. .. I-introduction,

.. .. Le,

.. .. Le-remplissage-de-la-graine,

. .. Les-protéines,

. .. Les-glucides,

. .. Les-lipides,

, La maturation tardive et la dessiccation

, Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits

.. .. Objectif-de-la-thèse,

. .. Ii-recherche-de, 2 Les LAFL interagissent avec le promoteur de l'OLEOSINE1

, 2.2.2 Action de NF-YC2 sur le complexe, vol.3, p.2

, 3.3.2 Données préliminaires sur le trafic de LEC2

. .. Lafl-?, 4.4 Les bZIPs identifiés ayant une interaction avec certains AFL ou NF-Y, vol.87

. .. Résultats, 4.5.2 Action des bZIPs en dimère, seuls, sur le promoteur de l'OLEOSINE1, Nucleic Acids Res, vol.42, issue.6, pp.4113-4122

W. Gong, Y. P. Shen, L. G. Ma, Y. Pan, Y. L. Du et al., , 2004.

, Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes, Plant Physiol, vol.135, issue.2, pp.773-782

A. Grimault, G. Gendrot, S. Chaignon, F. Gilard, G. Tcherkez et al., Role of B3 domain transcription factors of the AFL family in maize kernel filling, Plant Sci, vol.236, pp.116-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204180

L. Gutierrez, O. Van-wuytswinkel, M. Castelain, and C. Bellini, Combined networks regulating seed maturation, Trends in plant science, vol.12, issue.7, pp.294-300, 2007.

D. Hackenberg, Y. Wu, A. Voigt, R. Adams, P. Schramm et al., Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y, Mol Plant, vol.5, issue.4, pp.876-888, 2012.

J. D. Han, X. Li, C. K. Jiang, G. Wong, C. J. Rothfels et al., Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program, FrontPlant Sci. doi, 2017.

T. Hobo, Y. Kowyama, and T. Hattori, A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription, Proc Natl Acad Sci, vol.96, issue.26, pp.15348-15353, 1999.

M. Huang, Y. Hu, X. Liu, Y. Li, and X. Hou, Arabidopsis LEAFY COTYLEDON1 Mediates Postembryonic Development via Interacting with PHYTOCHROME-INTERACTING FACTOR4, 2015.

, Plant Cell, vol.27, issue.11, pp.3099-3111

M. Jakoby, B. Weisshaar, W. Droge-laser, J. Vicente-carbajosa, J. Tiedemann et al., ) bZIP transcription factors in Arabidopsis, Trends in plant science, vol.7, issue.3, pp.106-111, 2002.

P. D. Jenik, C. S. Gillmor, and W. Lukowitz, Embryonic patterning in Arabidopsis thaliana, Annu Rev Cell Dev Biol, vol.23, pp.207-236, 2007.

H. Jia, D. R. Mccarty, and M. Suzuki, Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression, Plant Physiol, vol.163, issue.3, pp.1293-1305, 2013.

H. Jia, M. Suzuki, and D. R. Mccarty, Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks, Wiley interdisciplinary reviews Developmental biology, vol.3, issue.1, pp.135-145, 2014.

Y. Jiao, N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr et al., Ancestral polyploidy in seed plants and angiosperms, Nature, vol.473, issue.7345, pp.97-100, 2011.

M. A. Ohto, S. K. Floyd, R. L. Fischer, R. B. Goldberg, and J. J. Harada, Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis, Sex Plant Reprod, vol.22, issue.4, pp.277-289, 2009.

A. J. Oldfield, P. Yang, A. E. Conway, S. Cinghu, J. M. Freudenberg et al., Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors, Mol Cell, vol.55, pp.708-722, 2014.

G. Orozco-arroyo, P. D. Ezquer, I. Colombo, and L. , Networks controlling seed size in Arabidopsis, Plant Reprod, vol.28, issue.1, pp.17-32, 2015.

F. Parcy, C. Valon, A. Kohara, S. Misera, and J. Giraudat, The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development, Plant Cell, vol.9, issue.8, pp.1265-1277, 1997.

C. T. Payne, F. Zhang, and A. M. Lloyd, GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1, Genetics, vol.156, issue.3, pp.1349-1362, 2000.

J. M. Pelletier, R. W. Kwong, S. Park, B. H. Le, R. Baden et al., LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development, Proc Natl Acad Sci U S A, vol.114, pp.6710-6719, 2017.

F. Y. Peng and R. J. Weselake, Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis, BMC Genomics, vol.12, p.286, 2011.

K. Petroni, R. W. Kumimoto, N. Gnesutta, V. Calvenzani, M. Fornari et al., The promiscuous life of plant NUCLEAR FACTOR Y transcription factors, Plant Cell, vol.24, issue.12, pp.4777-4792, 2012.

J. Phillips, O. Artsaenko, U. Fiedler, C. Horstmann, H. P. Mock et al., Seed-specific immunomodulation of abscisic acid activity induces a developmental switch, Embo J, vol.16, issue.15, pp.4489-4496, 1997.

P. Lange, M. J. Lange, and T. , Gibberellin biosynthesis and the regulation of plant development, Plant Biol (Stuttg), vol.8, issue.3, pp.281-290, 2006.

M. B. Prouse and M. M. Campbell, The interaction between MYB proteins and their target DNA binding sites, Biochim Biophys Acta, vol.1819, issue.1, pp.67-77, 2012.

L. J. Qu and Y. X. Zhu, Transcription factor families in Arabidopsis: major progress and outstanding issues for future research, Curr Opin Plant Biol, vol.9, issue.5, pp.544-549, 2006.

V. Raz, J. H. Bergervoet, and M. Koornneef, Sequential steps for developmental arrest in Arabidopsis seeds, Development, vol.128, issue.2, pp.243-252, 2001.

J. L. Riechmann, J. Heard, G. Martin, L. Reuber, C. Jiang et al., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science, vol.290, issue.5499, pp.2105-2110, 2000.

A. Fatihi, Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds, Références: 1, vol.250, pp.198-204, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02356216

M. Devic and T. Roscoe, Seed maturation: Simplification of control networks in plants, Plant Sci, vol.252, pp.335-346, 2016.

P. Carbonero, R. Iglesias-fernandez, and J. Vicente-carbajosa, The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds, J Exp Bot, 2016.

H. Lee, Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor, Proc. Natl. Acad. Sci. U S A, vol.100, issue.4, pp.2152-2156, 2003.

J. Giraudat, Isolation of the Arabidopsis ABI3 gene by positional cloning, Plant Cell, vol.4, issue.10, pp.1251-61, 1992.

H. Luerssen, FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana, Plant J, vol.15, issue.6, pp.755-64, 1998.

S. L. Stone, LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proc Natl Acad Sci U S A, vol.98, issue.20, pp.11806-11817, 2001.

A. To, A network of local and redundant gene regulation governs Arabidopsis seed maturation. The Plant cell, vol.18, pp.1642-51, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080106

T. T. Roscoe, Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant & cell physiology, vol.56, pp.1215-1243, 2015.

T. Kroj, Regulation of storage protein gene expression in Arabidopsis. Development, vol.130, pp.6065-73, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00135703

H. Bäumlein, the FUS3 gene of Arabidospsis thaliana is a regulator of gene expression during late embryongenesis Plant J, 1994.

J. Ooms, Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3

, Mutants). Plant Physiol, vol.102, issue.4, pp.1185-1191, 1993.

A. Khandelwal, Role of ABA and ABI3 in desiccation tolerance, Science, vol.327, issue.5965, p.546, 2010.

D. W. Meinke, Leafy Cotyledon Mutants of Arabidopsis, Plant Cell, vol.6, issue.8, pp.1049-1064, 1994.

M. Gaj, Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis Planta, vol.222, pp.977-988, 2005.

H. Jia, D. R. Mccarty, and M. Suzuki, Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression, Plant Physiol, vol.163, issue.3, pp.1293-305, 2013.

M. Feeney, Following vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2, Plant Physiol, vol.162, issue.4, pp.1881-96, 2013.

Y. Li, Stepwise origin and functional diversification of the AFL subfamily B3 genes during land plant evolution, J Bioinform Comput Biol, vol.8, issue.1, pp.33-45, 2010.

J. D. Han, Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program. Front.Plant Sci, 2017.

R. Alonso, L. Onate-sanchez, F. Weltmeier, A. Ehlert, I. Diaz et al., A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation, Plant Cell, vol.21, issue.6, pp.1747-1761, 2009.

S. Baud, J. Boutin, M. Miquel, L. Lepiniec, and C. Rochat, An integrated overview of seed development in Arabidopsis thaliana ecotype WS, p.400, 2002.

S. Baud, B. Dubreucq, M. Miquel, C. Rochat, and L. Lepiniec, Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling, Arabidopsis Book, vol.6, p.113, 2008.

S. Baud, Z. Kelemen, J. Thevenin, C. Boulard, S. Blanchet et al., Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed, Plant Physiol, vol.171, issue.2, pp.1099-1112, 2016.

S. Baud and L. Lepiniec, Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis, Plant Physiol Biochem, vol.47, issue.6, pp.448-455, 2009.

H. Bäumlein, S. Miséra, H. Luerssen, K. Kölle, C. Horstmann et al., ) the FUS3 gene of Arabidospsis thaliana is a regulator of gene expression during late embryongenesis Plant J, 1994.

O. Ben-naim, R. Eshed, A. Parnis, P. Teper-bamnolker, A. Shalit et al., The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA, Plant J, vol.46, issue.3, pp.462-476, 2006.

N. Berger, B. Dubreucq, F. Roudier, C. Dubos, and L. Lepiniec, Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27, Plant Cell, vol.23, issue.11, pp.4065-4078, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000017

N. Bies-etheve, A. Da-silva-conceicao, J. Giraudat, M. Koornneef, K. Leon-kloosterziel et al., Importance of the B2 domain of the Arabidopsis ABI3 protein for Em and 2S albumin gene regulation, Plant Mol Biol, vol.40, issue.6, pp.1045-1054, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00189686

S. A. Braybrook, S. L. Stone, S. Park, A. Q. Bui, B. H. Le et al., Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis, Proc Natl Acad Sci U S A, vol.103, issue.9, pp.3468-3473, 2006.

V. Calvenzani, B. Testoni, G. Gusmaroli, M. Lorenzo, N. Gnesutta et al., Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits, PLoS One, vol.7, issue.8, p.42902, 2012.

P. Carbonero, R. Iglesias-fernandez, and J. Vicente-carbajosa, The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds, J Exp Bot, 2016.

C. Carles, N. Bies-etheve, L. Aspart, L. Leon-kloosterziel, K. Koornneef et al., Regulation of Arabidopsis thaliana Em genes: role of ABI5, The Plant Journal, vol.30, issue.3, pp.373-383, 2002.

R. R. Finkelstein and T. J. Lynch, The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor, Plant Cell, vol.12, issue.4, pp.599-609, 2000.

M. Gaj, S. Zhang, J. Harada, and P. Lemaux, Leafy cotyledon genes are essential for induction of somatic embryogenesis of, Arabidopsis Planta, vol.222, issue.6, pp.977-988, 2005.

S. Gazzarrini, Y. Tsuchiya, S. Lumba, M. Okamoto, and P. Mccourt, The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid, Dev Cell, vol.7, issue.3, pp.373-385, 2004.

J. Giraudat, B. M. Hauge, C. Valon, J. Smalle, F. Parcy et al., Isolation of the Arabidopsis ABI3 gene by positional cloning, Plant Cell, vol.4, issue.10, pp.1251-1261, 1992.

N. Gnesutta, R. W. Kumimoto, S. Swain, M. Chiara, C. Siriwardana et al., CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer, Plant Cell, vol.29, issue.6, pp.1516-1532, 2017.

N. Gnesutta, D. Saad, A. Chaves-sanjuan, R. Mantovani, and M. Nardini, Crystal Structure of the Arabidopsis thaliana L1L/NF-YC3 Histone-fold Dimer Reveals Specificities of the LEC1 Family of NF-Y Subunits in Plants, Mol Plant, 2016.

W. Gong, Y. P. Shen, L. G. Ma, Y. Pan, Y. L. Du et al., Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes, Plant Physiol, vol.135, issue.2, pp.773-782, 2004.

F. Guillon, C. Larre, F. Petipas, A. Berger, J. Moussawi et al., A comprehensive overview of grain development in Brachypodium distachyon variety Bd21, J Exp Bot, vol.63, issue.2, pp.739-755, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190419

F. Guo, C. Liu, H. Xia, Y. Bi, C. Zhao et al., Induced expression of AtLEC1 and AtLEC2 differentially promotes somatic embryogenesis in transgenic tobacco plants, PLoS One, vol.8, issue.8, p.71714, 2013.

G. Gusmaroli, C. Tonelli, and R. Mantovani, Regulation of the CCAAT-Binding NF-Y subunits in Arabidopsis thaliana, Gene, vol.264, issue.2, pp.173-185, 2001.

L. Gutierrez, O. Van-wuytswinkel, M. Castelain, and C. Bellini, Combined networks regulating seed maturation, Trends in plant science, vol.12, issue.7, pp.294-300, 2007.

D. Hackenberg, Y. Wu, A. Voigt, R. Adams, P. Schramm et al., Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y, Mol Plant, vol.5, issue.4, pp.876-888, 2012.

J. D. Han, X. Li, C. K. Jiang, G. Wong, C. J. Rothfels et al., Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program, FrontPlant Sci. doi, 2017.

A. Hill, A. Nantel, C. D. Rock, and R. S. Quatrano, A Conserved Domain of the viviparous-1 Gene Product Enhances the DNA Binding Activity of the bZIP Protein EmBP-1 and Other Transcription Factors, J Biol Chem, vol.271, issue.16, pp.3366-3374, 1996.

B. G. Hunter, Maize Opaque Endosperm Mutations Create Extensive Changes in Patterns of Gene Expression, The Plant Cell Online, vol.14, issue.10, pp.2591-2612, 2002.

M. Jakoby, B. Weisshaar, W. Droge-laser, J. Vicente-carbajosa, J. Tiedemann et al., ) bZIP transcription factors in Arabidopsis, Trends in plant science, vol.7, issue.3, pp.106-111, 2002.

P. D. Jenik, C. S. Gillmor, and W. Lukowitz, Embryonic patterning in Arabidopsis thaliana, Annu Rev Cell Dev Biol, vol.23, pp.207-236, 2007.

H. Jia, D. R. Mccarty, and M. Suzuki, Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression, Plant Physiol, vol.163, issue.3, pp.1293-1305, 2013.

Y. Jiao, N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr et al., Ancestral polyploidy in seed plants and angiosperms, Nature, vol.473, issue.7345, pp.97-100, 2011.

P. Lara, L. Onate-sanchez, Z. Abraham, C. Ferrandiz, I. Diaz et al., Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2, J Biol Chem, vol.278, issue.23, pp.21003-21011, 2003.

T. Laux, T. Wurschum, and H. Breuninger, Genetic regulation of embryonic pattern formation, Plant Cell, vol.16, pp.190-202, 2004.

H. Lee, R. L. Fischer, R. B. Goldberg, and J. J. Harada, Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor, Proc Natl Acad Sci U S A, vol.100, issue.4, pp.2152-2156, 2003.

K. M. Leon-kloosterziel, C. J. Keijzer, and M. Koornneef, A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development, Plant Cell, vol.6, issue.3, pp.385-392, 1994.

Y. Li, K. E. Jin, Z. Zhu, and J. I. Yang, Stepwise Origin and Functional Diversification of the Afl Subfamily B3 Genes during Land Plant Evolution, Journal of bioinformatics and computational biology, vol.08, issue.supp01, pp.33-45, 2010.

Y. Li, K. Varala, and G. M. Coruzzi, From milliseconds to lifetimes: tracking the dynamic behavior of transcription factors in gene networks, Trends Genet, vol.31, issue.9, pp.509-515, 2015.

J. X. Liu and S. H. Howell, bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis, Plant Cell, vol.22, issue.3, pp.782-796, 2010.

J. X. Liu, R. Srivastava, C. P. Howell, and S. H. , An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membraneassociated transcription factor, bZIP28, Plant Cell, vol.19, issue.12, pp.4111-4119, 2007.

C. M. Llorca, K. W. Berendzen, W. A. Malik, S. Mahn, H. P. Piepho et al., The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks, PLoS One, vol.10, issue.10, p.139884, 2015.

L. Lopez-molina, S. Mongrand, D. T. Mclachlin, B. T. Chait, and N. H. Chua, ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination, Plant J, vol.32, issue.3, pp.317-328, 2002.

T. Lotan, M. Ohto, K. M. Yee, M. A. West, R. Lo et al., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells, Cell, vol.93, issue.7, pp.1195-1205, 1998.

Q. S. Lu, J. D. Paz, A. Pathmanathan, R. S. Chiu, A. Y. Tsai et al., The C-terminal domain of FUSCA3 negatively regulates mRNA and protein levels, and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis, Plant J, vol.64, issue.1, pp.100-113, 2010.

S. Luan, Protein phosphatases in plants, Annu Rev Plant Biol, vol.54, pp.63-92, 2003.

A. Ludwikow, Targeting proteins for proteasomal degradation-a new function of Arabidopsis ABI1 protein phosphatase 2C, Front Plant Sci, vol.6, p.310, 2015.

H. Luerssen, V. Kirik, P. Herrmann, and S. Misera, FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana, Plant J, vol.15, issue.6, pp.755-764, 1998.

T. Lynch, B. J. Erickson, and R. R. Finkelstein, Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response, Plant Mol Biol, vol.80, issue.6, pp.647-658, 2012.

R. Mantovani, The molecular biology of the CCAAT-binding factor NF-Y, Gene, vol.239, issue.1, pp.15-27, 1999.

H. H. Marella and R. S. Quatrano, The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation, Planta, vol.225, issue.4, pp.863-872, 2007.

S. Masiero, C. Imbriano, F. Ravasio, R. Favaro, N. Pelucchi et al., Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB, J Biol Chem, vol.277, issue.29, pp.26429-26435, 2002.

D. W. Meinke, L. H. Franzmann, T. C. Nickle, and E. C. Yeung, Leafy Cotyledon Mutants of Arabidopsis, Plant Cell, vol.6, issue.8, pp.1049-1064, 1994.

A. Mendes, A. A. Kelly, H. Van-erp, E. Shaw, S. J. Powers et al., bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase3, Plant Cell, vol.25, issue.8, pp.3104-3116, 2013.

T. Merkle, Nuclear import and export of proteins in plants: a tool for the regulation of signalling, Planta, vol.213, issue.4, pp.499-517, 2001.

T. Merkle, Nucleo-cytoplasmic transport of proteins and RNA in plants, Plant Cell Rep, vol.30, issue.2, pp.153-176, 2011.

G. Monke, M. Seifert, J. Keilwagen, M. Mohr, I. Grosse et al., Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon, Nucleic Acids Res, vol.40, issue.17, pp.8240-8254, 2012.

S. Nakamura, . Lynch, and R. R. Tj, Physical interactions between ABA response loci of Arabidopsis, Plant J, vol.26, issue.6, pp.627-635, 2001.

E. Nambara and A. Marion-poll, ABA action and interactions in seeds, Trends in plant science, vol.8, issue.5, pp.213-217, 2003.

M. Nardini, N. Gnesutta, G. Donati, R. Gatta, C. Forni et al., Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination, Cell, vol.152, issue.1-2, pp.132-143, 2013.

V. Nardone, A. Chaves-sanjuan, and M. Nardini, Structural determinants for NF-Y/DNA interaction at the CCAAT box, Biochim Biophys Acta, 2016.

H. North, S. Baud, I. Debeaujon, C. Dubos, B. Dubreucq et al., Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research, Plant J, vol.61, issue.6, pp.971-981, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203892

J. Ooms, K. M. Leon-kloosterziel, D. Bartels, M. Koornneef, and C. M. Karssen, Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants), Plant Physiol, vol.102, issue.4, pp.1185-1191, 1993.

G. Orozco-arroyo, P. D. Ezquer, I. Colombo, and L. , Networks controlling seed size in Arabidopsis, Plant Reprod, vol.28, issue.1, pp.17-32, 2015.

A. Para, Y. Li, A. Marshall-colon, K. Varala, N. J. Francoeur et al., Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis, Proc Natl Acad Sci U S A, vol.111, issue.28, pp.10371-10376, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053035

K. C. Park, J. Jeong, and K. I. Kim, Regulation of mIkappaBNS stability through PEST-mediated degradation by proteasome, Biochemical and biophysical research communications, vol.443, issue.4, pp.1291-1295, 2014.

J. M. Pelletier, R. W. Kwong, S. Park, B. H. Le, R. Baden et al., LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development, Proc Natl Acad Sci, 2017.

F. Y. Peng and R. J. Weselake, Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis, BMC Genomics, vol.12, p.286, 2011.

P. Lange, M. J. Lange, and T. , Gibberellin biosynthesis and the regulation of plant development, Plant Biol (Stuttg), vol.8, issue.3, pp.281-290, 2006.

M. Rechsteiner and S. Rogers, PEST sequences and regulation by proteolysis, Trends Biochem Sci, vol.21, issue.7, p.267, 1996.

J. L. Riechmann, J. Heard, G. Martin, L. Reuber, C. Jiang et al., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science, vol.290, issue.5499, pp.2105-2110, 2000.

K. Righetti, J. L. Vu, S. Pelletier, B. L. Vu, E. Glaab et al., Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways, Plant Cell, vol.27, issue.10, pp.2692-2708, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392707

S. Rogers, R. Wells, and M. Rechsteiner, Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis, Science, vol.234, issue.4774, p.364, 1986.

E. A. Romanel, C. G. Schrago, R. M. Counago, C. A. Russo, and M. Alves-ferreira, Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification, PLoS One, vol.4, issue.6, p.5791, 2009.

T. T. Roscoe, J. Guilleminot, J. J. Bessoule, F. Berger, and M. Devic, Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis, Plant Cell Physiol, vol.56, issue.6, pp.1215-1228, 2015.

P. A. Sabelli and B. A. Larkins, The development of endosperm in grasses, Plant Physiol, vol.149, issue.1, pp.14-26, 2009.

S. Mendoza, M. Dubreucq, B. Miquel, M. Caboche, M. Lepiniec et al., LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves, FEBS Lett, vol.579, issue.21, pp.4666-4670, 2005.

M. Santos-mendoza, B. Dubreucq, S. Baud, F. Parcy, M. Caboche et al., Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, Plant J, vol.54, issue.4, pp.608-620, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297574

K. Schneitz, M. Hülskamp, and R. E. Pruitt, Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue, The Plant Journal, vol.7, issue.5, pp.731-749, 1994.

K. Schutze, K. Harter, and C. Chaban, Post-translational regulation of plant bZIP factors, Trends Plant Sci, vol.13, issue.5, pp.247-255, 2008.

Y. Shen, M. Devic, L. Lepiniec, and D. X. Zhou, Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes, Plant Biotechnol J, 2015.

A. Skubacz, A. Daszkowska-golec, and I. Szarejko, The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk, Front Plant Sci, vol.7, p.1884, 2016.

M. B. Sorensen, Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis, Development, vol.129, issue.24, pp.5567-5576, 2002.

R. Srivastava, Y. Chen, Y. Deng, F. Brandizzi, and S. H. Howell, Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions, Plant J, vol.70, issue.6, pp.1033-1042, 2012.

R. Srivastava, Y. Deng, and S. H. Howell, Stress sensing in plants by an ER stress sensor/transducer, bZIP28, Front Plant Sci, vol.5, p.59, 2014.

S. L. Stone, S. A. Braybrook, S. L. Paula, L. W. Kwong, J. Meuser et al., Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis, Proc Natl Acad Sci U S A, vol.105, issue.8, pp.3151-3156, 2008.

S. L. Stone, L. W. Kwong, K. M. Yee, J. Pelletier, L. Lepiniec et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proc Natl Acad Sci U S A, vol.98, pp.11806-11811, 1920.

M. Suzuki, S. Wu, Q. Li, and D. R. Mccarty, Distinct functions of COAR and B3 domains of maize VP1 in induction of ectopic gene expression and plant developmental phenotypes in Arabidopsis, Plant Mol Biol, vol.85, issue.1-2, pp.179-191, 2014.

K. Swaminathan, K. Peterson, and T. Jack, The plant B3 superfamily, Trends in plant science, vol.13, issue.12, pp.647-655, 2008.

C. A. Ten-hove, K. J. Lu, and D. Weijers, Building a plant: cell fate specification in the early Arabidopsis embryo, Development, vol.142, issue.3, pp.420-430, 2015.

J. Thevenin, C. Dubos, W. Xu, L. Gourrierec, J. Kelemen et al., A new system for fast and quantitative analysis of heterologous gene expression in plants, New Phytol, vol.193, issue.2, pp.504-512, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004263

A. To, C. Valon, G. Savino, J. Guilleminot, M. Devic et al., A network of local and redundant gene regulation governs Arabidopsis seed maturation, Plant Cell, vol.18, issue.7, pp.1642-1651, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080106

A. Tunnacliffe, M. Wise, M. Van-dop, C. Y. Liao, and D. Weijers, Control of oriented cell division in the Arabidopsis embryo, Die Naturwissenschaften, vol.94, issue.10, pp.25-30, 2007.

J. Van-leene, E. Witters, D. Inze, D. Jaeger, and G. , Boosting tandem affinity purification of plant protein complexes, Trends Plant Sci, vol.13, issue.10, pp.517-520, 2008.

M. Veerabagu, T. Kirchler, K. Elgass, B. Stadelhofer, M. Stahl et al., The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression, Mol Plant, vol.7, issue.10, pp.1560-1577, 2014.

J. Vicente-carbajosa and P. Carbonero, Seed maturation: developing an intrusive phase to accomplish a quiescent state, Int J Dev Biol, vol.49, issue.5-6, pp.645-651, 2005.

C. Vinson, A. Acharya, and E. J. Taparowsky, Deciphering B-ZIP transcription factor interactions in vitro and in vivo, Biochim Biophys Acta, vol.1759, issue.1-2, pp.4-12, 2006.

J. K. Waltner, F. C. Peterson, B. L. Lytle, and B. F. Volkman, Structure of the B3 domain from Arabidopsis thaliana protein At1g16640, Protein Sci, vol.14, issue.9, pp.2478-2483, 2005.

B. Wardleworth, R. Russell, S. Bell, G. Taylor, and M. White, Structure of Alba: an archaeal chromatin protein modulated by acetylation, EMBO J, vol.21, issue.17, pp.4654-4662, 2002.

N. Wehmeyer, L. D. Hernandez, R. R. Finkelstein, and E. Vierling, Synthesis of Small Heat-Shock Proteins Is Part of the Developmental Program of Late Seed Maturation, Plant Physiol, vol.112, issue.2, pp.747-757, 1996.

F. Weltmeier, F. Rahmani, A. Ehlert, K. Dietrich, K. Schutze et al., Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development, Plant Mol Biol, vol.69, issue.1-2, pp.107-119, 2009.

S. Wenkel, F. Turck, K. Singer, L. Gissot, L. Gourrierec et al., CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis, Plant Cell, vol.18, issue.11, pp.2971-2984, 2006.

H. Xing, Y. Hong, and K. D. Sarge, PEST sequences mediate heat shock factor 2 turnover by interacting with the Cul3 subunit of the Cul3-RING ubiquitin ligase, Cell stress & chaperones, vol.15, issue.3, pp.301-308, 2010.

A. Yamamoto, Y. Kagaya, R. Toyoshima, M. Kagaya, S. Takeda et al., Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors, Plant J, vol.58, issue.5, pp.843-856, 2009.

A. Yamamoto, Y. Kagaya, H. Usui, T. Hobo, S. Takeda et al., Diverse roles and mechanisms of gene regulation by the Arabidopsis seed maturation master regulator FUS3 revealed by microarray analysis, Plant Cell Physiol, vol.51, issue.12, pp.2031-2046, 2010.

K. Yamasaki, T. Kigawa, M. Inoue, M. Tateno, T. Yamasaki et al., Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1, Plant Cell, vol.16, issue.12, pp.3448-3459, 2004.

I. Yotsui, M. Saruhashi, T. Kawato, T. Taji, T. Hayashi et al., ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens, New Phytol, vol.199, issue.1, pp.101-109, 2013.

F. Zhang, M. Han, Q. Lv, F. Bao, and Y. He, Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens, Front Plant Sci, vol.6, p.642, 2015.

X. Zhang, V. Garreton, and N. Chua, The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation, Genes Dev, vol.19, issue.1, pp.1532-1543, 2005.

J. Vicente-carbajosa and W. Dröge-laser, , pp.1747-1761, 200921.

G. Barthole, A. To, C. Marchive, V. Brunaud, L. Soubigou-taconnat et al., MYB118 represses endosperm maturation in seeds of Arabidopsis, vol.26, pp.3519-3537, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204153

S. Baud, J. P. Boutin, M. Miquel, L. Lepiniec, and C. Rochat, An integrated overview of seed development in Arabidopsis thaliana ecotype Ws, Plant Physiol Biochem, vol.40, pp.151-160, 2002.

S. Baud, N. R. Dichow, Z. Kelemen, S. Andréa, A. To et al., Regulation of HSD1 in seeds of Arabidopsis thaliana, Plant Cell Physiol, vol.50, pp.1463-1478, 2009.

S. Baud, M. S. Mendoza, A. To, E. Harscoet, L. Lepiniec et al., WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis, Plant J, vol.50, pp.825-838, 2007.

H. Bäumlein, I. Nagy, R. Villarroel, D. Inzé, U. Wobus et al., G within the legumin box is essential for tissue-specifice x p r e s s i o no fa legumin gene, Plant J, vol.2, pp.233-239, 1992.

H. Bäumlein, J. Pustell, U. Wobus, S. T. Case, and F. C. Kafatos, The 39 ends of two genes in the Balbiani ring c locus of Chironomus thummi, J Mol Evol, vol.24, pp.72-82, 1986.

N. Bechtold, J. Ellis, and G. Pelletier, In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants, C R Acad Sci, vol.316, pp.1194-1199, 1993.

S. Bensmihen, S. Rippa, G. Lambert, D. Jublot, V. Pautot et al., The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis, Plant Cell, vol.14, pp.1391-1403, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00136608

N. Berger, B. Dubreucq, F. Roudier, C. Dubos, and L. Lepiniec, Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27, Plant Cell, vol.23, pp.4065-4078, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000017

A. J. Bobb, M. S. Chern, and M. M. Bustos, Conserved RY-repeats mediate transactivation of seed-specificp r o m o t e r sb yt, Nucleic Acids Res, vol.25, pp.641-647, 1997.

D. R. Boer, A. Freire-rios, W. A. Van-den-berg, T. Saaki, I. W. Manfield et al., Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors, Cell, vol.156, pp.577-589, 2014.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-254, 1976.

S. A. Braybrook and J. J. Harada, LECs go crazy in embryo development, Trends Plant Sci, vol.13, pp.624-630, 2008.

S. A. Braybrook, S. L. Stone, S. Park, A. Q. Bui, B. H. Le et al., Genes directly regulated by LEAFY COTYLE-DON2 provide insight into the control of embryo maturation and somatic embryogenesis, Proc Natl Acad Sci, vol.103, pp.3468-3473, 2006.

I. M. Brocard-gifford, T. J. Lynch, and R. R. Finkelstein, Regulatory networks in seeds integrating developmental, abscisic acid, sugar, and light signaling, Plant Physiol, vol.131, pp.78-92, 2003.

A. Cagliari, A. C. Turchetto-zolet, A. P. Korbes, M. Fds, R. Margis et al., New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants, Genomics, vol.103, pp.380-387, 2014.

V. Calvenzani, B. Testoni, G. Gusmaroli, M. Lorenzo, N. Gnesutta et al., Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits, PLoS ONE, vol.7, p.42902, 2012.

H. Chahtane, G. Vachon, L. Masson, M. Thévenon, E. Périgon et al., A variant of LEAFY reveals its capacity to stimulate meristem development by inducing RAX1, Plant J, vol.74, pp.678-689, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843005

N. Che, Y. Yang, Y. Li, L. Wang, P. Huang et al., Efficient LEC2 activation of OLEOSIN expression requires two neighboring RY elements on its promoter, Sci China C Life Sci, vol.52, pp.854-863, 2009.

A. S. Conceição and E. Krebbers, A cotyledon regulatory region is responsible for the different spatial expression patterns of Arabidopsis 2S albumin genes, Plant J, vol.5, pp.493-505, 1994.

C. D. Dickinson, R. P. Evans, and N. C. Nielsen, RY repeats are conserved in the 59-flanking regions of legume seed-protein genes, Nucleic Acids Res, vol.16, p.371, 1988.

A. Dümmler, A. M. Lawrence, and A. De-marco, Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors, Microb Cell Fact, vol.4, p.34, 2005.

M. Ellerström, K. Stålberg, I. Ezcurra, and L. Rask, Functional dissection of anapingenepromoter:identification of promoter elements required for embryo and endosperm-specifict r a n s c r i p t i o n, vol.32, pp.1019-1027, 1996.

I. Ezcurra, M. Ellerström, P. Wycliffe, K. Stålberg, and L. Rask, Interaction between composite elements in the napA promoter: both the B-box ABAresponsive complex and the RY/G complex are necessary for seed-specific expression, Plant Mol Biol, vol.40, pp.699-709, 1999.

I. Ezcurra, P. Wycliffe, L. Nehlin, M. Ellerström, and L. Rask, Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box, Plant J, vol.24, pp.57-66, 2000.

J. M. Franco-zorrilla, I. López-vidriero, J. L. Carrasco, M. Godoy, P. Vera et al., DNA-binding specificities of plant transcription factors and their potential to define target genes, Proc Natl Acad Sci, vol.111, pp.2367-2372, 2014.

T. Fujiwara and R. N. Beachy, Tissue-specificandtemporalregulationofa beta-conglycinin gene: roles of the RY repeat and other cis-acting elements, Plant Mol Biol, vol.24, pp.261-272, 1994.

J. Giraudat, B. M. Hauge, C. Valon, J. Smalle, F. Parcy et al., Isolation of the Arabidopsis ABI3 gene by positional cloning, Plant Cell, vol.4, pp.1251-1261, 1992.

M. Godoy, J. M. Franco-zorrilla, J. Pérez-pérez, J. C. Oliveros, O. Lorenzo et al., Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors, Plant J, vol.66, pp.700-711, 2011.

D. Golovenko, E. Manakova, L. Zakrys, M. Zaremba, G. Sasnauskas et al., Structural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiIr e s t r i c t i, pp.4113-4122, 2014.

G. Gusmaroli, C. Tonelli, and R. Mantovani, Regulation of the CCAATbinding NF-Y subunits in Arabidopsis thaliana, Gene, vol.264, pp.173-185, 2001.

G. Gusmaroli, C. Tonelli, and R. Mantovani, Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits, Gene, vol.283, pp.41-48, 2002.

D. Hackenberg, Y. Wu, A. Voigt, R. Adams, P. Schramm et al., Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor, 2012.

, Mol Plant, vol.5, pp.876-888

J. J. Harada, Role of Arabidopsis LEAFY COTYLEDON genes in seed development, J Plant Physiol, vol.158, pp.405-409, 2001.

Z. Hilioti, I. Ganopoulos, I. Bossis, and A. Tsaftaris, LEC1-LIKE paralog transcription factor: how to survive extinction and fiti nN F -Yp r o t e i n complex, Gene, vol.543, pp.220-233, 2014.

T. Hobo, M. Asada, Y. Kowyama, and T. Hattori, ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent, Plant J, vol.19, pp.679-689, 1999.

H. Jia, D. R. Mccarty, and M. Suzuki, Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression, Plant Physiol, vol.163, pp.1293-1305, 2013.

Y. Kagaya, R. Okuda, A. Ban, R. Toyoshima, K. Tsutsumida et al., Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis, Plant Cell Physiol, vol.46, pp.300-311, 2005.

Y. Kagaya, R. Toyoshima, R. Okuda, H. Usui, A. Yamamoto et al., LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3, Plant Cell Physiol, vol.46, pp.399-406, 2005.

S. Kiegerl, F. Cardinale, C. Siligan, A. Gross, E. Baudouin et al., SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specifica c t i v a t o ro ft h es a l ts t r e s sinduced MAPK, SIMK. Plant Cell, vol.12, pp.2247-2258, 2000.

R. C. Kirkbride, R. L. Fischer, and J. J. Harada, LEAFY COTYLEDON1, a key regulator of seed development, is expressed in vegetative and sexual propagules of Selaginella moellendorffii, PLoS ONE, vol.8, p.67971, 2013.

M. Koornneef, G. Reuling, and C. M. Karssen, The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana, Physiol Plant, vol.61, pp.377-383, 1984.

T. Kroj, G. Savino, C. Valon, J. Giraudat, and F. Parcy, Regulation of storage protein gene expression in Arabidopsis, Development, vol.130, pp.6065-6073, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00135703

S. Kurup, H. D. Jones, and M. J. Holdsworth, Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds, Plant J, vol.21, pp.143-155, 2000.

R. W. Kwong, A. Q. Bui, H. Lee, L. W. Kwong, R. L. Fischer et al., LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development, Plant Cell, vol.15, pp.5-18, 2003.

T. Laloum, D. Mita, S. Gamas, P. Baudin, M. Niebel et al., CCAAT-box binding transcription factors in plants: Y so many?, Trends Plant Sci, vol.18, pp.157-166, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268179

P. Lara, L. Oñate-sánchez, Z. Abraham, C. Ferrándiz, I. Díaz et al., Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2, J Biol Chem, vol.278, pp.21003-21011, 2003.

H. Lee, R. L. Fischer, R. B. Goldberg, and J. J. Harada, Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor, Proc Natl Acad Sci, vol.100, pp.2152-2156, 2003.

C. Li, A. Distelfeld, A. Comis, and J. Dubcovsky, Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes, Plant J, vol.67, pp.763-773, 2011.

J. X. Liu and S. H. Howell, bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis, vol.22, pp.782-796, 2010.

T. Lotan, M. Ohto, K. M. Yee, M. A. West, R. Lo et al., Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells, Cell, vol.93, pp.1195-1205, 1998.

H. Luerssen, V. Kirik, P. Herrmann, and S. Miséra, FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana, Plant J, vol.15, pp.755-764, 1998.

R. Mantovani, The molecular biology of the CCAAT-binding factor NF-Y, Gene, vol.239, pp.15-27, 1999.

H. H. Marella, Y. Sakata, and R. S. Quatrano, Characterization and functional analysis of ABSCISIC ACID INSENSITIVE3-like genes from Physcomitrella patens, Plant J, vol.46, pp.1032-1044, 2006.

S. Masiero, C. Imbriano, F. Ravasio, R. Favaro, N. Pelucchi et al., Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB, J Biol Chem, vol.277, pp.26429-26435, 2002.

D. W. Meinke, A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons, Science, vol.258, pp.1647-1650, 1992.

D. W. Meinke, L. H. Franzmann, T. C. Nickle, and E. C. Yeung, Leafy cotyledon mutants of Arabidopsis, vol.6, pp.1049-1064, 1994.

A. Mendes, A. A. Kelly, H. Van-erp, E. Shaw, S. J. Powers et al., bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase3, Plant Cell, vol.25, pp.3104-3116, 2013.

G. Mönke, L. Altschmied, A. Tewes, W. Reidt, H. P. Mock et al., Seed-specifict r a n s c r i p t i o nf a c t o r sA B I 3a n dF U S 3 : molecular interaction with DNA, Planta, vol.219, pp.158-166, 2004.

G. Mönke, M. Seifert, J. Keilwagen, M. Mohr, I. Grosse et al., Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon, Nucleic Acids Res, vol.40, pp.8240-8254, 2012.

M. C. Motta, G. Caretti, G. F. Badaracco, and R. Mantovani, Interactions of the CCAAT-binding trimer NF-Y with nucleosomes, J Biol Chem, vol.274, pp.1326-1333, 1999.

E. Moyroud, E. G. Minguet, F. Ott, L. Yant, D. Posé et al., Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor, Plant Cell, vol.23, pp.1293-1306, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607237

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of Gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J Biosci Bioeng, vol.104, pp.34-41, 2007.

S. Nakamura, T. J. Lynch, and R. R. Finkelstein, Physical interactions between ABA response loci of Arabidopsis, Plant J, vol.26, pp.627-635, 2001.

K. Nakashima, Y. Fujita, K. Katsura, K. Maruyama, Y. Narusaka et al., Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis, Plant Mol Biol, vol.60, pp.51-68, 2006.

F. Parcy, O. Nilsson, M. A. Busch, I. Lee, and D. Weigel, A genetic framework for floral patterning, Nature, vol.395, pp.561-566, 1998.

F. Parcy, C. Valon, A. Kohara, S. Miséra, and J. Giraudat, The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development, Plant Cell, vol.9, pp.1265-1277, 1997.

K. Petroni, R. W. Kumimoto, N. Gnesutta, V. Calvenzani, M. Fornari et al., The promiscuous life of plant NUCLEAR FACTOR Y transcription factors, Plant Cell, vol.24, pp.4777-4792, 2012.

W. Vienna-reidt, T. Wohlfarth, M. Ellerström, A. Czihal, A. Tewes et al., Gene regulation during late embryogenesis: the RY motif of maturation, RC o r eT e a m(2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, vol.21, pp.401-408, 2000.

A. Reinders, W. Schulze, C. Kühn, L. Barker, A. Schulz et al., Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element, Plant Cell, vol.14, pp.1567-1577, 2002.

S. Richardt, G. Timmerhaus, D. Lang, E. Qudeimat, L. G. Corrêa et al., Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling, Plant Mol Biol, vol.72, pp.27-45, 2010.

E. A. Romanel, C. G. Schrago, R. M. Couñago, C. A. Russo, and M. Alves-ferreira, Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification, PLoS ONE, vol.4, p.5791, 2009.

C. Romier, F. Cocchiarella, R. Mantovani, and D. Moras, The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y, J Biol Chem, vol.278, pp.1336-1345, 2003.

A. Ronchi, M. Bellorini, N. Mongelli, and R. Mantovani, CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA, Nucleic Acids Res, vol.23, pp.4565-4572, 1995.

T. T. Roscoe, J. Guilleminot, J. J. Bessoule, F. Berger, and M. Devic, Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis, Plant Cell Physiol, vol.56, pp.1215-1228, 2015.

I. Sadowski, J. Ma, S. Triezenberg, and M. Ptashne, GAL4-VP16 is an unusually potent transcriptional activator, Nature, vol.335, pp.563-564, 1988.

Y. Sakata, Y. Chiba, H. Fukushima, N. Matsubara, Y. Habu et al., The RY sequence is necessary but not sufficient for the transcription activation of a winged bean chymotrypsin inhibitor gene in developing seeds, Plant Mol Biol, vol.34, pp.191-197, 1997.

M. Santos-mendoza, B. Dubreucq, S. Baud, F. Parcy, M. Caboche et al., Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, Plant J, vol.54, pp.608-620, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297574

S. Mendoza, M. Dubreucq, B. Miquel, M. Caboche, M. Lepiniec et al., LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specificmRNAsinArabidopsisleaves, FEBS Lett, vol.579, pp.4666-4670, 2005.

B. Shen, K. W. Sinkevicius, D. A. Selinger, and M. C. Tarczynski, The homeobox gene GLABRA2 affects seed oil content in Arabidopsis, Plant Mol Biol, vol.60, pp.377-387, 2006.

N. Sreenivasulu and U. Wobus, Seed-development programs: a systems biology-based comparison between dicots and monocots, Annu Rev Plant Biol, vol.64, pp.189-217, 2013.

K. Stålberg, M. Ellerström, L. G. Josefsson, and L. Rask, Plant Mol Biol, vol.23, pp.671-683, 1993.

S. L. Stone, L. W. Kwong, K. M. Yee, J. Pelletier, L. Lepiniec et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proc Natl Acad Sci, vol.98, pp.11806-11811, 2001.

M. Suzuki, C. Y. Kao, and D. R. Mccarty, The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity, Plant Cell, vol.9, pp.799-807, 1997.

M. Suzuki and D. R. Mccarty, Functional symmetry of the B3 network controlling seed development, Curr Opin Plant Biol, vol.11, pp.548-553, 2008.

S. Takahashi, T. Katagiri, T. Hirayama, K. Yamaguchi-shinozaki, and K. Shinozaki, Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture, Plant Cell Physiol, vol.42, pp.214-222, 2001.

D. Thakare, W. Tang, K. Hill, and S. E. Perry, The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean, Plant Physiol, vol.146, pp.1663-1672, 2008.

J. Thévenin, C. Dubos, W. Xu, L. Gourrierec, J. Kelemen et al., A new system for fast and quantitative analysis of heterologous gene expression in plants, New Phytol, vol.193, pp.504-512, 2012.

A. To, C. Valon, G. Savino, J. Guilleminot, M. Devic et al., A network of local and redundant gene regulation governs Arabidopsis seed maturation, Plant Cell, vol.18, pp.1642-1651, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080106

B. Trouiller, D. G. Schaefer, F. Charlot, and F. Nogué, MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens, Nucleic Acids Res, vol.34, pp.232-242, 2006.

J. Vicente-carbajosa and P. Carbonero, Seed maturation: developing an intrusive phase to accomplish a quiescent state, Int J Dev Biol, vol.49, pp.645-651, 2005.

F. Wang and S. E. Perry, Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development, Plant Physiol, vol.161, pp.1251-1264, 2013.

X. Wang, Q. W. Niu, C. Teng, C. Li, J. Mu et al., Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-toembryonic transition in Arabidopsis, Cell Res, vol.19, pp.224-235, 2009.

S. Wenkel, F. Turck, K. Singer, L. Gissot, L. Gourrierec et al., CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis, pp.2971-2984, 2006.

R. J. Wilde, S. E. Cooke, W. J. Brammar, and W. Schuch, Control of gene expression in plant cells using a 434:VP16 chimeric protein, Plant Mol Biol, vol.24, pp.381-388, 1994.

U. Wobus and H. Weber, Seed maturation: genetic programmes and control signals, Curr Opin Plant Biol, vol.2, pp.33-38, 1999.

Z. Xie, X. Li, B. J. Glover, S. Bai, G. Y. Rao et al., Duplication and functional diversification of HAP3 genes leading to the origin of the seed-developmental regulatory gene, LEAFY COTYLEDON1 (LEC1), in nonseed plant genomes, Mol Biol Evol, vol.25, pp.1581-1592, 2008.

W. Xu, L. Lepiniec, and C. Dubos, New insights toward the transcriptional engineering of proanthocyanidin biosynthesis, Plant Signal Behav, vol.9, p.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204122

K. Yamagishi, N. Nagata, K. M. Yee, S. A. Braybrook, J. Pelletier et al., TANMEI/ EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis, Plant Physiol, vol.139, pp.163-173, 2005.

A. Yamamoto, Y. Kagaya, and R. Toyoshima, Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specificA B R E -b i n d i n gf a c t o r s, Plant J, vol.58, pp.843-856, 2009.

K. Yamasaki, T. Kigawa, M. Inoue, M. Tateno, T. Yamasaki et al., Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1, Plant Cell, vol.16, pp.3448-3459, 2004.

I. Yotsui, M. Saruhashi, T. Kawato, T. Taji, T. Hayashi et al., ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens, New Phytol, vol.199, pp.101-109, 2013.

L. M. Zahn, J. Leebens-mack, C. W. Depamphilis, H. Ma, and G. Theissen, To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms, J Hered, vol.96, pp.225-240, 2005.

H. Zhang and J. Ogas, An epigenetic perspective on developmental regulation of seed genes, Mol Plant, vol.2, pp.610-627, 2009.

W. Zhang, J. Ruan, T. D. Ho, Y. You, T. Yu et al., Cis-regulatory element based targeted gene finding: genome-wide identification of ABA-and abiotic stress-responsive genes in Arabidopsis thaliana, Bioinformatics, vol.21, pp.3074-3081, 2005.

Y. Zheng, N. Ren, H. Wang, A. J. Stromberg, and S. E. Perry, Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15, Plant Cell, vol.21, pp.2563-2577, 2009.

, Reciprocal interactions between LEC1, LEC2, ABI3, and FUS3 were assayed

, AD, fusion to activation domain; BD, fusion to DNA-binding domain; W, tryptophan; L, leucine; H, 783 histidine; A, alanine. 784 (B) Study of homodimer formation between native or mutant LEC1 proteins. Yeast two hybrid 785 experiments were performed using native (LEC1) or mutant

L. , ;. , and H. ,

, The normality of the data was checked with a Shapiro-Wilk test. Student t-test was performed on the relevant comparisons using the R stats Package, vol.2

A. Fatihi, C. Boulard, D. Bouyer, S. Baud, B. Dubreucq et al., , 2016.

. .. Introduction, Master regulators of seed development and maturation, vol.3, 0200.

. .. Acknowledgments,

, * Corresponding authors. E-mail addresses: Abdelhak.Fatihi@versailles.inra.fr (A. Fatihi)

, Loic.Lepiniec@versailles.inra.fr (L. Lepiniec)

,

/. , , 2016.

A. Fatihi, Plant Science, vol.250, pp.198-204, 2016.

C. Lesk, P. Rowhani, and N. Ramankutty, Influence of extreme weather disasters on global crop production, Nature, vol.529, pp.84-87, 2016.

N. Sreenivasulu and U. Wobus, Seed-development programs: a systems biology-based comparison between dicots and monocots, Annu. Rev. Plant Biol, vol.64, pp.189-217, 2013.

M. K. Nowack, A. Ungru, K. N. Bjerkan, P. E. Grini, and A. Schnittger, Reproductive cross-talk: seed development in flowering plants, Biochem. Soc. Trans, vol.38, pp.604-612, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00524191

Z. Abraham, A developmental switch of gene expression in the barley seed mediated by HvVP1 (Viviparous1) and HvGAMYB interactions, Plant Physiol, vol.170, pp.2146-2158, 2016.

G. Barthole, L. Lepiniec, P. M. Rogowsky, and S. Baud, Controlling lipid accumulation in cereal grains, Plant Sci, pp.33-39, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01003444

H. Weber, L. Borisjuk, and U. Wobus, Molecular physiology of legume seed development, Annu. Rev. Plant Biol, vol.56, pp.253-279, 2005.

S. Baud and L. Lepiniec, Physiological and developmental regulation of seed oil production, Prog. Lipid Res, vol.49, pp.235-249, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203879

H. P. Burrieza, M. P. Lopez-fernandez, and S. Maldonado, Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution, Front. Plant Sci, vol.5, p.546, 2014.

H. North, Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research, Plant J, vol.61, pp.971-981, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203892

M. G. Becker, S. W. Hsu, J. J. Harada, and M. F. Belmonte, Genomic dissection of the seed, Front. Plant Sci, vol.5, p.464, 2014.

H. Xu, Y. Gao, and J. Wang, Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique, PLoS One, vol.7, p.30646, 2012.

J. Chen, Dynamic transcriptome landscape of maize embryo and endosperm development, Plant Physiol, vol.166, pp.252-264, 2014.

G. Orozco-arroyo, D. Paolo, I. Ezquer, and L. Colombo, Networks controlling seed size in Arabidopsis, Plant Reprod, vol.28, pp.17-32, 2015.

P. E. Jameson and J. Song, Cytokinin: a key driver of seed yield, J. Exp. Bot, vol.67, pp.593-606, 2016.

A. Fatihi, Plant Science, vol.250, p.203, 2016.

A. Fatihi, A. M. Zbierzak, and P. Dormann, Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds, Plant Physiol, vol.163, pp.973-985, 2013.

S. A. Braybrook and J. J. Harada, LECs go crazy in embryo development, Trends Plant Sci, vol.13, pp.624-630, 2008.

M. Santos-mendoza, Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, Plant J, vol.54, pp.608-620, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297574

J. Verdier and R. D. Thompson, Transcriptional regulation of storage protein synthesis during dicotyledon seed filling, Plant Cell Physiol, vol.49, pp.1263-1271, 2008.

T. T. Roscoe, J. Guilleminot, J. J. Bessoule, F. Berger, and M. Devic, Complementation of seed maturation phenotypes by ectopic expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis, Plant Cell Physiol, vol.56, pp.1215-1228, 2015.

A. Yamamoto, Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants, Plant Cell Physiol, vol.55, pp.2112-2125, 2014.

S. Baud, Deciphering the molecular mechanisms underpinning the transcriptional control of gene expression by L-AFL proteins in Arabidopsis seed, Plant Physiol, vol.171, pp.1099-1112, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01406124

F. Delmas, ABI3 controls embryo degreening through Mendel's I locus, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.3888-3894, 2013.

A. Junker and H. Baumlein, Multifunctionality of the LEC1 transcription factor during plant development, Plant Signal. Behav, vol.7, pp.1718-1720, 2012.

B. Wojcikowska, LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis, Planta, vol.238, pp.425-440, 2013.

H. Jia, M. Suzuki, and D. R. Mccarty, Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks, Wiley Interdiscip. Rev. Dev. Biol, vol.3, pp.135-145, 2014.

N. Berger, B. Dubreucq, F. Roudier, C. Dubos, and L. Lepiniec, Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27, Plant Cell, vol.23, pp.4065-4078, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000017

D. Bouyer, Polycomb repressive complex 2 controls the embryo-to-seedling phase transition, PLoS Genet, vol.7, p.1002014, 2011.

C. Yang, VAL-and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis, Curr. Biol, vol.23, pp.1324-1329, 2013.

A. M. Molitor, Z. Bu, Y. Yu, and W. H. Shen, Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes, PLoS Genet, vol.10, p.1004091, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00951614

M. Ikeuchi, PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis, Nat. Plants, vol.1, p.15089, 2015.

J. Liu, CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis in arabidopsis, Plant Physiol, vol.171, pp.424-436, 2016.

K. Muller, D. Bouyer, A. Schnittger, and A. R. Kermode, Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions, PLoS One, vol.7, p.51532, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00863710

B. Carter, Crosstalk between sporophyte and gametophyte generations is promoted by chd3 chromatin remodelers in Arabidopsis thaliana, Genetics, 2016.

E. Aichinger, C. B. Villar, R. D. Mambro, S. Sabatini, and C. Kohler, The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root, Plant Cell, vol.23, pp.1047-1060, 2011.

S. K. Han, M. F. Wu, S. Cui, and D. Wagner, Roles and activities of chromatin remodeling ATPases in plants, Plant J, vol.83, pp.62-77, 2015.

Y. Shen, M. Devic, L. Lepiniec, D. X. Zhou, and C. , Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes, Plant Biotech. J, vol.13, pp.811-820, 2015.

M. J. Gao, SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme, Nat. Commun, vol.6, p.7243, 2015.

A. Schneider, Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos, Plant J, vol.85, pp.305-319, 2016.

M. D. Nodine and D. P. Bartel, MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis, Genes Dev, vol.24, pp.2678-2692, 2010.

M. R. Willmann, A. J. Mehalick, R. L. Packer, and P. D. Jenik, MicroRNAs regulate the timing of embryo maturation in Arabidopsis, Plant Physiol, vol.155, pp.1871-1884, 2011.

X. Tang, MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis, PLoS Genet, vol.8, p.1003091, 2012.

Y. Zheng, N. Ren, H. Wang, A. J. Stromberg, and S. E. Perry, Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15, Plant Cell, vol.21, pp.2563-2577, 2009.

G. Barthole, MYB118 represses endosperm maturation in seeds of Arabidopsis, Plant Cell, vol.26, pp.3519-3537, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204153

C. Marchive, K. Nikovics, A. To, L. Lepiniec, and S. Baud, Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes, Eur. J. Lipid Sci. Technol, vol.116, pp.1332-1343, 2014.

A. To, WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis, Plant Cell, vol.24, pp.5007-5023, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004104

S. Baud, WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis, Plant J, vol.50, pp.825-838, 2007.

R. Alonso, A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation, Plant Cell, vol.21, pp.1747-1761, 2009.

A. Junker, Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana, Plant J, vol.71, pp.427-442, 2012.

M. Huang, Y. Hu, X. Liu, Y. Li, and X. Hou, Arabidopsis leafy cotyledon1 mediates postembryonic development via interacting with phytochrome-interacting factor4, Plant Cell, vol.27, pp.3099-3111, 2015.

Z. Qiao, ZmMADS47 regulates zein gene transcription through interaction with opaque2, PLoS Genet, vol.12, p.1005991, 2016.

A. Cagliari, New insights on the evolution of Leafy cotyledon1 (LEC1) type genes in vascular plants, Genomics, vol.103, pp.380-387, 2014.

F. Y. Peng and R. J. Weselake, Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants, Theor. Appl. Genet, vol.126, pp.1305-1319, 2013.

Y. Wang, Systematic analysis of plant-specific B3 domain-containing proteins based on the genome resources of 11 sequenced species, Mol. Biol. Rep, vol.39, pp.6267-6282, 2012.

N. Elahi, R. W. Duncan, and C. Stasolla, Decreased seed oil production in FUSCA3 Brassica napus mutant plants, Plant Physiol. Biochem, vol.96, pp.222-230, 2015.

M. A. Moreno-risueno, FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis, Plant J, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00198425

A. Grimault, Role of B3 domain transcription factors of the AFL family in maize kernel filling, Plant Sci, vol.236, pp.116-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204180

A. Gruszczynska and M. Rakoczy-trojanowska, Expression analysis of somatic embryogenesis-related SERK, LEC1 VP1 and NiR ortologues in rye (Secale cereale L.), J. Appl. Genet, vol.52, pp.1-8, 2011.

L. Zhai, Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish, Raphanus sativus L.), Sci. Rep, vol.6, p.21652, 2016.

B. Shen, Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize, Plant Physiol, vol.153, pp.980-987, 2010.

K. Rikiishi and M. Maekawa, Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.), PLoS One, vol.9, p.107618, 2014.

B. Pouvreau, Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis, Plant Physiol, vol.156, pp.674-686, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000162

W. Ma, Wrinkled1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp, PLoS One, vol.8, p.68887, 2013.

X. Wang, New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus, BMC Plant Biol, vol.15, pp.1-18, 2015.

M. K. Samanta, A. Dey, and S. Gayen, CRISPR/Cas9: an advanced tool for editing plant genomes, Transgenic Res, 2016.

T. Lawrenson, Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease, Genome Biol, vol.16, p.258, 2015.

Q. Li, WRINKLED1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus, Front. Plant Sci, vol.6, p.1015, 2015.

P. Hofvander, Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism, Plant Biotech. J, 2016.

D. An and M. C. Suh, Overexpression of Arabidopsis WRI1 enhanced seed mass and storage oil content in Camelina sativa, Plant Biotech. Rep, vol.9, pp.137-148, 2015.

J. Zale, Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass, Plant Biotech. J, vol.14, pp.661-669, 2016.

H. Tan, Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds, Plant Physiol, vol.156, pp.1577-1588, 2011.

N. Elahi, R. W. Duncan, and C. Stasolla, Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1, Plant Physiol. Biochem, vol.100, pp.52-63, 2016.

Y. Yang, ectopic expression of WRINKLED1 affects fatty acid homeostasis in Brachypodium distachyon vegetative tissues, Plant Physiol, vol.169, pp.1836-1847, 2015.

M. Kanai, S. Mano, M. Kondo, M. Hayashi, and M. Nishimura, Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds, Plant Biotech. J, vol.14, pp.1241-1250, 2016.

N. D. Adhikari, P. D. Bates, and J. Browse, WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds, Plant Physiol, vol.171, pp.179-191, 2016.

Y. Zhang, Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana, Plant Cell, vol.27, pp.620-632, 2015.

A. Fatihi, Plant Science, vol.250, pp.198-204, 2016.

M. Noguero, DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis, Plant J, vol.81, pp.453-466, 2015.

L. Si, OsSPL13 controls grain size in cultivated rice, Nat. Genet, vol.48, pp.447-456, 2016.

L. Ma, TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield, Plant Biotech. J, vol.14, pp.1269-1280, 2016.

T. Obata, Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield, Plant Physiol, vol.169, pp.2665-2683, 2015.

S. D. Singer, J. Zou, and R. J. Weselake, Abiotic factors influence plant storage lipid accumulation and composition, Plant Sci, vol.243, pp.1-9, 2016.

M. H. Siebers, Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress, Glob. Chang. Biol, vol.21, pp.3114-3125, 2015.

E. Mangelsen, Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis, Mol. Plant, vol.4, pp.97-115, 2011.

C. Kole, Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects, Front, Plant Sci, vol.6, p.563, 2015.

E. Terrasson, Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads, J. Exp. Bot, vol.66, pp.3737-3752, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392700

C. Chen, Molecular characterization of rice endosperm development under heat stress identifies OsMADS87 as a determinant of seed size and thermal sensitivity, Plant Physiol, vol.171, pp.606-622, 2016.

J. L. Liao, Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage, BMC Genomics, vol.16, p.18, 2015.

N. Sreenivasulu, Designing climate-resilient rice with ideal grain quality suited for high-temperature stress, J. Exp. Bot, vol.66, pp.1737-1748, 2015.

C. E. Bita and T. Gerats, Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops, Front. Plant Sci, vol.4, p.273, 2013.

D. Grimanelli and F. Roudier, Epigenetics and development in plants: green light to convergent innovations, Curr. Top. Dev. Biol, vol.104, pp.189-222, 2013.

M. F. Belmonte, Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.435-444, 2013.

D. Winter, An Electronic Fluorescent Pictograph browser for exploring and analyzing large-scale biological data sets, PLoS One, vol.2, p.718, 2007.