A. Aab-+-15]-martín-abadi, P. Agarwal, E. Barham, Z. Brevdo, C. Chen et al., TensorFlow: Large-scale machine learning on heterogeneous systems, Josh Levenberg, 2015.

T. Miika-ai-ala, J. Aila, and . Lehtinen, Re ectance modeling by neural texture synthesis, Proc. SIGGRAPH), vol.35, 2016.

A. Miika and F. Durand, Burst image deblurring using permutation invariant convolutional neural networks, e European Conference on Computer Vision (ECCV), 2018.

A. , Substance designer, 2019.

A. , Substance share, 2019.

M. Ashikhmin and S. Premoze, Distribution-based brdfs, 2007.

T. Miika-ai-ala, J. Weyrich, and . Lehtinen, Practical SVBRDF capture in the frequency domain, vol.32, 2013.

T. Miika-ai-ala, J. Weyrich, and . Lehtinen, Two-shot SVBRDF capture for stationary materials, Proc. SIGGRAPH), vol.34, 2015.

P. Beckmann and A. Spizzichino, e sca ering of electromagnetic waves from rough surfaces, 1987.

Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is di cult, IEEE Transactions on Neural Networks, vol.5, issue.2, pp.157-166, 1994.

G. Chen, K. Han, K. Kwan-yee, and . Wong, Ps-fcn: A exible learning framework for photometric stereo, e European Conference on Computer Vision (ECCV), 2018.

Q. Chen and V. Koltun, Photographic image synthesis with cascaded re nement networks, International Conference on Computer Vision (ICCV, 2017.

R. L. Cook and K. E. Torrance, A re ectance model for computer graphics, ACM Transactions on Graphics, vol.1, issue.1, pp.7-24, 1982.

D. Christopher-bongsoo-choy, J. Xu, K. Gwak, S. Chen, and . Savarese, 3d-r2n2: A uni ed approach for single and multi-view 3d object reconstruction, IEEE European Conference on Computer Vision (ECCV), pp.628-644, 2016.

M. Valentin-deschaintre, F. Ai-ala, G. Durand, A. Dre, and . Bousseau, Single-image svbrdf capture with a rendering-aware deep network, ACM Transactions on Graphics (SIGGRAPH Conference Proceedings), vol.37, issue.128, p.15, 2018.

M. Valentin-deschaintre, F. Ai-ala, G. Durand, A. Dre, and . Bousseau, Flexible svbrdf capture with a multi-image deep network, Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering), vol.38, 2019.

R. O. Dror, E. H. Adelson, and A. S. Willsky, Recognition of surface re ectance properties from a single image under unknown real-world illumination, Proc. IEEE Workshop on Identifying Objects Across Variations in Lighting: Psychophysics and Computation, 2001.

. Dbp-+-15]-olga, C. Diamanti, S. Barnes, E. Paris, O. Shechtman et al., Appearance-from-motion: Recovering spatially varying surface reectance under unknown lighting, Proc. SIGGRAPH Asia), vol.34, 2014.

]. J. Dds-+-09, W. Deng, R. Dong, L. Socher, K. Li et al., ImageNet: A Large-Scale Hierarchical Image Database, CVPR09, 2009.

T. Dht-+-00]-paul-debevec, C. Hawkins, H. Tchou, W. Duiker, M. Sarokin et al., Acquiring the re ectance eld of a human face, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '00, pp.145-156, 2000.

R. De-lutio, D. Stefano, J. D. Aronco, K. Wegner, and . Schindler, Guided super-resolution as a learned pixel-to-pixel transformation, IEEE International Conference on Computer Vision (ICCV), 2019.

Y. Dong, Deep appearance modeling: A survey, Visual Informatics, vol.3, issue.2, pp.59-68, 2019.

Y. Dong, X. Tong, F. Pellacini, and B. Guo, Appgen: Interactive material modeling from a single image, Proc. SIGGRAPH Asia), vol.30, pp.1-146, 2011.

J. Kristin, B. Dana, . Van-ginneken, K. Shree, J. J. Nayar et al., Re ectance and texture of real-world surfaces, ACM Transactions On Graphics (TOG), vol.18, issue.1, pp.1-34, 1999.

Y. Dong, J. Wang, X. Tong, J. Snyder, M. Ben-ezra et al.,

, Proc. SIGGRAPH), vol.29, 2010.

R. W. Fleming, R. O. Dror, and E. H. Adelson, Real-world illumination and the perception of surface re ectance properties, Journal of Vision, vol.3, issue.5, 2003.

F. Bartell, E. Dereniak, and W. Wolfe, e theory and measurement of bidirectional re ectance distribution function (brdf) and bidirectional transmi ance distribution function (btdf), vol.0257, 1981.

J. Fi?er, O. Jamri?ka, M. Luká?, E. Shechtman, P. Asente et al., StyLit: Illumination-guided examplebased stylization of 3d renderings, ACM Transactions on Graphics (proc. SIGGRAPH), vol.35, issue.4, 2016.

J. Fi?er, O. Jamri?ka, D. Simons, E. Shechtman, J. Lu et al., Example-based synthesis of stylized facial animations, ACM Transactions on Graphics (Proc. SIG-GRAPH), vol.36, issue.4, 2017.

X. Glorot and Y. Bengio, Understanding the di culty of training deep feedforward neural networks, Proceedings of the irteenth International Conference on Articial Intelligence and Statistics, vol.9, pp.13-15, 2010.

A. Ghosh, T. Chen, P. Peers, C. A. Wilson, and P. Debevec, Estimating specular roughness and anisotropy from second order spherical gradient illumination, Computer Graphics Forum, vol.28, issue.4, pp.1161-1170, 2009.

G. C. Ggg-+-16]-dar'ya-guarnera, A. Guarnera, C. Ghosh, M. Denk, and . Glencross, BRDF Representation and Acquisition. Computer Graphics Forum, 2016.

. Gld-+-19]-duan, X. Gao, Y. Li, P. Dong, K. Peers et al., Deep inverse rendering for high-resolution svbrdf estimation from an arbitrary number of images, ACM Trans. Graph, vol.38, issue.4, 2019.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in Neural Information Processing Systems, vol.27, pp.2672-2680, 2014.

A. Gardner, C. Tchou, T. Hawkins, and P. Debevec, Linear light source re ectometry, ACM Trans. Graph, vol.22, issue.3, pp.749-758, 2003.

X. Huang and S. Belongie, Arbitrary style transfer in real-time with adaptive instance normalization, ICCV, 2017.

L. Geo-rey-hinton, D. Deng, G. Yu, A. Dahl, N. Mohamed et al., Deep neural networks for acoustic modeling in speech recognition, IEEE Signal Processing Magazine, vol.29, pp.82-97, 2012.

V. Havran, J. Filip, and K. Myszkowski, Bidirectional texture function compression based on multi-level vector quantization, Computer Graphics Forum, vol.29, issue.1, pp.175-190, 2010.

C. E. Hjo-+-01]-aaron-hertzmann, N. Jacobs, B. Oliver, D. H. Curless, and . Salesin, Image analogies. ACM SIGGRAPH, 2001.

T. Hui, C. C. Loy, and X. Tang, Depth map superresolution by deep multi-scale guidance, European Conference on Computer Vision (ECCV), 2016.

M. Holroyd, J. Lawrence, and T. Zickler, A coaxial optical scanner for synchronous acquisition of 3d geometry and surface re ectance, ACM SIGGRAPH 2010 Papers, SIGGRAPH '10, vol.99, pp.1-99, 2010.

J. Jack, J. C. Hsia, and . Richmond, Bidirectional re ectometry. part i. a high resolution laser bidirectional re ectometer with results on several optical coatings, 1976.

;. Z. Hsl-+-17, K. Hui, J. Y. Sunkavalli, S. Lee, J. Hadap et al., Re ectance capture using univariate sampling of brdfs, IEEE International Conference on Computer Vision (ICCV, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, 2016 IEEE Conference on Computer Vision and Pa ern Recognition (CVPR), pp.770-778, 2016.

C. Innamorati, T. Ritschel, T. Weyrich, and N. Mitra, Decomposing single images for layered photo retouching, Computer Graphics Forum (Proc. EGSR), vol.36, issue.4, 2017.

S. Iizuka, E. Simo-serra, and H. Ishikawa, Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classi cation, ACM Transactions on Graphics (Proc. SIGGRAPH), vol.35, issue.4, 2016.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, Image-toimage translation with conditional adversarial networks, e IEEE Conference on Computer Vision and Pa ern Recognition (CVPR), 2017.

J. Wenzel, Mitsuba renderer, 2010.

T. James, Kajiya. e rendering equation, Computer Graphics, pp.143-150, 1986.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, Progressive growing of GANs for improved quality, stability, and variation, International Conference on Learning Representations (ICLR), 2018.

P. Diederik, J. Kingma, and . Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations (ICLR), 2015.

. +-18]-kaizhang, Z. Kang, J. Chen, K. Wang, H. Zhou et al., E cient re ectance capture using an autoencoder, Proc. SIGGRAPH), vol.37, 2018.

T. Karras, S. Laine, and T. Aila, A style-based generator architecture for generative adversarial networks, 2018.

A. Krizhevsky, I. Sutskever, and G. R. Hinton, Imagenet classication with deep convolutional neural networks, Proceedings of the 25th International Conference on Neural Information Processing Systems, vol.1, pp.1097-1105, 2012.

G. Klambauer and U. Omas, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks, Advances in Neural Information Processing Systems (NIPS), pp.972-981, 2017.

Y. Lecun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard et al., Handwri en digit recognition with a back-propagation network, Advances in neural information processing systems, pp.396-404, 1990.

. +-17]-guilin, D. Liu, E. Ceylan, J. Yumer, J. Yang et al., Material editing using a physically based rendering network, IEEE International Conference on Computer Vision (ICCV), pp.2261-2269, 2017.

X. Li, Y. Dong, P. Peers, and X. Tong, Modeling surface appearance from a single photograph using self-augmented convolutional neural networks, Proc. SIGGRAPH), vol.36, 2017.

P. A. Lkg-+-03]-hendrik, J. Lensch, M. Kautz, W. Goesele, H. Heidrich et al., Image-based reconstruction of spatial appearance and geometric detail, ACM Transactions on Graphics, vol.22, issue.2, pp.234-257, 2003.

. Llm-+-18]-rosanne, J. Liu, P. Lehman, F. P. Molino, E. Such et al., An intriguing failing of convolutional neural networks and the coordconv solution, ACM Transactions on Graphics, vol.38, issue.4, 2018.

S. Lombardi and K. Nishino, Re ectance and illumination recovery in the wild, IEEE Transactions on Pa ern Analysis and Machine Intelligence (PAMI), vol.38, pp.129-141, 2016.

Z. Li, K. Sunkavalli, and M. Chandraker, Materials for masses: SVBRDF acquisition with a single mobile phone image, Proceedings of ECCV, 2018.

. Lxr-+-18]-zhengqin, Z. Li, R. Xu, K. Ramamoorthi, M. Sunkavalli et al., Learning to reconstruct shape and spatially-varying re ectance from a single image, ACM Transactions on Graphics (Proc. SIG-GRAPH Asia), 2018.

D. Mcallister, A Generalized Surface Appearance Representation for Computer Graphics, 2002.

J. F. Murray-coleman and A. M. Smith, e automated measurement of brdfs and their application to luminaire modeling, Journal of the Illuminating Engineering Society, vol.19, issue.1, pp.87-99, 1990.

F. Melendez, M. Glencross, J. Starck, and G. J. Ward, Transfer of albedo and local depth variation to photo-textures, vol.12, p.2012

S. Warren, W. Mcculloch, and . Pi, A logical calculus of the ideas immanent in nervous activity, e bulletin of mathematical biophysics, vol.5, issue.4, pp.115-133, 1943.

T. Narihira, M. Maire, and S. X. Yu, Direct intrinsics: Learning albedo-shading decomposition by convolutional regression, IEEE International Conference on Computer Vision (ICCV), 2015.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometrical considerations and nomenclature for re ectance, 1977.

J. A. Paterson, D. Claus, and A. W. Fitzgibbon, Brdf and geometry capture from extended inhomogeneous samples using ash photography, Computer Graphics Forum (Proc. Eurographics), vol.24, pp.383-391, 2005.

P. Bui-tuong, Illumination for computer generated pictures, Commun. ACM, vol.18, issue.6, pp.311-317, 1975.

H. Charles-r-qi, K. Su, L. J. Mo, and . Guibas, Pointnet: Deep learning on point sets for 3d classi cation and segmentation, 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point sets for 3d classi cation and segmentation, IEEE Conference on Computer Vision and Pa ern Recognition (CVPR, 2017.

]. K. +-17, S. Rematas, T. Georgoulis, E. Ritschel, M. Gavves et al., Re ectance and natural illumination from single-material specular objects using deep learning, IEEE Transactions on Pa ern Analysis and Machine Intelligence, 2017.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel distributed processing: Explorations in the microstructure of cognition, chapter Learning Internal Representations by Error Propagation, vol.1, pp.318-362, 1986.

G. Rainer, W. Jakob, A. Ghosh, and T. Weyrich, Neural btf compression and interpolation, Computer Graphics Forum (Proceedings of Eurographics), vol.38, 2019.

R. Ruiters and R. Klein, Btf compression via sparse tensor decomposition, Computer Graphics Forum, vol.28, issue.4, pp.1181-1188, 2009.

F. Rosenbla, A probabilistic model for information storage and organization in the brain, Psychological Review, pp.65-386, 1958.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol.9351, pp.234-241, 2015.

J. Riviere, P. Peers, and A. Ghosh, Mobile surface re ectometry, Computer Graphics Forum, vol.35, issue.1, 2016.

J. Riviere, I. Reshetouski, L. Filipi, and A. Ghosh, Polarization imaging re ectometry in the wild, Proc. SIGGRAPH, p.2017

S. R. Richter, V. Vineet, S. Roth, and V. Koltun, Playing for data: Ground truth from computer games, Proc. European Conference on Computer Vision (ECCV), 2016.

J. +-11]-peiran-ren, J. Wang, X. Snyder, B. Tong, and . Guo, Pocket re ectometry, Proc. SIGGRAPH), vol.30, 2011.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas, Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views, e IEEE International Conference on Computer Vision (ICCV), 2015.

C. Schwartz, R. Sarle-e, M. Weinmann, M. Rump, and R. Klein, Design and implementation of practical bidirectional texture function measurement devices focusing on the developments at the university of bonn, Sensors, vol.14, issue.5, 2014.

I. Sutskever, O. Vinyals, and . Le, Sequence to sequence learning with neural networks

K. Q. Lawrence and . Weinberger, Advances in Neural Information Processing Systems, vol.27, pp.3104-3112, 2014.

K. E. Torrance and E. M. Sparrow, eory for o -specular re ection from roughened surfaces *, J. Opt. Soc. Am, vol.57, issue.9, pp.1105-1114, 1967.

A. Tewari, M. Zollöfer, H. Kim, P. Garrido, F. Bernard et al., MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction, IEEE International Conference on Computer Vision (ICCV, 2017.

D. Ulyanov, A. Vedaldi, and V. Lempitsky, Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis, e IEEE Conference on Computer Vision and Pa ern Recognition (CVPR), 2017.

T. Welsh, M. Ashikhmin, and K. Mueller, Transferring color to greyscale images, ACM Transactions on Graphics (Proc. SIGGRAPH), vol.21, issue.3, 2002.

G. J. Ward, Measuring and modeling anisotropic re ection, 1992.

H. Wu, J. Dorsey, and H. Rushmeier, A sparse parametric mixture model for btf compression, editing and rendering, Computer Graphics Forum, vol.30, issue.2, pp.465-473, 2011.

X. Wang, R. B. Girshick, A. Gupta, and K. He, Nonlocal neural networks, e IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

M. Weinmann, J. Gall, and R. Klein, Material classi cation based on training data synthesized using a btf database, European Conference on Computer Vision (ECCV), pp.156-171, 2014.

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, Microfacet models for refraction through rough surfaces, Proc. of Eurographics Conference on Rendering Techniques (EGSR), 2007.

C. Wang, N. Snavely, and S. Marschner, Estimating dual-scale properties of glossy surfaces from step-edge lighting, Proc. SIGGRAPH Asia), vol.30, 2011.

O. Wiles and A. Zisserman, Silnet : Single-and multi-view reconstruction by learning from silhoue es, British Machine Vision Conference (BMVC, 2017.

. +-16]-zexiang, J. Xu, J. Boll-nielsen, H. W. Yu, R. Jensen et al., Minimal brdf sampling for two-shot near-eld re ectance acquisition, Proc. SIGGRAPH Asia), vol.35, 2016.

S. Zkr-+-17]-manzil-zaheer, S. Ko-ur, B. Ravanbakhsh, . Poczos, R. Ruslan et al., Deep sets, Advances in Neural Information Processing Systems (NIPS), 2017.

J. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, Computer Vision (ICCV, 2017.

T. Zickler, R. Ramamoorthi, S. Enrique, and P. N. Belhumeur, Re ectance sharing: predicting appearance from a sparse set of images of a known shape, IEEE Transactions on Pa ern Analysis and Machine Intelligence, vol.28, issue.8, 2006.

. Zsq-+-17]-hengshuang, J. Zhao, X. Shi, X. Qi, J. Wang et al., Jin, and omas A. Funkhouser. Physically-based rendering for indoor scene understanding using convolutional neural networks, e IEEE Conference on Computer Vision and Pa ern Recognition (CVPR), 2017.

R. Zhang, J. Zhu, P. Isola, X. Geng, A. S. Lin et al., Real-time user-guided image colorization with learned deep priors, Proc. SIGGRAPH), vol.9, 2017.