. Of-dft,

, Neural Networks to model energy potentials (106) or directly forces

, 108) to solving the long last standing problem of protein folding (109), there is little doubt they will produce results in OF-DFT and in quantum physic modeling and simulations, Neural networks have produced incredible results in the recent years, from beating humans at games humans were though unbeatable, vol.107

J. David, D. F. Griffiths, and . Schroeter, Introduction to quantum mechanics, 2018.

H. Nakashima and H. Nakatsuji, Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method, The Journal of chemical physics, vol.127, issue.22, p.13, 2007.

M. Reiher and A. Wolf, Relativistic quantum chemistry: the fundamental theory of molecular science, 2014.

A. M. Paul and . Dirac, The Lagrangian in quantum mechanics, Feynman's Thesis-A New Approach To Quantum Theory, pp.111-119, 2005.

S. D. Vidal-alonso, L. Vincenzo, and . González-díaz, Ehrenfest's theorem and Bohm's quantum potential in a "one-dimensional box, Physics Letters A, vol.287, issue.1-2, pp.23-30, 2001.

V. Allori and N. Zanghì, On the classical limit of quantum mechanics, Foundations of Physics, vol.39, issue.1, pp.20-32, 2009.

D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, vol.1, 2001.

, Vladimir Igorevich Arnol'd. Mathematical methods of classical mechanics, vol.60, 2013.

H. Goldstein, C. Poole, and J. Safko, Classical mechanics, issue.5, 2002.

E. Forest, D. Ronald, and . Ruth, Fourth-order symplectic integration, Physica D: Nonlinear Phenomena, vol.43, issue.1, pp.105-117, 1990.

S. Artemova and S. Redon, Adaptively Restrained Particle Simulations, Physical Review Letters, vol.109, issue.19, p.17, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00756121

S. Artemova, Adaptive algorithms for molecular simulation, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00846690

S. Redon, G. Stoltz, and Z. Trstanova, Error Analysis of Modified Langevin Dynamics, Journal of Statistical Physics, vol.164, issue.4, pp.735-771, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263700

Z. Trstanova, Mathematical and Algorithmic Analysis of Modified Langevin Dynamics. Theses, 2007.
URL : https://hal.archives-ouvertes.fr/tel-01682721

M. Bosson, C. Richard, A. Plet, S. Grudinin, and S. Redon, Interactive quantum chemistry: A divide-and-conquer ASED-MO method, Journal of Computational Chemistry, vol.33, issue.7, p.18, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00755498

M. Bosson, S. Grudinin, and S. Redon, Block-Adaptive Quantum Mechanics: An Adaptive Divide-and-Conquer Approach to Interactive Quantum Chemistry, Journal of Computational Chemistry, vol.34, issue.6, p.18, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00755521

S. Prince, A. Edorh, and S. Redon, Incremental update of electrostatic interactions in adaptively restrained particle simulations, Journal of Computational Chemistry, vol.8, p.17, 2018.

O. Joseph, C. F. Hirschfelder, R. B. Curtiss, M. Bird, and . Mayer, Molecular theory of gases and liquids, vol.165, 1964.

. Pn-keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure, Physical Review, vol.145, issue.2, p.637, 1966.

J. Skov-pedersen, Surface relaxation by the keating model: A comparison with ab-initio calculations aind x-ray diffraction experiments, Surface science, vol.210, issue.1-2, pp.238-250, 1989.

C. J. Anthony-k-rappé, . Casewit, W. A. Colwell, I. Goddard, and W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American chemical society, vol.114, issue.25, p.12, 1992.

P. H. Maria-m-reif, C. Huünenberger, and . Oostenbrink, New interaction parameters for charged amino acid side chains in the GROMOS force field, Journal of chemical theory and computation, vol.8, issue.10, p.11, 2012.

D. Van-der, E. Spoel, B. Lindahl, G. Hess, A. E. Groenhof et al., GROMACS: fast, flexible, and free, Journal of computational chemistry, vol.26, issue.16, p.14, 2005.

W. Donald and . Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical review B, vol.42, issue.15, p.12, 1990.

V. Botu, R. Batra, J. Chapman, and R. Ramprasad, Machine learning force fields: Construction, validation, and outlook, The Journal of Physical Chemistry C, vol.121, issue.1, p.12, 2016.

S. Chmiela, A. Tkatchenko, E. Huziel, I. Sauceda, . Poltavsky et al., Machine learning of accurate energy-conserving molecular force fields, Science advances, vol.3, issue.5, p.104, 2017.

S. Artemova and S. Grudinin, and Stephane Redon. A comparison of neighbor search algorithms for large rigid molecules, Journal of Computational Chemistry, vol.32, issue.13, p.16, 2011.

P. Manteaux, F. Faure, S. Redon, and M. Cani, Exploring the Use of Adaptively Restrained Particles for Graphics Simulations, VRIPHYS 2013 -10th Workshop on Virtual Reality Interaction and Physical Simulation, VRIPHYS 2013 -10th Workshop on Virtual Reality Interaction and Physical Simulation, p.17, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00914653

K. K. Singh, D. F. Marin, and S. Redon, Parallel Adaptively Restrained Molecular Dynamics, 2017 International Conference on High Performance Computing & Simulation (HPCS), p.17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01591466

K. K. Singh and S. Redon, Single-pass Incremental Force Updates for Adaptively Restrained Molecular Dynamics, Journal of Computational Chemistry, vol.39, issue.8, p.17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01635863

K. K. Singh and S. Redon, Adaptively Restrained Molecular Dynamics in LAMMPS. Modelling and Simulation in Materials Science and Engineering, vol.25, p.17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525253

S. Edorh, Incremental Algorithm for long range interactions. Theses, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01980307

M. Bosson, Adaptive algorithms for computational chemistry and interactive modeling. Theses, vol.18, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00846458

S. Viswanathan, N. Tharangattu, K. Narayanan, K. D. Aran, J. Fink et al., Graphene-protein field effect biosensors: glucose sensing, Materials Today, vol.18, issue.9, p.18, 2015.

C. Guedj, L. Jaillet, F. Rousse, and S. Redon, Atomistic Modelling and Simulation of Transmission Electron Microscopy Images: Application to Intrinsic Defects of
URL : https://hal.archives-ouvertes.fr/hal-01973626

. Graphene, 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, p.20, 2018.

C. Guedj, L. Jaillet, F. Rousse, and S. Redon,

, Graphene-based Materials: Atomistic Modeling and Simulation of HRSTEM Images, AVS 65th International Symposium & Exhibition, p.20, 2018.

E. Joseph, A. Avron, and . Elgart, Adiabatic theorem without a gap condition, Communications in mathematical physics, vol.203, issue.2, p.24, 1999.

D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods, vol.24, p.36, 2009.

I. V. Douglas-a-gibson, E. A. Ionova, and . Carter, A comparison of Car-Parrinello and Born-Oppenheimer generalized valence bond molecular dynamics, Chemical physics letters, vol.240, issue.4, p.25, 1995.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Physical Review, vol.136, issue.3B, pp.864-871, 1926.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, p.36, 1965.

A. L. Miguel, . Marques, J. T. Micael, T. Oliveira, and . Burnus, Libxc: A library of exchange and correlation functionals for density functional theory, Computer Physics Communications, vol.183, issue.10, p.32, 2012.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, p.51, 1981.

P. John, J. A. Perdew, . Chevary, H. Sy, . Vosko et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.46, issue.11, p.51, 1992.

X. Liu, X. Wang, Z. Wen, and Y. Yuan, On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory, SIAM Journal on Matrix Analysis and Applications, vol.35, issue.2, p.33, 2014.

H. Dreyssé, Electronic Structure and Physical Properties of Solids, p.35, 2000.

E. Peter and . Blöchl, Projector augmented-wave method, Physical review B, vol.50, issue.24, p.35, 1994.

E. Peter, . Blöchl, J. Clemens, J. Först, and . Schimpl, Projector augmented wave method: ab initio molecular dynamics with full wave functions, Bulletin of Materials Science, vol.26, issue.1, p.35, 2003.

H. Chen and A. Zhou, Orbital-free density functional theory for molecular structure calculations, Numer. Math. Theor. Meth. Appl, vol.1, issue.1, p.56, 2008.

G. S. Ho, V. L. Lignères, and E. A. Carter, Introducing PROFESS: A new program for orbital-free density functional theory calculations, Computer Physics Communications, vol.179, issue.11, p.78, 2008.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.05, p.37, 1927.

. Cf-v-weizsäcker, Zur theorie der kernmassen, Zeitschrift für Physik A Hadrons and Nuclei, vol.96, issue.7, p.39, 1935.

B. Radhakrishnan and V. Gavini, Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory, Physical Review B, vol.82, issue.9, p.37, 2010.

. Prabhat-k-acharya, J. Libero, . Bartolotti, B. Stephen, R. Sears et al., An atomic kinetic energy functional with full Weizsacker correction, Proceedings of the National Academy of Sciences, vol.77, p.37, 1980.

. Da-kirzhnits, Quantum corrections to the Thomas-Fermi equation, Soviet Phys. JETP, vol.5, p.38, 1957.

S. Yip, Handbook of materials modeling, p.38, 2007.

A. Borgoo, J. David, and . Tozer, Density scaling of noninteracting kinetic energy functionals, vol.9, p.39, 2013.

A. Borgoo, A. James, D. J. Green, and . Tozer, Molecular binding in post-Kohn-Sham orbital-free DFT, Journal of chemical theory and computation, vol.10, issue.12, p.39, 2014.

J. Seino, R. Kageyama, M. Fujinami, Y. Ikabata, and H. Nakai, Semi-local machinelearned kinetic energy density functional with third-order gradients of electron density, The Journal of chemical physics, vol.148, issue.24, p.103, 2018.

L. Wang and M. P. Teter, Kinetic-energy functional of the electron density, Physical Review B, vol.45, issue.23, p.41, 1992.

J. Lindhard, On the properties of a gas of charged particles, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd, vol.28, p.39, 1954.

S. Schwartz, Theoretical methods in condensed phase chemistry, vol.5, p.40, 2002.

F. Perrot, Hydrogen-hydrogen interaction in an electron gas, Journal of Physics: Condensed Matter, vol.6, issue.2, p.41, 1994.

E. Smargiassi and . Paul-a-madden, Orbitalfree kinetic-energy functionals for first-principles molecular dynamics, Physical Review B, vol.49, issue.8, p.41, 1994.

Y. Wang, N. Govind, and E. A. Carter, Orbital-free kinetic-energy functionals for the nearly free electron gas, Physical Review B, vol.58, issue.20, p.53, 1998.

S. Ghosh and P. Suryanarayana, Higherorder finite-difference formulation of periodic Orbital-free Density Functional Theory, Journal of Computational Physics, vol.307, p.72, 2016.

N. Choly and E. Kaxiras, Kinetic energy density functionals for non-periodic systems, Solid state communications, vol.121, issue.5, p.69, 2002.

X. Blanc and . Cances, Nonlinear instability of density-independent orbital-free kineticenergy functionals, The Journal of chemical physics, vol.122, issue.21, p.69, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00018873

C. Huang and E. A. Carter, Nonlocal orbitalfree kinetic energy density functional for semiconductors, Physical Review B, vol.81, issue.4, p.56, 2010.

I. Shin and E. A. Carter, Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors. The Journal of chemical physics, vol.140, p.42, 2014.

J. Xia and E. A. Carter, Densitydecomposed orbital-free density functional theory for covalently bonded molecules and materials, Physical Review B, vol.86, issue.23, p.42, 2012.

W. Mi, X. Shao, C. Su, Y. Zhou, S. Zhang et al., ATLAS: A realspace finite-difference implementation of orbitalfree density functional theory, Computer Physics Communications, vol.200, p.43, 2016.

X. Shao, Q. Xu, S. Wang, J. Lv, Y. Wang et al., Large-scale ab initio simulations for periodic system, Computer Physics Communications, vol.233, p.72, 2018.

P. Suryanarayana and D. Phanish, Augmented Lagrangian formulation of orbital-free density functional theory, Journal of Computational Physics, vol.275, p.78, 2014.

V. Gavini, J. Knap, K. Bhattacharya, and M. Ortiz, Non-periodic finite-element formulation of orbital-free density functional theory, Journal of the Mechanics and Physics of Solids, vol.55, issue.4, p.58, 2007.

P. Motamarri, M. Iyer, J. Knap, and V. Gavini, Higher-order adaptive finiteelement methods for orbital-free density functional theory, Journal of Computational Physics, vol.231, issue.20, p.69, 2012.

J. Carlos and . Garc?a-cervera, An efficient real space method for orbital-free density-functional theory, Commun. Comput. Phys, vol.2, issue.2, p.44, 2007.

F. Rousse and S. Redon, Incremental solver for orbital-free density functional theory, Journal of Computational Chemistry, vol.0, issue.0
URL : https://hal.archives-ouvertes.fr/hal-02135603

S. Wright and J. Nocedal, Numerical optimization, vol.35, p.47, 1999.

W. Yang, Gradient correction in Thomas-Fermi theory, Physical Review A, vol.34, issue.6, p.4575, 1986.

G. Robert, Y. Parr, and . Weitao, Density-functional theory of atoms and molecules, vol.16, p.52, 1994.

N. Govind, J. Wang, and H. Guo, Totalenergy calculations using a gradient-expanded kinetic-energy functional, Physical Review B, vol.50, issue.15, p.52, 1994.

V. Heine and I. Abarenkov, A new method for the electronic structure of metals, Philosophical Magazine, vol.9, issue.99, p.55, 1964.

. Iv-abarenkov and . Heine, The model potential for positive ions, Philosophical Magazine, vol.12, issue.117, p.55, 1965.

L. Goodwin, V. Needs, and . Heine, A pseudopotential total energy study of impurity-promoted intergranular embrittlement, Journal of Physics: Condensed Matter, vol.2, issue.2, p.56, 1990.

B. S-watson, E. Jesson, P. Carter, and . Madden, Ab initiopseudopotentials for orbital-free density functionals, Europhysics Letters (EPL), vol.41, issue.1, p.56, 1998.

B. Zhou, Y. A. Wang, and E. A. ,

. Carter, Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment, Physical Review B, vol.69, issue.12, p.56, 2004.

C. Huang and E. A. Carter, Transferable local pseudopotentials for magnesium, aluminum and silicon, Physical Chemistry Chemical Physics, vol.10, issue.47, p.56, 2008.

J. Xia, C. Huang, I. Shin, and E. A. Carter, Can orbital-free density functional theory simulate molecules?, The Journal of chemical physics, vol.136, issue.8, p.56, 2012.

H. Gene, J. Golub, and . Welsch, Calculation of Gauss quadrature rules. Mathematics of computation, vol.23, p.58, 1969.

P. Viot, Méthode d'analyse numérique. Lecture, 1958.

L. Dagum and R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Computational Science and Engineering, vol.5, issue.1, p.90, 1998.

T. Guillet and R. Teyssier, A simple multigrid scheme for solving the Poisson equation with arbitrary domain boundaries, Journal of Computational Physics, vol.230, issue.12, p.75, 2011.

D. Braess, On the combination of the multigrid method and conjugate gradients, Multigrid methods II, p.75, 1986.

C. Temperton, Direct methods for the solution of the discrete Poisson equation: some comparisons, Journal of Computational Physics, vol.31, issue.1, p.75, 1979.

W. Gander and G. H. Golub, Cyclic reduction-history and applications, Scientific computing, p.75, 1997.

L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, and G. Beylkin, Efficient solution of Poisson's equation with free boundary conditions, The Journal of chemical physics, vol.125, issue.7, p.75, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02194945

F. James and . Gibbons, Ion implantation in semiconductors-Part II: Damage production and annealing, Proceedings of the IEEE, vol.60, p.89, 1972.

H. Jónsson, G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, Classical and quantum dynamics in condensed phase simulations, p.97, 1998.

E. Lucian-a-constantin, F. D. Fabiano, and . Sala, Semilocal Pauli-Gaussian kinetic functionals for orbital-free density functional theory calculations of solids. The journal of physical chemistry letters, vol.9, p.102, 2018.

A. Graps, An introduction to wavelets, IEEE computational science and engineering, vol.2, issue.2, p.103, 1995.

A. Cohen, I. Daubechies, and J. Feauveau, Biorthogonal bases of compactly supported wavelets. Communications on pure and applied mathematics, vol.45, p.103, 1992.

L. Genovese, B. Videau, M. Ospici, T. Deutsch, S. Goedecker et al., Daubechies wavelets for high performance electronic structure calculations: The BigDFT project, Comptes Rendus Mécanique, vol.339, issue.2-3, p.103, 2011.

K. Mills, M. Spanner, and I. Tamblyn, Deep learning and the Schrödinger equation, Physical Review A, vol.96, issue.4, p.103, 2017.

F. Brockherde, L. Vogt, L. Li, K. Mark-e-tuckerman, K. Burke et al., Bypassing the Kohn-Sham equations with machine learning, Nature communications, vol.8, issue.1, p.103, 2017.

S. Justin, O. Smith, A. E. Isayev, and . Roitberg, ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost, Chemical science, vol.8, issue.4, pp.3192-3203, 2017.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang et al., Mastering the game of go without human knowledge, Nature, vol.550, issue.7676, pp.354-2017

O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg et al., Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar: Mastering the Real-Time Strategy Game StarCraft II

R. Evans, . Jumper, L. Kirkpatrick, . Sifre, . Tfg-green et al., De novo structure prediction with deeplearning based scoring, Annu Rev Biochem, vol.77, pp.363-382, 2018.

G. Teschl, Mathematical methods in quantum mechanics, Graduate Studies in Mathematics, vol.99, p.106, 2009.