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RESUME

Mes travaux de recherche s’inscrivent dans le cadre du développement de techniques
d’apprentissage statistique (« machine learning ») pour la recherche thérapeutique.

Ils visent en particulier a proposer des outils informatiques permettant d’exploiter des jeux
de données pour en extraire des hypothéses biologiques expliquant au niveau génomique
ou moléculaire les différences entre échantillons observées a un niveau macroscopique.
De tels outils sont nécessaires a la mise en ceuvre de la médecine de précision, qui requiert
d’identifier les caractéristiques, génomiques ou autres, expliquant les différences de
pronostic ou de réponse thérapeutique entre patients présentant les mémes symptomes.

Ces questions peuvent souvent étre formulées comme des problémes de sélection de
variables. Les jeux de données utilisés, cependant, contiennent généralement largement
plus de variables que d’échantillons, ce qui pose des difficultés statistiques. Pour répondre
a ces défis, mes travaux s’orientent autour de trois axes.

Premiérement, les connaissances accumulées sur les systemes biologiques peuvent sou-
vent étre représentées sous la forme de réseaux biologiques. Sous I’hypothése que les
variables connectées par ces réseaux sont susceptibles d’agir conjointement sur un phé-
notype, nous proposons d’utiliser ces réseaux pour guider un algorithme de sélection de
variables. Il s’agit ici d’utiliser des contraintes qui encouragent les variables sélectionnées
a étre connectées sur un réseau donné. La formulation que nous avons proposée, qui
s’inscrit dans le cadre plus large de ce que j’appelle la pertinence régularisée, permet
de résoudre efficacement le probléme de sélection de variables sur des jeux de données
comportant des centaines de milliers de variables.

Deuxiement, pour compenser le faible nombre d’échantillons disponibles, les méthodes
dites multitaches résolvent simultanément plusieurs problemes, ou taches, proches. Nous
avons étendu la pertinence régularisée a ce contexte. Je me suis aussi intéressée au cas
ou il est possible de définir une similarité entre taches, afin d’imposer que les variables
sélectionnées pour deux taches soient d’autant plus similaires que les deux taches sont
semblables. Ces approches sont pertinentes dans le cas de I’étude de la réponse a différents
traitements médicamenteux : on peut alors utiliser la similarité entre les structures
moléculaires de ces médicaments, sujet que j’ai étudié pendant ma these.

Enfin, la plupart des approches de sélection de variables utilisées dans le contexte de
la génomique ne peuvent expliquer le phénomene d’intérét que par des effets linéaires.
Cependant, de nombreux travaux indiquent que les régions du génome peuvent interagir
de facon non-linéaire. Modéliser de telles interactions, que I’on qualifie d’épistatiques,
aggrave cependant les problemes statistiques déja rencontrés précédemment, et crée aussi
des problemes computationnels : il devient difficile d’évaluer toutes les combinaisons
possibles de variables. Mes travaux portent aussi bien sur les difficultés calculatoires que
sur les difficultés statistiques rencontrées dans la modélisation d’interactions quadratiques
entre paires de régions du génomes. Plus récemment, nous avons aussi développé des
approches permettant la modélisation d’interactions plus complexes grace a des méthodes
a noyaux.
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CONTEXT

Differences in disease predisposition or response to treatment can be explained in great
part by genomic differences between individuals [218]. In consequence, there is a growing
interest for incorporating genomic data into precision medicine, that is, tailoring disease
treatment and prevention strategies to the individual genomic characteristics of each
patient [4].

To be able to use genetic characteristics in precision medicine, we need to identify genetic
features, which I call here biomarkers, associated with disease risk, diagnostic, prognosis, or
response to treatment. This endeavor hence depends on collecting considerable amounts
of molecular data for large numbers of individuals. It is enabled by thriving developments
in genome sequencing and other high-throughput experimental technologies, thanks to
which it is now possible to accumulate millions of genomic descriptors for thousands of
individuals.

Unfortunately, we still lack effective mathematical methods to reliably detect, from these
high-dimensional data, which of these genomic descriptors (or features, or variables)
determine a phenotype such as disease predisposition or response to treatment [142, 252].

In this chapter, I will briefly give some background on both omics and health (Section 1.1)
and on statistical methods for feature selection in high dimension, before higlighting
some of the challenges of extracting relevant features from omics data (Section 1.2). I will
also introduce biological networks and a few concepts of network science in Section 1.3.
Finally, I will outline my contributions to this domain (Section 1.4).

1.1 Omics and health

Most of my recent scientific contributions belong to the domain of precision medicine. In
this section, I will briefly introduce this field, as well as genome-wide association studies,
on which I have focused much of my efforts.

1.1.1 Precision medicine

“Precision medicine” - sometimes also “personalized medicine” - is a term used to describe
using information beyond the patient’s symptoms to diagnose or treat their disease. These
information can be clinical (age, sex, blood test results) or genetic. The social and econom-
ical potentials of precision medicine are huge, particularly in cancer applications. This
is underlined by several recent large-scale initiatives, such as The Cancer Genome Atlas
(TCGA)!, the recent opening of the UC San Francisco Precision Cancer Medicine Building,
President Obama’s 2015 Precision Medicine Initiative, or, in France, the Médecine France
Génomique 2025 plan.

1 http://cancergenome.nih.gov/
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Context

Early examples of the usage of genomic information in precision medicine include the
breast cancer drug trastuzumab (Herceptin), which dramatically improves the prognosis of
patients whose tumor overexpresses the HER-2 gene, or the colon cancer drugs cetuximab
(Erbitux) and panitumumab (Vectibix), which are known to have little effect on patients
that have a mutation in the KRAS gene. How can we further encourage such discoveries?

1.1.2 Genome-wide association studies

Thanks to thriving developments in high-throughput experimental technologies, it is now
rather easy to collect tens of millions of genomic descriptors for thousands of biological
samples. These descriptors are diverse in nature, and contain data types such as single-
point mutations, DNA methylation patterns, or gene expression levels.

Gene expression data, in which the messenger RNA levels of tens of thousands of genes
are measured either thanks to RNA microarray or, more recently, RNA sequencing tech-
nologies, are possibly the most widespread of these molecular data types.

Genome-Wide Association Studies. In most of my work over the past eight years,
however, I have focused on a specific type of molecular data, collected in the context
of Genome-Wide Association Studies, or GWAS. GWAS are one of the prevalent tools for
detecting genetic variants associated with a phenotype. They consist in collecting, for
a large cohort of individuals, the alleles they exhibit across of the order of 250000 to
several millions of Single Nucleotide Polymorphisms, or SNPs. SNPs are individual locations
across the genome where nucleotide variations can occur. The same individuals are also
phenotyped, meaning that a trait of interest is recorded for each of them. This trait can be
binary, such as disease status, or continuous, such as age of onset or reduction in tumoral
burden. The goal of these studies is to identify which of the SNPs are associated with the
phenotype of interest.

Missing heritability. While GWAS have provided novel insights into the pathways
underpinning many common human diseases, a number of frustrating results have also
been reported [255]. Indeed, most of the genotype-to-phenotype associations they have
detected are weak, many of their findings have failed to be replicated in other studies, and
the genetic variants they uncovered often fall short of explaining all of the phenotypic
variation that is known to be inheritable. This last phenomenon is often referred to as the
missing heritability problem [158].

Many reasons have been advanced for these shortcomings [158, 171]. Among those, [ am
particularly interested in the lack of statistical power that is due to the relatively small
number of samples compared to that of features (see Section 1.2), as well as the failure
to account for nonlinear effects. I find it important to note, however, that phenotypic
inheritability can be due to genomic variation other than SNPs, such as epigenetics or
DNA copy number, and intertwined with environmental effects; this suggests that the
proportion of phenotypic variation that can be explained from GWAS is possibly smaller
than previously thought.

These issues are not limited to SNP data, and indeed span the breadth of data-driven
biology. For example, state-of-the-art approaches on gene expression data yield discon-
certingly disparate molecular signatures for the same phenotype [65]. Hence, although I
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frequently focus on GWAS for simplicity, the methods I describe can often be applied to
all sorts of molecular data sets.

Linkage disequilibrium The difficulty of feature selection in high dimension is exacer-
bated by the presence of correlation between features. Unfortunately, molecular features
tend to present high levels of correlations. In particular, although recombination can be
expected to break down non-random genetic associations between genetic loci, such asso-
ciations exist, and are refered to as linkage disequilibrium, or LD. Linkage disequilibrium
can be due to genetic linkage, that is to say, the tendency for variants located nearby on
the same chromosome to be transmitted together through meiosis, therefore being highly
correlated. In addition, LD patterns can be due to natural selection, which may favor
alleles that together affect reproductive fitness; genetic drift; or population bottlenecks,
to name a few reasons.

Linkage disequilibrium is often addressed by LD pruning, which is a preprocessing step
consisting in sequentially scanning the genomes for pairs of correlated SNPs, keeping
only the one with the higher minor allele frequency. Pruning may leave regions of the
genomes without any representative SNP. By contrast, LD clumping is performed after the
association tests, which ensures that the SNPs with the strongest test statistics are not
filtered out [199].

1.2 Feature selection in high dimension

In most of my work, I cast biomarker discovery as a feature selection problem. In this
section, I will sketch a few approaches for feature selection, in particular statistical tests
— which will be considered filtering approaches in machine learning — and embedded
methods, with regularized linear regressions. I will also discuss the notion of stability of a
feature selection method, and the extension of these approaches to nonlinear models.

1.2.1 Biomarker discovery as a feature selection problem

The fields of statistics, machine learning, and data mining, which are central to the
analysis of genomic data, have dramatically progressed in the last twenty-five years.
Feature selection, which aims at identifying the most important features in a data set
and discarding those that are irrelevant or redundant [92], is of particular interest for
identifying biologically relevant features.

However, too few of the recent efforts in this area have been focused on the challenges
that molecular data represent, as they exhibit few samples in high dimension. Indeed,
there is a broadening gap between the number of features we are able to measure for a
given sample (easily reaching tens of millions with current technologies) and the number
of samples we can collect (more commonly in the order of thousands).

This high-dimensional, low sample-size situation drastically limits the power of general-
purpose statistical and machine learning approachess [44, 114]. In sharp contrast with the
current “big data” vision, we cannot expect this problem to disappear with improvements
in technology: the number of individuals with a given condition that we can sequence will
never outgrow the millions of features that can be collected about them. This issue, far
from being restricted to genomic data, is of broad interest in a variety of domains ranging
from medical imaging to quantitative finance and climate science.



Context

In what follows, I will review classical approaches to feature selection and their limitations
when it comes to biomarker discovery. I find it important to note here that, while the
presence of statistical associations in data can help generate new hypotheses, corrobora-
tions on independent data sets and in-depth investigations of the underlying molecular
mechanisms are necessary to substantiate these statistical findings.

1.2.2 Notations

Throughout this document, unless otherwise noted, the data we work with will be rep-
resented by a couple (X,y) € R x R"™. n is the number of samples or individuals,
and m the number of genomic features that have been measured for each of them. X is
the genotype data matrix, and y represents the phenotype. In the case of a qualitative
(case-control) phenotype, y belongs to {0, 1}". I will denote by z;, (sometimes X;,) the
entry at the i-th line and p-th column of X, that is to say, the genotype at the p-th mea-
surement (gene expression, SNP, methylation status, etc) of sample i. y; will denote the
phenotype of sample i. The m-dimensional vector describing sample i is denoted as x;.
The underlying assumption is that the n couples (x;, y;) are realizations of two random
variables X, which is m-dimensional, and Y, which is either binary or real-valued.

In the most general case, the measurements along the genome are real-valued number.
However, in human genetics, SNPs are ternary variables, as an individual can either be
homozygous in the major (most frequent) allele, homozygous in the minor (least frequent)
allele, or heterozygous. Different encodings of the SNPs correspond to different biological
models. For example, the dosage encoding, in which the SNP is encoded by its number
of minor alleles (0 for homozygous major, 1 for heterozygous, 2 for homozygous minor),
supposes a different effect for all three possibilities. By contrast, the dominant encoding,
where the SNP is encoded by 0 in the absence of minor allele and 1 otherwise, supposes
a dominant effect. Conversely, in the recessive encoding, the SNP is encoded by 1 if it is
homozygous in the minor allele, and 0 otherwise.

1.2.3 Filtering approaches: statistical tests

Filtering approaches to feature selection consist in considering the features one by one,
and evaluating for each of them, independenty of the others, whether it is correlated, or
associated, with the outcome of interest. Statistical tests are the most common approaches
to biomarker discovery from molecular data.

Statistical tests for gene expression data. One of the most common analysis of gene
expression data consists in running statistical tests to determine the genes that are
differentially expressed between two conditions. Differential variability analysis is also
garnering interest, as several studies have identified differentially variable genes involved
in cancer [62, 103] or in neurological disorders [159, 281]. Most statistical tests to compare
gene expression between two conditions, such as edgeR [208] and DESeq [3, 154] for
differential expression and MDSeq [203] and DiPhiSeq [143] for differential dispersion,
are based on the negative binomial distribution. While this topic is outside the scope of
the present document, we recently applied these approaches to the detection of genes
with a differential expression dispersion in cancer [198].
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Statistical tests for GWAS. In GWAS, statistical tests are run to detect associations
between the SNPs and the phenotype. These statistical tests can account for linkage
disequilibrium [50, 243], leverage linear mixed models to correct for sample relatedness —
which invalidates the assumption of population homogeneity underlying most tests [188,
201], or assess the joint contribution of multiple genetic loci, either additively [268, 282]
or multiplicatively for pairwise interactions [104, 262, 284]. An overview of classical GWAS
techniques can be found in Bush and Moore [34] or Gumpinger et al. [91].

1.2.4 Embedded approaches: regularized linear regression

A major drawback of filtering approaches is that features are selected independently from
each other. By contrast, so-called embedded approaches [92] consider all features jointly.

Embedded approaches offer a way to detect combinations of variants that are associated
with a phenotype. Indeed, they learn which features contribute best to the accuracy of a
machine learning model (a classifier in the case of case/control studies, or a regressor in
the case of a quantitative phenotype), while it is being built.

Within this framework, the leading example is that of linear regression [95]. A linear
regression model assumes that the phenotype can be explained as a linear function of the
biomarkers:

m
Yi :inpﬁp+€iv (11)
p=1
where the regression weights 1, ..., 3,, are unknown parameters and ¢; is an error term.

Note that we can equally assume that the mean of y is 0, or that the first of the m biomarkers
is a mock feature of all ones that will serve to estimate the bias of the model. The least-
squares methods provides estimates of 31, . . ., 3,, by minimizing the least-square objective
function (or data-fitting term) given in matrix form by Eq. (1.2):

arg min|| X3 — y|3. (1.2)
BER™

Regularization When m > n, as it is the case in most genome-wide biomarker discov-
ery datasets, Eq. (1.2) has an infinite set of solutions. In order to regularize the estimation
procedure, one can add to the least-square objective function a penalty term, or regulariza-
tion term, that will force the regression weights to respect certain constraints. Eq. (1.2)
becomes

argmin|| X 8 — y|3 + A Q(B), (1.3)
BER™

where Q : R™ — R is a regularizer and A € R™ is a parameter which controls the balance
between the relevance and the regularization terms, and is typically set by cross-validation.

Ridge regression The more well-known exemple of such a regularized regression is
probably the rigde regression, for which

Qridge(ﬁ) = ||BH2 (1.4)

The ridge regression estimator of 3, obtained by solving Eq. (1.3) with 2 given by Eq. (1.4),
is biased, unlike the ordinary least squares estimator obtained by solving Eq. (1.2), but it
has a lower variance. The resulting linear model is less likely to overfit.
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Lasso A very popular regularizer for feature selection is the ¢;-norm of 3, ||3||: =
me:1 |Bp|, which has the effect of shrinking the 5, coefficients and setting a large number
of them to zero. The resulting model is called sparse [97]. The features with zero weights
do not enter the model and can hence be rejected; only the features with non-zero weights
are considered to be selected. This results in the lasso [247], which estimates the regression
weights by solving Eq. (1.5). The reason for using the ¢;-norm, rather than the /,-norm
which counts the number of variables that enter the model and hence directly enforces
sparsity, is that with the /y-norm the resulting objective function would be non-convex,
making its minimization very challenging computationally.

argmin|| X 3 — yl|3 + \||8]]1. (1.5)

1.2.5 Stability

The stability (or robustness) of feature selection procedures, meaning their ability to retain
the same features upon minor perturbations of the data, remains a major predicament
in the high-dimensional, low sample-size setting. Indeed, current approaches tend to
focus on the prediction error of the models they build, and finding the relevant features is
much harder than finding those that give optimal predictivity [182]. Current algorithms
are typically highly unstable, often yielding widely different results for different sets of
samples relating to the same question [57]. In practice, filtering approaches based on
t-test scores often still yields the most stable selection [99, 129]. This high variability
implies that these algorithms capture idiosyncrasies rather than truly relevant features.
This casts doubts on the reliability of predictive algorithms built on the selected features
and impedes interpreting these features to yield novel biological insights.

Elastic net One of the reasons of the unstability of the lasso in high-dimensional
settings is that, in such settings, features are correlated, either by nature (and this is
the case in most molecular data sets) or merely by chance (as the number of samples is
relatively small). The lasso will then randomly select one of a group of several correlated
features. To avoid this, the elastic net [69, 289] uses a mixed ¢; and /5 regularizer which
will tend to select all of the correlated features that explain the outcome:

aggeﬂggnum —yll3+ X 0Bl + @ —n)lIBI3) - (1.6)

While elastic net solutions tend to be more stable than lasso ones, they remain too unstable
for interpretability.

Stability selection for the lasso  Recent efforts to use multiple repetitions of the proce-
dure on subsamples of the data to make feature selection algorithms more stable [164, 220],
are yielding encouraging results. However, they are computationally intensive and their
theoretical guarantees do not hold in high dimensions. Applications of these methods to
biomarker detection remain rare.

Consistencyindex Several ways of measuring the stability of a feature selection method
have been proposed [183]. Among them, the Kuncheva consistency index [128], which we
generalized to the comparison of sets of selected features of different sizes [11], seems
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the better adapted to our setting [183]. The consistency index between two feature sets S
and &’ is defined relative to the size of their overlap:

_ Observed(|S N S’|) — Expected(|S N S'|)
~ Maximum(|S N S’|) — Expected(|S N &)

Ic(8,8') (1.7
where Maximum(|S N §’|) = min(|S|, |S']), and Expected(|S N &’|) is the expectation of
obtaining |S N &’| features in S when randomly picking |S’| features out of m under the
hypergeometric distribution:

/
Expected(|SNS'|) = |8|nf| (1.8)

Finally,

SnS'|—|S||S]
I A . 1.
c(8:8) = (8], — IS8 (1.9)

For an experiment with K folds, the consistency is computed as the average of the w

pairwise consistencies between sets of selected features:

K K
o180 85x) = PEZU S S poss), (1.10)

k=11l=i+1

1.2.6 Nonlinearities and kernels

In very high dimensions, feature selection approaches are generally limited to contemplat-
ing only additive effects between the variables, although many biological phenomena are
nonlinear. While a variety of statistical tests have been developed to characterize so-called
epistatic effects, most of those are limited to quadratic models involving only two SNPs at
a time [170, 181, 207]. Indeed, the statistical problems that arise when considering more
features than samples are aggravated in this context; if one has 500 000 SNPs to test, then
the number of pairs of SNPs becomes of the order 125 billions.

Among the tools to model nonlinearities, kernels are dot products in complex, sometimes
infinite-dimensional feature spaces, that can encode many types of interactions between
the features originally describing the data in their input space.

Given an input space X' (here, ¥ = R™), akernelis a functionk : X xX — R, and such that
there exists a function ¢ : X — #, where H is a Hilbert space, such that k(z, ') = (x, ') .
Here (., .)3; denotes the dot product on #.

In addition, the Moore—Aronszajn theorem [5] states that any symmetric function
k: X x X — Rthatverifies that, foranyn € N, 1, xo,...,x, € X, c1,¢2,...,¢, € R,

iicicjk(mi,mj) > 0, (111)

i=1 j=1

there exists a Hilbert space H and a function ¢ : X — H such that k(z,z') = (x,2'),
even if we do not have access to H or ¢.

Because kernels can easily be computed on the input space, machine learning algorithms
that only rely on dot products between objects, such as principal component analysis,



Context

ridge regression, or support vector machines (SVMs), are amenable to the so-called kernel
trick: they can be applied in feature space very efficiently, as all computations are done in
input space.

In statistical genetics, kernels have long been used to compute the similarity of individuals
based on their genomes [131, 145, 146]. Among the most frequently used kernels for this
purpose, let us mention

o the weighted linear kernel, k(z;, x;) = > /" wpziprjp. The weights (w1, wa, ..., wy,)
can be all identical, or set in such a way as to give more importance to some loci
(such as rare variants, or variants likely to be deleterious);

o the Identical By State (IBS) kernel [131]: k(zi, ;) = 5 > ", IBS(zs, z), Where
IBS(zjp, z;,) denotes the number of alleles (0, 1, or 2) shared identical by state
(meaning without any information as to whether they are identical by descent or just
by chance) between individuals 7 and ; at locus p. The kernel can also be weighted

as above;

2
e the weighted quadratic kernel, k(x;, ;) = <Z;n=1 WpTipTjp + 1) , which models both
additive and quadratic terms of interaction between variants. The weights are chosen
as for the weighted linear kernel.

SKAT. The most well-known test based on kernels, the Sequence Kernel Association Test,
or SKAT, is quite popular thanks to its flexibility. SKAT [268] is intended to compute the
association between a set of variants and a phenotype; hence making it possible to include
rare variants data in the association score between a genomic region and a phenotype.
SKAT is a score-based variance-component test, meaning that it contrasts the variance of
each observed allele with its expected variance. It can be used for both case-control and
quantitative phenotypes, can account for covariates, and uses kernels to model potential
non-linearities between SNPs. While the kernels presented above were computed over the
entire genotype (all m SNPs), in SKAT the kernels use only the set of variants to be tested.

SKAT first fits a linear model between the non-genetic covariates of interest and the
phenotye, and then computes a variance component score statistic as

Q=9 Ky, (1.12)

where g is the residual of y under the aforementioned linear model and K € R™*" the
kernel matrix such that K;; = k(x;, ;). Under the null hypothesis, @) follows a mixture of
chi-square distributions, which makes it possible to compute p-values for this statistical
test analytically.

Hilbert-Schimdt Independence Criterion. Kernels have also been used for feature
selection beyond genetics. In particular, measuring the dependence between two random
variables X and Y can be achieved by the Hilbert-Schimdt Independence Criterion, or
HSIC [84]:

HSIC(Xv Y) = Ew,w’,y,y’ [k(xv m/)l(ya y/)] + Em,m’ [k(w7 IB,)]Ey,y’ [l (y7 y/)]
— 2Bqr y [Eo[k(z, @) |Ey [1(y, 9] , (1.13)
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where £ : R” x R" — Rand [ : R” x R" — R are positive definite kernels, and E, 5/, .
denotes the expectation over independent pairs (z, y) and (z’, y') drawn from the distribu-
tion of (X,Y). HSIC(X,Y) is equal to 0 if X and Y are independent, and is non-negative
otherwise. Several estimators have been proposed to compute HSIC from observations
(g95,v) [86, 232], where g; € R™ contains n observations for one feature and corresponds
to a column of X. These can be used to design statistical tests of independence [85] or to
perform feature selection by ranking the features by descending value of HSIC [233].

1.3 Network biology

Biological systems are complex systems composed of many interacting entities. In partic-
ular, the molecular features we consider, whether genetic sequences, genes, or mutations,
do not act in isolation. Biological networks, which are mathematical representations of
these interactions as graphs, are an important tool to give context to these features and
model their relationships. A large part of my work consists in developing ways of us-
ing these biological networks to guide biomarker discovery. In this section, I give some
background on both biological networks and their mathematical modelization.

1.3.1 Biological networks

Biological systems are often represented as networks, which capture relationships or
interactions between biological entities, such as genes, metabolites, or proteins. Examples
include metabolic networks; cell signaling networks; gene regulatory networks; protein-
protein interaction networks; disease-gene interaction networks, which connect diseases
to genes that, when mutated, contribute to the disease; or drug-protein interaction net-
works, linking drugs to their protein target.

Gene-gene interaction networks can play an important role in biomarker discovery as they
encode information about which regions of the genome “work” together, or against each
other, towards a particular function. In particular, a genetic aberration can have a negative
effect on the function of genes that have no mutation, but are connected to this mutated
gene [17]. Conversely, the impact of a mutation can be negated by functional redundancy.
In additions, proteins involved in the same disease tend to interact with each other [187],
and genes linked to diseases with similar phenotypes tend to interact [80]. This suggests
that a disease phenotype is rarely the consequence of a single genetic anomaly, but rather
a perturbation of a whole network of interacting molecules [18, 75, 111].

Ressources for gene-gene interaction networks include the STRING database [240], which
contains physical and functional interactions, both computationally predicted and experi-
mentally confirmed, for over 2 000 organisms, or BioGRID [36], which includes interactions,
chemical associations, and post-translational modifications from the literature. In ad-
dition, systems biologists are building specialized networks, focused on the pathways
involved in a particular disease. One example of such networks is ACSN [130], a compre-
hensive map of known molecular mechanisms implicated in cancer.

1.3.2 Network science

Networks, or graphs, have attracted considerable attention in the data mining and ma-
chine learning communities. Beyond biological systems, they may represent chemical
compounds, ecological systems, functional connectivity in the brain, or social networks,
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both on and off the web. Being able to manipulate these objects and, in particular, to
determine which part of such systems is responsible for a particular outcome, is a modeling
question that does not concern only biomarker discovery. For example, neuroscientists
search for subgraphs in brain connectivity networks from functional MRI screens that
correlate with certain types of behavior or cognitive tasks [1, 167].

In what follows, I define a few terms commonly used in network science that I will use
throughout this document.

Graph / Network. A graph (network) (V, £) consists of a set of vertices (nodes) V and
a set of edges (links) £ made of pairs of vertices. If the pair is ordered, then the edge is
directed; otherwise, it is undirected. A graph with no directed edge is called undirected,;
unless otherwise specified, this is the type of graph we consider here. We use the notation
p ~ ¢ to denote that vertex p and vertex ¢ form an edge in the graph considered.

Adjacency matrix. Given a graph G = (V, £), its adjacency matrix is a square matrix
W € R¥4 where d = |V| is the number of vertices, and W,,, # 0 if and only if there is an
edge between the p-th and the ¢-th elements of V. W, € R represents the weight of edge
(i, 7). If all non-zero entries of W' are equal to 1, the graph is said to be unweighted.

Network module. GivenagraphG = (V,€&),agraphG’ = (V',£’) is said to be a subgraph
of G if and only if V' is a subset of V and £’ is a subset of £. In systems biology, the term
network module refers to a subgraph of a biological network whose nodes work together to
achieve a specific function. Examples of modules include transcriptional modules, which
are sets of co-regulated genes that share a common function, or signaling pathways, that
is to say chains of interacting proteins that propagate a signal through the cell. In the
context of biomarker discovery, we are interested in finding modules of a given biological
network that are associated with the phenotype under study.

Graph Laplacian. Given a graph G of adjacency matrix W € R%*¢, the Laplacian [165]
of G is defined as L = D — W, where D is the degree matrix, that is to say a d x d diagonal
matrix with diagonal entries D,, = Zgzl Wy The graph Laplacian is analog to the
Laplacian operator in multivariable calculus, and similarly measures to what extent a
graph differs at one vertex from its values at nearby vertices. Given a function f : V — R,
fTLf quantifies how “smoothly” f varies over the graph [230].

1.4 Contributions
In this document, I will give an overview of my contributions to the field of machine
learning for biomarker discovery. Those contributions follow three axes:

e The integration of prior biological knowledge, encoded as networks, to machine
learning methods for biomarker discovery (Chapter 2);

e The development of multitask algorithms, which alleviate the data scarcity by jointly
fitting models for related problems (Chapters 3 and 4);
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e The development of methods for nonlinear feature selection, allowing the field of
biomarker discovery to depart from single-feature or additive models (Chapters 5
to 7).

The work I present in this HDR thesis fall in the framework of biomarker discovery cast as a
feature selection problem, but this is not the sole focus of my research. In Appendix A, the
samples (and not the features) are genes, and the problem of biomarker discovery, or rather
disease gene prioritization, is cast as a semi-supervised learning problems. In Appendix B,

I discuss the applications of multitask learning to the prediction of drug-protein binding.

I will conclude with some lessons drawn not only from this work but, more generally, from
my experience developing and applying machine learning to therapeutic research at large
(Chapter 8), before sketching a few perspectives (Chapter 9) for my work.
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NETWORK-GUIDED BIOMARKER DISCOVERY

One way to address the limited power of classic feature selection methods on high-
dimensional biological data sets is to incorporate prior biological knowledge to the proce-
dure. Because genes do not work in isolation, but rather cooperate through their interac-
tion (physical, regulatory, or through co-expression) in cellular pathways and molecular
networks, this prior knowledge is often available in a structured way, and in particular
under the form of networks (see Section 1.3.1).

These gene-gene interaction networks can be used to define networks between genomic
descriptors, by mapping these descriptors to genes, using for instance in the case of SNPs
a fixed-size window over the genetic sequence, and connecting together all descriptors
mapped to the same gene, and all descriptors mapped to either of two interacting genes
(see Section 2.3.7).

In this chapter, I make the assumption that genetic features that are linked on such a
network are more likely to work jointly towards explaining the phenotype of interest,
and that such effects would otherwise be missed when considering them individually.
Compared to pathway-based approaches, which assess whether predefined sets of genes
are associated with a given trait, network-based approaches introduce flexibility in the
definition of associated gene sets.

In what follows, I will review three families of approaches, namely post-hoc analyses
(Section 2.1), regularized regression (Section 2.2), and penalized relevance (Section 2.3).
This last family of approaches is one we proposed in [11] with the SConES (Selecting
Connected Explanatory SNPs) algorithm, and I will also summarize some experimental
results we have obtained with this method (Section 2.4).

Appendix A, in which I describe how to cast the problem of disease-gene prediction as
a graph node labeling problem, review existing methods and describe how to use recent
graph neural network approaches, also relies on this assumption.

The contents of this chapter have been published in

e Chloé-Agathe Azencott, Dominik Grimm, Mahito Sugiyama, Yoshinobu Kawahara,
and Karsten M. Borgwardt. Efficient network-guided multi-locus association map-
ping with graph cuts. Bioinformatics, 29(13):i171-i179, 2013. Proceedings of the
21st Annual International Conference on Intelligent Systems for Molecular Biology
(ISMB 2013).

e Chloé-Agathe Azencott. Network-guided biomarker discovery. In Machine Learning
for Health Informatics, number 9605 in Lecture Notes in Computer Science. Springer,
2016.
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2.1 Network-based post-analysis of association studies

Most of the methods developed to integrate biological networks to the analysis of GWAS
results are post-hoc methods. They start from a classic, single-SNP GWAS, to obtain
the association of each SNP with the phenotype of interest. The SNP p-values are then
converted to gene p-values, These p-values are assigned to the nodes of an existing
biological network. The goal of network-based post-analysis is to find modules of this
network that concentrate more small p-values than would be expected by chance.

These methods can therefore leverage state-of-the-art statistical tests that, for example,
account for sample relatedness [245], address issues related to correlation between markers
(linkage disequilibrium) [148], or are tailored to the discovery of rare variants [138]. In
addition, they can easily be applied without access to raw data, only on the basis of
published summary statistics, which makes them particularly appealing.

Summarizing SNP statistics into gene statistics requires to first map SNPs to genes. This
is typically achieved by physical mapping, that is to say, based on distance to the gene on
the genomic sequence. Gene p-values are then obtained using the minimum, maximum,
or average p-value. A popular alternative consists in using VEGAS, which accounts for
linkage disequilibrium between markers [147].

Several search methods have been proposed to find modules of significantly associated
genes from the resulting networks. dmGWAS [112] uses a greedy approach [42] to identify
modules that locally maximize the proportion of low p-value genes. Several variants of this
approach, using different greedy statistics, have been proposed. A prominent example, first
proposed in [19] and refined in PINBPA [260], relies on a simulated annealing search called
JActiveModule and first proposed for the discovery of regulatory pathways in protein-
protein interaction networks [107]. Finally, GrandPrixFixe [242] uses a genetic algorithm
for its search strategy.

Because exact searches are prohibitively expensive in terms of calculations, these ap-
proaches rely on heuristic searches that do not guarantee that the top-scoring module
is found. Methods such as that proposed by Mitra et al. [169] could be used to identify
top-scoring modules exactly, but are too computationally intensive to have been applied
to GWAS at this point. Computational cost also limit the application of these post-hoc
methods to networks defined over genes rather than directly over biomarkers.

2.2 Regularized linear regression

Rather than considering each SNP individually and then trying to combine evidences
through a biological network, the regularized linear regression framework (see Section 1.2.4)
allows to consider all SNPs joinlty in a linear model.

Many regularizers have been proposed, to satisfy a variety of constraints on the regression
weights, and have led to many contributions for the analysis of GWAS data [39, 225, 269,
285, 287]. In particular, it is possible to design regularizers that force the features that
are assigned non-zero weights to follow a given underlying structure [106, 166]. In the
context of network-guided biomarker discovery, we will focus on regularizers Q(3) that
penalize solutions in which the selected features are not connected over a given network.
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These regularizers include the overlapping group lasso [108], which encourages the selection
of biomarkers belonging to the same group (or set) of features. This method can be
applied to network-guided biomarker discovery if each network edge defines a group of
two biomarkers.

Another example is the generalized fused lasso [248], which smoothes regression weights
along the edges of the graph thanks toatermin |8, — /34|, where p ~ ¢ denotes that
p and ¢ are connected on the graph. I am not aware of any application of this approach to
biomarker discovery from genetic data, but [272] successfully applied it to Alzheimer’s
disease diagnostic from brain images.

Alternatively, based on work on regularization operators [230], Grace [140, 141] uses a
penalty based on the graph Laplacian L of the biological network, which encourages the
coefficients 3 to be smooth on the graph structure. This regularizer is given by Eq. (2.1),
and yields a special case of the generalized elastic net [231]. It penalizes coefficient vectors
(3 that vary a lot over nodes that are linked in the network.

Ograce(8) = B LB+ ullBlli =Y Wpg(Bp = B)> + 11 Y _ 1Byl- (2.1)
p

pq
Here one assumes the weights along the edges of the adjacency matrix are all positive.

Finally, while the previous approaches require to build a network over biomarkers, the
graph-guided group lasso [263] encourages genes connected on the network to be selected
in and out of the model together (graph penalty), and biomarkers attached to a given gene
to be either selected together or not at all (group penalty).

In practice, we found that the computational burden was a severe limitation to applying
either the overlapping group gasso or Grace to the analysis of more than a hundred
thousand markers [11]. On a similar note, the experiments presented in Yang et al. [279]
used at most 8 000 genes; the graph-guided group lasso Wang and Montana [263] used
1000 SNPs only; and the work in Xin et al. [272] used 3 000 voxels to describe brain
images. It is therefore unclear whether these methods can scale up to several hundreds of
thousands of markers.

While these computational issues might be addressed by using more powerful solvers
or parallel versions of the algorithms, regularized linear regression approaches are also
typically highly unstable (Section 1.2.5). Empirically, structural regularizers can help
alleviate this issue, but rather partially to date.

Finally, it is interesting to note that biomarkers are often represented as categorical
variables (such as the presence or absence of a mutation, or the number of minor alleles
observed in the case of SNPs). Applying linear (or logistic) regressions in this context,
although not entirely meaningless, can be considered an unsatisfying choice, unless one
uses a one-hot encoding vector, which increases the number of variables.

2.3 Penalized relevance

By contrast, we proposed in [11] to combine statistical tests with regularization. The
resulting method, which we called SConES for Selecting Connected Explanatory SNPs, can

be seen as a specific instance of a more general framework that I call penalized relevance.

SConES is based on a minimum cut reformulation of the problem of selecting features

15



16

Network-guided biomarker discovery

under sparsity and connectivity constraints, which can be solved exactly and rapidly. It is
therefore an efficient method to discover sets of genetic loci that are maximally associated
with a phenotype, while being connected in an underlying network.

2.3.1 General framework

Let us assume that the data is described over a set V of m features. We propose to carry out
feature selection by identifying the subset S of V that maximizes the sum of a data-driven
relevance function and a domain-driven regularizer.

The relevance function R : 2¥ — R quantifies the importance of a set of features with
respect to the task under study. It can be derived from a measure of correlation, or a
statistical test of association between groups of features and a phenotype.

Our objective is to find the set of features S C V that maximizes R under structural
constraints, which we model, as previously, by means of a regularizer ® : 2¥ — R, which
promotes sparsity patterns that are compatible with a priori knowledge about the feature
space. A simple example of regularizer computes the cardinality of the selected set. We
hence want to solve the following problem:

argmax R(S) — \®(S). (2.2)
SCy

Here again, A € R™ is a parameter which controls the balance between the relevance and
the regularization terms.

This formulation is close to that of the regularized linear regression presented in Sec-
tion 1.2.4. However, lasso-like approaches focus on the minimization of an empirical risk
(or prediction error), while the penalized relevance framework shifts the emphasis to the
maximization of feature importance with respect to the question under study. As with the
approaches presented in Section 2.1, this formulation makes it possible to leverage a large
body of work from statistical genetics to define relevance based on appropriate statistical
tests. Moreover, in this framework, optimization is done directly over the power set of V
(also noted as 2Y), rather than over R™. This presents the conceptual advantage of yielding
sparsity formulations that can be optimized without resorting to convex relaxation.

Although convex optimization tends to be more efficient than combinatorial optimization,
some choices of relevance and regularization result in better computational efficiency in
very high dimension.

In particular, relevance functions derived from linear models are modular, meaning that
the relevance of a set of biomarkers is computed as the sum of the relevances of the
individual biomarkers in this set.

More specifically, given a set V, a function ® : 2V — R is said to be submodular if for
any S, 7 CV,®(S)+ ¢(T) > ®(SUT)+ ®(SNT). This property is also referred to as
that of diminishing returns. Given a graph G and its adjacency matrix W, an example of
submodular function is the function ® : § = 3~ ¢ > o5 Wy In the case of equality, i.e.
O(S)+¢(T)=D(SUT)+®(SNT)forany S, 7 C V, ¢ is said to be modular. In this case,
the value of ® over a set is equal to the sum of its values over items of that set.

Submodular functions play an important role in optimization [74] and machine learn-
ing [15]. In particular, a number of submodular, structure-enforcing regularizers can
be derived from sparsity-inducing norms [14]. As the sum of submodular functions is
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submodular, if R is modular and ® submodular, solving Eq. (2.2) becomes a submodular
minimization problem and can be solved in polynomial time.

Unfortunately, algorithms to minimize arbitrary submodular functions are slow, with a
computational complexity in O(m’c 4+ m®) where c is the cost of one function evalua-
tion [186].

However, faster algorithms exist for specific classes of submodular functions. In particular,
graph cut functions can be minimized much more efficiently in practice with maximum
flow approaches [83], a particularity that has long been exploited in the context of energy
minimization in computer vision [125].

2.3.2  SConES: Selecting Connected Explanatory SNPs

One of the submodular, structure-enforcing regularizers that can be derived from sparsity-
inducing norms [14] is the Laplacian-based graph regularizer, which encourages the
selected features to be connected on a predefined graph defined by its adjacency matrix
W. It is very similar to Qgrace in Eq. (2.1), and given by

®Laplacian : € Z Z Whg- (2.3)
PES ¢¢S

In order to perform network-guided feature selection in the penalized relevance context,
we propose to use SKAT with a linear kernel (see Section 1.2.6) for R, and ® by the sum
of a cardinality constraint 7|S| and the Laplacian-based regularizer ‘I)Laplacian defined

above. The SKAT test statistic gives us a modular relevance function, that is to say, for
any S CV R(S) =>_ _s R({p}) We therefore obtain the optimization problem given by
Eq. (2.4):

arggamew —nlS| =AY W (2.4)

= peES pES q¢¢S

pES

2.3.3  Maximum flow solution

The submodular minimization problem in Eq. (2.4) can be cast as a graph-cut problem
and solved very efficiently. Indeed, we showed in Azencott et al. [11] that it is equivalent
to finding an s/t min-cut on the graph, depicted in Figure 2.1, whose vertices are that of G,
augmented by two additional nodes s and ¢, and whose edges are given by the adjacency
matrix A, where A, = AW, for1 <p,q <mand

Asp:{ R(ph) —n iR(pY >0 Atp:{n—R({p}) if R({p}) <1
0 otherwise 0 otherwise

(p=1,...,m).

This also holds if W is a weighted adjacency matrix, and therefore the min-cut reformula-
tion can also be applied to a weighted network. The original graph G can be directed or
undirected.

It is therefore possible to use maximal flow algorithms to efficiently optimize the objective
function defined in Eq. (2.4) and select a small number of connected SNPs maximally
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n—=Cp
(if n > cp)

/

source (s) sink (t)

(if ey > 1)

original graph

Figure 2.1: Graph for which finding the minimum cut is equivalent to maximizing the objective
function in Eq. (2.4). ¢, = R({p}) denotes the relevance of biomarker p, and W, is the
weight of the edge connecting biomarker p to biomarker ¢ in the given network.

associated with a phenotype. In our implementation, we use the Boykov-Kolmogorov
algorithm [27]. Although its worst case complexity is in O(n?ngnc), where ng is the
number of edges of the graph and n¢ the size of the minimum cut, it performs much better
in practice, particularly when the graph is sparse. We refer to this method as SConES, for
Selecting CONnected Explanatory SNPs.

SConES is available as a Matlab implementation!, as well as part of the sfan Python
package? and the Bioconducter package martini [45, 47].

2.3.4 Spectral formulation

Let us denote by f € {0,1}" the indicator vector of a subset S C V: f,issettolifpe S
and 0 otherwise. We also denote by r € R!VI the vector composed of values R({p}).

Eq. (2.4) can be rewritten using the Laplacian L of the network: the relevance term
> pcs R({p}) can be written as = f, while 5|S| = || f|lo and 3= s >0 Wpg = fTLf.
This term is equivalent to the Laplacian graph regularizer used in Grace (Eq. (2.1)). Hence
Eqg. (2.4) is equivalent to:

argmaxr ' f —n||f|lo— AfTLf. (2.5)
fe{o,1}m

Note how this formulation uses directly the ¢y, norm, without relaxing it to ¢;.

2.3.5 Setting the hyperparameters

As for regularized linear regression, we propose to set the regularization hyperparameters
A and 7 through cross-validation grid-search experiments. As stability is a concern, rather
than selecting the hyperparameters leading to the best predictive model, we pick as optimal
the parameters leading to the most stable selection according to the consistency index
defined in Section 1.2.5, and report as finally selected the features selected in all folds.
Finding a good balance between predictivity and stability, however, can prove difficult, as
approaches that systematically select all (or none) of the features will have high stability
but poor predictivity — and little interest. Upper bounding the number of features that
can be selected and excluding solutions that select no features allows us to address this
problem to some extent.

1 https://github.com/chagaz/scones
2 https://github.com/chagaz/sfan
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2.3 Penalized relevance

In addition, regularization parameter 7 is anti-monotonous with respect to the number of
selected features: if we denote the selected features for each n by S(7), we have S(n) C S(7')
if and only if n > 7.

Moreover, we can easily check that our formulation satisfies all assumptions to apply the
parametric maximum flow algorithm [76]. With this algorithm, we can obtain the entire
regularization path [96] along with the changes in  without increasing the time complexity.

In practice, this property of 7 is particularly interesting when we are given cardinality
constraints a priori over the size of the set of selected features. Then we can directly pick
from the regularization path the solutions that fulfill these constraints.

2.3.6  Group penalties

Rather than using biological networks to define constraints, one may wish to use predefined
sets (or groups) of features, such as regulatory or metabolic pathways. The overlapping
group lasso [108], mentioned in Section 2.2, was developed for this purpose. Given a set
P ={Py, P,,...,P.}of such groups of features, the coverage regularizer defined in Eq. (2.6)
below encourages the selected features to belong to a small number of the groups of P.

©:S— > wp (2.6)
PeP,PNS#@

where wp € RT denotes a predefined weight associated with group P. This regularizer can
once more be combined with a cardinality constraint 5|S|, and like the one used in SConES,
is a cut function, and therefore amenable to a similar maximum flow reformulation.

2.3.7 Building SNP-SNP networks from gene-gene networks

Most efforts to build biological networks are targeted towards the construction of gene-
gene networks, where nodes correspond to genes and links correspond to a relationship
between those gene, such as co-expression in a specific tissue, or physical interaction
of the proteins they code for. Building SNP-SNP networks from gene-gene networks is
not straightforward. In most of my work, I have used the three following approaches,
schematically explained on Figure 2.2:

e Genomic sequence network (GS): SNPs adjacent on the genomic sequence are linked
together. In this setting we aim at recovering sub-sequences of the genomic sequence
that correlate with the phenotype.

e Gene membership network (GM): SNPs are connected as in the sequence network
described above; in addition, SNPs near the same gene are linked together as well.
Usually, a SNP is considered to belong to a gene if it is either located inside said
gene ore within a pre-defined distance of this gene. In this setting we aim more
particularly at recovering genes that correlate with the phenotype.

e Gene interaction network (GI): SNPs are connected as in the gene membership network
described above. In addition, supposing we have a gene-gene interaction network
(derived, for example, from protein-protein interaction data or gene expression
correlations), SNPs belonging to two genes connected in the gene network are linked
together. In this setting, we aim at recovering potential pathways that explain the
phenotype.
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genel
— —
1 > 3 4 5 6 1 2 3 4 5 6
lvl
—0—CR——0B—C——=0® @ @ ® ®
(a) Genomic sequence network: SNPs ad- (b) Gene membership network: In addi-
jacent on the genomic sequence are tion, SNPs near the same gene (within
connected to each other a specified distance) are connected.

1

(c) Gene-interaction network: In addition, SNPs
near two interacting genes are connected.

Figure 2.2: Small examples of the three types of SNP networks that can be built.

We are currently considering additional ways of building SNP-SNP networks based on gene-
gene networks, based on different SNP-to-gene mappings. One of those is based on known
eQTLs (expression quantitative trait loci, which link SNPs to genes whose expression
they partially regulate), and the other on chromatin interaction matrices, which allow to
link SNPs to genes they are physically in contact with in live cells. While neither type of
information was available in data bases at the time we developed SConES, this has now
changed and both approaches have been used for the functional interpretation of GWAS
results [264].

2.4 Experimental results

I will now briefly summarize the results of our experiments applying SConES to both
simulated and real-world data.

2.4.1 Runtime of SConES

We evaluated the runtime of SConES, for a number of simulated scenarios, over a single
CPU over a single AMD Opteron CPU (2 048 KB, 2600 MHz) with 512 GB of memory.
Our findings indicate that SConES is typically one order of magnitude faster than the
overlapping group lasso [108] (see Section 2.2) and two orders of magnitude faster than
Grace [140] (see Eg. (2.1)). We were able to implement a faster version of Grace (see
Section 3.2), but it required more memory and could not run for more than 150 000 SNPs.

2.4.2  Ability of SConES to recover relevant features

On our simulations, SConES was systematically better than its state-of-the-art comparison
partners at leveraging structural information to retrieve the connected SNPs that were
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causal. The performance of SConES, as that of other graph-regularized approaches, is
strongly negatively affected when the network is entirely unrelated to the problem.

We also applied SConES to a large collection of 17 Arabidopsis thaliana flowering times
phenotypes from Atwell et al. [9] (up to 194 individuals, 214051 SNPs). The SNPs selected
by SConES are at least as informative (in a ridge regression model) as those selected
by other graph-guided approaches. For the phenotypes for which the lasso outperforms
SConES, it also outperforms all other graph-guided approaches, suggesting that the net-
work information is irrelevant in these cases. Finally, all graph-guided approaches retrieve
similar numbers of SNPs, but the SNPs identified by SConES tend to be more spread out
in the network, and to cover a larger number of genes previously known or suspected to
be associated with flowering time (as listed in Brachi et al. [29]).

2.4.3 Robustness to missing edges

Furthermore, we observe that removing a small fraction (1-15%) of the edges between
causal features does not significantly alter the performance of SConES. This means that
SConES is robust to missing edges, an important point when the biological network used
is likely to be incomplete.

2.4.4 Comparison of network-guided biomarker discovery approaches

We are currently comparing the application of various network-guided biomarker discovery
approaches to a breast cancer GWAS data set, composed of 1282 French women affected
by familial breast cancer, and 1 272 unaffected women from the general population.

Our preliminary results [48] indicate that network methods find SNPs close to genes well
known to be related to breast cancer susceptibility, such as FGFR2, TOX3, or NEK10. With
two orders of magnitudes fewer samples, network methods recover 23% of the SNPs found
significant in the most exhaustive breast cancer susceptibility meta-analysis to date.

We also found that although the multiplicity of subnetworks returned by PINBPA and
dmGWAS makes interpretation more challenging, it provides useful complementary infor-
mation. We conclude that dmGWAS and PINBPA are interesting for generating hypotheses
about the etiology of the disease, while SConES’ strength is biomarker discovery.

2.5 Conclusion and perspectives

We can hardly hope to understand the biology underlying complex diseases without
considering the molecular interactions that govern entire cells, tissues or organisms. The
approaches we discussed offer a principled way to perform biomarker discovery in a systems
biology framework, by integrating knowledge accumulated in the form of interaction
networks into studies associating genomic features with a disease or response to treatment.
While these methods are still in their infancy, I believe that they can become powerful
tools in the realization of precision medicine.

The approaches I have discussed in this chapter are limited by (1) not accounting for
nonlinear effects between network nodes; (2) the lack of statistical techniques for the
evaluation of the significance of the associations they detect; and (3) the refinement and
choice of appropriate network data.
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While most network-guided biomarker discovery studies make use of generic gene-gene
interaction networks such as STRING or BioGRID, many other possibilities are starting to
open up. They include disease-specific networks such as ACSN, but we can also imagine
using for example eQTL networks based on previous studies [250], or three-dimensional
chromatin interaction networks [213]. Methods that integrate these multiple types of
networks may be needed; that the regularized regression or penalized relevance methods
we discussed can all accomodate weighted networks (either directly or through simple
modifications) that will facilitate these developments.

The Laplacian regularizer was originally designed to smooth real-valued feature weights
along the graph. In the regularized relevance framework, it has the undesirable tendency
to essentially want to grab all the neighbors of a selected node. There is therefore a
need to develop more appropriate graph regularizers, based for example on approxima-
tions to the number of connected components formed by the selected features [37] or on
random walks [230]. By penalizing disconnections between faraway vertices more than
between closeby ones, regularizers based on random walks will provide an elegant way to
compensate for missing edges in the graph.

Finally, no serious progress the field of biomarker discovery can be made without proper
validation, at the very least in different data sets pertaining to the same trait, of the
pertinence of the modules identified by these various methods. Because this often requires
that modelers convince the owners of other data sets to run experiments for their own
benefits, this is often hard to implement outside of large consortium collaborations.



MULTITASK NETWORK-GUIDED BIOMARKER DISCOVERY

Machine learning applications to biomarker discovery are severely limited by the scarcity
of data to learn from. To alleviate the statistical challenges resulting from having many
more features than samples to learn from, I have described in Chapter 2 how to integrate
prior knowledge encoded as networks to feature selection algorithms, thereby reducing
the space of possible solutions. To further address these challenges, the multitask learning
framework proposes to jointly learn models for different but related tasks by sharing
information between those tasks.

Multitask learning is driven by the assumption that there are benefits to be gained from
jointly learning on related tasks. In the multitask framework, data is available for several
related but different problems (or tasks). While such data cannot be pooled together to
form a single, large data set, the idea is to leverage all the available information to jointly
learn related but separate models for each of the tasks.

A number of biomarker discovery settings lend themselves well to this approach. Examples
include GWAS over multiple related traits (such as ovarian and breast cancers, or asthma
and chronic obstructive pulmonary disease); studying the response of patients to different
drugs, as was done in the DREAM Rheumatoid Arthritis Responder Challenge in which I
took part [223]; or toxicogenomics, where one studies the response of cell lines to exposure
to various chemicals, as was done in the DREAM Toxicogenetics Challenge in which I also
took part [63].

In each of those settings, multitask feature selection approaches reduce the features-to-
sample ratio of the data, while keeping the particularities of each data set. In the two
following chapters, I will describe several contributions to multitask feature selection: In
this chapter, I will present Multi-SConES, a multitask extension of the SConES algorithm
(Section 2.3); in the following, I will make the assumption that task descriptors are available
to further constrain the problem.

This chapter starts with a brief overview of existing methods for multitask feature selection
with structured regularizers (Sections 3.1 and 3.2). I will then describe in Section 3.3 the
Multi-SConES algorithm and explain how it can be solved exactly and efficiently by a
maximum flow algorithm. Finally, in Section 3.4, I will briefly summarize experimental
results on both simulated and real data, showing that MultiSconES is better at recovering
causal features than other state-of-the-art methods.

This chapter is based on work published as

Mahito Sugiyama, Chloé-Agathe Azencott, Dominik Grimm, Yoshinobu Kawahara,
and Karsten M. Borgwardt. Multi-task feature selection on multiple networks via
maximum flows. In Proceedings of the 2014 SIAM International Conference on Data
Mining, pages 199-207, 2014.
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3.1 Multitask feature selection with structured regularizers

Several multitask versions of the lasso have been proposed, starting with the multitask
lasso [184], in which an /5-norm on each weight across all tasks rewards solutions where
the same features are selected for all tasks.

The graph-guided fused lasso [119] extends this idea by coupling the weight vectors
of correlated tasks: solutions in which correlated tasks have similar weight vectors are
rewarded. Chen et al. [40] further extends this to include a network regularization on the
input features similar to that of the generalized fused lasso 2.2. Along the same lines, Lee
and Xing [139] uses mixed ¢; /¢>-norm to enforce the selection of either none or all of the
features in predefined groups of correlated features, for predefined groups of correlated
tasks. Finally, [71] uses network regularization to infer task relationship in multitask
learning.

There has been little interest, however, in focusing on network-regularized multitask
approaches where the network information describes feature relationships only. For this
reason, we proposed a simple multitask extension of Grace [140], which we refer to as
Multi-Grace and which is described in Section 3.2.

Furthermore, most existing approaches assume that the same features should be selected
across all task. While this is reasonable for many application domains, one can think of
numerous contexts where this assumption is violated. For example, lung diseases such
as asthma and chronic obstructive pulmonary disease (COPD) may be linked to a set of
common mutations, but there is no indication that the exact same mutations are causal in
both diseases. Existing multitask approaches based on regularized linear regression will
attempt to select the union of both sets of relevant mutations, and may or may not assign
a weight of zero to a feature that is specific to one task in the models of other tasks.

In addition, multitask approaches that incorporate structured regularizers do not make
it possible to consider different structural constraints for different tasks. However, we
may want to use different biological networks for different related diseases. For example,
one may want to study ovarian and breast cancers simultaneously using a tissue-specific
co-expression network for each of these phenotypes.

To address these issues, as well as to benefit from the advantages of the penalized relevance
framework, we proposed Multi-SConES, a multitask formulation of SConES. Multi-SConES
uses multiple network regularizers to improve feature selection in each task by combining
and solving multiple tasks simultaneously.

3.2 Multi-Grace

Given data described as (X,Y) € R™*™ x R"*T representing m features for n samples
and the T" associated outputs, the multitask lasso [184] solves

T

argmin ) _||X8; — ylf3 + AllBllr, e, (3.1
BcRmXT =1

where the ¢-th column of B is the parameter vector 3; of the corresponding task, and
the /1 /¢;-norm of B is given by ||Bl|;, s, = >_,.||8||2- Note that we are here in the
multi-output settings, where all outputs (here, phenotypes) are available for each sample.



3.3 Multi-SConES

Given a network over the m features, described by its graph Laplacian L, we formulate
Multi-Grace as:

T
argmin - (11X — yil 3+ Ml|Blley e, + A28 LB1) (3.2)
BcRmXT —1

Following the reasoning in Lemma 1 of Li and Li [140], this formulation is equivalent to
the followig multitask lasso problem:

T
argmin Y (/[ X*B: — 715 + 7B |leyjes) » (3.3)
BeR'mXT =1

where v = A1 /v/1 + A2 and, for each task, (X*, y;) is obtained as

* — X *
X* = (14 Xg) 12 (\KsT),yt = (é’t>,
2 m

and S is such that SS' = L. If (sz>t:17m7T is the solution to this multitask lasso problem,
then the solution to Eq. (3.2) is given by 8; = 8/ /v/1 + Xa.

If the different tasks use different networks, this derivation does not apply and solving a
multitask version of Grace is not straightforward any more.

Li and Li [140] proposed to use a singular value decomposition to obtain S, but the
Lemma also holds if S is replaced by the incidence matrix of the network. As it can be
constructed in linear time in the number of vertices and edges, this makes for a much
faster implementation of both Grace and Multi-Grace. We used this implementation in
our experiments.

3.3 Multi-SConES

Multi-SConES is a generalized form of SConES, which achieves feature selection for mul-
tiple tasks simultaneously. In what follows, we assume the set of m features V is shared
across all T tasks. For each task ¢, we assume a task-specific network G* = (V, ") of
adjacency matrix W, and a task-specific relevance function R? : 2¥ — R. Multi-SConES
is then formulated as:

T
arg max Z (Z R'({p}) —n|S*| — A Z Z W;;I) - ,uZ]StAS“L (3.4)

§1,82,..,8TCV i pesSt pESt gEV\S! t<u
where A denotes the symmetric difference between two sets, that is
SAS' = (SuUSH\(SNnS). (3.5)

Each term (Zpest RY({p}) — n|St| — A pest 2ogen\st Wlﬁq) corresponds to SConES for-
mulated independently on each task (see Eq. (2.4)).

The additional penalty term 1), , |S'AS"| represents our belief that similar sets of
features should be selected for all tasks. The larger 1, the more we enforce this belief.
By contrast, if 4 = 0, solving Eq. (3.4) is equivalent to solving SConES on each task
independently.
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Eq. (3.4) can be reduced to a problem similar to Eq. (2.4), and therefore cast as a graph-cut
problem and solved efficiently using a maximum flow algorithm. To do so, we create
a unified network by replicating the vertices of each network G*, thus obtaining m x T
vertices and ZtT:1 |E?| edges. In addition, we connect each pair of replicated vertices with
an edge weight of 11/, thus obtaining an additional m x T(T — 1)/2 edges.

Figure 3.1 shows an example of unified network for 7' = 2.

Figure 3.1: Example of two networks (left), which share vertices and have different edges (solid lines
for the first and dotted lines for the second), and of the unified network (right), where
vertices are duplicated and new edges (dotted lines) are added to connect duplicated
vertices.

Let us call W the adjacency matrix of the unified network (V',£’). V' has size m x T and
the relevance of its p-th element is given by the relevance of feature (p mod m) in task

[ 2]:R(p) = RI%1({p mod m}). Eq. (3.4) is then equivalent to
argmaxZR(p) —n|S| — )\ZZWM, (3.6)
peES

SCV/ PES q¢S
and for each task ¢, the set of selected features is given by

St={pmodmpecS,tm<p<(t+1)m}. (3.7)

Eq. (3.6) can be solved exactly as Eq. (2.4). One limitation, however, is that the unified
network grows in size with the number of tasks (linearly for the number of vertices, and
quadratically for the number of edges). If the original number of features m is already
quite large (of the order of 10° or more), this formulation becomes intractable for more
than a few tasks (7" > 10). Another important factor to note is that there are now three
regularization parameters to select, 7, \, and p, which also increases the computational
complexity of running Multi-SConES in practice.

Multi-SConES can also be used when some features are missing for some tasks. In this
case, the corresponding replicated vertex is ommitted from the network, as well as the
edges connecting it either to other vertices in this task or to replications of the same
feature in other tasks.

3.4 Experimental results

3.4.1 Runtime

Our empirical results on simulated data show that, under fixed regularization parameters
and a fixed network architecture shared by all tasks, the runtime of Multi-SConES increases
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cubically with the number of tasks. Nevertheless, Multi-SconES is still efficient enough
to run over hundreds of thousands of features for a dozen of tasks, which matches many
biomarker discovery setups, on a 2 x 3 GHz Quad-Core Intel Xeon CPU with 16 GB of RAM.
As relevances are computed ahead of time, the number of samples does not matter here.

3.4.2 Parameter sensitivity

Our experimental results on simulated data also show that Multi-SConES is sensitive to
n, which controls the sparsity of the solution, and more robust to both A, controlling the
connectivity of the network, and ., which controls how similar the solutions should be
between tasks. More specifically, if the solution is truly a set of connected subnetworks of
the provided networks, then once ) is set high enough to get to select the correct solution,
the corresponding penalty term becomes negligible.

As X and p do not need to be carefully tuned, and as the entire regularization path with
respect to 7 can be obtained without increasing time complexity, this suggests that finding
optimal hyperparameters for Multi-SConES is rather inexpensive. However, there are
several limitations in practice. First of all, on real-world data, the solution of Multi-
SConES is much more sensible to A than on well-behaved simultated data. In addition,
the regularization path with respect to 5 typically turns out to have one value per possible
number of selected features, which is m, and can therefore be not so easy to manipulate
in practice.

3.4.3 Ability to recover causal features

Our experiments on simulated data show that Multi-SConES outperforms both SConES
performed on separate tasks independently, and state-of-the-art comparison partners
Multi-Grace and multitask lasso on a variety of settings. The more features are shared
between tasks, and the better Multi-SConES is at recovering causal features. This holds
for all multitask approaches.

Our results on the same Arabidopsis thaliana flowering time GWAS data used for Chapter 2
show that combining several related phenotypes helps recovering proportionally more
known or suspected flowering time genes, and that Multi-SConES retrieves more of these
genes than its comparison partners. Altogether, our results suggest that Multi-SConES
can be effectively employed for multilocus, multiphenotype biomarker discovery.

3.5 Conclusion and perspectives

As we have shown, the penalized relevance framework can be used to propose an efficient
and effective algorithm for network-guided, multitask biomarker discovery. Compared to
the classic regularized linear regressions with network regularizers, Multi-SConES shows
better ability to discover relevant features in both simulated and real-world experiments.

As SConES, Multi-SConES directly optimizes feature relevance scores, rather than min-
imizing a squared error, and an ¢, constraint that does not need to be relaxed to its ¢,
counterpart. The resulting optimization problem can be cast as a minimum cut problem
and solved exactly and efficiently, even for hundreds of thousands of features, using maxi-
mum flow algorithms. Finally, it can easily incorporate cardinality constraints on the size
of the selected features set.
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Unlike the other existing methods, Multi-SConES can easily accomodate missing features
as well as different networks for different tasks.

Currently, Multi-SConES models the relationship between tasks using a single parameter
i, which controls how coupled the sets of selected features should be. However, it is
often possible to define similarities between tasks; for example, in the case of a pharma-
cogenomics screen, the similarity between phenotypes can be directly derived from the
similarity between the drugs that were used. As an additional example, for biomarker
discovery in cancer, integrative analyses have shown interesting similarities between
cancer types [258].

While several existing structured regularized linear regression approaches make use of
correlations between tasks [40, 139], Multi-SConES does not currently do so.

The extension is however possible. If one denotes by ¥ € R”*T a matrix of similarities
between tasks, and E € {0,1}"™*T the matrix of indicator vectors e for each task ¢ (defined
by e, = 1if p € S* and 0 otherwise), tr(EX ' E") is a regularizer that enforces that the
more similar the tasks, and the more similar their selected feature sets are. Eq. (3.4) then
becomes

T
arg max Z Z R'({p}) —n|S*| - A Z Z W | — ptr(EXLET). (3.8)

§1,82,...8TCy t=1 \ peSt pESt geEV\S!

If X is set to a matrix of all ones, therefore containing no information about task similarity,
this formulation is equivalent to Eq. (3.4).

In the following chapter, I will describe how to construct task descriptors or task simi-
larities when tasks are described by chemical compounds, as well as several additional
contributions to the field of multitask biomarker discovery.



MULTITASK LEARNING WITH TASK DESCRIPTORS

Many multitask learning or feature selection approaches assume that the same features
should be selected across all tasks. While the Multi-SConES approach I described in
Chapter 3 allows some flexibility with respect to how coupled the selected feature sets
should be, it does not take into account the degree of similarity between tasks. Intuitively,
one would however like that more similar tasks share more features.

An additional limitation of existing multitask approaches is that they typically cannot be
applied to make predictions for new tasks for which no training data is available. While
it may seem preposterous to wish for such an ability, it could be useful, for example, to
predict the cytotoxicity of a new drug on cells or patients.

To address these limitations, it is necessary to be able to define an explicit representation
of the tasks. In many biomedical applications, these tasks can be linked to a molecular
compound: in precision medicine, when a task corresponds to predicting the response
of a patient to a drug; in chemogenomics, when a task corresponds to predicting which
proteins are binding a given molecule; or in pharmacogenomics, when a task corresponds
to predicting the toxicity of a compound for various cell lines.

In this chapter, I will therefore describe in Section 4.1 how to construct vectorial rep-
resentations of small molecules. I will then illustrate how these representations can be
used to perform lasso-like multitask feature selection with task descriptors (Section 4.2).
These ideas can also be applied, without feature selection, to conduct efficient multitask
drug-ligand binding prediction, as I describe in Appendix B.

The contents of this chapter are based on work published as

e Chloé-Agathe Azencott, Alexandre Ksikes, S. Joshua Swamidass, Jonathan H. Chen,
Liva Ralaivola, and Pierre Baldi. One- to four-dimensional kernels for virtual screen-
ing and the prediction of physical, chemical and biological properties. Journal of
Chemical Information and Modeling, 47(3):965-974, 2007.

e Victor Bellon, Véronique Stoven, and Chloé-Agathe Azencott. Multitask feature
selection with task descriptors. In Pacific Symposium on Biocomputing, volume 21,
pages 261-272, 2016.

4.1 Vectorial representations of molecules

In many cases, a drug is an organic chemical compounds of low molecular weight which acts
by binding a target protein and thus either inhibiting or enhencing its activity. For example,
nonsteroidal anti-inflammatory drugs such as aspirin or ibuprofen inhibit cyclooxygenases
COX-1 and COX-2, which are essential to the inflammatory response. Antibiotics from the
pencillin family bind a group of proteins unsurprisingly called penicillin-binding proteins,
which are essential to the synthesis of bacterial cell walls.
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The development of rich and informative representations of organic chemical compounds
of low molecular weight has therefore been a central question in chemoinformatics, or the
application of computer science tools to questions from the field of chemistry, for many
decades. The first step of my doctoral research has been to develop and study descriptors
for such small molecules, systematically derived from structural representations of varying
complexity. I have used these different representations to create kernels which I applied,
in combination with support vector machines, to several classification and regression
problems on chemical compounds. My findings indicate that two-dimensional represen-
tations derived from molecular graphs tend to be the most informative [12], and to this
date most vectorial representations of small molecules are derived from their molecular
graphs.

4.1.1 Molecular graphs

Small molecules are most commonly represented as labeled graphs of bonds. The vertices
represent the atoms, and the edges represent the bonds. Edges are labeled by the bond
type (e.g. single, double) they correspond to. Labels on the vertices correspond to the
element (e.g. C, N, O) of the atom they correspond to, and can be expanded to include
more information about the local chemical environment of the atom [12, 261].

For small molecules, these molecular graphs are fairly small, both in terms of the number
of vertices and the number of edges. Indeed, valence rules constrain the average degree to
be typically less than three.

4.1.2 Path- and tree-based molecular fingerprints

In chemoinformatics, molecules are traditionally represented using so-called fingerprints.
A fingerprint is a binary vector in which each bit corresponds to a particular molecular
feature, designed to be chemically relevant, and is turned to 1 if the molecule exhibits
that feature and 0 otherwise. Whereas most sets of fingerprints or descriptors (from
DRAGON descriptors [249] to MACCS keys [60]) are rather heterogeneous collections
of all sorts of computable molecular properties that heavily rely on expert knowledge,
substructure-based representations are derived in a more principled and automated way.

Several kinds of molecular graph substructures can be considered. The most commonly
used are labeled paths of length up to d, starting at any vertex of the graph, and labeled
trees of depth at most d, rooted at any vertex of the graph. The latter are usually known as
circular fingerprints or extended-connectivity fingerprints (ECFP) [209]. The parameter
d is usually set to d = 6 or d = 8 for paths, and d = 2 or d = 3 for trees. These values
are chosen so that the resulting substructures can be discriminative when considered
together, without being unique to a molecule of the data set.

Molecular fingerprints are long and sparse binary vectors: there are a lot of potential sub-
structures of a given size containing all atoms appearing in organic compounds, but any
given molecule only possesses a small fraction of them.

These binary fingerprints can be extended to count fingerprints, in which instead of the
presence/absence of a particular substructure, each entry of the fingerprint records the
number of occurrences of this substructure.
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4.2 Multitask feature selection with task descriptors

To alleviate the statistical challenges due to data scarcity, multitask learning proposes to
learn different but related tasks joinlty, rather than independently, by sharing information
between these tasks. Within this framework, the joint regularization of model parameters
proposed by Obozinski, Taskar, and Jordan [184] results in models with few non-zero
coefficients and that share similar sparsity patterns.

In Bellon, Stoven, and Azencott [23], we proposed a new regularized multitask approach
that incorporates task descriptors so as to modulate the amount of information shared
between tasks according to their similarity. We showed on simulated data that this method
outperforms other multitask feature selection approaches, particularly in the case of
scarce data. In addition, we demonstrated on peptide MHC-I binding data the ability of
the proposed approach to make predictions for new tasks for which no training data is
available.

4.2.1 Formulation

Given T data sets, corresponding to 7 tasks, described as (X!, y*) € R™*™ x R™, repre-
senting m features for n; samples and the associated outputs, the multitask lasso [184]
solves Eq. (3.1), reproduced here:

2
arg min Z Z yz Zﬁptxzp + )\ZHBPH% (41)
p=1

BGR’HLXT —1

where the p-th column of B is the parameter vector 8, of regression coefficients for
feature p across all T" tasks. This sparse optimization problem can be solved using proximal
optimization [179].

Multi-level multitask lasso To allow for more flexibility in the sparsity patterns of the
different tasks, Swirszcz and Lozano [239] propose to decompose the regression parameter
B into a product of two components C € R”*™ and § € R™. The intuition here is to
capture the global effect of the features across all the tasks with 8, while C provides a
task-specific modulation. This results in the following optimization problem, known as
the multi-level multitask lasso:

2
T m
arg min Z Z Yl — Z@ Cprly, +)\1||0H1+)\QZZ’Cpt‘, (4.2)

OcR™ CcRmMXT | t=1 p=1

with the constraint that all 6, > 0. Here the mutltitask aspect is explicitely enforced via
the 6 parameter, rather than implicitely enforced by a regularization term.

This model gives sparser representations than the multitask lasso, and has the advantage
not to impose to select the exact same features across all tasks. The optimization of the
parameters is a non-convex problem that can be decomposed in two alternate convex
optimizations. This optimization, however, is much slower than that of the multitask
lasso.
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Multiplicative multitask lasso with task descriptors We now suppose that a matrix
Z e RT*4 describes each of the T tasks with a d-dimensional vector. When each task
corresponds to a molecule, these representations can be given by the fingerprints described
in Section 4.1. Inspired by kernel approaches, where task similarities are encoded in the
model [26, 68], we introduced the multiplicative multitask lasso with task descriptors (MMLD),
where the task descriptors are used to explain the specific effect modulating each feature
for each task.

More specifically, we follow the multi-level multitask lasso idea and replace in Eq. (4.2)
the term C,;, with a linear combination of the task descriptors. Hence we formulate the
following optimization problem:

2
m

T ne d m d
arg min Ziz Yl — Zap ZAijtj i, +)\1|]9||1+>\QZZ|AM|, (4.3)
p=1 j=1

n
S p=1j=1

again with the constraint that all §, > 0. Now A,,; indicates the importance of descriptor
j for feature p, and controls the specificity of each task. \; > 0 and \s > 0 are the
regularization parameters for each component of B.

An important feature of our proposition is that, because predictions for a new data point
x aremadeas ) ", 0, (Z;l:l Ap; th) xp, we can make predictions for tasks for which no

training data is available: the only task-dependent parameters are the descriptors Z;;. This
ability to extrapolate to new tasks is not shared by the existing multitask Lasso methods.

The solution to Eq. (4.3) can be obtained via alternate convex optimization steps. We
provide a Python implementation at
https://github.com/vmolina/MultitaskDescriptor.

4.2.2  Experimental results

Our experiments on simulated data sets show that the MMLD is much more stable than
the single-task lasso or the multi-level multiplicative lasso, and presents a much lower
variation in the number of selected features than all other methods. The MMLD’s ability
to recover causal features is also superior to that of its comparison partners. Using task
descriptors hence seems to increase the robustness of the feature selection procedure.
Finally, the cross-validated root mean squared error of our method is significantly lower
than that of state-of-the-art approaches, particulary when the number of available samples
is low.

In addition, our experiments on the prediction of whether a peptide can bind to a given
MHC-I (major histocompatibility complex class I) protein, based on pairs of binding or non-
binding peptide sequences and MHC-I alleles, show that the MMLD performs comparably
to the multitask lasso. Here each tasks corresponds to one MHC-I allele.

More interestingly, these experiments illustrate the ability of the MMLD to make predic-
tions on tasks for which no training data is available. Figure 4.1 shows the performance
of models previously trained on each of the two data sets provided by Heckerman, Kadie,
and Listgarten [100] on the data set provided by Peters et al. [194]. When predicting for a
new task with methods others than the MMLD, we use the mean of the predictions made
by all models trained on the other tasks. Although its performance is poor, MMLD is the
only approach that outperforms the trivial baseline (ROC-AUC=0.5).
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Figure 4.1: ROC curves for the prediction of MHC-I binding, cross-dataset.

4.3 Conclusion and perspectives

In this chapter, I have shown how using task descriptors to guide how much information
two tasks should share can noticeably improve the performance of multitask approaches.
In particular, such approaches make it possible to make predictions for tasks for which no
training data is available. This setting is often encountered in biological applications.

Unfortunately, I have not yet been able to apply these ideas to genome-wide association
studies, for lack of appropriate data sets. The work in Section 4.2 was initially motivated
by the Rheumatoid Arthritis DREAM Challenge [223], in which we attempted to predict
response to several rheumatoid arthritist treatments using both chemical descriptors of
the treatment, and SNP data. Unfortunately, one of the conclusions of this challenge was
that there was not enough information within the SNPs - indeed gene expression data
may have been more appropriate for a first study — to build computational models from
this data [223].
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GENERAL-PURPOSE COMPUTING ON GRAPHICS PROCESSING UNITS

The methods I have presented so far consider either independent or additive effects of
molecular features on a phenotype. It is widely accepted, however, that one step towards
unveiling the missing heritability is to consider interactive, or synergistic effects, a phe-
nomenon called epistasis, across the whole genome [158, 290].

However, the community is still building the body evidence to support this component
of the genetic architecture of complex human traits. Sophisticated modeling approaches
and robust computational techniques are an essential part of these ongoing efforts [206].

Unfortunately, the detection of two-loci interactions in GWAS requires a massive amount
of computation, as the number of pairs of SNPs that need to be examined can be in the
order of 10'° — 104, In this chapter, I will present how one can use general-purpose graphics
processing unit computing (GPGPU computing) to address computational limitations. While
GPGPU computing is now faciliated by numerous linear algebra and machine learning
libraries, such was not the case in 2011, when we proposed GLIDE [117].

GPGPU approaches do not solve the statistical problems arising from data scarcity and
multiple hypothesis testing, which are similarly exacerbated by the increase in the number
of statistical tests to perform. I will present in Chapter 6 a targeted epistasis approach that
searches for interactions between a specific SNP and the rest of the genome. In addition
to limiting the number of tests to perform, our method gains power from avoiding the
evaluation of main effects, and accounts for linkage disequilibrium (see Section 1.1.2).

The methods presented in these two chapters model epistasis as a multiplicative effect
between two SNPs on the phenotype. In addition, kernels allow us to model a greater
variety of nonlinear dependencies, whether between a single genomic feature and the
phenotype, or between an arbitrary number of features within a predefined set. This will
be the topic of Chapter 7.

In this chapter, after having presented epistasis in Section 5.1 and earlier approaches
to use GPUs for epistasis detection(Section 5.2), I will describe in Section 5.3 how we
implemented a simple yet efficient linear regression model for the detection of two-locus
epistasis in CUDA. In Section 5.4, I will briefly explain how we were able to analyse a
hippocampal volume GWAS data set of 567 subjects and over a million SNPs in six hours,
where equivalent CPU-based approaches would haave required more than a year’s time to
complete the same task.

This work was publisehd as

Tony Kam-Thong, Chloé-Agathe Azencott, Lawrence Cayton, Benno Piitz, André
Altmann, Nazanin Karbalai, Philipp G. Simann, Bernhard Scholkopf, Betram Miiller-
Myhsok, and Karsten M. Borgwardt. GLIDE: GPU-based linear regression for the
detection of epistasis. Human Heredity, 73:220-236, 2012.
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5.1 Epistasis

Constructing additive models of significant SNPs only explains a small fraction of the
heritability of phenotypes [290]. For human height, an extensively-studied trait, this
proportion is only 5% [90]; using a linear model from the start raises this proportion to
45% [278], still far from an heritability that has been estimated at 80% [224]. By revealing
genetic interactions, epistasis can give an insight into the complex mapping between
genotype and phenotype that cannot be extracted from marginal association testing.

Examples of phenotypes for which synergistic effects between gene loci have indeed proven
areliable predictor variable of the phenotypic outcome include diseases such as type 1 and
type 2 diabetes [52, 55], inflammatory bowel disease [41] and hypertension [266]. Several
examples detailing the different nature of genetic interactions enhancing or suppressing
cancer mutations are listed in Ashworth, Lord, and Reis-Filho [6], and new therapeutic
treatments have been proposed to target these interactions. In addition, epistatic effects
have also been observed in intermediate phenotypes gained by neuroimaging such as
working memory-related brain activation [241], and several epistatic mechanisms have
been highlighted in the onset of Alzheimer disease [49]. Most notably, the interaction
between the two genes BACE1 and APOE4 was found to be significant on four distinct
datasets.

The definition of statistical epistasis dates back to Fisher [73], who characterizes it as
the departure from additivity in a mathematical model relating multilocus genotypes
to phenotypic variation. A number of strategies deployed in the context of statistical
epistasis are reviewed in Cordell [51] and Niel et al. [181]. Among those, this chapter will
focus on exhaustive search strategies, which systematically evaluate all possible pairwise
interactions between two SNPs.

5.2 Epistasis detection using GPGPU

Several software tools designed to perform epistasis searches on GPUs, such as SHE-
sisEpi [105], EPIBLASTER [116], EPIGPUHSIC [115], GBOOST [280], epiGPU [102], or
GWIS [82] have been proposed and demonstrated substantial advantages of the use of GPU
in this application. However, they are either restricted to binary or discrete phenotypes,
which limits the scope of data sets they can analyze, or neglect main effects, which hinders
the overall interpretation of their results.

The more popular of these tools, meant for case-control studies, is GBOOST [280], a GPGPU
variant of BOOST [257]. At its core, BOOST computes a likelihood ratio test between two
logistic regression models: a main-effect logistic regression over the two SNPs of the
pairs under scrutinity, and a full logistic regression over these two SNPs and their product.
In addition, BOOST uses a Boolean representation of the genotypes, allowing for quick
Boolean operations. A screening step based on the Kirkwood superposition approximation
of the main-effect model further speed ups computations.

By contrast, the method we proposed in Kam-Thong et al. [117] aims to be general enough
to be applicable to pairwise epistasis studies of various real or continuous value predictor
inputs (genetic and environmental factors) related to the phenotypic output.
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5.3 GLIDE: GPU-based linear regression for the detection of epistasis

GLIDE (GPU-based Linear regression for the Detection of Epistasis) is a high-performance
GPU-based implementation of a systematic two-locus epistasis search. In essence, GLIDE
models epistasis as the presence of a non-zero interaction term in a linear model explaining
the phenotype as a linear combnation of two SNPs and their products, and computes these
terms and their statistical significance very efficiently for all possible pairs of SNPs in a
data set.

5.3.1 Linear regression model

Let us consider a data set (X,y) € R™™ x R" of m SNPs measured over n individuals
together with their real-valued phenotypes. For each SNP pair (p, ¢) with 1 < p, ¢ < m, we
consider that the n samples are n independent and identically distributed observations
drawn from an m-dimensional variable X and a response variable Y. We denote by X,
the p-th dimension of X.

We fit the following linear regression model:

Y ~ b+ ol X, + o' X, + 3X, X, (5.1)
using a standard least squares model (see Section 1.2.4 and Eq. (1.2)):

ol = (X, Xpg) Xy, (5.2)

where X, € R"** is built by concatenating a column of all ones, the p-th column of X,
its g-th column, and their product. a?? is a 4-dimensional vector.

Under this model, we will say that there is an epistatic effect of SNPs p and ¢ on the

o

phenotype if the estimated regression coefficient o} is significantly different from 0. We
determine this using a t-test with (n — 4) degrees of freedom. The t-score is given by:

pq S i
tog = SV , (5.3)
T 1
\/rpq' [(ququ) }4,4

where the residual sum of squared errors r,, is given by

n

o — _ )
_ pqg | pq pd pq

T'pqg = Z (yi - (Oéo + o7 Tip + ay Tig + O[lgxipxiq>> . (5.4)

i=1

In the following section, I will show how t,,, can be computed efficiently for millions of
values of p and g on GPUs.

5.3.2 GPU implementation

GPUs are composed of several hundred lightweight processing units, and are only effective
for tasks that decompose into many subproblems that can be solved in parallel. As our
problem is composed of many independent regression tasks, it fits easily onto the GPU
architecture.

In the GPU programming model, each processing unit executes a thread. These threads are
grouped in blocks of size B; within each block, threads can cooperate through execution

37



38

General-purpose computing on graphics processing units

synchronization and efficient low-latency memory sharing. Leveraging this block structure
to reduce memory accesses is crucial for performance. GLIDE associates each thread
with a single regression problem. These threads are then collected into blocks such that
threads within a block can share access to a subset of matrix X . In particular, each two-
dimensional block of size B x B loads 2 x B columns of X and solves all pairwise linear
regression problems on the corresponding B x B pairs of SNPs, by performing the following
operations:

1. Compute matrix X,;

2. Estimate the regression coefficients a?? by solving Eq. (5.2) analytically — which is
possible as the inversion it requires is that of a 4 x 4 matrix;

3. Estimate the corresponding residual sum of squared errors r,,, (Eq. (5.4));
4. Estimat the t-score t,, (Eq. (5.3)).

GLIDE is written in the C programming language using NVIDIA’s CUDA extension and made
available online at https://github.com/BorgwardtLab/Epistasis-GLIDE.

5.4 Experimental results

We conducted this study using 12 NVIDIA GTX 580 GPUs. These cards have 16 streaming
multiprocessors, each holding 32 processors, yielding a total of 512 GPU cores. They
support double-precision floating-point calculations. The host machine was running on
an Intel Core i7 920 with a 2.66-GHz CPU host using 12 GB of DDR3 RAM.

5.4.1 Runtime

Using a synthetic data set of 1000 individuals and about 5000 SNPs (corresponding to
25 million SNP pairs to test), we compared the speed of GLIDE with that of the state-of-
the-art CPU methods PLINK [200] and FastEpistasis [219]. PLINK performs a likelihood
ratio test comparing the regression model in Eq. (5.1) with a similar model without the
o}4X,X, interaction term. FastEpistasis performs exactly the same computations, but
distributes the work over a multi-CPU environment. Its speed scales up linearly with the
number of CPU cores used.

The correlation coefficient between the p-values produced by GLIDE and those returned by
PLINK is exactly 1, therefore satisfyingly validating the correctness of our implementation.

The runtime of all three methods scales up linearly with respect to the number of pairwise
SNP interactions. Figure 5.1 illustrates the advantage of porting the code onto GPUs.
Although the performance depends on technical specifications, GLIDE runs at least 2 000
times faster than PLINK; and to reach reach GLIDE’s speed on a single GPU with FastEpis-
tasis would require a cluster of 250 nodes.

5.4.2 Hippocampal volume association study

We conducted an exhaustive search for epistatic interactions associated with hippocampal
volume. The hippocampus is a small but complex bilateral brain structure involved in many
cognitive processes, particularly the formation of new memories. An extreme reduction of
its volume is a hallmark of Alzheimer’s disease, but mild forms of hippocampal volume
reductions are also found in patients with schizophrenia or recurrent depression [77]. The
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Figure 5.1: Runtime (in thousands of interactions per second) of GLIDE, FastEpistasis (on a sin-
gle CPU core), and PLINK, as a function of the number of subjects, displayed on a
logarithmic scale.

hippocampal volume is heritable to some degree, with the heritability estimated from
twin studies to be between 40 and 69% [192], and is therefore a good candidate for explicit
genetic studies.

We used data for 567 subjects from the Max Planck Institute for Psychiatry, for which
hippocampal volume was determined from high-resolution MRI images as in Kohli et al.
[124]. After quality control, a total of 1 075 163 SNPs were available.

We first conducted a standard single-SNP association study on this data set. No SNP was
significant at p < 0.05 after Bonferroni correction. We then performed an exhaustive
pairwise test using GLIDE. The strongest p-value was 2.6 x 10~!3, larger than a Bonferroni-
corrected threshold of 0.05 for 31,075,163 tests (8 x 10~!1). However, genes linked to
hippocampus-dependent tasks in animal models (such as ICOS and CTLA-4), as well as
hippocampal development (ZEB2), cerebral cavernous malformations (ZLPD1) or a cation
channel expressed in the brain (TRPM6) were tagged by SNPs involved in the top 20 pairs
according to our ranking.

None of the highest-ranked univariate SNPs are involved in the top 20 highest-ranking
interaction pairs. In other words, the best-ranked pairs would not have been detected if
we had first pruned the SNP space based on the univariate tests.

The 20 highest-ranking SNPs in the single-locus study explain 18% of the phenotypic
variance, while the 20 highest-ranking pairs explain 40% of this variance, suggesting that
GLIDE detects informative features in the data.
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5.5 Conclusion and perspectives

One step towards revealing the missing heritability in complex traits is to search for
epistatic effects by mapping phenotypic variation to pairs of genetic loci. We implemented
a fast two-locus genome-wide interaction detection algorithm, which performs an ex-
haustive SNP-SNP interaction search on typically sized GWAS data sets in six hours on
relatively inexpensive GPUs. Although recent developments in both GPGPU librairies and
computing hardware make our work somewhat outdated, GLIDE is one of the fastest tools
for the exhaustive testing of pairs of SNPs in a linear model [38].

That GLIDE is based on a linear model makes it possible to analyze real-valued genotypes,
as obtained from imputation methods, as well as to incorporate confounding factors as
additional covariates, or environmental factors for gene-environment studies.

Several authors [101, 151] have argued that linear models can also be used for case-control
studies, where one would typically chose a logistic regression model. We have run some
experiments on the Wellcome Trust Case Control Consortium data sets [244] and our
results match those previously reported by Wan et al. [257]. However, for case-control
phenotypes and discrete genotype encodings, GBOOST [280] is approximately 75 times
faster than GLIDE.

While GLIDE addresses the computational issues associated with the detection of two-locus
epistasis, it does not address the statistical limitations of running more than 10 statistical
tests on thousands of samples only. I will present in the following chapter an approach
that alleviates this burden by first focusing on synergistic effects with a predetermined
locus, and second uses a modified oucome approach to avoid having to evaluate main
effects in the search for epistasis.



TARGETED CASE-CONTROL EPISTASIS WITH MODIFIED OUTCOME REGRESSION

I have shown in the previous chapter that it is possible to test SNP-SNP interactions
exhaustively at a genome-wide scale. Several packages in addition to GLIDE are available
for this purpose, corresponding to several definitions of epistasis and applicable to diverse
settings [35, 181]. However, exhaustive testing must be followed by multiple hypotheses
testing procedures, reducing the statistical power of the studies [176].

In this chapter, I will introduce targeted epistasis, which aims at identifying epistasis
between a specific locus and the rest of the genome (Section 6.1). I will then present
epiGWAS, a method for case-control targeted epistasis (Section 6.2). EpiGWAS models
linkage disequilibrium (see Section 1.1.2), and gains power from avoiding the need to
evaluate main effects thanks to a modified outcome reformulation.

The work presented in this chapter is available as a preprint:

Lotfi Slim, Clément Chatelain, Chloé-Agathe Azencott, and Jean-Philippe Vert. Novel
methods for epistasis detection in genome-wide association studies.
bioRxiv:10.1101/442749, 2018.

6.1 Targeted epistasis

Exhaustive genome-scale models with all pairwise terms are computationally intensive
and suffer from low statistical power. Instead of constructing exhaustive models, we
therefore focus on expanding knowledge around predetermined loci, which we refer to as
targets. Such targets can be drawn from the literature, or be top hits in previous GWAS.
This leads to a drastic knowledge-driven reduction of the number of interactions to study.

Limiting the scope of the interactions of interest allows us more flexibility in their model-
ing: rather than limiting ourselves to pairwise effects studied independently from each
other, as with GLIDE or other exhaustive epistasis search tools, we propose a model that
captures interactions between the target and all other SNPs in the genome at once. In
addition, we wish our model to account for the main effects of all the SNPs involved.

Such models are not frequent in the epistasis literature. In the clinical trial literature,
however, similar problems appear, where the goal is to infer the variation in treatment
response that is due to the interaction between the treatment assignment and the clin-
ical covariates. In particular, propensity score [210] techniques have been developed
specifically for this purpose. We therefore draw from this literature to propose a model
selection method that robustly infer second-order interactions with a fixed SNP, through
the formulation of different ¢, -penalized regression problems.
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6.2 Modified outcome regression

6.2.1 Mathematical model of epistasis

We model the data with three random variables: X, which is m-dimensional and represents
the genotype, with values in {0,1,2}™; A € {—1,+1}, which is the target SNP; and
Y € {0, 1}, which represents the phenotype. We restrict ourselves to a binary encoding of
the target SNP.

A being binary, it is always possible to write Y as
Y =pu(X)+0(X) - A+e, (6.1)
where ¢ is a zero mean random variable and
n(X) =

5(X) =

[E(Y|A=+1,X) +E(Y|A = —1,X)],
6.2)
[E(Y|A=+1,X)—EY|A=—1,X)].

N — DN =

The term p(X) represents the main effects of the genotype on the phenotype. The term
d(X) - A represents the synergistic effects between A and all SNPs in X. In the context of
genomic data, we can interpret these synergies as pure epistatic effects. Furthermore, if
d(X) is sparse in the sense that it only depends on a subset of elements of X (which we
call the support of ¢), then the SNPs in the support of ¢ are the ones interacting with A. In
other words, searching for epistasis between A and SNPs in X amounts to searching for
the support of 4.

6.2.2 Modified outcome regression

Because, for any given sample, only one of the two potential outcomes A = +1or A = —1
is observed, directly estimating §(X) Eq. (6.2) is difficult. One could estimate the first
term of §(X) on the samples for which A = +1 and the second term on those where
A = —1, but then the causal effect of treatment (here, of SNP A) is estimated across two
different groups of samples which my differ in other ways than treatment assignment.
Following Tian et al. [246], we consider A = (A + 1)/2 € {0,1}, and rewrite Eq. (6.2) as:

(e m=om) 1)
r(A=1X) =(A=0X)

where w(ﬁ | X), the conditional probability of A given X, is called the propensity score. The
propensity score models the linkage disequilibrium (see Section 1.1.2) between the target
SNP and the rest of the genotype.

6(X) = E

Given an estimate of 7(A|X), we define the modified outcome Y of a triplet (X, A,Y) as:

?:Y( A __1-4 >, (6.3)
T(A=1X) =(A=0X)

and re-express simply

&m:%Eﬁm] (6.4)



6.3 Experimental results

Our definition of modified outcome (Eq. (6.3)) generalizes that of Tian et al. [246], which
considers the specific case where A and X are independent.

According to our definition, the SNPs in epistasis with A are those contributing to §(X).
We now make the assumption that Y depends linearly on X, and recover the SNPs in
epistasis as the support of a linear regression between Y and X. Importantly, we do not
need to estimate 4 at all to estimate the support of 4.

6.2.3 Support estimation

We estimate the support of § by combining an elastic-net model (see Section 1.2.5) with the
stability selection approach proposed by Meinshausen and Biihlmann [164]. The general
idea of stability selection is to repeat the feature selection procedure several times and
consider as selected only the features that appear in many of the obtained solutions. We
use the modification proposed by Haury et al. [98], and select features according to the
area under the stability path, so as to capture variables that enter the regularization path
early.

6.2.4 Propensity scores estimation

For the estimation of the propensity scores 7 (A| X), that is to say, the dependence between
SNPs, we use a Hidden Markov Model as proposed by Scheet and Stephens [214] for impu-
tation. This model is a popular one for the representation of genetic architectures [120,
204, 235]. The hidden states represent contiguous clusters of phased haplotypes. The
emission states correspond to SNPs.

6.2.5 Correction for numerical instability and large-sample variance

In practice, given n samples (X, a,y) € {0,1,2}"*™ x {—1,1}" x {0,1}", computing the
n modified outcomes 4 according to Eq. (6.3) requires using the inverses of the propensity
scores, which tend to be close to 0. To avoid the resulting numerical instability and variance,
we follow Lunceford and Davidian [155] to propose a robust modified outcome approach.

The resulting methods for the detection of targeted epistasis in case-control studies, with
LD modeling and no need to evaluate main effects, is one of several we proposed in an R
package called epiGWAS, and available on CRAN package [227].

6.3 Experimental results

Our experiments on simulated data show that the robust modified outcome approach
in epiGWAS has power and false discovery rate comparable to those of state-of-the-art
approach GBOOST (see Section 5.2), with a slight advantage in low sample sizes.

To illustrate the scalability of our methods to real datasets in the case of targeted epistasis,
we applied epiGWAS to the Type II Diabetes data set of the Wellcome Trust data set [244].
To the best of our knowledge, there are no confirmed epistatic interactions for this disease.
We studied the synergies with a particuler target, SNP rs41475248 on chromosome 8,
which we chose because it is involved in 3 epistatic interactions according to GBOOST.
We found that the correlation between the findings of GBOOST and those of epiGWAS are
rather low. This can be explained by the fact that both tools use different mathematical
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models of epistasis, and suggests that the two approaches could be use in a complementary
fashion.

6.4 Conclusion and perspectives

In this chapter I have presented epiGWAS, a method for the detection of targeted epistasis
in case-control studies, which uses a modified outcome approach to avoid having to eval-
uate main effects, further improving statistical power. Our first experimental results show
good power with respect to comparable approaches, and we are currently investigating in
more details the application of epiGWAS to multiple sclerosis.

Our approach was inspired by the clinical trials literature. The rich literature in this field
opens the door to a much broader panel of methods. Future directions could include
conditioning for multiple covariates to account for, among other things, higher-order
interactions and population stratification.

epiGWAS accounts for linkage disequilibrium through the hidden Markov modeling of
propensity scores. The use of a robust modified outcome estimator compensates possible
propensity score misspecifications. A possible area of improvement would be to instead
follow Athey, Imbens, and Wager [8], who completely forgoe propensity scores for the
estimate of average treatment effects.

The synergies identified by our approach are often complementaries to that of GBOOST,
one of the most popular tools for identifying epistasis in case-control studies; this is not
unexpected, as the underlying statistical models of epistasis are different. This suggest
that a consensus method combining GBOOST, epiGWAS, and even additional tools, could
improve the recovery of actual epistatic effects.

Given the computational resources, epiGWAS could conceptually be applied at a genome-
wide scale, considering each SNP in turn to be a target. However, this would be at the
expense of the statistical power gained from reducing the number of tests. Runtime could
be improved using recent fast lasso solvers for large scale problems [136, 161].

epiGWAS is limited to modeling quadratic effects between one target SNP and a linear
combination of other SNPs. In the following chapter, I will show how to use kernels to
model a greater variety of nonlinear dependencies.



NONLINEAR FEATURE SELECTION WITH KERNELS

In the previous chapters, I have outlined strategies to identify quadratic interactions
between genomic features and a phenotype, either pairwise (as in Chapter 5) or as a linear
combination of products between a target SNP and the rest of the genome (Chapter 6).
However, one can envision more complex types of interactions; and kernels appear as a
natural candidate to model those (see Section 1.2.6).

In addition to modeling synergetic effects that several features can have on a phenotype,
kernels can also be used to measure a nonlinear association between a single feature and
a phenotype. In particular, the Hilbert-Schmidt Independence Criterion (see Section 1.2)
uses kernels to measure the dependency between two variables in a nonlinear way. In
Section 7.1, I will show how this idea can be applied to perform non-redundant feature
selection in very high dimensional settings.

Kernels are already well used in the GWAS community, in particular through the Sequence
Kernel Association Test (SKAT) (see Section 1.2.6), which is used to assess the association
between a predefined group of SNPs and the phenotype. In Section 7.2, I will describe a
generalization of the SKAT statistics to a broader family of association scores that enjoy
greater statistical power in practice.

The work presented in this chapter was published as

e Héctor Climente-Gonzdlez, Chloé-Agathe Azencott, Samuel Kaski, and Makoto Ya-
mada. Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional
data . Bioinformatics, 35(14), 2019. Proceedings of the 27st Annual International
Conference on Intelligent Systems for Molecular Biology (ISMB 2019).

e Lotfi Slim, Clément Chatelain, Chloé-Agathe Azencott, and Jean-Philippe Vert. ker-
nelPSI: a post-selection inference framework for nonlinear variable selection. In
Proceedings of the Thirty-Sixth International Conference on Machine Learning (ICML),
volume 97, pages 5857-5865, 2019.

7.1 Non-redundant biomarker discovery with block HSIC lasso

Nonlinear association measures, such as mutual information [53] or the Hilbert-Schmidt
Independence Criterion (HSIC) [84], select the features with the strongest dependence
with the phenotype. However, these methods do not account for the redundancy between
features, which is frequent in biological data sets. Hence, many redundant features are
typically selected, hindering interpretability.

While in GWAS this redundancy is often exploited, in particular when rare variants are
being measured, so as to increase statistical power, we here suppose that one wishes to
find non-redundant biomarkers, each pointing at a different region of the genome rather
than accumulating evidence for a particular region.
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7.1.1 mRMR

The nonlinear selection of non-redundant features can be achieved with the minimum
redundancy maximum relevance (mRMR) algorithm [58, 191]. mRMR selects a set of
non-redundant features that have high association with the phenotype, while penalizing
the selection of mutually dependent features by a mutual information term. Supposing
our data, containing n samples and m features, is represented by X € R"*™ and the
phenotype by y x R", we call g, € R" the vector containing n observations for feature p
and corresponding to a column of X. The mRMR score of a set of features S is defined as

mRMR (S |3|Z (9p, Y —| |2 > Ml(g,, gq), (7.1)
peS p#qeS

where MI is an empirical estimate of mutual information [191].

Finding the set of features S that maximizes the mRMR score is a nonconvex optimization
problem. mRMR implementations therefore rely on a greedy approach, with no guar-
antee on finding the optimal set. In addition, the estimation of mutual information is
difficult [256], which further limits mRMR.

7.1.2 HSIC lasso

Yamada et al. [273] proposed to apply a similar idea, using HSIC instead of mutual infor-
mation to measure dependency between variables. Their HSIC lasso uses an /; penalty
term to select a small number of features. This results in a convex optimization problem,
for which one can therefore find a globally optimal solution.

If we denote by HSIC the estimator of HSIC proposed by Gretton et al. [86], HSIC lasso
solves the following optimization problem:

m _—— 1 m ——
%}%Z a, HSIC(gy, y) — 5 Zl ap ag HSIC(gp, gg) — Allex]]1. (7.2)
= p,q=

The first term enforces selected features that are highly dependent on the phenotype; the
second term penalizes selecting mutually dependent features; and the third term enforces
selecting a small number of features. As with the lasso, the selected features are those
that have a non-zero coefficient o, and A > 0 is a regularization parameter that controls
the sparsity of the solution.

HSIC lasso can be rewritten as a regular lasso problem using a vectorized version of
the kernel matrices involved in the computation of H/SI\C, and performs well for high-
dimensional data. However, it requires a large amount of memory, in the order of O(mn?).
Several approximations have been proposed. One can for example use a memory lookup
to reduce memory space, which is in exchange computationally expensive [273]. Another
possibility is to rewrite the problem using the Nystrom approximation [217], which makes
it non-convex, but amenable to a MapReduce implementation [275].

7.1.3 Block HSIC lasso

In Climente-Gonzéalez et al. [46], we proposed another approximation, which relies on the
block HSIC estimator [283] to estimate the HSIC terms in Eq. (7.2). By splitting the data in



7.1 Non-redundant biomarker discovery with block HSIC lasso

blocks of size B < n, the memory complexity of HSIC lasso goes from O(mn?) down to
O(mnB), and the optimization problem of the block HSIC lasso remains convex.

The block HSIC estimator [283] is computed by first partitioning the dataset into % parti-
tions {{( , yfk)) ’ Zi Jf, where B is the number of samples in each block. The block
size B is set toa relatlvely small number such as 10 or 20 (B < n). Then, the block HSIC

estimator can be written as

n/B
HSIC,(g,, y Z HSIC(g®), y*)), (7.3)

where gl()k) € RP represents the p-th feature vector of the k-th partition.

The HSIC estimator in Eq. (7.2) can easily be replaced by the block HSIC estimator, leading
to a method we call block HSIC lasso. Because the problem can be reformulated as a regular
lasso problem, it can be solved using LARS [64], and A can be chosen to yield a predefined
number of selected features. We made both HSIC lasso and block HSIC lasso available in
the Python package pyHSICLasso!.

7.1.4 Relationship with SConES and Grace

The objective of SConES, presented in Section 2.3, is given by Eq. (2.5):

argmaxr ' f —n||fllo — AfTLf.
fe{o,1pm

If wesetr, = H/Sﬁ(gp, y)and L;; = }ﬁ(gp, gq), and relax f to be real-valued and the ¢
norm to its /; surrogate, we obtain a problem equivalent to that of Eq. (7.2). Hence, HSIC
lasso can be seen as a special case of the relaxation of SConES, with a network defined from
the data and describing dependence between features, itself using the same regularization
term as Grace (Eq. (2.1)).

7.1.5 Experimental results

Our experimental results on synthetic data sets show that block HSIC lasso is computa-
tionally efficient and performs comparably to the state of the art. On gene expression
microarray and single-cell RNA sequencing data sets, we found that the biomarkers se-
lected by block HSIC lasso achieve state-of-the-art classification performance. In addition,
those biomarkers are quite different from those selected by mRMR, suggesting a comple-
mentarity of the two approaches.

We also applied HSIC lasso, using normalized Dirac kernels as kernels, to the WTCCC1
datasets [244] for rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes
(T2D). Using nonlinear models such as block HSIC lasso to explore the relationship between
SNPs and phenotype does not require to make an assumption on the genetic architecture
of the trait. In addition, by penalizing the selection of redundant features, block HSIC
lasso avoids selecting multiple SNPs in high linkage disequilibrium. We illustrate this on
Figure 7.1, where we highlight, on classic GWAS Manhattan plots, for each of the three
phenotypes, the 10 SNPs selected with block HSIC lasso.

1 https://pypi.org/project/pyHSICLasso
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Figure 7.1: Manhattan plot for the three WTCCC1 GWAS, using p-values from the genotypic test.
A constant of 10722° was added to all p-values to allow plotting p-values of 0. SNPs
in black are the SNPs selected by block HSIC lasso (B = 20), 10 per phenotype. When
SNPs are located within the boundaries of a gene (+50 kb), the gene name is indicated.
The red line represents the Bonferroni threshold with oo = 0.05.

Block HSIC lasso selects SNPs among those with the most extreme p-values. In addition,
not being constrained by a conservative p-value threshold, block HSIC lasso selects two
SNPs in type 2 diabetes with low, albeit non-Bonferroni significant, p-values when they
improve classification accuracy. Moreover, the selected SNPs are scattered all across the
genome, displaying the lack of redundancy between them. This strategy gives a more
diverse set of SNPs than classic GWAS approaches.

All our experimental results are available in Climente-Gonzdlez et al. [46] and can be re-
produced using the code we made public at https://github.com/hclimente/nori.

7.2 Post-selection inference with kernels

With block HSIC lasso, we have used kernels to model nonlinear effects of a single feature
on the phenotype. However, kernels can also be used to create nonlinear models of multiple
features, for example SNPs belonging to the same genomic region, acting together on
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7.2 Post-selection inference with kernels

the phenotype. We propose in Slim et al. [229] to use quadratic kernel association scores,
a definition under which a number of existing scores such as HSIC estimators fall, to
select the kernels most associated with a phenotype. If those kernels are defined on single
features, or groups of them, selecting kernels leads to feature selection (individually or by
groups). In addition, the post-selection inference framework allows us to account for the
selection event when performing inference, and in particular to provide p-values for the
association of a selected kernel with the phenotype.

7.2.1 Quadratic kernel association scores

Let K € R™*™ be a kernel matrix over n samples, y € R™ a corresponding phenotype or
outcome, and ¢ : R™*"™ — R"™"*™ g function. We define a quadratic kernel association score
(QKAS) as a function

s:RY™" x R*" > R
(K,y) ~ vy q¢(K)y. (7.4)

If ¢ is positive semi-definite, there exists a function i : R"*" — R™*" such that h(K) =
¢'/?(K); we’ll refer to that function as the hat function of s. s is a positive definite form
in y, and can be rewritten as:

s(K,y) = ||yk |3, (7.5)

where yx = h(K)y. Following Reid, Taylor, and Tibshirani [205], who use a similar
concept to design statistical tests of linear association between y and a group of features,
we call yx a prototype for kernel K.

This definition encompasses several ways to define the association between a kernel
and a phenotype. For example, it generalizes two recently proposed scores for groups of
features [152, 205]. In addition, both the biased estimator of HSIC proposed by Gretton
et al. [86] and its unbiased estimator proposed by Song et al. [232] can be used to define

the QKAS s(K,y) = H/SE(K ,yy ). Both are positive quadratic forms in y.
7.2.2  Kernel selection

Givenany QKAS sandasetS = { K1, Ko, ..., Kg} of S kernels, we consider three standard
strategies to select a number S’ < S of kernels from S:

e Filtering: select the top S’ kernels with highest score s(K, y).

e Forward stepwise selection: start from an empty list of kernels, and iteratively add
new kernels one by one in the list by picking the one that leads to the largest increase
in association score when additively combined with the kernels already in the list.

e Backward stepwise selection: conversely, start from the full list of kernels, and itera-
tively remove the one that leads to the smallest decrease in association score.

We can also consider adaptive variants of these selection methods, where the number S’
of selected kernels is not fixed beforehand but automatically selected in a data-driven
way. In adaptive estimation of S’, we maximize over S’ the association score computed at
each step, potentially regularized by a penalty function that does not depend on y.
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7.2.3 Post-selection inference

One way to reduce the statistical burden of multiple hypotheses testing is to start by select-
ing only relevant features and limiting statistical tests of associations to those. However,
if the phenotype is used to perform this selection (as is the case when a regularized linear
regression is used, or in the kernel selection schemes previously described), the features
that are tested are more likely to exhibit a strong association with the phenotype, as they
were specifically selected for that purpose. Therefore, standard statistical tests must be
adapted to correct for this bias, a setting refered to as post-selection inference [137].

Post-selection inference is possible in the context of kernel selection as we have described
it because the selection event can be described as a conjunction of quadratic constraints,
which allows us to leverage techniques explored by Loftus and Taylor [152] and Yang et al.
[277] for group feature selections.

More specifically, given a set of kernels S = { K, Ko, ..., Kg}, a quadratic kernel associa-
tion score s and its hat function £, and one of the aforementioned kernel selection strate-
gies, let m(y) C S denote the subset of kernels selected based on the phenotype vector

y. Forany M C S, there exists iy € N, and (gat,1,004,1)5 - - - (G, OMiin) € RPT X R
such that
v
{y:m(y) =M} =y : v qrmiy + bagi > 0}, (7.6)
=1

Let us consider the general model
Y = p+o’e, (7.7)

where ¢ ~ N(0,I,) and p € R™. Characterizing the set £ = {y : m(Y) = M} allows
us to answer a variety of statistical inference questions about the true signal x and its
association with the different kernels, conditional to the fact that a given set of kernels
M has been selected.

For example, testing whether s(K, i) = 0 for a given kernel K € M, or for the sum of
kernels K = )" /. ,, K', is a way to assess whether K captures information about 4. This
is the test carried out by Yamada et al. [274] to test each individual kernel after selection
by marginal HSIC screening.

Alternatively, to test whether a given kernel K € M has information about x not redun-
dant with the other selected kernels in M \ { K'}, one may test whether the prototype of
built from all kernels in M is significantly better than the prototype built from M \ {K}.
This can translate into testing whether

S<Z K’,u>:s > Kpu

K'eM K'e M, K'#K

Such a test is performed by Loftus and Taylor [152] and Yang et al. [277] to assess the
significance of groups of features in the linear setting, using the projection prototype.

In general, testing a null hypothesis of the form s(K, ;) = 0 for a positive quadratic form
s can be done by forming the test statistic V = ||h(K)y||3, and studying its distribution
conditionally on the event y € £. That £ is an intersection of subsets defined by quadratic
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constraints (Eqg. (7.6)) can be exploited to derive computationally efficient procedures to
estimate p-values and confidence intervals.

The techniques of Loftus and Taylor [152] and Yang et al. [277] can be directly applied
to our setting when h(K) is a projection matrix, as with the KPCR prototype. For more
general h(K) matrices, these techniques need to be adapted; one way to proceed is to
estimate the distribution of V by Monte-Carlo sampling. We proposed in Slim et al. [229]
a constrained Monte-Carlo hit-and-run sampler [22] based on the hypersphere directions
algorithm [24].

Alternatively, Reid, Taylor, and Tibshirani [205] propose to test the significance of groups
of features through prototypes, which they argue uses fewer degrees of freedom than
statistics based on the norms of prototypes, which can increase statistical power. We have
also adapted this idea to the case of kernels.

7.2.4 kernelPSI

We refer to the kernel selection and inference procedure descibed above as kernelPSI.
kernelPSI is available as an R package from CRAN [226].

In Slim et al. [229], we limited ourselves to kernels corresponding to predefined groups of
features, the QKAS defined by the biased HSIC estimator of Gretton et al. [86], and testing
the association of the sum of selected kernels with the phenotype.

Our experiments on synthetic data show the statistical validity of kernelPSI. In addition,
we observe that both kernelPSI and SKAT [268], which are both kernel-based procedures,
are superior to linear alternatives. Moreover, methods selecting fewer kernels enjoy greater
statistical power, and adaptive methods tend to select too many kernels. A representative
example of these experiments is presented on Figure 7.2, in which we plot the evolution of
the statistical power as a function of the effect size. Here the effect size 6 is the magnitude of
the coefficient applied to the kernels we chose as causal in our simulations. The statistical
power is measured as the recall of the experiment, that is to say, the proportion of causal
kernels properly identified as such.

Finally, preliminary applications to GWAS on Arabidopsis thaliana, using the Identical
By State kernel (see Section 1.2.6)over clusters of SNPs considered to be in linkage dise-
quilibrium, indicate that kernelPSI has the power to detect relevant genes in GWAS and
are complementary to existing approaches. We are currently conducting a more in-depth
study of the application of this methodological contribution to actual GWAS data sets.

7.3 Conclusion and perspectives

In this chapter, I have shown how kernels can be used to perform nonlinear feature
selection in high-dimensional data. The first approach I presented, HSIC lasso, can be
seen as a specific case of the relaxed version of SConES, where the score of association
between a feature and the phenotype is computed using an HSIC estimator, and the
network constraint is given not by an a priori biological network but by the data-driven
HSIC between features. HSIC lasso is therefore used to select nonredundant informative
features.

The second approach, kernelPSI, also uses HSIC (or more generally a quadratic kernel
association score), but to determine the association between a group of features and the
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Figure 7.2: Evolution of the statistical power of kernelPSI variants and benchmark methods, using

Gaussian kernels for simulated Gaussian data, as a function of the effect size 4. The
kernelPSI method with HSIC kernel and set numbers of kernels to select (“HSIC (S” = 1)”,
“HSIC (5" = 3)”, “HSIC (S’ = 5)”) enjoy slightly better power than the adaptive version
(“HSIC adaptive”). “HSIC” is the independence test proposed by Gretton et al. [85].
The KRR and KPCR are variants of kernelPSI using other quadratic kernel association
scores than HSIC. If no indication appears in parentheses after their names, no feature
selection is performed and the statistical significance of a prototype built using all
features is used. Finally, “protoLasso” is the method proposed in Reid, Taylor, and
Tibshirani [205] and can be considered a linear alternative to the KRR. “protoOLS” and
“protoF” are two variants that do not perform feature selection but simply evaluate the
statistical significance of prototypes built from the full model.

phenotype. There is no notion of redundancy here. A main advantage of kernelPSI is to
make use of the post-selection inference framework to provide valid inferences and hence

p-values for the selected features.

While our kernelPSI contribution was very methodological in nature, we are currently

exploring its application to GWAS data sets.

One of the limitations of such approaches is their somewhat black-box nature: while we
can use them to find which features act nonlinearly on the phenotype, the exact nature of
this action is not accessible. In addition, they suffer from computational limitations, in
particular as the number of samples grows, something we now see happening for certain
phenotypes such as height or body-mass index. The block HSIC estimator [283] alleviates
this issue, as we demonstrated with the block HSIC lasso. In addition, we have started
experimenting with GPU implementations of HSIC computations.



LESSONS LEARNED

To conclude the exposition of the research I have been conducting, I will summarize in
Section 8.1 my methodological contributions to the fields of biomarker discovery and
precision medicine. Most of these contributions can be framed in the context of feature
selection in high-dimensional settings.

In addition, I would like to share some lessons I have learned - and keep learning — about
the application of machine learning to bioinformatics problems. These lessons can be
summarized as three messages: (1) the evaluation of machine learning models must match
the problem at hand (Section 8.2); (2) more complex machine learning algorithms do not
necessarily yield better models (Section 8.3); (3) the hardest part is often to build the data
set (Section 8.4).

To the machine learning practicioner, these three statements may appear rather trivial.
They are, after all, among the key points I try to convey in any of my machine learning
lectures. However, their execution in bioinformatics research is not always so straightfor-
ward.

The insights I present in this chapter are born from the work I have presented so far, as
well as additional published work that did not make it to the bulk of this document:

e S.Joshua Swamidass, Chloé-Agathe Azencott, Ting-Wan Lin, Hugo Gramajo, Sheryl
Tsai, and Pierre Baldi. The Influence Relevance Voter: an accurate and interpretable
virtual high throughput screening method. Journal of Chemical Information and
Modeling, 49(4):756-766, 2009.

e S. Joshua Swamidass, Chloé-Agathe Azencott, Kenny Daily, and Pierre Baldi. A
CROC stronger than ROC: measuring, visualizing and optimizing early retrieval.
26(10):1348-1356, 2010.

e Matthew A. Kayala, Chloé-Agathe Azencott, Jonathan H. Chen, and Pierre Baldi.
Learning to predict chemical reactions. Journal of Chemical Information and Modeling,
51(9):2209-2222, 2011.

e Dominik Grimm, Chloé-Agathe Azencott, Fabian Aicheler, Udo Gieraths, Daniel
MacArthur, Kaitlin Samocha, David Cooper, Peter Stentson, Mark Daly, Jordan
Smoller, Laramie Duncan, and Karsten Borgwardt. The evaluation of tools used
to predict the impact of missense variants is hindered by two types of circularity.
Human Mutation, 36(5):513-523, 2015.

e Chloé-Agathe Azencott, Tero Aittokallio, Sushmita Roy, et al. The inconvenience of
data of convenience: computational research beyond post-mortem analyses. Nature
methods, 14(10):937, 2017.
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8.1 Summary of research work

Because differences between patients in diagnosis, prognosis and response to treatment
are partially due to genetic causes, enabling precision medicine requires the development
of methods that can identify biomarkers that explain a phenotype of interest. Biomarker
discovery can often be cast as a problem of feature selection in high-dimensional omics
data sets, where the number of samples is usually small, which poses statistical challenges.
To address these challenges, I have worked along three axes:

e The integration of prior biological knowledge, encoded as networks, to machine
learning methods for biomarker discovery (Chapter 2);

e The development of multitask algorithms, which alleviate the data scarcity by jointly
fitting models for related problems (Chapters 3 and 4);

e The development of methods for nonlinear feature selection, so as to depart from
single-feature or additive models (Chapters 5 to 7).

Although feature selection in high dimension is the main focus of my work, I have also
recently worked on graph node labeling, for the inference disease genes from gene-gene
interaction network (Appendix A), or on supervised multitask learning, for the prediction
of drug-protein binding (Appendix B).

8.1.1 Using biological networks

Biological systems are complex systems, in which components interact in synergistic,
antagonistic, or redundant ways. Genetic alterations responsible for a particular phenotype
can hence be expected to affect genes, either locally or remotely, that interact physically
or along a molecular pathway.

Biological networks, which capture this complexity, are a rich source of information for
mathematical modeling, thanks to their graph structure. In Chapter 2, I have shown how
the penalized relevance framework we proposed can be used, with the SConES algorithm,
to combine biological networks and classic tests of association to increase our ability to
discover SNPs that explain a phenotype. In Appendix A, I have described ongoing work
on applying recent developments in graph representation learning to the problem of
prioritizing disease gene candidates using multi-layer biological networks.

While my work within the penalized relevance framework has focused on graph regularizers
built from biological networks, this framework is amenable to other forms of regularization,
and in particular group regularizers built, for example, from pathways.

8.1.2 Multitask approaches

While biological networks help us shape the space of features describing our data, in-
creasing statistical power by essentially reducing the dimensionality of the problem,
a complementary approach consists in increasing the sample size by means of jointly
learning on multiple related but different tasks.

In the context of feature selection, jointly selecting features for all tasks reduces the
features-to-sample ratio of the data, while keeping the particularities of each data set.
I have described in Chapter 3 how we extended SConES to multitask settings, and in
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Section 4.2 the algorithm we proposed to incorporate task descriptors to improve lasso-
like multitask feature selection.

I have shown that using task descriptions can improve the quality of predictions in a
mutltitask framework, whether based on lasso (Section 4.2) or on SVM (Appendix B). This
allows us to make predictions for tasks for which no training data is available, which can
prove useful, for example, for new drug candidates for which no experimental data has
been collected yet.

8.1.3 Nonlinearities

Biological phenomena are often nonlinear, which suggests that one must incorporate
interactive effects between genetic features in biomarker discovery models.

Unfortunately, the detection of two-loci interactions in GWAS requires a massive amount
of computation, as the number of pairs of SNPs that need to be examined can be in the
order of 10'% — 10'“. I have presented in Chapter 5 how to use GPGPU to accelerate those
computations in the case of linear models.

To address the statistical challenges that are also aggravated by the increased number of
statistical tests to perform, we have proposed a targeted epistasis approach (Chapter 6)
that searches for interaction between a specific SNP and the rest of the genome. This
model is more flexible than pairwise interactions, as it can model interactions between the
target SNP and several other SNPs jointly. In addition, our method gains power from not
requiring the evaluation of main effects to test interactive ones, and corrects for linkage
disequilibrium effects.

Finally, I have shown in Chapter 7 how to use kernels, in particular via the HSIC, first
to model nonlinear dependencies between two variables, so as to select informative but
non-redundant features (Section 7.1), and second to select groups of features nonlin-
early associated with a phenotype (Section 7.2). In this second setting, the post-selection
inference framework makes it possible to obtain p-values to quantify these associations.

Finally, with open science and reproducible research in mind, we have released code for
each of these methodological contributions, as well as, when possible, data sets and scripts
that can be used to reproduce the published results.

8.2 Proper evaluations are not always straightforward

Evaluating a machine learning model requires two things: an evaluation data set, and
an evaluation metric. The evaluation data set should be separate from the training set,
so as to avoid overfitting. The evaluation metric should be suited to the problem and
informative about the model. While these two concepts sound rather obvious, I have often
found myself in situations where there are not straightforward to implement, and will
detail some of these scenarios below.

8.2.1 Beware circular reasonings

Separating training and evaluation data implies ensuring that the evaluation data set has
not been used at any point of the training process, including the model selection stage.

55



56

Lessons learned

This may not be straightforward when the public benchmarks available for the evaluation of
predictive tools overlap with the databases used to build these tools. We have encountered
this situation when trying to propose — and therefore evaluate — new tools for predicting
whether a missense single nucleotide variant is more likely to be pathogenic or neutral [87].
Many tools, such as SIFT [180], PolyPhen-2 [2] or CADD [122], have been developed
for that purpose. Nair and Vihinen [175], having noticed that some of them had been
developed using databases also typically used for benchmarking, endeavored to build
independent benchmark data sets. However, there can still be some overlaps (mainly in
neutral variants). Furthermore, not all authors disclose the variants they used to build
their tools. It is impossible to guarantee that an evaluation data set does not contain some
of these variants, and hence to guarantee fairness when comparing these tools against
others.

A more subtle issue arises when the set of examples that are already annotated is not a
uniform random sample of the population of interest. Still on the topic of pathogenic
variants, we found [87] that many annotations available in data bases are obtained from
predictions - either from well-established tools or, more simply, by annotating all variants
in a gene with the same label as the only one in this gene to be supported by biological
evidence. This means that one can very efficiently leverage the annotation of other SNVs
in the same gene to build what will appear to be a very accurate tool; but there is no
guarantee that this tool will perform well on new variants.

A similar problem arises in the disease gene prioritization problem I described in Ap-
pendix A: the genes that are labeled as disease genes may have been investigated following
up on computational predictions, or more simply because they are connected to other
disease genes. The distribution of positive labels is therefore likely to be biased by network
topology. In these circumstances, one may argue that the performance of network-based
methods is partially due to the way genes have been investigated experimentally. These
concerns can be related to those related to the limitations of the guilt-by-association
hypothesis discussed by Gillis and Pavlidis [78].

8.2.2 Realistic evaluation data sets

An additional difficulty I have encountered many times in bioinformatics is making sure
that the evaluation data set, in addition to not being biased as described above, actually
corresponds to the envisioned application.

This is a point we illustrated in our work on drug-protein binding prediction [196], as
exposed in Section B.2 of Chapter 4. When applying drug-protein binding prediction
algorirthms at a proteome-wide scale, so as to discover secondary targets of a given
molecule, one encounters many orphan proteins, that is, proteins for which no ligand is
known. We showed that making good predictions for these proteins is notably harder than
for proteins that have several known ligands, and, unsurprisingly, even more so if they
are dissimilar to all non-orphan proteins of the training set [196]. For this reason, we had
to carefully construct realistic evaluation data sets, that mirror this orphan situation, to
avoid evaluating our methods on settings that are “too easy”.

8.2.3 Appropriate evaluation metrics

Finally, one must not forget to use appropriate evaluation metrics. Most feature selection
methods in machine learning have been developed to reduce the size of the training data



8.3 Complex models may not be better

and improve the predictive quality of supervised learning models. However, in biomarker
discovery, the ability to interpret the selected features is crucial. This means that the
stability of feature selection methods must be taken into account, as we did for instance
in Azencott et al. [11] or Bellon, Stoven, and Azencott [23]. This aspect is still, to my eyes,
underestimated in many published studies.

Another situation in which evaluation metrics must be carefully considered is in virtual
screening, that is to say, the exploitation of an exploratory in vitro screening to rank
unscreened compounds according to their activity towards the same target. The Influence
Relevance Voter (IRV) algorithm we developed for that purpose [237] retrieves up to
three times as many active compounds among those in the first percent of the ranked
list returned. Evaluating IRV led us to studying how to assess an algorithm’s ability for
early recognition, that is to say, its ability to put active compounds at the very top of the
ranked list it returns, irrespective of how the inactive compounds are ranked. A tool with
good early recognition capacities allows experimentalists to focus their efforts on a small
number of compounds. To address this question, we have developed CROC (Concentrated
ROC), an extension of ROC curves for the quantification, visualization and optimization
of early recognition [236].

8.3 Complex models may not be better

Many machine learning researchers share a tendency to want to build more complex
models than those that already exist to address a particular problem, hoping their model
will outperform the state of the art. This tendency is both a curse and a blessing: while
this is, of course, how we get better solutions for existing problems, it often happens that
the more complex model is, in fact, not making any better predictions.

It is along those lines that Haury, Gestraud, and Vert [99] showed that the most satisfactory
method to extract molecular signatures from gene expression datasets, among the 32 they
evaluated, were not the wrapper or embedded methods, but a simple Student’s t-test. It
does not mean we should stop investigating complex models, but rather that we should
pay careful attention to comparisons with reasonable baselines — such as a univariate
statistical test. In Azencott et al. [11], we compared SConES to a univariate test for all the
reported metrics, and found that, on the problems we were investigating, our algorithm
does indeed, unlike the lasso, outperform this baseline.

8.3.1 Components of a complex model should be evaluated separately

An additional — and unpublished — example comes to mind. The work I presented in
Chapter A was not my first attempt at addressing the question of prioritizing disease
genes using gene-gene networks. In 2011, I looked into a similar question, where the
problem was formulated as a link prediction problem on an undirected graph containing
two types of vertices: some representing genes, and others representing diseases. Edges
between two genes correspond to a protein-protein interaction network. Edges between
two diseases correspond to a measure of disease similarity. Finally, diseases are connected
to their disease genes, and it is this relationship that one wishes to complete. This setting
is that of several publications [67, 173].

I was interested in proposing a kernel-based approach to this problem, and defined the
kernel between two (disease, gene) pairs as a function of a kernel between two diseases
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and a kernel between two genes. The disease kernel was derived from the disease similarity
used by other authors, whereas I had several ideas of kernels between graph nodes that
could be used for the gene kernel.

However, I quickly realized that, in practice, the gene kernel had very little importance on
the results, which were overwhelmingly dependent on the disease kernel. I then replaced,
in previously published methods, the protein-protein interaction network with a trivial
network with no edges. This only had a very small effect on the overall performance of
these methods. Hence, building more and more complex gene kernels had no use for that
problem. Another lesson drawn from this experience is that it is important to evaluate
separately the different components of a complex models, again creating meaningful
baselines in which all components but one are replaced by trivial baselines.

This point does not invalidate the work I presented in Chapter A: the data sets are very
different, and the fact that the protein-protein interaction network brings little informa-
tion with respect to the disease similarity data does not mean that the gene-gene network
is irrelevant when focusing on a single disease (or disease family).

8.3.2 Deep learning will not cure all that ails you

Deep learning has recently lead to major breakthroughs in computer vision, natural
language processing, or speech recognition, thanks to its ability to learn powerful rep-
resentations for data that live on a grid-like structure. These inroads have ignited the
interest of the community for developing deep learning models for data that live on
graphs. Unfortunately, these advances do not always readily translate in progress for all
application areas.

The work I presented in Appendix A illustrates this point: we did not find deep learning
approaches for node labeling to perform better than the classic label propagation methods
for this application. Moreover, the slight gain in performance we observed in some settings
was obtained at the expanse of requiring much larger computational resources.

Benoit Playe made similar observations in the context of drug-ligand prediction. In work
he conducted following the study I presented in Appendix B, and which is described in his
PhD thesis [195], he thoroughly investigated the application of the latest developments
in graph representation learning and neural network architectures for chemogenomics.
Although neural networks sometimes outperform the kernel-based method we proposed in
some settings, tuning their parameters is much more computationally intensive. Overall,
his results strongly suggest that further investigating neural network architectures is not
a promising direction to improve drug virtual screening in a chemogenomics framework.

8.4 The hardest part may be to build the data set

Most data scientists will tell you that most of their time is spent on data pre-processing.
This is indeed very much the case for bioinformatics applications as well, and I have
encountered several occasions where building an appropriate data set was the most chal-
lenging part of the project.

This issue often ties in with the aforementioned difficulty to build a proper evaluation
framework (see Section 8.2). Indeed, in both the variant pathogenicity prediction study [87]
or in the drug-ligand prediction project [196] I discussed, figuring out how to separate our
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data in subsets appropriate to properly answer the questions we had was a large part of
our work.

Furthermore, collecting the data to start with can turn out to be the most difficult — and
the most crucial — part of the work of a machine learner in bioinformatics.

8.4.1 Predicting organic chemistry reactions

Towards the end of my PhD, I have worked on molecular synthesis, one of the applications
being to assist chemists in finding efficient and cost-effective ways of synthesizing drugs
or candidate drugs. More specifically, I have studied the prediction of the course taken by
organic chemical reactions. Whereas the literature at the time was focused exclusively
on expert systems, Matt Kayala and I wanted to take a machine learning approach to
address this problem. We decided to model chemical reactions by decomposing them in
elementary mechanisms, from which we could derive atom features that we could in turn
use to train models to detect active sites, and to rank active sites by reaction favorability.

Our main contribution was to build the first data set of elementary mechanisms, which
we then made publicly available [118]. This allowed us to build the first reaction predictor
capable to generalize to reaction types not included in its training set [118].

8.4.2 The inconvenience of data of convenience

More generally, data collected in biological and medical studies are often generated
without the input of those who will later analyze it. Computational analyses are therefore,
in the words of statistician Ronald Fisher, mostly performed “post-mortem”.

I took part in two DREAM challenges that illustrate the difficulties in this process. In
DREAM challenges, computational biologists around the world attempt to solve a bio-
logical or medical problem using the provided “data of convenience”. In the Rheumatoid
Arthritis Responder Challenge, where the goal was to predict drug response from patient
genome, using the SNP data did not improve predictions over those obtained using a hand-
ful of clinical predictors [223]. In the Toxicogenetics Challenge, SNP data by themselves
were not predictive, but the RNA-seq data were. However, RNA-seq data was only available
for 38% of the patients [63].

These situations may arise because computational approaches are just not good enough
yet for the task. However, that none of several dozen independent expert teams were
successful in solving the problems using the same data suggests that, instead, more or
different kinds of data may be needed. How can one efficiently determine which data we
need to, rather than can, measure to accelerate scientific discovery?

Following our belief that computational biologists can contribute to model-driven experi-
mental research, we have launched in 2016 the Idea DREAM Challege [13]. Participants
were asked to propose biomedical research questions for which computational models
have exploited available data to the limit, and are ready to guide new data collection ef-
forts to move the field forward. Through peer review and discussions among participants,
we selected two winning ideas. We have matched the winning participants with wet-lab
researchers to generate the necessary data.

It is too early yet to see where these efforts have led, but we hope that the Idea DREAM
Challenge is just the beginning of many more endeavors in which data analysts and
computational biologists can be actively engaged in all stages of the scientific process.
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To pursue my work in the development and application of machine learning tools for
precision medicine, I am planning on following four axes: (1) addressing GWAS-specific
questions, such as linkage disequilibrium, population structure, or the construction of
SNP-SNP networks, in line with the methods I have already proposed (Section 9.1); (2)
focusing on the stability of feature selection methods (Section 9.2); (3) integrating multiple
types of data, including from electronic health records (Section 9.3); and (4) data privacy
(Section 9.4).

9.1 GWAS-specific questions

In the course of my work on GWAS data, several topics have arised that I would like to
explore in more depth.

9.1.1 Linkage disequilibrium

The first of these topics is linkage disequilibrium (see Section 1.1.2). How can we properly ac-
count for the non-random correlations between features in our methods? In epiGWAS [228],
we used propensity scores to model them explicitly. In work such as SConES [11], linkage
disequilibrium is not explicitly accounted for; the sparsity constraints will tend to enforce
the selection of a single SNP out of an LD block, while the network constraints will rather
favor selecting several SNPs in linkage disequilibrium if they are connected on the un-
derlying biological network and all contribute to the signal. In block HSIC lasso [46], we
explicitly chose to select non-redundant features, which results in picking, again, a single
SNP per LD block.

Which of these approaches is more desirable from a practical point of view? Should we
maybe only consider association at the level of an LD block, rather than at the variant
level? This would probably improve the algorithms stability.

Another interesting question is that of the definition of LD blocks. Indeed, beyond LD
pruning and LD clumping, the prototypes we proposed in Slim et al. [229] could be used
to form LD blocks.

9.1.2 Population structure

Population structure is another important concern in GWAS. Indeed, some SNPs may appear
to be associated with the phenotype when, in fact, they are associated with a subpopulation
of the data in which the trait is more present. In addition, the SNPs associated with a
phenotype may be different in different populations. Furthermore, subpopulations may be
due to phenotype heterogeneity; whether in cancer or psychiatric disorders, two patients
with the same symptoms may in fact suffer from a different disease.

In order to avoid confounding by population structure, several approaches are possible:
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e separate the data in homogeneous subpopulations. While this reduces the number
of samples, statistical power may actually be improved if population-specific SNPs
have strong effects.

e incorporate population structure, typically identified by a principal component
analysis, as covariates (usually refered to as axes of genetic variation) in models [190,
197]. This is the approach we have followed in the work on Arabidopsis thaliana 1
have presented here.

e model population structure using linear mixed models [265]. While I find this solu-
tion more satisfying, it poses numerous statistical challenges [234] and its applica-
tion to my work is not straightforward.

I am interested, however, in whether multitask models (see Chapters 3 and 4), where
each of the tasks corresponds to a subpopulation (or a subphenotype), can be successfully
applied to this question.

9.1.3 SNP-to-gene mapping

I have alread mentioned in Section 2.3.7 of Chapter 2 the difficutly of mapping SNPs to a
gene, whether for functional interpretation or for building SNP-SNP networks. We are
currently investigating this aspect (see Duroux et al. [61]), and comparing empirically on
several GWAS data sets the impact and meaning of the various possible mappings.

It is important here to remember that most SNPs discovered by GWAS are in intergenic
regions [162]. It is therefore important to find ways to map intergenic SNPs to genes.
Both expression quantitative trait loci (eQTL) information, linking SNPs to genes whose
expression they partially regulate, and chromatin interaction matrices, which allow to link
SNPs to genes they are physically in contact within live cells, can help with this endeavour.
While neither type of information was available in data bases at the time we developed
SConES, this has now changed and both approaches have been used for the functional
interpretation of GWAS results [264].

9.2 Stable nonlinear feature selection

Although I have insisted in several places on the importance of the stability of feature
selection methods, none of the approaches I have proposed so far directly enforce this
stability. Our experiments show that using biological networks or solving biomarker
discovery problems in a multitask fashion does tend to improve stability. I believe this to
be a consequence of their improvement of both power and false discovery rate, and would
like to achieve stability in a more explicit fashion.

9.2.1 Stability

I am therefore planning to further develop the penalized relevance framework so as
to propose more stable network-guided feature selection approaches. Combining the
strengths of multiple feature selectors created from bootstrapped samples can guarantee
more stable sets of features than the individual selectors themselves [164, 220]. We have
used these strategies with some success in the context of GWAS studies [23, 228], and
expect them to be effective in the regularized relevance framework, which lends itself to
explicitly including stability in the objective function.
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Given K bootstrapped samples of the data (X, y), which can be choosen according to the
paired sample paradigm of [220], yielding K different relevance functions Ry, R, ..., Rk,
we can look simultaneously for K sets of features Sy, ... Sk that satisfy the objective
in Eq. (2.4) while being similar. This yields Eq. (9.1), which becomes equivalent to the
multitask formulation in Eq. (3.4). In practice, solving it will require the creation of a
meta-network in which each feature is duplicated as many times as bootstrap iterations.

K
argmax Y Rp(Sk) — AQ(Sk) — 1 > [SkASp|. (9.1)
81, SkCV 1 k!

One can also directly enforce S; = - - - = Sg.

An important question I think is that of the level at which we expect stability. Should our
methods systematically select the same SNPs? Or SNPs within the same gene? Within
the same LD block? Within the same pathway? Boyle, Li, and Pritchard [28] advance the
hypothesis of an “omnigenic” model. They propose that most heritability lies within regu-
latory pathways. While this confirms that it is meaningful to use networks, or pathways,
to guide biomarker discovery, it also suggests that a large number of variants influence
the phenotype. How can one then define a causal SNP when all variants are related to
phenotype? The omnigenic model hypothesis suggests looking for stability at a scale no
smaller than that of the regulatory pathway.

9.2.2 Nonlinear models

Our work on nonlinear feature selection has only just started, and there are many avenues
I would like to explore in the future.

One of them is the application of rule-based models, which have been successfully applied
to very high-dimensional microbiome data [59], to the gene expression or SNP data we are
encountering in human genomics. The work of Drouin et al. [59] gives strong performance
guarantees, and the rule-based models are very selective and highly intepretable. I am
curious to see how good these bounds are for human GWAS of complex traits.

Recent work in the field of safe screening rules [178] have allowed to greatly accelerate the
lasso and some of its variants, as well as the associated hyperparameter selection process.
I am curious to explore whether those ideas can be applied to the penalized relevance
framework. Along those lines, Le Morvan and Vert [136] proposes a working set method
for applying the lasso with two-way interactions.

We have recently started exploring post-selection inference to provide p-values for non-
linear feature selection methods (Section 7.2). Recent statistical developments, such as
knock-off filters [33], or multi-layer p-fitlers [20], are also an interesting avenue to explore.

9.3 Multiview feature selection

The methods I have presented in this document are meant to be applied a single type of
molecular data. However, one can often have access to several different types of measures,
ranging from molecular data to images and text, for the same samples. These different
data types correspond to different views of the data. Integrating them in a single analysis
could increase our ability to discover relevant biomarkers [79, 157].
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9.3.1 Multi-omics data integration

In the case of multi-omics data, considering for example SNPs, gene expressions, and
methylation patterns for the same samples, integration is facilitated by our ability to link
together omics features of different nature. This can be done through position on the
genomic sequence, or the SNP-to-gene mapping techniques discussed in Section 9.1.3.

Again, the penalized relevance framework allows for the integration of multiple views of
data. If D is the number of available views, and if the same features (e.g. genomic loci)
are available across all views, Eq. (2.4) can become

D

Ra(S) — AQ(S 9.2
arggjaxdz; d(S) (S), (9.2)

and can again be solved using a maximum flow algorithm. A variant where views can be
ignored if they are not relevant is also possible. One can also contemplate formulations
that allow for the selection of one set of features per view, with the help of a second
regularizer that enforces that related features are selected simultaneously across views.

9.3.2 Multi-modality

In addition to genomic data, patients can also be described at the cellular or systematic
scale by data of very different nature: time series, images, free texte, etc. The joint analysis
of these rich and complementary data can be expected to further our understanding of
human diseases and responses to treatment.

I am interested in performing feature selection, separately or jointly, on time series
representing patient trajectories [21] or accelerometer data [259]; on free-form medical
text, which can describe medical interventions [174] or clinical trials; or lab test results.

I am currently working on several projects in that direction: matching patients with clinical
trials; discovering prognostic factors in patients treated with neoadjuvent chemotherapy
from lab test results and anatomo-pathology reports; or identifying interactions between
comedications and recurrence-free survival in breast cancer from public health data.

While these projects may require new methodological developments, they also fall within
my recent efforts to also contribute to translational research. In working closely with
clinicians or biologists on specific questions of their devising, I am hoping to both feed
my long-term vision about necessary methodological developments, and to maybe see a
shorter-term impact of my work on patient health.

9.4 Data privacy

Finally, in a scarce data context, one cannot argue against the need to combine data sets
produced within different studies in different labs. Federated learning [30], however, is
hindered by, on the one hand, batch effects that may bias analyses if they are not properly
accounted for, and, on the other hand, by data privacy concerns. I have recently started
studying the state of the art in genomic data privacy [10], and would like in years to come
to adapt some of my work to the differential privacy framework.
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DISEASE GENE PRIORITIZATION

Chapter 2 described how to use biological networks to help biomarker discovery formu-
lated as a feature selection problem on a set of samples that have been both genotyped
and phenotyped. A very different approach consists in using gene-gene interactions to
prioritize candidate genes, that is, identifying computationally the genes most likely to
be linked to a disease.

The underlying hypothesis is the same: if a disease results from the perturbation of a
molecular pathway by a genetic dysfunction, then dysfunctions along that pathway may
produce similar phenotypes. In other words, genes responsible for similar diseases are
likely to participate in the same interaction networks [75]. This principle is sometimes
refered to as guilt-by-association: genes that are interacting are more likely to share
function.

In this appendix, I will describe in Section A.1 how the problem of disease gene prioriti-
zation can be formulated as a node labeling problem on multilayer graphs, that is, using
multiple networks over the same set of nodes. In Section A.2, I will give a brief overview
of state-of-the-art label propagation approaches to this problem. I will then describe in
Section A.3 recent developments in the field of deep learning for graphs. Finally, I will
describe in Section A.4 our first attempts to apply these techniques to address disease
gene prioritization.

The work in this appendix, which was jointly conducted with The work I present in this
part was conducted jointly with Stefani Dritsa, Thibaud Martinez, Antonio Rausell, and
Weiyi Zhang, has not been published yet, but we recently presented a first version at the
Jobim conference:

Stefani Dritsa, Thibaud Martinez, Weiyi Zhang, Chloé-Agathe Azencott, and Antonio
Rausell. Prediction of candidate disease genes through deep learning on multiplex
biological networks. 20th Open Days in Biology, Computer Science and Mathematics
(poster), 2019.

Because both biological networks and artificial neural networks appear in this appendix, I
will here use “graphs” to refer to biological networks and “networks” to refer to artificial
neural networks, unless otherwise specified.

A.1 Disease gene prioritization as a node labeling problem

In this appendix, we are considering a large set of genes, as well as a disease, or family of
diseases, for which a number of disease genes are known. Our goal is to find which other
genes are the most likely to be also associated with this disease. To that end, we want to
use multiple biological networks, representing relationships of different natures between
these genes.
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As all the biological networks share the same set of nodes, we model them as a single multi-
layer graph G = (V, £) consisting of L layers and n vertices (or nodes). An edge e € £isa
quadruplet (i, j,1,w) where i # j € V are the two vertices it connects, 1 <! < L indicates
towhich layer it belongs, and w € R is its weight. Vertices can also have attributes, in which
case they are described by X € R™*<, Finally, we call P the vertices labeled positively,
that is to say, those corresponding to the genes known to be associated with the disease
of interest. Our goal is to find a scoring function s : V — [0, 1] that gives the likelihood for
a vertex to be positive. Hence, our task is indeed a node labeling task.

Positive-unlabeled learning

This task can be described as a positive-unlabeled learning problem: no negative labels
are available for training, and our goal is to identify positive nodes in the unlabled set
U =V \ P. To address this issue, we follow a bagging approach similar to that proposed by
Mordelet and Vert [172], we repeatedly sample boostrap samples from the unlabeled data,
and train a binary classifier to discriminate the bootstrap sample from the positive data
instances of the training set. We then aggregate the predictions of the trained classifiers
simply by computing the mean of the individual predictions.

Model evaluation

Having labels for positive instances only also affects the way we can evaluate our meth-
ods, and there is currently no general performance evaluation strategy to compare gene
prioritization methods [89]. Indeed, many authors [7, 123] build ROC curves assuming
that all unknown genes from the test set are negatives.

We advocate instead in favor of an evaluation method that takes into account the un-
certainty about the label of non-positive data. Such an evaluation is difficult to conduct
without making assumptions, such as the proportion of positively labeled examples among
the unlabeled ones [43, 110], which do not apply to our setting. We adopt the same evalu-
ation approach as in Mordelet and Vert [173] and Valdeolivas et al. [251], and evaluate
for each fold of a leave-one-positive-out cross-validation the rank of the positive sample
excluded from the training set among all samples of the test set — the lower the better.

A.2 Propagation-based methods

Numerous gene prioritization methods leverage molecular interaction networks to extract
evidence for genes susceptible to be involved in a disease [31]. Among them, propagation
methods, or diffusion methods, which propagate information about known disease genes
(or “seeds™) along the edges of the graph [54], are the more popular.

Most of these methods are based on variants of random walks: the probability that a vertex
is positive is evaluated as the probability that random walkers released from seed nodes
arrive on this vertex [153].

If the graph is fully connected, the random walk will converge to a steady state in which all
vertices have the same probability. To avoid this situation, in a random walk with restart,
at each step, the random walker is given probability 0 < < 1 to start again from a seed.
Kohler et al. [123] and PRINCE [253] use random walks with restart for gene prioritization
on protein-protein interaction networks.



A.3 Disease gene prioritization with deep learning on multi-layer biological networks

Finally, Li and Li [144] and Valdeolivas et al. [251] extend the random walk with restart to
multi-layer graphs. Here, the random walker can, at each step, jump to the same node in
a different layer with probability 0 < 1 < 6.

A.3 Disease gene prioritization with deep learning on multi-layer biological
networks

The recent enthusiasm for the data representation capabilities of deep learning meth-
ods have led to many developments in the domain of deep learning for graphs, with
applications ranging from social networks to information retrieval and bioinformatics.
Among those methods, two seem particulary relevant to address node labeling problems:
relational graph convolutional networks and node embeddings.

Relational graph convolutional networks

Inspired by the success of convolutional neural networks on images, many of the recent
developments in the application of deep learning to graphs rely on adapting the concept
of convolutions to graphs. Among those, spectral-based methods [32, 56] operate on the
spectrum of the graph, while spatial-based methods operate directly on the nodes and the
edges of the graph [270]. In this last category, Graph Convolutional Networks, or GCN [121],
are computationally efficient and show robust performance in practice [221]. They were
first applied to semi-supervised learning on the nodes of a graph, and therefore seem
already well suited to our problem.

The Relational Graph Convolutional Network, or RGN [216], extends the GCN to relational
graphs, which are directed, non-weighted graphs containing multiple types of edges
describing different types of relationships between the vertices. Multi-layer biological
networks are hence similar in concept. Their undirected edges can be modeled using two
directed edges (one in each direction). However, the method cannot be directly applied to
weighted edges.

Node embeddings

While GCN and RGCN learn graph representations that are adapted to the downstream
classification task, another approach to representation learning in deep learning consists
in learning task-independent representations, in an unsupervised way, without optimizing
for a specific downstream supervised task. In this spirit, graph embedding methods aim
at learning generally useful representations of graphs or graph nodes, preserving the
information contained in the graph structure; those embeddings can then be used as input
to machine learning tasks [94].

In particular, node embedding methods encode nodes as low-dimensional vectors that pre-
serve information about the node position in the graph and its local neighbourhood. The
most popular node embedding methods, DeepWalk [193] and its extension node2vec [88],
are based on random walks. They build upon previous developments in the field of natural
language processing, in particular on the skip-gram (or word2vec) model [168]. The un-
derlying idea of word2vec is that words with a similar meaning should have similar vector
representations. DeepWalk and node2vec equivalently maps topologically similar nodes
to close embeddings. Node similarity is computed through random walks, and can capture
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both homophily (nodes belonging to the same community) and structural equivalence
(nodes playing the same role).

Deep learning on weighted, attributed multi-layer graphs

Our goal is to apply these techniques to weighted and attributed multi-layer graphs.

For that purpose, we adapted the matrix normalization step of RGCNs Kipf and Welling
[121] to weighted adjacency matrices, so as to make them amenable to weighted graphs.

Several approaches have been proposed to extend node2vec to learn node embeddings for
multi-layer graphs [149]. Among those, OhmNet [288] uses a hierarchical regularizer to
tie node embeddings across layers. Multi-node2vec [267] and MultiNet [16] use random
walks across layers as node sampling strategies. We propose an alternative approach,
which consists in using as input to the skip-gram model random walks generated on each
separate layer of our multi-layer graph.

Finally, several approaches, such as GAT2Vec [222] or GraphSAGE [93], extend node2vec
to graphs with attributed nodes.

To perform supervised classification on the generated node embeddings, we used both a
logistic regression and a multi-layer perceptron (MLP).

A.4 Preliminary experimental results

This study led us to propose a computational framework for network-based gene prior-
itization. This library provides an efficient and convenient way to evaluate a range of
network propagation and artificial neural network methods on the task of disease gene pri-
oritization, and ensures the reproducibility of the experiments. A first release is available
athttps://github.com/RausellLab/Tiresias.

We ran experiments on a data set containing 288 known primary immuno deficiency
genes [72] and four biological networks (protein-protein interactions, co-expression [240],
whole blood regulation [211] and Marbach immune organs regulation [160]), spanning a
total of 18 842 nodes.

Our results indicate that propagation-based methods perform better than artificial neural
networks. This could be due to our failure to expand enough resources and time to optimize
the hyperparameters for the neural network approaches. This raises an interesting question
on how much resources we are ready to devote to a potential increase in performance.

We note, however, that the predictions of propagation-based methods, on the one hand,
and artificial neural networks, on the other hand, are only weakly correlated. This suggests
that the two families of approaches capture complementary information, and that a
hybrid method could succeed in creating a classifier with better than state-of-the-art
performance.

Although combining biological networks leads to better performance than working on
a single of these biological networks, we fail to see a clear improvement between adapt-
ing methods to multi-layer graphs and merely merging the four biological networks by
collapsing their edges.


https://github.com/RausellLab/Tiresias

A.5 Conclusion

Finally, our attempts to include node attributes, that is to say, features describing the
genes independently from the biological networks, in the models were also not fruitful. It
is possible that our attributes were poorly chosen; that the information carried by the node
attributes is redundant with the structural information already present in the networks; or
that the number of attributes (8) was too small with respect to the size of our embeddings.

A.5 Conclusion

In this appendix, I have shown how biomarker discovery using biological networks can
be formulated, not as a feature selection problem on genotype-phenotype data, but as a
semi-supervised node labeling problem in the contexte of disease gene prediction.

While recent developments in devising artificial neural networks that learn on graph-
structured data have promising applications to the problem of disease gene prediction,
our results are mixed. These methods are indeed much more computationally intensive
than their classic propagation-based counterparts, and we did not see an increase in
performance. An interesting aspect is the complementarity of the predictions of neural
networks versus propagation methods, which opens the door to a potentially powerful
hybrid approach.

The work I have presented in this appendix is still preliminary, and many experiments
remain to run - in particular, experiments on additional data sets and validation on
external data — to corroborate our conclusions.
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EFFICIENT MULTITASK CHEMOGENOMICS

The work I have presented in Chapter 4 in the context of supervised multitask learning
was focused on feature selection. In addition, I found the ability to use task descriptors to
make predictions on tasks for which no training data was ever available interesting in the
context of chemogenomics. Chemogenomics can be viewed as an attempt to complete a
large matrix, for which rows correspond to molecules, columns correspond to proteins,
and each entry indicates whether or not the molecule binds to the protein [254].

Chemogenomics approaches can be used both to suggest new drugs for a particular thera-
peutic target, or new targets for a particular drug or drug candidate. In this second scenario,
these new targets can be indicative of both new therapeutic indications for the drug — what
one calls drug repurposing — or of secondary targets potentially responsible for adverse
drug reactions.

In this appendix, I will introduce in Section B.1 state-of-the-art multitask learning ap-
proaches for chemogenomics. In Section B.2, I will describe how we evaluated various
methods in orphan settings, which occur when the training data contains no binding part-
ner of either the small molecule or the protein, as well as how we investigated the impact
of the similarity between queries and the training data. In Section B.3, I will describe how
our observations led us to propose NNMT, a nearest-neighbor multitask SVM, which is
trained on a limited number of data points. While many existing multitask approache
for chemogenomics are limited by their computational complexity, our approach only
requires training on a dataset of size similar to those used by single-task methods.

The contents of this appendix are based on joint work with Benoit Playe and Véronique
Stoven, published as:

Benoit Playe, Chloé-Agathe Azencott, and Véronique Stoven. Efficient multi-task
chemogenomics for drug specificity prediction. PLoS ONE, 13(18):e0204999, 2018.

B.1 Multitask learning for chemogenomics

Adverse drug reactions and drug specificity

Our ability to tailor treatment to patients is tied to our understanding of adverse drug
reactions, or drug side effects. The incidence of severe ADR among hospitalized patients
in the USA is estimated to be 1.9%-2.3%, while the incidence of fatal ADR is 0.13%-
0.26% [135]. 462 medicinal products were withdrawn from market due to ADR between
1950 and 2014 [185]; 114 of those were associated with deaths. The ability to identify ADR
early on is therefore an important public health concern.

Side effects frequently occur when drugs lack specificity, which means that they bind to
proteins other than their intended target [215]. This suggests that one approach to ADR
detection is the identification of such secondary drug targets. From a precision medicine
point of view, this approach can also lead to determine subgroups of patients who may
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not suffer from the corresponding side effects, in particular because they do not express
this secondary target.

In the context of drug specificity prediction, a single-task approach consists in classifying
proteins according to whether or not they bind a given molecule, based on known targets
for this molecule. A multitask approach, by contrast, predicts for any (molecule, protein)
pair whether it binds or not, and leverages all known protein-ligand interactions, including
those involving neither the molecule nor the protein of interest.

Multitask learning for chemogenomics

Multiple approaches have been developed for chemogenomics prediction, including multi-
task Support Vector Machines (SVM) [70, 109, 177, 254], kernel ridge linear regression [132,
133, 276], bipartite local models (BLM) [25, 163], and matrix factorization [81, 150, 286].
Most of the proposed approaches, however, are limited by their computational complexity
and have only been applied to predict interactions of molecules within proteins belonging
to the same family.

Both multitask SVM and kernel ridge linear regression use kernels to compute dot products
between either small molecules or proteins (see Section 1.2.6).

Kernels for small molecules A standard approach to build kernels from molecular
fingerprints consists in using dot products or Euclidean distances, possibly composed with
another suitable function, such as a Gaussian exponential [217].

However, given that these vectorial representations are binary, it is more common to use
the Tanimoto similarity measure between two binary fingerprints, defined as the ratio of
the number of common bits set to one to the total number of bits set to one in the two
fingerprints:

kE:{0,1}" x {0,1}"" — [0, 1]
Z;n:1 (acp AND :L‘;))
Z;T:l (xp OR %) .

(z, ') — (B.1)

In the case of count fingerprints, the Tanimoto similarity can be extended with the MinMax
similarity [202]:

kN™ x N™ = [0, 1]
> peq min(zy, 1)

Z;n:l max (zp, %)

(z,x') — (B.2)

Both these similarity measures are known to be kernels [238], which makes them amenable
to use with kernel-based machine learning methods such as SVMs (see Section 1.2.6).
Similar ideas appear for example in Mahé et al. [156].

Kernels for proteins For a proteome-wide study, the most appropriate kernels are
based on the protein sequences (three-dimensional structures or binding pocket informa-
tion not being available for all proteins) [127, 212].



B.2 Orphan and quasi-orphan settings

Kernels for (molecule, protein) pairs Molecule and protein kernels can be combined
by their Kronecker product [66] to create a kernel on (protein, small molecule) pairs, and
the multitask learning problem is recast as a single-task one on (protein, small molecule)
pairs.

B.2 Orphan and quasi-orphan settings

Developing a state-of-the-art chemogenomics approach that can be applied to the entire
druggable proteome requires not only computational scalability, but also the ability to
make good predictions in orphan settings, that is to say, when some of the proteins for which
we want to make predictions have no known ligands. This situation is often encountered
in large scale studies, and single-task methods are not applicable. To this end, Pahikkala
et al. [189] propose to evaluate multitask algorithms in settings where the queried (protein,
molecule) pairs contain proteins and/or molecules that are not in the training set.

We investigated the impact of the similarity between the query (protein, small molecule)
pair and the training data on the prediction performance, on data extracted from the
DrugBank [134] and containing 3 980 molecules, 1 821 proteins, and 9 536 protein-ligand
interactions.

Orphan situations

We created 5-fold cross-validation sets of our data in the following way:
e S;:randomly and balanced in positive and negative pairs;

e S5 (corresponding to the “orphan ligand” case): (protein, molecule) pairs in one fold
only contain molecules that are absent from all other folds; prediction on each test
set (each fold) is performed using train sets (the four other folds) in which no the
ligands of the test set are absent.

e 53 (corresponding to the“orphan protein” case): (protein, molecule) pairs in one fold
only contain proteins that are absent from all other folds; prediction on each test
set is performed using train sets in which no the proteins of the test set are absent.

e S, (corresponding to the“double orphan” case): (protein, molecule) pairs in one
fold only contain proteins and molecules that are both absent from all other folds.
Prediction on each test set is performed using train sets in which no the proteins
and the ligands of the test set are absent. The folds of S, were built by intersecting
those of S, and S5 and Sy4. Thus, S4 contains 25 folds and not 5.

Figure B.1 illustrates the difficulty of orphan settings: while the performance in the
double orphan setting remains significantly above random, the performance on all orphan
situations is clearly degraded compared to a random split of the data.

These results suggest that the performance of multitask SVM is driven by known (protein,
small molecule) pairs that are similar to the query pair, in the sense that they share either
their protein or their molecule.

Quasi-orphan situations

To evaluate the impact on performance of the similarity between training and test pairs,
we re-folded the pairs of S following the “clustered cross-validation” approach [126].
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Figure B.1: Nested 5-fold cross-validated area under the ROC curve (ROC-AUC) and area un-
der the precision-recall curve (AUPR) of a multitask SVM on the S; — S, datasets.

More precisely, we clustered proteins (resp. ligands) into 5 clusters by hierarchical cluster-
ing [113]. We then built four cross-validation datasets, S] — S/, generated based on folds
similarly as S7 — Sy, but with the added constraint that all pairs in a given fold are made of
proteins from a single protein cluster and ligands from a single ligand cluster. Therefore,
test pairs are more dissimilar from train pairs than in the S; — S, datasets, which makes
the problem more difficult.

Our results are illustrated by Figure B.2.
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0.3-
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Figure B.2: Nested 5-fold cross-validated area under the ROC curve (ROC-AUC) and area un-
der the precision-recall curve (AUPR) of a multitask SVM on the S| — S/, datasets.

For all the datasets, we observed a strong decrease in prediction scores with respect to
those obtained on the corresponding S; — S, datasets. This suggests that good performance
on a query pair (p*, m*) is driven by the presence in the training set of pairs made both of
proteins similar to p* and of molecules similar to m*, even if the query pair (p*, m*) is a
double orphan, as in S,.

These results suggest that pairs in the training set that are very dissimilar to the query pair
do not help making more accurate predictions. In other words, although the kernels used
in multi-task approaches modulates how information available in one task is shared for
training other tasks (the further the tasks are, the less information is shared), using infor-
mation from distant tasks seems to degrade performance. This insight is interesting since
the multitask SVM requires computes the Kronecker kernel on all (protein, molecule) pairs,



B.3 Nearest-neighbors multitask learning with kernels

which is computationally demanding. Therefore, we proposed to remove distant pairs from
the training set to improve computational efficiency, without degrading performance.

B.3 Nearest-neighbors multitask learning with kernels

Our a nearest-neighbor multitask SVM, NNMT, is trained on a limited number of data
points: for a query (protein, molecule) pair (p*, m*), the training data is composed of

e all intra-task (protein, ligand) pairs defined by pairs (p, m) with either p = p* or
m=m*;

¢ alimited number of extra-task (protein, ligand) pairs, defined by pairs (p, m) with
p # p* and m # m*, chosen based on the similarity of p and m to p* and m*,
respectively;

e randomly picked negative examples (about ten times more than positive training
pairs).

Our results show that NNMT outperforms all its comparison partners [81, 132, 133, 150,
163, 271, 286], independently of the number of known (protein, ligand) interacting pairs
involving the same or similar ligands or proteins as the query pair. In addition, it re-
quires much fewer training pairs than the classical multitask SVM approach, and its
computational time is therefore close to that of a single-task method. Finally, in the most
challenging setting where no similar intra-task nor extra-task training data is available, it
performs significantly better than random, in a context where a single-task approach can
not make any prediction.

We also observe that adding extra-task pairs to the train set dramatically improves per-
formance. When no close intra-task pairs are available, performance is driven mainly
by extra-task training pairs. On the contrary, performance does not improve when the
extra-task training pairs are chosen at random, and therefore, are on average further from
the test pair. It might even degrade when the number of extra-task pairs becomes large.

Our benchmark study concluded that NNMT is a good default method providing state-
of-the-art or better performances, in a wide range of prediction scenarii that can be
encountered in real-life studies: proteome-wide prediction, protein family prediction,
test (protein, ligand) pairs dissimilar to pairs in the train set, and orphan cases.

All datasets and codes are available at https://github.com/bplaye/efficient_
MultiTask_SVM_for_ chemogenomics/. In addition, we incorporated NNMT to the
PyDTI package [150] and also added to that package key cross-validation schemes as well
as the DrugBank-based dataset we built for this study. The updated PyDTI package is
available at https://github.com/bplaye/PyDTI/.

B.4 Conclusion

As noted in Chapter 4, having access to task descriptors makes it possible to make predic-
tions for tasks for which no training data is available. Such orphan settings are common
in chemogenomics.

However, multitask learning is not a magic wand, and if the tasks are too different, pre-
diction ability will be degraded. We leveraged this information to reduce the number of
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training samples to use in a multitask SVM approach, keeping comparable prediction
capacities while drastically reducing computational times.
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