, Contents IV.1 State of the art

, Coupling between the CRBA and the weakly nonlinear potential ow theory

. .. , The original coupling in WS_CN, p.166

. .. , The choice of a coupling strategy, p.166

. .. , Linear system and time integration, p.172

, IV.5 Coupling between the CRBA and the low-order lumped mass theory180 IV.5.1 Coupling strategy

C. Crabtree, D. Zappalá, and S. Hogg, Wind energy: UK experiences and oshore operational challenges, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol.229, issue.7, p.727746, 2015.

, Driving cost reductions in oshore wind: The LEAN-WIND project nal publication, LEANWIND consortium, 2017.

Z. Gao, A. Verma, Y. Zhao, Z. Jiang, and Z. Ren, A summary of the recent work at ntnu on marine operations related to installation of oshore wind turbines, Proceedings of the ASME 2018 37th International Conference on Ocean, Oshore and Arctic Engineering, 2018.

T. Jacobsen and B. J. Leira, Numerical and experimental studies of submerged towing of a subsea template, Ocean Engineering, vol.42, p.147154, 2012.

B. W. Nam, N. W. Kim, and S. Y. Hong, Experimental and numerical study on coupled motion responses of a oating crane vessel and a lifted subsea manifold in deep water, International Journal of Naval Architecture and Ocean Engineering, vol.9, issue.5, p.552567, 2017.

Z. Ren, Z. Jiang, R. Skjetne, and Z. Gao, Development and application of a simulator for oshore wind turbine blades installation, Ocean Engineering, vol.166, p.380395, 2018.

N. Ku and M. Roh, Dynamic response simulation of an oshore wind turbine suspended by a oating crane, Ships and Oshore Structures, vol.10, issue.6, p.621634, 2015.

. Det-norske and . Veritas, DNV-RP-H103: Modelling and analysis of marine operations, 2014.

J. Wang, L. Sun, Z. Deng, G. Ma, X. Zhu et al., Research on inuence of horizontal osets of underwater equipment based on pendulous installation method, ASME 2018 37th International Conference on Ocean, 2018.

H. Mork and J. Lunde, A cost-eective and safe method and for transportation and installation of subsea and structures -the pencil and buoy method, Oshore Europe, 2007.

M. A. Hannan, Numerical simulation of submerged payload coupled with crane barge in waves, 2014.

R. E. Elling and A. Mcclinton, Dynamic loading of shipboard cranes, IEEE International Conference on Engineering in the Ocean Environment, pp.174-177, 1973.

C. Chin, A. H. Nayfeh, and E. Abdel-rahman, Nonlinear dynamics of a boom crane, Journal of Vibration and Control, vol.7, issue.2, 2001.

N. Nojiri and T. Sasaki, Motion characteristics of crane vessels in lifting operation, Oshore technology Conference, 1983.

T. E. Schellin, T. Jiang, and S. D. Sharma, Crane ship response to wave groups, Journal of Oshore Mechanics and Arctic Engineering, vol.113, issue.3, p.211218, 1991.

T. E. Schellin, T. Jiang, and C. Ostergaard, Response analysis and operating limits of crane ships, Journal of Ship Research, vol.37, issue.3, p.225238, 1993.

K. Ellermann, E. Kreuzer, and M. Markiewicz, Nonlinear dynamics of oating cranes, Nonlinear Dynamics, vol.27, issue.2, p.107183, 2002.

K. Ellermann and E. Kreuzer, Nonlinear dynamics in the motion of oating cranes

, Multibody System Dynamics, vol.9, issue.4, p.377387, 2003.

H. J. Van-den, J. N. Boom, R. P. Dekker, and . Dallinga, Computer analysis of heavy lift operations, Oshore Technology Conference, 1988.

J. A. Witz, Parametric excitation of crane loads in moderate sea states, Ocean Engineering, vol.22, issue.4, p.411420, 1995.

S. Malenica, M. Orozco, and X. Chen, Some aspects of seakeeping of the oating body with attached pendulum, Proceedings of the 11th International Congress of the International Maritime Association of the Mediterranean, 2005.

W. Bai, M. A. Hannan, and K. K. Ang, Numerical simulation of fully nonlinear wave interaction with submerged structures: Fixed or subjected to constrained motion, Journal of Fluids and Structures, vol.49, p.534553, 2014.

M. A. Hannan and W. Bai, Analysis of nonlinear dynamics of fully submerged payload hanging from oshore crane vessel, Ocean Engineering, vol.128, p.132146, 2016.

M. Bashir, M. Evans, S. Benson, and A. Murphy, Simulations of dynamic interaction between a blu body and installation vessel during launch and recovery in rough seas, Proceedings of the ASME 2017 36th International Conference on Ocean, Oshore and Arctic Engineering, p.2017

J. Cha, M. Roh, and K. Lee, Dynamic response simulation of heavy cargo suspended by a oating crane based on multibody system dynamics, Ocean Engineering, vol.37, issue.14, p.12731291, 2010.

N. Ku and S. Ha, Dynamic response analysis of heavy load lifting operation in shipyard using multi-cranes, Ocean Engineering, vol.83, p.6375, 2014.

S. Ham, M. Roh, H. Lee, and S. Ha, Multibody dynamic analysis of a heavy load suspended by a oating crane with constraint-based wire rope, Ocean Engineering, vol.109, p.145160, 2015.

H. Ren, X. Wang, Y. Hu, and C. Li, Dynamic response analysis of a moored crane-ship with a exible boom, Journal of Zhejiang University -Science A: Applied Physics & Engineering, vol.9, issue.1, p.2631, 2008.

K. Park, J. Cha, and K. Lee, Dynamic factor analysis considering elastic boom eects in heavy lifting operations, Ocean Engineering, vol.38, issue.10, p.11001113, 2011.

J. Cha, K. Park, and K. Lee, Development of a simulation framework and applications to new production processes in shipyards, Computer-Aided Design, vol.44, issue.3, p.241252, 2012.

S. Ham, M. Roh, H. Lee, J. Hong, and H. Lee, Development and validation of a simulation-based safety evaluation program for a mega oating crane, Advances in Engineering Software, vol.112, p.101116, 2017.

K. Lee, J. Cha, and K. Park, Dynamic response of a oating crane in waves by considering the nonlinear eect of hydrostatic force

, Ship Technology Research, vol.57, issue.1, p.6473, 2010.

J. K. Woodacre, R. J. Bauer, and R. A. Irani, A review of vertical motion heave compensation systems, Ocean Engineering, vol.104, p.140154, 2015.

Z. Zhengru-ren, Z. Jiang, R. Gao, and . Skjetne, Active tugger line force control for single blade installation. Wind Energy, 21:13441358, 2018.

M. Kimiaei, X. Jiajing, and H. Yu, Comparing the results of a simplied numerical model with DNV guidelines for installation of subsea platforms, Proceedings of the ASME 2009 28th International Conference on Ocean, Oshore and Arctic Engineering, vol.1, p.319326, 2009.

, SIMO -Theory Manual Version 3.6, rev: 2, 2009.

, aNySIM Time Domain Analysis of Multi Body Dynamics for Oshore Operations

, OrcaFlex Manual v10.0a. Orcina Ltd, 2015.

, DeepLines 4.5 Theory Manual. Principia and IFP Energies Nouvelles, 2011.

, ProteusDS Manual v2.45. Dynamic Systems Analysis Ltd

, Ariane8 theoretical manual, 2015.

, Reference Manual for MOSES Version 7.07, 2013.

F. Rongère and A. H. Clément, Systematic dynamic modeling and simulation of multibody oshore structures: application to wave energy converters, Proceedings of the ASME 2013 32nd International Conference on Ocean, p.2013, 2013.

L. Letournel,

, Développement d'un outil de simulation numérique basé sur l'approche weak-scatterer pour l'étude des systèmes houlomoteurs en grands mouvements, 2015.

C. Chauvigné, Tenue à la mer d'un otteur animé de grands mouvements pour les Energies Marines Renouvelables, 2016.

A. Combourieu, M. Philippe, F. Rongère, and A. Babarit, InWave: a new exible design tool dedicated to wave energy converters, Proceedings of the ASME 2014 33rd International Conference on Ocean, 2014.

A. Babarit and G. Delhommeau, Theoretical and numerical aspects of the open source BEM solver NEMOH, Proceedings of the 11th European Wave and Tidal Energy Conference, EWTEC2015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198800

R. Featherstone, Rigid body dynamics algorithms, 2008.

R. Featherstone and D. Orin, Robot dynamics: Equations and algorithms, Proceedings of the 2000 ICRA IEEE International Conference on Robotics and Automation, vol.1, 2000.

A. A. Shabana, Computational dynamics Second Edition, Ltd, 2001.

P. Masarati, Comprehensive multibody aeroservoelastic analysis of integrated rotorcraft active controls, 1999.

B. Siciliano and O. Khatib, Handbook of robotics, 2008.

D. Negrut, On the implicit integration of dierential-algebraic equations of multibody dynamics, 1998.

T. K. Uchida, Real-time dynamic simulation of constrained multibody systems using symbolic computation, 2011.

J. Baumgarte, Stabilization of constraints and integrals of motion in dynamical systems, Computer Methods in Applied Mechanics and Engineering, vol.1, issue.1, p.116, 1972.

V. Leroy, J. Gilloteaux, M. Philippe, A. Babarit, and P. Ferrant, Development of a simulation tool coupling hydrodynamics and unsteady aerodynamics to study oating wind turbines, Proceedings of the ASME 2017 36th International Conference on Ocean, vol.10, 2017.

V. Leroy, J. Gilloteaux, A. Combourieu, A. Babarit, and F. Ferrant, Impact of the aerodynamic model on the modelling of the behaviour of a oating vertical axis wind turbine, EERA DeepWind, 2018.

D. Ogden, R. Pascal, A. Combourieu, D. Forehand, L. Johanning et al.,

. Yuan, New mechanical and features for time-domain and WEC modelling and in InWave, Proceedings of the 7th International Conference on Ocean Energy, ICOE2018, 2018.

W. Khalil and J. Kleinnger, A new geometric notation for open and closedloop robots, Proceedings of the 1986 IEEE International Conference on Robotics and Automation, vol.3, 1986.

F. Rongère, Simulation dynamique des systèmes Bateau-Avirons-Rameur(s), 2012.

V. Leroy, A. Combourieu, M. Philippe, A. Babarit, and F. Rongère, Benchmarking of the new design tool InWave on a selection of wave energy converters from NumWEC project, Proceedings of the Asian Wave and Tidal Energy Conference, AWTEC2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01199001

F. Rongère, Modèle dynamique des système multicorps ottants avec prise en compte des interactions hydrodynamiques entre les corps (in french), 2014.

C. Spraul, P. Arnal, V. , and C. Berhault, Parameter calibra-Proceedings of the ASME 2017 36th International Conference on Ocean, Oshore and Arctic Engineering, 2017.

B. J. Buckham, Dynamics Modelling of Low-Tension Tethers for Submerged Remotely Operated Vehicles, 2003.

J. Davidson and J. V. Ringwood, Mathematical modelling of mooring systems for wave energy converters -A review, Energies, vol.10, issue.5, 2017.

W. Hsu, K. P. Thiagarajan, M. Hall, M. Macnicoll, and R. Akers, Snap loads on mooring lines of a oating oshore wind turbine structure, Proceedings of the ASME 2014 33rd International Conference on Ocean, Oshore and Arctic Engineering, 2014.

M. Masciola, J. Jonkman, and A. Robertson, Implementation of a multisegmented, quasi-static cable model, Proceedings of the Twenty-third International Oshore and Polar Engineering Conference, ISOPE2013, 2013.

M. Borg, M. Collu, and A. Kolios, Oshore oating vertical axis wind turbines, dynamics modelling state of the art. part II: Mooring line and structural dynamics, Renewable and Sustainable Energy Reviews, vol.39, p.12261234, 2014.

S. Gueydon and J. Jonkman, Update on the comparison of second-order loads on a tension leg platform for wind turbines, Proceedings of the 2016 Twenty-sixth International Ocean and Polar Engineering Conference, ISOPE2016, 2016.

M. Hall and A. Goupee, Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data, Ocean Engineering, vol.104, p.590603, 2015.

M. Masciola, J. Jonkman, and A. Robertson, Extending the capabilities of the mooring analysis program: A survey of dynamic mooring line theories for integration into FAST, Proceedings of the ASME 2014 33rd International Conference on Ocean, Oshore and Arctic Engineering, 2014.

F. R. Driscoll, R. G. Lueck, and M. Nahon, Development and validation of a lumped-mass dynamics model of a deep-sea ROV system, Applied Ocean Research, vol.22, issue.3, p.169182, 2000.

G. Vissio, B. Passione, M. Hall, and M. Raero, Expanding ISWEC modelling with a lumped-mass mooring line model, Proceedings of the 11th European Wave and Tidal Energy Conference, EWTEC2015, 2015.

D. L. Garrett, Dynamic analysis of slender rods, Journal of Energy Resources Technology, vol.104, issue.4, p.302306, 1982.

S. Huang, Dynamic analysis of three dimensional marine cables, Ocean Engineering, vol.21, issue.6, pp.90008-90014, 1994.

J. I. Gobat, The Dynamics of Geometrically Compliant Mooring Systems, 2000.

M. Servin and C. Lacoursière, Rigid body cable for virtual environments, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.4, p.783796, 2008.

M. Servin and C. Lacoursière, Massless cable and for real-time and simulation

, Computer Graphics Forum, vol.26, issue.2, p.172184, 2007.

N. M. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, vol.85, issue.3, p.6794, 1959.

S. Kontoe, Development of time integration schemes and advanced boundary conditions for dynamic geotechnical analysis, 2006.

T. C. Fung, Numerical dissipation in time-step integration algorithms for structural dynamic analysis, Progress in Structural Engineering and Materials, vol.5, issue.3, p.167180, 2003.

H. M. Hilber, T. J. Hugues, and R. L. Taylor, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering and Structural Dynamics, vol.5, issue.3, p.283292, 1977.

W. L. Wood, M. Bossak, and O. C. Zienkiewicz, An alpha modication of Newmark's method, International Journal for Numerical Methods in Engineering, vol.15, issue.10, p.15621566, 1980.

J. Chung and G. M. Hulbert, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method, Journal of Applied Mechanics, vol.60, issue.2, p.371375, 1993.

N. Mahjoubi, Méthode générale de couplage de schéma d'intégration multi-échelles en temps en dynamique des structures, 2010.

M. Hall, MoorDyn User's Guide, 2017.

M. Hall, Ecient modelling of seabed friction and multi-oater mooring systems in MoorDyn, Proceedings of the 12th European Wave and Tidal Energy Conference, EWTEC2017, 2017.

J. R. Morison, M. P. O'brien, J. W. Johnson, and S. A. Schaaf, The force exerted by surface waves on piles, Petroleum Transactions, vol.189, p.950149, 1950.

M. A. Vaz and M. H. Patel, Transient behaviour of towed marine cables in two dimensions, Applied Ocean Research, vol.17, issue.3, pp.12-19, 1995.

P. Wuillaume, F. Rongère, A. Babarit, M. Philippe, and P. Ferrant, Development and adaptation of the composite rigid body algorithm and the weakscatterer approach in view of the modeling of marine operations, Proceedings of the 23ème Congrès Français de Mécanique, CFM2017, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635260

J. W. Kamman and R. L. Huston, Modeling of variable length towed and tethered cable systems, Journal of Guidance Control and Dynamics, vol.22, issue.4, p.602608, 1999.

S. Prabhakar and B. Buckham, Dynamics modeling and control of a variable length remotely operated vehicle tether, Proceedings of OCEANS 2005

. Mts/ieee, , 2005.

A. K. Banerjee and V. N. Do, Deployment control of a cable connecting a ship to an underwater vehicle, Journal of Guidance, Control, and Dynamics, vol.17, issue.6, p.13271332, 1994.

P. Wang, R. Fung, and M. Lee, Finite element analysis of a threedimensional underwater cable with time-dependent length, Journal of Sound and Vibration, vol.209, issue.2, p.223249, 1998.

J. D. Zand, B. J. Buckham, D. Steinke, and D. Constantienescu, Ship and winch regulation for remotely operated vehicle waypoint navigation, vol.19, 2009.

M. Borg, A. Shires, and M. Collu, Oshore oating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics. Renewable and Sustainable Energy Reviews, vol.39, p.12141225, 2014.

G. Ducrozet, F. Bonnefoy, D. L. Touzé, and P. Ferrant, 3-D HOS simulations of extreme waves in open seas. Natural hazards and earth system sciences, 7:109122, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00330919

P. Ferrant, D. L. Touzé, and K. Pelletier, Non-linear time-domain models for irregular wave diraction about oshore structures, International Journal for Numerical Methods in Fluids, vol.43, issue.10, p.12571277, 2003.

W. Bai and R. E. Taylor, Fully nonlinear simulation of wave interaction with xed and oating ared structures, Ocean Engineering, vol.36, issue.3, p.223236, 2009.

R. A. Watai, A time-domain boundary elements method for the seakeeping analysis of oshore systems, 2015.

J. Gilloteaux, Mouvements de grande amplitude d'un corps ottant en uide parfait. Application à la récupération de l'énergie des vagues, 2007.

W. E. Cummins, The impulse response function and ship motions, 1962.

J. A. Pinkster, Low Frequency Second Order Wave Exciting Forces on Floating Structures, 1980.

T. Bunnik, A simulation approach for large relative motions of multi-body oshore operations in waves, Proceedings of the ASME 2014 33rd International Conference on Ocean, 2014.

M. A. Hannan and W. Bai, Nonlinear hydrodynamic responses of submerged moving payload in vicinity of a crane barge in waves. Marine Structures, vol.41, p.154179, 2015.

J. S. Pawlowski and D. W. Bass, A theoretical and numerical model of ship motions in heavy seas, SNAME Transactions, p.99, 1991.

J. S. Pawlowski, On the application of the weak-scatterer hypothesis to the prediction of ship motions in heavy seas, 1992.

J. S. Pawlowski, A nonlinear theory of ship motion in waves, Proceedings of the 19th Symposium on Naval Hydrodynamics, 1992.

W. M. Lin, M. Meinhold, N. Salvensen, and D. K. Yue, Large amplitude motions and wave loads for ship design, Proceedings of the 20th Symposium Naval Hydrodynamics, 1994.

W. M. Lin, M. Collette, D. Lavis, S. Jessup, and J. Kuhn, Recent hydrodynamic and tool development and validation for and motions and slam and loads on oceangoing and high-speed vessels, Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures, 2007.

D. C. Kring, Y. Huang, P. D. Sclavounos, T. Vada, and A. Braathen, Nonlinear ship motions and wave-induced loads by a Rankine method, Proceedings of the 21th Symposium on Naval hydrodynamics, 1996.

Y. Huang, Nonlinear ship motions by a Rankine panel method, 1997.

G. J. Grigoropoulos, C. Katsikis, and D. S. Chalkias, Experimental verication of the linear and non-linear versions of a panel code, International Journal of Naval Architecture and Ocean Engineering, vol.3, issue.1, p.2736, 2011.

Y. Kim, K. Kim, J. Kim, T. Kim, M. Seo et al., Time-domain analysis of nonlinear motion responses and structural loads on ships and oshore structures: development of WISH programs, International Journal of Naval Architecture and Ocean Engineering, vol.3, issue.1, p.3752, 2011.

K. Kim and Y. Kim, Time-domain analysis of nonlinear ship motion responses based on weak-scatterer hypothesis, Proceedings of the Nineteenth International Oshore and Polar Engineering Conference, ISOPE2009, 2009.

J. G. Bretl, A time domain model for wave induced motions coupled to energy extraction, 2009.

L. Letournel, C. Chauvigné, B. Gelly, A. Babarit, G. Ducrozet et al., Weakly nonlinear modeling of submerged wave energy converters, Applied Ocean Research, vol.75, 2018.

M. Song, K. Kim, and Y. Kim, Numerical analysis and validation of weakly nonlinear ship motions and structural loads on a moden containership, Ocean Engineering, vol.38, issue.1, p.7787, 2011.

M. Greco and C. Lugni, 3-D seakeeping analysis with water on deck and slamming. Part 1: Numerical solver, Journal of Fluids and Structures, vol.33, p.127147, 2012.

F. Ruggeri, R. A. Watai, and A. N. Simos, A higher order time domain rankine panel method for linear and weakly non-linear computation, Proceedings of the ASME 2015 34th International Conference on Ocean, Oshore and Arctic Engineering, 2015.

G. Fourey, C. Hermange, D. L. Touzé, and G. Oger, An ecient FSI coupling strategy between smoothed particle hydrodynamics and nite element methods

, Computer Physics Communications, vol.217, p.6681, 2016.

W. Koo and M. Kim, Freely oating-body simulation by a 2D fully nonlinear numerical wave tank, Ocean Engineering, vol.31, issue.16, 2004.

P. J. Bandyk and R. F. Beck, The acceleration potential in uid-body interaction problems, Journal of Engineering Mathematics, vol.70, issue.1-3, p.147163, 2011.

E. Guerber, Modélisation numérique des interactions non-linéaires entre vagues et structures immergées, appliquée à la simulatio de systèmes houlomoteurs, 2011.

Y. Cao, R. F. Beck, and W. W. Schultz, Nonlinear computation of wave loads and motions of oating bodies in incident waves, Proceedings of the 9th International Workshop on Water waves and Floating Bodies, 1994.

G. X. Wu and R. E. Taylor, Transient motion of a oating body in steep water waves, Proceedings of the 11th International Workshop Water Waves Floating Bodies, 1996.

G. X. Wu and R. E. Taylor, The coupled nite element and boundary and element analysis of nonlinear interactions between waves and bodies. Ocean Engineering, vol.30, p.387400, 2003.

Y. Li, Fully nonlinear numerical simulations of wave interactions with multiple structures at resonance, 2017.

R. Cointe, P. Geyer, B. King, B. Molin, and M. Tramoni, Nonlinear and linear motions of a rectangular barge in a perfect uid, Proceedings of the 18th Symposium on naval hydrodynamics, p.8599, 1990.

E. F. Van-daalen, Numerical and theoretical studies of water waves and oating bodies, 1993.

K. Tanizawa, A nonlinear simulation method of 3-D body motions in waves, vol.178, p.179191, 1995.

P. J. Berkvens, Floating bodies interacting with water waves: devlopment of a time-domain panel method, 1998.

L. Letournel, G. Ducrozet, A. Babarit, and P. Ferrant, Proof of the equivalence of Tanizawa-Berkvens' and Cointe-van Daalen's formulations for the time derivative of the velocity potential for non-linear potential ow solvers, Applied Ocean Research, vol.63, p.184199, 2017.

J. T. Batina, Unsteady Euler airfoil solutions using unstructured dynamic meshes, AIAA Journal, vol.28, issue.8, p.13811388, 1990.

A. Leroyer, Etude du couplage écoulement / mouvement pour des corps solides ou à déformations imposée par résolution des équations de Navier-Stokes. Contribution à la modélisation numérique de la cavitation, 2004.

E. Jacquin, Navire autopropulsé en manoeuvres : simulation numérique et optimisation des performances hydrodynamiques, 2007.

F. J. Blom, Considerations on the spring analogy, International Journal for Numerical Methods in Fluids, vol.32, issue.6, p.647668, 2000.

J. Schmidt and B. Stoevesandt, Dynamic mesh optimization based on the spring analogy, ITM Web of Conferences, vol.2, 2014.

C. Farhat, C. Degand, B. Koobus, and M. Lesoinne, Torsional springs for twodimensional dynamic unstructured uid meshes, Computer Methods in Applied Mechanics and Engineering, vol.163, p.231245, 1998.

C. Degand and C. Farhat, A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Computers & Structures, vol.80, issue.3, p.305316, 2002.

M. M. Selim and R. P. Koomullil, Mesh deformation approaches a survey, Journal of Physical Mathematics, vol.7, issue.2, 2016.

A. Boer, M. S. Van-der-schoot, and H. Bijl, Mesh deformation based on radial basis function interpolation, Computers and Structures, vol.85, issue.11, p.784795, 2007.

M. M. Rienecker and J. D. Fenton, A Fourier approximation method for steady water waves, Journal of Fluid Mechanics, vol.104, p.119137, 1981.

L. Letournel, Quantication de l'eet du lissage Gaussien ajouté dans le code WS, 2017.

R. A. Watai, F. Ruggeri, and A. N. Simos, A new time domain Rankine panel method for simulations involving multiple bodies with large relative displacements, Applied Ocean Research, vol.59, p.93114, 2016.

C. A. Felippa and K. C. Park, Staggered transient analysis procedures for coupled mechanical systems: Formulation, Computer Methods in Applied Mechanics and Engineering, vol.24, issue.1, p.61111, 1980.

J. Sigrist, Méthodes numériques de calculs couplés uide/structure -cas du uide stagnant : introduction, 2010.

K. C. Park, C. A. Felippa, and J. A. Deruntz, Stabilization of staggered solution procedures for uide-structure interaction analysis, Computational Methods for Fluid-Structure Interaction Problems, vol.26, p.94124, 1977.

C. A. Felippa, K. C. Park, and C. Farhat, Partitioned analysis of coupled mechanical systems, Computer Methods in Applied Mechanics and Engineering, vol.190, p.32473270, 2001.

Z. Li, Développement d'une méthode de simulation de couplage uide-structure à l'aide de la méthode SPH, 2013.

F. Blom, A monolithical uid-structure interaction algorithm applied to the piston problem, Computer Methods in Applied Mechanics and Engineering, vol.167, issue.3, pp.369-391, 1998.

K. C. Park, Partitioned transient analysis procedures for coupled-eld problems: Stability analysis, Journal of Applied Mechanics, vol.47, issue.2, p.370376, 1980.

K. C. Park and C. A. Felippa, Partitioned transient analysis procedures for coupled-eld problems: Accuracy analysis, Journal of Applied Mechanics, vol.47, issue.4, p.919926, 1980.

S. Piperno, C. Farhat, and B. Larrouturou, Partitioned procedures for the transient solution of coupled aeroelastic problems -Part 1: Model problem, theory and two-dimensional application, Computer Methods in Applied Mechanics and Engineering, vol.124, pp.92707-92716, 1994.

C. Farhat and M. Lesmoinne, Two ecient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems

, Computer Methods in Applied Mechanics and Engineering, vol.182, pp.206-212, 2000.

H. G. Matthies, R. Niekamp, and J. Steindorf, Algorithms for strong coupling procedures, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17, p.20282049, 2006.

S. Piperno and C. Farhat, Partitioned procedures for the transient solution of coupled aeroelastic problems -Part 2: energy transfer analysis and three-dimensional applications, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24, p.31473170, 2001.

N. Mahjoubi, A. Gravouil, A. Combescure, and N. Greet, A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.9, p.10691086, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00560918

A. Gasmi, M. Sprague, J. Jonkman, and W. Jones, Numerical stability and accuracy of temporally coupled multi-physics modules in wind-turbine CAE tools, Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.

C. Yvin, Interaction uide-structure pour des congurations multi-corps. Applications aux liaisons complexes, lois de commande d'actionneur et systèmes souples dans le domaine maritime, 2014.

F. Belanger, E. Paidoussis, and . De-langre, Time-marching analysis of uidcoupled systems with large added mass, AIAA Journal, vol.33, issue.4, p.752757, 1995.

P. Causin, J. Gerbeau, and F. Nobile, Added-mass eect in the design of partitioned algorithms for uidstructure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, p.45064527, 2005.

C. Förster, W. A. Wall, and E. Ramm, Articial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous ows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.7, pp.1278-1293, 2007.

E. H. Van-brummelen, Added mass eects of compressible and incompressible ows in uid-structure interaction, Journal of Applied Mechanics, vol.76, issue.2, 2009.

J. Jonkman, The new modularization framework for the FAST wind turbine CAE tool, Proceedings of the AIAA Aerospace Sciences Meeting, including the New Horizons Forum and Aerospace Exposition, 2013.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn et al., The best of both worlds. Computing in Science and Engineering, vol.13, p.3139, 2011.

P. Peterson, F2PY: a tool for connecting fortran and python programs, International Journal of Computational Science and Engineering, vol.4, issue.4, p.296305, 2009.

A. Hourtash, The kinematic hessian and higher derivatives, Proceedings of the 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005.

W. Khalil and C. Chevallereau, An ecient algorithm for the dynamic control of robots in the cartesian space, Proceedings of the 26th IEEE Conference on Decision and Control, 1987.

B. P. Jacob, R. De-almeida-bahiense, F. N. Correa, and B. Martins-jacovazzo, Parallel implementations of coupled formulations for the analysis of oating production systems, part I: Coupling formulations, Ocean Engineering, vol.55, pp.206-218, 2012.

K. H. Ko, T. Park, K. Kim, Y. Kim, and D. H. Yoon, Development of panel generation system for seakeeping analysis, Computer-Aided Design, vol.43, issue.8, pp.848-862, 2011.

K. H. Ko, A survey: application of geometric modeling techniques to ship modeling and design, International Journal of Naval Architecture and Ocean Engineering, vol.2, issue.4, p.177184, 2010.

D. Park and H. Choi, Hydrodynamic hull form design using an optimization technique, International Journal of Ocean System Engineering, vol.3, issue.1, p.19, 2013.

S. Foufou, J. M. Brun, and A. Bouras, Surface / surface intersections: a three states classication, 1996.

J. M. Rodrigues, C. , and G. Soares, Exact pressure integration on submerged bodies in waves using a quadtree adaptative mesh algorithm. International Journal for Numerical Methods in Fluids, 2014.

J. M. Rodrigues, C. , and G. Soares, Froude-Krylov forces from exact pressure integrations on adaptive panel meshes in a time domain partially nonlinear model for ship motions, Ocean Engineering, vol.139, p.169183, 2017.

B. Horel, P. Guillerm, J. Rousset, and B. Alessandrini, A method of immersed surface capture for broaching application, Proceedings of the ASME 2013 32nd International Conference on Ocean, Oshore and Arctic Engineering, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01197400

D. Sengupta, R. Datta, and D. Sen, A simplied approach for computation of nonlinear ship loads and motions using a 3D time-domain panel method, Ocean Engineering, vol.117, p.99113, 2016.

K. Lee and P. Lee, Nonlinear hydrostatic analysis of exible oating structures, Applied Ocean Research, vol.59, p.165182, 2016.

H. Choi, H. Chun, I. Park, and J. Kim, Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation, International Journal of Naval Architecture and Ocean Engineering, vol.3, issue.4, p.225232, 2011.

H. C. Raven, A solution method for the nonlinear ship wave resistance problem, 1996.

P. Bigay, Développement d'un solveur faiblement compressible sur maillage cartésien pour les écoulements hydrodynamiques autour de corps, 2015.

D. M. Ingram, D. M. Causon, and C. G. Mingham, Developments in cartesian cut cell methods. Mathematics and Computers in Simulation, vol.61, issue.3, pp.107-113, 2003.

O. Schenk and K. Gartne, PARDISO -User Guide Version, 2014.

P. M. Knupp, Algebraic mesh quality metrics for unstructured initial meshes, Finite Elements in Analysis and Design, vol.39, issue.3, pp.70-77, 2003.

C. J. Stimpson, C. D. Ernst, P. Knupp, P. P. Pébay, and D. Thompson, The verdict geometric quality library, 2007.

J. Lions, Y. Maday, and G. Turinici, Résolution d'EDP par un schéma en temps "pararéel, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, vol.332, issue.7, p.661668, 2001.

J. A. Armesto, R. Guanche, F. Jesus, A. Iturrioz, and I. J. Losada, Comparative analysis of the methods to compute the radiation term in Cummins' equation, Journal of Ocean Engineering and Marine Energy, vol.1, issue.4, p.377393, 2015.