Atmospheric microwave-induced plasmas in Ar/H 2 mixtures studied with a combination of passive and active spectroscopic methods, Journal of Physics D: Applied Physics, vol.43, issue.39, p.395202, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569717

K. Muraoka and A. Kono, Laser thomson scattering for low-temperature plasmas, p.43001, 2011.

M. J. Van-de-sande, R. H. Deckers, F. Lepkojus, W. Buscher, and J. J. Van-der-mullen, Time resolved electron density and temperature measurements on a capacitively coupled helium RF discharge, Plasma Sources Science and Technology, vol.11, issue.4, pp.466-475, 2002.

A. F. Van-gessel, E. A. Carbone, P. J. Bruggeman, and J. J. Van-der-mullen, Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering, Plasma Sources Science and Technology, vol.21, issue.1, p.15003, 2012.

C. M. Penney, R. L. St, M. Peters, and . Lapp, Absolute rotational Raman cross sections for N_2, O_2, and CO_2, Journal of the Optical Society of America, vol.64, issue.5, p.712, 1974.

P. F. Bernath and A. Dalgarno, Spectra of Atoms and Molecules, vol.49, 1996.

, , vol.49

T. Hori, M. Kogano, M. D. Bowden, K. Uchino, and K. Muraoka, A study of electron energy distributions in an inductively coupled plasma by laser Thomson scattering, Journal of Applied Physics, vol.83, issue.4, p.53, 1998.

A. Kono and H. Funahashi, Thomson-scattering observation of non-Maxwellian electron energy distribution in inductively coupled C4F8/Ar and CF4/Ar plasmas and the effect of vibrational excitation and nonlocal electron kinetics, Journal of Applied Physics, vol.92, issue.4, p.53, 2002.

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.

, , vol.54

A. T. Powis and M. N. Shneider, Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities, Physics of Plasmas, vol.25, issue.5, p.53513, 2018.

N. Yamamoto, K. Tomita, K. Sugita, T. Kurita, H. Nakashima et al., Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique, Review of Scientific Instruments, vol.83, issue.7, p.73106, 2012.

V. Canuto, J. Lodenquai, and M. Ruderman, Thomson Scattering in a Strong Magnetic Field, Physical Review D, vol.3, issue.10, p.59, 1971.

H. Herold, Compton and Thomson scattering in strong magnetic fields, Physical Review D, vol.19, issue.10, p.59, 1979.

S. Chen, A. Maksimchuk, and D. Umstadter, Experimental observation of relativistic nonlinear Thomson scattering, Nature, vol.396, issue.6712, p.61, 1998.

J. Chapin, The Planar Magnetron, Research Development, vol.25, issue.1, pp.37-40, 1974.

, Sputtering Process and Apparatus, vol.125, pp.2-6, 1979.

C. Boniface, L. Garrigues, G. J. Hagelaar, J. P. Boeuf, D. Gawron et al., Anomalous cross field electron transport in a Hall effect thruster, Applied Physics Letters, vol.89, issue.16, p.161503, 2006.

D. Lundin, P. Larsson, E. Wallin, M. Lattemann, N. Brenning et al., Cross-field ion transport during high power impulse magnetron sputtering, Plasma Sources Science and Technology, vol.17, issue.3, p.35021, 2008.

J. Alami, P. O. Persson, D. Music, J. T. Gudmundsson, J. Bohlmark et al., Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.23, issue.2, pp.278-280, 2005.

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, High power impulse magnetron sputtering discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.30, issue.3, p.30801, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02430118

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, vol.518, issue.15, pp.4087-4090, 2010.

T. E. Sheridan, M. J. Goeckner, and J. Goree, Observation of twotemperature electrons in a sputtering magnetron plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.3, pp.688-690, 1991.

J. Bohlmark, J. Gudmundsson, J. Alami, M. Latteman, and U. Helmersson, Spatial electron density distribution in a high-power pulsed magnetron discharge, IEEE Transactions on Plasma Science, vol.33, issue.2, pp.346-347, 2005.

S. Tsikata, B. Vincent, T. Minea, A. Revel, and C. Ballage, Time-resolved electron properties of a HiPIMS argon discharge via incoherent Thomson scattering, Plasma Sources Science and Technology, vol.28, issue.3, pp.3-5, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02072461

P. J. Ryan, J. W. Bradley, and M. D. Bowden, Comparison of Langmuir probe and laser Thomson scattering for plasma density and electron temperature measurements in HiPIMS plasma, Physics of Plasmas, vol.26, issue.4, p.66, 2019.

, Comparison of Langmuir probe and laser Thomson scattering for plasma density and electron temperature measurements in HiPIMS plasma, Physics of Plasmas, vol.26, issue.4, p.66, 2019.

U. Balachandran and N. G. Eror, Raman spectra of titanium dioxide, Journal of Solid State Chemistry, vol.42, issue.3, p.72, 1982.

X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang et al., Raman Investigation of Nanosized TiO 2 : Effect of Crystallite Size and Quantum Confinement, The Journal of Physical Chemistry C, vol.116, issue.15, pp.8792-8797, 2012.


T. E. Sheridan and J. Goree, Lowfrequency turbulent transport in magnetron plasmas, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, pp.1014-1018, 1989.

J. Emmerlich, S. Mráz, R. Snyders, K. Jiang, and J. M. Schneider, The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering, Vacuum, vol.82, issue.8, p.76, 2008.

A. Rauch and A. Anders, Estimating electron drift velocities in magnetron discharges, Vacuum, vol.89, issue.1, p.76, 2013.

A. Rauch, R. J. Mendelsberg, J. M. Sanders, and A. Anders, Plasma potential mapping of high power impulse magnetron sputtering discharges, Journal of Applied Physics, vol.111, issue.8, p.76, 2012.

P. A. Ni, C. Hornschuch, M. Panjan, and A. Anders, Plasma flares in high power impulse magnetron sputtering, Applied Physics Letters, vol.101, issue.22, p.224102, 2012.

, , p.76

A. Anders, P. Ni, and A. Rauch, Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering, Journal of Applied Physics, vol.111, issue.5, p.76, 2012.

O. Chapurin and A. Smolyakov, On the electron drift velocity in plasma devices with EOEB drift, Journal of Applied Physics, vol.119, issue.24, p.243306, 2016.

J. W. Bradley, S. Thompson, and Y. A. Gonzalvo, Measurement of the plasma potential in a magnetron discharge and the prediction of the electron drift speeds, Plasma Sources Science and Technology, vol.10, issue.3, pp.490-501, 2001.

E. Bultinck and A. Bogaerts, The effect of the magnetic field strength on the sheath region of a dc magnetron discharge, Journal of Physics D: Applied Physics, vol.41, issue.20, p.77, 2008.

A. Hecimovic, C. Maszl, V. Schulz-von-der-gathen, M. Böke, and A. , Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium, Plasma Sources Science and Technology, vol.25, issue.3, p.35001, 2016.

N. Brenning, I. Axnäs, M. A. Raadu, D. Lundin, and U. Helmerson, A bulk plasma model for dc and HiPIMS magnetrons, Plasma Sources Science and Technology, vol.17, issue.4, p.45009, 2008.

C. Huo, D. Lundin, M. A. Raadu, A. Anders, J. T. Gudmundsson et al., On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics, Plasma Sources Science and Technology, vol.23, issue.2, p.25017, 2014.

U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, Ionized physical vapor deposition (IPVD): A review of technology and applications, Thin Solid Films, vol.513, issue.1-2, pp.1-24, 2006.

A. Anders, Deposition rates of high power impulse magnetron sputtering: Physics and economics, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.28, issue.4, pp.783-790, 2010.

T. Kubart, M. ?ada, D. Lundin, and Z. Hubi?ka, Investigation of ionized metal flux fraction in HiPIMS discharges with Ti and Ni targets, Surface and Coatings Technology, vol.238, pp.152-157, 2014.

D. Lundin, M. ?ada, and Z. Hubi?ka, Ionization of sputtered Ti, Al, and C coupled with plasma characterization in HiPIMS, Plasma Sources Science and Technology, vol.24, issue.3, p.35018, 2015.

H. Hajihoseini, M. ?ada, Z. Hubi?ka, S. Ünaldi, M. A. Raadu et al., The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge, Plasma, vol.2, issue.2, pp.201-221, 2019.

J. ?apek, M. Hála, O. Zabeida, J. E. Klemberg-sapieha, and L. Martinu, Deposition rate enhancement in HiPIMS without compromising the ionized fraction of the deposition flux, Journal of Physics D: Applied Physics, vol.46, issue.20, p.205205, 2013.

J. W. Bradley, A. Mishra, and P. J. Kelly, The effect of changing the magnetic field strength on HiPIMS deposition rates, Journal of Physics D: Applied Physics, vol.48, issue.21, p.215202, 2015.

S. H. Seo, J. H. In, and H. Y. Chang, Temporal evolution of electron energy distribution function and plasma parameters in the afterglow of drifting magnetron plasma, Plasma Sources Science and Technology, vol.14, issue.3, pp.576-580, 2005.

M. A. Raadu, I. Axnäs, J. T. Gudmundsson, C. Huo, and N. Brenning, An ionization region model for high-power impulse magnetron sputtering discharges, Plasma Sources Science and Technology, vol.20, issue.6, p.65007, 2011.

G. D. Stancu, N. Brenning, C. Vitelaru, D. Lundin, and T. Minea, Argon metastables in HiPIMS: validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics, Plasma Sources Science and Technology, vol.24, issue.4, p.45011, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01348452

, , vol.87

R. Geller, New high intensity ion source with very low extraction voltage, Applied Physics Letters, vol.16, issue.10, pp.401-402, 1970.

P. Briand, R. Geller, B. Jacquot, and C. Jacquot, Nouvelle source d'ions multicharges a hautes performances, Nuclear Instruments and Methods, vol.131, issue.3, pp.407-409, 1975.

I. I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, A New Method of Measuring Nuclear Magnetic Moment, Physical Review, vol.53, issue.4, pp.318-318, 1938.

E. K. Zavoisky, Paramagnetic absorption in orthogonal and parallel fields for salts, solutions and metals, Ph.D. dissertation, 1944.

T. I. Ntu, Radio Regulations. IUT, 2016.

I. G. Brown, The Physics and Technology of Ion Sources, 2004.

T. Vialis, Développement d' un propulseur plasma à résonance cyclotron électronique pour les satellites, Sorbonne Université, 2018.

T. Vialis, J. Jarrige, A. Aanesland, and D. Packan, Direct Thrust Measurement of an Electron Cyclotron Resonance Plasma Thruster, Journal of Propulsion and Power, pp.1-11, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849176

P. Bagryansky, A. Anikeev, G. Denisov, E. Gospodchikov, A. Ivanov et al., Overview of ECR plasma heating experiment in the GDT magnetic mirror, Nuclear Fusion, vol.55, issue.5, p.53009, 2015.

P. A. Bagryansky, A. D. Beklemishev, and V. V. Postupaev, Encouraging Results and New Ideas for Fusion in Linear Traps, Journal of Fusion Energy, vol.38, issue.1, pp.162-181, 2019.

O. Tuske, O. Delferrière, R. Gobin, F. Harrault, and T. Steiner, Results of the CEA/Saclay H electron cyclotron resonance ion source, ECRIN, Review of Scientific Instruments, vol.77, issue.3, pp.3-507, 2006.

O. Tuske, G. Charruau, O. Delferriere, D. De-menezes, R. Gobin et al., ECRIN and MultiCusp Sources at CEA Saclay, AIP Conference Proceedings, vol.925, pp.114-120, 2007.

S. Nyckees, Etude et développement d ' une nouvelle source ECR produisant un faisceau intense d'ions légers, vol.92, 2013.

A. Dunaevsky, Y. Raitses, and N. J. Fisch, Secondary electron emission from dielectric materials of a Hall thruster with segmented electrodes, Physics of Plasmas, vol.10, issue.6, pp.2574-2577, 2003.

Z. Xie, State of the art of ECR ion sources, Proceedings of the 1997 Particle Accelerator Conference, vol.3, pp.2662-2666, 2002.

J. E. Ricker and J. H. Hendricks, Unit Conversions | NIST, 2017.

O. Tarvainen, Studies of electron cyclotron resonance ion source plasma physics, p.96, 2005.

J. J. Balmer, Notiz über die Spectrallinien des Wasserstoffs, Annalen der Physik, vol.261, issue.5, pp.80-87, 1885.

A. Campargue, S. Kassi, K. Pachucki, and J. Komasa, The absorption spectrum of H 2 : CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35 000 cm 1, Phys. Chem. Chem. Phys, vol.14, issue.2, pp.802-815, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01005700

I. Gordon, L. Rothman, C. Hill, R. Kochanov, Y. Tan et al., The HITRAN2016 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.203, pp.3-69, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765945

J. R. Hiskes, Cross sections for the vibrational excitation of the H2(X 1J+g) state via electron collisional excitation of the higher singlet states, Journal of Applied Physics, vol.51, issue.9, p.98, 1980.

J. Marx, A. Lebehot, and R. Campargue, Cross sections for vibrational excitation of H2(X 1? +g, ?" = 0) via electronically excited singlet states populated by low energy electron impact, Journal de Physique, vol.46, issue.10, pp.1667-1670, 1985.
URL : https://hal.archives-ouvertes.fr/jpa-00210115

M. D. Bowden, T. Okamoto, F. Kimura, H. Muta, K. Uchino et al., Thomson scattering measurements of electron temperature and density in an electron cyclotron resonance plasma, Journal of Applied Physics, vol.73, issue.6, pp.2732-2738, 1993.

E. Y. Choueiri, A Critical History of Electric Propulsion: The First 50 Years (1906-1956), Journal of Propulsion and Power, vol.20, issue.2, pp.193-203, 2004.

V. Kim, K. Kozubsky, V. M. Murashko, and A. Semenkin, History of the Hall Thrusters Development in USSR, 30th International Electric Propulsion Conference, p.108, 2007.

J. Boeuf, Tutorial: Physics and modeling of Hall thrusters, Journal of Applied Physics, vol.121, issue.1, p.11101, 2017.

E. Y. Choueiri, Plasma oscillations in Hall thrusters, Physics of Plasmas, vol.8, issue.4, p.108, 2001.

A. Bugrova, Electron distribution function in the channel of an electron-ring plasma accelerator.pdf, Sov. Phys. Tech. Phys, vol.32, issue.1111, p.108, 1987.

G. Giono, J. T. Gudmundsson, N. Ivchenko, S. Mazouffre, K. Dannenmayer et al., Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster, Plasma Sources Science and Technology, vol.27, issue.1, p.15006, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02409558

S. Barral, K. Makowski, Z. Peradzy?ski, N. Gascon, and M. Dudeck, Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity, Physics of Plasmas, vol.10, issue.10, p.108, 2003.

D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, Kinetic simulation of secondary electron emission effects in Hall thrusters, Physics of Plasmas, vol.13, issue.1, p.14501, 2006.

S. Tsikata, A. Héron, and C. Honoré, Hall thruster microturbulence under conditions of modified electron wall emission, Physics of Plasmas, vol.24, issue.5, p.53519, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01894823

, , vol.108

N. Gascon, M. Dudeck, and S. Barral, Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100, Physics of Plasmas, vol.10, issue.10, pp.4123-4136, 2003.

I. G. Mikellides, I. Katz, R. R. Hofer, D. M. Goebel, K. De-grys et al., Magnetic shielding of the channel walls in a Hall plasma accelerator, Physics of Plasmas, vol.18, issue.3, p.33501, 2011.

L. Grimaud, Magnetic shielding topology applied to low power Hall thrusters, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02165921

R. Shastry, A. Gallimore, and R. Hofer, Near-Wall Plasma Properties and EEDF Measurements of a 6-kW Hall Thruster, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp.1-15, 2009.

K. Dannenmayer, P. Kudrna, M. Tichý, and S. Mazouffre, Time-resolved measurements of plasma properties using electrostatic probes in the cross-field discharge of a hall effect thruster, Contributions to Plasma Physics, vol.53, p.111, 2013.

M. Tichý, A. Pétin, P. Kudrna, M. Horký, and S. Mazouffre, Electron energy distribution function in a low-power Hall thruster discharge and near-field plume, Physics of Plasmas, vol.25, issue.6, p.61205, 2018.

J. Sommerville and L. King, An Optical Diagnostic for Xenon Hall Thrusters Including Metastable Contributions, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp.1-9, 2006.

R. Spektor and E. J. Beiting, Non-Invasive Plasma Diagnostic Inside A Hall Thruster Discharge, p.111, 2007.

N. P. Brown, A. M. Steinberg, J. A. Deibel, and M. L. Walker, Terahertz Time-Domain Spectroscopy as an Electric Propulsion Plasma Diagnostic, IEPC-2019, p.111, 2019.

R. L. Washeleski, Laser Thomson scattering measurements of electron temperature and density in a Hall-effect plasma, 2012.

R. L. Washeleski, E. J. Meyer, and L. B. King, Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas, Review of Scientific Instruments, vol.84, issue.10, p.105101, 2013.

A. Friss and A. P. Yalin, Further Development of Cavity Enhanced Thomson Scattering for Plasma Thruster Diagnostics, 53rd AIAA/SAE/ASEE Joint Propulsion Conference, pp.2017-4972, 2017.

, Electron Temperature and Density Measurements in a Low-Power Hollow Cathode Discharge by Cavity Enhanced Thomson Scattering, AIAA Scitech 2019 Forum, pp.1-12, 2019.

A. Lejeune, K. Dannenmayer, G. Bourgeois, S. Mazouffre, M. Guyot et al., Impact of the channel width on Hall thruster discharge properties and performances, IEPC-2011, p.112, 2011.

S. Mazouffre, G. Bourgeois, K. Dannenmayer, and A. Lejeune, Ionization and acceleration processes in a small, variable channel width, permanent-magnet Hall thruster, Journal of Physics D: Applied Physics, vol.45, issue.18, p.185203, 2012.

L. Grimaud and S. Mazouffre, Ion behavior in low-power magnetically shielded and unshielded Hall thrusters, Plasma Sources Science and Technology, vol.26, issue.5, p.55020, 2017.

, Performance comparison between standard and magnetically shielded 200 W Hall thrusters with BN-SiO2 and graphite channel walls, Vacuum, vol.155, pp.514-523, 2018.

R. W. Conversano, D. M. Goebel, R. R. Hofer, T. S. Matlock, and R. E. Wirz, Development and Initial Testing of a Magnetically Shielded Miniature Hall Thruster, IEEE Transactions on Plasma Science, vol.43, issue.1, pp.103-117, 2015.

K. De-grys, A. Mathers, B. Welander, and V. Khayms, Demonstration of 10,400 Hours of Operation on 4.5 kW Qualification Model Hall Thruster, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2010.

W. E. Ernst, T. P. Softley, and R. N. Zare, Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source, Physical Review A, vol.37, issue.11, p.116, 1988.

T. Jiang, M. D. Bowden, E. Wagenaars, E. Stoffels, and G. M. Kroesen, Diagnostics of electric fields in plasma using Stark spectroscopy of krypton and xenon atoms, New Journal of Physics, vol.8, p.116, 2006.

J. P. Boeuf and L. Garrigues, E OE B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory, Physics of Plasmas, vol.25, issue.6, p.61204, 2018.

G. Bourgeois, Influence de la topologie magnétique , de la cathode et de la section du canal sur l'accélération des ions dans un propulseur à effet Hall, vol.120, 2012.

L. Garrigues, S. Santhosh, L. Grimaud, and S. Mazouffre, Operation of a low-power Hall thruster: comparison between magnetically unshielded and shielded configuration, Plasma Sources Science and Technology, vol.28, issue.3, p.34003, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02326255

L. Grimaud and S. Mazouffre, Conducting wall Hall thrusters in magnetic shielding and standard configurations, Journal of Applied Physics, vol.122, issue.3, p.33305, 2017.

D. Staack, Y. Raitses, and N. J. Fisch, Temperature gradient in Hall thrusters, Applied Physics Letters, vol.84, issue.16, pp.3028-3030, 2004.

S. Janhunen, A. Smolyakov, D. Sydorenko, M. Jimenez, I. Kaganovich et al., Evolution of the electron cyclotron drift instability in two-dimensions, Physics of Plasmas, vol.25, issue.8, p.82308, 2018.

Y. Raitses, A. Smirnov, D. Staack, M. Keidar, and N. Fisch, Characterization of plasma in a Hall thruster operated at high discharge voltage, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, no. July, pp.1-6, 2005.

W. A. Hargus and M. A. Cappelli, Interior and Exterior Laser-Induced Fluorescence and Plasma Measurements within a Hall Thruster, Journal of Propulsion and Power, vol.18, issue.1, pp.159-168, 2002.

V. H. Chaplin, B. A. Jorns, A. Ortega, I. G. Mikellides, R. W. Conversano et al., Laser-induced fluorescence measurements of acceleration zone scaling in the 12.5 kW HERMeS Hall thruster, Journal of Applied Physics, vol.124, issue.18, p.183302, 2018.

S. Mazouffre, L. Grimaud, S. Tsikata, K. Matyash, and R. Schneider, Rotating spoke instabilities in a wall-less Hall thruster: Experiments, Plasma Sources Science and Technology, vol.128, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02411535

K. Matyash, R. Schneider, S. Mazouffre, S. Tsikata, and L. Grimaud, Rotating spoke instabilities in a wall-less Hall thruster: simulations, Plasma Sources Science and Technology, vol.28, issue.4, p.44002, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02149140

M. R. Nakles, W. A. Hargus, J. J. Delgado, and R. L. Corey, A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster The 32nd International Electric Propulsion Conference, vol.138, 2011.

S. Mazouffre, S. Tsikata, and J. Vaudolon, Development and experimental characterization of a wall-less Hall thruster, Journal of Applied Physics, vol.116, issue.24, p.243302, 2014.

, , p.139

J. Vaudolon, S. Mazouffre, C. Hénaux, D. Harribey, and A. Rossi, Optimization of a wall-less Hall thruster, Applied Physics Letters, vol.107, issue.17, p.139, 2015.

, Étude de propulseurs de Hall, de magnétrons planaires et de sources d'ions ECR par diffusion Thomson incohérente

, Des informations clés (densité, température, vitesse de dérive et FDEE) peuvent être obtenues par analyse de l'intensité et de la distribution spectrale de la lumière diffusée sur les électrons libres, Cette technique est non perturbative, permet de bonnes résolutions spatiotemporelles et peut être appliquée dans des régions magnétisées du plasma. Pourtant, l'implémentation de diagnostiques de DTI dans les plasmas bas températures pose un défi en raison des faibles densités plasma

, Cette thèse se concentre sur le développement et l'application d'un nouveau diagnostic DTI. Un nouveau type de filtre notch est utilisé pour atténuer la lumière parasite (provenant de la diffusion de Rayleigh et des réflexions laser) et faciliter la détection du signal de diffusion Thomson

, Un magnétron plan a été étudié en régime continu (DCMS) et pulsé (HiPIMS), ces investigations ont permis l'extraction de profils spatiotemporels des propriétés électroniques

, Une source d'ions ECR a également été étudiée en régime pulsé et continu. L'influence du type de gaz, de la pression et de la puissance a été étudiée

, Enfin, les propriétés électroniques selon les directions radiales et azimutales de propulseurs à effet Hall dans les configurations "standard" et "écrantage magnétique" ont été étudiées. L'influence du champ magnétique et des conditions de décharge ont été étudiées. Ce travail a révélé non seulement la présence d'anisotropies dans les propriétés des électroniques, mais également la présence de forte température dans les régions magnétisées du plasma du propulseur couplées à des FDEE fortement non maxwelliennes

, Les résultats des travaux de cette thèse contribuent à la meilleure compréhension de ces plasmas et ouvrent une nouvelle voie pour leur modélisation et développement

, Mots clés : diffusion Thomson incohérente, diagnostic laser, filtre notch à réseau de Bragg, magnétron planaire, source d'ion ECR