L. Sheldon and . Glashow, Partial-symmetries of weak interactions, Nuclear Physics, vol.22, p.11, 1961.

A. Salam, Weak and Electromagnetic Interactions, Elementary particle theory. Relativistic groups and analyticity. Proceedings of the Eighth Nobel Symposium, pp.367-377, 1968.

S. Weinberg, A Model of Leptons, Phys. Rev. Lett, vol.19, p.11, 1967.

, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett, vol.716, pp.1-29, 2012.

, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett, vol.716, pp.30-61, 2012.

M. C. Gonzalez-garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept, vol.460, p.12, 2008.

F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett, vol.13, p.16, 1964.

P. W. Higgs, Broken symmetries, massless particles and gauge fields, Physics Letters, vol.12, p.16, 1964.

W. Peter and . Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett, vol.13, p.16, 1964.

G. S. Guralnik, C. R. Hagen, and T. W. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett, p.16, 1964.

J. Ellis, Higgs Physics, vol.52, p.17, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00089782

G. L. Kane and M. A. Shifman, Introduction to 'the supersymmetric world: The Beginnings of the theory, p.19, 2001.

R. Haag, J. T. Lopuszanski, and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys, vol.88, p.19, 1974.

H. Peter and N. , Supersymmetry, Supergravity and Particle Physics, vol.110, p.19, 1984.

O. Witzel, Review on Composite Higgs Models, PoS, vol.2018, p.19, 2019.

N. Arkani-hamed, S. Dimopoulos, and G. R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett, vol.429, p.19, 1998.

L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett, vol.83, p.19, 1999.

D. De-florian, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01387748

, Higgs production cros sections, p.20

M. Aaboud, Observation of H ? bb decays and V H production with the ATLAS detector, Phys. Lett, vol.786, p.21, 2018.

A. M. Sirunyan, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121, vol.12, p.21, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871805

, Measurement of the Higgs boson mass in the H ? ZZ * ? 4l and H ? ?? channels with ? s = 13 TeV pp collisions using the ATLAS detector, vol.784, p.22, 2018.

, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett, vol.726, p.23, 2013.

, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C75, vol.10, p.23, 2015.

A. David, A. Denner, and M. Duehrssen, LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, p.23, 2012.

, Combined measurements of Higgs boson production and decay using up to 80 fb ?1 of proton-proton collision data at ? s = 13 TeV collected with the ATLAS experiment, Geneva: CERN, p.24, 2018.

L. Evans and P. Bryant, LHC Machine". In: Journal of Instrumentation, vol.3, p.25, 2008.

S. Myers and E. Picasso, The design, construction and commissioning of the CERN large Electron-Positron collider, Contemporary Physics, vol.31, p.25, 1990.

E. Mobs, Complexe des accélérateurs du CERN, p.26, 2016.

, ALTAS Experiment -Luminosity Public Results Run 2, p.28

, The ATLAS Experiment at the CERN Large Hadron Collider, Journal of Instrumentation, vol.3, pp.8003-08003, 2008.

K. Potamianos, The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider, PoS EPS-HEP2015, p.31, 2015.

M. Capeans, . Darbo, and . Einsweiller, ATLAS Insertable B-Layer Technical Design Report, p.31

B. Abbott, Production and Integration of the ATLAS Insertable B-Layer, p.32, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01729981

, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C74, vol.10, p.35, 2014.

, Monitoring and data quality assessment of the ATLAS liquid argon calorimeter, JINST, vol.9, p.36, 2014.

, LAr data quality inefficiency in Run 2, p.36

. T-g-cornelissen, . Van-eldik, and . Elsing, Updates of the ATLAS Tracking Event Data Model (Release 13), p.42, 2007.

, Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2, Eur. Phys. J. C77, vol.10, p.41, 2017.

, A neural network clustering algorithm for the AT-LAS silicon pixel detector, JINST, vol.9, p.41, 2014.

M. T-g-cornelissen, . Elsing, and . Gavrilenko, The global ?2 track fitter in ATLAS, Journal of Physics: Conference Series, vol.119, p.41, 2008.

R. Frühwirth, Application of Kalman filtering to track and vertex fitting, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.262, p.41, 1987.

, Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at ? s = 13 TeV, Eur. Phys. J, vol.43, p.77, 2019.

W. Lampl, . Laplace, and . Lelas, Calorimeter Clustering Algorithms: Description and Performance, p.43, 2008.

, Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung, p.44, 2012.

, Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data, Journal of Instrumentation, vol.14, p.44, 2019.

, Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and, Eur. Phys. J. C79, vol.3, p.47, 2016.

, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at ? s = 13 TeV, The European Physical Journal C, vol.76, p.49, 2016.

, Reconstruction, Energy Calibration, and Identification of Hadronically Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC, p.50, 2015.

, Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at ? s = 13 TeV, p.50, 2017.

M. Cacciari, G. Salam, and . Soyez, The anti-ktjet clustering algorithm, Journal of High Energy Physics, vol.04, p.50, 2008.

, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J, vol.77, p.50, 2017.

, Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at ? s = 13 TeV with the ATLAS detector, Phys. Rev. D, vol.96, p.50, 2017.

, Measurements of b-jet tagging efficiency with the ATLAS detector using tt events at ? s = 13 TeV, Journal of High Energy Physics, vol.8, p.52, 2018.

, E miss T performance in the ATLAS detector using 2015-2016 LHC p-p collisions. Tech. rep, p.53, 2018.

, Precision measurement and interpretation of inclusive W + , W ? and Z/? * production cross sections with the ATLAS detector, Eur. Phys. J. C77, vol.6, p.367, 2017.

, Measurement of the W -boson mass in pp collisions at ? s = 7 TeV with the ATLAS detector, vol.2, p.54, 2018.

K. A. Olive, Review of Particle Physics, Chinese Physics C, vol.38, p.57, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01867148

S. Frixione, G. Ridolfi, and P. Nason, A positive-weight next-to-leadingorder Monte Carlo for heavy flavour hadroproduction, vol.172, p.59, 2007.

T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun, vol.178, p.59, 2008.

S. Agostinelli, J. Allison, and K. Amako, Geant4-a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.506, p.59, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

, The ATLAS Simulation Infrastructure, The European Physical Journal C, vol.70, p.59, 2010.

, Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data, The European Physical Journal C, vol.77, p.59, 2017.

R. T. Roberts, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, vol.75, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01768055

, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, Phys. Rev. D, vol.97, pp.136-138, 2018.

, Search for flavor-changing neutral currents in top quark decays t ? Hc and t ? Hu in multilepton final states in protonproton collisions at ? s = 13 TeV with the ATLAS detector, Phys. Rev

, , vol.132, p.32002, 2018.

, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Physics Letters B, vol.784, pp.138-140, 2018.

S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D, vol.2, p.94, 1970.

K. Agashe, Working Group Report: Top Quark, Proceedings, 2013.

, Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), 2013.

T. P. Cheng and M. Sher, Mass-matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev. D, vol.35, p.94, 1987.

. J-r-andersen, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, p.96, 2013.

, Search for top quark decays t ? qH with H ? ?? using the ATLAS detector, vol.6, p.97, 2014.

, LHCTopWG Summary Plots, p.97, 2018.

, ? s =13 TeV pp collisions using the ATLAS detector, vol.2017, pp.1029-8479, 2017.

, Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at ? s = 13 TeV, vol.98, p.97, 2017.

, Search for flavour-changing neutral current top quark decays t ? Hq in pp collisions at ? s = 8 TeV with the ATLAS detector, JHEP, vol.12, p.98, 2015.

, Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at ? s = 8 TeV, p.98, 2017.

, Observation of ttH Production, Phys. Rev. Lett, vol.120, p.103, 2018.

J. Alwall, R. Frederix, and S. Frixione, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, Journal of High Energy Physics, vol.7, p.103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00986880

P. Artoisenet, R. Frederix, and O. Mattelaer, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, Journal of High Energy Physics, vol.2013, issue.3, p.103, 2013.

T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun, vol.178, p.103, 2008.

M. Czakon and A. Mitov, Top++: A program for the calculation of the top-pair cross-section at hadron colliders, Computer Physics Communications, vol.185, p.103, 2014.

, Estimation of non-prompt and fake lepton backgrounds in final states with top quarks produced in proton-proton collisions at ? s =8 TeV with the ATLAS detector, Tech. rep. ATLAS-CONF, 2014.

:. Geneva and . Cern, , p.107, 2014.

A. Hoecker, P. Speckmayer, and J. Stelzer, TMVA -Toolkit for Multivariate Data Analysis, p.111, 2007.

R. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Computer Physics Communications, vol.77, p.125, 1993.

A. Read, Presentation of search results: theCLstechnique, Journal of Physics G: Nuclear and Particle Physics, vol.28, p.125, 2002.

G. Cowan, K. Cranmer, and E. Gross, Asymptotic formulae for likelihoodbased tests of new physics, The European Physical Journal C, vol.71, p.125, 2011.

, Search for top-quark decays t ? Hq with 36 fb ?1 of pp collision data at ? s = 13 TeV with the ATLAS detector, 2018.

V. Barger, K. Hagiwara, and Y. Zheng, Probing the Higgs Yukawa coupling to the top quark at the LHC via single top + Higgs production, Phys. Rev. D, vol.99, p.133, 2019.

, Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb pair in pp collisions at ? s = 13 TeV with the ATLAS detector, Phys. Rev. D, vol.97, p.139, 2018.

R. D. Ball, Parton distributions for the LHC Run II, p.172, 2015.

H. Lai, New parton distributions for collider physics, Phys. Rev. D, vol.82, p.172, 2010.

E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C, vol.71, p.172, 2011.

S. Alioli, P. Nason, and C. Oleari, NLO single-top production matched with shower in POWHEG: s? and t?channel contributions, p.172, 2009.

R. Frederix, E. Re, and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, p.172, 2012.

R. D. Ball, Parton distributions with LHC data, Nucl. Phys. B, vol.867, p.172, 2013.

, ATLAS Run 1 Pythia8 tunes. ATL-PHYS-PUB-2014-021, p.172, 2014.

J. Pumplin, D. R. Stump, and J. Huston, New Generation of Parton Distributions with Uncertainties from Global QCD Analysis, p.172, 2002.

P. M. Nadolsky, Implications of CTEQ global analysis for collider observables, Phys. Rev. D, vol.78, p.172, 2008.

M. H. Seymour and A. Siodmok, Constraining MPI models using ? ef f and recent Tevatron and LHC Underlying Event data, JHEP, vol.10, p.172, 2013.

P. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D, vol.82, p.172, 2010.

J. , The automated computation of tree-level and next-toleading order differential cross sections, and their matching to parton shower simulations, p.172, 2014.

T. Sjöstrand, High-energy-physics event generation with Pythia 6.1, Comput. Phys. Commun, vol.135, p.172, 2001.

M. Bahr, Herwig++ Physics and Manual, Eur. Phys. J. C, vol.58, p.172, 2008.

T. Gleisberg, Event generation with SHERPA 1.1, p.172, 2009.

F. Cascioli, P. Maierhofer, and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett, vol.108, p.172, 2012.

T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP, vol.12, p.172, 2008.

S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, p.172, 2008.

S. Hoeche, F. Krauss, and M. Schonherr, QCD matrix elements + parton showers: The NLO case, p.172, 2013.

D. J. Lange, The EvtGen particle decay simulation package, In: Nucl. Instrum. Meth. Phys. Res. A, vol.462, p.172, 2001.

P. Golonka and Z. Was, PHOTOS Monte Carlo: A Precision tool for QED corrections in Z and W decays, Eur. Phys. J, vol.45, p.172, 2006.

, tr-), is introduced (see section 5.3 for definition), A.3.3.1 Impact of M(tr+,tr-) cut on electron Scale Factors To further reduce and to have a better handle on the conversions a new variable, M(tr+

, The large overflow ( 23% of entries) represents the electrons that do not have close by track with opposite charge. The efficiencies and SFs for the two M(tr+,tr-) cuts (+WP3) and for the WP3 alone (for reference) are given in figure A.13 (parameterized in E T and ? ), WP3 selections + M(tr+,tr-) > 100 MeV 2. WP3 selections + M(tr+, p.200

, tr-)>200 MeV WP. Figure A.14 shows the efficiency and SFs inclusive in ? or E T . Due to very small overall differences in SFs (and time constraints), no (re)derivation of the SFs is necessary at this stage. Figure A.15 shows the dependence of the efficiency and SFs on the M(tr+,tr-) variable. The SFs are stable and very close to 1 with no dependence on M(tr+,tr-) except the low M(tr+,tr-) region (M(tr+,tr-)<500 MeV) where an effect of up to 7-10% up deviation is observed. The effect of derivation of the SFs in the whole range of |?| < 2.47 versus application on electrons only in restricted range of |?| < 2.0 was studied as a function of the M(tr+,tr-) variable. Individual efficiencies in data and MC were derived for all three years and comparison of SFs was performed, MeV and below percent for M(tr+,tr-)>100 MeV. The overall SFs change is insignificant (per-mile level) with only a few E T x ? bins having differences of percent level in the low ? region (10-20 GeV) for M(tr+