P. , Pseudomonas aeruginosa; NMR, nuclear magnetic resonance

, HRMAS, high-resolution magic angle spinning; PBS, phosphate-buffered saline

, PCA, principal component analysis

, OPLS, orthogonal partial least squares

C. Cf and . Fibrosis,

, Type 3 secretion system, T3SS

, KBMA, killed but metabolically active

. Gluc, ;. Asc, and G. Gpc,

, Gly, glycine; Succ, succinate; bHB, beta-hydroxybutyrate

V. Val, Leu/iso, leucine/isoleucine; Lac, lactate; Gsh, glutathione reduced; PEG

, ROC, receiver operating characteristic

, AUC, area under ROC curve ? REFERENCES

H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards, D. Gilbert et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis, vol.48, issue.1, pp.1-12, 2009.

D. Nathwani, G. Raman, K. Sulham, M. Gavaghan, and V. Menon, Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis, Antimicrob Resist Infect Control, vol.2014, issue.1, p.32

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, A. Filloux et al., Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, Int. J. Med. Microbiol, issue.8, pp.534-577, 2010.

M. Jain, M. Bar-meir, S. Mccolley, J. Cullina, E. Potter et al., Evolution of Pseudomonas aeruginosa type III secretion in cystic fibrosis: a paradigm of chronic infection, Transl Res, vol.152, issue.6, pp.257-64, 2008.

L. Gouellec, A. Polack, B. Toussaint, and B. , Regulation of the expression of type 3 secretion system: An exemple from P. aeruginosa. Regulation of Bacterial Virulence

M. L. Vasil and A. J. Darwin, , 2012.

D. Dacheux, J. Goure, J. Chabert, and Y. Usson, Attree, I. Poreforming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages, Mol. Microbiol, vol.40, issue.1, pp.76-85, 2001.

L. Dortet, C. Lombardi, F. Cretin, A. Dessen, and A. Filloux, Poreforming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome, Nat. Microbiol, vol.2018, issue.3, pp.378-386
URL : https://hal.archives-ouvertes.fr/hal-01726153

D. Savoia, New perspectives in the management of Pseudomonas aeruginosa infections, Future Microbiol, vol.2014, issue.7, pp.917-945

J. Rello, B. Borgatta, and L. Lagunes, Management of Pseudomonas aeruginosa pneumonia: one size does not fit all, Crit Care, vol.18, issue.2, p.136, 2014.

G. P. Priebe and J. B. Goldberg, Vaccines for Pseudomonas aeruginosa: a long and winding road, Expert Rev. Vaccines, vol.13, issue.4, pp.507-526, 2014.

M. N. Hurley, M. Ca?ara, and A. R. Smyth, Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis, Eur. Respir. J, vol.2012, issue.4, pp.1014-1023

E. Meynet, D. Laurin, J. L. Lenormand, B. Camara, B. Toussaint et al., Killed but metabolically active Pseudomonas aeruginosa-based vaccine induces protective humoral-and cellmediated immunity against Pseudomonas aeruginosa pulmonary infections, Vaccine, vol.36, issue.14, pp.1893-1900, 2018.
URL : https://hal.archives-ouvertes.fr/dumas-01540634

D. S. Wishart, Emerging applications of metabolomics in drug discovery and precision medicine, Nat. Rev. Drug Discovery, p.15, 2016.

J. L. Markley, R. Bruschweiler, A. S. Edison, H. R. Eghbalnia, R. Powers et al., The future of NMR-based metabolomics, Curr. Opin. Biotechnol, vol.43, pp.34-40, 2017.

O. Beckonert, M. Coen, H. C. Keun, Y. Wang, T. M. Ebbels et al., High-resolution magicangle-spinning NMR spectroscopy for metabolic profiling of intact tissues, Nat. Protoc, vol.2010, issue.6, pp.1019-1051

M. S. Muhlebach and W. Sha, Lessons learned from metabolomics in cystic fibrosis, Mol. Cell Pediatr, vol.2, issue.1, p.9, 2015.

K. A. Stringer, R. T. Mckay, A. Karnovsky, B. Quemerais, and P. Lacy, Metabolomics and Its Application to Acute Lung Diseases, Front. Immunol, vol.7, p.44, 2016.

I. F. Duarte, C. M. Rocha, and A. M. Gil, Metabolic profiling of biofluids: potential in lung cancer screening and diagnosis, Expert Rev. Mol. Diagn, vol.13, issue.7, pp.737-785, 2013.

B. M. Mcclenathan, D. A. Stewart, C. E. Spooner, W. W. Pathmasiri, J. P. Burgess et al., Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics, vol.35, pp.1238-1245, 2017.

B. S. Somashekar, P. Kamarajan, T. Danciu, Y. L. Kapila, A. M. Chinnaiyan et al., Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues, J. Proteome Res, vol.10, issue.11, pp.5232-5273, 2011.

B. S. Somashekar, A. G. Amin, P. Tripathi, N. Mackinnon, C. D. Rithner et al., Metabolomic signatures in guinea pigs infected with epidemicassociated W-Beijing strains of Mycobacterium tuberculosis, J. Proteome Res, vol.2012, issue.10, pp.4873-84

B. Toussaint, I. Delic-attree, and P. M. Vignais, Pseudomonas aeruginosa contains an IHF-like protein that binds to the algD promoter, Biochem. Biophys. Res. Commun, vol.196, issue.1, pp.416-421, 1993.

J. Goure, A. Pastor, E. Faudry, J. Chabert, and A. Dessen, Attree, I. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes, Infect. Immun, vol.72, issue.8, pp.4741-50, 2004.

E. Meynet, D. Laurin, J. L. Lenormand, B. Camara, B. Toussaint et al., Killed but metabolically active Pseudomonas aeruginosa-based vaccine induces protective humoral-and cellmediated immunity against Pseudomonas aeruginosa pulmonary infections, vol.36, 1893.
URL : https://hal.archives-ouvertes.fr/dumas-01540634

D. Jacob, C. Deborde, M. Lefebvre, M. Maucourt, and A. Moing, NMRProcFlow: a graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics, Metabolomics, vol.2017, issue.4, p.36
URL : https://hal.archives-ouvertes.fr/hal-01401241

Z. M. Zhang, S. Chen, and Y. Z. Liang, Baseline correction using adaptive iteratively reweighted penalized least squares, Analyst, issue.5, pp.1138-1184, 2010.

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek et al., pROC: an open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinf, vol.12, p.77, 2011.

M. S. Son, W. J. Matthews, . Jr, Y. Kang, D. T. Nguyen et al., In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients, Infect. Immun, vol.75, issue.11, pp.5313-5337, 2007.

Z. Sun, Y. Kang, M. H. Norris, R. M. Troyer, M. S. Son et al., Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo, Magn. Reson. Med, vol.9, issue.7, pp.35-43, 2014.

B. Suetrong and K. R. Walley, Lactic Acidosis in Sepsis: It's Not All Anaerobic: Implications for Diagnosis and Management, Journal of Proteome Research Article, vol.2016, issue.1

, J. Proteome Res, vol.17, pp.3409-3417, 2018.

J. P. Garnett, K. K. Kalsi, M. Sobotta, J. Bearham, G. Carr et al., Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H(+) secretion, Sci. Rep, vol.6, p.37955, 2016.

B. Rada and T. L. Leto, Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections, Trends Microbiol, vol.21, issue.2, pp.73-81, 2013.

J. H. Shin, J. Y. Yang, B. Y. Jeon, Y. J. Yoon, S. N. Cho et al., )H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis, J. Proteome Res, vol.10, issue.1, pp.2238-2285, 2011.

D. Bar-or, M. M. Carrick, C. W. Mains, L. T. Rael, D. Slone et al., Sepsis, oxidative stress, and hypoxia: Are there clues to better treatment? Redox Rep, Journal of Proteome Research Article, vol.20, issue.5, pp.193-200, 2015.

, J. Proteome Res, vol.17, pp.3409-3417, 2018.

S. M. Awramik, The oldest records of photosynthesis, Photosynthesis Research, 1992.

C. Darwin, On the Origin of Species by Means of Natural Selection, D. Appleton and Company, 1859.

F. Crick, Central dogma of molecular biology, Nature, 1970.

M. Kimura, The rate of molecular evolution considered from the standpoint of population genetics, Proc. Natl. Acad. Sci. U. S. A, vol.63, pp.1181-1189, 1969.

K. Laland, Does evolutionary theory need a rethink?, Nature, 2014.

, Inserm -La science pour la santé, p.25, 2019.

A. Jeltsch, Handbook of Epigenetics: The New Molecular and Medical Genetics, 2011.

V. Calvanese and M. F. Fraga, Epigenetics of Embryonic Stem Cells, Advances in experimental medicine and biology 741, pp.231-253, 2012.

I. Cota, Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance, PLoS Genet, 2015.

M. E. Pembrey, Time to take epigenetic inheritance seriously, Eur. J. Hum. Genet, vol.10, pp.669-671, 2002.

L. O. Bygren, G. Kaati, and S. Edvinsson, Longevity determined by paternal ancestors' nutrition during their slow growth period, Acta Biotheor, vol.49, pp.53-59, 2001.

G. Kaati, L. O. Bygren, and S. Edvinsson, Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period, Eur. J. Hum. Genet, vol.10, pp.682-688, 2002.

D. C. Dolinoy, J. R. Weidman, R. A. Waterland, and R. L. Jirtle, Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome, Environ. Health Perspect, 2006.

M. R. Sater, DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates, PLoS One, vol.10, 2015.

F. Rosier, &. Adn, and . Le-monde, , 2012.

E. M. Standen, T. Y. Du, and H. C. Larsson, Developmental plasticity and the origin of tetrapods, Nature, 2014.

X. Liu and J. W. Locasale, Metabolomics: A Primer. Trends Biochem. Sci, vol.42, pp.274-284, 2017.

G. J. Patti, O. Yanes, and G. Siuzdak, Metabolomics: the apogee or the omic trilolgy, Nat Rev Mol Cell Biol, vol.13, pp.263-269, 2013.

T. Bersaglieri, Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene, Am. J. Hum. Genet, 2004.

R. Blekhman, Comparative metabolomics in primates reveals the effects of diet and gene regulatory variation on metabolic divergence, Sci. Rep, 2014.

K. E. Boyle, Metabolism and the evolution of social behavior, Mol. Biol. Evol, vol.34, pp.2367-2379, 2017.

M. Fumagalli, Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science (80-. ), vol.349, pp.1343-1347, 2015.

K. Offit, Decade in review-genomics: A decade of discovery in cancer genomics, Nat. Rev. Clin. Oncol, 2014.

R. W. Mcgarrah, S. B. Crown, G. F. Zhang, S. H. Shah, C. B. Newgard et al., Circulation research, 2018.

R. A. Quinn, Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy, Trends in Pharmacological Sciences, vol.38, pp.143-154, 2017.

D. S. Wishart, Emerging applications of metabolomics in drug discovery and precision medicine, Nature Reviews Drug Discovery, 2016.

C. H. Johnson, J. Ivanisevic, H. P. Benton, and G. Siuzdak, Bioinformatics: The next frontier of metabolomics, Analytical Chemistry, 2015.

J. D. Watson and F. H. Crick, Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid, Nature, 1953.

O. T. Avery, C. M. Macleod, and M. Mccarty, Studies on the chemical nature of the substance inducing transformation of the Pneumococcal types : induction of transformation by a desoxyribonucleic acid isolated from Pneumococcus type III, J. Exp. Med, 1944.

F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci, 1977.

A. M. Maxam and W. Gilbert, A new method for sequencing DNA, Proc. Natl. Acad. Sci, 1977.

A. E. Guttmacher and F. S. Collins, Welcome to the Genomic Era, N. Engl. J. Med, 2003.

F. S. Collins, E. D. Green, A. E. Guttmacher, and S. Mark, A vision for the future of genomics research, Nature, vol.422, pp.15-17, 2003.

D. L. Altshuler, A map of human genome variation from population-scale sequencing, Nature, 2010.

R. L. Walker and C. Morrissey, Bioethics Methods in the Ethical, Legal, and Social Implications of the Human Genome Project Literature. Bioethics, 2014.

K. W. Southern, Determining the optimal newborn screening protocol for cystic fibrosis, Thorax, vol.67, pp.281-282, 2012.

E. Palkopoulou, Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth, Curr. Biol, 2015.

J. R. Meadows and K. Lindblad-toh, Dissecting evolution and disease using comparative vertebrate genomics, Nature Reviews Genetics, 2017.

O. Seehausen, Genomics and the origin of species, Nature Reviews Genetics, 2014.

S. K. Sheppard, D. S. Guttman, and J. R. Fitzgerald, Population genomics of bacterial host adaptation, Nature Reviews Genetics, 2018.

S. Marsit, Evolutionary biology through the lens of budding yeast comparative genomics, Nature Reviews Genetics, 2017.

R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis, Nat. Genet, 2015.

M. Parks, Ancient population genomics and the study of evolution, Philos. Trans. R. Soc. B Biol. Sci, vol.370, 2015.

L. M. Raamsdonk, A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations, Nat. Biotechnol, 2001.

K. P. White, Functional genomics and the study of development, variation and evolution, Nature Reviews Genetics, 2001.

L. M. Steinmetz and R. W. Davis, Maximizing the potential of functional genomics, Nature Reviews Genetics, 2004.

S. Sauer, Z. Konthur, and H. Lehrach, Genome projects and the functional-genomic era, Comb Chem High Throughput Screen, 2005.

R. D. Hawkins, G. C. Hon, and B. Ren, Next-generation genomics: An integrative approach, Nature Reviews Genetics, 2010.

A. Klupczy?ska, P. Derezi?ski, and Z. J. Kokot, Metabolomics in medical sciences -Trends, challenges and perspectives, Acta Poloniae Pharmaceutica -Drug Research, 2015.

A. R. Dongre, G. Opiteck, W. L. Cosand, and S. A. Hefta, Proteomics in the post-genome age, Biopolymers, vol.60, pp.206-211, 2001.

T. Ouidir, T. Jouenne, and J. Hardouin, Post-translational modifications in Pseudomonas aeruginosa revolutionized by proteomic analysis, Biochimie, vol.125, pp.66-74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02326335

L. K. Reed, C. F. Baer, and A. S. Edison, Considerations when choosing a genetic model organism for metabolomics studies, Current Opinion in Chemical Biology, 2017.

O. B. Bakker, Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses, Nat. Immunol, 2018.

Y. Hasin, M. Seldin, and A. Lusis, Multi-omics approaches to disease, Genome Biology, 2017.

R. Haas, Designing and interpreting 'multi-omic' experiments that may change our understanding of biology, Curr. Opin. Syst. Biol, vol.6, pp.37-45, 2017.

F. Rohart, B. Gautier, A. Singh, and K. A. Lê-cao, mixOmics: An R package for 'omics feature selection and multiple data integration, PLoS Comput. Biol, 2017.

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proc. Natl. Acad. Sci. U. S. A, vol.68, pp.2374-2380, 1971.

S. G. Oliver, M. K. Winson, D. B. Kell, and F. Baganz, Systematic functional analysis of the yeast genome, Trends Biotechnol, vol.16, pp.373-381, 1998.

X. Liu and J. W. Locasale, Biochemistry: A toxin that fuels metabolism, Nature, 2017.

C. H. Johnson, J. Ivanisevic, and G. Siuzdak, Metabolomics: beyond biomarkers and towards mechanisms, Nat. Rev. Mol. Cell Biol, vol.17, pp.451-459, 2016.

J. K. Nicholson and J. C. Lindon, Systems biology: Metabonomics, Nature, vol.455, pp.1054-1056, 2008.

V. Behrends, Metabolite profiling to characterize disease-related bacteria: Gluconate excretion by pseudomonas aeruginosa mutants and clinical isolates from cystic fibrosis patients, J. Biol. Chem, vol.288, pp.15098-15109, 2013.

S. E. Borgos, Rapid metabolic profiling of developing Pseudomonas aeruginosa biofilms by high-resolution mass spectrometry fingerprinting, Ann. Microbiol, vol.65, pp.891-898, 2015.

N. S. Shommu, H. J. Vogel, and D. G. Storey, Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance, Front. Microbiol, 2015.

C. A. Rees, A. Burklund, P. H. Stefanuto, J. D. Schwartzman, and J. E. Hill, Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups, J. Breath Res, 2018.

L. Campo, Urinary profiles to assess polycyclic aromatic hydrocarbons exposure in cokeoven workers, Toxicol. Lett, 2010.

J. Raes and P. Bork, Molecular eco-systems biology: Towards an understanding of community function, Nat. Rev. Microbiol, 2008.

A. A. Boaro, Y. M. Kim, A. E. Konopka, S. J. Callister, and B. K. Ahring, Integrated 'omics analysis for studying the microbial community response to a pH perturbation of a cellulose-degrading bioreactor culture, FEMS Microbiol. Ecol, 2014.

P. C. Dorrestein, S. K. Mazmanian, and R. Knight, Finding the Missing Links among Metabolites, Microbes, and the Host, Immunity, 2014.

A. Zhang, H. Sun, G. Yan, P. Wang, and X. Wang, Metabolomics for Biomarker Discovery: Moving to the Clinic, Biomed Res. Int, 2015.

L. Gouëllec, A. Moyne, O. Meynet, E. Toussaint, B. Fauvelle et al., High-Resolution Magic Angle Spinning NMR-Based Metabolomics Revealing Metabolic Changes in Lung of Mice Infected with P. aeruginosa Consistent with the Degree of Disease Severity, J. Proteome Res, vol.17, pp.3409-3417, 2018.

C. Guijas, J. R. Montenegro-burke, B. Warth, M. E. Spilker, and G. Siuzdak, Metabolomics activity screening for identifying metabolites that modulate phenotype, Nature Biotechnology, 2018.

R. Matsuda, Studies of metabolite-protein interactions: A review, J. Chromatogr. B Anal. Technol. Biomed. Life Sci, 2014.

J. Cao, Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins, Toxicology, 2010.

H. Sperber, The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition, Nat. Cell Biol, 2015.

J. Wei, J. Raynor, T. L. Nguyen, and H. Chi, Nutrient and metabolic sensing in T cell responses, Front. Immunol, vol.8, pp.1-14, 2017.

S. Haase, A. Haghikia, N. Wilck, D. N. Müller, and R. A. Linker, Impacts of microbiome metabolites on immune regulation and autoimmunity, Immunology, 2018.

D. M. Altmann, Establishing the new playbook for interactions among microbiota, bacterial metabolites, adaptive immunity, autoimmune disease and metabolic syndrome, Immunology, vol.154, pp.533-534, 2018.

M. C. Barth, Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions, J. Biol. Chem, 2009.

E. Wirthgen, A. Hoeflich, A. Rebl, J. K. Günther, and . Acid, The Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions, Frontiers in Immunology, 2018.

C. Genestet, Scavenging of reactive oxygen species by tryptophan metabolites helps Pseudomonas aeruginosa escape neutrophil killing. Free Radic, Biol. Med, vol.73, pp.400-410, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01464090

P. Bortolotti, Tryptophan catabolism in Pseudomonas aeruginosa and potential for interkingdom relationship, BMC Microbiol, vol.16, pp.1-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01464093

O. A. Aboud and R. H. Weiss, New opportunities from the cancer metabolome, Clinical Chemistry, 2013.

T. Strucko, Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae, Metab. Eng, 2018.

Y. Ben-abu, A. Beiles, D. Flom, and E. Nevo, Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at "Evolution Canyon&quot, PLoS One, 2018.

L. Rosa, R. Behrends, V. Williams, H. D. Bundy, J. G. Rojo et al., Influence of the Crc regulator on the hierarchical use of carbon sources from a complete medium in Pseudomonas, Environ. Microbiol, 2016.

Z. Li, The relations between metabolic variations and genetic evolution of different species, Anal. Biochem, 2015.

J. E. Barrick and R. E. Lenski, Genome dynamics during experimental evolution, Nature Reviews Genetics, 2013.

O. Tenaillon, Tempo and mode of genome evolution in a 50,000-generation experiment, Nature, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01653393

T. Hindré, C. Knibbe, G. Beslon, and D. Schneider, New insights into bacterial adaptation through in vivo and in silico experimental evolution, Nat. Publ. Gr, vol.10, 2012.

X. Didelot, A. S. Walker, T. E. Peto, D. W. Crook, and D. J. Wilson, Within-host evolution of bacterial pathogens, Nature Reviews Microbiology, 2016.

K. K. Sanchez, Cooperative Metabolic Adaptations in the Host Can Favor Asymptomatic Infection and Select for Attenuated Virulence in an Enteric Pathogen, Cell, 2018.

J. A. Bugaytsova, Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence, Cell Host Microbe, vol.21, pp.376-389, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02195957

J. R. Fitzgerald, Evolution of Staphylococcus aureus during human colonization and infection, Infect. Genet. Evol, vol.21, pp.542-547, 2014.

L. T. Viberg, Within-Host Evolution of Burkholderia pseudomallei during Chronic Infection of Seven Australasian Cystic Fibrosis Patients, MBio, vol.8, 2017.

A. Folkesson, Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective, Nat. Rev. Microbiol, vol.10, 2012.

L. M. Sommer, Is genotyping of single isolates sufficient for population structure analysis of Pseudomonas aeruginosa in cystic fibrosis airways?, BMC Genomics, vol.17, 2016.

H. W. Boucher, Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, IDSA Rep. Dev. Pipeline, vol.48, p.12, 2009.

J. C. Davies, A. M. Ebdon, and C. Orchard, Recent advances in the management of cystic fibrosis, Archives of Disease in Childhood, 2014.

G. Bellis, C. Dehillotte, and L. Lemonnier, Registre français de la mucoviscidose -Bilan des données 2016, 2017.

G. E. Palomaki, S. C. Fitzsimmons, and J. E. Haddow, Clinical sensitivity of prenatal screening for cystic fibrosis via CFTR carrier testing in a United States panethnic population, Genet. Med, vol.6, pp.405-419

T. Mackenzie, Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: Survival analysis of the Cystic Fibrosis Foundation Patient Registry, Ann. Intern. Med, 2014.

J. A. Dodge, P. A. Lewis, M. Stanton, and J. Wilsher, Cystic fibrosis mortality and survival in the UK, Eur. Respir. J, pp.1947-2003, 2007.

A. D. Jackson and C. H. Goss, Epidemiology of CF: How registries can be used to advance our understanding of the CF population, J. Cyst. Fibros, vol.17, pp.297-305, 2018.

S. Conway, European cystic fibrosis society standards of care: Framework for the cystic fibrosis centre, Journal of Cystic Fibrosis, 2014.

B. W. Ramsey, A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation, N. Engl. J. Med, 2011.

D. M. Rodman, Late diagnosis defines a unique population of long-term survivors of cystic fibrosis, Am. J. Respir. Crit. Care Med, 2005.

E. Kerem and A. K. Webb, European cystic fibrosis society standards of care: A road map to improve CF outcome, J. Cyst. Fibros, vol.13, pp.357-358, 2014.

P. R. Sosnay, Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene, Nat. Genet, vol.45, pp.1160-1167, 2013.

G. Veit, From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations, Mol. Biol. Cell, vol.27, pp.424-433, 2016.

D. Boeck, K. Zolin, A. Cuppens, H. Olesen, H. V. Viviani et al., The relative frequency of CFTR mutation classes in European patients with cystic fibrosis, J. Cyst. Fibros, 2014.

F. A. Marson, C. S. Bertuzzo, and J. D. Ribeiro, Classification of CFTR mutation classes, Lancet Respir. Med, vol.4, pp.37-38, 2016.

F. Ratjen, Cystic fibrosis, Nat. Rev. Dis. Prim, vol.1, p.15010, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00614855

M. W. Konstan, Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis, J. Pediatr, 2003.

R. Sharma, Wasting as an independent predictor of mortality in patients with cystic fibrosis, Thorax, 2001.

A. Moran, Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society, Diabetes Care, vol.33, pp.2697-708, 2010.

A. R. Hauser, M. Jain, M. Bar-meir, and S. A. Mccolley, Clinical significance of microbial infection and adaptation in cystic fibrosis, Clin. Microbiol. Rev, 2011.

A. A. Pezzulo, Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung, Nature, 2012.

F. Harrison, Microbial ecology of the cystic fibrosis lung, Microbiology, vol.153, pp.917-940, 2007.

V. King and . Van-b, Upper respiratory disease, sinusitis, and polyposis, Clin. Rev. Allergy, 1991.

S. K. Hansen, Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection, ISME J, 2012.

C. Koch, Early infection and progression of cystic fibrosis lung disease, Pediatr. Pulmonol, vol.34, pp.232-236, 2002.

W. D. Smith, Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis, FEMS Microbiology Letters, 2017.

B. C. Marshall, Cystic Fibrosis Foundation Patient Registry, Annual Data Report. Cyst. Fibros. Found, 2014.

L. Pages-monteiro, Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa, PLoS One, vol.12, pp.1-19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606726

G. Bacci, Pyrosequencing unveils cystic fibrosis lung microbiome differences associated with a severe lung function decline, PLoS One, 2016.

P. Paganin, Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function, PLoS One, vol.10, 2015.

M. W. Konstan, K. A. Hilliard, T. M. Norvell, and M. Berger, Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation, Am. J. Respir. Crit. Care Med, 1994.

M. Ulrich, Alveolar inflammation in cystic fibrosis, J. Cyst. Fibros, 2010.

S. D. Aaron, A. L. Stephenson, D. W. Cameron, and G. A. Whitmore, A statistical model to predict one-year risk of death in patients with cystic fibrosis, J. Clin. Epidemiol, vol.68, pp.1336-1381, 2015.

E. Kerem, Factors associated with FEV1 decline in cystic fibrosis: Analysis of the ECFS patient registry, European Respiratory Journal, vol.43, pp.125-133, 2014.

M. W. Konstan, Risk Factors For Rate of Decline in Forced Expiratory Volume in One Second in Children and Adolescents with Cystic Fibrosis, J. Pediatr, 2007.

D. R. Vandevanter, Pulmonary outcome prediction (POP) tools for cystic fibrosis patients, Pediatr. Pulmonol, 2010.

D. Taylor-robinson, Understanding the natural progression in %FEV1 decline in patients with cystic fibrosis: A longitudinal study, Thorax, vol.67, pp.860-866, 2012.

C. Taylor, A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis Genetic modifier studies, Pediatr. Pulmonol, 2011.

M. D. Schluchter, M. W. Konstan, M. L. Drumm, J. R. Yankaskas, and M. R. Knowles, Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data, Am. J. Respir. Crit. Care Med, 2006.

S. N. Harun, C. Wainwright, K. Klein, and S. Hennig, A systematic review of studies examining the rate of lung function decline in patients with cystic fibrosis, Paediatr. Respir. Rev, 2016.

L. Nkam, A 3-year prognostic score for adults with cystic fibrosis, J. Cyst. Fibros, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02080563

H. J. Fuchs, Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis, N. Engl. J. Med, vol.331, pp.637-642, 1994.

B. W. Ramsey, Intermittent Administration of Inhaled Tobramycin in Patients with Cystic Fibrosis, N. Engl. J. Med, 1999.

, Mucoviscidose Protocole national de diagnostic et de soins pour une maladie rare, pp.1-34, 2006.

J. M. Bhatt, Treatment of pulmonary exacerbations in cystic fibrosis, Eur. Respir. Rev, vol.22, pp.205-216, 2013.

K. B. Twomey, Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation, PLoS One, vol.8, p.82432, 2013.

A. Y. Bhagirath, Cystic fibrosis lung environment and Pseudomonas aeruginosa infection, BMC Pulm. Med, vol.16, p.174, 2016.

J. Emerson, M. Rosenfeld, S. Mcnamara, B. Ramsey, and R. L. Gibson, Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis, Pediatr. Pulmonol, 2002.

T. J. Kidd, The social network of cystic fibrosis centre care and shared Pseudomonas aeruginosa strain infection: A cross-sectional analysis, Lancet Respir. Med, 2015.

J. G. Mainz, Concordant genotype of upper and lower airways P aeruginosa and S aureus isolates in cystic fibrosis, Thorax, vol.64, pp.535-540, 2009.

H. J. Bonestroo, D. Winter-de-groot, K. M. Van-der-ent, C. K. Arets, and H. G. , Upper and lower airway cultures in children with cystic fibrosis: Do not neglect the upper airways, J. Cyst. Fibros, vol.9, pp.130-134, 2010.

A. M. Sousa and M. O. Pereira, Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs-A Review, Pathogens, vol.3, pp.680-703, 2014.

C. Edmondson and J. C. Davies, Current and future treatment options for cystic fibrosis lung disease: Latest evidence and clinical implications, Therapeutic Advances in Chronic Disease, 2016.

L. Saiman, Infection Prevention and Control Guideline for Cystic Fibrosis, Update. Infect. Control Hosp. Epidemiol, 2013.

A. R. Smyth, European cystic fibrosis society standards of care: Best practice guidelines, Journal of Cystic Fibrosis, 2014.

M. W. Konstan, Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: The EVOLVE trial, Pediatr. Pulmonol, 2011.

M. W. Konstan, Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: The EAGER trial, J. Cyst. Fibros, 2011.

K. S. Mccoy, Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis, Am. J. Respir. Crit. Care Med, 2008.

D. E. Tullis, Inhaled aztreonam for chronic burkholderia infection in cystic fibrosis: A placebo-controlled trial, J. Cyst. Fibros, 2014.

J. R. Riordan, Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science (80-. ), vol.245, pp.1066-1073, 1989.

J. M. Rommens, Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science (80-. ), vol.245, pp.1059-1065, 1989.

B. S. Kerem, Identification of the cystic fibrosis gene: Genetic analysis. Science (80-. ), vol.245, pp.1073-1080, 1989.

J. S. Elborn, Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis, Lancet Respir. Med, vol.4, pp.617-626, 2016.

M. P. Boyle, A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: A phase 2 randomised controlled trial, Lancet Respir. Med, 2014.

C. E. Wainwright, Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR, N. Engl. J. Med, 2015.

J. L. Taylor-cousar, Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del, N. Engl. J. Med, 2017.

D. Keating, VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles, N. Engl. J. Med, vol.379, pp.1612-1620, 2018.

J. C. Davies, VX-659-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles, N. Engl. J. Med, vol.379, pp.1599-1611, 2018.

E. W. Alton, Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial, Lancet Respir. Med, vol.3, pp.684-691, 2015.

T. O. Hirche, Practical guidelines: Lung transplantation in patients with cystic fibrosis, Pulm. Med, 2014.

G. Bellis, C. Dehillotte, and L. Lemonnier, Registre français de la mucoviscidose -Bilan des do nnées 2015, 2016.

M. Abdallah, C. Benoliel, D. Drider, P. Dhulster, and N. E. Chihib, Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments, Archives of Microbiology, vol.196, pp.453-472, 2014.

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist, Microbes and Infection, pp.1259-1263, 2000.

C. K. Stover, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, 2000.

J. L. Vincent, International study of the prevalence and outcomes of infection in intensive care units, J. Am. Med. Assoc, vol.302, pp.2323-2329, 2009.

J. L. Vincent, Vaccine development and passive immunization for Pseudomonas aeruginosa in critically ill patients: A clinical update, Future Microbiol, vol.9, pp.457-463, 2014.

M. Tumbarello, Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients, Intensive Care Med, 2013.

A. Oliver, X. Mulet, C. López-causapé, and C. Juan, The increasing threat of Pseudomonas aeruginosa high-risk clones, Drug Resist. Updat. 21, vol.22, pp.41-59, 2015.

L. B. Rice, Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Infect. Dis, 2008.

E. Tacconelli, Global Priority List Of Antibiotic-Resistant Bacteria To Guide Research, Discovery And Development Of New Antibiotics. World Heal. Organ, 2017.

S. L. Gellatly and R. E. Hancock, Pseudomonas aeruginosa: New insights into pathogenesis and host defenses, Pathog. Dis, vol.67, pp.159-173, 2013.

S. Bleves, Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, International Journal of Medical Microbiology, 2010.

A. Roy-burman, Type III Protein Secretion Is Associated with Death in Lower Respiratory and Systemic Pseudomonas aeruginosa Infections, J. Infect. Dis, 2001.

A. R. Hauser, The type III secretion system of Pseudomonas aeruginosa: infection by injection, Nat. Publ. Gr, vol.7, 2009.

T. G. Sana, B. Berni, and S. Bleves, The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting, Front. Cell. Infect. Microbiol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01458173

F. Jiang, N. R. Waterfield, J. Yang, G. Yang, and Q. Jin, A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells, Cell Host Microbe, 2014.

D. S. Toder, S. J. Ferrell, J. L. Nezezon, L. Rust, and B. H. Iglewski, lasA and lasB genes of Pseudomonas aeruginosa: Analysis of transcription and gene product activity, Infect. Immun, 1994.

M. Juhas, L. Eberl, and B. Tümmler, Quorum sensing: The power of cooperation in the world of Pseudomonas, Environmental Microbiology, 2005.

C. T. O'loughlin, A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation, Proc. Natl. Acad. Sci, vol.110, pp.17981-17986, 2013.

K. Papenfort and B. L. Bassler, Quorum sensing signal-response systems in Gram-negative bacteria, Nature Reviews Microbiology, 2016.

T. Bjarnsholt and M. Givskov, The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa, Analytical and Bioanalytical Chemistry, 2007.

H. Mikkelsen, M. Sivaneson, and A. Filloux, Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa, Environmental Microbiology, 2011.

Q. Lu, Pseudomonas aeruginosa serotypes in nosocomial pneumonia: Prevalence and clinical outcomes, Crit. Care, vol.18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01156550

E. Kipnis, T. Sawa, and J. Wiener-kronish, Targeting mechanisms of Pseudomonas aeruginosa pathogenesis, Médecine Mal. Infect, vol.36, pp.78-91, 2006.

B. Rada and T. L. Leto, Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections, Trends Microbiol, vol.21, pp.73-81, 2013.

G. W. Lau, D. J. Hassett, H. Ran, and F. Kong, The role of pyocyanin in Pseudomonas aeruginosa infection, Trends Mol. Med, vol.10, pp.599-606, 2004.

C. Nair, Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function, Eur. Respir. J, vol.44, pp.1253-1261, 2014.

D. Smith, P. ?pan?l, F. J. Gilchrist, and W. Lenney, Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection, J. Breath Res, vol.7, p.44001, 2013.

B. Ryall, J. C. Davies, R. Wilson, A. Shoemark, and H. D. Williams, Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients, Eur. Respir. J, vol.32, pp.740-747, 2008.

S. Elsen, A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia, Cell Host Microbe, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00993388

J. L. Murray, T. Kwon, E. M. Marcotte, and M. Whiteley, Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa, MBio, vol.6, pp.1603-1618, 2015.

C. Richardot, Carbapenem resistance in cystic fibrosis strains of Pseudomonas aeruginosa as a result of amino acid substitutions in porin OprD, Int. J. Antimicrob. Agents, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01695313

M. E. El-zowalaty, Pseudomonas aeruginosa : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies, Future Microbiol, vol.10, pp.1683-1706, 2015.

L. Yang, Evolutionary dynamics of bacteria in a human host environment, PNAS, vol.108, pp.7481-7486, 2011.

R. Wilson, Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro, J. Clin. Invest, 1987.

A. Managò, Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase, Antioxid. Redox Signal, 2015.

E. Faure, K. Kwong, and D. Nguyen, Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host?, Frontiers in Immunology, 2018.

R. C. Hunter, Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity, Am. J. Respir. Cell Mol. Biol, 2012.

G. C. Palmer and M. Whiteley, Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis, Metabolism and Bacterial Pathogenesis, vol.3, pp.185-213, 2014.

V. Behrends, Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections, Environ. Microbiol, vol.15, pp.398-408, 2013.

L. Cullen and S. Mcclean, Bacterial Adaptation during Chronic Respiratory Infections. Pathogens, vol.4, pp.66-89, 2015.

M. L. Workentine, Phenotypic Heterogeneity of Pseudomonas aeruginosa Populations in a Cystic Fibrosis Patient, PLoS One, vol.8, p.60225, 2013.

S. T. Clark, Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis, Nat. Sci. Reports, 2015.

X. Qin, Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution, Crit. Rev. Microbiol, 2014.

E. E. Smith, Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients, PNAS, vol.103, pp.8487-8492, 2006.

S. Damkiaer, L. Yang, S. Molin, and L. Jelsbak, Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts, PNAS, vol.110, pp.7766-7771, 2013.

R. L. Marvig, Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients, BMC Microbiol, 2015.

R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis, Nat. Genet, vol.47, pp.57-65, 2015.

L. Rosa, R. Johansen, H. K. Molina, and S. , Convergent metabolic specialization through distinct evolutionary paths in Pseudomonas aeruginosa, MBio, vol.9, 2018.

J. Klockgether, Intraclonal diversity of the Pseudomonas aeruginosa cystic fibrosis airway isolates TBCF10839 and TBCF121838: Distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence, Environ. Microbiol, vol.15, pp.191-210, 2013.

H. K. Huse, Parallel Evolution in Pseudomonas aeruginosa over 39,000, Generations In Vivo. MBio, vol.1, pp.199-209, 2010.

K. Shantharam-kamath, Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations, J. Proteome Res, vol.15, pp.2152-2163, 2016.

M. A. Oberhardt, J. Pucha?ka, K. E. Fryer, V. A. Martins-dos-santos, and J. A. Papin, Genomescale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1, J. Bacteriol, vol.190, pp.2790-2803, 2008.

L. Cottret, MetExplore: A web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic Acids Res, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00690651

P. Shannon, Cytoscape: A software Environment for integrated models of biomolecular interaction networks, Genome Res, 2003.

K. M. Jørgensen, Diversity of metabolic profiles of cystic fibrosis pseudomonas aeruginosa during the early stages of lung infection, vol.161, pp.1447-1462, 2015.

C. Hoboth, Dynamics of Adaptive Microevolution of Hypermutable Pseudomonas aeruginosa during Chronic Pulmonary Infection in Patients with Cystic Fibrosis, J. Infect. Dis, vol.200, pp.118-130, 2009.

V. Behrends, B. Geier, H. D. Williams, and J. G. Bundy, Direct Assessment of Metabolite Utilization by Pseudomonas aeruginosa during Growth on, Artificial Sputum Medium. Appl. Environ. Microbiol, vol.79, pp.2467-2470, 2013.

E. Frimmersdorf, S. Horatzek, A. Pelnikevich, L. Wiehlmann, and D. Schomburg, How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach, Environ. Microbiol, vol.12, pp.1734-1747, 2010.

D. D. Sriramulu, H. Lünsdorf, J. S. Lam, and U. Römling, Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung, J. Med. Microbiol, vol.54, pp.667-676, 2005.

K. L. Palmer, L. M. Aye, and M. Whiteley, Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum, J. Bacteriol, vol.189, pp.8079-8087, 2007.

K. H. Turner, A. K. Wessel, G. C. Palmer, J. L. Murray, and M. Whiteley, Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum, PNAS, vol.112, pp.4110-4115, 2015.

M. A. Oberhardt, J. B. Goldberg, M. Hogardt, and J. A. Papin, Metabolic Network Analysis of Pseudomonas aeruginosa during Chronic Cystic Fibrosis Lung Infection, J. Bacteriol, vol.192, pp.5534-5548, 2010.

H. L. Barr, Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis, European Respiratory Journal, 2015.

R. A. Quinn, Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome, ISME J, 2015.

M. S. Muhlebach and W. Sha, Lessons learned from metabolomics in cystic fibrosis, Mol. Cell. Pediatr, vol.2, 2015.

R. A. Quinn, Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease, PeerJ, 2016.

J. Kozlowska, A relationship between Pseudomonal growth behaviour and cystic fibrosis patient lung function identified in a metabolomic investigation, Metabolomics, vol.9, pp.1262-1273, 2013.

K. E. Whalen, K. L. Poulson-ellestad, R. W. Deering, D. C. Rowley, and T. J. Mincer, Enhancement of Antibiotic Activity against Multidrug-Resistant Bacteria by the Efflux Pump Inhibitor 3,4-Dibromopyrrole-2,5-dione Isolated from a Pseudoalteromonas sp, J. Nat. Prod, vol.78, pp.402-412, 2015.

B. Worley and R. Powers, Multivariate Analysis in Metabolomics. Curr. Metabolomics, vol.1, pp.92-107, 2013.

H. Abdi and L. J. Williams, Principal component analysis. WIREs, Comput. Stat, vol.2, pp.433-459, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01259094

F. Husson, S. Lê, and J. Pagès, Exploratory multivariate analysis by example using R. Exploratory Multivariate Analysis by Example Using R, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00566638

A. Kassambara, Practical Guide to Principal Component Methods in R. Sthda, vol.2, pp.12-50, 2017.

J. Macqueen, Some Methods for classification and Analysis of Multivariate Observations, 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.

B. S. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster analysis: Fifth edition, Cluster Analysis: Fifth Edition, 2011.

A. Kassambara, Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning, Multivariate Analysis, 2017.

J. Pagès and F. Husson, Inter-laboratory comparison of sensory profiles: Methodology and results, Food Qual. Prefer, 2001.

J. Pagès, Multiple Factor Analysis by, 2014.

S. Wold, M. Sjostrom, L. Eriksson, and S. Sweden??, PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst, vol.58, pp.109-130, 2001.

B. Xi, H. Gu, H. Baniasadi, and D. Raftery, Statistical analysis and modeling of mass spectrometry-based metabolomics data, Methods Mol. Biol, vol.1198, pp.333-53, 2014.

P. S. Gromski, A tutorial review: Metabolomics and partial least squares-discriminant analysis -a marriage of convenience or a shotgun wedding, Anal. Chim. Acta, vol.879, pp.10-23, 2015.

R. G. Brereton and G. R. Lloyd, Partial least squares discriminant analysis: taking the magic away, J. Chemom, vol.28, pp.213-225, 2014.

S. B. Hunter, Establishment of a universal size standard strain for use with the pulsenet standardized pulsed-field gel electrophoresis protocols: Converting the national databases to the new size standard, J. Clin. Microbiol, 2005.

. Société-franc?aise-de-microbiologie, Groupe Rémic. et al. Rémic : référentiel en microbiologie médicale, 2015.

R. Lavenir, Spatio-temporal analysis of infra-specific genetic variations among a Pseudomonas aeruginosa water network hospital population: Invasion and selection of clonal complexes, J. Appl. Microbiol, 2008.

R. W. Hamming, Error Detecting and Error Correcting Codes, Bell Syst. Tech. J, 1950.

F. C. Tenover, Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing, J. Clin. Microbiol, pp.95-1137, 1995.

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat. Assoc, 1963.

. R-core-team, R: A Language and Environment for Statistical Computing, 2016.

A. Van-belkum, Guidelines for the validation and application of typing methods for use in bacterial epidemiology, Clin. Microbiol. Infect, vol.13, pp.1-46, 2007.

N. Cramer, L. Wiehlmann, and B. Tümmler, Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis, International Journal of Medical Microbiology, vol.300, pp.526-533, 2010.

C. Cigana, Genotypic and phenotypic relatedness of Pseudomonas aeruginosa isolates among the major cystic fibrosis patient cohort in Italy, BMC Microbiol, vol.16, 2016.

D. P. Speert, Epidemiology of Pseudomonas aeruginosa in Cystic Fibrosis in British Columbia, Canada. Am. J. Respir. Crit. Care Med, vol.166, pp.988-993, 2002.

P. Cholley, Comparison of double-locus sequence typing (DLST) and multilocus sequence typing (MLST) for the investigation of Pseudomonas aeruginosa populations ?, Diagn. Microbiol. Infect. Dis, vol.82, pp.274-277, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01306065

T. Markussen, Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa, MBio, 2014.

T. Pressler, Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report, J. Cyst. Fibros, vol.10, pp.75-78, 2011.

P. H. Quanjer, Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations, Eur. Respir. J, 2012.

. Accueil-|-légifrance, le service public de la diffusion du droit, p.28, 2019.

O. Epaulard, Anti-tumor Immunotherapy via Antigen Delivery from a Live Attenuated Genetically Engineered Pseudomonas aeruginosa Type III Secretion System-Based Vector, Mol. Ther, vol.14, pp.656-661, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00144349

B. Toussaint, I. Delic-attree, and P. M. Vignais, Pseudomonas aeruginosa contains an IHF-like protein that binds to the algD promoter, Biochemical and Biophysical Research Communications, vol.196, pp.416-421, 1993.

B. W. Holloway, Genetic Recombination in Pseudomonas aeruginosa, Microbiology, vol.13, pp.572-581, 1955.

L. G. Rahme, Common virulence factors for bacterial pathogenicity in plants and animals. Science (80-. ), vol.268, pp.1899-1902, 1995.

P. V. Liu, The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. III. Identity of the lethal toxins produced in vitro and in vivo, J. Infect. Dis, vol.116, pp.481-489, 1966.

V. Finck-barbançon, ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury, Mol. Microbiol, 1997.

P. Basso, Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis, MBio, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02318919

. Eucast and . European, Committee on Antimicrobial Susceptibility Testing -Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST, 2017.

L. Cullen, Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains, Microbiology, vol.161, pp.1961-1977, 2015.

N. Mayer-hamblett, Pseudomonas aeruginosa in vitro phenotypes distinguish cystic fibrosis infection stages and outcomes, Am. J. Respir. Crit. Care Med, 2014.

M. R. Crull, Change in Pseudomonas aeruginosa prevalence in cystic fibrosis adults over time, BMC Pulm. Med, vol.16, pp.1-7, 2016.

H. Wickham, Elegant Graphics for Data Analysis, 2016.

P. Basso, Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death, Environ. Microbiol, vol.19, pp.4045-4064, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911523

S. Lê, J. Josse, and F. Husson, FactoMineR : An R Package for Multivariate Analysis, J. Stat. Softw, vol.25, pp.1-18, 2008.

A. Kassambara and F. Mundt, Factoextra: extract and visualize the results of multivariate data analyses, 2017.

G. R. Warnes, gplots: Various R programming tools for plotting data, 2016.

N. Venkatesan, G. Perumal, and M. Doble, Bacterial resistance in biofilm-associated bacteria, Future Microbiol, vol.10, pp.1743-1750, 2015.

S. S. Pedersen, N. Hoiby, F. Espersen, and C. Koch, Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis, Thorax, 1992.

D. Dacheux, Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils, Infect. Immun, 2000.

S. J. Wood, J. W. Goldufsky, D. Bello, S. Masood, and S. H. Shafikhani, Pseudomonas aeruginosa ExoT induces mitochondrial apoptosis in target host cells in a manner that depends on its GTPase-activating protein (GAP) domain activity, J. Biol. Chem, 2015.

L. Galluzzi, Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015, Cell Death and Differentiation, 2015.

J. Yang, Y. Zhao, J. Shi, and F. Shao, Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation, Proc. Natl. Acad. Sci, 2013.

H. Feltman, Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa, Microbiology, vol.1021, 2001.

M. Jain, Type III Secretion Phenotypes of Pseudomonas aeruginosa Strains Change during Infection of Individuals with Cystic Fibrosis, J. Clin. Microbiol, vol.42, pp.5229-5237, 2004.

J. Twiss, A. W. Stewart, and C. A. Byrnes, Longitudinal pulmonary function of childhood bronchiectasis and comparison with cystic fibrosis, Thorax, vol.61, pp.414-418, 2006.

N. Courtois, Y. Caspar, and M. Maurin, Phenotypic and genetic resistance traits of Pseudomonas aeruginosa strains infecting cystic fibrosis patients: A French cohort study, Int. J. Antimicrob. Agents, 2018.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin. Microbiol. Rev, 2009.

L. Yang, In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections, J. Bacteriol, 2008.

M. V. Cieri, N. Mayer-hamblett, A. Griffith, and J. L. Burns, Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection, Infect. Immun, 2002.

D. I. Andersson and D. Hughes, Antibiotic resistance and its cost: Is it possible to reverse resistance?, Nature Reviews Microbiology, 2010.

E. Kugelberg, S. Löfmark, B. Wretlind, and D. I. Andersson, Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa, J. Antimicrob. Chemother, 2005.

D. Roux, Fitness cost of antibiotic susceptibility during infection, Sci. Transl. Med, vol.7, pp.1-11, 2015.

D. Skurnik, Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing, Proc. Natl. Acad. Sci, 2013.

M. Hogardt, Stage-Specific Adaptation of Hypermutable Pseudomonas aeruginosa Isolates during Chronic Pulmonary Infection in Patients with Cystic Fibrosis, J. Infect. Dis, vol.195, pp.70-80, 2007.

S. D. Aaron, Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis, JAMA -J. Am. Med. Assoc, 2010.

M. Menet, Principes de la spectrométrie de masse, Rev. Francoph. des Lab, pp.41-53, 2011.

M. Liebeke and M. Lalk, Staphylococcus aureus metabolic response to changing environmental conditions -A metabolomics perspective, International Journal of Medical Microbiology, vol.304, pp.222-229, 2014.

H. G. Gika, G. A. Theodoridis, R. S. Plumb, and I. D. Wilson, Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics, Journal of Pharmaceutical and Biomedical Analysis, 2014.

F. Matsuda, Technical Challenges in Mass Spectrometry-Based Metabolomics, Mass Spectrom, 2016.

R. Marcinowska, J. Trygg, H. Wolf-watz, T. Mortiz, and I. Surowiec, Optimization of a sample preparation method for the metabolomic analysis of clinically relevant bacteria, J. Microbiol. Methods, 2011.

S. Aros-calt, Metabolomic investigation of Staphylococcus aureus antibiotic susceptibility by liquid chromatography coupled to high-resolution mass spectrometry, Methods Mol. Biol, vol.1871, pp.279-293, 2019.

S. Aros-calt, Annotation of the Staphylococcus aureus metabolome using liquid chromatography coupled to high-resolution mass spectrometry and application to the study of methicillin resistance, J. Proteome Res, vol.14, pp.4863-4875, 2015.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem, vol.78, pp.779-787, 2006.

J. B. Coble and C. G. Fraga, Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery, J. Chromatogr. A, vol.1358, pp.155-164, 2014.

C. Kuhl, R. Tautenhahn, C. Böttcher, T. R. Larson, and S. Neumann, CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal. Chem, 2012.

D. Broadhurst, Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies, Metabolomics, vol.14, p.72, 2018.

R. Di-guida, Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling, Metabolomics, vol.12, pp.1-14, 2016.

Y. Gagnebin, Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies, Anal. Chim. Acta, vol.955, pp.27-35, 2017.

H. Ogata, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.27, pp.29-34, 1999.

D. S. Wishart, HMDB: The human metabolome database, Nucleic Acids Res, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01712873

W. Huang, PAMDB: A comprehensive Pseudomonas aeruginosa metabolome database, Nucleic Acids Res, vol.46, 2018.

S. Boudah, Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry, J. Chromatogr. B Anal. Technol. Biomed. Life Sci, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01664192

A. Roux, Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion traporbitrap mass spectrometer, Anal. Chem, 2012.

M. Wang, Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking, Nature Biotechnology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371824

C. Smith, METLIN: a metabolite mass spectral database, Proc. 9th Int. Congr. Ther. drug Monit, 2005.

R. Adusumilli and P. Mallick, Data conversion with proteoWizard msConvert, Methods in Molecular Biology, 2017.

R. Tautenhahn, C. Bottcher, and S. Neumann, Highly sensitive feature detection for high resolution LC/MS, BMC Bioinformatics, vol.9, pp.1-16, 2008.

H. P. Benton, E. J. Want, and T. M. Ebbels, Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data, Bioinformatics, 2010.

M. Morgan, V. Obenchain, M. Lang, and R. Thompson, BiocParallel: Bioconductor facilities for parallel evaluation, 2017.

F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics, Anal. Chem, vol.78, pp.4281-4290, 2006.

F. Giacomoni, Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics, Bioinformatics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01123263

Y. Guitton, Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics, Int. J. Biochem. Cell Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01574351

S. Thuleau, F. Husson, and . Factoinvestigate, Automatic Description of Factorial Analysis, 2018.

H. Abdi, L. J. Williams, and D. Valentin, Multiple factor analysis: principal component analysis for multitable and multiblock data sets, Wiley Interdiscip. Rev. Comput. Stat, vol.5, pp.149-179, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01259094

J. Pagès, Multiple factor analysis: Main features and application to sensory data, Rev. Colomb. Estad, vol.27, pp.1-26, 2004.

S. Wernisch and S. Pennathur, Evaluation of coverage, retention patterns, and selectivity of seven liquid chromatographic methods for metabolomics, Anal. Bioanal. Chem, vol.408, pp.6079-91, 2016.

D. P. Richards, L. E. Sojo, and B. O. Keller, Quantitative analysis with modern bioanalytical mass spectrometry and stable isotope labeling, J. Label. Compd. Radiopharm, vol.50, pp.1124-1136, 2007.

Y. Wu and L. Li, Dansylation metabolite assay: A simple and rapid method for sample amount normalization in metabolomics, Anal. Chem, 2014.

Y. Wu and L. Li, Sample normalization methods in quantitative metabolomics, Journal of chromatography. A, 2016.

T. Monsen, E. Lövgren, M. Widerström, and L. Wallinder, In vitro effect of ultrasound on bacteria and suggested protocol for sonication and diagnosis of prosthetic infections, J. Clin. Microbiol, vol.47, pp.2496-501, 2009.

A. J. Bitonti, S. E. Kelly, and P. P. Mccann, Regulation of growth and macromolecular synthesis by putrescine and spermidine in Pseudomonas aeruginosa, Life Sci, vol.34, pp.1513-1520, 1984.

P. Shah and E. Swiatlo, A multifaceted role for polyamines in bacterial pathogens, Mol. Microbiol, vol.68, pp.4-16, 2008.

D. Carriel, A Novel Subfamily of Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative
URL : https://hal.archives-ouvertes.fr/hal-01987296

, Genome Biol. Evol, vol.10, pp.3058-3075, 2018.

S. Häussler and T. Becker, The Pseudomonas Quinolone Signal (PQS) Balances Life and Death in Pseudomonas aeruginosa Populations, PLoS Pathog, vol.4, p.1000166, 2008.

X. Robin, pROC: An open-source package for R and S+ to analyze and compare ROC curves, BMC Bioinformatics, 2011.

H. L. Lightfoot and J. Hall, Endogenous polyamine function-the RNA perspective, Nucleic Acids Res, vol.42, pp.11275-11290, 2014.

V. Stalon, C. Vander-waven, P. Momin, C. Legrain, and . Catabolism-of-arginine, Citrulline and Ornithine by Pseudomonas and Related Bacteria, J. Gen. Microbiol, vol.133, pp.2487-2495, 1987.

M. D. Hebert and J. E. Houghton, Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR. J. Bacteriol, 1997.

L. Zhou, J. Wang, and L. Zhang, Modulation of bacterial Type III secretion system by a spermidine transporter dependent signaling pathway, PLoS One, vol.2, p.1291, 2007.

D. Ruiz-perez and G. Narasimhan, So you think you can PLS-DA? doi, p.207225, 2017.

E. W. Goodell, Recycling of murein by Escherichia coli, J. Bacteriol, vol.163, pp.305-315, 1985.

M. Borisova, J. Gisin, and C. Mayer, Blocking Peptidoglycan Recycling in Pseudomonas aeruginosa Attenuates Intrinsic Resistance to Fosfomycin, Microb. Drug Resist, vol.20, pp.231-237, 2014.

L. Zamorano, NagZ inactivation prevents and reverts ?-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.54, pp.3557-3563, 2010.

C. Jacobs, L. J. Huang, E. Bartowsky, S. Normark, and J. T. Park, Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction, EMBO J, 1994.

K. Whiteson, S. Agrawal, and A. Agrawal, Differential responses of human dendritic cells to metabolites from the oral/airway microbiome, Clin. Exp. Immunol, vol.188, pp.371-379, 2017.

Z. Liu, A Genome-Wide Screen Identifies Genes in Rhizosphere-Associated Pseudomonas Required to Evade Plant Defenses, MBio, vol.9, 2018.

Y. Nakada and Y. Itoh, Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway, Microbiology, vol.149, pp.707-714, 2003.

S. Bardócz, G. Grant, D. S. Brown, and A. Pusztai, Putrescine as a source of instant energy in the small intestine of the rat, Gut, 1998.

J. Wang, J. Wang, and L. Zhang, Immunological blocking of spermidine-mediated hostpathogen communication provides effective control against Pseudomonas aeruginosa infection, Microb. Biotechnol, 2018.

M. A. Boudreau, J. F. Fisher, and S. Mobashery, Messenger functions of the bacterial cell wallderived muropeptides, Biochemistry, 2012.

G. Torrens, Targeting the permeability barrier and peptidoglycan recycling pathways to disarm Pseudomonas aeruginosa against the innate immune system, PLoS One, vol.12, 2017.

R. Majumdar, Arginine, Proline, and Polyamine Metabolic Interactions: The Pathway Is Regulated at the Post-Transcriptional Level, Front. Plant Sci, vol.7, p.78, 2016.

S. Wandro, L. Carmody, T. Gallagher, J. J. Lipuma, and K. Whiteson, Making It Last: Storage Time and Temperature Have Differential Impacts on Metabolite Profiles of Airway Samples from Cystic Fibrosis Patients, 2017.

, Antimicrobial resistance : global report on surveillance

J. M. Flynn, D. Niccum, J. M. Dunitz, and R. C. Hunter, Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease, PLOS Pathog, vol.12, p.1005846, 2016.

J. M. Flynn, C. Phan, and R. C. Hunter, Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin, Infect. Immun, vol.85, pp.182-199, 2017.

A. T. Nguyen and A. G. Oglesby-sherrouse, Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections, Applied Microbiology and Biotechnology, vol.100, pp.6141-6148, 2016.

R. A. Quinn, A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation, ISME J, vol.9, pp.1024-1038, 2015.

J. Phan, T. Gallagher, A. Oliver, W. E. England, and K. Whiteson, Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa, FEMS Microbiol. Lett, vol.365, 2018.

B. Gao, Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways: Pseudomonas aeruginosa Metabolism and Physiology Are Influenced by Rothia mucilaginosa -Derived Metabolites, vol.3, 2018.

R. A. Quinn, A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation, ISME J, vol.9, pp.1024-1038, 2015.

R. A. Quinn, Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung, MBio, vol.5, pp.956-969, 2014.

V. Deretic, J. F. Gill, and A. M. Chakrabarty, Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene, Nucleic Acids Res, vol.15, pp.4567-81, 1987.

D. W. Martin, Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.8377-81, 1993.

A. Ilangovan, Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR), PLoS Pathog, vol.9, p.1003508, 2013.

J. Hodgkinson, S. D. Bowden, W. R. Galloway, D. R. Spring, and M. Welch, Structureactivity analysis of the Pseudomonas quinolone signal molecule, J. Bacteriol, vol.192, pp.3833-3840, 2010.

. Valorisation and . De-these,

, Un exemple de poster est fourni page 287 à titre d'illustration. Un article est actuellement en cours d'écriture sur l'ensemble du travail présenté dans ce manuscrit, Ce travail de thèse a fait l'objet de 8 communications orales et de 9 présentations de poster dans des congrès ou lors de séminaires dans des laboratoires nationaux ou internationaux (résumés dans la liste des publications, pp.285-286

, Une vidéo de 5 minutes présentant les grands principes de ce travail a été réalisée en 2018, dans le cadre d'un concours organisé par le laboratoire TIMC-IMAG. L'objectif était de présenter les travaux de thèse du laboratoire dans un format vidéo court, adressé à un public scientifique non expert. La vidéo de ce travail s'est classée 3 ème du concours, Par ailleurs, des efforts de vulgarisation ont été réalisés afin de communiquer ce travail vers un public non expert

, Notre travail servira également d'illustration dans le chapitre « L'information de Santé : l'Informatique au service des problèmes de Santé » du livre de Jean-Jacques Sotto retraçant l'histoire de la Faculté de Médecine de Grenoble

. Liste-des-communications-communications and . Écrites,

. Moyne, Article en cours d'écriture sur le travail présenté dans ce manuscrit de thèse

A. Le-gouëllec, *. , O. Moyne, *. , E. Meynet et al., HR-MAS NMR-based metabolomics reveals metabolic changes in lung of mice infected with P. aeruginosa consistent with the degree of disease severity, and is a powerful evaluation tool for new treatment, Journal of Proteome Research, vol.17, pp.3409-3417, 2018.