, capables d'évaluer des fonctions plus complexes tels que max, min, argmax ou argmin, en plus d'uneévaluation polynomiale. En effet, cela permettrait de calculer la totalité de la classification linéaire avec le chiffrement fonctionnel et donc ne reveler aucune valeur intermédiaire

, Concevoir de tels cryptosystèmes reste aujourd'hui quelque chose de difficile

M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval, Simple functional encryption schemes for inner products, IACR International Workshop on Public Key Cryptography
URL : https://hal.archives-ouvertes.fr/hal-01131971

M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu, Multi-input functional encryption for inner products: Function-hiding realizations and constructions without pairings. Cryptology ePrint Archive, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01667169

M. Abadi, A. Chu, I. Goodfellow, I. H-brendan-mcmahan, K. Mironov et al., Deep learning with differential privacy, Proceedings of the 2016 ACM SIG-SAC Conference on Computer and Communications Security, pp.308-318, 2016.

M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pp.284-293, 1997.

C. Aguilar-melchor, P. Gaborit, and J. Herranz,

, Additively Homomorphic Encryption with d-Operand Multiplications, CRYPTO 2010,v o l u m e6 2 2 3 of LNCS, pp.138-154, 2010.

M. Abdalla, R. Gay, M. Raykova, and H. Wee, Multi-input inner-pro duct functional encryption from pairings, Part I, pp.601-626, 2017.

S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee, Functional encryption: New perspectives and lower bounds, Advances in Cryptology-CRYPTO 2013, pp.500-518, 2013.

S. Agrawal and . Jayant-r-haritsa, A framework for highaccuracy privacy-preserving mining, Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on

S. Agrawal, B. Libert, and D. Stehlé, Fully secure functional encryption for inner products, from standard assumptions, CRYPTO 2016, Part III, vol.9816, pp.333-362, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01228559

, Recommendations from the french network and information security agency (anssi) about information systems security

C. Charu, S. Aggarwal, and . Philip, A condensation approach to privacy preserving data mining, International Conference on Extending Database Technology, vol.9, 2004.

J. Alperin, -. Sheriff, and C. Peikert, Faster bootstrapping with polynomial error, CRYPTO 2014, Part I,v o l u m e8 6 1 6o fLNCS, pp.297-314, 2014.

J. Alperin, -. Sheriff, and C. Peikert, Circular and kdm security for identity-based encryption, In International Workshop on Public Key Cryptography

L. Bottou, C. Cortes, S. John, H. Denker, I. Drucker et al., Comparison of classifier methods: a case study in handwritten digit recognition, International conference on pattern recognition, 1994.

C. E. , Z. Baltico, D. Catalano, D. Fiore, and R. Gay, Practical functional encryption for quadratic functions with applications to predicate encryption, Annual International Cryptology Conference, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01599768

G. Bonnoron, L. Ducas, and M. Fillinger, Large FHE gates from tensored homomorphic accumulator, Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, vol.18, pp.217-251, 2018.

D. Boneh and M. Franklin, Identity-based encryption from the weil pairing, Advances in Cryptology -CRYPTO 2001, pp.213-229, 2001.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (leveled) fully homomorphic encryption without bootstrapping, Proceedings of the 3rd Innovations in Theoretical Computer Science Conference

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (leveled) fully homomorphic encryption without bootstrapping, ACM Transactions on Computation Theory (TOCT), vol.6, issue.3, pp.1-3, 2014.

Z. Brakerski, I. Komargodski, and G. Segev, Multi-input functional encryption in the private-key setting: Stronger security from weaker assumptions, Annual International Conference on the Theory and Applications of Cryptographic Techniques

W. Joppe, K. E. Bos, J. Lauter, M. Loftus, and . Naehrig, Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme, In IMA Int. Conf, 2013.

A. Blp-+-13]-zvika-brakerski, C. Langlois, O. Peikert, D. Regev, and . Stehlé, Classical hardness of learning with errors, Proceedings of the forty-fifth annual ACM symposium on Theory of computing

M. Bellare and A. Neill, Semantically-secure functional encryption: Possibility results, impossibility results and the quest for a general definition, International Conference on Cryptology and Network Security, 2013.

D. Boneh, The decision diffie-hellman problem, International Algorithmic Number Theory Symposium, pp.48-63

. Springer, , 1998.

J. Biasse and L. Ruiz, FHEW with efficient multibit bootstrapping, LATINCRYPT 2015,v o l u m e 9230 of LNCS, pp.23-26, 2015.

Z. Brakerski, Fully homomorphic encryption without modulus switching from classical GapSVP, CRYPTO 2012,v o l u m e7 4 1 7 of LNCS, pp.868-886, 2012.

D. Boneh, A. Raghunathan, and G. Segev, Functionprivate identity-based encryption: Hiding the function in functional encryption, Advances in Cryptology-CRYPTO 2013, pp.461-478, 2013.

Z. Brakerski and G. Segev, Function-private functional encryption in the private-key setting, Theory of Cryptography Conference

D. Boneh, A. Sahai, and B. Waters, Functional encryption: Definitions and challenges, Theory of Cryptography Conference

Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard) lwe, SIAM Journal on Computing, vol.3, issue.2

F. Chollet,

H. Chabanne, A. De-wargny, and J. Milgram, Constance Morel, and Emmanuel Prouff. Privacy-preserving classification on deep neural network. IACR Cryptology ePrint Archive

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds, ASIACRYPT 2016, Part I,v o l u m e1 0 0 3 1 of LNCS, pp.3-33, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01832762

K. Chaudhuri and C. Monteleoni, Privacypreserving logistic regression, Advances in Neural Informa

W. Diffie and M. Hellman, New directions in cryptography, IEEE transactions on Information Theory, vol.2, pp.4-4, 1976.

W. Diffie and . Martin-e-hellman, Multiuser cryptographic techniques, Proceedings of the, 1976.

G. Thomas and . Dietterich, Ensemble methods in machine learning, International workshop on multiple classifier systems, 2000.

L. Ducas and D. Micciancio, FHEW: Bootstrapping homomorphic encryption in less than a second, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pp.617-640, 2015.

P. Datta, T. Okamoto, and J. Tomida, Fullhiding (unbounded) multi-input inner product functional encryption from the k-linear assumption, IACR International Workshop on Public Key Cryptography, 2018.

J. Fan and F. Vercauteren, Somewhat practical fully homomorphic encryption, Cryptology ePrint Archive, 2012.

C. M. Benjamin, K. Fung, S. Wang, and . Philip, Anonymizing classification data for privacy preservation, IEEE transactions on knowledge and data engineering, vol.1, issue.5, p.9

C. Gentry, Fully homomorphic encryption using ideal lattices, STOC,v o l u m e9

D. Steven and . Galbraith, Mathematics of public key cryptography, 2012.

P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, vol.63, pp.3-42, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00341932

D. +-14]-shafi-goldwasser, V. Gordon, A. Goyal, J. Jain, F. Katz et al., Multi-input functional encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai et al., Candidate indistinguishability obfuscation and functional encryption for all circuits, Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on

S. Garg, C. Gentry, S. Halevi, and M. Zhandry, Functional encryption without obfuscation, Theory of Cryptography Conference

S. Garg, C. Gentry, S. Halevi, and M. Zhandry, Functional encryption without obfuscation, TCC 2016-A, Part II,v o l u m e9 5 6 3o f LNCS, pp.480-511, 2016.

, Reusable garbled circuits and succinct functional encryption, Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pp.5-564, 2013.

. Gpam-+-14]-ian, J. Goodfellow, M. Pouget-abadie, B. Mirza, D. Xu et al.,

Y. Bengio, Generative adversarial nets, Advances in neural information processing systems

C. Gentry, A. Sahai, and B. Waters, Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based, CRYPTO 2013, Part I,v olume8042of LNCS, pp.75-92, 2013.

S. Gorbunov, V. Vaikuntanathan, and H. Wee, Functional encryption with b ounded collusions via multi-party computation, Advances in Cryptology-CRYPTO 2012, pp.162-179, 2012.

W. Hart, F. Johansson, and S. Pancratz, FLINT: Fast Library for Number Theory, 2013.

R. Richard-hr-hahnloser, M. A. Sarpeshkar, . Mahowald, J. Rodney, H. Douglas et al., Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature, vol.4, issue.6, pp.0-5

I. Kim, K. Lewi, A. Mandal, H. W. Montgomery, A. Roy et al., Function-hiding inner product encryption is practical. IACR Cryptology ePrint Archive, Principal component analysis, pp.115-128, 1986.

I. Komargodski and G. Segev, From minicrypt to obfustopia via private-key functional encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques

J. Katz, A. Sahai, and B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and inner products, Advances in Cryptology -EUROCRYPT 2008, pp.146-162, 2008.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, vol.86, pp.2278-2324, 1998.

Y. Lecun, C. Cortes, and C. J. Burges, The MNIST Database

L. Lu, J. Han, L. Hu, Y. Liu, and L. M. Ni, Dynamic key-updating: Privacy-preserving authentication for rfid systems, Pervasive Computing and Communications, 2007. PerCom'07. Fifth Annual IEEE International Conference on

K. Lee and . Dong-hoon-lee, Two-input functional encryption for inner products from bilinear maps. IACR Cryptology ePrint Archive

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption, IEEE transactions on parallel and distributed systems, vol.4, 0131.

J. Robert and . Mceliece, A public-key cryptosystem based on algebraic

J. Masci, U. Meier, D. Cire?an, and J. Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction. Artificial Neural Networks and Machine Learning-ICANN, vol.9, 2011.

P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, Gupt: privacy preserving data analysis made easy, Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, 2012.

L. Olvi, E. W. Mangasarian, G. M. Wild, and . Fung, Privacy-preserving classification of vertically partitioned data via random kernels, ACM Trans. Knowl. Discov. Data, vol.2, issue.3, p.16, 2008.

. George-e-nasr, C. Badr, and . Joun, Cross entropy error function in neural networks: Forecasting gasoline demand, FLAIRS Conference

O. Adam and . Neill, Definitional issues in functional encryption. IACR Cryptology ePrint Archive

O. Adam, C. Neill, B. Peikert, and . Waters, Bi-deniable public-key encryption, Annual Cryptology Conference, pp.525-542, 2011.

T. Okamoto and K. Takashima, Hierarchical predicate encryption for inner-products, International Conference on the Theory and Application of Cryptology and Information Security

B. Parno, M. Raykova, and V. Vaikuntanathan, How to delegate and verify in public: Verifiable computation from attribute-based encryption, Theory of Cryptography Conference

W. Kui-ren, K. Lou, R. Kim, and . Deng, A novel privacy preserving authentication and access control scheme for pervasive computing environments, IEEE Transactions on Vehicular technology, vol.5, issue.4

A. Ronald-l-rivest, L. Shamir, and . Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, vol.2, issue.2, 0120.

D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. Pure Math, 1971.

S. , R. Safavian, and D. A. Landgrebe, A survey of decision tree classifier methodology, vol.21, pp.660-674, 1991.

R. Shokri and V. Shmatikov, Privacy-preserving deep learning, Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, 2015.

E. Shen, E. Shi, and B. Waters, Predicate privacy in encryption systems, Theory of Cryptography Conference, pp.457-473, 2009.

A. Sahai and B. Waters, Fuzzy identity-based encryption, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2005.

M. Van-dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully homomorphic encryption over the integers, Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2010.

S. Peter-van-liesdonk, J. Sedghi, P. Doumen, W. Hartel, and . Jonker, Computationally efficient searchable symmetric encryption, Workshop on Secure Data Management

B. Waters, Efficient identity-based encryption without random oracles, Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp.114-127

. Springer, , 2005.

B. Waters, Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization, International Workshop on Public Key Cryptography, pp.53-70, 2011.

S. Wold, K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, vol.2, pp.1-9

E. Ian-h-witten, . Frank, A. Mark, C. J. Hall, and . Pal, Data Mining: Practical machine learning tools and techniques, 2016.

M. Li-wan, S. Zeiler, Y. Zhang, R. Le-cun, and . Fergus, Regularization of neural networks using drop connect, International Conference on Machine Learning, pp.1058-1066, 2013.

, PHI Learning Pvt. Ltd, 2009.

Z. Yang, S. Zhong, and R. N. Wright, Privacypreserving classification of customer data without loss of accuracy, Proceedings of the 2005 SIAM International Conference on Data Mining, pp.92-102, 2005.