, Synthèse et implantation d'une commande quadratique, p.126

.. .. Contexte,

. .. Rappel-de-la-problématique, , p.126

. .. État, , p.127

. .. La-solution-proposée,

, Linéarisation et discrétisation du modèle, p.130

. Synthèse and . .. De-commande, , p.134

, Résultats obtenus en simulation non linéaire, p.138

. .. Résultats-expérimentaux,

. .. Réglages-des-correcteurs, , p.140

. .. Résultats-de-comparaison, , p.142

.. .. Conclusion,

.. .. Synthèse-d'un-estimateur-de-charge-thermique-non-linéaire,

. .. État, , p.146

, Synthèse d'un observateur de charge non linéaire

. .. Synthèse-d'un-filtre-de-kalman-Étendu, , p.150

, Résultats obtenus sur simulation non-linéaire, p.153

. .. Résultats-expérimentaux, , p.154

L. .. , , p.157

. .. Conclusion-sur-le-fke, , p.159

.. .. Conclusion,

. Bibliographie,

. D-ackermann and G. Adoui, The Scientific Objectives of the SPIRAL 2 Project, 2006.

L. Öhrström and . Reedijk, Names and symbols of the elements with atomic numbers 113, Pure Appl. Chem, vol.115, issue.12, pp.1225-1229, 2016.

P. Bryant and P. Rossbach, CERN Accelerator School : fifth general accelerator physics course, CAS, 1994.

D. Longuevergne, Etude et test d'un module accélérateur supraconducteur pour le projet Spiral2. Theses, 2009.

M. Lewitowicz, The SPIRAL2 Project and experiments with high-intensity rare isotope beams, J. Phys. Conf. Ser, vol.312, issue.5, p.52014, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00505049

J. Wei and S. Ao, The FRIB Superconducting LINAC : status and plans, LINAC, pp.1-6, 2016.

R. Ferdinand and P. Bertrand, Status and Challenges of the Spiral2 Facility, Proceedings, 25th Int. Linear Accel. Conf. LINAC2010 Tsukuba, p.201, 2010.

. R-gobin, . Charruau, . Delferrière, Y. De-menezes, F. Gauthier et al., Development of a permanent magnet light ion source at CEA/Saclay, Rev. Sci. Instrum, vol.77, issue.3, 2006.

T. Thuillier, P. Lamy, P. Sortais, . Suominen, H. Tarvainen et al., A-PHOENIX, an electron cyclotron resonance ion source for the Spiral 2 facility, Rev. Sci. Instrum, vol.77, issue.3, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025479

R. Ferdinand and A. Congretel, SPIRAL2 RFQ design, p.9
URL : https://hal.archives-ouvertes.fr/in2p3-00802929

, Eur. Part. Accel. Conf, pp.2026-2028, 2004.

R. Stokes, T. Wangler, and K. Crandall, The Radio-Frequency Quadrupole -A New Linear Accelerator, IEEE Trans. Nucl. Sci, vol.28, issue.3, pp.1999-2003, 1981.

H. Padamsee, The science and technology of superconducting cavities for accelerators, Supercond. Sci. Technol, vol.14, issue.4, 2001.

. Hasan-padamsee and . Superconductivity, Science, Technology, and Applications. RF Supercond. Sci. Technol. Appl, pp.1-448, 2009.

A. Drouart and D. Amthor, The Super Separator Spectrometer (S3) for SPIRAL2 stable beams, Nucl. Phys. A, vol.834, issue.1, pp.747-750, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00459275

X. Ledoux and M. Aïche, The Neutrons for Science Facility at SPIRAL-2. Nucl. Data Sheets, vol.119, pp.353-356, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01669642

. L-arnaudon and M. Baudrenghien, , 2006.

G. Myneni, Physical and Mechanical Properties of Niobium for SRF Science and Technology, AIP Conf. Proc, vol.927, pp.41-47, 2007.

P. Fabbricatore, . Gemme, . Musenich, M. Parodi, . Viviani et al., First measurement of a NbTi RF cavity, IEEE Trans. Appl. Supercond, vol.3, issue.1, pp.197-199, 1993.

P. Kneisel, . Kupfer, J. Stoltz, and . Halbritter, Properties of Superconducting Nb3Sn Layers Used in RF Cavities BT -Advances in Cryogenic Engineering, pp.442-448, 1978.

C. Benvenuti, M. Circelli, and . Hauer, Niobium films for superconducting accelerating cavities, Appl. Phys. Lett, vol.45, issue.5, pp.583-584, 1984.

T. B-f-figgins and . Shepherd, Alternating Current Losses in Superconductors, Nature, vol.202, issue.4935, p.890, 1964.

S. W. Van-sciver, Helium Cryogenics. Springer US, 2012.

T. M. Flynn, Cryogenic Engineering, Revised and Expanded, 2005.

B. Bradu, La première liquéfaction de l'hélium par Heike Kamerlingh Onnes. bibnum, 2008.

P. Kapitza, Viscosity of Liquid Helium below the ?-Point, Nature, vol.141, issue.3558, p.74, 1938.

L. Evans, The Large Hadron Collider, New J. Phys, vol.9, issue.9, p.335, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00315956

J. Knobloch, The 'Q disease' in superconducting niobium RF cavities, AIP Conf. Proc, vol.671, issue.1, pp.133-150, 2003.

S. Isagawa, Influence of hydrogen on superconducting niobium cavities, J. Appl. Phys, vol.51, issue.11, pp.6010-6017, 1980.

, Spiral2 analyse fonctionnelle commande cryomodules. rapport interne, GANIL

F. Barkov, A. Romanenko, Y. Trenikhina, and A. Grassellino, Precipitation of hydrides in high purity niobium after different treatments, Journal of Applied Physics, vol.114, issue.16, p.164904, 2013.

S. Chakraborty, Lecture on Computational Fluid Dynamics, 2012.

B. Bradu, S. Gayet, . Niculescu, and . Modeling, Simulation and Control of Large Scale Cryogenic Systems, IFAC Proc, vol.41, issue.2, pp.13265-13270, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02291751

B. Bradu, P. Vinuela, and . Gayet, Example of cryogenic process simulation using EcosimPro : {LHC} beam screen cooling circuits, Cryogenics (Guildf), vol.53, pp.45-50, 2013.

B. Bradu, S. Gayet, and . Niculescu, Dynamic simulation of a 1.8K refrigeration unit for the LHC, 100 Years Liq. Helium Proceedings, 22nd Int. Cryog. Eng
URL : https://hal.archives-ouvertes.fr/hal-02292409

. Conf, Int. Cryog. Mater. Conf. (ICEC 22 -ICMC 2008) Seoul, Repub. Korea, pp.525-536, 2008.

F. Bonne, P. Alamir, and . Bonnay, Control of Warm Compression Stations Using Model Predictive Control : Simulation and Experimental Results, IOP Conf. Ser

, Mater. Sci. Eng, vol.171, issue.1, p.12135, 2017.

W. Booth, . Bradu, P. Blanco, . Gayet, . Maekawa et al., Dynamic simulation of the ITER helium cryogenic system under pulsed heat loads, ICEC 24 -ICMC 2012 Proc. 24th Int. Cryog. Eng. Conf. Int. Cryog. Mater. Conf. 2012, page 932, 2012.

C. Regier, E. Pieper, and . Matias, Dynamic modeling of a liquid helium cryostat at the Canadian Light Source, Cryogenics (Guildf), vol.50, issue.2, pp.118-125, 2010.

J. Palmer and . Shehab, Modelling of cryogenic cooling system design concepts for superconducting aircraft propulsion, IET Electr. Syst. Transp, vol.6, issue.3, pp.170-178, 2016.

G. Dimopoulos and C. A. Frangopoulos, A Dynamic Model for Liquefied Natural Gas Evaporation During Marine Transportation, Int. J. Thermodyn, vol.11, 2008.

T. Bunnik and . Huijsmans, Large-scale LNG Sloshing Model Tests, Int. J. Offshore Polar Eng, vol.19, issue.01, p.7, 2009.

P. and W. Luyben, Simple Dynamic Gasifier Model That Runs in Aspen Dynamics, Ind. Eng. Chem. Res, vol.47, issue.20, pp.7784-7792, 2008.

M. Dempsey, Dymola for Multi-Engineering Modelling and Simulation, IEEE Veh. Power Propuls. Conf, pp.1-6, 2006.

B. Bradu, S. Gayet, and . Niculescu, A process and control simulator for large scale cryogenic plants, Control Eng. Pract, vol.17, issue.12, pp.1388-1397, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00446033

B. Bradu, Modélisation, simulation et contrôle des installations cryogéniques du Cern. Theses, 2010.

R. Maekawa, . Ooba, T. Ando, and . Mito, Dynamic Simulation of a Large Scale Cryogenic Plant, AIP Conf. Proc, vol.823, issue.1, 2002.

F. Bonne, Modélisation et contrôle des grands réfrigérateurs cryogéniques, 2014.

F. Bonne, A simulink library of cryogenic components to automatically generate control schemes for large cryorefrigerators, IOP Conf. Ser. Mater. Sci. Eng, vol.101, 2015.

. Cryodata and . Hepak, , 1999.

I. Bell, . Wronski, V. Quoilin, and . Lemort, Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp, Ind. Eng. Chem. Res, vol.53, issue.6, pp.2498-2508, 2014.

V. K. Shen and D. W. Siderius,

. L-f-shampine, Solving 0=F(t,y(t),y ' (t)) in Matlab, J. Numer. Math, vol.10, 2002.

P. Bogacki and L. Shampine, A 3(2) pair of Runge -Kutta formulas, Appl. Math. Lett, vol.2, issue.4, pp.321-325, 1989.

. L-f-shampine, Computer solution of ordinary differential equations : the initial value problem, 1975.

F. Bonne, . Bonnay, . Hoa, B. Mahoudeau, and . Rousset, Modelling and Model-Based-Designed PID Control of the JT-60SA Cryogenic System Using the Simcryogenics Library, IOP Conf. Ser. Mater. Sci. Eng, vol.171, issue.1, p.12028, 2017.

, Industrial-Process Control Valves, 2012.

J. Tuttle, M. Dipirro, and P. Shirron, Thermal stratification of liquid helium in the SHOOT dewars, Cryogenics (Guildf), vol.34, issue.5, pp.369-374, 1994.

C. Hess and C. Miller, Natural convection in a vertical cylinder subject to constant heat flux, Int. J. Heat Mass Transf, vol.22, issue.3, pp.421-430, 1979.

G. Brown, The History of the Darcy-Weisbach Equation for Pipe Flow Resistance, Proc. Environ. Water Resour. Hist, vol.38, 2002.

E. Krepper, H. Lucas, and . Prasser, On the modelling of bubbly flow in vertical pipes, Nucl. Eng. Des, vol.235, issue.5, pp.597-611, 2005.

R. Fernandes, R. Semiat, and A. Dukler, Hydrodynamic model for gas-liquid slug flow in vertical tubes, AIChE J, vol.29, issue.6, pp.981-989, 1994.

O. Baker, Design for simultaneous flow of oil and gas, Oil Gas J, pp.185-192, 1954.

G. Hewitt and D. Roberts, Studies of two-phase flow patterns by simultaneous x-ray and flast photography, 1969.

D. Taler and . Taler, Simple heat transfer correlations for turbulent tube flow, E3S Web Conf, vol.13, 2008.

C. Yavuzturk, S. Spliter, and . Rees, A Transient Two-Dimensional Finite Volume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers, ASHRAE Trans, vol.105, issue.2, pp.465-474, 1999.

. S-xuan, V. Radermacher, and . Aute, Generic Dynamic Model for Heat Exchangers, Int. Refrig. Air Cond. Conf., page Paper 819, 2006.

K. Ong, A finite-difference method to evaluate the thermal performance of a solar water heater, Sol. Energy, vol.16, issue.3, pp.137-147, 1974.

H. G. Diersch, W. Bauer, . Heidemann, P. Rühaak, and . Schätzl, Finite element modeling of borehole heat exchanger systems : Part 1. Fundamentals, Comput. Geosci, vol.37, issue.8, pp.1122-1135, 2011.

H. G. Diersch, W. Bauer, . Heidemann, P. Rühaak, and . Schätzl, Finite element modeling of borehole heat exchanger systems : Part 2. Numerical simulation

, Comput. Geosci, vol.37, issue.8, pp.1136-1147, 2011.

W. Swift, M. Zagarola, G. Nellis, J. Mccormick, H. Sixsmith et al., Developments in Turbo Brayton technology for low temperature applications, Cryogenics (Guildf), vol.39, issue.12, pp.989-995, 1999.

M. Zagarola, J. J. Breedlove, C. Kirkconnell, J. T. Russo, and T. Chiang, Demonstration of a Two-Stage Turbo Brayton Cryocooler for Space Applications, Cryocoolers, vol.15, pp.461-469, 2009.

G. Gobert, Paliers pour rotors tournant à grande vitesse, J. Phys. Phys. Appl, vol.22, issue.S2, pp.39-42, 1961.
URL : https://hal.archives-ouvertes.fr/jpa-00212811

I. Farrance, Uncertainty of Measurement : A Review of the Rules for Calculating Uncertainty Components through Functional Relationships, Clin. Biochem. Rev, vol.33, issue.2, pp.49-75, 2012.

G. Kuczera and . Parent, Monte Carlo assessment of parameter uncertainty in conceptual catchment models : the Metropolis algorithm, J. Hydrol, vol.211, issue.1, pp.69-85, 1998.

M. Giles, Monte Carlo Methods for Uncertainty Quantification, 2013.

D. Xiu and G. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys, vol.187, issue.1, pp.137-167, 2003.

A. Caillaud, S. Crispel, V. Grabié, F. Delcayre, and G. Aigouy, Evolution of the standard helium liquefier and refrigerator range designed by air liquide dta, france, AIP Conf. Proc, vol.985, pp.830-837, 2008.

C. Lee, Fuzzy logic in control systems : fuzzy logic controller. I, IEEE Trans. Syst. Man. Cybern, vol.20, issue.2, pp.404-418, 1990.

C. Lee, Fuzzy logic in control systems : fuzzy logic controller. II, IEEE Trans. Syst. Man. Cybern, vol.20, issue.2, pp.419-435, 1990.

. Cw-keller, A. P. Gr-cunnington, and . Glassford, Final Report -Thermal Performance of Multilayer Insulations, NASA, 1974.

G. D-a-ditmars and . Furukawa, Detection and Damping of Thermal-Acoustic Oscillations in Low-Temperature Measurements, J. Res. Natl. Bur. Stand. Eng. Instrum, p.69

N. Rott, Thermally driven acoustic oscillations. Part II : Stability limit for helium, Zeitschrift für Angew. Math. und Phys. ZAMP, vol.24, pp.54-72, 1973.

L. Pei, A. Klebaner, J. Theilacker, W. Soyars, A. Martinez et al., Dynamic PID Loop Control, 2011.

P. Quigley, M. Belomestnykh, . Liepe, and . Medjidzade, Jhane Sears, and V Veshcherevich. Instrumentation for the Cornell ERL injector test cryostats, PAC, pp.527-529, 2007.

M. V-ayvazyan, B. Clausen, S. Petersen, T. Putselyk, and . Schnautz, RF heat load compensation with electrical heater for XFEL accelerator -measurements at CMTB, AMTF and FLASH, IOP Conf. Ser. Mater

. Sci and . Eng, , vol.101, p.12159, 2015.

B. Bradu, G. Vinuela, and . Ferlin, Compensation of Beam Induced Effects in LHC Cryogenic Systems. 7th Int, Part. Accel. Conf, 2016.

S. D-p-atherton and . Majhi, Limitations of PID controllers, Proc. 1999 Am

, Control Conf. (Cat. No. 99CH36251), vol.6, pp.3843-3847, 1999.

A. Mohammadbagheri, M. Zaeri, and . Yaghoobi, Comparison Performance Between PID and LQR Controllers for 4-leg Voltage-Source Inverters, Int. Conf. Circuits, Syst. Simul, pp.230-234, 2011.

A. N. Nasir, M. A. Ahmad, and M. F. Rahmat, Performance Comparison Between Lqr and Pid Controllers for AN Inverted Pendulum System, N Barsoum and P Vasant, vol.1052, pp.124-128, 2008.

. Mat, R. Arshad, and . Mohd-mokhtar, Depth and pitch control of USM underwater glider : Performance comparison PID vs, LQR. Indian J. Mar. Sci, vol.40, pp.200-206, 2011.

G. Pannocchia, J. B. Laachi, and . Rawlings, A candidate to replace PID control : SISO-constrained LQ control, AIChE J, vol.51, issue.4, pp.1178-1189, 2005.

. Mathworks, Exact Linearization Algorithm, 2019.

D. Alazard,

D. Luenberger, Observers for multivariable systems, IEEE Trans. Automat. Contr, vol.11, issue.2, pp.190-197, 1966.

J. Åkesson and P. Hagander, Integral action -A disturbance observer approach, Eur. Control Conf, pp.2577-2582, 2003.

J. Branlard, . Ayvazyan, C. Hensler, H. Schmidt, and . Schlarb, superconducting cavity quench detection and prevention for the european XFEL, 16th Int. Conf. RF Supercond, p.3, 2013.

J. P. Holzbauer, Y. Contreras, D. Pischalnikov, W. Sergatskov, and . Schappert,

, Improved RF Measurements of SRF Cavity Quality Factors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.913, 2013.

T. Schilcher, Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities, p.137, 1998.

X. Ding and . Boucher, A Method for Establishing Q-Factors of Rf Cavities, IPAC, pp.3789-3791, 2010.

M. Wielgosz, M. Skoczen, and . Mertik, Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets, Nucl. Instruments Methods Phys

, Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.867, 2017.

Y. Tamashevich, A. Elsen, and . Navitski, Second Sound Quench Detection of Dressed TESLA-Shape SRF Cavities, Proceedings, 17th Int. Conf. RF Supercond

C. Whistler, , p.79, 2015.

P. Kapitza, Heat Transfer and Superfluidity of Helium II, Phys. Rev, vol.60, issue.4, pp.354-355, 1941.

F. Bonne, P. Alamir, and . Bonnay, Nonlinear observer of the thermal loads applied on the heliumbath of a cryogenic refrigerator. Observer design and experimental validation, Proc. 5th IFAC, vol.46, pp.713-718, 2013.

L. Ljung, Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Trans. Automat. Contr, vol.24, issue.1, pp.36-50, 1979.

P. Arpaia and M. Vinuela, Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics, Rev. Sci. Instrum, vol.86, 2015.

L. A. Mcgee and S. F. Schmidt, Discovery of the Kalman Filter as a Practical Tool for Aerospace and Industry, NASA Tech. Memo, vol.1, p.21, 1985.

R. Kalman, A New Approach to Linear Filtering and Prediction Problems, Trans. ASME, vol.82, pp.35-45, 1960.

G. Welch and . Bishop, An Introduction to the Kalman Filter, Proc. Siggraph Course, 2006.

. Mathworks, Extended and Unscented Kalman Filter Algorithms for Online State Estimation, 2006.

A. Becker, Kalman filter overview, 2018.

R. Schneider and C. Georgakis, How to NOT make the extended kalman filter fail, Ind. Eng. Chem. Res, vol.52, issue.9, pp.3354-3362, 2013.

D. Kajfez and .. , , 2005.

. V-kalinin, . Tada, N. Millet, and . Shatil, ITER cryogenic system, Fusion Eng. Des, vol.81, issue.23, pp.2589-2595, 2006.

D. Reynet and P. Brault, Design of the ESS SPOKE Cryomodule, Proc. SRF 2013, pp.357-360, 2013.

P. Roussel, B. Girard, B. Jager, P. Rousset, . Bonnay et al., The 400W at 1.8K Test Facility at CEA-Grenoble, AIP Conf. Proc, vol.823, issue.1, pp.1420-1427, 2006.

R. Scattolini, Architectures for distributed and hierarchical Model Predictive Control -A review, J. Process Control, vol.19, issue.5, pp.723-731, 2009.

T. Knudsen, C. Trangbaek, and . Kallesøe, Plug and play process control applied to a district heating system, IFAC Proc, vol.17, pp.325-330, 2008.

R. J-m-maestre and . R-negenborn, Distributed Model Predictive Control Made Easy, vol.69, 2014.

M. Alamir, . Bonnay, V. Bonne, and . Trinh, Fixed-point based hierarchical MPC control design for a cryogenic refrigerator, J. Process Control, vol.58, pp.117-130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582322

M. Alamir, Stability proof for nonlinear MPC design using monotonically increasing weighting profiles without terminal constraints, Automatica, vol.87, pp.455-459, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01664493

J. D-q-mayne, C. Rawlings, P. Rao, and . Scokaert, Constrained model predictive control : Stability and optimality, Automatica, vol.36, issue.6, pp.789-814, 2000.

C. E. Garcia, D. M. Prett, and M. Morari, Model predictive control : Theory and practice -a survey, Automatica, vol.25, issue.3, p.335, 1989.

S. Qin and T. Badgwell, A survey of industrial model predictive control technology, Control Eng. Pract, vol.11, issue.7, pp.733-764, 2003.

S. Genic, P. Arandjelovi?, M. Kolendi?, . Jari?, V. Budimir et al., A Review of Explicit Approximations of Colebrook's Equation, 2011.

R. and R. Ross, Quantifying {MLI} Thermal Conduction in Cryogenic Applications from Experimental Data, IOP Conf. Ser. Mater. Sci. Eng, vol.101, p.12017, 2015.

N. S-m-wasim and . Zebouni, Thermal Conductivity of Superconducting Niobium, Phys. Rev, vol.187, issue.2, pp.539-548, 1969.

V. R. Karasik, I. Yu, and . Shebalin, Superconducting Properties of Pure Niobium, Sov. Phys. Jetp, vol.30, issue.6, pp.1068-1075, 1970.

. V-palmieri, K. Vaglio, A. A-delin, L. Kleinsasser, J. Challis et al., Parametrization of the niobium thermal conductivity in the superconducting state, Supercond. Sci. Techno, vol.9, pp.453-460, 1996.

M. Checchin and A. Martinello, Heat transfer at the interface between niobium and liquid helium for 6 ghz srf cavities on leave from china institute of atomic energy, SRF Conf, 2013.

. .. Paramétrage-de-la-boite-À-vannes, , p.237

G. ,

. .. Paramétrage-du-bouclier-thermique, , p.239

, H Matrices des modèles linéaires de CMA01 et CMB05

. .. Modèle-linéaire-de-cma01, , p.240

. I-définition and F. .. Dans-le, 241 J Relation entre le facteur qualité et la charge thermique, p.243

K. Les and .. .. ,

, L Calcul des paramètres d'une fonction quadratique, p.251

M. .. Boucle-fermée-en-représentation-d'état, , p.254