M. Controzzi, C. Cipriani, and M. C. Carrozza, Design of Artificial Hands: A Review, The Human Hand as an Inspiration for Robot Hand Development, pp.219-246, 2014.

M. Controzzi, F. Clemente, D. Barone, A. Ghionzoli, and C. Cipriani, The SSSA-MyHand: A dexterous lightweight myoelectric hand prosthesis, IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp.1-1, 2016.

R. Deimel and O. Brock, A novel type of compliant and underactuated robotic hand for dexterous grasping, The International Journal of Robotics Research, vol.35, pp.161-185, 2016.

J. R. Wolpaw, D. J. Mcfarland, G. W. Neat, and C. A. Forneris, An EEGbased brain-computer interface for cursor control, Electroencephalography and Clinical Neurophysiology, vol.78, pp.252-259, 1991.

B. Blankertz, G. Dornhege, M. Krauledat, K. R. Muller, V. Kunzmann et al., The Berlin brain-computer interface: EEG-based communication without subject training, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, pp.147-152, 2006.

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review of classification algorithms for EEG-based brain-computer interfaces, Journal of Neural Engineering, vol.4, issue.2, p.1, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01846433

W. Schweitzer, Technical Below Elbow Amputee Issues -Why do people stop using their prosthetic arms?, 2010.

K. R. Lyons and S. S. Joshi, Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.26, pp.1056-1066, 2018.

T. Kuiken, Targeted reinnervation for improved prosthetic function, Physical Medicine and Rehabilitation Clinics of North America, vol.17, pp.1-13, 2006.

R. E. Burke, Motor Units: Anatomy, Physiology, and Functional Organization, Comprehensive Physiology (R. Terjung, pp.345-422, 2011.

D. Stashuk, EMG signal decomposition: How can it be accomplished and used?, Journal of Electromyography and Kinesiology: O cial Journal of the International Society of Electrophysiological Kinesiology, vol.11, pp.151-173, 2001.

D. Farina, A. Crosetti, and R. Merletti, A model for the generation of synthetic intramuscular EMG signals to test decomposition algorithms, IEEE transactions on biomedical engineering, vol.48, issue.1, pp.66-77, 2001.

D. B. Sanders, K. Arimura, L. Cui, M. Erta?, M. E. Farrugia et al., Guidelines for single fiber EMG, Clinical Neurophysiology, vol.130, pp.1417-1439, 2019.

S. Muceli, W. Poppendieck, F. Negro, K. Yoshida, K. P. Ho?mann et al., Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thinfilm electrodes: Multi-channel intramuscular EMG electrode, The Journal of Physiology, vol.593, pp.3789-3804, 2015.

R. F. Weir, P. R. Troyk, G. A. Demichele, D. A. Kerns, J. F. Schorsch et al., Implantable Myoelectric Sensors (IMESs) for Intramuscular Electromyogram Recording, IEEE Transactions on Biomedical Engineering, vol.56, pp.159-171, 2009.

P. F. Pasquina, M. Evangelista, A. Carvalho, J. Lockhart, S. Gri-n et al., First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand, Journal of Neuroscience Methods, vol.244, pp.85-93, 2015.

B. D. Farnsworth, D. M. Talyor, R. J. Triolo, and D. J. Young, Wireless in vivo EMG sensor for intelligent prosthetic control, Solid-State Sensors, Actuators and Microsystems Conference, pp.358-361, 2009.

D. R. Merrill, J. Lockhart, P. R. Troyk, R. F. Weir, and D. L. Hankin, Development of an Implantable Myoelectric Sensor for Advanced Prosthesis Control: Implantable Myoelectric Sensor for Advanced Prosthetic Control, Artificial Organs, vol.35, pp.249-252, 2011.

S. Salminger, A. Sturma, C. Hofer, M. Evangelista, M. Perrin et al., Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees, Science Robotics, vol.4, p.6306, 2019.

R. L. Drake, W. Vogl, A. W. Mitchell, and H. Gray, Gray's Atlas of Anatomy -1st Edition, 2015.

C. Heckman and R. M. Enoka, Motor Unit, Comprehensive Physiology (R. Terjung, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02415072

E. Henneman, G. Somjen, and D. O. Carpenter, Functional significance of cell size in spinal motorneurons, Journal of Neurophysiology, vol.28, pp.560-580, 1965.

R. S. Person and L. P. Kudina, Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle, Electroencephalography and Clinical Neurophysiology, vol.32, pp.471-483, 1972.

C. J. De-luca and P. Contessa, Hierarchical control of motor units in voluntary contractions, Journal of Neurophysiology, vol.107, pp.178-195, 2012.

C. J. De-luca and Z. Erim, Common drive of motor units in regulation of muscle force, Trends in Neurosciences, vol.17, pp.299-305, 1994.

S. J. Garland and T. S. Miles, Control of motor units in human flexor digitorum profundus under di?erent proprioceptive conditions, The Journal of Physiology, vol.502, pp.693-701, 1997.

C. J. De-luca, J. A. Gonzalez-cueto, P. Bonato, and A. Adam, Motor Unit Recruitment and Proprioceptive Feedback Decrease the Common Drive, Journal of Neurophysiology, vol.101, pp.1620-1628, 2009.

C. J. De-luca and Z. Erim, Common Drive in Motor Units of a Synergistic Muscle Pair, Journal of Neurophysiology, vol.87, pp.2200-2204, 2002.

C. J. De-luca and B. Mambrito, Voluntary control of motor units in human antagonist muscles: Coactivation and reciprocal activation, Journal of Neurophysiology, vol.58, pp.525-542, 1987.

S. Li, C. Zhuang, M. Hao, X. He, J. C. Marquez et al., Coordinated alpha and gamma control of muscles and spindles in movement and posture, Frontiers in Computational Neuroscience, vol.9, 2015.

D. Farina, F. Negro, S. Muceli, and R. M. Enoka, Principles of Motor Unit Physiology Evolve With Advances in Technology, Physiology, vol.31, pp.83-94, 2016.

A. M. Castronovo, F. Negro, S. Conforto, and D. Farina, The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input, Journal of Applied Physiology, vol.119, pp.1337-1346, 2015.

K. C. Mcgill, Z. C. Lateva, and H. R. Marateb, EMGLAB: An interactive EMG decomposition program, Journal of Neuroscience Methods, vol.149, pp.121-133, 2005.

E. M. Schmidt, Unit activity from peripheral nerve bundles utilizing correlation techniques, Medical and biological engineering, vol.9, pp.665-674, 1971.

G. L. Gerstein and W. A. Clark, Simultaneous Studies of Firing Patterns in Several Neurons, Science, vol.143, pp.1325-1327, 1964.

R. S. Lefever and C. J. De-luca, A procedure for decomposing the myoelectric signal into its constituent action potentials-part I: Technique, theory, and implementation, IEEE transactions on biomedical engineering, issue.3, pp.149-157, 1982.

K. C. Mcgill, K. L. Cummins, and L. J. Dorfman, Automatic decomposition of the clinical electromyogram, IEEE Transactions on Biomedical Engineering, issue.7, pp.470-477, 1985.

D. Stashuk and Y. Qu, Adaptive motor unit action potential clustering using shape and temporal information, Medical and Biological Engineering and Computing, vol.34, issue.1, pp.41-49, 1996.

J. Florestal, P. Mathieu, and A. Malanda, Automated decomposition of intramuscular electromyographic signals, IEEE Transactions on Biomedical Engineering, vol.53, pp.832-839, 2006.

H. R. Marateb, S. Muceli, K. C. Mcgill, R. Merletti, and D. Farina, Robust decomposition of single-channel intramuscular EMG signals at low force levels, Journal of Neural Engineering, vol.8, p.66015, 2011.

M. H. Hassoun, C. Wang, and A. R. Spitzer, NNERVE: Neural network extraction of repetitive vectors for electromyography. I. Algorithm, IEEE Transactions on Biomedical Engineering, vol.41, issue.11, pp.1039-1052, 1994.

J. Florestal, P. Mathieu, and R. Plamondon, A Genetic Algorithm for the Resolution of Superimposed Motor Unit Action Potentials, IEEE Transactions on Biomedical Engineering, vol.54, pp.2163-2171, 2007.

J. Chu, I. Moon, Y. Lee, S. Kim, and M. Mun, A Supervised Feature-Projection-Based Real-Time EMG Pattern Recognition for Multifunction Myoelectric Hand Control, IEEE/ASME Transactions on Mechatronics, vol.12, pp.282-290, 2007.

N. Jarrassé, E. Montalivet, F. Richer, C. Nicol, A. Touillet et al., Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study, Frontiers in Bioengineering and Biotechnology, vol.6, p.164, 2018.

C. Cipriani, J. L. Segil, J. A. Birdwell, and R. F. Weir, Dexterous Control of a Prosthetic Hand Using Fine-Wire Intramuscular Electrodes in Targeted Extrinsic Muscles, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, pp.828-836, 2014.

L. H. Smith, T. A. Kuiken, and L. J. Hargrove, Real-time simultaneous and proportional myoelectric control using intramuscular EMG, Journal of Neural Engineering, vol.11, p.66013, 2014.

E. N. Kamavuako, E. J. Scheme, and K. B. Englehart, Wrist torque estimation during simultaneous and continuously changing movements: Surface vs. untargeted intramuscular EMG, Journal of Neurophysiology, vol.109, pp.2658-2665, 2013.

E. N. Kamavuako, K. B. Englehart, W. Jensen, and D. Farina, Simultaneous and Proportional Force Estimation in Multiple Degrees of Freedom From Intramuscular EMG, IEEE Transactions on Biomedical Engineering, vol.59, pp.1804-1807, 2012.

D. Y. Barsakcioglu and D. Farina, A real-time surface EMG decomposition system for non-invasive human-machine interfaces, 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.1-4, 2018.

A. Holobar and D. Farina, Blind source identification from the multichannel surface electromyogram, Physiological Measurement, vol.35, pp.143-165, 2014.

D. Farina, I. Vujaklija, M. Sartori, T. Kapelner, F. Negro et al., Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation, Nature Biomedical Engineering, vol.1, p.25, 2017.

T. Kapelner, I. Vujaklija, N. Jiang, F. Negro, O. C. Aszmann et al., Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses, Journal of NeuroEngineering and Rehabilitation, vol.16, p.47, 2019.

C. K. Thompson, F. Negro, M. D. Johnson, M. R. Holmes, L. M. Mcpherson et al., Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output: Neural drive to muscle and resulting force output, The Journal of Physiology, vol.596, pp.2643-2659, 2018.

Y. Li, L. H. Smith, L. J. Hargrove, D. J. Weber, and G. E. Loeb, Sparse Optimal Motor Estimation (SOME) for Extracting Commands for Prosthetic Limbs, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.21, pp.104-111, 2013.

L. H. Smith, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, Determining the Optimal Window Length for Pattern Recognition-Based Myoelectric Control: Balancing the Competing E?ects of Classification Error and Controller Delay, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.19, pp.186-192, 2011.

V. Glaser, A. Holobar, and D. Zazula, Real-Time Motor Unit Identification From High-Density Surface EMG, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.21, pp.949-958, 2013.

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, and D. Farina, On-line recursive decomposition of intramuscular EMG signals using GPU-implemented Bayesian filtering, IEEE Transactions on Biomedical Engineering, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362489

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, R. Gross et al., Recursive decomposition of electromyographic signals with a varying number of active sources: Bayesian modelling and filtering, IEEE Transactions on Biomedical Engineering, pp.1-1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362477

J. Monsifrot, E. L. Carpentier, Y. Aoustin, and D. Farina, Sequential Decoding of Intramuscular EMG Signals via Estimation of a Markov Model, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, pp.1030-1040, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024878

B. Feinstein, B. Lindegård, E. Nyman, and G. Wohlfart, Morphologic studies of motor units in human muscles, Cells Tissues Organs, vol.23, issue.2, pp.127-142, 1955.

F. Buchthal, C. Guld, and P. Rosenfalck, Multielectrode Study of the Territory of a Motor Unit, Acta Physiologica Scandinavica, vol.39, pp.83-104, 1957.

M. A. Johnson, J. Polgar, D. Weightman, and D. Appleton, Data on the distribution of fibre types in thirty-six human muscles: An autopsy study, Journal of the Neurological Sciences, vol.18, pp.111-129, 1973.

A. Atasoy, E. Kaya, E. Toptas, S. Kuchimov, E. Kaplanoglu et al., 24 DOF EMG controlled hybrid actuated prosthetic hand, Engineering in Medicine and Biology Society (EMBC), pp.5059-5062, 2016.

J. G. Abreu, J. M. Teixeira, L. S. Figueiredo, and V. Teichrieb, Evaluating sign language recognition using the myo armband, 2016 XVIII Symposium on Virtual and Augmented Reality (SVR), pp.64-70, 2016.

A. R. Fonseca, Smart control of a soft robotic hand prosthesis, 2016.

A. Atasoy, E. Kaya, E. Toptas, S. Kuchimov, E. Kaplanoglu et al., 24 DOF EMG controlled hybrid actuated prosthetic hand, Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annu. Int. Conf. of the, pp.5059-5062, 2016.

K. Akhmadeev, E. Rampone, T. Yu, Y. Aoustin, and E. L. Carpentier, A testing system for a real-time gesture classification using surface EMG, IFAC-PapersOnLine, vol.50, issue.1, pp.11498-11503, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01491572

X. Zhang, X. Chen, W. Wang, J. Yang, V. Lantz et al., Hand gesture recognition and virtual game control based on 3d accelerometer and EMG sensors, Proc. of the 14th Int. Conf. on Intelligent User Interfaces, IUI '09, pp.401-406, 2009.

C. S. Tsui, P. Jia, J. Q. Gan, H. Hu, and K. Yuan, EMG-based handsfree wheelchair control with eog attention shift detection, Robotics and Biomimetics, pp.1266-1271, 2007.

M. Dicicco, L. Lucas, and Y. Matsuoka, Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand, Robotics and Automation, vol.2, pp.1622-1627, 2004.

Z. Lu, X. Chen, Q. Li, X. Zhang, and P. Zhou, A Hand Gesture Recognition Framework and Wearable Gesture-Based Interaction Prototype for Mobile Devices, IEEE Transactions on Human-Machine Systems, vol.44, pp.293-299, 2014.

S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schonle et al., A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition, IEEE Transactions on Biomedical Circuits and Systems, vol.9, pp.620-630, 2015.

M. Tavakoli, C. Benussi, and J. L. Lourenco, Single channel surface EMG control of advanced prosthetic hands: A simple, low cost and e cient approach, Expert Systems with Applications, vol.79, pp.322-332, 2017.

A. Boyali, N. Hashimoto, and O. Matsumoto, Hand posture and gesture recognition using MYO armband and spectral collaborative representation based classification, Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on, pp.200-201, 2015.

M. Tomaszewski, Myo SDK matlab MEX wrapper, 2016.

L. H. Smith, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing e?ects of classification error and controller delay, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.19, pp.186-192, 2011.

P. Kaufmann, K. Englehart, and M. Platzner, Fluctuating EMG signals: Investigating long-term e?ects of pattern matching algorithms, Annu. Int. Conf. of the IEEE Engineering in Medicine and Biology, pp.6357-6360, 2010.

B. Hudgins, P. Parker, and R. N. Scott, A new strategy for multifunction myoelectric control, IEEE Transactions on Biomedical Engineering, vol.40, pp.82-94, 1993.

C. Chang and C. Lin, LIBSVM: A library for support vector machines, ACM transactions on intelligent systems and technology (TIST), vol.2, p.27, 2011.

M. Oskoei and H. Hu, Support Vector Machine-Based Classification Scheme for Myoelectric Control Applied to Upper Limb, IEEE Transactions on Biomedical Engineering, vol.55, pp.1956-1965, 2008.

M. K. Akhmadeev, A. Houssein, M. S. Moussaoui, H. Harbo, M. E. Høgestøl et al., SVM-based tool to detect patients with multiple sclerosis using a commercial EMG sensor, Proceedings of the IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), p.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847078

W. I. Mcdonald, A. Compston, G. Edan, D. Goodkin, H. P. Hartung et al., Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis, Annals of Neurology, vol.50, pp.121-127, 2001.

C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen et al., Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria, Annals of Neurology, vol.69, pp.292-302, 2011.

M. Kaufman, D. Moyer, and J. Norton, The significant change for the Timed 25-Foot Walk in the Multiple Sclerosis Functional Composite, Multiple Sclerosis Journal, vol.6, pp.286-290, 2000.

S. H. Alusi, J. Worthington, S. Glickman, and P. G. Bain, A study of tremor in multiple sclerosis, Brain, vol.124, pp.720-730, 2001.

I. Jonkers, G. Nuyens, J. Seghers, M. Nuttin, and A. Spaepen, Muscular e?ort in multiple sclerosis patients during powered wheelchair manoeuvres, Clinical Biomechanics, vol.19, pp.929-938, 2004.

S. Ayache, T. Al-ani, W. Farhat, H. Zouari, A. Créange et al., Analysis of tremor in multiple sclerosis using Hilbert-Huang Transform, Neurophysiologie Clinique = Clinical Neurophysiology, vol.45, pp.475-484, 2015.

K. J. Kelleher, W. Spence, S. Solomonidis, and D. Apatsidis, The characterisation of gait patterns of people with multiple sclerosis, Disability and Rehabilitation, vol.32, pp.1242-1250, 2010.

A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-bernard et al., EMG feature evaluation for improving myoelectric pattern recognition robustness, Expert Systems with Applications, vol.40, pp.4832-4840, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831643

M. Hakonen, H. Piitulainen, and A. Visala, Current state of digital signal processing in myoelectric interfaces and related applications, Biomedical Signal Processing and Control, vol.18, pp.334-359, 2015.

N. Rosenstein, myo-python: Python bindings for the myo SDK, Online repository

J. F. Kurtzke, Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS), Neurology, vol.33, issue.11, pp.1444-1444, 1983.

E. Henneman, G. Somjen, and D. O. Carpenter, Functional significance of cell size in spinal motorneurons, Journal of Neurophysiology, vol.28, pp.560-580, 1965.

C. J. De-luca and Z. Erim, Common drive of motor units in regulation of muscle force, Trends in Neurosciences, vol.17, pp.299-305, 1994.

D. , The Limits of Firing Frequency in Cat Lumbosacral Motoneurones Possessing Di?erent Time Course of Afterhyperpolarization, Acta Physiologica Scandinavica, vol.65, issue.1-2, pp.87-100, 1965.

D. Kernell and H. Sjöholm, Repetitive Impulse Firing: Comparisons between Neurone Models Based on 'Voltage Clamp Equations' and Spinal Motoneurones, Acta Physiologica Scandinavica, vol.87, pp.40-56, 1973.

A. J. Fuglevand, D. A. Winter, and A. E. Patla, Models of recruitment and rate coding organization in motor-unit pools, Journal of neurophysiology, vol.70, issue.6, pp.2470-2488, 1993.

C. J. De-luca and P. Contessa, Hierarchical control of motor units in voluntary contractions, Journal of Neurophysiology, vol.107, pp.178-195, 2012.

S. J. Garland and T. S. Miles, Control of motor units in human flexor digitorum profundus under di?erent proprioceptive conditions, The Journal of Physiology, vol.502, pp.693-701, 1997.

C. J. De-luca, J. A. Gonzalez-cueto, P. Bonato, and A. Adam, Motor Unit Recruitment and Proprioceptive Feedback Decrease the Common Drive, Journal of Neurophysiology, vol.101, pp.1620-1628, 2009.

C. J. De-luca and Z. Erim, Common Drive in Motor Units of a Synergistic Muscle Pair, Journal of Neurophysiology, vol.87, pp.2200-2204, 2002.

C. J. De-luca and B. Mambrito, Voluntary control of motor units in human antagonist muscles: Coactivation and reciprocal activation, Journal of Neurophysiology, vol.58, pp.525-542, 1987.

J. L. Nielsen, S. Holmgaard, N. Jiang, K. B. Englehart, D. Farina et al., Simultaneous and Proportional Force Estimation for Multifunction Myoelectric Prostheses Using Mirrored Bilateral Training, IEEE Transactions on Biomedical Engineering, vol.58, pp.681-688, 2011.

A. L. Fougner, Ø. Stavdahl, and P. J. Kyberd, System training and assessment in simultaneous proportional myoelectric prosthesis control, Journal of Neuroengineering and Rehabilition, p.13, 2014.

P. Romaiguere, J. Vedel, and S. Pagni, Comparison of fluctuations of motor unit recruitment and de-recruitment thresholds in man, Experimental Brain Research, vol.95, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01521211

A. Albert and J. A. Anderson, On the Existence of Maximum Likelihood Estimates in Logistic Regression Models, Biometrika, vol.71, issue.1, pp.1-10, 1984.

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, and D. Farina, On-line recursive decomposition of intramuscular EMG signals using GPU-implemented Bayesian filtering, IEEE Transactions on Biomedical Engineering, p.12, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362489

J. Monsifrot, Model of Electromyographic Signals by Renewal Processes -Bayes Filter for a Sequential Estimation of Parameters given to the Command of an Upper Limb Prosthesis. Theses, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00921011

J. Monsifrot, E. L. Carpentier, Y. Aoustin, and D. Farina, Sequential Decoding of Intramuscular EMG Signals via Estimation of a Markov Model, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, pp.1030-1040, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024878

L. Ljung and T. Söderström, Theory and Practice of Recursive Identification. Massachusetts and London, 1983.

D. Farina, A. Crosetti, and R. Merletti, A model for the generation of synthetic intramuscular EMG signals to test decomposition algorithms, IEEE transactions on biomedical engineering, vol.48, issue.1, pp.66-77, 2001.

J. L. Dideriksen, D. Farina, and R. M. Enoka, Influence of fatigue on the simulated relation between the amplitude of the surface electromyogram and muscle force, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.2765-2781, 2010.

G. Venugopal, P. Deepak, D. M. Ghosh, and S. Ramakrishnan, Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.231, pp.1025-1033, 2017.

S. D. Nandedkar and E. Stalberg, Simulation of single muscle fibre action potentials, Medical & Biological Engineering & Computing, vol.21, pp.158-165, 1983.

A. Miller-larsson, Motor unit action potential field ? Modelling results, Biological Cybernetics, vol.53, pp.307-321, 1986.

A. Hamilton-wright and D. Stashuk, Physiologically Based Simulation of Clinical EMG Signals, IEEE Transactions on Biomedical Engineering, vol.52, pp.171-183, 2005.

A. J. Fuglevand, D. A. Winter, and A. E. Patla, Models of recruitment and rate coding organization in motor-unit pools, Journal of neurophysiology, vol.70, issue.6, pp.2470-2488, 1993.

J. Navallas and E. Stalberg, Studying motor end-plate topography by means of scanning-electromyography, Clinical Neurophysiology, vol.120, pp.1335-1341, 2009.

E. Stalberg and L. Antoni, Electrophysiological cross section of the motor unit, Neurosurgery & Psychiatry, vol.43, pp.469-474, 1980.

D. Farina, A Novel Approach for Precise Simulation of the EMG Signal Detected by Surface Electrodes, IEEE Transactions on biomedical engineering, vol.48, issue.6, pp.637-646, 2001.

E. Petersen and P. Rostalski, A Comprehensive Mathematical Model of Motor Unit Pool Organization, Surface Electromyography, and Force Generation, Frontiers in Physiology, vol.10, p.176, 2019.

E. Henneman, G. Somjen, and D. O. Carpenter, Functional significance of cell size in spinal motorneurons, Journal of Neurophysiology, vol.28, pp.560-580, 1965.

D. Farina and A. Rainoldi, Compensation of the e?ect of sub-cutaneous tissue layers on surface EMG: A simulation study, Medical Engineering & Physics, vol.21, pp.487-497, 1999.

V. Carriou, J. Laforet, S. Boudaoud, and M. A. Harrach, Realistic motor unit placement in a cylindrical HD-sEMG generation model, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.1704-1707, 2016.

G. Peyré, Numerical Mesh Processing. Course notes, p.75, 2008.

Y. Eldar, M. Lindenbaum, and M. Porat, The Farthest Point Strategy for Progressive Image Sampling, IEEE Transactions on Image Processing, vol.6, issue.9, pp.1305-1315, 1997.

D. P. Mitchell, Generating antialiased images at low sampling densities, SIGGRAPH '87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 1987.

M. A. Johnson, J. Polgar, D. Weightman, and D. Appleton, Data on the distribution of fibre types in thirty-six human muscles: An autopsy study, Journal of the Neurological Sciences, vol.18, pp.111-129, 1973.

J. Navallas, A. Malanda, L. Gila, J. Rodriguez, and I. Rodriguez, Comparative evaluation of motor unit architecture models, Medical & Biological Engineering & Computing, vol.47, pp.1131-1142, 2009.

J. Navallas, A. Malanda, L. Gila, J. Rodríguez, and I. Rodríguez, A muscle architecture model o?ering control over motor unit fiber density distributions, Medical & Biological Engineering & Computing, vol.48, pp.875-886, 2010.

M. H. Brooke and W. K. Engel, The histographic analysis of human muscle biopsies with regard to fiber types. 1. Adult male and female, Neurology, vol.19, pp.221-233, 1969.

E. Petersen and P. Rostalski, A Comprehensive Mathematical Model of Surface Electromyography and Force Generation, p.32, 2018.

F. Buchthal, C. Guld, and P. Rosenfalck, Multielectrode Study of the Territory of a Motor Unit, Acta Physiologica Scandinavica, vol.39, pp.83-104, 1957.

R. E. Burke, Motor Units: Anatomy, Physiology, and Functional Organization, Comprehensive Physiology (R. Terjung, pp.345-422, 2011.

D. A. Gibson and L. Ma, Developmental regulation of axon branching in the vertebrate nervous system, Development, vol.138, pp.183-195, 2011.

P. Rosenfalck, Intra-and extracellular potential fields of active nerve and muscle fibres. A physico-mathematical analysis of di?erent models, Acta Physiologica Scandinavica. Supplementum, vol.321, pp.1-168, 1969.

R. Plonsey, The Active Fiber in a Volume Conductor, IEEE Transactions on Biomedical Engineering, pp.371-381, 1974.

J. Malmivuo and R. Plonsey, Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields, 1995.

E. Stålberg and J. V. Trontelj, The study of normal and abnormal neuromuscular transmission with single fibre electromyography, Journal of Neuroscience Methods, vol.74, pp.145-154, 1997.

K. C. Mcgill and L. J. Dorfman, High-Resolution Alignment of Sampled Waveforms, IEEE Transactions on Biomedical Engineering, vol.31, pp.462-468, 1984.

S. Muceli, W. Poppendieck, F. Negro, K. Yoshida, K. P. Ho?mann et al., Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thinfilm electrodes: Multi-channel intramuscular EMG electrode, The Journal of Physiology, vol.593, pp.3789-3804, 2015.

B. L. Luu, S. Muceli, J. P. Saboisky, D. Farina, M. E. Héroux et al., Motor unit territories in human genioglossus estimated with multichannel intramuscular electrodes, Journal of Applied Physiology, vol.124, pp.664-671, 2018.

M. E. Héroux, H. J. Brown, J. T. Inglis, G. P. Siegmund, and J. Blouin, Motor units in the human medial gastrocnemius muscle are not spatially localized or functionally grouped, The Journal of Physiology, vol.593, pp.3711-3726, 2015.

K. C. Mcgill, Z. C. Lateva, and H. R. Marateb, EMGLAB: An interactive EMG decomposition program, Journal of Neuroscience Methods, vol.149, pp.121-133, 2005.

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, R. Gross et al., Recursive decomposition of electromyographic signals with a varying number of active sources: Bayesian modelling and filtering, IEEE Transactions on Biomedical Engineering, pp.1-1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362477

J. Florestal, P. Mathieu, and A. Malanda, Automated decomposition of intramuscular electromyographic signals, IEEE Transactions on Biomedical Engineering, vol.53, pp.832-839, 2006.

D. Farina, R. Colombo, R. Merletti, and H. Baare-olsen, Evaluation of intramuscular EMG signal decomposition algorithms, Journal of Electromyography and Kinesiology, vol.11, pp.175-187, 2001.

P. Contessa and C. J. Luca, Neural control of muscle force: Indications from a simulation model, Journal of Neurophysiology, vol.109, pp.1548-1570, 2013.

C. J. De-luca and Z. Erim, Common drive of motor units in regulation of muscle force, Trends in Neurosciences, vol.17, pp.299-305, 1994.

D. , The Limits of Firing Frequency in Cat Lumbosacral Motoneurones Possessing Di?erent Time Course of Afterhyperpolarization, Acta Physiologica Scandinavica, vol.65, issue.1-2, pp.87-100, 1965.

C. J. De-luca and P. Contessa, Hierarchical control of motor units in voluntary contractions, Journal of Neurophysiology, vol.107, pp.178-195, 2012.

A. J. Fuglevand, D. A. Winter, and A. E. Patla, Models of recruitment and rate coding organization in motor-unit pools, Journal of neurophysiology, vol.70, issue.6, pp.2470-2488, 1993.

E. Petersen and P. Rostalski, A Comprehensive Mathematical Model of Motor Unit Pool Organization, Surface Electromyography, and Force Generation, Frontiers in Physiology, vol.10, p.176, 2019.

J. Monsifrot, E. L. Carpentier, Y. Aoustin, and D. Farina, Sequential Decoding of Intramuscular EMG Signals via Estimation of a Markov Model, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, pp.1030-1040, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024878

A. J. Fuglevand, D. A. Winter, A. E. Patla, and D. Stashuk, Detection of motor unit action potentials with surface electrodes: Influence of electrode size and spacing, Biological Cybernetics, vol.67, pp.143-153, 1992.

M. and A. Harrach, Modeling of the sEMG / Force Relationship by Data Analysis of High Resolution Sensor Network. Theses, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01470368

J. L. Dideriksen, D. Farina, and R. M. Enoka, Influence of fatigue on the simulated relation between the amplitude of the surface electromyogram and muscle force, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.2765-2781, 2010.

G. Venugopal, P. Deepak, D. M. Ghosh, and S. Ramakrishnan, Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.231, pp.1025-1033, 2017.

M. Cogliati, A. Cudicio, F. Negro, P. Ga?urini, L. M. Bissolotti et al., Influence of age on motor control accuracy during static ramp contractions, Experimental Brain Research, 2019.

K. G. Keenan and F. J. Valero-cuevas, Experimentally Valid Predictions of Muscle Force and EMG in Models of Motor-Unit Function Are Most Sensitive to Neural Properties, Journal of Neurophysiology, vol.98, pp.1581-1590, 2007.

S. R. Bowling, M. T. Khasawneh, S. Kaewkuekool, and B. R. Cho, A logistic approximation to the cumulative normal distribution, Journal of Industrial Engineering and Management, vol.2, pp.114-127, 2009.

C. K. Thomas, R. S. Johansson, G. Westling, and B. Bigland-ritchie, Twitch properties of human thenar motor units measured in response to intraneural motor-axon stimulation, Journal of Neurophysiology, vol.64, pp.1339-1346, 1990.

F. E. Zajac, Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control, Critical Reviews in Biomedical Engineering, vol.17, issue.4, pp.359-411, 1989.

H. Yeganegi, Y. Fathi, and A. Erfanian, Decoding hind limb kinematics from neuronal activity of the dorsal horn neurons using multiple level learning algorithm, Scientific Reports, vol.8, 2018.

M. Kim and W. K. Chung, Spatial sEMG Pattern-Based Finger Motion Estimation in a Small Area Using a Microneedle-Based High-Density Interface, IEEE Robotics and Automation Letters, vol.3, pp.234-241, 2018.

D. Farina, A. Holobar, R. Merletti, and R. M. Enoka, Decoding the neural drive to muscles from the surface electromyogram, Clinical Neurophysiology, vol.121, pp.1616-1623, 2010.

B. Feinstein, B. Lindegård, E. Nyman, and G. Wohlfart, Morphologic studies of motor units in human muscles, Cells Tissues Organs, vol.23, issue.2, pp.127-142, 1955.

A. Hamilton-wright and D. Stashuk, Physiologically Based Simulation of Clinical EMG Signals, IEEE Transactions on Biomedical Engineering, vol.52, pp.171-183, 2005.

A. J. Fuglevand, D. A. Winter, and A. E. Patla, Models of recruitment and rate coding organization in motor-unit pools, Journal of neurophysiology, vol.70, issue.6, pp.2470-2488, 1993.

C. J. De-luca and P. Contessa, Hierarchical control of motor units in voluntary contractions, Journal of Neurophysiology, vol.107, pp.178-195, 2012.

K. G. Keenan and F. J. Valero-cuevas, Experimentally Valid Predictions of Muscle Force and EMG in Models of Motor-Unit Function Are Most Sensitive to Neural Properties, Journal of Neurophysiology, vol.98, pp.1581-1590, 2007.

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, and D. Farina, On-line recursive decomposition of intramuscular EMG signals using GPU-implemented Bayesian filtering, IEEE Transactions on Biomedical Engineering, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362489

T. Yu, K. Akhmadeev, E. L. Carpentier, Y. Aoustin, R. Gross et al., Recursive decomposition of electromyographic signals with a varying number of active sources: Bayesian modelling and filtering, IEEE Transactions on Biomedical Engineering, pp.1-1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362477