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Abstract

The present manuscript is submitted in partial fulfillment of my application to the degree of
Habilitation à diriger des recherches at Sorbonne University. Its main contribution is a study
in theoretical mechanics devoted to homogenization problems in the context of degenerate (non-
strictly convex) local response of one of the phases, which can serve as idealized models for porous
or rigidly-reinforced materials exhibiting perfectly-plastic behavior. In these situations plastic
flow preferentially concentrates along shear bands; as a result the material effective response is
governed by those regions within the material where the field localizes. A form of localization
also occurs in linear problems governed by asymptotically hyperbolic partial derivative equations,
where the strain field is found to develop banding patterns. The solutions are relevant to strongly-
anisotropic elastic or thermoelastic media. Such a linear problem is studied in the present work
in the context of a random microstructure, specifically a polycrystal containing cracks. A related
topic is whether incipient localization may develop as a result of the microstructure itself. This
question is investigated in the case of a Stokes flow occurring in a porous medium around a set
of obstacles exhibiting unusual spatial distribution, characterized by long-range correlations. The
different model problems are addressed by means of various techniques. Limit analysis bounds are
combined with integral geometry to provide insight on the material behavior. Comparisons with
rigorous bounds and estimates of homogenization theories, and full-field “Fourier-based” numerical
results, allow us to interpret and assess the response of certain random microstructures. Although
a complete solution is out-of-reach, the interplay between field localization and microstructure is
elucidated in specific cases.
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Chapter 1

Introduction

1.1 Research and teaching at Mines ParisTech
I would like to briefly describe here the different activities I have had as a researcher, teacher
and supervisor of PhD students at Mines ParisTech and École des Mines since 2010. But before
I proceed and enumerate some of my activities, it is useful to point out that the Center for
Mathematical Morphology where I am located is a research center common to Mines ParisTech
and the research association Armines. Beside academic research, the purpose of the Armines
and Mines ParisTech centers is the development of applied research and its transfer to industry.
This transfer occurs thanks to collaborative projects, grants from French or European agencies,
“direct contracts” with industry and partnership through chairs and collaborative projects. The
same philosophy holds at the Center of Materials, which is a center common to CNRS, Mines and
Armines, and in which I also work as a research associate, on a weekly basis.

After my PhD thesis at the Commissariat à l’Énergie atomique, in the Département de Physique
Théorique et Appliqué and the Laboratoire de Mécanique des Solides of École Polytechnique, and
after a subsequent post-doctoral position at University of Pennsylvania, I have, as soon as I became
a tenure track at Mines ParisTech, contributed to and directly managed several national and
international research projects. Some of the projects I contributed to are listed in Appendix (B).
The project topics are quite diverse, ranging from the modeling of optical properties for paint layers
in automotive industry (LIMA ANR project), microstructure modeling and optimization for the
development of low-temperature fuel cells (EVOLVE European project), the study and modeling of
damage in TATB polycrystals (CEA Le Ripault), microstructure optimization of the viscoelastic
properties of tires (Yokohama Rubber Cie), the modeling of cosmetics at the microscopic scale
(L’Oréal), transport properties of mesoporous alumina (IFPEN), the conducting properties of cold-
spray materials (US Air Force grant), the mechanical properties of concrete (EDF MAI grant), the
prediction of piezoelectricity in woven (FUI), classification of defects in wielding (CEA Valduc) to
the study of damage in reservoirs (ministry grant). Although many of these projects are actually
collaborations with colleagues scientists, I have taken an active part in obtaining grants so that
the research may be carried out.

Obviously, my role and activities have evolved with time, but a key aspect consists in keeping
a good equilibrium between academic and applied research. On the one hand, state-of-the-art
academic research is required for applied research to be useful to industry. On the other hand,
many examples show that industrial problems are at the origin of breakthrough in mathematical
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4 CHAPTER 1. INTRODUCTION

morphology and in the wide domain of material and engineering science. An example of industrial
problems which have motivated new theoretical developments are the modeling of anode layers
and other components of fuel cells. The later have led to the developments of new methodologies
for simulating n-phase random sets [3], image analysis tools specific to FIB-SEM and interesting
optimization problems [150]. Today, these developments continue [43] and have led to a fruitful
international collaboration [179, 180].

The main topics of my research activities cover the development of spectral, Fourier-based
numerical methods in homogenization [14, 249, 254, 78] and the modeling of heterogeneous mi-
crostructures (see e.g. [76, 1, 240]). A summary of my recent activities in this domain is provided
in Appendix (A).

Another aspect of my work as a research scientist is teaching. I organize a one-week course
at École des Mines devoted to random sets microstructure modeling and homogenization. The
course includes theoretical lectures as well as training sessions carried out with the Fourier code
I develop for homogenization. The courses I give take the point of view of numerical analysis
(PDEs, convex analysis, optimization etc.) rather than that of algebra. The same philosophy is
followed in the one-week course I contribute to, which is part of the course “Ingénierie Digitale
des Systèmes Complexes”1 in Mines ParisTech, organized by D. Ryckelynck and É. Hachem. The
one-week course, organized together with H. Proudhon and B. Figliuzzi, aims at predicting and
simulating the properties of materials based on images (microtomography etc.).

I wish to pursue my teaching activities and if possible, enlarge them. I would also like to
not only teach, but organize courses, and invite scientists to deliver top-level lectures in topics
that are rarely taught. One example is the course on nonlinear homogenization in the Athens
week “Physics and Mechanics of Random Media”2 that PhD students as well as students from the
international “Athens” University network attend. In that respect, I have been pleased to organize
(with the invaluable help of Samuel Forest) the international workshop in honor of Dominique
Jeulin “Physics and mechanics of random structures: from morphology to material properties”3

which was held in the Peninsula of Oléron in 2018. A book was published at the occasion [257] at
Presses de l’École des Mines as well as a special topic in Image Analysis & Stereology [218] and a
special issue of the International Journal of Solids and Structures4 (Elsevier).

To guarantee a global coherence in this HDR thesis manuscript, I have decided to focus on the
homogenization of the mechanical response and transport properties of heterogeneous media, in
the context of field localization. As a result of this choice, part of my research work, some of which
is briefly summarized in Appendix (A) has been left out. Nevertheless, the present HDR study
includes developments in integral geometry, which, while they are relevant to the homogenization
problems at stake, are also of interest, I believe, to microstructure simulations and probabilistic
models.

This HDR manuscript therefore does not constitute a program of the research activities I would
like to pursue in the future. In particular, I am presently working on the implementation of Stokes
flow solvers in Fourier-based methods, and, thanks to the ongoing PhD thesis of F. Rabette, on a
FFT implementation [197] of phase-field methods for the initiation and propagation of cracks in

1http://mms2.ensmp.fr/option_IDSysCo/accueil_option.php
2http://www.cmm.mines-paristech.fr/ESPRM/
3http://www.cmm.mines-paristech.fr/~willot/PMRM/
4https://www.sciencedirect.com/journal/international-journal-of-solids-and-structures/speci

al-issue/103QGG5T8J0

http://mms2.ensmp.fr/option_IDSysCo/accueil_option.php
http://www.cmm.mines-paristech.fr/ESPRM/
http://www.cmm.mines-paristech.fr/~willot/PMRM/
https://www.sciencedirect.com/journal/international-journal-of-solids-and-structures/special-issue/103QGG5T8J0
https://www.sciencedirect.com/journal/international-journal-of-solids-and-structures/special-issue/103QGG5T8J0


1.2. AN INVESTIGATION OF LOCALIZATION IN RANDOM MEDIA 5

quasi-brittle materials, based on the variational theory of Francfort and Marigot [80] and by the
works of Bourdin et al. [33] and Miehe et al. [164]. The PhD thesis of É. Kaeshammer, focusing
on wave propagation in energetic materials is another important domain of research [122] that I
would definitely like to pursue. I hope to be able to develop these topics of research in the future
and have new interesting collaborations with other researchers.

The following section gives a short introduction to the main topic of this HDR thesis.

1.2 An investigation of localization in random media
A broad range of physical phenomena in material science involve the emergence of surfaces or paths
of minimal energy. Examples include domain walls in random Ising systems [108], current local-
ization in varistors (or non-Newtonian fluid flow) [66], the onset of voltage in polycrystals [102],
or ductile fracture [58, 32]. Some of these problems have been addressed using idealized random
network models (see [66, 70] and references therein). In nonlinear networks relevant to varistors
and superconductors, localized flow paths emerge at special points, which act as thresholds for the
network’s macroscopic response [66]. As noted by Duxbury et al. [70], these paths are the solutions
of the “shortest-path” and “minimum-cut” problems. The equivalence between a network’s effec-
tive response and an optimization problem on graphs is demonstrated by the min-cut/max-flow
theorem [73]. Interestingly, the optimal surfaces exhibit, in the presence of disorder, rich self-affine
structures, characterized, notably, by non-standard scaling laws [34, 5]. In the continuum, the
maximal flow of a vector field through a domain is likewise related to a minimal cut problem [227].

In a numerical and theoretical study of an “analog electric network” that mimic perfect-
plasticity, Roux and Hansen [206] have used the connection between minimal surface problems
and effective yield stress. In the continuum, limit analysis results obtained by Drucker [68] in a
periodic problem in plane strain highlight a similar non-analytic dependence. Drucker’s bounds
demonstrate that the leading-order term to the effective flow stress y0 of a periodic arrangement
of pores of volume fraction f scales as „ f 1{2 in the limit of vanishingly small porosity f :

y0 “ y
“

1´ af 1{2
` opf 1{2

q
‰

, f Ñ 0, (1.1)

with prefactor a depending on the geometry of the inclusions. This results holds for a rigid,
perfectly-plastic matrix. The infinite slope of the flow stress (By0{Bf “ 8) when f “ 0 underlines
the strong effect of the voids in this limit. The trial displacement fields used to derive the upper-
bound are piecewise-constant and present surface discontinuities in the matrix [79]. Optimal upper-
bounds are thus attained byminimal surfaces. In antiplane strain, these surfaces reduce to minimal
paths, or in geometrical terms, geodesics. The paths are minimal in the sense that they have
smallest cut in the matrix and span the array of pores in a direction that depends on the applied
macroscopic loading. Examples relevant to a 2D square array of pores with prescribed “simple” and
“pure shear” (45˝-rotated) strain loadings are given in [112]. The strain field in porous materials
tends to localize in bands seeking to pass through the pores in order to minimize the plastic
dissipation (see example Fig. 1.1). In this case, the interaction between the pores is obviously
quite strong and dependent on the geometry of the configuration as well as the relative orientation
of the loading. As a consequence of the strong interaction between shear bands and pores, a
slight increase of the porosity leads, in specific configurations, to a sudden rearrangement of the
shear bands, as demonstrated by limit analysis and Fourier computations [112]. Consequently, the
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Figure 1.1: A shear band going through two pores in plane strain. Perfectly-plastic medium.
Numerical computation.

response of the material is essentially driven by the geometry rather than details of the material
law. In the rigid case, in periodic structures, the shear bands may avoid inclusions entirely while
spanning the medium, highlighting a much lower influence of the rigid reinforcement.

Despite the aforementioned works, the role of a random distribution of heterogeneities (typically
pores) on the effective behavior of perfectly-plastic media, is not completely elucidated. Theoretical
results suggest that the effective yield stress of 2D random porous media also exhibits power-laws
with non-integer exponents, in the dilute porosity limit f Ñ 0. Different exponents however have
been proposed, depending on the problem at hand. In a square lattice model made of broken bonds
in proportion f , optimal surfaces are obtained by minimizing the sum of the capacity (analog to
the yield stress) taken over each bond that crosses the surface. Thus, it is in principle possible to
infer the behavior of the effective response of heterogeneous materials by solving minimal paths
problems. In a two-phase resistor lattice with a dilute proportion of “broken” (insulating) bonds,
the effective response exhibits interesting non-analytic behavior. The exponent characterizing the
leading-order term correction in the dilute limit f Ñ 0 is found to be 1 for minimal paths oriented
along the directions of the lattice, and 1{2 along the diagonal [205]. Dilute limit singularities, of
a different type, have been reported in the dielectric breakdown of square and cubic networks [71]
and in the continuum [72]. More recently, the non-analytical behavior of the effective response
characterizing nonlinear ionic transport has been discussed by Sillamoni and Idiart [225]. The
authors obtain an exponent 2{3 as the result of their application of the nonlinear homogenization
theory of P. Ponte Castañeda [190].

The “second-order” nonlinear homogenization theory, which provides analytical estimates based
on variational principles, indeed predicts a fractional exponent 2{3 in the dilute limit f Ñ 0, in
the plane strain [191] and anti-plane [83] problems. The result has been confirmed in plane strain
by numerical Fourier computations on a pixel-based porous material [258, 248]. As pointed out
in [225], this suggests a lower influence of the pores in a random configuration rather than in the
periodic problem. Nevertheless, the exact role of the pores in a random medium and the onset of a
non-analytical powerlaw has not been elucidated. The studies developed in the following chapters,
devoted to various problems relevant to minimal paths and random structures, give partial answers,
in the porous and rigid problems.

It is interesting to note that the second-order nonlinear homogenization theory is based on
a linear comparison composite material and underlying linear homogenization theory. In the
perfectly-plastic limit, the linear comparison composite makes use of phases that are in general
anisotropic [112]. Nonlinearity is therefore approached by a locally (elastic or thermoelastic)



1.3. OUTLINE OF THE PRESENT DISSERTATION 7

anisotropic matrix phase. In effect, in the limit of certain “infinitely-anisotropic” constitutive
laws (where the local potential looses strict convexity), the strain field organizes through banding
patterns [260], which are of a different nature than plastic shear bands, but are nevertheless useful
to study localization phenomena. This approach is followed in [259] in the case of a periodic
arrangements of voids, and is pursued in the case of a random material in Chap. (2). The chapter
is complemented by a study of elastic field distributions in random media (Chap. 3), which although
not directly related to localization, is included because of the possible perspectives of this work.
The two chapters, which form the first part of this manuscript is thus concerned by a linear
behavior. The second part is devoted to nonlinear media for mechanical and transport properties,
and the third part is devoted to Stokes flow.

1.3 Outline of the present dissertation
Some of the studies presented in this HDR thesis are reworked versions of previously-published
journal articles. Chap. (2), based on reference [261], deals with self-consistent estimates for poly-
crystals containing cracks. It incorporates a figure and results taken from [259], with additional
discussion. The study of elastic field distributions (Chap. 3) is part of a manuscript accepted for
publication [256]. Chap. (4), a study of the length of geodesics in Boolean and Cox-Boolean mod-
els, is a part of ref. [250]. The link between minimal paths and effective yield stress is examined in
Chap. (5), which is part of a recently accepted manuscript [252]. The effective yield stress occur-
ring in multiscale random sets is the subject of Chap. (6). Bounds related to strongly-nonlinear
media with periodic microstructures are presented in Chap. (7). These two chapters have not
been published. Chap. (8) is concerned with the scaling properties of the covariance function,
integral range and variance properties of a Boolean set of particles with high aspect ratio, namely
oblate and prolate cylinders. This work, slightly amended in the present manuscript, is published
in ref. [251]. Chap. (9) investigates the effective permeability of the corresponding porous media,
making use of analytical upper-bounds. This last work has been published as a part of ref. [253],
but also incorporates an additional section (9.3.3) which is new.
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Part I

Strongly anisotropic, linear-elastic and
thermoelastic media

9





Chapter 2

Self-consistent estimates for cracked
polycrystals

This chapter is devoted to the influence of a population of randomly-oriented cracks
on the macroscopic thermal and linear-elastic response of a polycrystal. Emphasis
is put on crystals exhibiting hexagonal symmetry with strong anisotropy. The prob-
lem is addressed using a self-consistent method. Coupling between micro-cracks and
crystal anisotropy is taken into account through an effective medium where all inhomo-
geneities are embedded. In the absence of cracks, the self-consistent estimates reduce
to that of Berryman (2005), whereas the method is new in the case of a homogeneous
cracked body. The accuracy of the present method is first assessed using numerical,
Fourier-based computations. In the absence of crystal anisotropy, the estimates for the
effective elastic properties are close to that obtained numerically for a homogeneous
body containing a Boolean model of disk-shaped cracks. In the case, of homogeneous
cracked bodies, the method is also compared to various other analytical estimates and
bounds. The prediction of the self-consistent estimates are then investigated in the case
of a strongly-anisotropic polycrystal in which the in-plane shear modulus of the crys-
tal is much smaller than the elastic moduli related to other deformation modes. The
cracks-density percolation threshold is found to diminish abruptly in this limit. This
“advanced” percolation threshold is concomitant to the onset of large, weakly-loaded
regions surrounding cracks.

2.1 Introduction
The present work focuses on a model problem of a polycrystal, involving open micro-cracks in
a macroscopically isotropic material in its initial and damaged states as well, in a locally linear,
thermoelastic framework. Initially isotropic materials should remain so if micro-cracking results
from the application of a non-directional load, in particular by heating or cooling slowly enough for
the temperature field to remain uniform. Such a situation may be encountered in materials made
of strongly thermally and elastically anisotropic crystals, such as polycrystalline graphite [178, 60],
or the energetic material 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) [125, 8].

In the general case, elastic softening in quasi-brittle materials is accompanied by induced

11



12 CHAPTER 2. CRACKED POLYCRYSTALS

anisotropy, known to reflect the non-uniform distribution of micro-cracks orientations, itself the
result of either the strong initial heterogeneity and anisotropy of the material or the directional-
ity of the load. Modeling this softening effect is not straightforward, and has generated a large
amount of work, either by phenomenological means (see in particular the brief review of Cormey
and Welemane [52] or more recently [15, 53, 47]) or via micromechanical modeling (see [42, 105,
10, 130, 121], and the more recent studies [186, 67, 267, 173, 141] among many others). Most of
these works have considered the damaged material as a homogeneous matrix containing a distribu-
tion of micro-cracks. However, real materials are not homogeneous in their initial state, and this
assumption may be seen as being too restrictive, as noted for example by Ortiz [182], Pijaudier-
Cabot and Bazant [188], or Challamel [47]. The problem however is potentially very complex, as it
may involve open and closed cracks, strongly nonlinear unilateral effects, closed crack kinking, and
friction. Therefore, the focus in this chapter will be restricted to isotropic polycrystals containing
a population of open micro-cracks with isotropic distribution in space.

The following work is restricted to crystals with hexagonal symmetry (transverse isotropy).
This choice is motivated by applications to polycrystalline graphite or TATB, and because hexag-
onal symmetry is amenable to a relatively simple analytical treatment. A previous attempt was
made by Huang and Hu [107], aiming at predicting the elastic behavior of micro-cracked polycrys-
tals, in the case of crystals of cubic symmetry.

The model derived in this chapter uses the self-consistent approach. Exact expressions for
the Hill tensor (or equivalently Eshelby’s tensor) have been derived for cracks embedded in a
transversely-isotropic [136] or orthotropic case [98], for particular crack shape and orientations.
Closed-form explicit solutions of Eshelby’s problem for an ellipsoidal crack in a medium with
arbitrary anisotropy are not available, although some analytical results are available in two di-
mensions [151]. Therefore we consider the grains, of any crystallographic orientation, and the
randomly-oriented cracks as separate phases embedded in the homogeneous effective medium. Un-
der this assumption, we do not take into account the exact interaction between an oriented crack
and the crystallographic orientation of the surrounding medium.

The obtained formulation is first discussed in terms of its percolating behavior, and compared
to previous models of microcracked materials. Quantitative model predictions are then confronted
to numerical ones obtained by Fourier-based simulations, first on a homogeneous matrix in which
(isotropic) populations of micro-cracks of various crack densities are embedded, then on poly-
crystalline microstructures representative of a TATB-based material, in which the same popula-
tions of micro-cracks as before are embedded. The confrontation uses the Bristow-Budiansky-
O’Connell [41, 42] definition of micro-crack density, widely accepted to be a good quantifier (see
for example [53]), up to relatively large crack densities (up to around 0.7) representing several
thousands of micro-cracks at most.

2.2 Thermoelasticity problem for cracked polycrystals
Consider a polycrystal in a domain Ω of volume V , containing a population of frictionless cracks
along a set of surfaces Γ and subjected to mechanical and thermal loading. In the rest of this
chapter, it is assumed that the applied load results in the opening of all micro-cracks, so that:

σpxq ¨ n “ 0, x P Γ (2.1)
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where n is the normal at point x along Γ (oriented indifferently) and σ is the stress tensor. Outside
of the cracks, the strain field ε is determined as a function of the stress by the linear thermoelastic
law:

εpxq “ Spxq : σpxq `αpxq∆T, σpxq “ Cpxq : rεpxq ´αpxq∆T s , x P ΩzΓ, (2.2)

where ∆T “ T ´ T0 is the difference of temperature with respect to a reference temperature T0.
The permanent regime is attained at all time during cooling or heating, so that ∆T is homogeneous
in Ω and represents a macroscopic thermal loading. Small deformation εij “ p1{2qpBiuj ` Bjuiq,
with u the displacement vector, and quasi-static equilibrium, i.e. divσ ” 0 is assumed for all
thermo-mechanical loadings. Hereafter, the compliance S and stiffness tensor C “ S´1 of the
crystal in (2.2) have hexagonal (i.e. transversely-isotropic) symmetry. Equation (2.2) is rewritten
as:

pε11, ε22, ε33, 2ε23, 2ε13, 2ε12q
t
“ S ¨ pσ11, σ22, σ33, σ23, σ13, σ12q

t
`αt∆T, (2.3)

where S is expressed, in the above Voigt notation, as the following 6ˆ 6 symmetric matrix:

S “

¨

˚

˚

˚

˚

˚

˚

˝

1{Ep ´νp{Ep ´νpz{Ep 0 0 0
1{Ep ´νpz{Ep 0 0 0

1{Ez 0 0 0
1{Gzp 0 0

sym 1{Gzp 0
2p1` νpq{Ep

˛

‹

‹

‹

‹

‹

‹

‚

, (2.4)

in an orthonormal basis (e1, e2, e3) local to each grain where e3 coincides with the crystal’s axis
of symmetry. The compliance tensor S depends on five elastic moduli: the in-plane (Ep) and
out-of-plane (Ez) Young moduli, the out-of-plane shear modulus Gzp, the in-plane (νp) and out-of-
plane (νpz) Poisson ratios. In contrast to isotropic elasticity, Poisson effects depend on the loading
direction, hence, the coefficients νp and νpz can exceed 1{2. They vary in the range:

´ 1 ď νp ď 1´ 2ν2
pz

Ez
Ep
ď 1, |νpz| ď

d

p1´ νpqEp
2Ez

ď

c

Ep
Ez
. (2.5)

With the condition Ez ě 0, Ep ě 0, Gzp ě 0, the above guarantees that S (or C) is positive
semi-definite. The two Young moduli Ez and Ep vary in the range:

2ν2
zp

1´ νp
Ep ď Ez ď

1´ νp
2ν2

pz

Ep,
2ν2

pz

1´ νp
Ez ď Ep ď Ez

1´ νp
2ν2

zp

, (2.6)

where we have introduced νzp “ νpzEz{Ep, inequalities (2.5) and (2.6) being equivalent. When
needed, we refer to the following Voigt notation for stiffness tensors, equivalent to (2.3):

pσ11, σ22, σ33, σ23, σ13, σ12q
t
“ C ¨

“

pε11, ε22, ε33, 2ε23, 2ε13, 2ε12q
t
´αt∆T

‰

, (2.7)

where C is represented by the 6ˆ 6 matrix inverse of (2.4).
In the crystal, we assume that a purely-thermal loading induces transversely-isotropic dilation

or contraction with the same axis of symmetry as that of S. In the same basis used in (2.4), where
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e3 is the axis of symmetry of the crystal lattice, the thermal expansion tensor entering (2.3) reads,
in vector notation:

αpxq “ pα11, α11, α33, 0, 0, 0qt, (2.8)
i.e. α11 “ α22 and α12 “ α13 “ α23 “ 0.

The polycrystal is a space-tessellation of Ω, in which all grains are made from the same,
randomly-oriented crystal. In an orthornormal basis pxIq attached to the laboratory:

SIJ,KLpxq “ RiIpxqRjJpxqRkKpxqRlLpxqSij,kl, αIJpxq “ RiIpxqRjJpxqαij, x P ΩzΓ, (2.9)

where Rpxq are constant-per-grain rotation matrix and where Sij,kl and αij are given by (2.3),
(2.4) and (2.8).

The effective thermoelastic response of the polycrystal reads:

σ “ xσpxqy “ rC : pε´ rα∆T q , (2.10)

where ε “ xεpxqy and σ are the macroscopic strain and stress fields, computed by averaging the
fields εpxq and σpxq over the domain Ω. In the following, the rotation matrix R and cracks’s
orientations are uniformly-distributed random variables in the space of 3D matrix rotations and in
the sphere, respectively, and the polycrystal is statistically isotropic. In particular, the orientations
of two different crystals are uncorrelated.

The effective stiffness tensor rC reduces to its bulk modulus rK and shear modulus rG or equiva-
lently, its Young modulus rE and Poisson ratio rν, and the effective thermal expansion tensor is diag-
onal with the unique eigenvalue rα11. The macroscopic volumetric expansion is rαV “ trprαq “ 3rα11.

In the analytical treatment that follows, we use Eshelby-type solutions for the cracks, in a
manner that model them as infinitesimally thin ellispoidal voids. Under this hypothesis, the
strain field in the cracks is singular and each crack contributes to the spatial mean xεpxqy by (see
e.g. [121]):

1
V

ż

Γi
dS b ¨ n` n ¨ b2 , (2.11)

where V is the volume of Ω, Γi the surface along crack i, dS an elementary surface along Γi and
b is the displacement jump at each point of Γi. In the above, denoting u˘pxq the displacement
vector field on each side of the lips of the cracks, b “ u`´u´ where n is oriented positively from
the ´ to the ` side.

In a homogeneous body containing cracks, the effective elastic moduli depend on a non-
dimensional cracks-density parameter η. This parameter arises naturally from Eshelby’s single-
inclusion problem in the “dilute limit” where cracks interaction are neglected [41] and has been
subsequently used in most self-consistent schemes, e.g. [42]. When the cracks embedded in the
polycrystal are equisized disks of radius a, the cracks-density parameter reads:

η “
n0a

3

V
, (2.12)

where n0 is the number of cracks in Ω and n0{V the number of cracks per unit volume. The
cracks’s locations are arbitrary, in particular, cracks may interpenetrate with one another. In the
rest of this work, we assume that the spatial distribution of cracks in the polycrystal and their
morphology can be described by the cracks-density parameter 0 ď η ď 8.
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2.3 Self-consistent estimate for cracked polycrystals
We now derive estimates for the homogenized thermoelastic response of a cracked polycrystal using
classical self-consistent assumptions. Elastic moduli are first considered. Our method is based
on Eshelby’s problem for: (i) an isolated penny-shaped crack in an isotropic medium and (ii)
a spherical grain with transversely-isotropic elastic response embedded in an isotropic medium.
Assume for now that the grains and cracks are isolated from one another and that they are
embedded in a homogeneous isotropic body of compliance tensor S0, subjected to an applied stress
σ. The contributions of the cracks and grains to the material’s macroscopic strain ε are summed
up as:

ε “ rS : σ “ S0 : σ ` fxHpS; S0
q : σyC ` ηxGpS0

q : σyO, (2.13)
where the second-term on the r.h.s. represents the strain change due to the presence of grains,
of volume fraction 0 ď f ď 1, and the third-term on the r.h.s. the strain change due to the
cracks. The contributions of individual grains (tensor H) are averaged over all crystallographic
orientations C. Likewise, the contributions of the cracks (tensor G) are averaged over all cracks
orientations O. The transversely-isotropic tensors H and G are obtained in terms of Eshelby’s or
Hill’s tensor [103] for their respective problem. Tensor H reads (see e.g. [222]):

HpS; S0
q “

”

`

S´ S0˘´1
`QpS0

q

ı´1
, (2.14)

in which Q is the isotropic stiffness tensor defined by [176, Chap. 2]:

Q11 “ Q22 “ Q33 “
16
15

G0

1´ ν0 , Q12 “ Q23 “ Q13 “
2G0

15
1` 5ν0

1´ ν0 , (2.15)

where we refer to the Voigt notation (2.7). Other components are obtained from the above, e.g.
Q44 “ Q55 “ Q66 “ pQ11 ´ Q12q{2. The variables G0 refer to the shear modulus associated to S0

and ν0 to its Poisson ratio, i.e. G0 “ 1{S0
44 and ν0 “ S0

44{p2S0
11q ´ 1. An equivalent form is given

in [142] for the reciprocal tensor:
P “ S0

pI´QS0
q, (2.16)

whereas a more general expression for Q is given in [220] for an ellipsoidal inclusion with revolution
symmetry.

Tensor G entering (2.13) is given in closed-form expression as [176, Chap. 5]:

G33 “
8p1´ ν0q

3G0 , G44 “ G55 “
16p1´ ν0q

3G0p2´ ν0q
, G11 “ G22 “ G12 “ G13 “ G66 “ 0, (2.17)

in the Voigt notation (2.3) where e3 is normal to the crack.
Assume now that the embedding medium with compliance S0 has the same elastic response as

the heterogeneous medium, so that S0 “ rS. Accordingly, when the material is subjected to the
macroscopic stress σ, the deformation induced by the cracks compensates that of the grains:

xHpS; rSqyC ` ηxGprSqyO “ 0, (2.18)

where we took f “ 1, so that the grains cover the entire domain and the cracks have no volume.
The assumption S0 “ rS can be thought of as the construction of a hierarchical material with
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infinitely many scales, in the following way. Consider a material made of a homogeneous matrix
containing widely-separated grains and cracks. Replace the embedding matrix by a set of grains
and cracks at a much smaller length-scale, and repeat this operation until the matrix is entirely
covered by grains and cracks. Now, in a polycrystal where cracks and grains have the same typical
size, one may assume that each crack or grain is surrounded by many different, randomly-oriented
cracks and grains. The approximation S0 « rS amounts to replace the surrounding medium around
each inhomogeneity by a homogeneous effective material.

Rewrite now Equation (2.18) using (2.14), (2.15) and (2.17). We refer to [220] for amenable
formula for the product and inverse of transversely-isotropic tensors. The means xAyC,O of a
transversely-isotropic stiffness tensor A with axis of symmetry parallel to e3 is the isotropic tensor
with bulk and shear moduli [142]:

KA “
2pA11 ` A12 ` 2A13q ` A33

9 , GA “
3p2A44 ` A66q ` 2pA11 ´ A13q ` A33 ´ A12

15 , (2.19)

respectively, where the Aij refer to the Voigt notation (2.3). Denoting KT and GT the bulk and
shear moduli associated to the compliance tensor of the l.h.s. of (2.18):

T “ xHpS; rSqyC ` ηxGprSqyO, (2.20)

one obtains the expressions below for the inverse moduli:

K´1
T “

2u2 ` u1 ´ 4u3

u1u2 ´ 2u2
3

`
8ηp1´ rνq

3 rG
, rν “

3 rK ´ 2 rG
2p3 rK ` rGq

, (2.21a)

G´1
T “

2u2 ` 4pu1 ` 2u3q

15pu1u2 ´ 2u2
3q

`
6

15u4
`

6
15u5

`
32ηp5´ 6rν ` rν2q

45 rGp2´ rνq
, (2.21b)

where rν is the effective Poisson ratio and the ui are a set of five independent components of the
tensor U “ H´1 as follows:

u1 “ U1111 ` U1122 “

”

18 rK rG´ 2p rG` 3 rKqEz
ı EpEz

∆u

`
2 rGp9` 5rνq
15p1´ rνq

, (2.22a)

u2 “ U3333 “

”

18 rK rGp1´ νpq ´ p4 rG` 3 rKqEp
ı E2

z

∆u

`
16 rG

15p1´ rνq
, (2.22b)

u3 “ U1133 “

”

18 rK rGνzp ` p2 rG´ 3 rKqEz
ı EpEz

∆u

`
2 rGp1` 5rνq
15p1´ rνq

, (2.22c)

u4 “ U1212 “
rGEp

2 rGp1` νpq ´ Ep
`

rGp7´ 5rνq
15p1´ rνq

, (2.22d)

u5 “ U1313 “
rGGzp

rG´Gzp

`
rGp7´ 5rνq
15p1´ rνq

, (2.22e)

∆u “ r2pνp ´ 1qEz ` p8νzprν ´ 1qEps p3 rK ` rGqEz

`18p1´ νpq rK rGEz ` 3Ep
”

E2
z ´ p12 rKν2

zp ` Ezq
rG
ı

, (2.22f)

again, expressed in a basis where e3 is the axis of transverse symmetry. The bulk and shear moduli
KT and GT are, accordingly, rational functions of the bulk and shear moduli rK and rG and of
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all parameters of the problem. Condition (2.18) therefore can be rewritten as two polynomial
equations in rK and rG. The first one is of order 4 in rK and 5 in rG, whereas the second one is of
order 9 in rK and 5 in rG. For an isotropic tensor S with bulk modulus K and shear modulus G,
they reduce to a system of cubic equations:

rG rK
”

p9` 16ηq rK ´ 9K
ı

“ 3 rG2
pK ´ rKq ´ 12η rK2K, (2.23a)

27p75´ 32ηq rK2G “ 3 rG rK
”

27p25` 16ηq rK ` p704η ´ 675qG
ı

` p450` 512ηq rG3

`3 rG2
”

9p75` 64ηq rK ` 2p128η ´ 75qG
ı

. (2.23b)

Numerical solutions of the above are determined using the software “Mathematica” [262]. We
obtained a unique set of real solutions in the domain rK ą 0, rG ą 0, for all elastic moduli rK and rG
and crack-density parameter η considered in the present work. For arbitrary anisotropy, numerical
solutions are readily obtained using the following fixed-point algorithm:

Initialization: set rK´1
“ 9∆{r2Ep ` p1´ νp ` 4νpzqEzs,

rG´1
“ 6∆{rEp ` 2p1´ νp ´ 2νpzqEzs, ∆ “ 1´ νp ´ 2νpzνzp. (2.24a)

Iterations: set rK´1
Ð rK´1

`K´1
T p

rK, rGq, rG´1
Ð rG´1

`G´1
T p

rK, rGq,

until the absolute values of rK and rG change by less than 10´10. (2.24b)

In this algorithm, the effective moduli are initialized to the Voigt-Hill upper-bound given by xS´1yC
(step 2.24a) whereas iterations (2.24b) enforce infinite bulk and shear moduli KT “ GT “ 8, i.e.
the compliance tensor T vanishes. We emphasize that the value of rK used to evaluate successively
the functions KT and GT in step (2.24b) changes, as rK is updated before rG. No convergence is
observed, except at small cracks-density values, when the same value of rK is used to evaluate
KT and GT . With the above algorithm, nevertheless, we obtained fast convergence for arbitrary
crack-density η and all sets of crystal anisotropy considered in the present study.

A general result states that the thermal expansion tensor of a homogeneous body is unchanged
in the presence of pores [203], including cracks. Nevertheless, if the body is a polycrystal, or is
in general heterogeneous, cracks do have an effect on the effective thermal expansion. This effect
may be captured by homogenization techniques, such as the “generalized” self-consistent schemes
relevant to multi-coated inclusion-reinforced composites [24]. In the present work, we rely on the
exact relationship [23]:

rα : xσpxqy “ xαpxq : σpxqy, (2.25)
where σpxq is the local stress field resulting from the macroscopic stress loading xσpxqy “ σ, with
no thermal loading applied (∆T “ 0). Since the stress is distributed over all grains, the l.h.s. and
r.h.s. may be rewritten as a mean over all crystallographic orientations i:

rα : xσiyi “ xαi : σiyi, (2.26)

where σi is the constant stress field occurring in an isolated spherical inclusion of compliance
tensor Si and thermal expansion tensor αi, oriented along direction i, and embedded in a medium
with compliance tensor S0. Now, the macroscopic strain ε in a large domain containing one single
inclusion can be decomposed as:

ε “ S0 : pσ ´ fiσiq ` fiSi : σi,
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where fi is the inclusion volume fraction. Comparing the above to (2.13), one obtains σi “ Γ : σ
where the tensor Γ “ rI`Q : pS´ S0qs

´1 allows one to express the uniform field inside the
inhomogeneity in terms of the prescribed field (see e.g. [220]). Equation (2.26) now reduces to:

rα : xΓyC : σ “ xα : ΓyC : σ, (2.27)

and, taking σij “ δij:

rαV “
6α11pΓ1111 ` Γ1122 ` Γ1133q ` 3α33pΓ3333 ` 2Γ3311q

Γ3333 ` 2pΓ1111 ` Γ1122 ` Γ1133 ` Γ3311q
, (2.28)

where the components of Γ are given in a basis with axis of symmetry e3. Making use of (2.15)
the effective thermal expansion coefficient reads:

rαV
3 “

α11γz ` α33γp
γz ` γp

, ∆γ “
rν

2 rGp1` rνq
´
νzp
Ez

, (2.29a)

γz “ p2u3 ´ u1q∆γ ` pu2 ´ u3q

«

1
Ez
´

1
2 rGp1` rνq

ff

, (2.29b)

γp “ pu3 ´ u2q∆γ ` pu1 ´ 2u3q

«

1´ νp
2Ep

´
1´ rν

4 rGp1` rνq

ff

, (2.29c)

where the ui are given in Equation (2.22), and the effective bulk and shear moduli rK and rG are
the solutions of (2.18).

In what follows, the self-consistent estimates (2.18) and (2.29) are denoted (SC1). When the
polycrystal contains no crack (η “ 0), the system (2.18) reduces to two polynomial equations,
one of degree 2 in rK and the other of degree 6 in rG (not shown here). These two polynomial
equations are equivalent to the self-consistent estimate of Berryman [26] or Willis [247] which is
well suited to describe the overall behavior of cell materials [230] and polycrystalline media with
moderate contrast [138, 137, 37]. It is useful also to consider the exact cross-property relation, due
to Hashin [101], which relates the bulk and volumetric thermal expansion coefficient of isotropic
polycrystalline aggregates containing hexagonal crystals such that S and α share a common axis
of symmetry:

rαV “ rα11 ` rα22 ` rα33 “ αV ` pα33 ´ α11q
1{ rK ´ Siikk
Sii33 ´ Sii11

. (2.30)

where e3 is the axis of symmetry of the crystal and repeated indices are to be summed up. Hashin’s
result applies to the present problem when η “ 0, and as expected estimates (2.18) and (2.29)
satisfy (2.30) in that case. When η ‰ 0 instead, (2.30) is not verified.

2.4 Percolating behavior
In porous and rigidly-reinforced materials, self-consistent estimates typically predict a percola-
tion threshold. The results of these methods should be taken with care, especially with respect
to percolating behavior, where the theory’s predictions are sometimes unrealistic compared to
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real materials [100]. In linear elasticity, for instance, different percolation thresholds may be ob-
tained for the bulk and shear moduli – whereas in real materials, the mechanical and geometrical
percolation thresholds are expected to coincide (see [167, Chap. 10] for a discussion). This is
because self-consistent estimates are realizable by very peculiar, hierarchical microstructures made
of infinitely-many scales [12] and with no finite correlation length [132]. That being said, it is
nevertheless a merit of the self-consistent theory that, in contrast with most other approximations
and bounds, it does predict a percolation threshold (see e.g. [28] for a discussion).

For cracked media, the percolation thresholds is often expressed in terms of a critical crack-
density threshold ηc, as, for instance, in the context of conductivity [212], permeability [211] or
elastic wave propagation [210]. In the present problem of quasi-static elasticity, the percolation
threshold is associated to the loss of connectivity of the matrix [204], at which point the effective
elastic moduli vanish. For a Boolean set of uniformly-oriented disks, the geometrical percolation
threshold of the complementary set of the disks has been estimated numerically in [264]. The
authors give the threshold p4{3qπηc « 22.9 i.e. ηc « 5.5 for the critical crack-density.

The zeros of the Euler-Poincaré characteristic (or connectivity number) has also been used to
estimate the percolation thresholds of binary media [38]. Its expression reads, for a Boolean model
of volume fraction 1´ q, intensity θ and primary grain A:

qθ

ˆ

1´ θMASA
4π `

πθ2S3
A

384

˙

, (2.31)

where SA is the surface area of A and MA the integral of the mean curvature along the boundary
of A. For a disk of radius a, SA “ 2πa2, MA “ π2a so that, setting the above expression to zero
provides us with the approximation ηc “ θa3 “ p4{π2q ˆ p3 ˘

?
6q. The first value ηc « 0.2231

is close to the numerical estimate ηc « 0.2230 [265] for the percolation threshold of the disks.
However the prediction using the connectivity number for the second threshold, ηc « 2.21, related
to the loss of connectivity of the matrix, is significantly smaller than the estimate given in [264]. For
linear elasticity, the self-consistent scheme of Budiansky and O’Conell [42] predicts the percolation
threshold ηc “ 9{16 « 0.56 for “dry cracks” embedded in an isotropic homogeneous body, whereas
a different percolation threshold ηc “ 45{32 « 1.41 is obtained for “wet” (fluid-saturated) cracks.

For the self-consistent estimates proposed in this work, the percolating behavior is obtained by
expanding K´1

T and G´1
T (Equation 2.21) as a Taylor series of order 2 near the point η Ñ ηc where

ηc is unknown. The equations K´1
T “ 0 and G´1

T “ 0 provide a set of conditions on rK, rG and ηc.
We look for solutions of the form rK „ K1pηc ´ ηq, rG „ G1pηc ´ ηq where the prefactors K1 and
G1 are independent of η. These asymptotic forms will be confirmed later on in this study, using
numerical results. We obtain the following condition on ηc:

135p225` 1424ηcq “ p64ηcq2p64ηc ´ 28q, (2.32)

which provides the percolation threshold ηc « 1.15752. Furthermore, in the limit η Ñ ηc, the
self-consistent estimates predicts constant thermal expansion coefficient and Poisson ratio, inde-
pendently of the crystal’s elastic moduli:

rαV Ñ αV “ 2α11 ` α33, rν Ñ
8704η2

c ´ 4608ηc ´ 6075
512η2

c ` 1800ηc
« 0.09144. (2.33)

The limiting value for rαV implies, in light of (2.25):

xσpxq : αpxqy “ xσpxqy : xαpxqy, (2.34)
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Figure 2.1: Prediction of the self-consistent approximation (2.21) relevant to a homogeneous
isotropic solid containing randomly-oriented cracks, for various Poisson ratios ν in the matrix. (a)
Normalized effective Young modulus rE{ rE vs. crack density η, (b) Effective Poisson ratio rν.

where σpxq is the local stress field occurring in the polycrystalline material subjected to stress
loading, with no thermal loading. The above equality can be interpreted as a lack of correlation
between the crystal’s orientations and the stress field, as the percolation threshold is approached.

The considerations leading to (2.32) do not hold when some of the eigenvalues of C vanish.
We first investigate the case Gzp “ 0 with the moduli Ez and Ep strictly positive. Equation (2.21)
yields the lower percolation threshold η1c solution of:

4
`

2048η12c ` 2448η1c ` 675
˘

“ p2176η1c ` 1125q
a

16η1c ` 9 , (2.35)

so that η1c « 0.373126. Second, when Ez “ 0, keeping Gzp ą 0, Ep ą 0, a third percolation
threshold η2c , in-between η1c and ηc is obtained:

η2c “
32` 13

?
46

160 « 0.751064. (2.36)

The predictions of estimates (2.23a) are represented in Figs. (2.1). The limiting value for the
effective Poisson ratio at percolation (Equation 2.33, method SC1) is confirmed in Fig. (2.1b)

2.5 Isotropic body containing cracks
In the following, we compare the predictions of SC1 with three homogenization schemes developed
in the literature: the self-consistent scheme of Budiansky and O’Connell [42] (denoted SC), the
Mori-Tanaka method of Benveniste [22] (denoted MT) and the Hashin-Shtrikman-type bounds of
Ponte Castañeda and Willis [194] (denoted HS). Scheme (MT) amounts to using an asymptotic
expansion truncated to first-order in η ! 1 for the inverse 1{ rE, and is equivalent to the “non-
interacting approximation” presented in [222]. Method (HS) provides rigorous upper-bounds for
classes of materials containing cracks embedded in uncracked regions (“security spheres”). In this
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Figure 2.2: Random model of polycrystal containing a population of cracks: Poisson-Voronoï
tessellation superimposed on a Boolean model of penny-shaped cracks (2D cut).
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Figure 2.3: Normalized bulk modulus rK{K (a) and shear modulus rG{G (b) vs. crack density
η for a homogeneous isotropic body (Poisson ratio 0.2) containing cracks: comparison between
analytical methods SC, SC1, HS, MT and FFT numerical results. (c) Bulk modulus rK for a
Poisson ratio ν “ 0 in the matrix.

construction, the cracks do not interpenetrate and the cracks-density parameter is constrained in
the range η ď 3{p4πq « 0.239.

We also carry out Fourier-based numerical computations using a Poisson-Voronoï tessellation as
polycrystalline aggregate. This tesselation is parametrized by the density of germs, equal to ng{V ,
the number of grains per unit volume. Assuming the volume Ω is a cube of dimension L, we choose
to parametrize the tessellation by the grains typical size ` “ r3{p4π{ngqs1{3L, defined so that the
mean grain volume equals that of a sphere of radius `. We model the cracks by a Boolean model of
equisized disks of radius a with homogeneous Poisson point process. The intensity of the Poisson
point process is ηa3. The Boolean model of disks is “superimposed” on the tessellation, so that the
orientations of the grains and cracks, and their position compared to one another, are uncorrelated.
In method SC1, no scale-separation hypothesis is made between the typical length scales of the
cracks and that of the grains. Hereafter we choose a “ ` so that the cracks and grains have similar
size. A schematic view of the model is presented in Fig. (2.2). The Voronoï-Boolean model is not
representative of real materials, but is useful nevertheless to draw comparisons between analytical
estimates and exact numerical results.
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Numerical Fourier-based computations are carried out on the random cracked-polycrystal
model, using the backward-and-forward difference scheme [258, 249]. The domain Ω is discretized
on grids of L3 “ 1283, 2563 and 5123 voxels, the cylindrical cracks have a diameter of D “ 40 or
D “ 80 voxels and the thickness is set to w “ 1.25, 1.4, 1.5, 2, 3, 4 and 5 voxels. The diameter
of the cracks in each configuration is adjusted so that the crack-density parameter stay the same.
As described in another study [85], the effective elastic moduli are overestimated when w ď 1.4,
whereas a linear behavior is observed with respect to w in the region w ě 1.5. Results for all
data sets are extrapolated in the limit w Ñ 0. The mean absolute difference between the apparent
moduli computed for the various data sets, i.e. different values of L and D, are used to estimate
error bars. Data detailed in [85] show that the error on the bulk modulus is not more than 1%
when η « 0.38. Nevertheless, the precision of the method deteriorates when the number of cracks
increases, and hereafter we restrict ourselves to η ď 0.8.

FFT predictions for the normalized bulk modulus rK{K and normalized shear modulus rG{G
are shown in Fig. (2.3), and compared to the analytical estimates SC, SC1, MT and HS. The four
methods SC, SC1, MT and HS are equivalent up to the first-order correction in η in the limit η Ñ 0.
The stiffest estimate is provided by scheme MT which percolates at η “ 8, whereas method SC
is the most compliant. This behavior is a consequence of the self-consistent assumption employed
in method SC, which reads [105]:

rS “ S` ηxGprSqyO.

This is in contrast with the present method, where both the matrix phase and the cracks are
embedded in the equivalent medium. Similar observations hold when the Poisson ratio is ν “ 0 in
the matrix (Fig. 2.3c).
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Figure 2.4: Self-consistent estimate SC1 for the effective response of a cracked polycrystal vs.
crack density η, for varying in-plane Young modulus Ep ď 10 with νzp “ 0.2, Ez “ 1, α11 “ 1 and
α33 “ 0. (a) Young modulus rE, (b) Poisson ratio rν, (c) bulk modulus rK, (d) shear modulus rG,
(e) thermal expansion coefficient rα “ rαV {3.

At non-dilute crack density, the analytical estimates differ significantly. Numerical results for
the Boolean microstructure considered here are very close to the predictions of methods SC1, up to
about η « 0.6. At higher crack density (η ě 0.6), the estimates provided by method SC1 are more
compliant than numerical results. This behavior is not surprising since the percolation threshold
for the loss of connectivity of the matrix, equal to 5.46 according to Yi and Esmail [264], is much
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higher than threshold ηc « 1.16 predicted by SC1 (Eq. 2.32). Note that this percolation threshold
is independent of the elastic moduli, except in degenerate cases, as will be seen later on.

2.6 Cracked polycrystalline aggregates
Method SC1 is now applied to a polycrystal containing cracks. To illustrate the predictions of the
method, we fix Ez “ 1, Gzp “ 5{12, νzp “ νp “ 0.2 and let Ep vary between 0 to its maximum value
10 (see Equation 2.6). Isotropic crystals are recovered when Ep “ Ez “ 1 (black solid line). The
effective thermoelastic properties are represented as a function of the cracks density η in Fig. (2.4).
The limiting value of rν « 0.091 (Equation 2.33) is recovered when η Ñ ηc, for all values of Ep, as
well as rαV “ αV .
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Figure 2.5: (a) Bulk modulus rK vs. crack density η as the out-of-plane shear modulus Gzp tends
to 0 (Gzp “ γG0, G0 “ 5{12). Solid lines: SC1. Symbols: FFT results. (b) Bulk modulus rK vs.
Gzp when η “ 0.3815, in lin-log plot. Symbols and dashed line: FFT results. (c) Effective Young
modulus rE vs. crack-density η as Ez Ñ 0.

The onset of an “advanced” percolation threshold when Gzp Ñ 0 (Equation 2.35) is confirmed in
Figs. (2.5a,b), where the effective bulk modulus rK is represented as a function of η for decreasing

(a) (b) (c) (d) (e)

Figure 2.6: Map of the quantity log |σ33| in a grain, thresholded in the range r´22; 0.5s so that
σ33 P r10´2; 3.16s. The axis of symmetry e3 of the crystal is nearly-parallel to the plane of the 2D
cut. Lowest values are indicated in blue, highest in red, and intermediate values in green-yellow.
The same color scale is used for all maps (a-e). Cracks in cyan. The out-of-plane shear modulus
is Gzp “ 0.21 (a), 0.04 (b), 4 10´3 (c), 4 10´4 (d) and 0 (e).
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values of Gzp monitored by the parameter γ “ Gzp{p5{12q “ 0.50, 0.1, 0.01, 10´3 and 0. At
Gzp “ 0, SC1 predicts vanishing bulk and shear moduli when η ě η1c « 0.37. Likewise, in the limit
Ez Ñ 0 a percolation threshold η2c « 0.75 (Equation 2.36) is obtained (Fig. 2.5c).

Additionally, we have carried out numerical FFT computations for varying values of Gzp ! 1
(Fig. 2.5a). They lie very close to the predictions of SC1 when the anisotropy is moderate (Gzp ą

0.1) or when η is smaller than η1c. This is not the case when the crack density is high (η ą η1c) and
the out-of-plane shear modulus is very small (Gzp ď 0.01). On the one hand, FFT results indicate
a finite limit for the effective elastic moduli of the cracked polycrystals, even when Gzp “ 0. This
is confirmed in Fig. (2.5b) which represents the effective bulk modulus as a function of Gzp, in
semi-log plot, when η “ 0.3815 is fixed. In this plot, the dotted line is the FFT prediction when
Gzp is strictly zero. On the other hand, although no advanced percolation threshold is observed
according to FFT results, a strong decrease of the effective moduli with respect to η is observed
up to about 0.4, followed by a slower decrease in the range η ą 0.4.

These results suggest a mechanism is responsible for the strong weakening of the moduli at
moderate crack density, visible on the local stress fields. The stress component σ33 occurring in
a crystal is represented in Fig. (2.6), with cracks shown in white. The crystal has been chosen
so that its axis of symmetry, e3, lies almost exactly in the same plane as the 2D cut where the
fields are represented. Accordingly, σ33 corresponds to the traction component in the out-of-plane
direction, and is oriented about 45 degrees from the horizontal in Fig. (2.6). Maps (a) to (e) show
the fields at decreasing values of Gzp. When the shear modulus Gzp approaches zero, the material
is weakened by large regions where the stress field σ33 is close to zero (Fig. 2.6e, regions colored
in blue). These regions organize through large bands parallel to direction e3. Indeed, Gzp “ 0
implies in the crystal σ31 “ σ32 ” 0. Accordingly, using stress equilibrium, B3σ33 ” 0. Along cracks
embedded in the crystal, however, σ ¨ n “ 0 implies σ33n3 “ 0. These two results explain the
development of weakening bands parallel to direction e3, enclosing cracks. The weakening zones
however do not cross the grain boundary (not shown). When the crystals are not covered by such
bands, an increase of η has a strong weakening effect as each crack will weaken large regions in
the surrounding crystals. Conversely, when most of the material is covered by weakening bands,
an increase of η has a smaller weakening effect on the macroscopic properties.

This behavior may be compared to the effect of cracks on tension-field elastic sheets which are
stiff in traction but very soft in compression. The sheets sustain tension only if a set of regions
surrounding the cracks, free of stress, do not form a percolating phase connecting boundaries where
a load is applied [144]. Weakening bands have also been observed in periodic structures subjected to
plane strain and made of pores embedded in a strongly-anisotropic elastic matrix [260]. Specifically,
the authors of [259] consider a transversely-isotropic, incompressible crystal with, referring to (2.4),
νp “ νpz “ νzp “ 1{2, Ep “ Ez and Gzp “ kEp where k ! 1 monitors the anisotropy. The material
is subjected to strain shear loading, resulting in a macroscopic strain ε11 “ ´ε33 ą 0 and ε13 “ 0.
The crystal contains a cylindrical void with axis of symmetry parallel to e2. The authors have
observed the presence of localized shear bands that develop from the void as the porosity increases.
The length of the band scales as ξ „ ap{

?
k where ap is the pore radius. In the limit k Ñ 0 where

the stiffness tensor is not positive and the governing partial derivative equations become hyperbolic,
two regimes have been identified. The “dilute regime” (porosity f ! fr) occurs when the length
of the localized shear bands are smaller than the size of the elementary cell, whereas a “strongly
anisotropic regime” (porosity f " fr) holds when the shear bands span the periodic array of pores
(see Fig. 2.7). At the crossover between the two regimes, the porosity equals the critical value
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(a) (b) (c)

Figure 2.7: FFT map of the strain shear component ε11 ´ ε33, parallel to the applied load, in the
plane (e1; e3), in the elementary cell of a periodic material with strong anisotropy ratio k “ 10´3

(see text). Porosities from left to right: f “ fr{10 (a, regular “dilute” regime); f “ fr (b, crossover
regime); f “ 10fr (c, “strongly anisotropic” regime), where fr „ k{π is the crossover porosity.
Incompressible matrix. Black represents the lowest field values, highest in white.

fr „ k{π. In the present problem, one may expect the development of similar shear bands as
Gzp Ñ 0, with the size of the bands increasing as Gzp decreases. However, recall that the bands
surrounding cracks are, according to FFT maps, constrained to lie within the grains the crack is
embedded in, and have therefore a limited impact. This explains why, according to the predictions
of SC1, the polycrystal sustains macroscopic loads in the domain η ă η1c, even when Gzp is strictly
zero.
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The effect of scale separation is illustrated in Fig. (2.8), which shows the effective bulk modulus
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Figure 2.9: Effective response of a polycrystalline aggregate with out-of-plane shear modulus
Gzp “ 0 as a function of the crack density parameter η, for various out-of-plane Young modulus
Ez. (a) Poisson coefficient rν, (b) bulk modulus rK, (c) thermal expansion coefficient rα “ rαV {3.

of cracked polycrystals as a function of the crack density η, for various values of the anisotropy
ratio γ “ Gzp{G0. The value γ “ 1 corresponds to an isotropic tensor C with Young moulus 1
and Poisson ratio 0.2. Two configurations are considered. In the first one, modeled using SC1,
the cracks and grains have similar size, as previously considered (solid lines). In the second one,
the size of the cracks is much larger than that of the grains (dotted lines). This latter case is
modeled using method SC1 two times. The matrix surrounding the crack is first replaced by
an effective medium by applying SC1 to an uncracked polycrystal (in this case the method is
equivalent to Berryman’s). Second, the cracks are accounted for using method SC1 specialized to
a homogeneous body containing cracks (Eq. 2.23a). The two estimates coincide only when the
crystals are isotropic (γ “ 1, black line). In all other cases, the elastic response is stiffer when
the cracks are larger than the grains. If scale separation is assumed, no advanced percolation
threshold develops when γ Ñ 0. In that case percolation occurs when η « 1.158 independently
of γ. Accordingly, a homogenization approach where grains and cracks are treated separately,
using e.g. Berryman’s method for the polycrystal and an homogenization scheme for the cracks
(e.g. MT, HS or SC), would give incorrect results, in the case where the cracks and grains have
similar size and the grains have strong anisotropy. Such situation occurs in TATB polycrystals, as
investigated in e.g. [86].

To illustrate the predictions of SC1 when Gzp “ 0, two effective elastic moduli and the thermal
expansion coefficient are represented in Fig. (2.9) for various values of Ez, with Gzp “ 0, Ep “ 1,
νp “ νzp “ 0.2, α11 “ 1 and α33 “ 0. At η “ η1c, method SC1 predicts rν « 0.31 independently of
Ez whereas rα “ 2{3 as when Gzp ‰ 0 (Fig. 2.4).

2.7 Conclusion
In the present chapter, we have derived explicit formula that approximate the effective thermal and
elastic, response of a polycrystal with hexagonal symmetry containing randomly-oriented cracks.
This model is not an extension of that developed by Huang and Hu [107] for cubic symmetry.
In particular, the coupling between crystal anisotropy and cracks is much stronger in the present
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case.
The main results are the following. First, in the absence of crystal anisotropy, i.e. for a

homogeneous cracked body, our self-consistent approach yields estimates that are very close to
that of a Boolean model of disk-shaped cracks. Good agreement is observed up to a crack-density
parameter η « 0.7. In this domain, most cracks intersect another crack, and the matrix’s Young
modulus is weakened by as much as 75% for a Poisson ratio in the embedding medium of 0.2. For
general transversely-isotropic crystals, the self-consistent estimates predict a percolation threshold
equal to about η « 1.16 for the crack density parameter.

Second, “advanced” percolation thresholds at η “ 0.37 and 0.75 are predicted for crystals with
vanishing out-of-plane shear or Young modulus. The low percolation threshold predicted by the
self-consistent estimate in the former case can be related to the onset of “weakening” regions that
surround the cracks and lie inside the grains. The existence of such regions has been confirmed
by Fourier-based numerical computations carried out on a Voronoï-Boolean model. However, in
contrast to the predictions of the self-consistent estimates, Fourier computations do not indicate
a percolation threshold in highly-anisotropic crystals at low-crack density, but rather a strong
weakening of the elastic moduli. The analytical estimates derived in the present approach fail to
predict this mechanism.

Although the methodology presented herein has focused on cracked polycrystals, it is worth
mentioning that such approach can be extended, in theory, to hexagonal polycrystals containing
other types of inhomogeneities, including pores or rigid inclusions.
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Chapter 3

Elastostatic field distributions:
self-consistent estimates & Van Hove
singularities

This chapter addresses the problem of the reconstruction of the local fields distribution
occurring in heterogeneous linear elastic solids. The constitutive heterogeneities are
crystals and cracks. Through comparisons with FFT computations, it is shown that
self-consistent estimates together with an assumption of normal distribution at the
phase scale provide an accurate description of the elastostatic field histograms in poly-
crystals without cracks. In the case of inter and transgranular cracks, full-field FFT
simulations indicate that the field histograms present van Hove singularities. Their
natures are determined analytically in the low-density regime, in the case of an homo-
geneous medium containing cracks.

3.1 Introduction
The probability distribution functions (or field histograms) of the local stress and strain fields in
heterogeneous media are useful to gain insight on a material’s mechanical response. On the one
hand, distribution functions embody the material’s macroscopic (homogenized) response, as well
as statistics on the stress or strain extreme values (distribution tails). On the other hand, the
information contained in probability distribution functions is highly condensed compared to the
medium’s full-field microscopic response. This property may be regarded as an advantage, since
one-dimensional functions are easier to characterize and model than a material’s full-field response,
which requires an explicit description of the geometry.

Various works in micromechanics and in homogenization have investigated the distribution
function of mechanical fields in heterogeneous media. Sevostianov [221] has modeled the distribu-
tion of the peak stresses occurring along the interface of porous inclusions in plane stress, using
a Gumbel (double exponential) law. Idiart et al. [110] considered the fluctuations of mechanical
fields in particulate viscoplastic composites, predicted by homogenization theories. Using FFT
computations, they showed that the field distributions in the matrix are well approximated by
Gaussian distributions in the linear case but strongly deviate from the latter when dealing with

29
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strong nonlinearities such as perfect plasticity. The distribution of elastic fields in polycrystals is
considered in [128].

Probability distribution functions present, in general, Van Hove singularities, named after the
work of Van Hove on the density of states of phonons in crystals [239]. Along Van Hove singularities,
a distribution exhibits discontinuities, sharp peaks (blow-up and cusps) and non-differentiable
points. These singularities occur whenever the field’s spatial gradient vanishes [4, 161], typically
extrema or saddle-points. Conversely, regions where the fields blow-up control the behavior of
the distributions at infinity (distribution tails). Van Hove singularities occur in the probability
distribution of the elastic fields in periodic media (see e.g. [260]), as well as in their electrical
response [56]. Giordano [92] determined Van Hove singularities for the electric field surrounding
an insulating crack. The local elastic response is dealt with in [93]. The effect of a crack on the
field distributions has also been considered in [71] for dielectric breakdown. The case of a random
dispersion of inclusions has been investigated by Cule & Torquato [56]. Comparing deterministic
and random microstructures, the authors argue that, in random media, Van Hove singularities are
smoothed out by disorder. Stokes flow in random porous media has also been investigated in [2].

The electrical (or dielectric) response has been considered in other works. Barthelemy and Or-
land [19] computed the local field distribution in random dielectric networks. The method makes
use of the Lipmann-Schwinger equation and generalizes the classical self-consistent analytical treat-
ment to field distributions. The method proposed by the authors show that the field distributions
are well captured when taking into account first-neighbor interactions between bonds, and treating
long-range interactions by an effective medium. Pellegrini [185] has modeled the field distributions
in random dielectrics using Gaussian distributions to predict the response of “weakly nonlinear”
media.

The present study aims at investigating up to which extent one may use homogenization the-
ories to predict not only the mean (and second-order moments) of the fields but also the entire
probability distribution functions of such fields, in linear elastic solids. The effect of a random dis-
persion of heterogeneities, made of crystals or cracks are examined. Self-consistent estimates and
analytical results for the field surrounding an isolated crack are employed to model the elastic field
distributions. Fourier-based computations are carried out to assess the validity of our approach,
and to determine the presence of Van Hove singularities in random media. The asymptotics of the
distribution tail for certain stress components, are determined as well in specific cases.

This chapter is organized as follows. The probability distribution functions of elastic fields
occurring in 3D sound polycrystals are considered in Sec. (3.2). Sec. (3.3) deals with a homogeneous
body containing an isolated crack, or a population of parallel, or randomly-oriented cracks, in
plane strain, and investigates Van Hove singularities in the field distributions. Numerical and self-
consistent results pertaining to the field histograms of cracked polycrystals in 3D are presented in
Sec. (3.4).

3.2 Field histograms in sound polycrystals

3.2.1 Multivariate distributions of the elastostatic fields
A polycrystal made of elastically anisotropic grains can be considered as a composite material
occupying a domain Ω whose constitutive phase prq represents a given crystalline orientation.
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Linear homogenization theories provide estimates for the intraphase first (i.e. mean) and second-
order moments [30, 131, 193] of the strain field εpxq. For each phase prq, they read

Mr
ε “ xεyprq and Σr

ε “ xεb εyprq, @r “ 1, . . . , N. (3.1)

The multivariate probability distribution function of the tensorial field εpxq in phase prq is defined
as

P r
εptq “ lim

ζÑ0

1
ζ
P t||ε´ t|| ă ζu “

1
|Ωr|

ż

Ωr
δpεpxq ´ tq dx, t P S2, (3.2)

with δ the Dirac delta function, |Ωr| the volume of phase r and S2 the space of symmetric second-
order tensors in R3 equipped with norm || ‚ || “

?
‚ : ‚. The intraphase first and second order

moments of the strain field can thus be written

Mr
ε “

ż

S2
tP r
εptq dt and Σr

ε “

ż

S2
ptb tqP r

εptq dt. (3.3)

The overall distribution of the strain field Pε in domain Ω reads

Pεptq “
1
|Ω|

ż

Ω
δpεpxq ´ tq dx “

N
ÿ

r“1
fr P

r
εptq, t P S2, (3.4)

with fr “ |Ωr|{|Ω| the volume fraction of phase prq. Similar definitions hold for the intraphase
stress moments Mr

σ and Σr
σ as well as the stress probability distributions P r

σ and Pσ.
In order to use estimates on Mr

ε and Σr
ε provided by mean-field homogenization models, it

is natural to consider multivariate normal (i.e. Gaussian) distributions for random tensor-valued
variables. However, a symmetric second-order tensor in R3 can also be seen as a vector in R6.
Therefore, the well-known theory of vector-valued normal distributions can advantageously be
used [9, 20, 120]. The probability distribution function for the strain field εpxq then reads [20]

P r
εptq “

1
a

|Ar
ε|p2πq6

exp
ˆ

´
1
2pt´Mr

εq
T
¨ pAr

εq
´1
¨ pt´Mr

εq

˙

, t P V . (3.5)

with V the vector space in R6. The covariance matrix Ar
ε is defined by

Ar
ε “ xpε´Mr

εq b pε´Mr
εqyprq “ Σr

ε ´Mr
ε bMr

ε (3.6)

and |Ar
ε| “ detpAr

εq. The inverse of the covariance matrix, which enters (3.5), is known as the
precision matrix. Theorems available for vector-valued normal distributions [9] allow one to derive
useful properties for the strain field distribution. In particular, any linear combination of the
components of the strain field εpxq follows a univariate Gaussian intraphase distribution. Since
the constitutive law is linear elastic, it follows that each component of the stress field σpxq is also
normally-distributed in phase prq.

Let us diagonalize the covariance matrix Ar
ε as:

Ar
ε “ Br

ε ¨Dr
ε ¨ pBr

εq
T . (3.7)

The orthogonal matrix Br
ε is composed by the eigenvectors bri (i “ 1, . . . , 6) whereas the diagonal

matrix Dr
ε give the eigenvalues λi of the covariance matrix. Since the field ε follows a normal
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intraphase distribution, the eigenvectors bri are independent normal random fields. This result
allows one to obtain statistical realizations of the intraphase strain field by generating vectors ŷ
whose components ŷi (i “ 1, . . . , 6q are independent normal random variables with mean µ “ 0
and variance σ2 “ 1 (ŷi „ N p0, 1q). A particular realization pεr of the strain field in phase prq
reads (see e.g. [120, Chap. 4]):

pεr “ Mr
ε `Br

ε ¨
a

Dr
ε ¨ ŷ. (3.8)

Using the above, one may compute numerically the distribution of the equivalent von Mises strain
εeq “

a

p2{3q e : e with e the strain deviatoric tensor. More generally, Eqs. (3.7) and (3.8) allows
one to compute the distribution of any function of the strain field components.

3.2.2 Self-consistent estimates
To get a statistical description of the local fields through mean-field homogenization, we adopt the
self-consistent (SC) model (2.18) specialized to a sound polycrystal (η “ 0). It can be written [247]:

C

"

”

Cpxq ´ rC
ı´1

`PprCq
*´1

G

“ 0 (3.9)

with C (resp. rC) the local (resp. effective) elastic tensors and P the Hill microstructural ten-
sor (2.16) which depends on rC and on the spatial distribution of the phases. The elastic properties
being uniform per phase (i.e. crystalline orientation), that is:

Cpxq “
N
ÿ

r“1
χrpxqCr, @x P Ω, (3.10)

with χrpxq the characteristic function of phase prq, relation (3.9) can be written

N
ÿ

r“1
fr

”

pCr
´ rCq´1

`PprCq
ı´1

“ 0. (3.11)

At the local scale, the self-consistent scheme provides information about the average fields for each
crystalline orientation. For the strain field, for instance, the mean reads:

Mr
ε “ xεyprq “ pCr

`C˚
q
´1 :

´

rC`C˚
¯

: ε. (3.12)

Besides, due to the quadratic dependence of the elastic energy on the strain field, the intraphase
second moment of the strain field distribution can be obtained from the partial derivatives of the
overall elastic energy rω with respect to the local elastic tensors Cr [30, 131, 193]

Σr
ε “ xεb εyprq “

2
fr

Brω

BCr
with rω “

1
2ε : rC : ε. (3.13)

In a general context of anisotropy, the SC estimate of the intraphase second-moment is solution of
a linear system which requires the numerical integration of the Hill microstructural tensor P and
its derivative BP{BrC [36, 37].
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3.2.3 FFT-based computations
The distribution of the elastostatic fields in polycrystals can be addressed by considering unit-
cell computations with different microstructure models. We consider the classical Poisson-Voronoi
tessellation [160, 166] and, for comparison, a modified Poisson-Johnson-Mehl partition of the 3D
space, with anisotropic distance functions [84] (see Fig. 3.1a). The latter has been optimized to
model a TATB (triamino-trinitrobenzene, a molecular triclinic crystal) polycrystal material [8] and
in particular contains much more grains with elongated and non-convex shapes than in the Voronoi
tessellation. The TATB crystals are strongly anisotropic. Their elastic behavior displays a general
triclinic symmetry [21] which may be approached by transverse isotropy. In this study, we adopt
the approximation of the crystal elastic tensor used in [86]. For simplicity, the crystallographic
orientations in the grains are independent and uniformly-distributed on the sphere, leading to an
isotropic effective response.

-1 0 1 2 3 4 ε
xx
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0.2

0.4

0.6

0.8

P
ε

xx

Voronoi

Johnson-Mehl

-1 0 1 2 3
0

0.4

0.8

(a) (b)

Figure 3.1: (a) Poisson-Johnson-Mehl tesselation of space made of elongated grains (2D cut).
(b) Mean over three realizations of the distribution Pεxx of the strain component εxx in Poisson-
Voronoi (dashed gray line) and Poisson-Johnson-Mehl (black) polycrystals. Inset (bottom-right):
individual distributions, computed in each one of the three realizations.

Numerical computations are carried out using a spectral Fourier method [174, 249] on voxel
grids containing 10243 voxels and about 104 grains for the Voronoi model, and 2563 voxels and about
200 grains for the Johnson-Mehl model. As an example, we apply a macroscopic hydrostatic strain,
normalized so that xεmy “ 1. The field distributions Pεxx are computed for three independent
realizations of the Johnson-Mehl and Voronoi models (Fig. 3.1b). The overall distribution is
nearly the same for all three realizations of the Voronoi model, except for small variations near
the maximum εxx « 0.6 of the distribution (Fig. 3.1b, gray lines). As expected, the Johnson-Mehl
model displays much higher variations with respect to the realizations (Fig. 3.1, inset). When
averaged, however, the distributions for the Voronoi and Johnson-Mehl models nearly coincide
(Fig. 3.1, black and gray solid lines). This result suggests that the histograms for the elastic fields
are not very sensitive to the grains shape, at least for moderate anisotropy.
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Figure 3.2: (a,c,e) Probability distribution function Pε for the mean and equivalent strains
(εm, εeq) and strain components (εxx, εxy), (b,d,f) Probability distribution function Pσ for the
mean and equivalent stress (σm, σeq) and stress components (σxx, σxy). Gray solid line: Self-
consistent estimate; Black solid line: FFT computation. (a,b) Overall hydrostatic loading with
xεmy “ 1. (c,d) Shear loading with xεxyy “ 0.5 (e,f) Uniaxial strain loading with xεxxy “ 1.
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In the following, all computations are carried out using the Johnson-Mehl tessellation, dis-
cretized on a volume of 5123 voxels and containing about 1, 250 grains. In the sequel, the full-field
distributions are compared with the mean-field approximation based on the self-consistent model
together with an assumption of intraphase normal distribution.

3.2.4 Elastic fields distribution: self-consistent estimates vs. FFT re-
sults

We evaluate the reconstruction of the fields distribution which is obtained by assuming a multi-
variate normal probability distribution within each phase prq (r “ 1, . . . , N). Each distribution is
characterized by the intraphase mean and variance which are estimated with the SC model. These
“mean-field” distributions are compared with reference FFT results for isotropic TATB-like poly-
crystals made of grains with hexagonal symmetry (transversely isotropic elastic behavior). The
implicit SC equation (3.11) is solved by considering an isotropic distribution of the phases (i.e.
spherical inclusion for the ancillary Eshelby inclusion problem) and a set of crystalline orienta-
tions. To approximate an isotropic crystallographic texture (i.e. uniform orientation distribution
function), the space of orientations has been discretized by considering a division of the standard
triangle, for hexagonal crystal symmetry, in equal area domains [209]. The isotropic texture is
represented by a set of 2160 crystalline orientations (i.e phases) with equal volume fractions. Our
numerical results on the overall bulk and shear moduli agree with the analytical result of the SC
estimate for isotropic polycrystals made of hexagonal grains [26].

The probability distribution functions Pε and Pσ, for field components and invariant quantities,
have been computed for macroscopic hydrostatic xεmy “ 1, shear xεxyy “ 0.5 and uniaxial xεxxy “ 1
strain loadings. The comparisons with the FFT computations show an overall good agreement
with a correct description of the distributions asymmetry (Fig. 3.2). These results on linear
elastic polycrystalline aggregates are consistent with those reported for linear viscous two-phase
particulate composites [110].

3.3 Field distributions in cracked media: homogeneous
body under plane strain

This section focuses on the elastic field distributions in a homogeneous body containing cracks and
subjected to plane strain. In Subsection 3.3.1, a model problem made of an isolated crack or a
population of randomly-oriented non-interacting cracks is investigated analytically. Emphasis is
put on Van Hove singularities and a methodology is proposed to reconstruct the field distributions
in the case of a population of interacting cracks. In subsection 3.3.2, the method’s predictions are
compared to FFT-based computations.

3.3.1 Van Hove singularities
As previously stated, Van Hove singularities are non-differentiable points in the probability distri-
bution function P ptq of a spatial field. These singularities are contributions of regions where the
spatial gradient of the field vanishes. The type of singularity depends on the eigenvalues of the
Hessian (second-order spatial derivatives) matrix being of the same or opposite signs [161]. For a
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Figure 3.3: Coordinate systems around a crack (hashed area), in plane strain.

field in 2D space, a saddle-point generates a logarithmic singularity of the type P ptq „ ´ log |t´ t0|
where t0 is the value of the field at the saddle-point. In 2D again, a local extremum generates a
finite jump in P ptq at t “ t0, where t0 is the field extremal value. In 3D, saddle-points and local
extrema induce powerlaw singularities with exponent 1{2, therefore the probability distribution
P ptq remains finite while its derivative is unbounded. “Extended” Van Hove singularities [4] may
in addition occur if the Hessian matrix has one or more zero eigenvalues. In 2D, blow-ups of
the probability distribution function as a powerlaw of exponent ´1{2 [4] or ´1{3 [260] have been
reported.

Isolated crack We now examine histograms for the stress field surrounding an isolated crack.
Vector and tensor components refer to a Cartesian coordinates system (ex, ey, ez). The crack is
modeled as an infinitely-thin cylinder of equation |x| ă a, y “ 0, that is, its length is 2a and its
axis is parallel to ez (see Fig. 3.3). The crack is subjected to plane strain in the (ex, ey) plane (i.e.
εiz ” 0, i “ x, y, z) and to remote biaxial stress loading, resulting in σxx “ σyy “ σk ą 0, σxy “ 0
where σ “ xσyΩ is the mean of the stress field over a very large domain Ω surrounding the crack.

In the vicinity of the crack tips, the stress components σij become singular [246]. In the three
polar coordinate systems (r, θ), (r1, θ1) and (r2, θ2) the stress around an isolated crack is expressed
as [229]:

σxx
yy

“
σkr
?
r1r2

„

cos
ˆ

θ ´
θ1 ` θ2

2

˙

¯
a2

r1r2
sin θ sin 3

2pθ1 ` θ2q



, (3.14a)

σxy “
σkra

2

pr1r2q3{2
sin θ cos 3

2pθ1 ` θ2q. (3.14b)

Variables r1,2 and r denote the distances to the crack tips and to the mid-point along the crack,
respectively, and θ1,2, θ are resp. the angles formed between the x-axis and the line joining the
crack tips and the mid-point along the crack (see Fig. 3.3). The stress intensity factor “seen” by
the crack is σk{

?
2πa [229]. Maps of the three stress components are shown in Figs. (3.4a-c).

Consider now the probability distribution Pijpσk; tq of σij “ t, computed within a region Ωk.
We assume that Ωk is a circular domain with radius D and surface fraction f “ πD2{S and seek
for the behavior of Pijpσk; tq when t “ 0, or t “ ˘8. Set θ1 “ π ´ dθ1 and θ2 “ dθ2 and expand
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(a) σxx P r0; 4s

(b) σyy P r0; 4s

(c) σxy P r´2; 1s

Figure 3.4: Maps of the stress components σij around an isolated crack with σk “ 1 GPa
(Eqs. 3.14), in a domain 2a ą x ą 0, y ą 0 (see Fig. 3.3). Annotated regions enclosed by contour
lines determine the behavior of Pijptq as t Ñ 0, ˘8. Regions A, A1, A2, A3: t Ñ 0. Region B:
t Ñ 8. Region C: t Ñ ´8. To highlight the field patterns, values lower than a minimum and
higher than a maximum are thresholded out (see legend, units are GPa). Lowest values are shown
in blue and highest values in yellow. Intermediate values in green and orange.

(3.14) in the limit dθ1 Ñ 0, dθ2 Ñ 0. One obtains:

σyy “ σk
1` 4px{aq2

r1´ px{aq2s7{2
´y

a

¯3
`Opy5

q. (3.15)

When t is small, the region where 0 ă σyy ă t is accordingly delimited by the curves of equation:

y “ ˘a
r1´ px{aq2s7{6

r1` 4px{aq2s1{3
t1{3

σ
1{3
k

, ´a ă x ă a (3.16)

(region A, Fig. 3.4b). Integrating the above function leads to the extended Van Hove singularity:

P tσyypxq ă t; x P Ωku “
4a2t1{3

σ
1{3
k |Ωi|

ż 1

0

dup1´ u2q7{6

p1` 4u2q1{3
`Optq « 0.701 a2t1{3

D2σ
1{3
k

, (3.17a)

Pyypσk; tq « 0.234 a2

D2σ
1{3
k t2{3

hptq, tÑ 0, (3.17b)

where hp‚q “ maxpsignp‚q, 0q denotes the Heaviside function.
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Component σxx vanishes along the crack lips (region A, Fig. 3.4a), and its probability distri-
bution function Pxx presents a jump at t “ 0:

σxx “
2σk

r1´ px{aq2s3{2
y

a
`Opy2

q, Pxxpσk; tq “
3a2

8D2σk
hptq, tÑ 0. (3.18)

Component σxy is zero along the two lines y “ 0, x “ 0 (regions A1 and A3, Fig. 3.4c) and along
four curves starting from the crack tip at angles θ1 “ ˘π{3, θ2 “ ˘2π{3 (region A2, Fig. 3.4c).
The gradient of the field σxy is zero along the segment y “ 0, ´a ă x ă a (region A1), and is
non-zero in regions A2 and A3. The contributions to Pxyptq (t ! 1) of regions A2 and A3 are
accordingly finite, so that only the contribution of region A1 matters. A Taylor expansion provides
in the right-upper quadrant x ą 0, y ą 0:

σxy “ ´
3σkx{apy{aq2

r1´ px{aq2s5{2
, Pxy “ ´

a2Γp´3{4qΓp9{4q
2
?

3D2π3{2
a

σk|t|
«

0.2839a2

D2
a

σk|t|
, tÑ 0, (3.19)

where Γp‚q is the extended factorial function, or Gamma function.
The tails of the distributions are now derived using the asymptotic near-tip expansions [229]

(see regions B and C in Figs. 3.4a-c):

σxx
yy
“
σk
?
a

?
2r1

cos θ1

2

ˆ

1¯ sin θ1

2 sin 3θ1

2

˙

, σxy “
σk
?
a

?
2r1

sin θ1

2 cos θ1

2 cos 3θ1

2 . (3.20)

We solve the three equations σij “ t for tÑ ˘8 and obtain r1 as a function of θ1 and t. The prob-
ability distributions Pxxpσk; tq and Pyypσk; tq are obtained by integration of ´p4{πD2qr1Btr1 over θ1
in the range r´π; πs. The distribution Pxypσk; tq is derived by integration of the same quantity over
the domain r´π;´π{3s Y r0;π{3s (when t Ñ 8, see region B, Fig. 3.4c) and r´π{3; 0s Y rπ{3;πs
(when tÑ ´8, see region C, Fig. 3.4c). This yields, to leading order-term in t:

Pxxpσk; tq „
177a2σ4

k

512D2t5
, tÑ `8, (3.21a)

Pyypσk; tq „
1089a2σ4

k

512D2t5
, tÑ `8, (3.21b)

Pxypσk; tq „
9a2σ4

k

1024D2|t|5
, tÑ ˘8. (3.21c)

The various probability distribution functions P ijptq “ Pijpσk “ 1; tq, computed numerically
from (3.14) on grids of 50002 voxels, are shown in Fig. (3.5a). They present Van Hove singularities
not only at t “ 0, ˘8 but also at various finite values of t. For reasons that will be clear later on,
we do not investigate the later.

Randomly-oriented non-interacting cracks Assume now that the material is made up of
widely-separated cracks with uniformly-distributed orientations in the pex, ey) plane. Apply as
previously a biaxial remote stress σxx “ σyy “ σk ą 0, σxy “ 0 in plane strain. Consider a crack
oriented along a direction 0 ď β ď π with respect to the x-axis. The stress components σβij are
obtained by a rotation of angle β in the plane (ex, ey) of the stress tensor given in (3.14). For
instance σβxx reads:

σβxx “ σxx cos2 β ` σyy sin2 β ´ σxy sinp2βq. (3.22)
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Figure 3.5: (a) Probability distribution functions P ijptq for the stress component σij around an
isolated crack of length a, in a disk-shaped domain of radius D centered around the crack. (b)
Probability distribution functions P ˚ijptq for the stress component σij around a set of isolated cracks
of length a with uniform orientations, in disk-shaped domains of radius D centered around each
crack.

The stress component σβxx vanishes along the crack tips and a Taylor expansion provides:

σβxx “ 2 cos2 βσkpy{aq{r1´ px{aq2s3{2, y Ñ 0, ´a ă x ă a. (3.23)

Accordingly, the corresponding distribution presents a jump and:

P β
xxpσk; t “ 0q « 3a2

8D2σk cos2 β
hptq, tÑ 0. (3.24)

The above equation reduces to (3.18) in the special case β “ 0. The jump in (3.24) also blows up
when β “ π{2, at which point P β

xx develops the singularity given in (3.17b).
Consider now the p.d.f. P ˚xxpσk; tq “ xP β

xxpσk; tqyβ of the stress fields surrounding cracks with
stress factor σk, averaged over all orientations β. The smallest values of σk are concentrated in a
region near the crack tips. Furthermore, the size of this region is much more important for cracks
oriented with an angle β « π{2. Let us first examine the contribution of the values located along
the line x “ 0. Set r “ y, θ “ π{2, θ1 ` θ2 “ π, r1 “ r2 in (3.14) and (3.22). We obtain:

σβxxp0, yq “
σky pa

2 cosp2βq ` a2 ` y2q

pa2 ` y2q
3{2 . (3.25)

We solve σβxx “ t for β and determine the interval β P rβ1py, tq; π{2s that contributes to values of
σβxx in the range r0; ts. This interval is not empty whenever y ă ymax “ at1{3{

b

σ
2{3
k ´ t2{3. The

region of interest, where the r.h.s. of (3.24) blows up, is y « ymax (as also confirmed by Eq. 3.16),
therefore we make use of the variable change y “ y1t1{3 in the following integral and obtain to
leading-order in t:

ż ymaxptq

0
dy rπ{2´ β1py, tqs 9

at2{3

σ
2{3
k

, tÑ 0`. (3.26)
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Accordingly, the contribution of the line x “ 0 to P ˚xx scales as „ t´1{3. The analytical compu-
tation of the contribution of the entire domain Ω proves cumbersome and we resort to numerical
computations. The distribution P β

xx is computed by discretization of the field σβxx on a grid of
10, 0002 pixels, and P ˚xx is computed by averaging over 100 regularly-spaced values of the angle β.
A fit of the numerical data, gives, with excellent agreement over two decades (see Fig. 3.6a):

P ˚xxpσk; tq „ 0.44a
2σ

1{3
k

D2 t´0.33, tÑ 0`, (3.27)

which suggests an extended Van Hove singularity P ˚xx “ P ˚yy „ t´1{3, as hinted by (3.26). This
is a less singular behavior at the origin than that of the probability distribution Pyy obtained for
parallel cracks (Eq. 3.17b), which blows up as „ t´2{3.

Regarding component σxy, numerical computations also provide the following fit:

P ˚xypσk; tq « ´0.91 a
2

D2 log |t|
σk
, tÑ 0, (3.28)

with good agreement ranging over two and a half decades (see Fig. 3.6b). A powerlaw with small
exponent P ˚xy „ t´0.1 instead of a logarithm can not be ruled out (Fig. 3.6b, inset) but appears less
consistent with the data available. The logarithmic blow-up (3.28) is a weaker singularity than
that obtained for the traction components σxx or σyy (Eq. 3.27).
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Figure 3.6: Numerical fit of the probability distribution functions P ˚xx, in log-log plot (a) and
P
˚

xy, in semi-log plot (b) for components σxx and σxy, in media with randomly-oriented cracks.
Solid line in (a): fit (3.27); in (b): fit (3.28), up to a constant term. Inset in (b): log-log plot of
the data with fit P ˚xy “ 5.5pa{Dq2pt{σkq´0.1.

Finally, the behavior at t “ ˘8 is computed analytically in the same manner as in Sec. (3.3.1).
We obtain, the x- and y-axis being statistically equivalent directions:

P ˚xx
yy
pσk; tq „

585a2σ4
k

512D2t5
, tÑ `8, (3.29a)

P ˚xypσk; tq „
9a2σ4

k

1024D2|t|5
, tÑ ˘8. (3.29b)
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Observe that the prefactor for P ˚xx (or P ˚yy) lies in-between that of Pxx and Pyy, while it is unchanged
for the shear component xy (Eq. 3.21c).

The probability distribution functions P ˚ijptq, are shown in Fig. (3.5b). They are computed
numerically from (3.14) and (3.22) on grids of 50002 voxels. The parameter β is discretized along
200 values. Note that, as for the distribution functions P ij, they present Van Hove singularities
at finite values of t, not investigated in the present work.

Parallel and randomly-oriented interacting cracks Consider now a population of interact-
ing identical cracks, either parallel to one another or randomly-oriented. To take into account
crack interactions, we assume that the overall distribution of the stress field around the cracks
is the same as that of a set of isolated cracks subjected to random stress intensity factors, with
a probability law for the stress intensity factors to be determined. As in the previous sections,
the material is subjected to plane strain and in-plane biaxial stress loading. The cracks density is
monitored by the non-dimensional parameter η “ Nc{Sa

2 where S “ |Ω| is the surface area of the
domain Ω and Nc the number of cracks within the domain.

Consider a particular component σij in a domain Ωk containing a crack with remote stress σk,
and with field distribution Pij. Clearly:

Pijpσk; tq “
1
|σk|

P ij

ˆ

t

σk

˙

, (3.30)

where P ijptq “ Pijp1; tq is the distribution obtained when taking σk “ 1. For a continuous
distribution qpsq of stress intensity factors in domains Ωk (k “ 1, ..., Nc) with Nc very large, the
probability distribution of σij over Ω, is given by the convolution product:

rPijptq “

ż `8

´8

dsqpsq
|s|

P ij

ˆ

t

s

˙

“

ż `8

´8

duP ijpuq

|u|
q

ˆ

t

u

˙

,

ż 8

´8

ds qpsq “ 1. (3.31)

We also denote rP ˚ijptq the orientation-averaged distribution rPijptq, equal to:

rP ˚ijptq “

ż `8

´8

dsq
˚psq

|s|
P
˚

ij

ˆ

t

s

˙

,

ż 8

´8

ds q˚psq “ 1, (3.32)

where P ˚ijptq “ P ˚ijpσk “ 1; tq. The fields moments (n “ 1, 2, ...) read:

xtny
rPij
“ xtnyP ijxt

n
yq, xtny

rP˚ij
“ xtny

P
˚

ij
xtnyq˚ . (3.33)

In principle, these formula can be used to reconstruct q knowing rPij and P ij, under some con-
ditions [224]. In practice, the problem is ill-posed and efficient numerical algorithms must be
implemented [119]. In the present situation, our knowledge of the two moments in (3.33) leads to
the natural assumption that q and q˚ are Gaussian kernels:

qpsq “
1

?2πvq
exp

ˆ

´
ps´ µqq

2

2vq

˙

, q˚psq “
1

a

2πv˚q
exp

ˆ

´
ps´ µ˚q q

2

2v˚q

˙

, (3.34)

where we assume µq ą 0, µ˚q ą 0. In doing so, we smooth out singularities that may be present
in distributions P ij and P

˚

ij except possibly at t “ 0 and t “ `8, which are fixed under the
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transformation t ÞÑ t{s. We emphasize that other choices are possible. Kushch et al. [133],
notably, modeled the distribution of stress intensity factors in similar heterogeneous media using
a Gumbel (double exponential) law.

Let us examine the possible Van Hove singularities of rPij and rP ˚ij as tÑ ˘8. Using Eqs. (3.21)
we obtain:

rPxx
yy
ptq „ pxx

yy
|t|´5

ż 8

0
ds s4qpsignptqsq, tÑ ˘8, (3.35a)

rPxyptq „ pxy|t|
´5

ż 8

0
ds s4

rqpsq ` qp´sqs , tÑ ˘8, (3.35b)

where pijpt{σkq´5 is the asymptotic behavior of Pijpσk; tq as t Ñ 8 provided by Eqs. (3.21). The
same relations are obtained for rP ˚ij with prefactors pij given by (3.29a) instead. Note that rPxx,
rPyy, rP ˚xx and rP ˚yy possess distribution tails as tÑ ´8, unlike distributions P xx and P yy. The tails
are asymmetric: the prefactor at t “ ´8 is lower than that obtained in the t “ `8 limit.

The behavior of rPyy as tÑ 0 is determined as:

rPyyptq „ p1yy|t|
´ν

ż 8

0
ds sν´1qpsignptqsq, tÑ 0˘, (3.36)

where p1yyt´ν (ν “ 2{3) is the asymptotic behavior of P k
yypσk; tq as t Ñ 0` (see Eq. 3.26). The

behavior of rP ˚xx “
rP ˚yy as t Ñ 0 is obtained by taking ν “ 1{3 and by replacing prefactor p1yy by

that provided by Eq. (3.27). The behavior of rPxy as tÑ 0 is obtained as:

rPxyptq „ p1xy|t|
´1{2

ż 8

0
ds s´1{2

rqpsq ` qp´sqs , tÑ 0. (3.37)

where p1xy|t|´1{2 is the asymptotic behavior of P k
xy given in (3.19).

We finally consider distribution rPxx which takes a finite value when t “ 0` and is zero when
t ă 0 (3.18). The integral in (3.32) is splitted into two intervals r0; t{t0s and rt{t0;8s. Assuming
0 ă t ! t0 ! 1:

ż t{t0

0

ds
s
q

ˆ

t

s

˙

P xxpsq « ´qpt0qP xxp0q logpt0q, (3.38a)
ż 8

t{t0

ds
s
q

ˆ

t

s

˙

P xxpsq « ´qpt0qP xxp0q log t

t0
. (3.38b)

A similar behavior is obtained when tÑ 0´ so that:

rPxxptq „ ´qp0qP xxp0`q log |t|, tÑ 0˘. (3.39)

This singularity, a logarithmic blow-up, is generated by regions around cracks subjected to nearly
zero remote stress, consistently with (3.32). Notice that P xx displays a finite jump at t “ 0
(Eq. 3.18), unlike rPxx. A similar treatment, carried out on distribution P ˚xy (Eq. 3.28), leads to:

rP ˚xyptq „
qp0q

2 log2
|t|, tÑ 0˘. (3.40)
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σij P ij
rPij P

˚

ij
rP ˚ij

t “ 0˘
σxx hptq ´ log |t|

hptq|t|´0.33 h‚ptq|t|
´0.33

σyy hptq|t|´2{3 h‚ptq|t|
´2{3

σxy |t|´1{2 |t|´1{2 ´ log |t| log2
|t|

t “ ˘8
σxx, σyy hptq|t|´5 h‚ptq|t|

´5 hptq|t|´5 h‚ptq|t|
´5

σxy |t|´5

Table 3.1: Van Hove singularities of the probability distribution functions of the stress components
σij in the non-interacting model of parallel (P ij) or randomly-oriented (P ˚ij) cracks, and in the
respective interacting models ( rPij and rP ˚ij). Prefactors are omitted for clarity. The term h‚ptq
designates a function with a finite jump at t “ 0, of the type 1` bhptq with b ą 0.

Again, the nature of the singularity is different from the logarithmic blow-up found for P ˚xy in (3.28).
The Van Hove singularities at t “ 0 and t “ ˘8 of the distribution functions P ij, rPij, P

˚

ij and
rP ˚ij are summarized in Tab. (3.1). As previously noted, the singularities of rPij are different from
that of P ij. For instance rPyy develops powerlaw singularities when tÑ 0´ or tÑ ´8, contrarily
to P yy which has support on r0;8[. Likewise, rPxx develops a logarithmic singularity when tÑ 0´,
contrarily to P xx. Also, as will be seen later on, distributions rPijptq and rP ˚ijptq do not present
singularities at finite (non-zero) values of t.

3.3.2 FFT-based computations
Reconstruction of the overall stress distribution vs. FFT data We compute numerically
the stress distributions occurring in the solid phase of a 2D Boolean set [216] of cracks subjected
to plane strain. The cracks are parallel to one another. Again, we use the FFT scheme with
“backward-forward” finite difference [258], appropriate to the presence of discretized cracks [85],
and computations are carried out on two independent realizations of the Boolean model, discretized
on a 20482-pixels grid. We follow [85] and discretize the cracks as thin rectangles of width w “ 1.5
voxel. In all computations hereafter, the overall applied stress is by convention equal to 1 GPa so
that xσxxy “ xσyyy “ 1. The cracks have a finite thickness, therefore the mean of the stress field
in the solid phase is slightly above 1 GPa.

The probability distribution function rPxxptq is compared with FFT results in Fig. (3.7a). The
first and second moments of the distribution of the stress intensity factor q, used to compute rPxxptq,
are adjusted so that the moments of rPxxptq fit the corresponding FFT data (see 3.33). The values
of a and D are chosen so that the crack density parameter η is the same in the FFT computations
and in each domain Ωk, i.e.

η “
Nca

2

S
“

a2

πD2 , (3.41)

where Nc “ 60 is the number of cracks in FFT computations, S “ 20482 is the surface of the
unit cell, a “ 25 pixels, and so η « 0.035, D « 75 pixels. It is emphasized that FFT numerical
results have been used, in the present work, to tailor the first and second-order moments of rPxx.
In principle, however, such moments could be determined using self-consistent estimates. For a
cracked body in plane strain, these estimates, which include the case of an anisotropic embedding
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Figure 3.7: Probability distribution functions rPyyptq and rP ˚yyptq (solid black lines) for the stress
component σyy, in a matrix containing a set of (a) parallel and (b) randomly-oriented cracks, resp.,
under plane strain. Gray solid lines: FFT results obtained on two random realizations. Solid line
marked G: Gaussian distribution. Inset: enlargement in the region rP ˚yyptq ă 0.5.

medium, have been derived analytically by Nemat-Nasser & Horri [105].
A similar procedure is used in the random case. Consider the low crack-density regime η ! 1.

Eq. (3.33) gives the first and second-moments of q˚, given that of rP ˚ij. The latter are provided by
FFT computations, carried out on a 81922 pixels grid. We use a “ 25 pixels, Nc “ 20, D “ 129
and η “ 0.011. The mean and second-order moments of rP ˚yy, given by FFT computations, are
1.0007 and 1.0279 resp. and the mean and variances of q are 1.0103 and 3 10´4 resp. Results are
shown in Fig. (3.7b).

The method however breaks down when η is larger than about 0.05, at which point (3.33)
predicts a negative variance for q, so that this constraint can not be satisfied anymore. Indeed,
our method assumes that all cracks are loaded in mode-I. In random media, in reality, the regions
in which cracks are embedded are subjected to varying loadings, combining several modes. Fur-
thermore, in the present method, the distribution q entering (3.33) does not depend on the stress
component considered, hence, one can not simultaneously satisfy all set of constraints on the first
and second moments of the stress components. Taking into account other modes would, in theory,
provide additional degrees of freedom, at the expense of a more analytically-involved treatment.

Van Hove singularities We now focus on the singularities of the probability distribution func-
tions P ˚,FFTij , predicted by numerical FFT computations. All computations are carried out on two
independent realizations of a Boolean model of cracks, discretized on a 81922 pixel grid containing
Nc “ 200 cracks. To highlight possible Van Hove singularities, we choose a crack density equal to
η “ 0.12 with a “ 25 pixels. The following powerlaw behaviors are observed. When tÑ ˘8:

P ˚,FFTxx,yy « |t|´5
ˆ

"

1.8, tÑ `8,
0.03, tÑ ´8, (3.42a)

P ˚,FFTxy « 0.02|t|´5, tÑ ˘8 (3.42b)
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Figure 3.8: Probability distribution functions P ˚,FFTyy and P ˚,FFTxy for the stress components σyy
(a) and σxy (b) in randomly-oriented cracks, in log-log plot, as predicted by FFT computations.
Solid and dotted lines: powerlaw fit (3.42) and (3.43) in the domains |t| ! 1 and |t| " 1.

(see Figs. 3.8a-b). When tÑ 0:

P ˚,FFTxx,yy «

"

0.19t´0.18, tÑ 0`,
0.074|t|´0.33, tÑ 0´. (3.43)

Fits (3.43) should be taken with care as the two powerlaw regimes are observed on two decades
only, or less (see Fig. 3.8a). The behavior of P ˚,FFTxy as tÑ 0 is not provided here, as FFT results
are inconclusive.

FFT data for the distribution P ˚,FFTxx,yy are shown in Fig. (3.9) for varying values of the crack

10
-3

10
-2

10
-1 1 |σyy| [GPa]

10
-5

10
-4

10
-3

10
-2

10
-1

1

10
1

Pyy
*,FFT(t) [GPa

-1
]

 η=0.6
   t>0

 η=0.12
     t>0

 η=0.12
     t<0

 η=0.6
   t<0

 η=0.01
     t<0

 η=0.01
     t>0

10
-2

10
-1 1 |σyy| [GPa]

10
-5

10
-4

10
-3

10
-2

10
-1

1

10
Pyy

*,FFT(t), Pyy
FFT(t), Pyy

~*(t), Pyy

~
  (t) [GPa

-1
]

Pyy

~

Pyy

~*

Pyy
FFT

Pyy
*,FFT

(a) (b)

Figure 3.9: (a) Log-log plot of the probability distribution function P ˚,FFTyy for the stress com-
ponents σyy in media with randomly-oriented cracks, as predicted by FFT computations. Dots:
FFT data for η “ 0.01, 0.12 and 0.6. Dashed lines: powerlaws „ t´1{3 (see text). (b) Comparison
between the probability distribution functions P FFT

yy , P ˚,FFTyy , predicted by FFT (dots) and models
rPyy and rP ˚yy (solid black lines), in log-log plot.
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density parameter η. For η “ 0.01, the data is consistent with the prediction rP ˚yyptq „ |t|´0.33

(Tab. 3.1) in the region t Ç 0 (see dashed lines with slope ´1{3).
Fig. (3.9b) shows, in log-log scale, the distribution functions P FFT

yy and P ˚,FFTyy for the stress
component σyy in media with parallel (η “ 0.035) and randomly-oriented (η “ 0.01) cracks, as
computed by FFT (black dots). This data is compared to the estimates rPyy and rP ˚yy given by
Eq. (3.31) (solid lines). The Van Hove powerlaw singularities for the distribution tails (t Ñ 8)
and near zero (tÑ 0`) are accurately reproduced. Dashed lines are powerlaw fits of the FFT data
with exponent ´1{3 and ´2{3. When t ă 0 however, estimates rPyy and rP ˚yy greatly underestimate
the true distributions P FFT

yy ptq and P ˚,FFTyy ptq. Indeed, for negative values of t, the distributions
rPyy and rP ˚yy fall outside of the graph in Fig. (3.9b) and are not represented. But again, the present
approach does not take into account mixed-mode loadings and all cracks are supposed open so that
high negative values of the stress components are presumably induced by regions around crack tips
subjected to compression or mixed-mode loadings, which are not taken into account in the present
approach.

(a) (b) (c)

Figure 3.10: (a) Polycrystal model JM-I with integranular cracks. (b) Model JM-T with trans-
granular cracks. Cracks orientation uncorrelated to the crystal symmetry axis. (c) Model JM-TW
with “weak-plane” transgranular cracks. Cracks oriented parallel to the basal plane in each crystal.

3.4 Field distributions in cracked polycrystals
This section is concerned with various models of cracked polycrystals based on the Johnson-Mehl
model and introduced in [86]. The first one is a polycrystal with intergranular cracks, denoted JM-I
and represented in Fig. (3.10a). Three transgranular cracks models are also considered. In the first
one, denoted (JM-T), crystals and cracks orientations are uncorrelated and uniformly-distributed
on the sphere (Fig. 3.10b). In the other two transgranular crack models, the cracks orientation
are correlated to the crystal directions. In the “weak-plane” transgranular model, denoted (JM-
TW), cracks are oriented parallel to the crystal basal plane (Fig. 3.10c). In the stiff-plane model,
denoted (JM-TS), the cracks are oriented perpendicular to the basal plane. Finally, for comparison
purposes, we also consider a homogeneous body containing cracks, denoted (JM-IB), obtained by
replacing the grains in model (JM-I) by a homogeneous isotropic medium with the same elastic
properties as those of the sound polycrystal. The density of cracks is fixed to η “ 0.24 in all
models.

The distributions of the equivalent strain εeq, mean strain εm and shear strain εxy are shown
in Figs. (3.11a-f), for hydrostatic strain loading xεmy “ 1 and shear strain xεxyy “ 0.5. Solid lines
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Figure 3.11: Histograms of the strain field components εeq (a,b), εm (c,d), εxy (e,f) in various
cracked media, subjected to hydrostatic strain loading (a,c,e) or shear (b,d,f). JM-I: polycrys-
tal with intergranular cracks. JM-T: transgranular cracks. JM-TW: “weak-plane” transgranular
cracks. JM-TS: “stiff-plane” transgranular cracks. JM-IB: homogeneous cracked body. Embedded
graphs: strain distribution in the region ε « 0.
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Figure 3.12: Tail of the distributions Pεxxptq (t " 1) of the strain field εxx in media subjected
to hydrostatic strain loading: comparison between sound Voronoi (V) and Johnson-Mehl (JM)
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Pεxxptq “ 10t´4.7. Gray dashed line marked SC: self-consistent estimate for a sound polycrystal.

represent polycrystals with transgranular cracks. Dashed lines refer to the integranular model (JM-
I) and homogeneous cracked medium (JM-IB). Overall, the field distributions differ significantly
depending on the microstructure. In models with transgranular cracks, the correlation between
the cracks orientation and the grains basal plane has a strong effect on the field distribution εm,
for hydrostatic strain loading (Figs. 3.11c).
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Figure 3.13: Distribution of stress components σxx, σeq and σxy in a polycrystal with transgranular
cracks oriented along basal planes (model “TW”). Solid lines: self-consistent estimates; dashed
lines: FFT computations. (a): Hydrostatic strain loading. (b) Shear strain loading.

All field distributions exhibit a singularity, or accumulation point at ε “ 0. For the von
Mises equivalent deviatoric part εeq, a local peak appears near ε “ 0, in all models, whereas the
distributions for εeq and εxy blow up at ε “ 0. The peak appears to be more important for model
with intergranular cracks than for models with transgranular cracks.
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The decay of the distribution tails for the strain component εxx is shown in Fig. (3.12), for
various models subjected to hydrostatic loading. The transgranular model (JM-T) and intergran-
ular model (JM-I) as well as a sound polycrystal model, with Johnson-Mehl (JM) or Voronoi (V)
tessellation are considered. Models (JM-T) and (JM-I) exhibit powerlaw decays Pεxxptq „ t´ν as
t Ñ 8 with ν « 4.7 « 5. This exponent is close to that obtained in plane strain (Sec. 3.3).
As shown by Fig. (3.12), the distribution of the field εxx decays at a much faster rate in sound
polycrystal models (light gray curves) than in cracked polycrystal models (dark gray curves). For
Jonsohn-Mehl and Voronoi sound polycrystals, the rate of decay for the distribution Pεxxptq as
tÑ 8 is close to that of a powerlaw. The exponent of the powerlaw is about ´8. It varies greatly
with the realization of the model (not shown) but is nevertheless much lower than ´5. In any case,
such powerlaw decay may result from the blow-up of the elastic fields at multimaterial corners,
which has been studied, notably, in plane strain and plane stress problems [18, 17, 146, 16, 147].
The powerlaw decay is not predicted by the self-consistent method described in Sec. (3.2), which
assumes a Gaussian intraphase field distribution (dashed line, Fig. 3.12).

We close this section by further considerations regarding a particular model, the one containing
weak-plane transgranular cracks (JM-TW). We make use of a self-consistent estimate, proposed
in [86] for this model, which assumes separation of scales between the cracks and grains. In this
method, the elastic moduli of each grain is weakened by the presence of micro-cracks. Thus,
the same methodology as proposed in Sec. (3.2) may be applied to model (JM-TW), provided
that the grains are replaced by weakened grains. Our results for the distribution of the stress
components σeq, σxx and σxy are shown in Fig. (3.13) and compared to FFT predictions. As
previously, hydrostatic or shear loading is applied, and the FFT histograms are computed in the
matrix only, as for the strain. In FFT computations, Van Hove singularities appear at σ “ 0. As
expected, the reconstruction making use of the self-consistent estimates are unable to reproduce
such singularities.

3.5 Conclusion
To investigate how one may use homogenization theories to predict the field probability distribution
functions in linear elastic solids, the present contribution has examined two model problems in
mechanics, that of a polycrystal and that of cracked media. Two different methods have been
followed, based on an ansatz for the field distributions in grains or in regions surrounding a crack.
Our main results are as follows.

The probability distribution function of the local elastic fields in sound polycrystals, with
highly anisotropic grains and Johnson-Mehl or Voronoi tessellation microstructures, is accurately
predicted by the self-consistent model and an hypothesis of multivariate Gaussian distribution of
the intraphase strain and stress fields, except for the distribution tails. The method is not sufficient,
however, when dealing with media containing cracks. The elastic fields in this case exhibit extended
Van Hove singularities at ε “ 0 or σ “ 0, even when the cracks are randomly-distributed and
randomly-oriented.

For the model problem of a homogeneous body containing a population of cracks and subjected
to plane strain, in particular, the probability distribution for the stress field exhibits a powerlaw
decay „ |σij|´5 as σij Ñ ˘8, resulting from the singularity of the elastic field at the crack tip. A
method has been proposed to reconstruct the probability distribution function of the stress fields,
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based on the assumption that the field surrounding each crack is governed by a stress intensity
factor which follows a Gaussian probability distribution. The method gives accurate predictions
for the probability distribution when the density of cracks is small, except for negative field values.
Finally, numerical Fourier-based computations carried out in cracked media in 2D and 3D suggest
a powerlaw decay „ |σij|´5. In 3D cracked polycrystals, FFT data confirm the existence of Van
Hove singularities at σij “ 0.

Acknowledgements I am indebted to R. Brenner for the reconstruction of the fields distribution
in Fig. 3.2 and for the text in Sec. 3.2.2.



Part II

Perfectly-plastic media

51





Chapter 4

Minimal paths in random media

In this chapter, we develop a method for computing upper-bounds on the length of
geodesics spanning random sets in two, three (or more) dimensions, with emphasis on
Boolean models containing a vanishingly small surface or volume fraction of inclusions
f ! 1. The distance function is zero inside the grains and equal to the Euclidean
distance outside of them, and the geodesics are shortest paths connecting two points far
from each other. The asymptotic behavior of the upper-bounds is derived in the limit
f Ñ 0. The scalings involve powerlaws with fractional exponents „ f 2{3 for Boolean
sets of disks and „ f 1{2 for the Boolean set of spheres. These results are extended to
models of hyperspheres in arbitrary dimension and, in two and three dimensions, to a
more general problem where the distance function is non-zero in the inclusions. Finally,
other fractional exponents are derived for geodesics spanning multiscale (Cox) Boolean
sets, based on inhomogeneous Poisson point processes, in two and three dimensions.

4.1 Introduction
The present chapter deals with various types of random sets representing microstructures, which are
made of particles embedded in a matrix. We focus on Boolean sets [158], studied in G. Matheron’s
seminal works [153, 155], for both theoretical and practical reasons. On the theoretical side, a key
property of these models is that of “infinite divisibility” [217]. Boolean models are obtained as
the limit of unions of non-Boolean models such as tessellations [217]. This property is regarded as
analogous, in the context of random sets, to that of the central limit theorem [217, 55] and suggest
that, from a theoretical point of view, Boolean sets play the same role with respect to unions as
the Gaussian distribution with respect to summation. On the practical side, Boolean models are
straightforward to simulate, and are arguably the most commonly-used for representing random
structures of the matrix-inclusion type (for a few examples among many, see e.g. [97, 240, 31]).

4.2 Boolean set of disks in two dimensions
This section details how to construct an upper-bound for the length of minimal paths spanning
random media in the continuum. Out attention is restricted to particulate materials with dilute
concentration of heterogeneities. We compare the bound with numerical results for the length of
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geodesics in finite-size systems. We also investigate the “rugosity” of the path used to construct
the bound and that of the minimal path.

Hereafter, a Boolean set [156, 217] of disks in R2, of surface fraction 0 ď f ď 1 is considered.
The disks have constant diameter D ą 0 and may interpenetrate. Their centers follow a homo-
geneous Poisson point process. Disks are crossed at no cost whereas the embedding medium is
crossed at a unit cost. The distance between two points A and B therefore reads:

dpA,Bq “ inf
pPK

ż 1

0
dt χppptqq ||Btpptq|| , (4.1)

χpM q “

"

0 if M lies inside a disk,
1 otherwise,

where χ is the indicator function of the embedding medium, || ¨ || is the Euclidean norm and:

K “
 

p P C
`

r0; 1s,R2˘ , pp0q “ A, pp1q “ B
(

(4.2)

is the set of continuous curves from A to B. Some immediate properties of the function dp¨, ¨q
follow from (4.1). For all points A, B and C:

dpA,Aq “ 0, dpA,Bq “ dpB,Aq ě 0, (4.3a)
dpA,Bq ď dpA,Cq ` dpB,Cq, dpA,Bq ď ||B ´A||, (4.3b)

so that d is a pseudo-distance. Also from (4.1), it is clear that any continuous portion p1 of the
path p is a minimal path between its extremal points. Accordingly, if the path p1 lies entirely
in the embedding medium (χpp1ptqq ” 1), it is necessarily straight. Therefore, minimal paths are
unions of segments joining disk centers. Assume, for convenience, that the end points of the line
segments are pA;C1; ...;CN ;Bq (N ě 0) where the Ci are disk centers of coordinates pCi

1;Ci
2q.

We now focus on the limiting behavior of the normalized distance:

ξ “
dpA,Bq

L
, L “ ||A´B|| Ñ 8. (4.4)

Without loss of generality, we assume that A is the center of a disk at the origin of a Cartesian
coordinate system pe1; e2q and that the line joining A and B is parallel to e1. When A is fixed
and LÑ 8, the computation of ξ amounts to study the limit shape of the set:

St “

"

1
t
B; dpA,Bq ď t

*

,
1
t
B “

ˆ

B1

t
; B2

t

˙

, (4.5)

as t Ñ 8. The above can be regarded as a growth process in the continuum [106, 59]. In the
present work, an isotropic Boolean set of disks is considered, and so the limiting shape S8 of St is
a disk with radius limLÑ8p1{ξq.

In the rest of this work, we study the behavior of limLÑ8 ξ in the dilute limit f Ñ 0, and more
exactly its leading-order correction in f . In effect, this amount to take the double limit:

lim
fÑ0

lim
LÑ8

ξ. (4.6)

The two limits are not interchangeable, for if A and B are fixed and f Ñ 0, the minimal path
between A and B is almost surely a straight line and ξ “ 1. Therefore, in the rest of this work
f ! 1 is fixed and L " D is chosen sufficiently large that the minimal path between A and B
passes through a very large number of disks (N " 1).
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U

V'

W

m

r

V

Figure 4.1: Three disks with centers U , V and W .

4.2.1 Three discs
Consider three non-intersecting discs, identified by their centers U , V and W . We denote by V 1

the projection of V onto the line pUW q and set ` “ ||U ´V 1||, m “ ||V ´V 1|| and r “ ||U ´W ||

(see Fig. 4.1). We are interested in the condition under which a path of minimal length joining U
to W must pass through V . Inequality:

||U ´ V || ´D ` ||V ´W || ´D ď ||U ´W || ´D

yields:

m ď

a

DpD ` 2rqpD ` 2r ´ 2`qpD ` 2`q
2pD ` rq . (4.7)

In the dilute limit f Ñ 0, taking r " D and ` " D, (4.7) reduces to:

m ď
a

2D`p1´ `{rq. (4.8)

Assuming that U and W are fixed, equation (4.7) defines a domain of interest where disks may
be looked for, in order to construct paths with small length. The surface of domain (4.8), scales
as:

S “ 2
ż r

0

a

2D`p1´ `{rqd` “ πr
?
Dr

?
8

. (4.9)

The width of this domain grows as„
?
r, which suggests a power-law behavior for the length of min-

imal paths in the dilute limit, in the continuum, following the argument of Roux & François [205].
This is detailed hereafter by the derivation of an upper-bound on ξ.

4.2.2 Upper-bound in the dilute limit
We identify U with the center Ci of the ith disk on a path pC1; ...;CNq andW as the “first” disk
encountered in the direction e1 starting from U , if the path was straight. The choice Ci`1 “W
amounts to follow closely direction e1 and is not advantageous, unless there exists no disk V
satisfying (4.7), an event that has a low probability. Hence, we consider instead the disk V
satisfying (4.8) with minimal value of `. Clearly, ` ! r and condition (4.8) becomes:

m ď
?

2D`. (4.10)

The above property suggests the following iterative procedure for constructing a path pC0; C1; ...;
CNq starting with the point C0. Knowing Ci, Ci`1 is the disk in the domain delimited by two
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C 

i

C 

i+1

(a) (b)

Figure 4.2: (a) Method for choosing the disk Ci`1, knowing Ci. (b) Path pA;C1; ...;CN ;Bq
defined by (4.12) and used to deliver an upper-bound on the length of geodesics.

curves of equation x2 “ Ci
2 ˘

a

2D|x1 ´ Ci
1|, with minimal coordinate x1 along e1 (see Fig. 4.2a):

Ci`1
“ arginfCPK1C1, (4.11)

K1 “
"

C a disk center; C1 ą Ci
1, |C2 ´ C

i
2| ď

b

2D|C1 ´ Ci
1|

*

.

This procedure may be compared to that used by Lee [140] who derived a bound on the minimal
length of self-avoiding paths in random lattices by selecting a series of points which move “as
directly as possible” from one vertex to another. In the present method, however, we consider a
continuum medium and the geodesics must follow a privileged direction.

Let us first replace condition (4.11) by:

Ci`1
“ arginfCPK2C1, (4.12)

K2 “

"

C a disk center; C1 ą Ci
1 `D, |C2 ´ C

i
2| ď α

b

D|C1 ´ Ci
1|

*

,

where α ą 0 is a constant to be optimized on. We also request that Ci
1 ą C1`D so that the disks

do not overlap. This technical assumption simplifies the analytical treatment, and has no effect in
the dilute limit where disks are “almost always” far from each other. Starting from C0 “ A, we
construct the path pA;C1; ...;CN ;Bq where the number N is chosen so that CN`1 is the first disk
center with coordinate along e1 larger than B1, i.e. CN`1

1 ą B1 and CN
1 ď B1. As in Sec. 4.2.1,

we set `i “ |Ci
1 ´ Ci´1

1 |, mi “ Ci
2 ´ Ci´1

2 (i ě 1). The path (4.12) provides the following upper
bound on ξ “ dpA,Bq{L:

ξ ď

řN
i“1

´

a

`2
i `m

2
i ´D

¯

` Z
řN
i“1 `i

, (4.13)

where Z “ ||CN ´B|| is the Euclidean distance from CN to B (see Fig. 4.2b). Rewrite (4.13) as:

1´ ξ ě

N
ř

i“1

´

D ` `i ´
a

`2
i `m

2
i

¯

´ Z

řN
i“1 `i

«

N
ř

i“1
rD ´m2

i {p2`iqs ´ Z
řN
i“1 `i

. (4.14)
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To evaluate the above, we determine the mean of the `i and of m2
i {`i. The mi are uniform random

variables in the interval r´α
?
`iD;α

?
`iDs. The probability P t`i ą `u is the probability that the

domain delimited by the two curves in Fig. (4.2a) and enclosed by the lines x1 “ Ci´1
1 `D and x1 “

Ci´1
1 ` `i contains no disk center. This probability is given by the Choquet capacity of a Poisson

point process [155] as expp´θV q where V is the size of the domain and θ “ ´4 logp1 ´ fq{pπD2q

is the intensity of the Poisson point process (i.e. the disks centers) used to build the Boolean set.
We compute V and obtain:

P t`i ď `u “ 1´ p1´ fq16α{p3πqrp`{Dq3{2´1s, (4.15)

as the cumulative probability function of the random variable `i in rD;8q. The above yields, for
the average of the `i, using the variable change η “ pD{`q3{2:

1
DN

N
ÿ

i“1
`i «

1
D

ż

`ěD

` P t` ď `i ď `` d`u (4.16)

“ 1` 2
3p1´ fq

´ 16α
3π E1{3

ˆ

´16α logp1´ fq
3π

˙

“

ˆ

π

4α
?

6f

˙2{3

Γ
ˆ

2
3

˙

` op1q,

where E1{3ptq “
ş1
0 dηe´t{ηη´5{3 is the exponential integral function of parameter 1{3. Furthermore:

1
N

N
ÿ

i“1

m2
i

`i
«

ż

`ěD

ż α
?
`D

m“0

m2

`
P t` ď `i ď `` d`u dm

α
?
`D

“
Dα2

3 . (4.17)

At lowest order in f :

ξ ď 1´ 2α2{3 p6´ α2q

3Γ
`5

3

˘

ˆ

2
3π

˙2{3

f 2{3
`Opf 4{3

q `
Z

řN
i“1 `i

, (4.18)

where Γ is the Gamma (or extended factorial) function. Furthermore, (4.16) entails mi „ f´1{3

and:

Z “

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1
mi

ˇ

ˇ

ˇ

ˇ

ˇ

„
?
Nf´1{3

„
?
L. (4.19)

Accordingly the term Z{
řN
i“1 `i „ 1{

?
L in (4.18) is negligible when L is large. The choice

α “
a

3{2 in (4.18) then yields:

ξ ď 1´ 3
Γ
`2

3

˘

ˆ

3f
2π

˙2{3

`Opf 4{3
q « 1´ 1.3534f 2{3. (4.20)

4.2.3 Comparison between the length of the minimal path and its
upper-bound

Hereafter, we compare the dilute limit expansion (4.20) to numerical results, obtained using the
algorithm in Appendix (4.A). The paths used to construct bound (4.20) and the minimal path are
represented in Fig. (4.5). The two paths join two opposite corners of a realization of a Boolean
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set in a square domain. Our numerical computations are carried out on random configurations
containing on average 10, 000 disks at increasing surface fractions f “ 10´7, ..., 10´1. For each
value of f , 20 random configurations are averaged. We also compute numerically the bound (4.13).
Results, indicated in Fig. (4.3a), show an excellent agreement between bound (4.13) and expansion
(4.20) (solid lines and black dots). A power-law fit on the numerical data for the exact minimal
path length provides ξ „ 1´ 1.85f 0.67.

The upper-bound (4.13) is generalized for non-dilute surface fraction of grains as:

ξ ď lim
NÑ8

řN
i“1 max

!

0;
a

`2
i `m

2
i ´D

)

řN
i“1 `i

, (4.21)

The above bound is now computed for the full range of porosity 0 ď f ď 1 using (4.16) and:

1
DN

N
ÿ

i“1
max

!

0;
a

`2
i `m

2
i ´D

)

«

ż

xě1

2dx
π
p1´ fq 16αx3{2

3π logp1´ fq

ˆ

„

4α
?
x´ 2αx

?
α2 ` x´ x2 log

ˆ

1` 2α
x

´

α `
?
α2 ` x

¯

˙

`

ż 1

x“

b

1`α4
4 ´

α2
2

´4dx
π

p1´ fq 16αx3{2
3π logp1´ fq

ˆ

„

αx
?
α2 ` x`

?
1´ x2 ´ 2α

?
x` x2 log

ˆ

?
x
α `

?
α2 ` x

1`
?

1´ x2

˙

. (4.22)

The two integrals in the above are computed numerically. Numerical experiments indicate that
α “

a

3{2 is optimal, i.e. produces the sharpest bounds, for all values of f . The bound is compared
to numerical estimates of ξ in Fig. (4.3b). Results are represented in Fig. (4.3b), with error bars
that indicate statistical fluctuations. As expected, the upper-bound (4.21) is significantly higher
than the exact result when the surface fraction f of the disks is not small. For small values
of f , however, the bound becomes a good estimate of the geodesics. As expected, the upper-
bound percolates at f “ 1, a value larger than the actual percolation threshold, which is about
f “ f 2D

p « 0.68 [196].

4.2.4 Rugosity exponent
We close this section by a discussion of the rugosity of the minimal path and that of the path used
to derive bound (4.20). The mi are independent variables with zero mean and finite variance:

xm2
i y “

ˆ

π

12f

˙2{3

Γ
ˆ

2
3

˙

D2

2 “ x`iy
D

2 “
LD

2N , (4.23)

hence, by the Central Limit theorem, p1{Nq
ř

imi is Gaussian for N large. Accordingly, Z follows
the probability distribution function:

P tz ă Z ă z ` dzu 1
dz “

2
?
LDπ

e´z2{pLDq. (4.24)
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Figure 4.3: (a) Leading-order correction to the length of geodesics ξ vs. disk concentration f ,
in log-log plot. Black dots: numerical computation of bound (4.13); black solid line: analytical
estimate (4.20); triangles: numerical computation of ξ using the exact shortest path on finite-size
systems; gray solid line: power-law fit of the latter; dotted lines: power-law corrections „ f and
„ f 1{2. (b) Upper-bound (4.21) (solid line) vs. numerical estimates for ξ (circles with error bars)
for increasing values of the disks surface fraction f . Dashed line: asymptotic expansion (4.20).
Vertical solid line: percolation threshold fc « 0.68.

We have simulated the probability distribution function for Z on 40, 000 configurations each con-
taining 15, 000 disks, with f “ 0.01 fixed. The value of Z is estimated at various values of L{D and
compared with that obtained for the shortest path (Fig. 4.4). For the later, Z is defined to be the
deviation along the direction transverse to propagation, i.e. it is equal to |x2| where x lies on the
shortest path such that x1 “ L, the origin of the shortest path being 0 by convention. The data
points for the numerical estimates of Z are in excellent agreement with (4.24). We also observe
that the distribution of the variable Z for the exact shortest path, at given value of L{D, is much
wider than that of the bound (triangles in Fig. 4.4a). We study the width of the distribution of Z
hereafter.

Consider the path transverse fluctuations w “ pxZ2y´xZy2q1{2 as a function of L, for fixed value
of f “ 10´2, 10´3 and 10´4. It has been shown [108, 123] that the minimal path is very rough with
scaling law w „ L´2{3 as L becomes large (see numerical computations, Fig. 4.4b). As expected,
this is not so for the path used to derive bound (4.20) which exhibits a much more common scaling
law „ L´1{2 (black line, Fig. 4.4b). Thus, the exponent 2{3 obtained in bound (4.20) is not directly
linked to the “roughness exponent” related to the scaling law for w.

4.3 Other Boolean and Cox-Boolean sets in two dimen-
sions

In this section, we extend result (4.20) obtained for a Boolean set of discs to other random sets.
The discs are replaced by an arbitrary compact, non-random, fully connected grain in Sec. (4.3.1).
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Figure 4.4: (a) Probability distribution function for the random variable Z, representing the devi-
ation transverse to the direction of propagation, computed numerically (symbols) and analytically
(solid lines). Black dots and triangles: path used in bound (4.20). Gray dots: shortest path fitted
with a folded Gaussian distribution (4.24). (b) Transverse fluctuations w as a function of the path
length L in log-log plot, for various values of f . Gray symbols: shortest path. Black symbols:
path used in bound (4.20). Solid lines: power-law fit of the data.

In Sec. (4.3.2) we let the distance function be non-zero inside the inclusions. Finally, we consider
two-scales random media in Sec. (4.3.3).

4.3.1 Boolean set of compact grains
Let us first suppose that the inclusions are aligned squares of side D and that points A and B are
aligned with one of the direction of the squares. The path pA;C1; ...;CN ;Bq is defined by:

|Ci`1
1 ´ Ci

1| “ inf
 

|C1 ´ C
i
1|; C a square center;

C1 ą Ci
1 `D, |C2 ´ C

i
2| ď α

b

D|C1 ´ Ci
1|

*

. (4.25)

Note that compared to Eq. (4.12), the Ci are now square centers and we have added the condition
C1 ą Ci

1`D. Like in Sec. (4.2.2), we set `i “ Ci
1´C

i´1
1 ,mi “ Ci

2´C
i´1
2 with `i ě D, |mi| ď α

?
`iD.

Again, α is a constant to be optimized on and we denote f ! 1 the surface fraction of the squares.
The distance function dsq is defined as in (4.1) with χ replaced by the indicator function of the
Boolean set of squares. Note that:

dsqpC
i´1,Ci

q ď
a

p`i ´Dq2 ` pmi ´Dq2,

which yields for the normalized geodesic distance:

ξsq “
dsqpA,Bq

L
ď
Z `

řN
i“1

a

p`i ´Dq2 ` pmi ´Dq2
řN
i“1 `i

, (4.26)
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with Z “ |CNB|, L “ |AB|. For squares, Eq. (4.15) now takes the form:

P t`i ď `u “ 1´ p1´ fq
4α
3 rp`{Dq

3{2
´1s,

and the average of the `i reads:

1
N

N
ÿ

i“1

`i
D

« 1` 2
3p1´ fq

´ 4α
3 E1{3

ˆ

´4α logp1´ fq
3

˙

(4.27)

“
Γ
`2

3

˘

p
?

6αfq2{3
`Opf 1{3

q, f Ñ 0. (4.28)

The mean of the term
a

p`i ´Dq2 ` pmi ´Dq2 occurring in (4.26) is expressed as a double integral
like in Sec. (4.2.2). We develop it for `i " D and integrate over `i and mi:

1
DN

N
ÿ

i“1

a

p`i ´Dq2 ` pmi ´Dq2 “
Γ
`2

3

˘

`?
6αf

˘2{3 `

ˆ

α2

6 ´ 1
˙

`Opf 1{3
q. (4.29)

We neglect Z and choose α “
a

3{2:

ξsq ď 1´ 35{3

4Γ
`2

3

˘f 2{3
` opf 2{3

q « 1´ 1.1521f 2{3. (4.30)

This correction is smaller than that derived for the disks model. We emphasize that this model is
anisotropic and that the geodesics are directed parallel to the sides of the squares.

More generally, it is clear that, in a Boolean model with non-random connected compact grain,
the minimal path used in the present bound depends, to leading-order term in the dilute limit,
solely on the width of the grain, in the direction of propagation of the geodesics. The “width” of a
shape is the distance between parallel lines (transverse to the direction of propagation) bounding
it. The mean width, taken over all orientations, is the perimeter of the convex hull of the grain
divided by π [214].

For instance, consider a Boolean model made of grains of surface Ag and width wg in the
direction of propagation of the geodesics. The width wg is the highest difference between the
coordinates of two points in the grain, measured along the direction of propagation. The upper-
bound in the dilute limit reads:

ξc ď 1´ 35{3

4Γ
`2

3

˘

ˆ

w2
gf

Ag

˙2{3

` opf 2{3
q, (4.31)

where f{Ag is the density of grains (number of grains per unit surface). This result holds for
arbitrary compact, non-random grain. Note that since the convex hull of a shape has the same
width in all directions, bound (4.31) is unchanged when a grain is replaced by its convex hull. In
the case of a set of parallel segments (modeling, e.g., cracks), (4.31) reduces to 1 ´ ξc ě g0η

2{3

where η is the crack density parameter (2.12) and g0 depends on the orientation of the crack with
respect to the direction of propagation of the geodesics.
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The homogenized metric in bound (4.31) is isotropic for particles of constant width [96, Chap.
6.7], such as a Reuleaux triangle. By Barbier’s theorem [244], the bound then reduces to:

ξc ď 1´ 35{3

4Γ
`2

3

˘

ˆ

p2
gf

Agπ2

˙2{3

` opf 2{3
q, (4.32)

where pg is the perimeter of the grain. The shape of given constant width with smallest area is the
Reuleaux triangle [46]. Therefore, for a given surface fraction f , the Reuleaux triangle is also the
shape minimizing bound (4.32) among particles of constant width. The shape of constant width
maximizing the same bound is the disk, for fixed surface fraction f .

4.3.2 Boolean set of disks with non-zero distance function inside the
disks

In this section, we consider a Boolean model of disks with the following modified distance function:

dppA,Bq “ inf
pPK

ż 1

0
dt χpppptqq ||Btpptq|| , (4.33)

χppMq “

"

p if M lies inside a disk,
1 otherwise,

where 0 ď p ă 1 is the cost associated to the distance in the disks. The distance function d in (4.1)
is recovered when p “ 0. We consider a similar path pA;C1; ...;CN ;Bq as in Sec. (4.2.2), defined
by:

|Ci`1
1 ´ Ci

1| “ inf
 

|C1 ´ C
i
1|; C a disk center;

C1 ą Ci
1 `D, |C2 ´ C

i
2| ď α

b

D|C1 ´ Ci
1|

*

. (4.34)

with the extra condition C1 ą Ci
1 `D. It provides a bound on dppA,Bq:

ξp “
dppA,Bq

L
ď

řN
i“1

”

a

`2
i `m

2
i ´ p1´ pqD

ı

řN
i“1 `i

, (4.35)

with Z “ |CNB|, `i “ Ci
1 ´ Ci´1

1 , mi “ Ci
2 ´ Ci´1

2 , `i ě D, |mi| ď α
?
`iD and α ą 0. Note

that the path pA;C1; ...;CN ;Bq used to derive bound (4.35) consists in a set of segments joining
the disks centers. Most geodesics will not pass through disk centers when p ą 0. Nevertheless, in
the dilute regime considered here we expect |mi| ! `i so that bound (4.35) should be a very good
estimate of the length of the path pA;C1; ...;CN ;Bq . The asymptotic expansions for the means
of the `i and of the quantity m2

i {`i are the same as in (4.16) and (4.17). This yields:

ξp ď 1´
ˆ

2α
3π

˙2{3 6p1´ pq ´ α2

Γ
`2

3

˘ f 2{3
` opf 2{3

q, (4.36)

“ 1´ 3p1´ pq4{3

Γ
`2

3

˘

ˆ

3
2π

˙2{3

f 2{3
` opf 2{3

q « 1.3534p1´ pq4{3f 2{3, (4.37)

with α “
a

3p1´ pq{2. The upper-bound above is sharper than the trivial bound ξp ď 1´p1´pqf
in the domain f ! 1´ p.
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4.3.3 Multiscale Boolean set of disks
Consider first two Boolean sets of disks with constant diameter, denotedM1 andM2. The disks
of setM1 have constant diameter D1 and that of setM2 have diameter D2 ! D1. The centers of
the disks in the Boolean setsM1 andM2 follow a homogeneous Poisson point process. We denote
by f1 and f2 the surface fractions of sets M1 and M2 respectively and assume f1 ! 1, f2 ! 1.
Hereafter we consider the intersection of the two setsM “M1XM2 which is a two-scales random
set with surface fraction f “ f1f2. The model is assumed “symmetric” so that f1 “ f2 “

?
f and

the distance function defined as in (4.1).
Accordingly to (4.20), the distance dpA1,B1q between two points A1 and B1 that lie in a disk

contained inM1 admits the following upper bound:

dpA1,B1q

L1
ď 1´ 3

Γ
`2

3

˘

ˆ

3
2π

˙2{3

f
2{3
2 ` opf

2{3
2 q,

when L1 “ |A1B1| " D2. In the limit D2 ! D1 the distance function inM is well approximated
by that considered in Sec. (4.3.2) with p “ 1 ´

“

3{Γ
`2

3

˘‰

r3f2{p2πqs2{3. Eq. (4.37) then provides
the following bound, for two points A and B sufficiently far away from each other:

ξms “
dpA,Bq

L
ď 1´ 335{9

p2πq14{9Γ
`2

3

˘7{3f
7{9
` opf 7{9

q « 1´ 2.0261f 7{9. (4.38)

This correction is smaller than that derived in the one-scale model (4.20) and indicates that
clustering tend to “constraint” the shortest paths and increase their lengths. Similarly, the 2D
periodic model, which has a very homogeneous spatial distribution of voids, has an exponent 1{2
and its geodesics are shorter than in the one-scale Boolean set of disks.

4.4 Boolean sets in three dimensions or more

4.4.1 Boolean set of spheres
In this section, we study a Boolean set of spheres of volume fraction f . The distance function d3D

is defined in 3D as in (4.1):

d3D
pA,Bq “ inf

pPK

ż 1

0
dt χ3D

ppptqq ||Btpptq|| , (4.39)

with 1´ χ3D is the indicator of the Boolean set of spheres and K is given by (4.2). We define the
path pC0 “ A;C1; ...;CN ;CN`1 “ Bq by:

|Ci`1
1 ´ Ci

1| “ inf
 

|C1 ´ C
i
1|; C a sphere center;

C1 ą Ci
1 `D, |C ´C

1
| ď α

b

D|C1 ´ Ci
1|

*

, (4.40)

where C 1 is the orthogonal projection of C onto the line pCi;Ci ` e1q and α is a constant to be
optimized on. As in Sec. (4.2), the axis e1 is aligned with the line passing by A and B. We set
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`i “ Ci
1´C

i´1
1 and mi “ |C

iCi1| so that |Ci´1Ci|2 “ `2
i `m

2
i . The path (4.40) leads to the bound:

ξ3D
“
d3DpA,Bq

L
ď

řN
i“1

´

a

`2
i `m

2
i ´D

¯

` Z
řN
i“1 `i

, (4.41)

with Z “ |CNB|. Using the Choquet capacity [155], the variables `i P rD;8q follow the cumulative
probability function according t:

P t`i ď `u “ 1´ p1´ fq3α2rp`{Dq2´1s. (4.42)

and so, for the mean of the `i:

1
DN

N
ÿ

i“1
`i « 1` p1´ fq

´3α2

2α

c

π

´3 logp1´ fqerfc
´

α
a

´3 logp1´ fq
¯

“
1

2α

c

π

3f `Op
a

fq, f Ñ 0, (4.43)

where erfcpzq “ 2{
?
π
ş8

z
dt e´t2 is the complementary error function. The mean of the quantity

a

`2
i `m

2
i reads:

1
N

N
ÿ

i“1

a

`2
i `m

2
i

D
«

ż 8

`“D

ż α
?
`D

m“0

?
`2 `m2 P t` ď `i ď `` d`u 2mdm

α2`D2

“ ´

ż 8

x“1
dx 4x3{2 logp1´ fqp1´ fq3α2px2´1q “

px` α2
q
3{2
´ x3{2‰

“
1

2α

c

π

3f `
α2

4 `Op
a

fq, (4.44)

where the expression behind the integral has been expanded for x Ñ 8. With α “ 2{
?

3 and
Z ! 1:

ξ3D
ď 1´ 8

3
?
π

a

f ` op
a

fq « 1´ 1.5045
a

f, f Ñ 0. (4.45)

The number of “possible choices” for picking Ci`1 knowing Ci is greater in 3D than in 2D and
results in a lower exponent in 3D.

4.4.2 Non-zero distance function in spheres
The reasoning above extends to a distance function d3D

p which is non-zero in the spheres. Define
the distance d3D

p as in (4.39) with χ3D replaced by:

χ3D
p pM q “

"

p if M lies inside a sphere,
1 otherwise, (4.46)

where 0 ď p ă 1 is a parameter. The following upper-bound on the normalized shortest paths is
derived:

ξ3D
p “

d3D
p pA,Bq

|AB|
ď 1´ 8p1´ pq3{2

3
?
π

a

f ` op
a

fq, f Ñ 0. (4.47)

Again, this bound is non-trivial when f ! 1´ p.
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4.4.3 Multiscale Boolean set of spheres
The two-scales “symmetric” Boolean set of spheres is constructed similarly as in Sec. (4.3.3). The
latter is the intersection of two Boolean models of spheres with scale separation. The indicator
function χ3D

ms of the two-scales Boolean model is used to define the distance d3D
ms as in (4.39). The

normalized shortest path is expanded in the dilute limit as:

ξ3D
ms “

d3D
mspA,Bq

|AB|
ď 1´

ˆ

8
3
?
π

˙5{2

f 5{8
` opf 5{8

q « 1´ 2.7764f 5{8, f Ñ 0. (4.48)

Our conclusions are the same as that given in 2D. At fixed volume fraction of pores, geodesics
are higher in the two-scales symmetric model than in the one-scale Boolean model. The shortest
geodesics are found for the 3D periodic model, in which the spatial distribution of voids is very
homogeneous and the voids well-separated.

4.4.4 Boolean model of hyperspheres
In this section we consider a Boolean model of hyperspheres in dimension d ě 2. The geodesic
distance ddD and path pA;C1; ...;CN ;Bq are defined as in (4.39) and (4.40) with spheres replaced
by hyperspheres. A bound for the geodesic is given by the path from A to B. With `i “ Ci

1´C
i´1
1 ,

mi “ |C
iCi1|, Z “ |CNB| and C 1 the orthogonal projection of C onto the line pCi;Ci ` e1q, we

have:

ξdD
“
ddDpA,Bq

L
ď

řN
i“1

´

a

`2
i `m

2
i ´D

¯

` Z
řN
i“1 `i

« 1´
´Z `

řN
i“1

´

D ´
m2
i

2`i

¯

řN
i“1 `i

. (4.49)

Denote by πdpDq the volume of the hyperdimensional ball of diameter D and V` that of the domain:
!

C; D ď C1 ď `, 0 ď |C 1
| ď α

?
`D

)

.

The probability law for the `i P rD,8p depends on V` by:

P t`i ď `u “ 1´ p1´ fq
V`

πdpDq “ 1´ p1´ fq

2d`1αd´1Γ
`

1` d
2

˘

pd` 1q
?
πΓ

`1`d
2

˘

«

ˆ

`

D

˙
d`1

2

´ 1
ff

, (4.50)

which provides the sum:

1
DN

N
ÿ

i“1

m2
i

`i
«

ż

`ěD,

mďα
?
`D

P t` ď `i ď `` d`u pd´ 1qmddm
αd´1pD`q

d`1
2
“ α2d´ 1

d` 1 . (4.51)

The mean of the `i, approximated by
ş

`ěD
`P t` ď `i ď `` d`u, is determined using the symbolic

solver Mathematica [262]. The expression involves the function Γ as well as incomplete Γ functions
(not shown). Carrying out a Taylor expansion of the latter and optimizing on α yield α “
a

p1` dq{d. Finally:

ξdD
ď 1´ pd` 1q

1`3d
1`d

Γ
` 2

1`d

˘

„

Γ
`

1` d
2

˘

2
?
πddΓ

`3`d
2

˘



2
1`d

f
2

1`d ` opf
2

1`d q, f Ñ 0. (4.52)
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The above generalizes (4.20) and (4.45). Taking successively the limits f Ñ 0 and dÑ 8:

ξdD
ď 1´ 2

„

1´ logp2dπq ´ 2p1` γq
d



f
2

1`d „ 1´
˜

f
a

fp

¸2{d
(4.53)

where γ « 0.5772 is Euler’s constant and fp „ 2´d is the asymptotic percolation threshold in
dimension d " 1 [237].

4.5 Conclusion
Powerlaws with fractional exponents 2{3 and 1{2 have been derived for the lowest-order corrections
to the lengths of geodesics in 2D and 3D Boolean models of discs and spheres, respectively. The
method is general and provides an upper-bound with lowest-order correction „ f

2
d´1 in dimension

d ě 2.
The bounds obtained for multiscale models, which scale as „ f 7{9 in 2D and „ f 5{8 indicate

lower variations of the geodesics near the point f “ 0. These results underline that the the
singularities for the geodesics are small for highly-heterogeneous dispersion of particles, and high
when the dispersion is homogeneous. This phenomenon will be investigated in more details in
Chap. (6).

4.A Algorithm for computing minimal paths in porous me-
dia

Our numerical algorithm for computing shortest paths in a model of disks is described here.
Assume domain Ω contains N disks of centers Ci and radii Ri (i “ 1, ...., N). Set dij “
max p0; |Ci ´Cj| ´Ri ´Rjq where | ‚ | is the Euclidean distance. The distances di “ dpA,Ciq

between a given point A and any disk is computed by the following algorithm, described hereafter.

(i) Set di :“ max p0; |Ci ´A| ´Riq.

(ii) For all i, j, set di :“ min pdi, dj ` dijq.

(iii) If any value of di has been changed in step (ii) GOTO (ii), otherwise STOP.

Note that distances dij are computed on the fly and need not be saved in memory, and that only
the distances di are saved. This algorithm nevertheless requires OpN2q computations at each step
and becomes impractical for certain Boolean sets with inhomogeneous Poisson point process, such
as multiscale random sets. To increase its speed, disk centers are sorted beforehand with respect
to the distance of propagation |Ci ´A|, and the distance di is updated by checking disks Cj in
an interval i ´ N0 ď j ď i ` N0, while we let N0 increases, until N0 “ N . The justification rests
on the fact that the distance function usually increases with |Ci ´A| and that di is not usually
updated when a disk far from Ci is checked. The new algorithm reads:

(i) Label each disk with a number so that |Ci ´A| increases with the index i.
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(ii) Set di :“ max p0; |Ci ´A| ´Riq and N0 “ 5
?
N .

(iii) For i “ 1, ..., N , and for j “ maxp1, i´N0q, ..., minpN, i`N0q, set di :“ min pdi, dj`dijq.

(iv) If any value of di has been changed in step (iii) GOTO (iii), otherwise continue to next
step.

(v) if N0 ă N set N0 :“ 2M and GOTO (iii), otherwise STOP.

The initial value of N0 is so that, for a homogeneous distribution of inclusions, on average the 5
disks closest to each disk are checked. The results given by the algorithm is illustrated Fig. (4.5).

Figure 4.5: Boolean set of discs with surface fraction f “ 10% and 103 disks. Gray line: minimal
path joining two opposite corners. White line: path used to derive bound (4.13).
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Chapter 5

Effective behavior and geodesics: lattice
vs. continuum

In this chapter, we investigate the effective conductivity of strongly nonlinear media in
two dimensions. The nonlinear behavior is characterized by a threshold value for the
maximal absolute current. Our main focus is on random media containing an infinites-
imal proportion f ! 1 of insulating phase. We first consider a random conducting
network on a square grid and establish a relationship between the length of minimal
paths spanning the network and the network’s effective response. In the dilute limit
f ! 1, the network’s effective conductivity scales, to leading-order correction in f , as
„ f ν with ν “ 1 or ν “ 1{2, depending on the direction of the applied field with
respect to the grid. Second, we introduce coupling between local bonds, and observe
an exponent ν « 2{3, in agreement with the upper-bound for the length of geodesics
spanning random media in the continuum. We argue that ν “ 2{3 for random com-
posites in the continuum with homogeneously-distributed, monodisperse particles, in
two dimensions.

Outline The present chapter is articulated around three main sections. A model problem in a
random square lattice is formulated in Sec. (5.1). In Sec. (5.2), a scaling law is established for
the effective conductivity with respect to f , the proportion of broken bonds, in the limiting case
f Ñ 0. In Sec. (5.3), we introduce local coupling between the bonds and draw comparisons with
the problem in the continuum. We conclude in Sec. 5.4.

5.1 Nonlinear resistor network
Consider a resistor network on a square grid (Fig. 5.1b) with nodes x “ px1, x2q P Z2. Each node
is linked to its four closest neighbours by bonds oriented along e1 and e2 (see Fig. 5.1a). At each
node x lies a potential φpxq, and along each bond (x, x` eiq lies component Jipxq of the current
and component Eipxq of the electric field. Following Kirchhoff’s law:

2
ÿ

i“1
rJipxq ´ Jipx´ eiqs “ 0, Eipxq “ ´ rφpx` eiq ´ φpxqs , (5.1)

69
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for all x and i “ 1, 2. Each bond in the resistor network is either insulating, in which case
Jipxq “ 0, or conducting. The conducting bonds follow the nonlinear constitutive law:

Jipxq “

"

σEipxq if σ|Ei| ď J0,
J0signpEipxqq if σ|Ei| ą J0,

(5.2)

where signp‚q “ ‚{| ‚ | is the sign function, J0 ą 0 is the yield current and σ ą 0 is a parameter
used for numerical regularization (see Fig. 5.1c). In the limit σ Ñ 8, Eq. (5.2) reads:

Ji “ J0 if Ei ą 0, (5.3a)
Ji “ ´J0 if Ei ă 0, (5.3b)
|Ji| ă J0 if Ei “ 0. (5.3c)

This constitutive law is obtained as the limiting behavior of “power-law materials”. This class
of materials, extensively studied in the context of nonlinear homogenization theories [192], is
characterized by local potentials which are power-law of the electric or current fields. In the
present case, referred to as “strongly nonlinear”, the potential corresponding to the constitutive
law (5.3) is not strictly convex, and fields may localize along critical paths [70].
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Figure 5.1: (a) Two bonds originating from a node at point x and joining nodes at x` e1,2 (solid
lines); other nearby bonds are represented as dotted lines. (b) 16 ˆ 16-nodes random conducting
network. Conducting bonds shown in black, insulating bonds omitted. (c) Nonlinear constitutive
law (5.2) satisfied along each conducting bond.

For numerical purposes, we assume that the medium is periodic in the two directions and is
given by its elementary cell Ω “ r0;M ´ 1s2 made of M2 bonds. A random configuration of Ω is
depicted in Fig. 5.1b for M “ 16. In domain Ω, the network is made up of two phases, the phase
label following a Bernouilli distribution, that is, a bond has constitutive law (5.2) with probability
1´ f and is insulating with probability f . The vector fields E and J are Ω-periodic whereas the
potential is the sum of a periodic and linear function:

φpxq “ ´E ¨ x` φ˚pxq, φ˚#, (5.4)

where E is a remote field applied at infinity and # denotes doubly-periodic fields. Problem (5.1)-
(5.2)-(5.4) is solved exactly on the finite domain Ω using the Fourier-based method with “discrete”
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Green operator appropriate to resistor networks [254]. As for the iterative algorithm, we make use
of the so-called “augmented Lagrangian” scheme [163]. When applied to materials with nonlinear
threshold law (5.2), this scheme requires one to solve the equation in E:

σ0E ` JpEq “ P , (5.5)

for arbitrary P . Making use of (5.2), the solution to this problem is straightforward. In the above,
σ0 is the reference conductivity of the homogeneous medium, which we choose equal to 1. We also
choose J0 “ 1 and restrict ourselves to |E| “ 1, so that the problem depends on σ, f , M and the
direction of the applied field E. Convergence is obtained when current conservation is observed
at all nodes (Eq. 5.1). Our convergence criterion is the L2-norm of the divergence of the current
field:

|divJ | “
˜

ÿ

xPΩ

2
ÿ

i“1
|Jipxq ´ Jipx´ eiq|2

¸1{2

ă η, (5.6)

with η “ 10´10. Convergence is somehow erratic but nevertheless obtained (Fig. 5.2a).
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Figure 5.2: Random network in a 64 ˆ 64 grid. (a) Convergence criterion (5.6) vs. number of
iterations. (b) Effective conductivity χ0 vs. slope σ, with E “ e1.

Define the effective conductivity tensor as:

J “ xJpxqyΩ “ χ ¨E, (5.7)

where x‚yΩ denotes a spatial mean over Ω. We also define the scalar effective conductivity, that
depends on the orientation of the applied field:

χ0 “
J ¨E

|E|2
. (5.8)

We seek for high values of the slope at origin σ so that χ0 represents the effective yield current.
In the rest of this work, we set σ “ 10, so that the effective behavior has reached its yield value
when xEy “ E (Fig. 5.2b, with E “ e1).
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Figure 5.3: (a) Effective scalar conductivity χ0 vs. insulator fraction f , for various grid sizes,
with applied electric E “ e1. (b) Fractional part of Mχ0 showing that Mχ0 is an integer.

5.2 Fourier-base numerical results
Using σ “ 10, the effective conductivity is computed on grids of increasing size along each di-
mension M “ 64, 128 and 256 and insulator fraction f in the range r0; fcs where fc “ 1{2 is the
bond-percolation threshold for square lattices (Fig. 5.3a). We observe that the effective conductiv-
ity χ0 for all FFT data point on this graph is of the form k{M where 0 ď k ďM is an integer, up
to an error of less than 10´7 (Fig. 5.3b). A connection may be established between this property
and the onset of a minimal path (of integer length) along which the electric field localizes. This is
illustrated in Figs. (5.4) which shows component E1 of the electric field, represented as an image
(Fig. 5.4a), as well as the grid itself (Fig. 5.4b). On the dual graph, there exists two paths of
minimal length (Fig. 5.4b) that span the medium in the direction e2 transverse to the applied field
(horizontal on the image). The length of a path is defined by counting a unit cost for crossing
a conducting bond and 0 for an insulating bond, thereby minimizing the number of conducting
bonds crossed by the path. Using this definition, the two minimal paths shown in Fig. (5.4b) have
normalized length ξ “ 17{M and we notice that χ0 “ ξJ0. It is obvious that ξJ0 is an upper-bound
of χ0. Conversely, the existence of a divergence-free current field with mean ξJ0 is a consequence
of the “max-flow min-cut” theorem [57]. Hence, ξ “ χ0{J0.

The non-unicity of the electric field is a consequence, in general, of the non-unicity of minimal
paths. Assume that there is a closed loop in the set of minimal paths on the dual graph such as, for
instance, two minimal paths joining at infinity. Along the bonds crossing the loop, the current field
is J0 and the electric field is larger than, or equal to, J0{σ. Therefore, if the electric component
along any of these bonds is larger than J0{σ ` δE with δE ą 0, a solution of the problem may be
defined by adding a quantity smaller than δE to the potential φpxq at each node x located in the
interior of the loop. The electric fields E should be different in each solution, while the current
field J , and the overall energy p1{2q

ř

ΩE ¨ J , is unique.
The length of minimal paths in random lattices is closely related to the “time constant” in first-

passage percolation theory [124]. In this problem, domain that grows with respect to a discrete
time t is considered. Growth at each time step is controlled by the value along each bond at the
frontier of the domain. After a long time (t Ñ 8), the region asymptotically defines a limiting
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shape [104] which in general, is not a ball [69], due to the anisotropy of the lattice. Thus, if spx,x1q
is the minimal length between two points x and x1, we expect spx,x1q{|x ´ x1| to converge to a
finite value when |x´x1| Ñ 8, which depends on the direction of x´x1. Equivalently, χ0 depends
on the loading direction E in the square lattice, as expected.
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15

(a) (b)

Figure 5.4: FFT results obtained on a grid Ω of 32 ˆ 32 nodes, with f “ 0.2 and E “ e1 where
e1 is oriented top to bottom. (a) Component E1 of the electric field, each bond being represented
by a voxel. (b) Square grid. Missing bonds are insulating, the gray-level color in other bonds
represents the value of the electric field: highest values in black, lowest in light gray.

We now perform FFT computations of the effective conductivity χ0 for small values of f , equal
to 10´4, 10´3, 10´2 and 10´1 (Fig. 5.5). A fit of the data provides χ0 « 1´

?
f , with nearly unit

prefactor, when E is oriented along direction e1 ` e2 (light gray symbols). FFT results obtained
for a macroscopic field oriented along e1, are less conclusive (black symbols) but point nevertheless
to a linear correction χ0 « 1´ 2.7f .
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Figure 5.5: FFT results for the effective conductivity in the random resistor network. Gray
symbols: loading in the p1, 1q direction E “ e1` e2. Black symbols: loading in the p1, 0q direction
E “ e1.

As pointed out by Roux & François [205], the scaling law correction „ f 1{2 in the p1, 1q direction
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is related to the rugosity (width in the transverse direction) of minimal paths. Suppose that a
path of minimal length passes through two points x and x1 far from each other with x´x1 parallel
to e1 ` e2 (Fig. 5.6). In the absence of broken bonds, the length of the two gray paths are the
same. Therefore, if any broken bond appears inside the square rx1;x11s ˆ rx2;x12s the length of the
path will be reduced by 1. Accordingly, the length of the minimal path normalized by |x1 ´ x|
will be reduced by 1{p

?
2|x11´ x1|q whereas f increases by about 1{L2, thus the normalized length

of the minimal path change by a factor „
?
f . In the p1, 0q direction, minimal paths are mostly

flat [61, 205], therefore, the leading-order correction to χ0 is expected to be linear („ f), as would
be obtained for a straight line.

Figure 5.6: Two minimal paths (in light gray) joining two broken bonds (top-left and bottom-
right) in the square lattice.

5.3 Network with local coupling between bonds
Hereafter we consider a resistor network that may be used as a model for a material in the
continuum. The elementary cell Ω is now made of a set of M ˆM pixels, rather than nodes. The
electric and current field Epxq and Jpxq, and the potential field φpxq are defined in each pixel.
We keep the conservation and admissibility equations (5.1) and (5.4), i.e., we use finite differences,
but consider instead of (5.2) the constitutive law:

Jipxq “

"

σEipxq if σ|Epxq| ď J0,
J0Eipxq{|Epxq| if σ|Epxq| ą J0,

(5.9)

where |Epxq|2 “ E1pxq
2 ` E2pxq

2. Problem (5.1)-(5.4)-(5.9) is that of a random resistor network
with local coupling between bonds pointing from the same node. As previously we solve this
problem numerically using FFT computations, carried out using σ “ 10, this time on grids of 20482

and 40962 voxels. The augmented Lagrangian scheme is found to be somehow slow to deal with
this problem, and we turn to the “accelerated scheme” [77] with “discrete” Green operator [254].
The accelerated scheme was originally devised for linear behavior. However, it is straightforward
to extend it to nonlinear behavior, provided one is able to invert an equation of the type (5.5).
We choose σ0 “ 0.01 for the conductivity of the reference medium. The effective conductivity χ0
is again defined by (5.8).

We consider the limiting case of a dilute concentration of insulators. FFT results for the
effective behavior are represented in Fig. (5.7) as a function of the concentration of insulators, in
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Figure 5.7: Log-log plot of 1 ´ χ0 vs. fraction of insulating bonds f , in the dilute limit f Ñ 0.
Data points: FFT results. Black dashed line: power-law fit with 2{3 exponent of FFT data points.
Gray dashed lines: power-law f and f 1{2.

log-log plot. The leading-order term in f exhibits a power-law scaling with exponent « 2{3. This
scaling law is consistent with the interpretation of the effective conductivity in terms of minimal
path, and the bound (4.20) obtained in the continuum.

Assume now that the constitutive law in each phase is of type (5.9) with yield current J0 in
the matrix and J1 in inclusions, i.e.:

J “ minpσ|E|, Jcq
E

|E|
, (5.10)

with Jc “ 1 in the matrix and Jc “ J1 (0 ď J1 ď 1) in inclusions. The effective conductivity of
such material may be compared to bound (4.37) appropriate to a Boolean model in the continuum
with finite contrast, i.e.:

ξ ď 1´ 3p1´ J1q
4{3

Γ
`2

3

˘

ˆ

3f
2π

˙2{3

`Opf 4{3
q « 1´ 1.3534p1´ J1q

4{3f 2{3, (5.11)

in the dilute limit f Ñ 0.
We carry out FFT computations of the effective conductivity of a random network containing

two nonlinear phases obeying (5.9). Results, shown in Fig. (5.8), are compared to the analytical
bound (5.11). The estimate ξ « 1 ´ 1.6p1 ´ J1q

4{3f 2{3 is also represented as a dashed line in
Fig. (5.8). The bound (5.11) appears meaningful as it displays the same concavity as the FFT
data, although FFT results are quite sensitive to the size of the elementary cell Ω.

5.4 Conclusion
The present chapter examined how one may characterize the effective behavior of a binary mixture
made of an insulating phase embedded in a conducting nonlinear phase characterized by a yield
current. The problem is addressed in the context of a random resistor network in two dimensions.
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Figure 5.8: Effective conductivity χ0 of a binary resistor network with yield currents J0 “ 1
and 0 ď J1 ď 1, as a function of J1. Black solid line: bound (5.11). Dashed line: estimate
χ0 « 1´ 1.6p1´ J1q

4{3f 2{3 (see text).

We observe that the network’s effective conductivity is given by the length of the minimal path
defined on the dual lattice. The path spans the network in the direction transverse to the applied
field and its length is weighted by the yield current along each bond.

For a dilute concentration of insulating phase, the effective conductivity exhibits singular power-
law behavior when the applied macroscopic field is oriented transverse to the directions of the
lattice, or if local coupling, that mimic an isotropic law, is introduced between the nodes and the
applied field is parallel to the lattice directions. In these two cases, the responses are characterized
by a correction „ f ν with exponent ν equal to 1{2 and 2{3 respectively. Furthermore, we derive an
upper-bound for the length of geodesics spanning a composite in the continuum, a Boolean set of
disks. This bound exhibits an exponent 2{3 in the dilute limit, consistently with numerical data.
These results suggest a leading-order correction „ f 2{3 for the effective conductivity of nonlinear
composite materials containing a dilute concentration f of homogeneously-distributed, monodis-
perse, insulating particles. Other problems of interest include hierarchical microgeometries, some
of which are exactly solvable [111].

In the dual problem of an ideally-plastic media reinforced by rigid particles, strong connections
have also been reported between geodesics and shear bands [117], highlighting the links between
effective flow stress, geodesics and the localization patterns of the shear bands [189].



Chapter 6

Homogenized metrics in planar,
multiscale random sets

In this chapter, we investigate homogenized metrics in planar, multiscale random sets.
The length of geodesics (minimal paths) spanning a stationary random sets of grains is
considered. The pseudometric is zero in “pores” and infinite in “rigid obstacles”, and
equals the Euclidean distance in the embedding matrix. Accordingly, minimal paths
tend to cross porous grains while avoiding rigid particles. Multiscale random structures
based on Boolean sets of disk-shaped grains are considered, as well as random sequential
adsorption models of squares, and we focus on the asymptotic limit of an infinitesimal
density of grains. Our approach relies on numerical computations on the one hand,
and on upper-bounds on the other hand.
This work is motivated by the connection between geodesics and effective conducting
behavior, outlined in the previous chapter for nonlinear resistor networks. Our results,
of a purely-geometric nature, are compared to the predictions of nonlinear homoge-
nization theories for the effective yield stress of particulate composites subjected to
anti-plane shear, and to rigorous bounds established for the same problem.

Outline This chapter is organized as follows. In Sec. (6.1) we define various “porous” ran-
dom models of disks in 2D, with emphasis on multiscale structures. In Sec. (6.2), the minimal
path problem is defined, and numerical results are obtained for the porous case. Sec. (6.3) deals
specifically with the dilute porosity limit. Sec. (6.4) is concerned by the dual problem of minimal
paths spanning a medium containing a population of “rigid” grains. Analytical results related to
nonlinear homogenization problems are discussed in (6.4.4). We conclude in Sec. (6.5).

6.1 Multiscale random structures
Our starting point is a Boolean model of equisized disks, denoted BE, with homogeneous Poisson
intensity in the plane [226, 169]. A realization of BE is the union of translations Gi of a primary
grain G implanted along a set of germs gi which are Poisson-distributed in the plane [165]:

BE “
8
ď

i“1
Gi, Gi “ tx` gi;x P Gu, (6.1)

77
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where, for simplicity, we denote BE both the probabilistic model and one of its realization. The
random Poisson point process pgiqią0 is defined by its intensity θpxq, also known as a a regionalized
density, which depends on the space variable x P R2. The quantity θpxqdS is the expectation (mean
over realizations) of the number of germs gi contained in a domain of infinitesimal surface area dS
centered around x. Additionally, the number of germs in two disjoint domains are independent ran-
dom variables. These two properties completely define a Poisson point process [226]. Furthermore,
the Poisson point process is called “homogeneous” if θpxq is uniform in space (θpxq ” cst).

In the present work, the primary grain G is a disk of radius R. The mean surface fraction
0 ď f ď 1 of the disks, averaged over the plane, is given by:

f “ 1´ e´θπR2
. (6.2)

The above is a consequence of a more general result, known as the Choquet-Matheron-Kendall
theorem [226] which gives an explicit form of the capacity functional, i.e. the probability that a
compact set K hits BE. The theorem, which involves morphological transforms of the primary
grain with structuring element K (e.g. dilation, erosion), reduces to (6.2) when the convex K is
a point, and is the basis of many other analytical results related to Boolean media. However the
simple formula (6.2) may also be derived by elementary means (see “Avrami equation” [13]).

Consider now a square domain Ω of surface area S containing a realization of the set BE X Ω,
and denote n the number of germs (or disk centers) lying in Ω. The number n is a random variable
which follows the discrete Poisson distribution law of mean θS:

n „ P pθSq. (6.3)

In the dilute limit θ ! 1 (or f ! 1), Eq. (6.2) entails the obvious result f « θπR2 « nπR2{S. The
“representativity” of realizations of the model in Ω for estimating a statistical quantity may be
defined by the asymptotic behavior of the variance of that quantity as S Ñ 8. For instance, the
surface fraction of disks in domain Ω scales asymptotically as „ 1{S when S Ñ 8 [170, 135].

A realization of BE in a domain Ω is represented in Fig. (6.1a). The model parameters θ and R
have been chosen so as to enforce, on average, n “ 500 and f “ 30%, referring to (6.2) and (6.3).

The Boolean model BEpθpxq, Rqmade of disks of constant radiusR and based on a homogeneous
or inhomogeneous intensity θpxq serves as an ingredient to define the following “two-scale” models:

BP “ B1 Y B2, BC „ BEpθ21B1pxq, R2q with B1 „ BEpθ1, R1q, B2 „ BEpθ2, R2q, (6.4)

where θ1, θ2 ą 0 and R1 ą R2 ą 0 are parameters, 1B1pxq is the characteristic function of the
Boolean set B1, and Bi „ BEpθi, Riq (i “ 1, 2) designates independent random realizations of
Boolean models of equisized discs.

The “polydisperse” model BP is according to (6.4) the union of two Boolean models of disks
of radii R1 and R2. It is also a Boolean model of randomly-sized grains with intensity θ1 ` θ2 (see
Fig. 6.1b for an example). The “Cox-Boolean” model BC is built in two steps. In the first step,
a realization of a Boolean set B1 of disks of radius R1 and homogeneous intensity θ1 is simulated.
In the second step, smaller-sized disks of radius R2 ă R1 are homogeneously implanted in domain
B1. At the end of the process, the largest disks, of radius R2, are discarded. The point process for
the disk centers in this later model is known as a Cox point process [171]. This procedure allows
one to generate a set of grains aggregated into clusters (Fig. 6.1c, clusters shown in the embedded
image).
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(a) (b) (c)

Figure 6.1: Random realizations of three Boolean random sets containing about 500 disks with
surface fraction f « 30%. (a) Equisized disks (Boolean model BE). (b) Polydisperse model BP .
(c) Symmetric Cox-Boolean model BS (top-right: model B1 used to generate the structures). Gray
lines: path of minimal length joining two opposite corners. White line: paths used to compute
bounds (6.12) and (6.18) for the distance between the two corners.

When R2 ! R1, i.e. for widely-separated disk radii, models BP and BC can be described as
two-scale random structures. The length scales R1 and R2 are related to the granulometry of the
grains (model BP ) or to the typical sizes of grains and of grains aggregates (model BC). The two
models nevertheless depend on four parameters R1, R2, θ1 and θ2. In the following, we specialize
and parametrize them using quantities relevant to homogenization theories, in particular the mean
disk surface fraction. Denote f1 and f2 the surface fractions of the sets B1 and B2. The surface
fractions fP and fC of models BP and BC read:

fP “ f1 ` f2 ´ f1f2, fC « f1f2. (6.5)

In the above, the second equation is only an approximation. Equality between fC and f1f2 would
hold if BC had been defined as the intersection BC “ B1XB2. This choice has not been made here
because B1 X B2 is not a union of disks, and minimal paths in this set are much more complex to
study analytically and numerically. Nevertheless, relation fC “ f1f2 is asymptotically exact in the
limiting case of scale separation R1{R2 Ñ 8.

Standard relations (Eq. 6.2) entail:

θ1 “
´ logp1´ f1q

πR2
1

“
n1

S
, θ2 “

´ log p1´ f2q

πR2
2

“
n2

S
, (6.6)

where n1 and n2 are the number of germs implanted in domain Ω for models B1 and for B2. Consider
the polydisperse model BP . A proportion of disks of radius R2 which are entirely contained in B1
are not observable from a realization of BP , once the largest disks are implanted. When f1 and f2
are small and R1 ! R2, the total number of observable disks n is about:

n “ n11 ` n
1
2, n11 « n1, n12 « n2p1´ f1q, (6.7)

where n11 and n12 are the number of observable disks of radius R1 and R2. In the following, we
choose the parameters θ1, θ2, R1 and R2 for model BP so as to impose f1 « f2 and n11 «

?
n.
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The first condition aims to enforce equal effect of the two population of disks in terms of surface
fraction of disks, which is the most important parameter in homogenization theories. The second
condition is a compromise between two opposite goals: (i) achieving representativity of realizations
of B1 in Ω, and (ii) scale separation R2 ! R1. Accordingly, we set:

R2
1 “

´ logp1´ fP q
2π
?
n

S, R2
2 “ R2

1

?
1´ fP
?
n´ 1 , θ1 „ P

ˆ?
n

S

˙

, θ2 „ P

ˆ?
nR2

1
SR2

2

˙

. (6.8)

Model BP is now parametrized by the two variables fP and n, which approximate the surface frac-
tion and mean number of observable disks in the domain, respectively. Scale separation R1{R2 " 1
is achieved when nÑ 8. The realization of model BP shown in Fig. (6.1b) has been generated by
setting fP “ 30% and n “ 500 and using (6.8).

Consider now model BC , which contains disks of radius R2. When f2 Ñ 0 and R2 ! R1, the
number of disks in Ω is n « f1n2. To simulate representative configurations of the set of aggregates
B1 in Ω while approaching scale separation (R1{R2 " 1), we choose, as for model BP , n1 “

?
n.

The parameters θ1, θ2, R1 and R2 are accordingly set to:

R2
1 “

´ logp1´ f1q

π
?
n

S, R2
2 “

´ logp1´ fC{f1q

πn
f1S, θ1 „ P

ˆ?
n

S

˙

, θ2 „ P

ˆ

n

f1S

˙

. (6.9)

Model BC is now parametrized by three variables which represent the surface fraction of the disks
(fC), the surface fraction of clusters (f1 ą fC) and the mean number of disks (n).

We also introduce a “symmetric” Cox-Boolean model, denoted BS, corresponding to model BC
(Eq. 6.9) with the choice f1 “ f2 “

?
fC . This model depends on two parameters, 0 ď fC ď 1 and

n. A realization of model BS is represented in Fig. (6.1c) with fC “ 30%, n “ 500.
The critical disk surface fraction at the percolation threshold is, for the Boolean model BE, fc «

0.6763 [195]. Regarding model BP , it is clear that the disk percolate whenever maxpf1, f2q ě fc.
The inverse proposition holds at scale separation, assuming R2 is infinitesimal. Indeed, if f2 ă fc,
no connected path of length „ R1 exists in the complementary set of B1, hence percolation of
the disks imply percolation of the largest disks. Accordingly, the percolation threshold for BP
must be fPc “ 2fc ´ f 2

c « 0.8952. Similarly, disk percolation in model BC occurs if and only if
minpf1, f2q ě fc, assuming scale separation, hence, fSc “ f 2

c « 0.4574 for the disk percolation
threshold in model BS.

6.2 Geodesics and homogenized distance
In the following, the length of a path is defined as the Euclidean length of the parts of the path
located in the complementary set of the union of disks. The distance dpA,Bq between two points
A and B is the minimal length of a path joining the two points, and we call geodesics such paths
of minimal length.

The distance function in a stationary random (or periodic) medium may be homogenized, in
the sense that it behaves, at sufficiently large scales, as the distance function of a homogeneous
medium [181]. If the medium is isotropic, as is the case for the models defined in Sec. (6.1),
the homogenized distance function is necessarily isotropic. We denote ξ the limit distance rate
limtÑ8 dpA,A` tvq{t where A is any fixed point and v a unit vector.
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Figure 6.2: Length of minimal paths in the Boolean model BE (black circles) and in various
two-scale Boolean models: BP (left triangles), BC (diamonds) and BS (bottom triangles).

More generally, we also make use of the homogenized distance function ξ1 of models with “finite
contrast p”. As previously, the length of a path contained in the complementary set of the union
of disks is its Euclidean length. However, when the path is inside disks, its length is p times its
Euclidean length, instead of 0. When p “ 0, ξ1 “ ξ, and, trivially, ξ1 “ 1 when p “ 1. For any
stationary (translation invariant) random material, a straight line provides the bound:

ξ1 ď 1` pp´ 1qf. (6.10)

In the rest of this work, we denote ξE, ξP , ξC and ξS the homogenized distance for models BE, BP ,
BC and BS, respectively. The homogenized distance function relevant to model BE with “cost”
p ą 0 in the disk is denoted ξ1E.

We compute numerically distance ξ for various models of disks. Our algorithm, summarized in
Appendix (4.A), does not rely on the discretization of sets of grains on a regular grid, as in fast
marching [219] or fast sweeping [266] methods. Instead, the geodesics and the distance function are
computed exactly, for a given realization, using the disk centers and radii as input. The geodesics
shown as gray lines in Fig. (6.1) have been obtained using this method.

Remark that as a consequence of scale separation R1{R2 “ 8, distance ξP is obtained from ξE
as:

ξP pfq “
”

ξE

´

1´
a

1´ f
¯ı2

, (6.11)

where 1´
?

1´ f represents the surface fractions f1 “ f2 in Eq. (6.5).
Estimates of ξ vs. f , the overall disk surface fraction, are shown in Fig. (6.2) for models BE, BP ,

BC (with f2 “ 20%) and BS. The data has been obtained using two random realizations made of
n “ 105 disks. This value was deemed sufficient for a rough estimate, indeed estimates for n “ 104

disks are similar while displaying larger fluctuations (not shown). Error bars, corresponding to
standard deviation, are shown for all models except for BE, for clarity. The variances of ξ were
found to be very small for this model and need not be represented. The percolation thresholds fc,
fPc and fSc are indicated in the figure as dotted lines.



82 CHAPTER 6. MULTISCALE RANDOM SETS

Distance ξP (model BP ) is similar to that of the one-scale model BE (Fig. 6.2, left triangles).
However, ξP ą ξ for f ą 0.3, consistently with a higher percolation threshold fPc ą fc, whereas
ξP ă ξ at small surface fraction f ă 0.1. The numerical data for ξP can as well be computed using
the data for ξE together with Eq. (6.11). For the sake of clarity, this second estimate has not been
represented in Fig. (6.2), although it is probably more accurate. Nevertheless, the two sets of data
are similar.

The distance function ξS in model BS (Fig. 6.2, down triangles), is significantly lower than that
of the one-scale model BE, for all values of f simulated. This is consistent with a lower percolation
threshold fSc ă fc. As expected, the distance function ξC (Fig. 6.2, diamonds), defined in the
range 0 ď f ď f1 (f1 “ 0.2), reduces to ξE when f “ f2. Although not visible in the figure, the
curves for ξC and ξS also cross each other when f “ f 2

1 “ 0.04.

6.3 Porous media in the dilute limit

6.3.1 Two-scale random microstructures
In the limit of a vanishing surface fraction of disks f Ñ 0, the distance function ξE in the one-scale
model decays at a rate at least as high as „ f 2{3. Indeed, according to (4.20):

ξE ď 1´ αf 2{3, α « 1.3534. (6.12)

The relevance of this bound is confirmed by numerical results in Sec. (4.2.3) which indicate a
powerlaw behavior with a similar exponent and slightly higher prefactor:

ξE “ 1´ γf ν ` opf νq, γ « 1.85, ν « 0.67. (6.13)

Consider now the two-scale model BC containing clusters of pores with total porosity f “ f1f2,
f1 being the volume fraction of clusters and f2 the volume fraction of pores relative to clusters.
At the largest scale, minimal paths in BC join clusters to one another. Assuming separation of
length scales, we identify these minimal paths as that occurring in a one-scale Boolean model BE of
equisized disks (the clusters) with finite contrast p (Sec. 6.2) where p is a positive “cost” associated
to paths crossing the disks. The bound (4.37) extending (6.12) for such a model reads:

ξ1E ď 1´ αp1´ pq4{3f 2{3
1 , (6.14)

where 0 ď p ď 1. Bound (6.14) as well as (6.12) has been obtained by constructing a path
and computing its length explicitly (see Chap. 4). These paths are represented by white lines in
Figs. (6.1a,c). Observe that, depending on the value of p, bound (6.14) may be higher or lower
than that in (6.10). Therefore, combining the two bounds, we obtain:

ξ1E ď 1´max
!

p1´ pqf1; αp1´ pq4{3f 2{3
1

)

. (6.15)

Accordingly, bound (6.10) improves on bound (6.14) in the low-contrast case α3p1´ pq ď f1. This
is because bound (6.14) assumes that the minimal path is made of segment of lines joining disk
centers. This condition becomes too restrictive in the low contrast case. To show this, let us
consider the simple configuration of Fig. (6.3) in which two paths join two disks of centers A and
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B
mA

R1

Figure 6.3: Path (solid line) crossing two disks of centers A and B.

B. One path, shown as a solid line, joins the two disk centers whereas the other, represented by
a dashed line, is oriented along the horizontal direction, which we assume is the direction along
which a minimal path is sought for. The first segment of line mimic a part of the path considered
in bound (6.14) in the low-contrast case p « 1. The second is part of the path used to derive
bound (6.10). It is straightforward to compute the length of each segment of line, which we
expand as ` Ñ 8. Finally, we find that the segment of line joining the disk centers has a lower
length than the horizontal segment if p1 ´ pq ď R1{`. The term R1{` is of the same order as the
fraction of the disk along a line, i.e. f1, hence 1´ p „ f1.

We now make use of (6.15) to compute a bound for minimal paths spanning BC . Assume
separation of length scales and replace p with the r.h.s. expression in (6.12):

ξC ď 1´max
!

αf
2{3
2 f1; α7{3f

8{9
2 f

2{3
1

)

. (6.16)

When specialized to f1 “ cste ! 1, one obtains, replacing f2 with f{f1:

ξC ď

#

1´ αf 1{3
1 f 2{3 if f ď f

5{2
1 α´6,

1´ α7{3f
´2{9
1 f 8{9 if f ě f

5{2
1 α´6,

(6.17)

with α´6 « 0.16 (γ´6 « 0.025). The above holds when the surface fraction of pores in clusters
decreases at a much faster rate than the surface fraction of clusters. The scaling law (6.17a) is
obtained when the minimal path is flat at the largest scale and “rough” inside clusters (Fig. 6.4a).
In contrast, bound (6.17b) is obtained when the minimal path is rough both at the largest scale
and inside clusters (Fig. 6.4b).

When specialized to model BS, bound (6.10) becomes irrelevant, since f1 “
?
f is always

smaller than α3p1´ pq “ α4f 1{3. We thus obtain:

ξS ď 1´ α7{3f 7{9, (6.18)

a result identical to (4.38).
The numerical data obtained in Sec. (4.2.3) suggests the same scaling law as in (6.14), with

prefactor γ instead of α:, i.e.

ξ1E « 1´ γp1´ pq4{3f 2{3, f Ñ 0. (6.19)

This entails the following expressions for the dilute limit expansions of ξC and ξS, similar to (6.17)
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(a) (b)

Figure 6.4: Minimal path (black line) in two realizations of model BC containing n “ 5000 disks,
with the same surface fraction of clusters f1 “ 10%. The surface fraction of disks inside is clusters
f2 “ 7 10´4 (a) and f2 “ 5 10´2 (b). The disks displayed in (a) and (b) have been enlarged so that
they are visible. In the real microstructures, their radii is 70 times and 8 times smaller, for (a)
and (b) resp.

and (6.18):

ξC «

#

1´ γf 1{3
1 f 2{3 if f ď f

5{2
1 γ´6

1´ γ7{3f
´2{9
1 f 8{9 if f ě f

5{2
1 γ´6 (6.20a)

ξS « 1´ γ7{3f 7{9, (6.20c)

with f Ñ 0. Finally, for the polydisperse model BP , Eqs. (6.11) and (6.13) require that:

ξP « 1´ 21{3γf 2{3, f Ñ 0. (6.21)

The lowest-order correction in this asymptotic expansion is higher than that in (6.13). This is
consistent with the data in Fig. 6.2 (Sec. 6.2) which suggests that ξP ă ξE for f ă 0.1.

In the following, we carry out numerical computations of the lengths ξP , ξC and ξS of minimal
paths spanning models BP , BC and BS. We focus on small surface fractions of disks, ranging from
f “ 10´6 to f “ 10´1. The number of inclusion is set to n “ 106, and use is made of two random
realizations for each data point. Our results are represented in Figs. 6.5a (polydisperse model, ξP ),
6.5b (symmetric Cox-Boolean model, ξS) and 6.6 (Cox-Boolean model, ξC).

The numerical data for ξP is in good agreement with the scaling law predicted by expansion
(6.21) (see Fig. 6.5a, triangles). The data for ξS, related to the cluster model BS is close to a
powerlaw (Fig. 6.5b, triangles) with slope clearly in-between 2{3 and 1. A fit of the data points
in the region f P r10´6; 10´2s provides ξS « 4.16f 0.79 (Fig. 6.5a, solid black line) in excellent
agreement with expansion (6.20c), shown as a light-gray solid line.
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Figure 6.5: (a) Normalized distance ξP in the polydisperse model BP . Solid gray line: scaling
law (6.21). Dashed lines: scaling law (6.13) and linear correction „ f . (b): Distance ξS in the
symmetric Cox-Boolean model BS. Triangles: numerical results. Gray solid line: scaling law
(6.20c). Black solid line: powerlaw fit of the numerical data. Dashed lines, for comparison: scaling
law (6.13) and linear correction „ f .

The numerical data relevant to ξC is represented in Fig. (6.6). The surface fraction of the
clusters take on values f1 “ 0.01 (` signs) and f1 “ 0.02 (diamond symbols). The predictions
of Eq. (6.20a) are shown as solid lines. Numerical data points exhibit a powerlaw behavior with
exponent close to 8{9, as predicted by (6.20a2), in the range f ě f

5{2
1 {γ6. In the highly-dilute

regime f ! f
5{2
1 {γ6, numerical computations have been carried out using two configurations of

n “ 3 106 disks, for each value of f “ 10´7 and f “ 10´8. Results are less conclusive, because, the
representativity of the simulated realizations, is insufficient in this case. Nevertheless, we observe
that the correction 1 ´ ξC is higher when f1 “ 0.02 (diamonds) compared to that obtained when
f1 “ 0.01 (plus signs). The opposite tendency holds when f ď 10´6.

6.3.2 “Second-order” nonlinear homogenization theory
In this section, the results of the bounds on geodesics are compared to the predictions of the
“non symmetric fully-optimized second-order” method, with strain potential, denoted SO here,
and reported in [83, Annex B]. Closed-form expressions are given, in this reference, in the ideally
plastic limit. It is straightforward to expand these in the dilute limit f Ñ 0. We obtain, for a 2D
medium:

ξ
1pSOq
E « 1´max

 

α1p1´ pq4{3f 2{3; p1´ pqf
(

, α1 “ 3ˆ 2´5{3
« 0.94, (6.22)

as f Ñ 0, where ξ
1pSOq
E ă 1 is the effective yield stress, normalized by the yield stress in the

inclusions, and p is the yield stress in the inclusions divided by that in the matrix. Formula (6.22)
is the same as (6.15), save for a prefactor. The second-order theory accordingly entails the same
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expressions as in (6.17) and (6.18), with α replaced by α1:

ξ
pSOq
C «

#

1´ α1f 1{3
1 f 2{3 if f ď f

5{2
1 α

1´6

1´ α17{3f´2{9
1 f 8{9 if f ě f

5{2
1 α

1´6 (6.23a)

ξ
pSOq
S « 1´ α17{3f 7{9, (6.23c)

with f , f1 Ñ 0. The predictions of the second-order theory, computed numerically for model ξC
in the dilute limit, are shown in Fig. (6.7) as symbols. The data is very close to the asymptotic
formula (6.23a) (not shown), and also to bound (6.17), shown as solid lines in Fig. (6.7). The
lower envelope of the curves, i.e. the set of points where the regime change occurs (see 6.17), is the
curve of equation ξC “ α9{5f 4{5, represented as a dotted grey line in Fig. (6.7). Along this curve,
the effect of the pores is minimal, for a given porosity f .

6.3.3 Multiscale random microstructures
Eq. (6.20a) relevant to model BC assumes that f1 is constant but very small. This limit is obtained
by letting f1 decrease with respect to f in a much slower way than f2, for instance by enforcing
f1 “ fβ, f2 “ f 1´β with β ! 1. Said otherwise, the dilute limit is obtained when, as f goes to
0, pores are replaced by the solid phase uniformly in each cluster. This is in contrast with the
dilute limit of model BS, where both pores and entire clusters are removed as f Ñ 0, according to
f1 “ f2 “

?
f .

Other dilute limits arise when, more generally, f1 “ fβ and f2 “ f 1´β, with 0 ď β ď 1.
Eq. (6.16) then leads to:

1´ ξC „ f ν , ν “ min
"

2` β
3 ,

8´ 2β
9

*

, (6.24)

where constant prefactors on the r.h.s. have been omitted for simplicity. When ν “ p2` βq{3, the
geodesics are “flat” at the scale of the clusters, and display rugosity when ν “ p8 ´ 2βq{9. The
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maximum value of ν is obtained when the two expressions for ν coincide, that is β “ 2{5, ν “ 4{5.
Also observe that ν ě 2{3 with equality when β “ 0, 1.

Let us now examine the prediction of the upper-bounds on geodesics for multiscale microstruc-
tures with more than two scales. Consider a N -scale Boolean microstructure analogous to BC .
For instance, when N “ 3, the microstructure is made of grains, aggregated into clusters, and
the clusters themselves are aggregated into super-clusters. We denote f1 the surface fraction of
the clusters at the largest scale, f2 at the next-to-largest scale etc. and fn the porosity inside
the smallest clusters. Assume further that f1 “ fβ1 , ..., fN “ fβN , with f “ f1...fN the overall
porosity and β1 ` ...` βN “ 1. Making use of (6.15) one obtains the recurrence relation:

1´ ξpNSqC „ f ν1 , νN “ 2βN{3, νi “ νi`1 `
2
3βi `

1
3 min tβi; νi`1u , 1 ď i ă N. (6.25)

for the leading-order correction to the geodesic length ξpNSqC . We have that:

ν1 “
2
3 `minpβ1, ν2q ` ...`minpβN´1, νNq,

hence ν1 ě 2{3, this value being attained when β1 “ 1´ or βN “ 1´. It is also clear that ν1 ă 1.
The maximum value is obtained by taking βi “ νi`1 (i ă N) and choosing βN so that

ř

i βi “ 1.
We find that βN “ 3{p1 ` 2Nq and ν1 “ 1{p1 ` 2´Nq, a value that approaches 1 as N Ñ 8. For
the “symmetric” model corresponding to β1 “ ... “ βN “ 1{N , it is straightforward to show that
ν1 “ 1 ´ 4{p9Nq, which again tends to 1 as N Ñ 8. A linear correction is accordingly recovered
for these various media with infinitely-many scales.
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6.4 Rigid grains in the dilute and highly-packed limit
In this section, we consider the dual problem of geodesics spanning a medium containing a set of
“rigid” obstacles. The distance function is now infinite inside particles and geodesics are entirely
contained in the complementary set of the inclusions. To simplify the analysis and numerical
computations, we assume that the inclusions are a set of non-overlapping squares. Indeed, in
such model, the minimal path in-between two points outside the squares consists in a continuous
line made of a set of segments joining square corners, which are known a priori (Fig. 6.10a). We
emphasize that the squares are aligned and not randomly-oriented, and so the model is anisotropic.
Furthermore, the direction of propagation of the minimal paths are parallel to one of the axis of
symmetry of the squares. The results in this section are therefore restricted to this particular
direction. We mention nevertheless, that a study of a similar medium, the random checkerboard,
suggests that the metric of that set is in fact isotropic [181].

6.4.1 Random checkerboard
Square-shaped obstacles

Consider an infinite checkerboard, made of randomly-occupied cells, as depicted in Fig. (6.8a).
Each cell is occupied, with probability f , by a square-shaped grain with side length D made of two
closed and two open boundaries. More precisely, the grain are translations of the set s0;Drˆr0;Ds.

We define a path spanning the complementary set of the squares as shown in Fig. (6.8). In the
figure, the frontiers of the squares are open along the vertical sides and closed along the horizontal
ones. We seek for a minimal path oriented along the horizontal direction.

The “visibility” `i from the corner of a square may be defined as the length of the longest ray
starting from that point and oriented in the horizontal direction, which does not intersect a square
or the frontier of a square. At its end, the ray necessarily hits two adjacent cells (right of Fig. 6.8).
Around the end of the ray, we define a region of maximal size `1i containing no occupied cells and
made of two rows of cells on each side of the ray (Fig. 6.8a). Furthermore, we denote mi the length
of the path, oriented in the vertical direction, which follows the frontier of the obstacle at the end
of the ray. This length is the minimal in the up and down direction.

Let us now define a path that we will use to construct a bound. The path follows the ray
along a distance `i ´ `1i, then follows an oblique direction along a distance

a

`
12
i `D

2, and finally
circumvent the obstacle following a path of length mi ´ D. The square open boundaries in the
transverse direction allow for configurations where `i “ D or `1i “ 0 and guarantee that the path
is still in the complementary set of the squares.

The path normalized length reads:

ξ “

řN
k“1

´

`i ´ `
1
i `

a

`1i
2
`D2 `mi ´D

¯

řN
k“1 `i

“ 1`

A

a

`1i
2
`D2 ´ `1i

E

i
` xmiyi ´D

x`iyi
. (6.26)

Since the cells are occupied independently of each other, one has:

P t`i “ kDu “ f 2
p1´ f 2

q
k´1, x`iyi “ D{f 2, (6.27a)

P tmi “ kDu “ f 2pk´1q
p1´ f 2

q, xmiyi “ D{p1´ f 2
q, (6.27b)
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for k ě 1. For `1i, one obtains the conditional probability:

P t`1i “ jD|`i “ kDu “

"

2fp1´ fq2j`1p1´ f 2q´j´1, j “ 0, ..., k ´ 2,
p1´ fq2pk´1qp1´ f 2q1´k, j “ k ´ 1. (6.28)

and so, making use of (6.27a):
Pj “ P t`1i “ jDu “ f 2

p1´ fq2j ` 2fp1´ fq2j`1, j ě 0, (6.29)
1
D

B

b

`1i
2
`D2 ´ `1i

F

i

“
ÿ

jě0
Pj

´

a

j2 ` 1´ j
¯

“ P0`p
?

2´1qP1`
ÿ

jě2
Pj

´

a

j2 ` 1´ j
¯

. (6.30)

Let us replace the term
?
j2 ` 1 in the r.h.s. by its Taylor expansion as j Ñ 8. The symbolic

calculator [262] provides an exact summation of each term of the Taylor expansion up to order 20,
involving “polylogarithmic” special functions [241] (not explicited here). The resulting expressions
for the r.h.s. of (6.30) admit, in the dilute limit f Ñ 0, the following expansion:

pC0 ´ log fqf `Op´f 2 log fq, (6.31)
where C0 is a constant approaching C0 « 1.0888 as the number of terms in the Taylor expansion
increases. Thus:

ξ “ 1` pC0 ´ log fqf 3
`Op´f 4 log fq. (6.32)

To make sure that the path considered here may be used as a bound, we compute its transverse
deviation. Denote ni “ ˘mi the transverse distance, counted positive if the “next” point is “up”
(as in Fig. 6.8) and negative otherwise. The transverse deviation of the path is

řN
i“0 ni. By the

central limit theorem:
1
?
N

N
ÿ

i“0
ni “ N

`

0, xm2
i yi

˘

, xm2
i yi “ D2

p1` f 2
qp1´ f 2

q
´2. (6.33)

where N denotes a normal distribution. The normalized deviation reads:
|
řN
i“0 ni|

řN
i“0 `i

„ f 2

c

2
Nπ

?
1` f 2

1´ f 2 Ñ 0, N Ñ 8. (6.34)

Thus ξ ď ξ where ξ admits the asymptotic expansion (6.32).

i+1m

′

i+1m

′

(a) (b)

Figure 6.8: Checkerboard containing randomly-occupied cells. (a) Square model. (b) Model of
rectangles. Gray solid lines: path used to obtain a bound on geodesics.
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Multiscale random checkerboards

Consider a two-scale random checkerboard which appears as in Fig. (6.8a) at the largest scale.
Each occupied cell is itself a random checkerboard at much smaller scale. The occupied cells at
the largest scale are therefore clusters, of surface fraction f1, whereas the surface fraction of cells
at the smallest scale in each cluster is f2. The total surface fraction of the grains is therefore
f1f2. Applying the above construction at the largest scale, one may consider a path that avoids
completely all clusters, and therefore:

ξ ď 1` p´ log f1qf
3
1 , f1 Ñ 0. (6.35)

Now, one may consider a nearly straight path at the largest scale (bound 6.10), and make use of
bound (6.32) within each cluster:

ξ ď 1` p´ log f2qf
3
2 f1, f2 Ñ 0. (6.36)

Assume that the surface fractions f1 and f2 tends to 0 as f1 „ fβ, f2 „ f 1´β. Making use of the
two previous bounds, one obtains:

ξ ´ 1 ď cstp´ log fqf ν , ν “ maxp3β, 3´ 2βq, f1, f2 Ñ 0. (6.37)

The exponent ν varies between 9{5 and 1. Bound (6.35) is lower than (6.36) when 3{5 ă β ă 1.
Conversely, (6.36) gives a lower bound when β ă 3{5. Similar regime changes have been observed
in the periodic checkerboard for which exact analytical results are available [7].

For a medium with N iterated scales, and surface fraction f “ f1...fN , with fi “ fβi (0 ă βi ă
1,

ř

i βi “ 1), one obtains, more generally:

ξ ´ 1 ď cstp´ log fqf ν , ν “ β1 `maxp2β1, β2 `maxp2β2, β3 ` ...`maxp2βN´1, 3βNq...q, (6.38)

as f Ñ 0. The exponent ν is less than 3, this value being attained when β1 “ 1´ or βN “ 1´. The
minimal value of the exponent ν is obtained when 3βN “ 2βN´1, 3βN´1 “ 2βN´2, ...., 2β1 “ 3β2,
i.e. βi “ p2{3qi´1β1. Since β1 ` ... ` βN “ 1, this entails ν “ r1 ´ p2{3qN s´1 which approaches 1
(i.e. a quasi-linear correction) as N Ñ 8, for such a medium containing infinitely-many scales.

Rectangular obstacles

Consider, as previously, a 2D checkerboard made of a square-shaped cells. Each bond parallel
to the horizontal direction is either occupied with probability η or free with probability 1 ´ η.
Furthermore, we assume that the state of a bond (occupied or free) is independent from the state
of other horizontal bonds. We define the rigid obstacles in the plane by the set of rectangles made
of the two adjacent cells that are either “above” or “below” each occupied bond (see Fig. 6.8b,
hashed areas). Again, in order to derive rigorous bound, we assume that the rectangles are open
sets, i.e. the matrix-rectangles boundaries are in the matrix. Accordingly, vertical lines in the
lattice are free of obstacles, whereas in the horizontal direction, straight geodesics are prohibited
by the presence of occupied bonds (Fig. 6.8b).

As previously, we construct a path that spans the checkerboard in the horizontal direction
while avoiding the set of rectangular obstacles. The method is defined in much the same way as in
Sec. (6.4.1). The path is broken into a set of subpaths comprising three segments, one horizontal
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of length `i´`1i, one oblique, of length `1i in the horizontal direction and D in the vertical direction,
and the third vertical of length mi ´ D (see gray line, Fig. 6.8b). As previously, the variable
`i denotes the visibility in the horizontal direction from the initial point. As a consequence, the
length of such a path is given by Eq. (6.26). However, the variables `i, mi and `1i now follows
different probability laws. We obtain, for `i and mi (k ě 1):

P t`i “ kDu “ ηp1´ ηqk´1, x`iyi “ D{η, (6.39a)
P tmi “ kDu “ η2pk´1q

p1´ η2
q, xmiyi “ D{p1´ η2

q. (6.39b)

The conditional probability of `1i reads:

P t`1i “ jD|`i “ kDu “

"

ηp2´ ηqp1´ ηq2j, j “ 0, ..., k ´ 2,
p1´ ηq2pk´1q, j “ k ´ 1, (6.40)

which entails, making use of (6.39a):

Pj “ P t`1i “ jDu “ ηp1´ ηq3j
“

η2
` 3p1´ ηq

‰

, j ě 0. (6.41)

Inserting this expression in (6.30) and expanding the term
?
j2 ` 1 as j Ñ 8:

1
D

B

b

`1i
2
`D2 ´ `1i

F

i

«

ˆ

C 10 ´
3
2 log η

˙

η `Op´η2 log ηq, (6.42)

where the constant C 10 « 1.025 is given by the symbolic calculator [262] as an expression involving
the Riemann Zeta function. Again, the number of terms in the expression increases with the order
of the Taylor expansion. The first ten digits however are unchanged when

?
j2 ` 1 is expanded to

order 20 or more in j.
Inserting expressions (6.42) and (6.39a) into (6.26), one obtains:

ξ “ 1`
ˆ

C 10 ´
3
2 log η

˙

η2
`Op´η3 log ηq, η Ñ 0. (6.43)

The surface fraction of the rectangles is f “ ηp2´ ηq and so, in terms of f :

ξ “ 1`
ˆ

C 11 ´
3
8 log f

˙

f 2
`Op´f 3 log fq, C 11 « 0.513, f Ñ 0. (6.44)

As in the previous model, the expression for ξ is an upper-bound of the length of the geodesic.
This bound exhibits a power 2 of f and is significantly higher that that in (6.32). Indeed, in the
square model relevant to (6.32), the presence of an obstacle at the end of a ray is much less likely
than in the model of rectangles.

For a medium with N iterated scales of surface fraction fi “ fβi (0 ă βi ă 1,
ř

i βi “ 1), and
total surface fraction f “ f1...fN , with f1 the concentration of clusters at the largest scale and fN
the concentration of obstacles at the smallest scale, we derive, more generally:

ξ ´ 1 ď cstp´ log fqf ν , ν “ β1 `maxpβ1, β2 `maxpβ2, β3 ` ...`maxpβN´1, 2βNq...q, (6.45)

as f Ñ 0. This may be interpreted in a similar way as the model of squares. The exponent ν
is less than 2, this value being attained when β1 “ 1´ or βN “ 1´. The minimal value for ν is
obtained when 2βN “ βN´1, 2βN´1 “ βN´2, ...., β1 “ 2β2, i.e. βi “ 21´iβ1. Since β1` ...`βN “ 1,
this entails ν “ r1´ 2´N s´1 which approaches 1 as N Ñ 8.
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6.4.2 High-packing limit
Let us extend the results of Sec. (6.4.1) and construct an upper-bound for the length of the
minimal path in the checkerboard with square-shaped obstacles appropriate to the high-packing
limit f Ñ 1. The same microstructure as in Sec. (6.4.1) is considered. Furthermore, we assume
that the cost for crossing an occupied cell is equal to pD with p ě 1. Compared to Sec. (6.4.1),
a slightly simpler path is considered. The path is made of N subpaths each of them consisting
of a segment of length miD oriented along direction e2 (transverse to the macroscopic direction
of the minimal path) followed by a segment of line of length D, oriented along direction e1. If
p “ 8, we follow the same procedure as in Sec. (6.4.1), so that mi is chosen to be the minimal
length of segments oriented along e2 that reach a non-occupied cell (see Fig. 6.9). If the segments
of minimal length in the upward and downward directions have the same length, one of them is
chosen at random. When p is finite, the same value of mi is picked, except if the cost pmi ` 1qD
is larger than pD, in which case we set mi “ 0. In the latter case only, an occupied cell is crossed
with cost pD at the end of the subpath.

Let us denote m1
i the value of mi when p “ 8. We obtain:

P tm1
i “ kDu “ f 2k

p1´ f 2
q, (6.46a)

P tmi “ kDu “

$

&

%

0 if k ě tpu,
P tm1

i “ kDu if 1 ď k ď tpu´ 1,
P tm1

i “ 0u `
ř

jětpu
P tm1

i “ jDu if k “ 0,
(6.46b)

where k ě 0 and t¨u is the integer part (or “floor”) function. The mean length of the subpath is
then:

D

tpu´1
ÿ

k“0
pk ` 1qP tm1

i “ kDu ` pD
8
ÿ

k“tpu

P tm1
i “ kDu, (6.47)

which provides the bound:

ξ ď ξpp, fq “
1´ f 2tpu

1´ f 2 ` pp´ tpuq f 2tpu. (6.48)

Consider now a n-scales microstructure consisting of a sequential iteration of n random checker-
boards with widely-separated length scales. At the smallest scale, the microgeometry is made of a
(one-scale) random checkerboard, characterized by a concentration f1 of obstacles and a contrast
p. The ith scale is obtained by replacing each occupied cell in a random checkerboard with concen-
tration of occupied cells fi by the microgeometry at the pi ´ 1qth scale. A bound for such n-scale
iterated material read:

ξnpfq “ ξpξn´1pf{fnq, fnq, (6.49)

where ξi is a bound for the iterated microstructure at scale i. Suppose that occupied cells are
highly-packed at each scale (fi « 1) and that f1 “ ... “ fn. The overall concentration of obstacles
is f “ f1...fn with fi “ f 1{n. We have, when nÑ 8:

ξn´1pf{fnq « ξn´1pf ´ pf{nq log fq “ ξn´1pfq ´ ξ
1
n´1pfq

f

n
log f. (6.50)
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Insert the above into (6.49) and make use of (6.48). For simplicity, we assume that p is an integer.
After some algebra:

1´ p1´ f 2{n
qξnpfq « 1` 2

n

„

ξn´1pfq ´ ξ
1
n´1pfq

f

n
log f



log f ` 2
n2 ξ

2
n´1 log2 f. (6.51)

Simplifying this expression further, all terms cancel up to order Op1{nq whereas setting to zero
the term of order Op1{n2q provides us with the ordinary differential equation:

ξn ´ ξ
2
n ` fξ

1
n “ 0, nÑ 8. (6.52)

Its solution reads:
ξn “

1
1´ p1´ 1{pqf , nÑ 8. (6.53)

In the high-packing limit f Ñ 1 Eq. (6.53) coincides with (6.48) up to Op1´ fq:

ξn “ ξ “ p´ ppp´ 1qp1´ fq `Op1´ fq2, n “ 8, p ă 8, f Ñ 1. (6.54)

This is not so when p “ 8, in which case:

ξn “ p1´ fq´1, ξ “
1
2p1´ fq

´1
`Op1q, n “ 8, p “ 8, f Ñ 1. (6.55)

Accordingly, if bounds are to be interpreted as approximations of the exact behavior, the sequential
microstructure is stiffer than the one-scale checkerboard in the high-packing limit.

mi+1
im

mi+2

Figure 6.9: Path used to compute bound (6.48) in the random checkerboard.
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6.4.3 Random sequential adsorption model of rigid squares
Hereafter, we consider the “random sequential adsorption” model [231] made of squares in the
plane. In this model, trial grains are added sequentially in a 2D domain at random position, with
uniform regionalized density. When a grain overlaps a previously inserted grain, it is rejected,
otherwise, it is implanted. Random sequential adsorption is one among many models of non-
overlapping grains [145]. For dilute surface fraction of grains, the position of the grains in random
sequential adsorption models is asymptotically equivalent to that of a Poisson point process [145].
Realizations of the model are generated in a domain Ω of surface S. The model is parametrized by
the surface fraction of squares f “ nb2{S where n is the number of disks in Ω and b2 the surface
of a square.

Inspired by the algorithm relevant to a union of disks (Appendix 4.A), we devise an algorithm
for computing the minimal path between two points in a model of rigid squares, again without
discretizing the medium. The task is significantly more demanding, because of the important
computational cost involved in determining whether a given segment intersects a square. The
algorithm is described in Sec. (6.A).

1 10
1

n1/3√f
_ 1

10
1

10
2

10
3

n4/3(ξ−1)

ξ−1=(5/n)√f
_

ξ−1=(1/32)f2

f=0.1
f=0.03
f=0.01

rigid squares

(a) (b)

Figure 6.10: (a) Model of non-interpenetrable squares (in dark gray). Light gray lines: geodesics
joining the mid-point on the left side of the domain with all square corners, forming a tree. Black
solid line: minimal path joining the two mid-points on the left and right sides. (b) Rigid squares
in the RSA model. Numerical data for the quantity n4{3pξ ´ 1q vs. n1{3?f , in log-log plot.

We now compute the minimal path joining two mid-points on the “right” and “left” sides of Ω,
as shown in Fig. (6.10a). In this figure, the direction of propagation is horizontal. We let f “ 0.1,
0.03 and 0.01. For each value of f , the number of disks takes on values n “ 400, 800, 1600, ...,
102400. In the dilute regime f Ñ 0, we expect very “flat” minimal paths. Hence, we consider
rectangular domains Ω of dimension 1 (a.u.) along the direction of propagation and h ! 1 along
the transverse direction. We let h “ 100{n. With this choice, all minimal paths are constrained in
a narrow strip of width at most 24% of the domain. Note that if the value chosen for h is too small,
the minimal path predicted by the algorithm is close to the border of the domain and “avoids” the
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entire set of squares. This can be detected a posteriori. In that case, a new computation would be
carried out with a larger value of h.

Numerical results for the quantity n4{3pξ ´ 1q are represented in Figs. (6.10b) as a function of
n1{3?f in log-log plot. This graph shows the existence of two regimes, one where ξ´1 « p5{nq

?
f ,

when n ď nc “ 125f´3{2, and the other in which:

ξ « 1` α0f
2, α0 « 0.04, (6.56)

which holds when n ą nc (Fig. 6.10b). Behavior (6.56) may be interpreted as follows. Let us write
the length of the minimal path as:

ξ “

řN
i“1

a

`2
i `m

2
i

řN
i“1 `i

“
x
a

m2
i ` `

2
i yi

x`iyi
, (6.57)

where the square root term is the length of the i-th segment in the path, `i and mi are the length
of the projection of the segment along the direction of propagation and transverse to it, and N " 1
is the number of segments. Averages x‚yi are to be taken over all segments in the minimal path.
Now, most segments are expected to be nearly horizontal in the dilute limit so that mi ! `i. A
Taylor expansion of (6.57) in `{mÑ 8 gives, neglecting the contribution of small values of the `i:

ξ « 1` xm
2
i {`iyi

2x`iyi
. (6.58)

As an approximation, one may identify `i as the length of the “visibility” in the direction of
propagation, which is the longest distance from a given point in that direction that does not
intersect a grain (see [44] from some exact results of related quantities in Boolean models). We
expect `i to be of order „ b{f , since the fraction of a line intersected by the squares is, on average,
f , and mi „ b{4. One accordingly expects ξ ´ 1 „ f 2{32 « 0.03f 2. We emphasize that, unlike
in Sec. (6.3), this reasoning is not rigorous, because no explicit (nor admissible) path has been
considered.

6.4.4 Comparison with non-linear homogenization theories
The problem of a rigidly-reinforced, perfectly plastic material in anti-plane shear has been consid-
ered in [94] and [95]. The author derives an upper-bound for the effective yield stress Y of such a
medium. The inclusions are much stiffer than the matrix, and the bound depends on the perimeter
and area of the inclusions. The latter reads, for a dilute concentration of squares:

Y ď Ym

ˆ

1` 7
2f

˙

, (6.59)

where Ym is the yield stress in the matrix. This result is consistent with (6.56), yet in the dilute
limit, the bound’s prediction, i.e. a leading-order term „ f , is significantly higher than our
numerical result, which is of order „ f 2 (6.56). Note however that bound (6.59) holds for an
arbitrary distribution of squares. Specifically, consider a N -scale arrangement of square-shaped
particles similar to the iterated model BC , with particle surface fraction f “ f1...fN where f1 is
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the concentration of clusters at the largest scale and fN that of particles in the smallest clusters.
Making use of (6.56) and following a similar treatment as in Sec. (6.4.1) we obtain:

ξ ď 1` α0 min
`

f 2
1 ; f1f

2
2 ; f1f2f

2
3 ; ...; f1...fN´1f

2
N

˘

. (6.60)

To maximize this quantity, we choose:

f1 “ f p1{2qr1´2´N s´1
, f2 “

a

f1, ..., fN “
a

fN´1, (6.61)

so that f 2
1 “ f1f

2
2 “ ... “ f1...fN´1f

2
N . Taking now N Ñ 8:

ξ ď 1` α0f. (6.62)

The latter expansion explains the scaling law „ f in (6.59), assuming the r.h.s. of (6.62) is a
good approximation of the length of the exact minimal path in a RSA model of squares with
infinitely-many separated scales following (6.61).

In this section, we also consider, as in the porous case, the “non symmetric fully-optimized
second-order” (SO) method [83, Annex B]. In the dilute limit f Ñ 0, the (SO) theory predicts,
asymptotically:

ξ
1pSOq
E « 1`min

"

f 2

8 ; pp´ 1qf
*

, (6.63)

where ξ
1pSOq
E ą 1 is the effective yield stress, normalized by the yield stress in the inclusions, and p

is the yield stress in the inclusions divided by that in the matrix. When specialized to p “ 8, this
formula is close to (6.56). Since bound (6.56) also holds for arbitrary value of p, and given (6.10),
it is clear that:

ξ1E ď 1`min
 

α0f
2; pp´ 1qf

(

, f Ñ 0, (6.64)
which is very similar to (6.63).

We remark that the (SO) theory also predicts that, when p ě p˚ (where p˚ is a function
depending on f only), then ξ “

a

1` f 2{4 becomes independent of p. This prediction may be
interpreted by the fact that, when inclusions are sufficiently stiff, shear bands span the matrix
only. Thus, the effective response is unchanged when the inclusions yield stress is increased.

6.5 Conclusion
In this chapter, we have examined the effect of a multiscale distribution of rigid obstacles on the
length of minimal paths spanning the media. The dual problem of a multiscale distribution of
porous inclusions has also been considered. In the porous case, we have extended bounds on the
minimal paths spanning Boolean random media to multiscale materials. In Cox-Boolean models,
obtained as the intersection of Boolean models with widely-separated length scales, the length of
minimal paths increase with the number of scales, at small surface fraction of particles f . In the
limit of infinitely-many scales, the bound predict a linear correction in f at leading-order term. In
the rigid case, a small effect of the particles is observed in the dilute limit, resulting in a leading-
order correction „ f 2, according to numerical data. Bounds obtained for a random checkerboard
geometry confirm a behavior which is essentially quadratic in f . A multiscale distribution of
obstacles, where particles are organized as clusters, increase the minimal path length, according to
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the bounds. For infinitely-many scales, a linear correction in f is predicted. The numerical results
obtained in the present chapter, as well as the predictions of nonlinear homogenization theories
for the effective yield stress of media in antiplane shear suggest that the present bounds are sharp.

Acknowledgements I thank P. Suquet for pointing to me Refs. [94, 95].

6.A Algorithm for computing shortest paths in a model of
squares

In general, geodesics bypassing an obstacle are made of two straight-line segments and of a segment
of a curve inbetween, that follows the frontier of the obstacle’s convex hull [11, Chap. 13]. Fur-
thermore, the two straight-line segments are tangent to the frontier of the obstacle. Accordingly,
in the case of polyhedral obstacles, geodesics are made of segments of lines joining the corners of
polyhedra. Lozano-Pérez & Wesley have proposed a numerical algorithm to compute geodesics
in such systems of polyhedra [143]. Indeed, for polyhedral shapes, the problem in the continuum
can be reformulated as that of a minimal path problem in the “visibility graph”, which can be
solved using Djikstra’s efficient algorithm for graphs [62]. The nodes in the visibility graph are the
vertices of the obstacles, and the bonds between nodes are segments joining two of the obstacles
vertices, that do not intersect an obstacle. The size of the visibility graph, and so the number
of steps to compute the shortest path between two points, however increases rapidly with the
number of obstacles [183]. Faster algorithms have been proposed for L1-metrics [168] of for special
geometries, requiring only a subgraph of the visibility graph, such as a set of parallel barriers [139].
The latter can not be used in the present work and we follow the visibility graph approach. Our
algorithm is summarized hereafter.

Consider a model of non-interpenetrable squares in two dimensions with infinite distance func-
tion inside the squares, i.e. the geodesics are located in the complementary set of the union of
squares. Since the geodesics are locally straight lines, they reduce to a set of segments joined by
square corners. Two square corners are said to be “visible” from one another if the segment joining
the two corners is included in the matrix (if it lies exactly along the matrix-square frontier, the
two corners are visible to one another). Thus, for instance a square corner is visible by two of the
other other corners in the same square, but not by the third.

In theory, algorithm (4.A) may be used to compute a solution provided one determines the
pairs of square corners that are visible to one another. A brute-force approach requires one to
determine, for every pair of corners, if a square intersects the segment joining the two corners.
This has complexity OpN3q where N is the number of squares and is prohibitively expensive.
Instead, we rely on a different approach, described below.

Assume the domain is divided into subdomains of rectangular shapes whose dimensions are
larger than the squares. We are interested in a square corner C located in a subdomain. We first
determine the square corners in the same subdomain that are visible from C, using a “brute-force”
technique. We then determine the set of “forbidden” angular sectors which are obstructed by the
neighboring squares, located in the same subdomain. We then consider a larger set of 8 (or less)
subdomains around the square and determine visible square corners in that domain. If a corner
is located in a direction included in the forbidden angular sectors, it is discarded, otherwise we
determine if it is obstructed by another square. We update the set of obstructed angular sectors,
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and consider an even larger set of subdomains. This process continues until obstructed angular
sectors entirely cover the rest of the (unchecked) domain.



Chapter 7

Cross-over behavior in periodic
composites under plane strain and
anti-plane shear

The previous chapters have investigated how certain parameters of the microstructure
may influence the effective response of materials using a combination of geometrical
bounds for the homogenized distance function and FFT numerical results. The results
are relevant to nonlinear conductivity with a non-strictly convex potential and to the
yield stress of materials subjected to anti-plane shear. This study aims, in contrast
with the previous ones, to understand how localization bands may develop, in a setting
where the matrix phase follow a strictly convex, powerlaw potential. The problem is
investigated in simple, periodic configurations in two dimensions, using limit analysis.

7.1 Conductivity problem
Consider a periodic medium in two dimensions made of a square-shaped elementary cell Ω con-
taining a single disc of radius a (Fig. 7.1a). We assume that the size L of the domain Ω is the
length unit, i.e. L “ 1. The quantity a may alternatively be considered as a non-dimensional
parameter that monitors the disc surface fraction f , with a “

a

f{π. Points in Ω are referred to
in a Cartesian coordinates system (e1, e2) so that Ω “ r´1{2; 1{2s2 and the disc center is at the
origin.

We are looking for the solution to the problem:

W pEq “ rχ
E
n`1

n` 1 “ inf
EPK

"

1
Ω

ż

Ω
dxχpxq |Epxq|

n`1

n` 1

*

, (7.1)

K “
 

E, Dφ : E “ ´∇φ, xEy “ E
(

,

where 0 ď n ď 1 is the nonlinearity exponent, E the electric field, E the mean applied field, φ the
electric potential, χpxq the conductivity at point x, W pEq the macroscopic energy density and rχ
the effective conductivity. In the following, we assume the inclusions is insulating and embedded
in a conducting matrix, accordingly χpxq “ 0 in the disc and χpxq “ χm ą 0 outside of the disc.
The applied field is oriented along the x1-axis, so that E “ |E|e1.

99
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Consider a trial electrical field Eψ with components of the form Eψ2pxq ” 0, Eψ1pxq “ ψpx ¨e1q

where the function ψ is to be optimized on, under the constraint
ş1
0 ψ “ 1.

(a) (b)

Figure 7.1: (a) Elementary cell Ω of a periodic microstructure, containing a single disk. (b):
“scrambled disk”.

W pEq ď Wψ “
2χm
n` 1

«

ż 1{2

a

dx|ψpxq|n`1
`

ż a

0
dx|ψpxq|n`1

p1´ 2
?
a2 ´ x2q

ff

. (7.2)

Set BW ˚
ψ{Bψpzq “ 0 where W ˚

ψ “ Wψ ` θ
´

1´
ş1
0 ψ

¯

and solve for ψ:

Eψpxq “
E

χ
´1{n
ψ

ˆ

# 1 if |x1| ą a,
´

1´ 2
a

a2 ´ x2
1

¯´1{n
if |x1| ď a,

(7.3a)

rχ

χm
ď χψ “

„

1´ 2a` 2a
ż 1

0
du

´

1´ 2a
?

1´ u2
¯´1{n

´n

. (7.3b)

A Taylor expansion of the integrand in (7.3b) in the limit aÑ 0 (n fixed) provides, upon integra-
tion:

χψ “ 1´ πa2
´

8pn` 1q
3n a3

`Opa4
q. (7.4)

The previous expansion is a good approximation of χψ when the integrand in (7.3b) stays close to
1 ` 2a{n

?
1´ u2, hence when a ! ac “ n{2 or equivalently n " nc “ 2a. However, when n Ñ 0

(a fixed), the integral in (7.3b) is governed by the values of its integrand around u « 0. Let us
expand the term

?
1´ u2 to second-order in u in (7.3b). Using the variable change uÑ u

?
n and

integrating, we obtain:
ż 1

0
du

´

1´ 2a
?

1´ u2
¯´1{n

“ p1´ 2aq´1{n

«

c

nπp1´ 2aq
4a ` opnq

ff

, (7.5)

so that:
χψ “ p1´ 2aq

”

1´ n

2 logpnπap1´ 2aqq `Opn logpnqq
ı

. (7.6)
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We expect this expansion to hold when the logarithmic term in the r.h.s. is much smaller than 2a.
Solving for 2a “ ´pn{2q logpπnaq entails a " a1c with a1c “ pn{4qW p4{pπn2qq, where W p‚q is the
special Lambert function, inverse of W ÞÑ W eW . As nÑ 0, a1c is equivalent to:

a1c „ ´
n

2 log n. (7.7)

We also define n1c so that a1cpn1cq “ n1c which is close to

n1c „
2a

´ log a, (7.8)

as a ! 1. Notice that expansions (7.4) and (7.6) do not hold in the interval a P rac; a1cs, and in
particular when 1 ! 2a{n ! ´ log n. The behavior of χψ in this intermediate regime is obtained
by approximating the integrand in χψ as follows:

´

1´ 2a
?

1´ u2
¯´1{n

« e2a{ne´au2{n.

Integrating the above yields:

χψ «

„

1´ 2a`
?
πan erf

ˆ
c

a

n

˙

e2a{n
´n

(7.9)

where “erf” is the “error function” erfpzq “ p2{
?
πq

şz

0 expp´t2qdt. When t Ñ 0, erfptq « 2t{
?
π

and one obtains:
χψ « 1` 3an´ e2a{n?πan3{2

` n2, (7.10)
which is a good approximation of χψ in the region ac ! a ! a1c (Fig. 7.2a).

The shape of the local electrical field in the band surrounding the inclusion, given by (7.3a),
is plotted in Fig. (7.2b), after normalization between 0 and 1. Various values of the exponent
n are used. The profile Eψ1px1, 0q for the trial electric field changes in the interval n P rn1c;ncs.
A concave shape at n “ nc is replaced by a curve exhibiting an inflection point when n “ n1c,
highlighting the electric field localization. The coordinate of the inflection point is obtained as
the root of a polynomial equation of degree 3, given by the second derivative of Eψ1px1, 0q with
respect to coordinate x1 (not shown). The typical width `b of the localization band then reads:

`b “

c

2n
a
`

n

2a ` opnq, nÑ 0. (7.11)

It is clear that when n “ 0, the electric field is localized along a one-dimensional path that passes
through the disc center, with minimum length 1 ´ 2a. When n is small but not zero, the field is
localized over a band of finite width.

Observe that the present analysis would hold if the disc had been cut along lines parallel to e1
and e2 into pieces and each piece moved at a different location, in such a way that points located
along a line x1 “ cst stay along a line x1 “ cst (Fig. 7.1b). Obviously, the distribution of the
pore fractions along lines parallel to axis e2 is the same in the original microstructure and in the
elementary cell with “scrambled disk”. In such a configuration, the localization band are spread
into many vertical paths, of suboptimal length, smaller than 1´ 2a`n{p4a2q. Such solution bears
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Figure 7.2: (a) Quantity 1´χψ vs. exponent n in log-log scale, with a “ 10´5 fixed (data points).
Solid and dashed lines (left to right): expansions (7.6), (7.10) and (7.4), respectively. Gray vertical
lines: exponents nc and n1c. (b) Normalized profile of the local electrical field Eψ1 within the band
surrounding the inclusion, for various values of the nonlinearity exponent n, corresponding to the
light gray points in (a).

similarity to localization bands of varying intensity that span elastic, perfectly-plastic media under
plane strain (see e.g. [258]).

The effective behavior is represented in Fig. (7.3a). In the region a ! ac, the effective conduc-
tivity scales, to leading-order term, as „ a2, i.e. a linear correction in term of the volume fraction
f . The field are not localized in this domain, corresponding to dilute regime (Fig. 7.3b). The
electric field in the matrix, in particular, is close to the macroscopic field E. In the intermediate
regime ac ! a ! a1c, the electric field (and local energy density) in the matrix diminishes as a
increases, and increases in the band surrounding the inclusion. The increase is maximum along
the line of minimal path (Fig. 7.4). In the region a " a1c (Fig. 7.3b), characterized as a “localized
regime”, the electric field takes on very high values within a thin band. The effective response χψ
scales as „ 1´ 2a or equivalently, as „ 1´ 2

a

f{π.

7.2 Nonlinear elasticity

7.2.1 Local and effective behavior
This section is devoted to the analysis of the plane strain, mechanical response of a composite
material with the same periodic geometry as considered in the previous section. In the matrix,
the local infinitesimal deformation and stress tensors are related by:

σ “
Bw

Bε
, wpεq “

y0ε0

1` n

ˆ

εe
ε0

˙1`n

` p8qtrpεq, (7.12)

where y0 and ε0 are the flow stress and reference strain and w “ wpεeq is an isotropic strain
potential depending on the Von-Mises equivalent strain εe “

a

p2{3qε1 : ε1, in which ε1 denotes the
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Figure 7.3: Solid lines: leading-order correction to the effective conductivity upper-bound χψ in
the dilute limit a Ñ 0, for various values of the nonlinearity exponent n, in log-log plot. Dashed
lines: “highly-dilute” and “localized” regimes described by Eqs. (7.4) and (7.6).

strain deviatoric part. The matrix is incompressible, the potential ω being infinite when trpεq ‰ 0.
The constitutive law’s nonlinearity is monitored by the exponent 0 ď n ď 1. The limiting values
n “ 1 and n “ 0 accordingly characterize a linear and rigid-ideally plastic behavior, in the context
of deformation theory.

In the following, periodic boundary conditions are applied along the frontiers BΩ of the elemen-
tary cell Ω. The medium is accordingly subjected to the macroscopic strain field ε “ xεyΩ, where
x‚yΩ denotes a mean over Ω. The “effective” behavior is described by the effective potential:

rwpεq “ infεPKpεqxwpx, εqyΩ, (7.13)

where Kpεq is the set of kinematically admissible strain fields:

Kpεq “ tε; Du : ε “ pgraduqsym, u “ ε ¨ x` u
˚, u˚#, trpεq “ 0u . (7.14)

Let us focus on the case of a ‘simple shear’ loading where the principal axes of ε are aligned with
e1 ˘ e2, referring to the Cartesian axis of Fig. (7.1a). Accordingly, ε12 “ ε21 is the only non-zero
component of ε. The effective potential rw is then characterized by an effective flow stress ry0 which
may be rewritten as:

rwpεq “
ry0ε0

1` n

ˆ

εe
ε0

˙1`n

, (7.15)

from which the macroscopic stress xσyΩ may be obtained. In both (7.12) and (7.15), due to the
isochoric loading direction considered and the material incompressibility, the Von Mises strains
read:

εe “
2
?

3

c

ε2
12 `

´ε11 ´ ε22

2

¯2
, εe “

2|ε12|
?

3
. (7.16)

In the rest of this chapter, the variational formulation (7.13) defining the homogenized be-
havior of the composite is used to derive bounds for the effective flow stress ry0. Two cases of
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interest are considered, namely, a material containing an array of cylindrical pores and a com-
posite reinforced by an array of rigid, cylindrical inclusions. To assess the domains of validity of
the bounds, use is made of the nonlinear second-order homogenization theory, relevant to such
periodic microstructures [112], and of Fourier numerical computations. The latter computations
are carried out on grids of 10242 voxels, using the “augmented Lagrangian” method [162] with
‘discrete’ Green operator [258]. A regularized form of the constitutive law (7.12) is implemented
in Fourier computations. Namely, the behavior is linear-elastic at small strain and the medium is
compressible with bulk modulus κ:

σ1 “

"

2µε1 if 3µεe ă y0ε
n
e ,

p2{3qy0ε
n´1
e ε1 otherwise, trpσq “ 3κtrpεq, (7.17)

so that the Von Mises equivalent stress σe “
a

p3{2qσ1 : σ1 reads:

σe “

"

3µεe if 3µεe ă y0ε
n
e ,

y0ε
n
e otherwise. (7.18)

where σ1 the stress deviatoric part. In the FFT computations, we set y0 “ 1 (a.u.), κ “ 1000
(a.u.), µ “ 1 (a.u.) and apply a strain loading ε12 “ 4, using steps of ∆ε12 “ 0.1. These values
allow one to approach an incompressible behavior, and to recover the effective nonlinear response
σe « ry0ε

n
e (see [112]). Note that the augmented Lagrangian method requires one to invert the

equation
L0 : ε` σ “ τ

where τ is a given symmetric second-order tensor and σ is provided by (7.17). This inversion is
carried out numerically by an iterative method, at each grid point. Newton’s method fails when
very small exponents are considered, therefore, we use the bisection method. More involved FFT
schemes, such as the ones discussed in [213], have not been considered in this work.

In the porous case, we set σ “ 0 in the cylindrical void. For the rigid inclusion, we use
σ “ L : ε with isotropic stiffness tensor L with elastic moduli µ2 “ 1000 and κ2 “ κ. For
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the porous medium, the fastest convergence rate offered by the Fourier algorithm, in term of the
L1-norm of the divergence of the stress field, is obtained with quite small values of the reference
moduli, about 10´4. The convergence rate is less sensitive to the reference medium for quasi-rigid
inclusions. In that case, we use reference elastic moduli slightly stiffer than κ and µ.

In the rest of this chapter, we focus on the dilute-limit behavior for the effective flow stress,
that is, we assume the cylindrical inclusion has a very small volume fraction f ! 1. In this limit,
the second-order nonlinear homogenization theory predicts the isotropic macroscopic behavior:

ry0

y0
“

"

1´ p1`
?
nq2{p2

?
nqf `Opf 2q (porous inclusion),

1` 1
2
?
np1`

?
nq2f `Opf 2q (rigid reinforcement), (7.19)

as f Ñ 0. Note that scaling law (7.191) above has been obtained in the case of incompressible
pores.

In the following, we focus on the ‘strongly-nonlinear’ case n ! 1. Limit analysis bounds provide
that, when n “ 0 [68, 112]:

ry0 “ y0
`

1´ α0f
1{2˘ , 2{

?
π ď α0 ď 2

a

2{π, (7.20)

in the porous case, to leading-order term in f . In effect, numerical results indicate [248]:

ry0 « y0
`

1´ 1.185f 1{2˘ . (7.21)

In the rigid case, the upper-bound provides the exact result:

ry0 “ y0, (7.22)

in the interval f ă π{4. The purpose of the next sections is twofold. First, we wish to assess the
validity of the predictions (7.19). Our second goal is to clarify the regime change that (presumably)
occurs between (7.19) and (7.20)-(7.22).

Figure 7.5: Field pattern for the limit analysis trial field in the unit cell.
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7.2.2 Porous material
One can attempt to estimate the behavior of the crossover threshold fc between the two regimes
by equaling expressions (7.21) and (7.201) to find:

fc “ 4α2
0n. (7.23)

We will show that the actual regime change occurs at a much lower porosity. Inspired by the
bounds obtained in conductivity, we approach the porous problem by means of a continuous trial
field:

u1px1,2 q “ ε12

"

rx2, |x2| ă b,
rbsignpx2q ` p1´ 2rbqp1´ 2bq´1 rx2 ´ signpx2qbs, |x2| ă b, (7.24)

and u2px1, x2q “ u1px2, x1q, with ´1{2 ď x1,2 ď 1{2. The parameter b monitors the unknown
half-width of a band passing through the pore (see Fig. 7.5) and the parameter r the field intensity
along that band. The two parameters are in the intervals 0 ă b ă a and 0 ă r ă 1{p2bq.
For convenience, we restrict ourselves to b ă a{

?
2, so that the square intersection area of the

bands remains within the pore. Denote fBpa, bq the area of the band that lie outside the void.
Straightforward geometrical considerations lead to:

fBpa, bq “ 4
ˆ

b´ a2 sin´1 b

a
´ ab

a

1´ b2{a2
˙

. (7.25)

We insert the trial field ε corresponding to the above displacement field into (7.13) which provides
us with:

ry0

y0
ď

ż

matrix
d2x

ˆ

ε12

ε12

˙n`1

“
fB

2n`1

ˆ

r `
1´ 2rb
1´ 2b

˙n`1

` p1´ f ´ fBq
ˆ

1´ 2rb
1´ 2b

˙n`1

. (7.26)

A simplified bound is obtained by taking r “ 1{p2bq, i.e. ε12 “ 0 outside the bands, in which case:

ry0

y0
ď infbďa{?2fBpa, bqp4bq´pn`1q. (7.27)

This choice is accurate in the regime where the strain field localizes, i.e. when n is very small. An
optimal band width b˚ is now sought for to minimize (7.27). The scaling law for b˚ turns out to
be b˚9

?
an for n ! 1. This is shown by replacing b by k

?
an (k constant) in (7.27), expanding

the latter as nÑ 0 and optimizing on k. The optimal value of b˚ ensues:

b˚ “ min
´

a

p3{2qp1´ 2aqan; a{
?

2
¯

, (7.28)

where the restriction over b has been accounted for. The analytical upper-bound now reads:

ry0

y0
ď fBpa, b

˚
qp4b˚q´pn`1q. (7.29)

In practice, curves drawn with this expression are indistinguishable from those obtained by a
numerical minimization of (7.27). When nÑ 0, bound (7.29) reduces to the upper-bound (7.20).
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Figure 7.6: Upper-bound (7.31) for the normalized effective yield stress ry0{y0 vs. disk radius a in
a periodic medium, in log-log plot, for various values of the nonlinear exponent n.

It should be noted that bound (7.29) becomes useless when a Ñ 0 with n fixed, as the bound
will then be greater than 1. In this regime, the field pattern can not be approached by a straight,
localized band that join pores. We find numerically with good precision that this occurs when
´2a{ log a À n. Thus, to account for the dilute regime a ! n, we take b “ a{

?
2 in (7.26) and

obtain the bound:

ry0

y0
ď ζpa, nq “ min

ar
?

2ă1

#

fBpa, a{
?

2q
2n`1

ˆ

r `
1´ ra

?
2

1´ a
?

2

˙n`1

`

„

1´ f ´ fB
ˆ

a,
a
?

2

˙ˆ

1´ ra
?

2
1´ a

?
2

˙n`1+

,

(7.30)
which is numerically estimated, by optimizing on r. Our upper-bound on the entire domain
0 ă n ă 1, 0 ă a ă 1{2 then reads:

ry0

y0
ď min

 

ζpa, nq, fBpa, b
˚
qp4b˚q´pn`1q( . (7.31)

The behavior of this upper-bound is similar to results obtained in conductivity (Sec. 7.1), see
Fig. (7.6). The curves in Fig. (7.6) are not smooth at a single point where the minimum for the
trial field switches from bound (7.30) to (7.29). The behavior in the regime a ! n is, as expected,
inconsistent with (7.191). Although both analytical results predict a linear correction in f , the
prefactor of that correction depends on n, contrary to the upper-bound (7.31). This is because, in
the dilute limit, the simple trial field corresponding to our bound does not adequately describe the
fields. Those fields are necessarily homogeneous except in the region surrounding the inclusion,
unlike the trial field which always display a straight band. Nevertheless, bound (7.31) may capture
some information regarding the regime change between the ‘localized’ and ‘dilute’ regime.

Since bound (7.30) is not meaningful, we restrict our attention to bound (7.29). This is com-
pared to the dilute estimates (7.19) and to FFT computations in Fig. (7.7). The quantity 1´ry0{y0
is represented in log-log scale as a function of a, for various values of the exponent n “ 10´1, ...,
10´4. Bound (7.30) ceases to be meaningful when 2a „ ´n log a, hence:

fc « ´pπ{4qn2 log2 n. (7.32)
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Figure 7.7: Normalized effective yield stress ry0{y0 vs. disk radius a in a periodic medium, in log-log
plot, for various values of the nonlinear exponent n. Symbols: FFT computations. Solid and dotted
lines: asymptotic dilute estimates (7.19) predicted by the nonlinear “second-order” homogenization
theory [112]. Gray dashed lines: upper-bound (7.29). Black dashed line: expansion (7.21).

The scaling (7.21), corresponding to a localized strain field, is confirmed by FFT computations in
the domain n À ´2a{ log a. The dilute estimates (7.19) are also confirmed by FFT computations
when n “ 10´1. For smaller values of n, FFT data is not conclusive, owing the difficulty of
obtaining numerical results in highly-dilute, strongly-nonlinear cases. Nevertheless, the FFT data
confirms that the scaling law ry0{y0 „ 1´ α0a (Eq. 7.21) ceases to be valid at much smaller values
than that predicted by (7.23) and in fact suggests a cross-over consistent with the much smaller
threshold (7.32) provided by bound (7.29), although the numerical data can not conclusively
confirm it.

7.2.3 Rigid inclusion
As in the porous case, the bound (7.22) is extended as a bound for rigidly-reinforced, powerlaw
materials of rate-sensitivity exponent n, by considering a continuous regularization of the trial
displacement field. Again, we limit ourselves to simple shear loading and strain fields. The situation
is simpler than in the porous case, since we already know from FFT results that the relevant band
width is 2a (see FFT maps in). A continuous trial field consistent with the rectangular patterns
of [112, Tab. 2] on the unit cell ´1{2 ď x, y ď 1{2 is:

u1px1,2 q “
ε12

2

"

0, |x2| ă a,
signpx2qp|x2| ´ aqp1´ 2aq´1, |x2| ą a, (7.33)

and u2px1, x2q “ u1px2, x1q. Accordingly, ε12 is constant within each of a set of 9 rectangles, and
vanishes in the square circumscribed to the rigid inclusion disk. The following upper bound is
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Figure 7.8: Normalized effective yield stress ry0{y0 ´ 1 vs. disk radius a in a periodic medium, in
log-log plot, for various values of the nonlinear exponent n. Comparisons between limit analysis
bounds (7.34) (solid lines), second-order dilute predictions (7.192) (solid lines) and FFT estimates
(symbols).

readily obtained:
ry0

y0
ď p1´ 2aq´n

“

1´ 2ap1´ 2´nq
‰

. (7.34)

Being valid for any a ď 1{2 and always greater than one for 0 ď n ď 1, it does not suffer
the limitations encountered in the porous case. It moreover reduces to (7.22) when n “ 0, and
constitutes a good estimate as long as n is small enough for the rectangular field pattern to hold.
In the dilute limit, Eq. (7.34) reads:

ry0

y0
“ 1` 2

`

n` 2´n ´ 1
˘

a`Opa2
q, (7.35)

so that comparing to Eq. (7.19) the latter provides a crossover at arcpnq “ p4{πqp1 ´ log 2q
?
n.

Both regimes can be encoded in the form:
ry0

y0
“ 1` n3{2G pa{arcpnqq , (7.36)

where the scaling function is such that Gptq „ t2 (resp. Gptq „ t) when t ! 1 (resp. t " 1). To
check these results, composite curves built from the infimum of expressions (7.19) and (7.34) are
compared to FFT data in Fig. (7.8), where the inset shows the scaling function G. The agreement
is excellent, and confirms that Eq. (7.34) and (7.192) hold when a ą arc and a ă arc, respectively.
In terms of the volume fraction, the regime change occurs when:

f “ f rc pnq “
16
π
p1´ log 2q2n « 2.49n. (7.37)

It would be useful to study this problem in the context of a random distribution of particles, such
as the one investigated in Sec. (6.4.3).
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7.3 Conclusion
This chapter presented an investigation of the effective response of powerlaw materials with de-
creasing nonlinearity (or strain-rate sensitivity) exponent n and dilute porosity f , or in the case
of rigid reinforcements, small concentration of particles. Our attention has been restricted to pe-
riodic structures. Numerical FFT results, limit analysis bounds and the predictions of nonlinear
homogenization theories have been used to investigate the material response. One of the main
finding of this work is the observation of a crossover-type behavior for the porous case in the dilute
concentration and small rate-sensitivity regime. As f goes to 0, the effective flow stress tends
to the flow stress in the matrix with a correction proportional to f , consistently with a set of
non-interacting inhomogeneities (Eq. 7.191). However, the prefactor blows up as n´1{2 as n Ñ 0,
suggesting that the range of validity of this expansion tends to zero in the the ideally plastic
limit. In contrast to this result, a regime consistent with a collective-type behavior induced by
strongly-interacting voids is obtained when taking the limit nÑ 0, in which case the effective flow
stress scales as f 1{2 as leading-order correction in f . The limit analysis study presented in this
chapter suggests a cross-over in between the two regimes, at f „ n. The bound obtained by limit
analysis and FFT results also suggest a much more abrupt transition between the weakly and
strongly-interacting regimes than in the corresponding linear problem with strongly anisotropic
matrix [259], also discussed in Sec. (2.6).

For the rigidly-reinforced materials, the two asymptotic regimes were found to be consistent up
to the first correction and a weaker crossover-type behavior was found, which could be completely
elucidated. In this case, the strongly dilute regime is found to be linear in f (cf. 7.192) with
a prefactor that tends to zero as m Ñ 0, while the strongly nonlinear regime has a vanishing
correction for sufficiently small values of f (cf. 7.22). This result has implications also for random
material, such as the “RSA” model of squares (Sec. 6.4.3).
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Chapter 8

Covariance of a Boolean set of
anisotropic grains

This chapter focuses on the variance properties of isotropic Boolean random sets con-
taining randomly-oriented cylinders with circular cross-section. Emphasis is put on
cylinders with large aspect ratios, of the oblate and prolate types. A link is established
between the powerlaw decay of the covariance function and the variance of the estimates
of the volume fraction of cylinders. The covariance and integral range of the Boolean
mixtures are expressed in terms of the orientation-averaged covariogram of cylinders,
for which exact analytical formulas and approximate expressions are provided.

8.1 Introduction

The covariogram, originally introduced by G. Matheron [152], gives the volume of the intersection
of a (convex) body with a translation of itself. The function is closely related to the distribution
of the length of the chords of a body, and also a key ingredient in the theory of Boolean stochastic
models based on Poisson point processes (see [153, 155, 156, 216, 226] and references therein). A
key-theorem relates the covariance function of stationary Boolean sets in the Euclidean space to
the Poisson intensity of the point process and to the covariogram of the primary grain. In turn,
the covariance function itself governs basic features of the model, such as the specific surface area
and the integral range. The integral range is linked to the estimates on finite-size volumes of the
random set volume fraction.

Another property of interest concerns the probability that a segment is entirely contained in the
complementary set of a Boolean model. This probability takes a simple form for convex primary
grains, which depends on the derivative of the covariogram at 0 [216]. Linear erosion allows one to
compute this probability numerically which is especially useful for model identification [187, 118].

An important subclass of Boolean models, commonly used in material science for modelling
heterogeneous materials, concern isotropic random sets. In dimension 3, this model requires one to
average the covariogram over all directions uniformly on the sphere. In the rest of this chapter, the
orientation-averaged covariogram, also denoted “isotropized covariogram” in the literature, will be
referred to as “mean covariogram”. The mean covariogram is a special case of so-called “kinematic”
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integrals (see [215], Chap. 5) of the form (in dimension d):
ż

Gd
Vd pM X gAqµpdgq (8.1)

where a convex body A is moved into gA and the volume of the intersection of gA with a convex
set M is averaged with respect to the measure µ over all transformations g in the motion group
Gd. The measure µ is invariant in Gd. The mean covariogram required for describing isotropic
Boolean models is obtained by taking translations at fixed distance uniformly distributed on the
sphere for Gd and µ and M “ A. Unfortunately, such kinematic covariogram is usually not
known explicitly, especially in 3D. Some notable exceptions include the sphere, parallelepiped,
cylinder [89, 91] and Poisson polyhedra [154]. The mean covariogram for cylinders is useful for
identifying stochastic fibrous models from experimental 2D (e.g. SEM) or 3D (e.g. tomography)
images of fibrous materials [202, 187, 198]. More generally, heterogeneous microstructures studied
for various industrial applications can be approached by random models of cylinders. Examples
include flakes in optics [54] or platelets in mesoporous materials [240].

This work focuses on the mean covariogram of 3D cylinders with circular cross-section and
its applications to Boolean models. It is organized as follows: the covariogram of a cylinder is
recalled in Sec. (8.2). The mean covariogram is derived in Sec. (8.3). Boolean models of cylinders
are considered in Sec. (8.4). The integral range is given in Sec. (8.4.1). Variance properties are
discussed in Secs. (8.4.2) and (8.4.3). We conclude in Sec. (8.5).

8.2 Covariogram of a cylinder
Consider a cylinder C of height h and circular cross-section of radius r, and a Cartesian coordinate
system with origin O and axes ex, ey and ez. We assume that O is at the center of one of the
bases of C and that ez is parallel to the cylinder main axis. Consider now the translation C 1 of
the cylinder C by a vector v. We parametrize v by its norm t “ |v| and two angles φ P r0; 2πs
and θ P r´π{2;π{2s in spherical coordinates. The azimuthal angle φ is the angle between ex and
the projection of v onto the plane p0; ex, eyq. The variable θ denotes the angle between v and the
plane p0; ex, eyq so that θ “ π{2 when v is parallel to ez and θ “ 0 when v is contained in the
plane p0; ex, eyq. Note that, using this convention, θ is the complementary of the polar angle.

The (oriented) covariogram of a cylinder Kpθ, tq is defined as the volume of the intersection of
C with C 1:

Kpθ, tq “ L3 pC XC
1
q , (8.2)

where L3 denotes the Lebesgue measures in R3. The covariogram K depends on r, h, t and θ, but
not on φ. For conciseness, the dependence on r and h is omited in the notation for K and in the
notations for other variables hereafter. Let us introduce the ratios:

x “
t

2r , y “
h

t
. (8.3)

The two variables x and y, not to be confounded with Cartesian coordinates, will be used pref-
erentially to t, h and r. Furthermore, the variable t as argument of a function will be replaced
indifferently by x or y. For instance Kpθ, tq is also denoted Kpθ, xq.
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The expression for the covariogram K is derived from the formula of a covariogram of a disk
in the plane and reads [99]:

Kpθ, tq “ rKpθ, xqHpθ, tq, (8.4a)

rKpθ, xq “ 4r3
ˆ

h

2r ´ x sin θ
˙

”

cos´1
px cos θq ´ x cos θ

?
1´ x2 cos2 θ

ı

, (8.4b)

whereHpθ, tq “ 1 when θ and t are such that the two cylindersC andC 1 intersect, and 0 otherwise.
More precisely:

Hpθ, tq “

"

1 if t ď tmax,
0 otherwise, tmax “

" 2r
cos θ if θ P r0; tan´1 h

2r s,
h

sin θ if θ P rtan´1 h
2r ;

π
2 s.

(8.5)

The term cos´1 in Eq. (8.4) refers to the inverse cosine function, also denoted arccos and tan´1

in (8.5) denotes the inverse tangent function. Likewise, sin´1 hereafter is used to denote the inverse
sine function.

The following section is concerned by the normalized mean covariogram:

kptq “
1

4π

ż 2π

0
dφ

ż π{2

´π{2
dθKpθ, tq

hπr2 cos θ “
ż π{2

0
dθKpθ, tq

hπr2 cos θ, (8.6)

where the mean is taken over all directions on the sphere, assuming the distribution of orientations
is uniform on the latter. Here, the covariogram K is normalized by the cylinder volume and surface
area of the unit sphere so that the function kptq “ 1 when t “ 0 and kptq “ 0 when t “ 8. Like
K, the quantity k depends on r ě 0 and h ě 0.

8.3 Mean covariogram of a cylinder
In this section, the isotropized covariogram of a cylinder with circular cross-section is given. We
refer to [89, 90, 91, 228] where this problem has been studied in details.

8.3.1 Prolate cylinders
In this section, we compute the limit k8ptq of kptq when hÑ 8 with r and t fixed. The condition
t ď tmax (Eq. 8.5) reduces to x cos θ ď 1 which is satisfied for all θ when x ă 1 and for θ ą
cos´1p1{xq when x ą 1. Therefore the term K can be replaced by rK in (8.6) provided the
integration is carried out in the intervals r0;π{2s (x ă 1) and rcos´1p1{xq; π{2s (x ą 1):

k8pxq “

#

limhÑ8
1

hπr2

şπ{2
0 dθ rKpθ, xq cos θ, if x ă 1,

limhÑ8
1

hπr2

şπ{2
cos´1p1{xq dθ rKpθ, xq cos θ, if x ą 1.

(8.7)

Observe however that, when x ą 1, rKpθ, tq is purely imaginary in the domain 0 ă θ ă cos´1p1{xq.
Accordingly, it is sufficient to integrate in the interval r0;π{2s instead of rcos´1p1{xq; π{2s, provided
the imaginary part of the integral is discarded:

k8pxq “ lim
hÑ8

1
hπr2 Re

#

ż π{2

0
dθ rKpθ, xq cos θ

+

, (8.8)
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where Re stands for the real part of complex numbers. Replacing K with its expression (8.4) and
expanding the integrand at first order in 1{h yields:

k8pxq “
2
π

Re
#

ż π{2

0
dθ cos θ

”

cos´1
px cos θq ´ x cos θ

?
1´ x2 cos2 θ

ı

+

. (8.9)

As seen above, k8 depends on t and r through x “ t{p2rq only. The integral in (8.9) is readily
computed in the complex domain using a symbolic calculator [262]. The expression depends on the
complete elliptic integrals of the first and second kind, denoted F and E respectively and defined
by:

F pzq “

ż π{2

0

du
?

1´ z sin2 u
, Epzq “

ż π{2

0
du

a

1´ z sin2 u. (8.10)

The above functions F and E are real-valued when z ď 1 and complex with non-zero real and
imaginary parts when z ą 1. We refer to the online resources [242] (and references therein) for an
overview of their properties. Note that the elliptic functions are usually defined by z Ñ F p

?
zq,

Ep
?
zq. In this work we follow the notation used in [262].

The elliptic functions F and E appear in the integration of both the square root and inverse
cosine terms in (8.9). For instance, when x ă 1, the cos´1 term is integrated by parts as follows:

ż π{2

0
dθ cos´1

px cos θq cos θ “

ż π{2

0

x sin2 θdθ
?

1´ x2 cos2 θ
“

ˆ

x´
1
x

˙

F px2
q `

Epx2q

x

“

?
1´ x2

x
Im

"

E

ˆ

1
1´ x2

˙*

, (8.11)

where Im denotes the imaginary part of complex numbers. The final formula for kpxq reads, after
simplification in the regions x ă 1 and x ą 1:

k8pxq “

$

&

%

1´ 2
?

1´x2

πx

!

Im
“

E
` 1

1´x2

˘‰

` 2x2´1
3 E

´

x2

x2´1

¯

` 1
3F

´

x2

x2´1

¯)

, if x ă 1,

1´ 2
?
x2´1
πx

!

E
` 1

1´x2

˘

` Im
”

2x2´1
3 E

´

x2

x2´1

¯

` 1
3F

´

x2

x2´1

¯ı)

, if x ą 1.
(8.12)

The function k8 is represented in Fig. 8.1a (top curve).

8.3.2 Cylinders of arbitrary aspect ratio
This section is devoted to the general case, i.e. finite h and r. The intervals of integration for θ
are required for computing (8.6). Take first h ă 2r and examine the condition t ď tmax in (8.5).
The quantity K in (8.4) is non-zero in the following intervals for θ (recall that y “ h{t):

θ P

$

&

%

r0;π{2s if t ă h,
r0, sin´1pyqs if h ă t ă 2r,
rcos´1p1{xq, sin´1pyqs if 2r ă t.

(8.13)

Whereas, when h ą 2r, K is non-zero if:

θ P

$

&

%

r0;π{2s if t ă 2r,
rcos´1p1{xq, π{2s if 2r ă t ă h,
rcos´1p1{xq, sin´1pyqs if h ă t.

(8.14)
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As in Sec. (8.3.1), rK is purely-imaginary when θ P r0; cos´1p1{xqs, so one may carry out the
integration in (8.6) along intervals r0; as with a “ π{2 or a “ sin´1pyq depending on conditions
precised in (8.13) and (8.14). We are left with the evaluation of the following integral:

kpx, yq “ Re
#

ż a

0
dθ

rKpθ, xq cos θ
hπr2

+

. (8.15)

Now according to (8.13) and (8.14), a “ π{2 when y ą 1 (t ă h) and a “ sin´1 y when y ă 1
(t ą h). We first examine the case a “ π{2, i.e. y ą 1. Equation (8.15) takes the form:

kpx, yq “ kyą1px, yq “ k8pxq (8.16)

´
2
πy

Re
#

ż π{2

0
dθ cospθq sinpθq

”

cos´1
px cos θq ´ x cos θ

?
1´ x2 cos2 θ

ı

+

,

where we have identified k8pxq, the covariogram for h “ 8 given in (8.12). The integral in (8.16)
is computed using a software for symbolic computations, and, after rearranging the terms:

kyą1px, yq “ k8pxq ´
1

8x2y
`
H 1pxq

2yπ

„ˆ

1
2x ` x

˙

?
1´ x2 `

ˆ

1
2x2 ´ 2

˙

cos´1 x



, (8.17)

where H 1 is the step function:

H 1
pxq “ 1r1;`8s “

"

1 if x ă 1,
0 if x ą 1. (8.18)

As expected, the quantity between square brackets in (8.17) is real when x ă 1 and so is kpx, yq
for all x.

We now consider the case y ă 1 (t ą h) and the integral in (8.15) with a “ sin´1 y. The
symbolic calculator [262] provides a lengthy formula for the solution. After simplification, the
expression takes different forms for x ă 1 and x ą 1. For x ą 1 and y ă 1, the covariogram k
reads:

kyă1
xą1
px, yq “

4
?
x2 ´ 1
3πx Im

„

F

ˆ

sin´1 y
ˇ

ˇ

ˇ

x2

x2 ´ 1

˙

´ p1` x2
qE

ˆ

sin´1 y
ˇ

ˇ

ˇ

x2

x2 ´ 1

˙

`

ˆ

y

π
`

4x2 ´ 1
4πyx2

˙

cos´1
´

x
a

1´ y2
¯

´
1

2π

ˆ

xy

3 `
1

2xy `
x

y

˙

a

1´ y2
a

1´ x2p1´ y2q. (8.19)

The functions of two variables F pφ|zq and Epφ|zq are the incomplete elliptic integrals of the first
and second kind, respectively, defined by [243]:

E
`

φ
ˇ

ˇz
˘

“

ż φ

0
du

a

1´ z sin2 u, F
`

φ
ˇ

ˇz
˘

“

ż φ

0

du
?

1´ z sin2 u
. (8.20)

The complete elliptic integrals in (8.10) are special cases:

Epzq “ E
´π

2

ˇ

ˇ

ˇ
z
¯

, F pzq “ F
´π

2

ˇ

ˇ

ˇ
z
¯

. (8.21)
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Figure 8.1: Normalized mean covariogram kptq as a function of t: (a) with r “ 1{2 fixed and
increasing height h “ 0.01, 0.05, 0.2, 0.5, 1, 2, `8 (bottom to top, solide lines); (b) with h “ 1
fixed and increasing radius r “ 0.02, 0.1, 0.3, 0.5, 1, 2, `8 (bottom to top, solide lines). Dashed
lines: covariogram of a sphere of diameter 1.

The incomplete elliptic integrals are real-valued if z sin2 φ ă 1. Note that this is never the case
for the arguments of E and F in (8.19), so that the two functions have complex values. Note also
that, owing to t ď

?
h2 ` 4r2:

x
a

1´ y2 ă 1, 1´ x2
p1´ y2

q ă 1, (8.22)

and so kyă1
xą1
px, yq in (8.19) is real. Now, when x, y ă 1, one finds for kpx, yq:

kyă1
xă1
px, yq “

4
?

1´ x2

3πx

„

F

ˆ

sin´1 y
ˇ

ˇ

ˇ

x2

x2 ´ 1

˙

´ p1` x2
qE

ˆ

sin´1 y
ˇ

ˇ

ˇ

x2

x2 ´ 1

˙

`

ˆ

y

π
`

5x2 ´ 2
4πyx2

˙

cos´1
´

x
a

1´ y2
¯

`
2´ 5x2

4πyx2 cos´1 x

´
1

2π

ˆ

xy

3 `
1

2xy `
x

y

˙

a

1´ y2
a

1´ x2p1´ y2q `
1` 2x2

4πyx
?

1´ x2

`
1´ x2

4πyx2 cos´1
´

x2
a

1´ y2 `
?

1´ x2
a

1´ x2p1´ y2q
¯

. (8.23)

Note the similarities with the formula for x ą 1 in (8.19). Also, all three expressions inside cos´1

in the above are comprised between 0 and 1 and so kpx, yq is real.
To summarize, the exact expression for kpx, yq is given by (8.17) and (8.12) when y ą 1,

by (8.19) when y ă 1 ă x, and by (8.23) when x ă 1 and y ă 1. The covariogram is plotted as
a function of t in Fig. (8.1a) and (8.1b) for various values of r and h (solid lines), and compared
with that of a sphere (dotted lines).

An asymptotic expansion of kptq when tÑ 0 is now carried out. Use the expansion (mÑ 0):

F
`

φ
ˇ

ˇm
˘

“ φ`
sinp2ψq ´ 2ψ

8 m`Opm2
q, E

`

φ
ˇ

ˇm
˘

“ φ`
sinp2ψq ´ 2ψ

8 m`Opm2
q, (8.24)
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to find:

k8ptq “ 1´ t

2r `Opt
3
q, kptq “ 1´ 1

2

ˆ

1
r
`

1
h

˙

t`
2

3πhrt
2
`Opt3q, tÑ 0. (8.25)

As expected the derivative of kptq at t “ 0 is equal (up to the sign) to the surface/volume ratio of
the cylinder.

The second-order derivative of kptq becomes infinite at the point t “ h [89]. Connections
between the second-order derivative of the covariogram of a compact set and and its singular
points have been previously noticed in the plane [74].

8.3.3 Oblate cylinders
Consider now the limit r Ñ 8 with h fixed so that xÑ 0 and y remains finite. We take the limit
in the formula (8.23) when y ă 1 and (8.17) when y ą 1. The covariogram k depends of y only
and reads:

k0pyq “

"

1´ 1
2y , if y ą 1,

y
2 , if y ă 1. (8.26)

Note that, in the limit r Ñ 8 the cylinders amount to infinite layers enclosed between two planes.
The same asymptotic limit would accordingly be recovered when considering cylinders with other
non-circular cross-section. This is in contrast to the prolate case (Sec. 8.3.1), where the covariogram
depends on the shape of the cylinders cross-section.

8.3.4 Approximate formulas
We now give approximate expressions of the exact solutions which do not involve Elliptic functions.
Such simpler expressions are useful for material applications, in particular for identifying random
models, when a high accuracy is not required.

We first consider the domain r " h. The exact solution is given by (8.26) when r “ 8 and
by (8.17) and (8.23) when r ă 8. We first let r Ñ 8 and t Ñ 8 with h and the ratio t{r fixed,
and expand (8.23) to order Opr´3q. In the region t ă h, i.e. y ą 1, we let t Ñ 0 and compute an
expansion to Opt3q with r, h fixed. In the region t ą 2r, we set k « 0. One obtains:

kptq « kr"hptq “

$

’

’

’

’

&

’

’

’

’

%

1´ 1
2

ˆ

1
h
`

1
r

˙

t`
2t2

3πrh `
t3

64r3 , if t ă h,

h

πt
cos´1

ˆ

t

2r

˙

`

ˆ

h2

6t2 ´ 1
˙

h

2πr

c

1´ t2

4r2 , if h ă t ă 2r,

0 if t ą 2r.

(8.27)

The expansion above is continuous except at points t “ h, and is exact in the limit r “ 8 only.
It turns out, however, that formula (8.27) is a very good approximation of the exact covariogram
for r ą h. The maximal error supt|kptq ´ kr"hptq| between (8.27) and the exact result is attained
when t Æ h whenever r ą h. As expected, this error decreases and tends to 0 when r{h Ñ 8.
It is about 0.5% for r “ h and 0.1% for r “ 4h (Fig. 8.2). The error is much smaller at points
t ff h: for instance, the mean error x|kptq ´ kr"hptq|yt is 0.1% and 0.004% when r “ h and r “ 4h
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Figure 8.2: Mean normalized covariogram k of a cylinder: comparison between the exact result
(solid line) and approximations (8.27) and (8.28) (dotted lines) when r “ h “ 1 and r “ 1, h “ 2.9,
respectively.

respectively. Approximation (8.27) is good in the region h{2 ă r ă h. The errors are about
supt|k ´ kr"h| “ 2.6% and x|k ´ kr"h|yt “ 0.6% when r “ h{2.

We now consider the domain h " r and compute an approximation of kptq valid in the region
h " r. This task is more difficult than in the oblate case h ! r because the exact result for h “ 8
involves elliptic functions. In the domain 2r ă t ă h, we let h and t Ñ 8 with r and the ratio
h{t fixed and expand (8.17) to Oph´4q. We use the same expression in the domain t ą h, as long
as the latter is positive and 0 otherwise. In the domain t ă 2r, we expand (8.19) when h, t Ñ 8

with r and the ratio h{t fixed, to Oph´4q. One finds:

kptq « kr!hptq “

$

’

’

’

&

’

’

’

%

1´ t

2r

«

1´ 1
2

ˆ

t

4r

˙2

´
1
4

ˆ

t

4r

˙4
ff

´
t

2h `
2t2

3πhr

ˆ

1´ t2

40r2

˙

, t ă 2r,

max
"

0; r
2

2t2

ˆ

1´ t

h
`
r2

2t2

˙*

, t ą 2r.

(8.28)
We emphasize that, contrary to (8.27), the expressions above are not asymptotically correct in
the limit h Ñ 8. Also, approximation kr!hptq is discontinuous at t “ 2r. The maximal error
supt |kptq ´ kr!hptq| is attained at t Ç 2r, is constant and equal to about 1.1% for h ą 2r. In the
domain 1.6r ă h ă 2r, the maximal error is less than 1.4% (Fig. 8.2).

To summarize, a good approximation of the covariogram is given by (8.27) when h ă 1.6r and
by (8.28) when h ą 1.6r with a maximal absolute error of 1.8%.

8.4 Boolean model of cylinders
In this section, we consider a Boolean model [156] of cylinders with radius r and height h. The
Boolean model is defined by an homogeneous Poisson point process of intensity ψ (average number
of points per unit area). A cylinder C oriented in a random direction, uniformly distributed on
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the sphere, is implanted on each Poisson point. The cylinder volume fraction, denoted p, is linked
to the Poisson intensity through [155]:

logppq “ ´ψπhr2. (8.29)

Hereafter, we examine the integral range of Boolean random sets made of cylinders. The Boolean
model, denoted B is the union of all cylinders C, implanted at Poisson points so that cylinders
may interpenetrate. Its characteristic function is denoted χB.

8.4.1 Integral range
The covariance Cptq of the Boolean model of cylinders B reads:

Cptq “ tz P B, z ` t P B, |t| “ tu “ 2p´ 1` p1´ pq2´kptq. (8.30)

Its integral range is defined by [156]:

A3 “
1

pp1´ pq

ż 8

0
dt 4πt2

“

Cptq ´ p2‰
“

4πp1´ pq
p

ż 8

0
dt t2

“

e´kptq logp1´pq
´ 1

‰

, (8.31)

where the integrand Cptq ´ p2 is the centered covariance. For cylinders the centered covariance is
identically zero for t ě tc where tc “

?
4r2 ` h2 is the maximum length of a chord in the cylinder.

The integral range is useful to quantify the representative volume element for the set B. Using
the exact expression derived in Sec. (8.3.2), we compute the normalized covariogram:

rA3 “
A3

πhr2 , (8.32)

for r “ 1{2 (Fig. 8.3). The latter is equal to 1 when p “ 0. Remark that the integral range is very
close, but not equal, to that of a Boolean model of sphere of diameter 1:

rAsphere
3 “

6
πp

ż 1

0
dt

”

p1´ pq3t{2´t3{2 ´ 1` p
ı

. (8.33)

When p “ 1{2, the maximum value of A3 is found to occur for h very slightly smaller than 1
(Fig. 8.4). This value is still smaller than rAsphere

3 . Furthermore, numerical computations show that
the normalized integral range A3 is almost unchanged when h is changed to 1{h (Fig. 8.3).

8.4.2 Variances and representative volume element: prolate and oblate
cylinders

Assume pW is the measure of the volume fraction of cylinders over a domain W of volume V :

pW “
L3pBX V q

V
“

ż

W

duχBpuq. (8.34)

Denote pW the mean of the estimates pWi
taken over N independent realizations W “ W1, ..., WN

of volume V . The variance D2
BpV q of the estimates pWi

is given by:

D2
BpV q “

1
N

N
ÿ

i“1

„

1
V

ż

Wi

duχBpuq ´ pW

2

“
1
N

N
ÿ

i“1

«

ˆ

1
V

ż

Wi

duχBpuq

˙2

´ p2
W

ff

. (8.35)
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Figure 8.3: Normalized integral range rA3ppq in a Boolean model of cylinders with radius r “ 1{2
as a function of the volume fraction p of cylinders, with varying cylinder heights h “ 3, 10, 102

(solid grey lines, top to bottom), 1{3, 10´1, 10´2, (dotted black lines, top to bottom) and h “ 1
(solid black line). Dark-grey solid line on top: normalized integral range for a Boolean model of
spheres of diameter 1.

Taking N large and pW « p in the above:

D2
BpV q “

1
NV 2

N
ÿ

i“1

żż

u,vPWi

dudv
“

χBpuqχBpvq ´ p
2‰ . (8.36)

Take Wi Ñ R3 and make use of the variable change t “ v´ u. The double integral amounts to an
integral of the centered covariance function and so:

D2
BpV q “

1
V

ż

R3
dt

“

Cptq ´ p2‰
“ pp1´ pqA3

V
, (8.37)

a result first derived by Matheron [156]. The asymptotic expansion (8.37) is actually valid for
volumes V much larger than A3 and so requires that A3 (and tc) is finite. The latter shows that,
when V " A3, the volume W acts as n independent domains of volume A3 with n “ W {A3. Thus
the volume A3 is said to be “representative” of the Boolean model B. Note however that the
variance D2

BpV q also depends on the point variance pp1´ pq.
When A3 is infinite, a scaling law different from (8.37) is expected [135]. For prolate and oblate

cylinders, the theory respectively predicts [116]:

D2
BpW q „

α

V 2{3 , D2
BpW q „

α1

V 1{3 , V " A3, (8.38)

where α, α1 are prefactors. The scaling laws above indicate a slower decrease of the variance with
respect to the volume than in (8.37), due to infinite correlation lengths.

For prolate and oblate cylinders, the behavior of D2
BpW q should be linked to that of the integral

of the covariance Cptq when t Ñ 8. Consider first the asymptotic behavior of kptq when t Ñ 8

in the cases h “ 8 and r “ 8. Making use of the expansions for φÑ 0:

F
`

φ
ˇ

ˇm
˘

“ φ`
mφ3

6 `
mp9m´ 4qφ5

120 `Opφ7
q, (8.39a)

E
`

φ
ˇ

ˇm
˘

“ φ´
mφ3

6 `
mp4´ 3mqφ5

120 `Opφ7
q, (8.39b)
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Figure 8.4: Normalized integral range rA3ppq in a Boolean model of cylinders with radius r “ 1{2
and volume fraction p “ 1{2 as a function of the cylinders height h (solid line). Dashed line:
normalized integral range for a Boolean model of spheres of diameter 1.

one finds, when tÑ 8:

k8ptq “
r2

2t2 `O
ˆ

1
t4

˙

, pif h “ `8q, k0ptq “
h

2t `O
ˆ

1
t2

˙

, pif r “ `8q. (8.40)

For prolate and oblate cylinders, the integral of the centered covariance on a spherical domain of
radius ` diverges as:

A3p`q “

ż

tď`

p4πt2qdt
“

Cptq ´ p2‰
„

#

´
2πp1´pq

p
r2 logp1´ pq`, if hÑ 8,

´
πp1´pq

p
h logp1´ pq`2, if r Ñ 8.

(8.41)

We remark that A3p`q{`
3 behave as „ V ´2{3 and „ V ´1{3 respectively for prolate and oblate

cylinders, where V is the sphere of radius `. This qualitatively explains the expansions (8.38).
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Figure 8.5: Variance D2
BpV q of the estimate of the volume fraction measured in a spherical domain

W vs. volume size V of the domain for oblate cylinders (r “ `8). The cylinders height is fixed
to h “ 1. Top to bottom: volume fraction of cylinders p “ 0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9.

However, the variable change t “ v´u leading to (8.37) can not be directly carried out for finite
domains Wi and infinite integral range. We derive it here for spherical domains Wi of radius `.
One needs to compute the probability dP pt, `q that two points A and B in a sphere are separated
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from a distance in the interval rt; t ` dts. We first fix A, a point at a distance 0 ă a ă ` of the
sphere center. The volume of points at a distance in the interval rt; t` dts from A is given by:

dVt “
#

4πt2dt, if t ă `´ a,
2πtdt

´

t´ a
2 `

`2´t2

2a

¯

, if `´ a ă t ă `` a. (8.42)

Integrating over a, one finds the required probability:

dP pt, `q “ 3dt
`

t2

`2

ˆ

1´ t

2`

˙2 ˆ

1` t

4`

˙

, 0 ď t ď 2`. (8.43)

Replace now the term χBpuqχBpvq in (8.36) by Cptq and integrate over t:

D2
BpV q “

1
N

N
ÿ

i“1

1
V 2

żż

u,vPWi

dudv
“

χBpuqχBpvq ´ p
2‰
«

ż

tď2`
dP pt, `q

“

Cptq ´ p2‰ . (8.44)

The integral above is analytically solvable as a closed-form expression, for oblate cylinders (r “ 8).
When 2` ą h, the solution involves the exponential integral function Eipzq “ ´

ş8

´z
e´s{sds. The

exact solution is a lengthy expression, which, for conciseness, is not given here. It is provided by
the software Mathematica [262]. The variance D2

BpV q is plotted as a function of V for various
volume fraction of cylinders in Fig. (8.5).

Taking the limit `Ñ 8 and using the expansion (8.40) yields:

D2
BpV q „

´9p1´ pq2r2 logp1´ pq
8`2 `Op1{`q3, ph “ `8q, (8.45a)

D2
BpV q „

´3hp1´ pq2 logp1´ pq
5`

`
9h2p1´ pq2 rlogp1´ pqs2

32`2 `Op1{`q3, pr “ `8q. (8.45b)

when `Ñ 8, with V “ p4{3qπ`3. Note that the results above are identical up to a constant factor
to those obtained by replacing A3 in (8.37) by A3p`q from (8.41).

8.4.3 Variances and representative volume element: cylinders with
finite height and radius

This section is concerned with the behavior of D2
BpV q for r or h large but not infinite. We first

examine h large. The integral in Eq. (8.44) is computed numerically for increasing values of h “ 10,
102, ..., 104 with r “ 1{2 fixed (Fig. 8.6a). The data is compared to h “ 8 (solid line, top) and to
the expansion (8.45) (dashed line, top). The variance D2

BpV q asymptotically scales as „ 1{V for
very large V , as long as h is finite. However, for h ě 10, an intermediate regime appears where
D2

BpV q „ 1{V 2{3. This scaling law occurs for V ! h3, i.e. ` ! h. It is very close to the asymptotic
limit (8.45). The change between the two regimes takes place, as expected, when ` is of the same
order as h. Numerical data indicates ` « 3h. A similar behavior happens for r " h with h “ 1
fixed (Fig. 8.6b): when ` " r, the scaling law D2

BpV q „ 1{V holds, whereas D2
BpV q „ 1{V 1{3
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Figure 8.6: Variance D2
BpV q of the estimate of the volume fraction measured in a spherical

domain W vs. volume size V of the domain, in log-log plot. The cylinders volume fraction is fixed
to p “ 1{2. Grey solid lines, bottom to top : (a) cylinders height h “ 1, 10, 100, 103, 104, 8 with
radius fixed to r “ 1{2; (b) cylinders radius r “ 1, 10, 100, 103, 8 with height fixed to h “ 1.
Dotted lines in black: expansions (8.45).

when ` ! r. The change between the two regimes occurs when r « `. Pluging ` “ 3h and ` “ r
into (8.45) yields:

D2
BpV q „

´27p1´ pq2 logp1´ pqhr2

8`3 , p` " h " rq, (8.46a)

D2
BpV q „

´3p1´ pq2 logp1´ pqhr2

5`3 , p` " r " hq. (8.46b)

The two expansions above are in good agreement with the numerical data in Fig. (8.6).

8.5 Conclusion
In this chapter, the covariance and integral range of the Boolean model of cylinders have been
computed using the geometrical covariogram of cylinders. As expected, the integral range takes
the form of a divergent integral for flat (oblate) or highly-elongated (prolate) cylinders. This results
in peculiar scaling laws of the variance of the measurement of the volume fraction of cylinders over
subdomains of volume V . The latter variance scales as „ V ´1{3 for the oblate and „ V ´2{3 for
the prolate type when V Ñ 8. The lowest-order correction in the asymptotic expansion for the
variance has been derived for domains of volume V Ñ 8 with a spherical shape. For cylinders
with finite (but large) aspect ratio, the scaling law „ V ´1{3 or „ V ´2{3 occurs in an intermediate
region where L “ V 1{3 is comprised between the lowest and highest dimensions of the cylinders.
The classical scaling law „ 1{V is recovered when L is much larger than both cylinders dimensions.
Such scaling laws should in turn affect the size of the representative volume element relative to
the apparent thermal and elastic response of architectured materials [64, 63], fiber-reinforced [6]
or quasi-brittle composites [184].
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Chapter 9

Permeability of a Boolean model of
cylinders

A rigorous bound on the permeability of Boolean models of randomly-oriented cylinders
with circular cross-section is reported. The bound is examined in detail in the case
where the fluid flows inside strongly-oblate (flat) cylinders, in the limit of a vanishing
volume fraction of obstacles. In such microstructure, the fluid flows around a set of
quasi-isolated obstacles. Two regimes are identified for the permeability of such a
medium, depending on the aspect ratio of the underlining cylinders and porosity. In
one of the regime, the obstacles have a tendency to align with obstacles far from them,
resulting in an unusual dilute expansion, which is explicited in this work.

9.1 Introduction
In the recent years, several so-called “Fourier-based” algorithms have been introduced to solve
the problem of Stokes flow in heterogeneous media [245, 172, 29, 255] some of which are based
on a variational (Hashin-Shtrikman) framework [39, 40]. These methods, which rely on digitized
images of the microstructures and do not require meshing, are especially useful for predicting the
permeability of materials based on microstructure models or segmented microtomography images.
They have been applied to compute the permeability of textiles [201, 88], ceramic foams [199] or
anode layers in fuel cells [150], making use of 3D models.

Numerical computations on large-scale 3D microstructures are also useful for investigating
theoretical and empirical homogenization estimates, like the classical Carman-Kozeny [45, 129]
formula, Doi’s upper-bound [65, 238] based on correlation functions or dilute limit expansions [208].
The Boolean model of spheres has been considered in the literature [149] and, as expected, follows
the Carman-Kozeny approximation [2], whereas the upper-bound of Doi is valid in the dilute limit
only, i.e. for a small volume fraction of obstacles.

The permeability of ordered arrays of cylinders has received considerable interest in experimen-
tal, theoretical and numerical works (see e.g. [148, 200, 233, 263, 223]). Attention has also been
devoted in the literature to various random fibrous media, where fluid flows around cylindrical
obstacles. Many of the theoretical homogenization methods used for regular arrays, however, such
as the construction of trial fields, cannot be employed for random media. To study random media,
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numerical methods, such as the Lattice Boltzmann method, and comparisons with analytical for-
mula for regular arrays have been used. In one of the first such study [113], an analytical estimate,
based on numerical predictions, is proposed for disordered fibrous media. The estimate has been
found to be accurate for a porosity less than about 25% [50]. A fiber-web material, with a struc-
ture similar to that found in fibrous sheets or paper, has been investigated numerically in [126].
Extensive numerical computations have been performed in [49] on models of prolate spheroids with
varying aspect ratio. More recently, the efficient Lattice Boltzmann method has been used [234]
to compute the permeability fibrous media, where the fluid flows outside of the cylinders. In one
such study [177], several models made of random cylinders are investigated. An empirical law
is proposed for the permeability, based on the theoretical analysis of the permeability of regular
arrays of cylinders [87]. The effect of the cylinders curvature is found to be small compared to
straight cylinders. Computations have also been carried out with varying cylinders aspect ratios.
The combined numerical and experimental study in [201] considers fibrous media. The authors
investigate in particular the domain of validity of the relevant analytical estimates. In another
experimental investigation, Darcy and Darcy-Forchheimer laws have been identified on packings
of non-spherical particles, including prisms and cylinders [51].

Much less work has been devoted to the “reverse” model of fluid flow through fibers, despite
some early works [157]. Systems of random flat cylinders have been investigated in hydro-geological
literature on fractured rocks. The permeability of 3D random models of fracture networks has
been investigated numerically and theoretically in various works [127, 134]. Among important
geometrical factors that influence the permeability, authors have highlighted the role of contact
regions [25] or that of a wide size distribution in fractures [175].

This chapter is organized as follows. The micrsotructure model is introduced in Sec. (9.2), the
equations to solve for Stokes flow are given in Sec. (9.2). Analytical upper-bounds are derived
in Sec. (9.3) for flows in Boolean models of cylinders in the dilute limit. Concluding remarks are
given in Sec. (9.4).

9.2 Stokes flow in a Boolean model of cylinders
The microstructures considered hereafter consist in Boolean sets of cylinders. Boolean models [155]
are a classical type of random models which depend on a primary grain and on a Poisson point
process [165]. In the present work, the primary grain is defined by a distribution of cylinders, and
the homogeneous Poisson point process by a spatially-constant intensity n, the mean number of
points per unit volume. A cylinder is attached to each point of the Poisson point process, and the
Boolean set is the union of cylinders. In the following, we choose to focus on cylinders with high
aspect ratio that significantly depart from sphere packings. For such ideal materials, we expect in
particular a strong influence of the microstructure on the permeability.

The cylinders have circular cross-section of radius r and height h but their main axis is
randomly-oriented. The direction of the axis follows a uniform distribution on the sphere, re-
sulting in (macroscopically) isotropic Boolean sets. Cylinder intersections are allowed so that the
volume fraction of cylinder p varies from 0 to 1 and is given by [155]:

p “ 1´ q “ 1´ exp p´nV0q , (9.1)

where V0 “ πr2h is the volume of a cylinder. The Boolean sets accordingly depend on n, h
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(a) (b)

Figure 9.1: 2D sections of a Boolean models of oblate cylinders (white). The fluid flows in the
black phase. (a) and (b): Different volume fractions of cylinders.

and r, or, equivalently q, h and r. In the following, cylinders with very small aspect ratio h{r
are considered, with p fixed, as detailed below. All microstructures accordingly depend on two
parameters, the cylinders volume fraction q and a characteristic sizes for the cylinder, either r or
h.

Let h ! r and consider oblate cylinders. The configuration of interest is that of “porous cylin-
ders” where the fluid flows inside cylinders. In the case h ! r, the cylinders have asymptotically
the same shape as sections enclosed by two (randomly-oriented) parallel planes. The percolation
threshold fCc again tends to 0 (we refer to [109] for a study on the connectivity of such systems).
Accordingly, f is defined in the entire interval rfCc ; 1s « r0; 1s. Note that, for r “ 8, the “reverse”
model where fluids flow outside the cylinders presents no interest as the complementary set does
not percolate. A section of the microstructure considered is shown in Fig. (9.1).

We consider hereafter a viscous fluid of velocity u satisfying the Stokes equation in the pores:

µ∆uipxq “ Bippxq, Biuipxq “ 0, (9.2)

where ppxq is the pressure at point x and µ the fluid viscosity. The fluid velocity is zero (u “ 0)
along the interface with the solid. Periodic boundary conditions are applied on the computational
domain, of the form [75]:

u #, x∇py “ p∆P qe1, p˚ “ p´∆Px ¨ e1 #, (9.3)

here # denotes periodicity and ∆P is the macroscopic pressure drop, oriented along the first axis
e1 of a Cartesian coordinate system. The permeability k is a scalar for isotropic media. It is given
by Darcy’s law:

xu1pxqy “ ´
k

µ
xB1ppxqy. (9.4)
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9.3 Upper-bound for the permeability of Boolean sets of
oblate cylinders

The Doi [65] upper-bound for permeability reads:

k ď
2
3

ż 8

0
dt t

„ˆ

q2

s2

˙

Fssptq ´

ˆ

2q
s

˙

Fsvptq ` Fvvptq



, (9.5)

where s is the specific surface area of the void-solid interface, and Fvv, Fsv and Fss are the “volume-
volume”, “surface-volume” and “surface-surface” correlation functions:

Fvvptq “ xZpxqZpx ` tuqyu, (9.6)
Fsvptq “ x|∇Zpxq|Zpx ` tuqyu, (9.7)
Fssptq “ x|∇Zpxq||∇Zpx ` tuq|yu. (9.8)

In the above, Z is the indicator function for the complementary Bc of set B (the obstacles), ∇ is the
gradient operator and u is a unit vector (|u| “ 1). The quantity Fvv is given by the probability that
two points separated by a distance t lie in Bc. The quantities Fsv and Fss can also be interpreted
in terms of probability, replacing the interface of B by an interphase of vanishingly small width δ.
The quantity Fsv is proportional to the probability (divided by δ) that one point lies in Bc and the
other in the interphase. The quantity Fss is related to the probability that the two points lie in
the interphase. Formula (9.5) is a rigorous bound which provides the exact lowest-order correction
to the permeability for dilute concentration of spherical obstacles q Ñ 0 [208].

The correlation function Fvv of a Boolean model of cylinders is given by [156]:

Fvvptq “ P tz R B, z` t R B, |t| “ tu “ q2´Kpt;h, rq, (9.9)

where Kpt;h, rq (not to be confounded with k) is the normalized mean cylinder covariogram. The
latter is defined as the volume intersected by two cylinders as follows:

Kpt;h, rq “ E

"

|C X C´t|

|C|

*

, (9.10)

where |C| is the volume of the cylinder C and C´t is C translated by a vector of length t. The
quantity is averaged over orientations uniformly distributed on the sphere and normalized by the
cylinder volume, so that kpt “ 0;h, rq ” 1.

9.3.1 Case r “ 8
We first consider the case of infinitely flat cylinders with r “ 8 (Chap. 8). Note that h and q are
kept finite in this limit. Accordingly, the Poisson intensity θ (mean number of cylinders per unit
of volume) should tend to 0 in a manner inversely proportional to the cylinder volume. Indeed θ
is related to q by [156]:

q “ exp
`

´θπr2h
˘

, (9.11)
and so θ „ 1{r2 Ñ 0. Accordingly, the microstructure should be understood as a set of randomly-
oriented, very large cylinders, with a very low density (in number per unit volume), so that the
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cylinders volume fraction remains finite. This limit microstructure could be usefully compared to
Poisson tessellations (or dilated versions thereof). We refer to [114, 115] for theoretical results on
the latter.

The covariogram reads (Sec. 8.2):

Kpt;h, rq “
"

1´ t{p2hq, t ă h,
h{p2tq, t ą h. (9.12)

The formula for Fsv and Fss in Boolean media are similar to that of Fvv [235, 207] but quite
more complex. The formula involve first and second-order derivatives at h1 “ h of the following
functional:

Kpt;h, h1q “ E

"

|C X C 1´t|

|C|

*

, (9.13)

where, C 1 is a thick plane of width h1. Straightforward computations lead to:

Kpt;h, h1q “
" 1

t
rh{2´ h1 ` ph1 ` tq2{p2hqs, t ă h,

1
t
rh` h12{p2hq ` pt{h´ 1qph` h1qs, t ą h. (9.14)

The three expressions for the correlation functions allow one to compute the integrand in (9.5):
ˆ

q2

s2

˙

Fssptq ´

ˆ

2q
s

˙

Fsvptq ` Fvvptq „
q2h

4t , tÑ 8, (9.15)

and so the integral (9.5) diverges and the upper-bound is infinite. The bound accordingly provides
no information on the permeability of materials with “infinitely” flat-cylinders. This negative
result will nevertheless prove useful for interpreting the results of Sec. (9.3.2).

9.3.2 Case r finite
We now seek for the computation of upper-bounds on the permeability for cylinders of the oblate
type but with finite radius r. The isotropized covariogram K of general cylinders with r and h
finite has been studied in Chap. (8). The exact form provided in is a rather complicate analytical
expression involving incomplete Elliptic functions. Therefore, we use instead the approximate
expression taken from (8.27):

Kptq « Kappptq “ 1´ pr ` hqt2rh `
2t2

3πrh, if t ă h, (9.16a)

“

ˆ

h2

6t2 ´ 1
˙

h

2πr

c

1´ t2

4r2 `
h

πt
cos´1

ˆ

t

2r

˙

, if t ą h. (9.16b)

The derivation Doi’s bounds for general cylinders requires one to compute the volume of the
intersection of two cylinders of different heights and radius averaged over uniformly-distributed
directions, which we do not have. Accordingly, hereafter we use the simpler Berryman-Milton
bound [27, 208] which reads:

k ď
2

3q2

ż 8

0
dt t

“

Fvvptq ´ q
2‰ . (9.17)
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For cylinders with r ą h, replacing Fvv with (9.9) and using (9.16) yields, after integrating:

k ď kBM
“

h log q
3π

„

2h cos´1
ˆ

h

2r

˙

´
1
3

ˆ

h2

2r2 ` 4
˙

?
4r2 ´ h2



`
h2

3

„

8` 4?q plog q ´ 2q
qplog qq2 ´ 1



. (9.18)

The previous upper-bound may be meaningful in the dilute limit (q ! 1) only as shown in [253],
where FFT computations have been carried out for this model. Therefore we focus on the dilute
regime q Ñ 0. Fix r and expand the above to zero-order correction Op1q in the dilute limit q Ñ 0
and let r Ñ 8 afterwards. We obtain:

k ď
8h2

3qplog qq2

„

1`
ˆ

1
2 log q ´ 1

˙

?
q



`Op1q, q Ñ 0. (9.19)

At the lowest-order correction, one recovers an asymptotic regime „ 1{rqplog qq2s. We remark that
this constitutes a higher correction than that predicted by the James-Jackson model [113] which
provides:

k „ ´
3a2 log q

20q , q Ñ 0, (9.20)

for the permeability of fibrous media of radius a and volume fraction q. Estimate (9.20) is itself
higher than the dilute expansion for the permeability of a model of hard spheres of volume fraction
q, which scales as „ 1{q when q Ñ 0.

Interestingly, the second leading-order term in (9.19) scales as 1{p?q log qq. A similar non-
analytic dependence appears in the dilute limit expansion of the permeability of a bed of totally
impenetrable spheres, obtained by self-consistent methods [48]:

k “
2a2

9q

„

1´ 3
?

2
?
q `Opq log qq



, q Ñ 0, (9.21)

where a is the sphere radius. The ?q term is related to hydrodynamic screening effects [35,
232]. For a dilute packing of spheres, as shown in [208], no screening term is predicted by the
bound (9.17) or by Doi’s bound [65]. As shown in expansion (9.19), a screening term is indeed
predicted by the variational bound, for the particular highly-elongated shapes considered here.
Note that in the dilute limit considered here, the obstacles are not cylinders, but have a variety of
shapes with very large surface/volume ratio.

Although the bound (9.17) is in general less accurate than Doi’s bound which uses the surface-
surface correlation information [208], both are relevant in the dilute limit. Doi’s bound predicts
the correct leading-order term in the dilute limit for Boolean spherical obstacles. The bound (9.17)
predicts the correct scaling law „ a2{q, with a slightly overestimated prefactor 4{15 « 0.27 instead
of 2{9 « 0.22 for the Boolean model of spheres.

Compute now the limit r Ñ 8 and afterwards q Ñ 0 in (9.18):

k ď ´
8hr
9π log q `Op1q, r Ñ 8. (9.22)

The expansion above depends on r unlike (9.21) and tends to `8 which explains the result
obtained previously for Doi’s bound with r “ 8. When taking the limits r Ñ 8 and q Ñ 0,
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Figure 9.2: (a) Berryman-Milton upper-bound (9.17) for the permeability k of a Boolean model of
flat cylinders with height h “ 1 and radius r “ 102, 103, 104 vs. concentration of obstacles q, in log-
log plot (black). Dark-gray solid lines: r Ñ 8 expansion (9.22). Light-gray solid line: dilute limit
expansion q Ñ 0 (9.21). (b) Permeability k vs. volume fraction of obstacles q (x-axis) in log-log
plot, for a Boolean model of flat cylinders of height h “ 1 and radius r “ 104 (a.u.). Comparison
between the Berryman-Milton upper-bound (9.17, solid blue line), its two contributions over t ă h
and t ą h (orange and green solid lines), and expansions (9.19, blue dashed line) and (9.22, orange
dashed line).

different regimes are obtained depending on the order one takes the limits. The two regimes appear
when the permeability is plotted as a function of q in log-log plot (Fig. 9.2a). The regime change
occurs at some points r « rcpqq, q « qcprq which are obtained by equaling the two highest-order
corrections (9.19) and (9.22):

rc “
3πh

qcp´ log qcq3
. (9.23)

When r " rcpqq, or equivalently q ! qcprq, the permeability follows expansion (9.22). Expan-
sion (9.21) holds in the domain r ! rcpqq or q " qcprq.

Comparison with FFT data would be needed to confirm the existence of the two regimes,
however, accurate computations in the dilute limit requires high computational costs [2]. This is
left to future work.

9.3.3 Dilute and “correlated” regimes
To interpret the two regimes identified above, we decompose the Berryman-Milton upper-bound
into two contributions, corresponding to near and far-field terms. The integral in (9.17) is split
into domains r0;hs and rh;8s. (Fig. 9.2b, orange and green solid lines). The former and latter
contributions match expansions (9.19) and (9.22) rexpectively. As expected, the dilute behavior
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(a) (b)

Figure 9.3: Section (1000ˆ1000 voxels) of a Boolean set of cylinders of height 4 voxels and radius
200 voxels with qc « 0.04%. The fluid flow occurs inside the black phase, obstacles are shown in
white. (a): q « 0.009% « 0.2qc. (c): q « 1.2% « 30qc.

q ! qc corresponds to the covariance’s main contributions in the range r0;hs, whereas the non-dilute
regime q " qc is a controlled by the behavior of the covariance in the interval t " h.

These observations allow us to interpret the two regimes predicted by the covariance bound.
On the one hand, when q ! qc, the medium is made of uncorrelated, isolated obstacles of size 9h
(Fig. 9.3a), and the permeability scales as k „ h2 (9.19), i.e. the permeability in this regime does
not depend on r, at first-order. When q " qc, on the other hand, the fluid flow is driven through
large-scales structures, which constrain the fluid path into the flat cylinders. This is illustrated
in Fig. (9.3b) which shows areas free of obstacles in-between clusters of particles. Some particles
are clearly aligned to one another. Accordingly, the permeability in this regime scales as k „ hr
(9.22), highlighting the role of the large-scale structures (of size „ r). Also, the bound predicts
that the permeability increases much more with respect to porosity in the highly-dilute regime
q ! qc. This is consistent with our intuition, which suggests that, in the non-dilute regime q " qc,
the fluid flow inside clusters of particles is much smaller than in zones that are free of particles.
Hence, removing obstacles has a lesser effect on the macoscopic flow than in regime q ! qc.

9.4 Conclusion
In this chapter, the permeability of a Boolean model of very flat cylinders in the case where the fluid
flows inside the cylinders. The flat cylinders are tantamount to models of planes of finite width.
Because of the cylinder overlap, the resulting microstructure, which consist, in the high porosity
limit, of isolated obstacles, displays markedly anisotropic structures and long-range correlations.
It should be noted that strongly-anisotropic arrangements are not uncommon in materials, and in
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fact appear in a wide array of applications [240, 39].
In this chapter we have investigated the behavior of the Berryman-Milton upper-bound in the

dilute limit of such a Boolean set, making use of an approximate formula for the covariogram
of cylinders. The upper-bound predicts two distinct regimes depending on the diameter of the
cylinders relative to the volume fraction of obstacles. In the strongly-dilute regime, a scaling law
„ 1{rqplog qq2s is predicted, whereas a much weaker regime „ log q arises when r " h{q.
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Chapter 10

Conclusion

The main problem tackled in this manuscript concerns a nonlinear medium in the continuum, in
two dimensions, weakened or reinforced by a population of voids or rigid particles. The matrix is
rigid perfectly-plastic (in deformation theory) and subjected to anti-plane shear. In the equivalent
conducting problem, the particles are either insulating or perfectly-conducting, and the matrix
exhibits a threshold-type nonlinear constitutive law. The macroscopic behavior is characterized
by an effective plastic yield stress or effective current threshold.

Bounds (4.20) and (4.37), computed in Chap. (4), together with the predictions of nonlinear
homogenization theories, have allowed us to gain insights on the effective behavior of such nonlinear
medium in the porous case. Namely, in the dilute porosity limit, the effective yield stress relative
to the yield stress in the matrix tends to unity with a correction that scales as the porosity to the
power 2{3. Although this scaling law holds for Boolean media with homogeneous Poisson point
process intensity, it is in fact much more general. The location of particles in random sequential
adsorption models, for instance, is asymptotically equivalent to a Poisson point process in the
dilute limit, so these models are also identical to Boolean random sets for a dilute concentration
of particles [145]. A key for deriving bound (4.20) is the property that the presence of the center
of a pore in a given domain is independent of the presence of another pore center in a disjoint
domain. As a consequence, the correlation function of the “one-scale” Boolean model BE (Chap. 6)
vanishes at finite distance. That is, the probability that a point x is in a pore is independent of the
probability that point x` h is in a pore, for a finite value of h. This property holds for any media
with finite integral range, the integral range being the integral of the correlation function [159]. It
would be interesting to investigate if microstructures with finite integral range exhibit a “dilute
exponent” equal to 2{3.

The properties of a multiscale dispersion of equisized pores has been studied in Chap. (6),
with emphasis on the dilute limit. By tailoring the variation of the volume fraction of clusters
with respect to the total porosity in the medium, it has been shown that a non-analytic behavior
may be obtained, different from that observed for a homogeneous distribution of pores. This
non-analyticity is characterized by a powerlaw with exponent greater than 2{3 and strictly lower
than 1, for a two-scale medium. The highest exponent, and consequently the lowest effect of the
pores, is attained when the shear bands are flat at the scale of the clusters, but would in fact
display rugosity at the largest scale if the porosity was only very slightly increased. By increasing
the number of scales, analytical bounds predict that any exponent inbetween 2{3 and 1 may be
obtained. For infinitely-many scales, an exponent 1 is obtained for most arrangements (among the
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ones considered in Sec. 6.3.3).
As predicted by Duxbury et al. [70], the non-analyticity of the effective behavior with respect to

the volume fraction is a signature of the localization of the strain field and of the strong interaction
of pores along shear bands. Clearly, as shown by the multiscale structures studied in Chap. (6),
the exponent depends in general on the tortuosity at the different scales of the minimal path.

Furthermore, analytical bounds obtained in the dilute limit in Chap. (4), in particular (4.31),
suggest that the effective behavior depends on the shape of the pores through the width of the
inclusion, measured in the direction parallel to the applied load or to the macroscopic direction
of the geodesics. As a consequence, according to bounds, elongated inclusions (tantamount to
segment of lines, or open cracks) have the most important weakening effect on the effective yield
stress at fixed porosity – an unsurprising result. In contrast to this, disk-shaped inclusions have,
in the dilute limit, the least important weakening effect on the effective yield stress, in the space
of shapes of constant width resulting in an isotropic macroscopic behavior.

Although the bounds on geodesics extend to multidimensional spaces (Sec. 4.4.4), the latter
can not be used to predict the behavior of minimal surfaces spanning media in three dimensions.
Therefore, they can not be used at the moment to assess the validity of the predictions of nonlinear
homogenization theories in three dimensions. To achieve this goal, a description of “sufficiently
general” surfaces spanning a volume would be required. Another difficulty concerns the extension
of the bounds in Chap. (4) to polydisperse inclusions, for instance a population of pores of two
different sizes. Such a bound is not available at the moment. Nevertheless, results obtained in
Chap. (6) for model BP suggest that the exponent 2{3 is unchanged in this case, although the
prefactor is not.

The dual problem related to the response of a nonlinear medium containing a population
of rigid particles, could not be investigated by the same integral geometry techniques. This is
because particles interpenetration is a major difficulty that prevents us from deriving rigorous
bounds equivalent to the ones in Chap. (4). The random sequential adsorption model is a random
set in which particles interpenetration are forbidden, very few analytical result is known about
this model, save in one dimension [236], which prevents us to derive bounds.

To alleviate this difficulty, we have turned to random checkerboard materials where cells do not
interpenetrate. A rigorous bound has been obtained for a random checkerboard of square-shaped
cells. In the dilute limit of rigid particles volume fraction f Ñ 0, the bound’s leading-order term
in f scales as „ | log f |f 3. A markedly different behavior „ | log f |f 2 was obtained for a random
checkerboard of rectangles which are not aligned to each other. We argue that the much lower
bound obtained in the former case is an effect of particle alignment and long-range correlations,
although long-range correlations are also present in the rectangular case. In any case, the scaling
„ f 2 has been numerically confirmed for the RSA model of squares, and is qualitatively close to the
predictions of the bound obtained for the random checkerboard of rectangles. Finally, note that the
same scaling law „ f 2 is predicted by the “second-order” nonlinear homogenization theory [83], a
result which supports our conclusion that a „ f 2 correction holds for spatial distributions without
long-range correlations.

Extending our results for multiscale dispersions of rigid particles, it has been found that the
exponent in the dilute limit also varies when the number of scales increases. Specifically, for
multiscale random materials containing rigid particles, we have shown that any exponent between
1 and 2 may be obtained. In the limit of a material with infinitely-many scales, made of particles
arranged into clusters, themselves arranged into superclusters (etc.) an exponent 1 (i.e. a linear
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correction in f) is recovered. Different regimes are predicted which depend on the fact that shear
bands may avoid entire clusters, or pass through them while avoiding rigid particles inside each
cluster they go through. The rigid particles have the highest strengthening effect when the length of
the minimal path is the same for a path that avoids clusters entirely or for a path that goes through
them. This linear correction in the limit of infinitely-many scales explains the behavior of certain
rigorous upper-bounds [94]. It would be useful to extend these results to random microstructures
in three-dimensions, such as the ones considered in [81] and [82].

The results obtained in the present work also highlight the limits – or the extent – of the domain
of validity of linear and nonlinear homogenization theories, as the nonlinearity or heterogeneity
contrast becomes large. Chap. (7) has investigated how shear bands may develop from a strictly
convex powerlaw potential, in the context of periodic structures. Different regime changes have
been identified, in the porous and rigid case, including in plane strain. The study may be usefully
compared to [259] and Chap. (2) where a regime change occurring in linear, stongly-anisotropic
media is reported. In particular, it would be interesting to generalize these results to randomly-
distributed particles.

The two closing chapters (Chaps. 8 and 9) present a study of the behavior of a Stokes flow
passing through a medium with statistically-aligned obstacles. In the dilute limit, the fluid avoids
a set of obstacles. While the latter are isolated from one another, their positions are correlated to
each other so that they form organized patterns corresponding to long-range alignments. In this
regime, the Berryman-Milton upper-bound predicts markedly different behavior of the permeability
than when the obstacles are isolated and their positions are uncorrelated. Namely, the increase of
the permeability with respect to porosity is much smaller in the former case.
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Appendix A

Summary of recent activities
(2016–2019)

This Appendix contains a brief description of my main achievements conducted in three topics of
research: micromechanical modeling of polycrystals, probabilistic models of microstructures and
Fourier-based methods.

Micromechanical modeling of polycristals
Several studies are currently being conducted regarding the modeling of a 1,3,5-triamino-2,4,6-
trinitrobenzen (TATB) polycrystal containing an amorphous thermoplastic polymer used as binder,
and to its thermomechanical response, of a quasi-brittle nature [J11]. The material’s response is
strongly dependent on damage, irreversible deformation, viscoelastic mechanisms and thermal dila-
tion (internship works of A. Ambos, and thesis of J.-B. Gasnier). The material is well characterized
at the macroscopic scale, however its behavior is not well understood, although the main mech-
anisms have been qualitatively identified: inter and transgranular microcracking, viscoelastcicity
due to the binder, and inelastic deformation of the TATB. The material is strongly dependent on
temperature and stress triaxiality.

A numerical Fourier-based method has been devised [J10] making use of virtual microstruc-
tures [J27] representative of the main morphological features of the material (grains size distribu-
tion and aspect ratio, lack of geometrical convexity). In the linear thermoelastic case [J11], the
important effect of crystal elastic anisotropy of the main phase, the TATB, has been highlighted.
Transgranular micro-cracking along the graphitic plane of the monocrystal has been confirmed
making use of SEM images, and explains the decrease of the thermal expansion coefficient during
cooling-heating thermal cycles. Intergranular cracking, on the other hand, must be present in the
material in its initial state [J11].

This work is currently being extended to the modeling of damage, crack initiation and propa-
gation in polycrystals, making use of a numerical approach that combines phase-field and Fourier-
based methods [P6] (thesis of F. Rabette). The role of damage and its effect on the macroscopic
response of the polycrystal is investigated, in particular during thermal cycles. Image analysis tools
have also been developed to assess how intergranular and transgranular micro-cracks propagate
through heterogeneous structures.
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Modeling of heterogeneous structures
Probabilistic models have recently been developed to represent a variety of heterogeneous mi-
crostructures. This includes N -phases random materials [J16] in the context of a European project
devoted to fuel cell applications [P15] (thesis of B. Abdallah). The method proposed, which makes
used of underlying independent random sets, has been compared to techniques developed elsewhere
for the same type of materials, and based on graph-induced random sets [J2, J3]. We compared,
in particular, the ability of the virtual microstructures to predict a variety of behavior such as
conductivity or permeability, based on SEM images.

A method based on a mixed Boolean-tesselation random structure has been developed to model
cold-spray coatings used in materials made for the aeronautical industry [J9] (thesis of V. Borto-
lussi), with funding from US Air Force. In this study as in others [J13, J18, C1, C2], use is made
of automatic images segmentation methods.

Mesoporous structures for catalysis applications have been studied, making use of transmission
electron microscopy and porosimetry curves to characterize the multiscale arrangement of alumina
platelets (thesis of H. Wang). The two experimental techniques, transmission electron microscopy
and porosimetry, have been modeled numerically to infer the material’s structure [J14, J12].

Spectral methods
Fourier-based numerical methods have been proposed to predict the viscoelastic behavior of com-
posites in the time-harmonic regime, in heterogeneous media [J18]. Fourier techniques that improve
on the field discretization, using specific Green operators specifically adapted to the voxel grid,
have been devised [J29]. The Fourier Fortran code has been used at the TSUBAME Japanese
cluster to compute the viscoelastic response of virtual models of rubber at a very large scale, to
carry out microstructure optimization (about 4 000 problems containing „ one billion degrees of
freedom) [P11]. Learning methods and data mining have been used to infer the main microstruc-
tural characteristics. Similar approaches are presently conducted in the context of L. Lacourt’s [P4,
P10] and É. Kaeshammer’s thesis [P9, P2, M2].
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This work is a study in theoretical mechanics devoted to homogenization problems in the con-
text of degenerate (non-strictly convex) local response of one of the phases, which can serve as

idealized models for porous or rigidly-reinforced materials exhibiting perfectly-plastic behavior. In
these situations plastic flow preferentially concentrates along shear bands; as a result the material
effective response is governed by those regions within the material where the field localizes. A
form of localization also occurs in linear problems governed by asymptotically hyperbolic partial
derivative equations, where the strain field is found to develop banding patterns. The solutions are
relevant to strongly-anisotropic elastic or thermoelastic media. Such a linear problem is studied in
the present work in the context of a random microstructure, specifically a polycrystal containing
cracks. A related topic is whether incipient localization may develop as a result of the microstruc-
ture itself. This question is investigated in the case of a Stokes flow occurring in a porous medium
around a set of obstacles exhibiting unusual spatial distribution, characterized by long-range cor-
relations. The different model problems are addressed by means of various techniques. Limit
analysis bounds are combined with integral geometry to provide insight on the material behav-
ior. Comparisons with rigorous bounds and estimates of homogenization theories, and full-field
“Fourier-based” numerical results, allow us to interpret and assess the response of certain ran-
dom microstructures. Although a complete solution is out-of-reach, the interplay between field
localization and microstructure is elucidated in specific cases.
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