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A B S T R A C T

For a decade now, computer vision models based on deep convolutional neural
networks (ConvNets) have demonstrated their capability to produce excellent re-
sults and are now reaching the stage of “industrialization”, being used more and
more in commercial products. The most frequent application is probably image
classification, for which a model transforms the input image into a series of latent
representations until obtaining the prediction of the class to which the image
should belong. For this task, recent models such as ResNets are able to obtain
impressive human-like performance on ImageNet, a large and complex dataset.
In this thesis, we work at improving the “quality” of the latent representations of
ConvNets for different tasks. The general goal consists in making those represen-
tations more robust to non-relevant variations and structuring the information in
the latent space.

First, we focus on making these representations more effective for classification
by proposing a new regularization method called SHADE. To do so, using infor-
mation theory metrics, we propose to minimize the entropy of the representations
conditionally to the class label, thus making the representation more robust and
invariant to the intra-class variability that is not useful for classification.

Then, we propose to structure the information in two complementary latent
spaces with our model called HybridNet. Doing so, we solve a conflict between
the objectives of two motivations that seem complementary but are practically
incompatible in a regular model: producing more invariant representations for
classification and extracting more information for reconstruction. While the first
one aims at removing information, the second adds it. By structuring the informa-
tion in two latent spaces, we are able to release the constraint posed by classical
architecture, allowing to obtain better results in the context of semi-supervised
learning.

Finally, to go further in structuring the latent space, we propose to address
the recent problem of disentangling, i.e. explicitly separating and representing
independent factors of variation of the dataset. For this, we propose DualDis, an
approach that combines a two-branch architecture to structure two complemen-
tary types of information, and the use of regular and adversarial classification
costs to ensure an effective separation of the information. This approach allows
us to obtain better representations compared to existing methods. It also allows to
easily perform semantic image editing but also data augmentation by generating
new images that can be used to train a classifier.
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R É S U M É

Depuis le début de la décennie, les algorithmes de traitement d’images ba-
sés sur les réseaux de neurones convolutifs profonds (ConvNets) ont démontré
leur capacité à produire d’excellent résultats et permettent désormais d’envisager
leur mise en application dans de plus en plus de cas. Ces modèles transforment
une image en une succession de représentations latentes jusqu’à obtenir une
prediction (classe, segmentation, etc.). Dans cette thèse, nous travaillerons à l’amé-
lioration de la qualité des représentations latentes des ConvNets pour diverses
tâches. L’objectif général est de rendre ces représentations plus robustes aux varia-
tions et de structurer l’espace de resprésentation afin d’améliorer l’organisation
de l’information dans cet espace.

Dans un premier temps, nous nous intéressons à rendre ces représentations plus
performantes pour la classification en proposant une méthode de régularisation
nommée SHADE. Pour se faire, via des métriques liées à la théorie de l’infor-
mation, nous minimisons l’entropie des représentations conditionnellement à la
classe, permettant ainsi de rendre ces représentations plus robustes à la variabilité
intra-classe, inutile pour la classification.

Dans un second temps, nous proposons de structurer l’information en deux
sous-espaces latents complémentaires avec notre modèle nommé HybridNet. Se
faisant, nous résolvons un conflit entre deux motivations complémentaires mais
pratiquement incompatibles pour améliorer la qualité des représentations : l’aug-
mentation de l’invariance des représentations et la représentation de davantage
d’information via la reconstruction. Alors que la première vise à supprimer de
l’information, la seconde en ajoute. La structuration en deux espaces permet ainsi
de relâcher la contrainte posée par les architectures classiques, permettant ainsi
d’obtenir de meilleurs résultats en classification dans un contexte semi-supervisé.

Enfin, pour aller plus loin dans la structuration de l’espace latent, nous consi-
dérons le problème du disentangling, c’est-à-dire la séparation et représentation
explicite de facteurs sémantiques indépendants. Nous proposons DualDis, une
approche qui combine une architecture à deux branches pour structurer deux
types d’informations, et l’utilisation de coûts de classification classiques et ad-
verses afin d’assurer une séparation efficace de l’information. Cette approche nous
permet d’obtenir des représentations de meilleure qualité comparativement aux
méthodes existantes. Elle permet ainsi l’édition sémantique d’images mais aussi
l’augmentation de données pour la classification par la génération de nouvelles
images.
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1
I N T R O D U C T I O N

1.1 Context

Artificial Intelligence (AI) has been a subject of great interest for many decades,
aiming at making machines reproduce more or less specific human behaviors,
ranging from playing chess to producing medical diagnostics. Specifically, in
the past decade, this domain has seen a rapid and almost exponential growth,
being invested by numerous research labs and companies (like Google, Facebook,
Microsoft, Amazon, etc.). Nowadays, applications of AI are varied and show very
impressive results. Those include information and image retrieval (web and image
search engines), automatic translation, image recognition and classification (e.g.
Google Photos), face recognition, tracking of objects in videos, speech recognition,
making autonomous vehicles drive, interpreting medical imagery, etc.

One of the domains of AI that shows the most impressive results is Computer
Vision (CV), which focuses on automatic processing of images and videos. This
domain is especially important considering the exponential growth of the volume
of visual data being generated around the world, often uploaded and published
on the Internet. For example, it is said that more than 500 hours of video are
uploaded each minute on YouTube (Hale 2019) or 300 million new photos each
day on Facebook (Noyes 2019). Considering those figures, it is therefore clear
that CV is becoming more and more important to automatically process this
large amount of data that would otherwise be impossible to handle by humans.
In particular, CV answers the necessity for those platforms to ensure a form of
control on this content (e.g. to prevent the upload of illegal material), but also the
desire to propose new features and services related to this multimedia content
(e.g. captioning images for visually impaired people, or proposing semantic search
in a photo library).

Computer Vision (CV) aims at solving this issue and covers a lot of different
tasks. We present the general principle and some of those tasks in Figure 1.1: a
predictive model f transforms an input image into a prediction, that can be the
class of the image, a list of objects and their localizations, a segmentation assign-
ing a class to each pixel, a text caption, etc. One particular problem with image
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Input image to analyze

Figure 1.1. – General principle of Computer Vision (CV). A discriminative
model transforms an image into a prediction that depends on the
task of interest. For example, classification, object detection (which
usually implies localization of the object with a bounding box), im-
age segmentation, image captioning, etc.

data is what is called the “semantic gap”. This describes the wide difference in
meaning between what a human sees in a picture, i.e. objects, concepts, a scene,
etc.; and what a machine sees: pixel values, i.e. numbers representing quantities
of red, green and blue in quantized portions of space. For classification for ex-
ample, a machine will need to bridge this gap and find a mathematical mapping
between pixel data and semantic categories. To that end, CV relies heavily on
Machine Learning (ML), a broad domain that proposes to create models that learn
to reproduce a task. To do so, these models use a dataset of examples to improve
themselves until they produce satisfactory predictions. For example, given pic-
tures of cats and dogs and knowing which one is on each picture, we can try to
learn a model that distinguishes them.

To see how CV evolved, we can take the example of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), an image classification challenge created
in 2010 based on a dataset of more than 1.2 million images (that later grew to 1.3
million) distributed among 1,000 classes used to train the Computer Vision (CV)
model. In the years 2010 and 2011, leading methods used a combination of hand-
crafted CV preprocessing to find compact numerical representations of images,
called features; and used ML models to learn a mapping from those features to
the possible classes of an image. This first step, called feature engineering, was
long developed and refined and was a key component of the CV field, allowing to
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Figure 1.2. – Illustration of the typical structures extracted by a ConvNet. The
first layers detect simple contours, that are then assembled into tex-
tures, more complex shapes, parts of objects and finally complete
objects. This property of representing more and more semantic infor-
mation to finally produce a prediction arises thanks to the training
of the ConvNet. Credits: Illustration based on Olah et al. (2017).

partly bridge the semantic gap thanks to human knowledge in how pixels should
be interpreted to form more meaningful representations, leaving the machine to
learn a much simple task of mapping those meaningful representations to se-
mantic classes. However, this step required specific handcrafting and expertise to
find features that would best represent an image, requiring to be both robust and
invariant to changes in the different images of a given class, while being different
enough from one class to another to be able to correctly discriminate the classes.

In the year 2012, Deep Learning (DL) models – a specific kind of ML models –
started replacing this traditional approach and since that year, all winners of
ILSVRC are DL models. Deep Learning (DL) proposes to use a Deep Neural Net-
work (DNN) to transform the raw input data – pixels in the case of CV – into the
desired semantic prediction, e.g. the classes of ILSVRC. This means that the tradi-
tional feature engineering step was replaced. With DL, humans no longer design a
smart way to transform the pixels, but rather design a framework of mathematical
transformations and let the machine determine which features to extract from the
raw data. Of course, because of this, DL models need to be much more complex
that the ML models used before, with orders of magnitude more parameters that
the machine needs to learn.



4 introduction

The type of Deep Learning (DL) model that allowed Krizhevsky et al. (2012)
to win ILSVRC in 2012 is a Convolutional Neural Network (ConvNet), a type
of architecture especially well fitted for CV. A ConvNet produces a series of
transformations of the input image into what is called latent representations, until
the final transformation produces the prediction. Interestingly, when investigating
the information modeled by those representations (Olah et al. 2017) as illustrated
in Figure 1.2, we can notice that a ConvNet naturally learns to first detect contours,
assembled in textures, shapes and object detections.

After 2012, DL research has led to a succession of ConvNet architectures each
outperforming the previous one on ILSVRC. It is also important to note that those
deep ConvNets designed for ILSVRC have proven to be extremely versatile for CV

tasks, far beyond classification, and are now de facto standards in the field. It is of
course possible to use the same architecture to classify other datasets, and even
take advantage of the features learned on ImageNet to obtain better results on
much smaller datasets. But more interestingly, those architectures can be used as
backbones for models used in many other CV tasks such as object detection and
localization (e.g. Faster R-CNN uses VGG-16, cf. Ren et al. 2015), segmentation
(DeepLab uses VGG-16 or ResNet-101, cf. L.-C. Chen et al. 2017), Visual Question
Answering (VQA) (MUTAN uses ResNet-152, cf. Ben-Younes et al. 2017), etc. This
demonstrates the great strength and versatility of those models for Computer
Vision (CV).

This revolution of Deep Learning (DL) was made possible by the combination of
multiple factors. First of course, the progress in the architecture of the DNNs and
in particular the development of Convolutional Neural Networks (ConvNets),
started by Fukushima (1980) and refined over the years (LeCun et al. 1989;
Krizhevsky et al. 2012; K. He et al. 2016, etc.). Alongside the architecture, the
training method of those models was also improved, with backpropagation meth-
ods first proposed by Rumelhart et al. (1988) and LeCun et al. (1998) and refined as
well to allow the training of those complex models (Srivastava et al. 2014; Ioffe and
Szegedy 2016, etc.). Finally, as we have seen, DL models are much more complex
than previous models. Their training was made possible thanks to large annotated
datasets such as ImageNet (Russakovsky et al. 2015), the dataset of ILSVRC; and
the improvements of the computing hardware, especially the Graphics Processing
Units (GPUs), strongly reducing the compute time required to train those models.
Nowadays, pieces of hardware are even developed specifically for DL training
such as Google’s Tensor Processing Units (TPUs).
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1.2 Motivations

We now go over some interesting questions that remain open regarding the
learning of ConvNets for Computer Vision (CV) and that we will tackle in the
course of this thesis. Namely, regularizing DNNs is still an important problem,
in particular because of their very large number of parameters. In this direction,
using additional unlabeled data is an interesting solution addressed by SSL for
which further developments are interesting. Finally, producing more semantic
and rich representations using disentangling is a new and interesting domain to
address.

Regularization. A key advantage of DNNs for CV tasks is their large amounts
of parameters that can model very complex transformations of the input image,
which is necessary for complicated tasks. However, this is also an important prob-
lem since these models have orders of magnitude more parameters than there
are images, even in large datasets like ImageNet and its 1.2M images. Because of
this, deep ConvNets easily suffer from over-fitting and require efficient regular-
ization. In addition, the optimization problem of those DNNs is highly non-convex
(Kawaguchi 2016) which makes the training even more difficult. For these reasons,
since the beginning of DL, finding ways to make the training of those models pos-
sible has always been an important part of the research done by the community.

As such, numerous approaches have been developed over the years which be-
came standard techniques. First, Data Augmentation (DA) (Dyk and Meng 2001)
tries to produce new images to artificially increase the size of the dataset; but
is limited because it does not really produce new information. Numerous tech-
niques are also based on adding noise at different stages of the training process (cf.
Kukačka et al. 2017), which have shown to help generalization but have a behav-
ior that is not really interpretable and thus provide no control over it. A popular
type of noise injection is dropout (Srivastava et al. 2014) and its variants, which
disconnects parts of the model randomly. While some interpretations exist, the
exact advantage obtained by disabling parts of the model is not obvious, seems
unnatural, and fails on some architectures. Weight decay (Krogh and Hertz 1992)
is also a popular regularization technique that is equivalent to L2 regularization of
non-DL models. While for linear models it encourages smoother decision function,
its effect with deep networks is less clear (C. Zhang et al. 2017). Finally, the very
popular Batch Normalization (BN) (Ioffe and Szegedy 2016) has recently been key
to train very deep ConvNets like ResNet, but the interpretation of its behavior
is currently debated in the community (cf. Santurkar et al. 2018). H. Zhang et al.
(2019) even recently proposed to simply replace it with a simple specific weight
initialization that provides equivalent results. Those numerous limitations in our
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understanding of how those existing techniques affect the generalization perfor-
mance of Deep Neural Networks (DNNs) are studies by C. Zhang et al. (2017).
They conclude, “explicit regularization may improve generalization performance,
but is neither necessary nor by itself sufficient for controlling generalization er-
ror”.

Semi-Supervised Learning. Another interesting aspect of the DL literature is
Semi-Supervised Learning (SSL) which proposes to use partially labeled datasets.
As we have seen, DL usually relies on large labeled datasets which are costly
to obtain; something that SSL tries to limit by using a mostly unlabeled dataset,
only using a small number of labeled images for each class. To that end, two
main categories of techniques exist: invariance-based methods and reconstruction-
based methods.

Invariance-based methods rely on producing latent representations that are well
fitted for classification. In particular, Sajjadi et al. (2016), Laine and Aila (2017),
and Tarvainen and Valpola (2017) propose to enforce the stability of the class
prediction for different versions of the same image. Reconstruction-based methods
use an unsupervised reconstruction loss to extract additional information from
unlabeled images, producing features that are more robust, more general and
representative of the full diversity of the data (Ranzato and Szummer 2008). We
can see that the first technique aims at improving the invariance of the features
while the second aims at improving their representativity.

While both are interesting and could seem complementary, they pose the prob-
lem of having conflicting roles. The first idea aims at improving classification
directly by increasing the invariance and discriminative nature of the representa-
tions. On the other hand, reconstruction proposes to extract features regardless
of their ability to discriminate the supervised task that we eventually want to
solve. This means that even if reconstruction would improve the quality of the
discriminate features, it would also extract numerous features that are not well
fitted for classification.

Disentangling. Finally, an interesting domain of research called disentangling
proposes to look for ways to improve the semantic quality of the latent represen-
tations of DNNs. The definition of disentangling varies (Higgins et al. 2018) but
it mostly aims at producing representations that model independent factors of
variation of the data. For example, considering a dataset of faces, we would like to
have independent representations of the hairstyle, the makeup, the smile, the eye
colors, the presence of glasses, etc. This kind of models try to improve the quality
of the features that can then be used for various semantic tasks (classification,
retrieval, etc.) or to interpret and manipulate the representation of an input.
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A first solution is to address disentangling in an unsupervised manner, meaning
that no label regarding the factors of variation of the dataset are provided. Those
models, in particular β-VAE (Higgins et al. 2017) and its variations (T. Q. Chen et
al. 2018; Klys et al. 2018), are effective at providing features that are independent
of each other. However, because no label is used, they are not able to provide
semantic information about the factors they extracted. In addition, the absence of
labels does not encourage the representation of complex semantic factors and is
more likely to produce simpler low-level variations that possess limited semantic
information.

The second solution is to rely on labels of factors of variation. This can be done
using conditional generative models (Perarnau et al. 2016; Lample et al. 2017) but
this has the drawback of representing the labeled factors in a binary state, which
is usually not sufficient since it is impossible to encode the complex diversity
of those factors with only one boolean. Other approaches propose to use latent
subspaces to represent and disentangle different kinds of semantic information.
Mathieu et al. (2016), Hadad et al. (2018), and Yu Liu et al. (2018) for example all
propose to use a latent space split in two parts, each dedicated to an information
domain, e.g. the identity of a person on one side and its visual attributes (hairstyle,
makeup, etc.) on the other. Using labels, they can provide semantic information
but usually rely on labels for one of the two types of information which is the
cause of most of their limitations as we will see.

1.3 Contributions and outline

Because DL now produces classification scores comparable to human perfor-
mance using very large models on ImageNet, in this thesis, we propose to study
ConvNets “beyond ImageNet”, investigating and improving the capabilities of
those models beyond proposing bigger and deeper architectures on extremely
large datasets. In particular, we know that ConvNets produce a succession of rep-
resentations encoding pieces of information extracted from the input. We propose
to investigate in depth different ways to improve the quality of those represen-
tations. First, by improving their discriminative quality using invariance-based
regularization. Then, dealing with fewer labels and additional unlabeled data,
we propose new architectures to structure the latent space for Semi-Supervised
Learning (SSL). This structuring of the information is then pursued and reinforced
to address the disentangling of complementary information.

• Chapter 2: deep neural networks for image classification :
training , regularization and invariance
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We first propose an overview of the recent evolution of DL and deep ConvNets
and position the work of this thesis regarding regularization, SSL and disen-
tangling of DNNs.
We then propose our contribution, a new regularization method called
SHADE. This method is inspired by recent work applying the Information
Bottleneck (IB) principle to DNNs. With SHADE, we explicitly work on in-
fluencing the information represented by a DNN. Because an input image
contains a very large amount of information, from which only a small por-
tion is relevant for classification, we propose to encourage the filtering of
such information. Representations should indeed be intra-class invariant,
filtering out all the inherent variability of each category to focus on discrim-
inate information only. To explicitly encourage this intra-class invariance,
SHADE minimizes the entropy of the representations conditionally to the
classes. This optimization goal is both interpretable and perfectly aligned
with the goal of classification. We demonstrate its effectiveness at producing
more robust and invariant features using different standard architectures on
CIFAR-10.

• Chapter 3: separating discriminative and non -discriminative

information for semi -supervised learning

In this chapter, we focus on improving standard deep ConvNets using Semi-
Supervised Learning (SSL) by working on the way latent information is struc-
tured in this context. Current SSL methods seem to have conflicting objectives
and cannot work in synergy, with classification and stability methods increas-
ing the invariance of the representations, filtering only the discriminative
information; while reconstruction requires to conserve all the information
to reach its goal. Thus, when mixing classification with reconstruction arises
a dilemma.
To overcome this conflict and overcome this “incompatibility”, we introduce
a novel idea to structure the information in two separate and complementary
latent spaces. This takes the form of a novel architecture and a dedicated
training method called HybridNet. This architecture uses an encoder with
two branches so that the first branch can encode only the discriminative
information and is allowed to remove the rest of the information, which is
captured by the second branch and therefore allows correct reconstruction
of the image. Thanks to this, we make reconstruction, classification and
invariance regularization work in cooperation instead of in opposition. We
validate the effectiveness of our method compared to the state of the art
on CIFAR-10, SVHN and STL-10. We also propose in-depth analysis of the
different terms of the loss as well as visualizations to gain insight regarding
the behavior of the model.
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• Chapter 4: dual-branch structuring of the latent space for

disentangling and image editing

Finally, in an attempt to pursue our work on organizing and separating
information in complementary latent spaces, we address the problem of dis-
entangling factors of variation. We propose to design a model that separates
two complementary types of information that we call information domains;
for example, with a dataset of faces, the first domain is the identity (i.e. the
class) of the person and the second is the visual attributes (hairstyle, makeup,
etc.).
For this, we develop a framework called DualDis, which relies on a two-
branch architecture, each domain being assigned to one branch. Using ad-
versarial training (Goodfellow et al. 2014), we explicitly train the model to
disentangle the two domains so that their information is contained in one
branch only. Using classifiers, we structure the representation space in or-
der to be able to efficiently manipulate it, enabling simple semantic image
editing and generation of new images. We validate this model on CelebA,
Yale-B and NORB with a comparison to the state of the art and examples
of possible applications of such an architecture, namely image editing and
generation of images for data augmentation.

We conclude this thesis in Chapter 5 and discuss several interesting directions
for future work.

1.4 Related publications

This thesis is based on the material published in the following papers:

• Michael Blot, Thomas Robert, Nicolas Thome, and Matthieu Cord (2018b).
“SHADE: Information-Based Regularization for Deep Learning”. In: IEEE
International Conference on Image Processing (ICIP), best paper award;

• Thomas Robert, Nicolas Thome, and Matthieu Cord (2018). “HybridNet:
Classification and Reconstruction Cooperation for Semi-Supervised Learn-
ing”. In: European Conference on Computer Vision (ECCV);

• Thomas Robert, Nicolas Thome, and Matthieu Cord (2019). “DualDis: Dual-
Branch Disentangling with Adversarial Learning”. In: Under Review at Ad-
vances in Neural Information Processing Systems (NeurIPS).
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Chapter abstract

In this chapter, we propose a general overview of the literature regarding the
design, training and regularization of Deep Neural Networks (DNNs) and
Convolutional Neural Networks (ConvNets) during the past few years. We
discuss recent research directions that will be addressed in this thesis, namely
invariance-based regularization, Semi-Supervised Learning (SSL) and the dis-
entangling of representations. In particular, in this chapter, we focus on the
question of regularizing DNNs to make them produce representations that are
well fitted for classification and that generalize well on unseen data. A com-
mon direction consists in making latent representations encode information
that allows to discriminate between the different classes of interest while being
invariant to intra-class variations, which are equivalent to noise regarding
classification. To this end, we propose a regularizer called SHADE. This reg-
ularization loss is based on a novel idea using information theory metrics to
formalize the aforementioned objective of removing the intra-class variance
from the latent space. We show that SHADE is able to effectively encourages
invariance in many standard ConvNets architectures and provides an inter-
esting gain over usual baselines on CIFAR-10, as well as studies regarding
the behavior of ConvNets toward class information.

The work in this chapter, done in collaboration with Michael Blot (Blot 2018),
has led to the publication of a conference paper:

• Michael Blot, Thomas Robert, Nicolas Thome, and Matthieu Cord (2018b).
“SHADE: Information-Based Regularization for Deep Learning”. In: IEEE
International Conference on Image Processing (ICIP); best paper award.

11



12 dnns for image classification : regularization and invariance

Contents
2 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 .2 Training and Regularizing Deep Neural Networks . . . . . . . . . . . . . . . . 13

2 .2 .1 Deep Learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 .2 .2 Convolutional architectures . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 .2 .3 Regularizing DNNs with priors . . . . . . . . . . . . . . . . . . . . . . . 18

2 .2 .4 Regularizing DNNs with and for Semi-Supervised Learning . . . . . . 24

2 .2 .5 Improving the semantic quality of representations . . . . . . . . . . . . 26

2 .3 SHADE: Encouraging Invariance in DNNs . . . . . . . . . . . . . . . . . . . . . 28
2 .3 .1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 .3 .2 Measuring Invariance with Conditional Entropy . . . . . . . . . . . . . 30

2 .3 .3 Entropy-based Regularization for Deep Neural Networks . . . . . . . 33

2 .3 .4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 .3 .5 Discussion of SHADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 .4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Introduction

In this chapter, we first propose a general overview of the recent develop-
ments in the fields of Deep Learning (DL) and Convolutional Neural Networks
(ConvNets) used for classification. In particular, we will see how those models
are designed, trained and the evolution that allowed those architectures to be-
come the backbone of almost all state-of-the-art models in Computer Vision (CV)
research. While our discussion will focus on image classification, it also applies
to many semantic tasks of CV (detection, segmentation, etc.).

Key ingredients that make deep ConvNets perform so well is their depth and
the number of trainable parameters they contain. Having deeper and deeper mod-
els with more and more parameters makes it possible to progressively represent
more complex decision functions and extract richer and more semantic informa-
tion from the input images. However, having such complex models comes with an
increased risk of overfitting the training set, especially if it contains a small num-
ber of images compared to the number of parameters. For example, a ResNet-101

(K. He et al. 2016) model has 44.5M parameters to train while ImageNet contains
“only” 1.3M images. There is thus a clear unfavorable imbalance between the
complexity of our models and the quantity of labeled data at our disposal.

Because of this, finding ways to control the training of Deep Neural Networks
(DNNs) is a crucial part of the research in DL, both to improve their performance
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on very large datasets but also to eventually be able to train deep architectures on
small datasets. To do so, many regularization methods have been developed over
the years, usually introducing prior human knowledge on desired properties to
make the model more robust, such as sparsity of the weights, smoothness of the
decision boundary or compression and invariance of the representations.

In this chapter, we investigate in depth this last option and propose a new
method to encourage the invariance of the representations. This first contribution,
done in collaboration with Michael Blot (Blot 2018), consists in a new regulariza-
tion method called SHADE. Inspired by the Information Bottleneck (IB) principle
(Tishby et al. 1999) and based on information theory metrics, we propose to mini-
mize the entropy of the representations of a DNN conditionally to the class label:
minH(H | Y ). We show that this corresponds to minimizing the intra-class vari-
ance of the features, and therefore encourages the construction of features that
are intra-class invariant and are thus more fitted for classification. We validate
this idea experimentally on various representative DNN architectures.

We also introduce interesting directions to improve DNNs that will be followed
in the next chapters. First, the possibility of improving the generalization ability
of DNNs by using additional unlabeled data, which is called Semi-Supervised
Learning (SSL). This usually consists in finding a method that extracts robust
features on labeled and unlabeled data and uses the labeled data to learn the
prediction function. Second, through the design of methods that disentangles, i.e.
separates into independent representations, the different factors of variation of
the dataset, greatly increasing the semantic quality of the latent space for various
tasks.

In Section 2.2 we detail the design and training of current deep ConvNets and
the existing methods to improve their quality. We then present and validate our
first contribution, a novel regularization method called SHADE in Section 2.3.

2.2 Training and Regularizing Deep Neural Networks

In this section, we first introduce the general learning framework of Deep Learn-
ing (DL) before a focus on the Convolutional Neural Network (ConvNet) archi-
tectures. We will then go over common techniques to improve the generalization
abilities of those models.
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Figure 2.1. – General overview of Machine Learning (ML) training. Using exam-

ples from a dataset, the predictive model learns to make the correct
predictions by minimizing a training loss measuring the error made
by the model.

2.2.1 Deep Learning framework

Machine Learning (ML). ML is a broad domain proposing models that learn to
solve a task from examples used to improve themselves. In this thesis, we work
mostly on models trained to predict a semantic label. For example, given pictures
of cats and dogs, we can learn a model that distinguishes them. Let us go over a
typical process used to train an ML model, represented by Figure 2.1.

ML proposes to train a model f , of parameters w ∈ W , taking an input x ∈ X
to produce a prediction ŷ. Knowing the ground-truth label y ∈ Y associated to
x, we can quantify the prediction error of the model by defining a loss function
Ltask(ŷ,y). Our goal is therefore to find the optimal parameters w∗ that minimizes
the expectation of the loss:

w∗ = arg min
w

E
(x,y)

[
Ltask(ŷ,y)

]
= arg min

w
E

(x,y)

[
Ltask

(
fw(x),y

)]
. (2.1)

To solve this optimization problem, we use a dataset D = {(x(i),y(i)), i =

1 . . . Ntrain} on which we can sample pairs (x,y) used to estimate the expectation
with Monte-Carlo sampling. We then use an optimization algorithm to minimize
this empirical loss over the dataset:

w∗ = arg min
w

Ntrain∑
i=1

[
Ltask

(
fw(x(i)),y(i)

)]
. (2.2)

Deep Learning (DL). DL is a subset of ML models using Deep Neural Net-
works (DNNs), initially inspired by a simple modeling of the neurons proposed
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by McCulloch and Pitts (1943). Most of the time, we use feed-forward Neural Net-
works (NNs), where the model f is a succession (more precisely a directed acyclic
graph) of mathematical transformations called layers transforming x in a succes-
sion of representations h` for each layer `. The most common layers are dense layers,
which consist in a linear transformation of the input h` = w`h`−1 + b`; and non-
linear activation layers, that can be any function making the model non-linear.
Nowadays we mostly use Rectified Linear Unit (ReLU) (max(0,h)) activation, but
hyperbolic tangent (tanh) or sigmoid (eh/eh+1) remain popular options, and many
more exist (Nwankpa et al. 2018). Thanks to their depth, i.e. number of layers,
DNNs are able to transform raw input data into more and more complex repre-
sentations, and thus perform representation learning (Bengio et al. 2013), where the
model learns by itself what are the most interesting features to model the input
data for the task at hand.

Neural Networks (NNs) are trained using gradient back-propagation (Rumel-
hart et al. 1988). This allows to compute progressively, using the chain-rule, the
gradient ∇wL of the loss L with respect to all the weights w. Using a gradient
descent algorithm, we can then update the weights in a direction that decrease
the value of the loss, so that progressively, over the course of the training, we
finally reach a minimum of the objective function:

w← w − η∇wL . (2.3)

Numerous gradient descent algorithms exist, the simplest one being Stochastic
Gradient Descent (SGD) (Léon Bottou 2010), with variants designed to improve
the speed of the convergence as well as finding a better minimum, since DNNs
training losses are non-convex and lots of local minima exist. Famous methods
include SGD with momentum (Rumelhart et al. 1988), RMSProp (Hinton et al.
2012), AdaDelta (Duchi et al. 2011) or Adam (Kingma and Ba 2015).

2.2.2 Convolutional architectures

As we have seen, Deep Learning (DL) became particularly popular for Computer
Vision (CV) in 2012 when AlexNet (Krizhevsky et al. 2012) won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). This model is a Convolutional
Neural Network (ConvNet), a type of NN that is specially designed for CV tasks.
A typical ConvNet, such as VGG-16 (Simonyan and Zisserman 2015) represented
in Figure 2.2, is composed of convolutional layers used in place of most or even
all of the dense layers of a traditional DNN. Indeed, applying a 2D convolution to
an image allows to process only small and local patches of information, regardless
of their position in the image. Thus, at the beginning of the network, convolutions
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Figure 2.2. – Architecture of a typical ConvNet. We show the architecture of a
VGG-16 (Simonyan and Zisserman 2015), interlacing convolutional
layers with max-poolings. Figure by Durand (2017).

only look for small patterns in the input image. When going deeper in the network,
the use of pooling layers (or by adding stride in a convolution) progressively
aggregates the spatial information, bringing closer the information of the patterns
found by previous layers. Thus, the next convolutions have a larger receptive
field (Luo et al. 2016) and can assemble the small patterns into bigger and more
semantic ones. This behavior of convolutions can be observed by investigating
how trained ConvNets represent the information, as studied by Olah et al. (2017)
and previously illustrated in Figure 1.2 (page 3). We can see that the model first
detects contours, assembled into textures, shapes and objects to finally produce
the semantic prediction. Interestingly, it can also be noted that the visual cortex is
said to work in a similar fashion to this succession of convolutions and pooling
(Hubel and Wiesel 1962).

The first ConvNets trained by back-propagation and designed for CV dates back
decades ago, for example with LeNet-5 (LeCun et al. 1998) which classifies hand-
written digits. However, as we mentioned, it is only recently that they became the
state-of-the-art approach for CV. The first notable network is AlexNet (Krizhevsky
et al. 2012), designed to classify natural images of ImageNet (Russakovsky et al.
2015), that won ILSVRC. In the next years, numerous new ConvNet architectures
were proposed and won this competition. Popular architectures include VGG-16
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Figure 2.3. – Visualizations of the evolution of standard ConvNets architec-
tures over the years. Style inspired by Alemi (2016).

Network Top-5 error Number of Number of
on ImageNet layers parameters

AlexNet (Krizhevsky et al. 2012) 16.4% 8 62M
VGG-16 (Simonyan and Zisserman 2015) 9.3% 16 138M
Inception V1 (Szegedy et al. 2015) 9.2% 22 6M
Inception V3 (Szegedy et al. 2016) 5.6% 48 23M
ResNet-50 (K. He et al. 2016) 6.7% 50 26M
ResNet-101 (K. He et al. 2016) 6.0% 101 45M
ResNet-152 (K. He et al. 2016) 5.7% 152 60M

Table 2.1. – Overview of popular ConvNet architectures with their results on
ImageNet (ILSVRC dataset) in a 10-crop setting (lower than the model
ensembling scores submitted to the challenge), along with the number
of layers and parameters.
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(Simonyan and Zisserman 2015), Inception-v1 also called GoogleNet (Szegedy
et al. 2015) and ResNet (K. He et al. 2016).

Visualizations of those architectures are presented in Figure 2.3 and their results
on ImageNet are presented in Table 2.1 for an easy comparison of their architec-
tures. A global trend that we can see is that adding depth to the architecture was
one of the key factors for improving the results. Indeed, having more layers allows
the model to construct progressively more and more semantically rich features in
order to better bridge the “semantic gap” between pixels and categories.

As we mentioned, those ConvNet architectures we presented have shown to be
very versatile regarding the type of CV problems they are able to address (clas-
sification, detection, segmentation, VQA, etc.) and are thus now used as standard
building blocks in many CV models. This is why we propose to study in depth
how those models can be used and improved, first using necessary regularization
techniques that allow them to work so efficiently.

2.2.3 Regularizing DNNs with priors

We have seen that DNNs are trained to find the optimal parameters in order
to best predict the labels of the samples in the training dataset D. However, a
model that perfectly predicts those labels does not necessarily produce the best
results on unseen data. For example, if fw can model a very complex function
compared to the number of samples in D, the model can learn by heart the labels
y(i) associated to x(i) without being able to generalize to new samples (Vapnik
and Chervonenkis 1972), which is called overfitting.

Because of their complexity, DL models are highly subject to this risk of over-
fitting the training set while lacking generalization capabilities on the test set.
Indeed, they are known to be universal approximators (Lu et al. 2017) and can
possibly produce overly complex decision boundaries. Since the beginning of the
development of DNNs, techniques to control the training of these models were
developed.

To overcome this issue, we use regularization which can take multiple forms,
a common one being to add a new loss term Ωregul(w,x,y) describing preferred
solutions, for example, simpler or smoother decision functions (Vapnik 1992).
Instead of using Equation 2.2, we thus have:

min
w
L(D,w) = E

(x,y)∈D

[
Ltask

(
fw(x),y

)
+ Ωregul(w,x,y)

]
︸ ︷︷ ︸

complete loss L

. (2.4)
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For a model f of parameters w, with a dataset D of pairs image-label (x,y), we
try to find the best parameters so as to minimize the target loss Ltask(ŷ,y), and
using an optional regularization penalty Ωregul that can take different forms. To
regularize the training, we can therefore influence:

• D, by using additional data (e.g. Data Augmentation (DA), noise injection,
Semi-Supervised Learning (SSL). . . );

• f , by influencing the architecture of the neural network and introducing
layers that can favorably influence its behavior (e.g. convolutions, dropout,
Batch Normalization (BN). . . );

• Ωregul, by adding loss terms to the optimization objective of the model, to
penalize complex models over simpler ones or produce more robust fea-
tures (e.g. weight decay / L2 normalization, invariance and reconstruction
costs. . . ).

Kukačka et al. (2017) present an in-depth review of the techniques used for
Deep Learning (DL). We propose to put into perspective the most important ones
in the context of this thesis regarding the improvement of the quality of DNNs’
representations.

Most regularization techniques can have multiple interpretations and have
many possible connections with one another (cf. Goodfellow et al. 2016, chapter
7). Here, we organized those methods following the points presented above. Reg-
ularization techniques are usually based on the idea of introducing prior human
knowledge of types of models or behaviors that would eventually produce better
predictions. Common priors include sparsity (having fewer active parameters
or neurons) and smoothness of the decision function, both producing a simpler
model that would overfit less; and compression, and invariance which aim at
producing features that are more general and correspond to a larger number of
examples.

2.2.3.1 Using more data

A first and logical way to improve the quality of the model is to use more data
in D, directly or indirectly as we will see.

Invariance through Data Augmentation (DA). A simple solution to both add
invariance to a model and reduce overfitting is to artificially generate new images
by producing random variants of existing images of the train set. This is done
by changing factors that are considered to have no effect on the semantic content
of the image. This technique is called Data Augmentation (DA) and is described
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in details by Dyk and Meng (2001). In practice, we usually generate a new ran-
dom variation of each input x each time it is used for training. Those random
variations can be chosen among a large set of transformations: translations and ro-
tations of the image, horizontal reflection, rescaling (zoom in or out), aspect ratio
deformations, selection of random patches in the image, elastic transformations,
jittering of the RGB color planes, changes in hue, contrast, brightness, random
noise, etc. This technique is standard for the training of deep ConvNets (Simard
et al. 2003; Cireşan et al. 2012; Krizhevsky et al. 2012, etc.). For example, for
AlexNet, Krizhevsky et al. (2012) clearly state that DA is necessary to train their
model. While effective, DA has limits, since it produces “new” images that are in
fact highly correlated to the original images from which they were generated.

Other analogous ideas exist, like DeVries and Taylor (2017) who propose to
apply the augmentation in the latent space by interpolating and extrapolating
between samples’ representations; or Goodfellow et al. (2015) who propose Ad-
versarial Training, adding to the training set misclassified variations of the input
found by gradient descent on the pixels, making the decision function more stable
in the neighborhood of existing images.

Noise. Adding noise in the training process can be seen as an indirect way to
add new artificial data that would be slightly different from the original input
(Grandvalet et al. 1997). It also encourages the model to produce a smooth de-
cision function around existing data points and their representation. Noise can
be added to the input (Plaut 1986), representations (DeVries and Taylor 2017),
weights (Kang et al. 2016), gradients (Neelakantan et al. 2016) or targets (called
“label smoothing”) (Szegedy et al. 2016). The effect of noise on generalization was
already noted by An (1996) and more recently reviewed by Noh et al. (2017) and
Kukačka et al. (2017). Methods based on dropout, discussed below, can also be
interpreted under this angle of adding noise to the training (Li and F. Liu 2016).
Finally, the noise introduced in the gradients by the stochasticity of the optimiza-
tion algorithms (SGD and variants) and its optional momentum are also said to
play a role in helping the model converge to a better solution.

Semi-Supervised Learning (SSL). It is also possible to take advantage of addi-
tional real unlabeled data that is much cheaper to obtain than labeled data. This
approach called Semi-Supervised Learning (SSL) will be detailed in Section 2.2.4
and will be a particular focus of this thesis in Chapter 3.



2.2 training and regularizing deep neural networks 21

2.2.3.2 Architectural changes

By changing the structure of the model f , it is possible to introduce many priors
and make the model behave in more desired ways. This can be done through the
choice of the architecture’s building blocks, the design of explicitly invariant
models, and the addition of particular layers like dropout and BN.

Architecture design. The choice of basic layers used in a model is a first way to
introduce prior knowledge in the model. The type of layers, their number, organi-
zation, sizes, etc., are all factors that are chosen based on prior knowledge about
the complexity of the learning problem and how to solve it. In particular, convo-
lutional layers can be seen as an “infinitely strong prior” (Goodfellow et al. 2016,
chapter 9) because they force very sparse connections between the neurons of the
input and output representations of the layer. Convolution and max-pooling also
add respectively equivariance and local invariance properties toward translation.

If we know factors to which representations should be invariant, this knowl-
edge can also be explicitly embedded in the architecture. For example, Mallat
(2012) and Bruna and Mallat (2013) use properties of the wavelet scattering to
obtain invariance toward various types of transformations; Dieleman et al. (2015)
propose a ConvNet that is invariant to rotations using an approach similar to
DA done in parallel; Cohen and Welling (2016) define convolutional and pooling
layers that are equivariant to mathematical groups of geometric transformation;
Mehr et al. (2018) propose an Auto-Encoder (AE) that is explicitly invariant to the
pose of a 3D object, etc. Of course, those approaches can be very powerful when
factors to which invariance is important are well known, but this is rarely the case.
For example, in the context of natural image recognition, lots of variability exist in
the shape, texture, positions, scales of the objects; variations that are complicated
to model explicitly.

Masking connections. In order to better deal with the large number of connec-
tions, i.e. weights, that a DNN has, Srivastava et al. (2014) propose to randomly
remove some connections, sampled differently for each batch during training.
This method is called dropout and was shown to be effective on various DNNs
and data (image, text, speech). The interpretation of this is that dropout prevents
the co-adaptation of the neurons, encouraging their independence and producing
more robust representations. Another interpretation is that this random effect
makes the model behave as an ensemble of many models that are averaged when
using the model for predictions. Variations of this were also proposed such as
DropConnect (Wan et al. 2013) or DropBlock (Ghiasi et al. 2018) to refine the
idea. Similar ideas also propose to add sparsity to connections of existing archi-
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tecture, such as L. Zhu et al. (2018) who propose to remove residual connections
in ResNets.

Normalizing representations. Another recent and very effective technique to
improve the training and generalization of DNNs is to add normalization layers.
First proposed by (Ioffe and Szegedy 2016), the Batch Normalization (BN) method
proposes to normalize the intermediate representations of the network so that
each neuron has a zero mean and unit variance on the batch. This method is said
to reduce the internal covariate shift, i.e. the variation of the distribution of the
inputs of a given layer because of the training of the previous layer. This mode of
action is still discussed in the community, as Santurkar et al. (2018) shows that it
might be due to a smoothing of the optimization landscape instead. In any case,
the effectiveness of the BN is undeniable, and new variants have been proposed
to solve the limits of BN such as Layer Norm (Lei Ba et al. 2016), Instance Norm
(Ulyanov et al. 2016) or Group Norm (Wu and K. He 2018).

2.2.3.3 Loss based regularization

Finally, it is also frequent to add a loss term Ωregul to encourage the model to-
ward certain prior objectives that would balance the objective of exactly predicting
the ground truth training labels.

Weights regularization. A very common prior in ML consists in influencing the
weights w of the model using L1 or L2 penalty on them, e.g. Ω(w) = 1/2||w||22. Often
called weight decay in the literature of DNNs, this term is added to the training loss
with a penalization term λ (usually very small), and penalizes weights of strong
magnitude that are shown to generalize less (Krogh and Hertz 1992). Similar
regularizations can also be applied to the gradients (Seck et al. 2019) or on the
Jacobian of the model to smooth the decision function: Ω(w) = ||Jfw(x)||2F as used
by Rifai et al. (2011) and studied in depth by Sokolić et al. (2017).

Adding stability for invariance. To encourage invariance of the classifier, Sajjadi
et al. (2016) propose to encourage stability. The idea is that, considering an image
and regardless of its class, when we apply various stochastic transformations
(DA, dropout, noise, etc.) to the image that preserve its semantic information, the
output of the model should remain the same for any variation of this input image.
Sajjadi et al. (2016) propose to penalize the Euclidian distance between all the
pairs of outputs produced from a similar initial image of the dataset. While very
similar in the intuition to other methods presented (adding artificial variability
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and noise to reinforce the model), this idea has the advantage of not requiring any
label, and can thus be used in the context of SSL as we will see in Section 2.2.4.3.

Reconstruction. Using a reconstructing cost as part of the training of DNNs has
been used since the early steps of DL (Hinton and Salakhutdinov 2006) to encour-
age compression. To do so, we design an encoder-decoder architecture, i.e. the
model produces a representation of interest and then reconstructs the input from
it. The intuition behind this objective is that reconstruction will force the model to
represent the important patterns that compose the dataset. By forcing the model
to compress input data into a more compact representation space, we make it find
relevant compressed features. Indeed, the best way to compress the information
is to produce more complex and semantic features, which are then interesting
to use for semantic applications. Its exact effect is studied by Erhan et al. (2010).
Reconstruction can be used to pre-train a model to improve its performance
(Bengio et al. 2007), and was a key element to allow the training of DNN around
those years to make those models converge well. Even if this regularization was
less used within discriminative models in the recent years, Y. Zhang et al. (2016)
does show that it is still an effective method of regularization for large ConvNets
trained on ImageNet, as they improve the original results of VGG-16 (Simonyan
and Zisserman 2015) using reconstruction. Because reconstruction has always
been a key element for Semi-Supervised Learning (SSL) techniques, we propose
to detail this regularization method more thoroughly below in Section 2.2.4.2.

Information Bottleneck (IB). Finally, more recently, regularization of DNNs
was proposed through the use of the Information Bottleneck (IB) framework
(Tishby et al. 1999). This technique proposes to use information theory measures
to describe a desired behavior of a model. It first states that the generalization
of a model should increase if a model is able to remove more information from
the input while still providing enough information about the class label it should
predict. This corresponds to both adding compression and invariance properties
to the model. This is expressed mathematically by minimizing the mutual in-
formation I(X,H) between the input and the representation at constant mutual
information I(H, Y ) between the representation and the target class. General-
ization bounds of IB have been studied (Shamir et al. 2010), and differentiable
implementations adapted for DNNs have been proposed (Achille and Soatto 2016;
Alemi et al. 2017; Pereyra et al. 2017).

These approaches based on the Information Bottleneck (IB) framework seem
to be the most interesting and promising ones to develop new regularization
methods for DNNs. As we have seen, they have the advantage, in their intuition, to
combine both the ideas of compression and invariance but without any restriction
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on the exact nature of the factors to which the model should be invariant. However,
current methods that extend this idea to DNNs have strong limitations in their
tractability. For this reason, we propose in Section 2.3 a new regularization method
called SHADE, inspired by this IB framework, that encourages invariance in the
representations.

2.2.4 Regularizing DNNs with and for Semi-Supervised Learn-
ing

To regularize a model, we can also use Semi-Supervised Learning (SSL). This
subfield of Machine Learning (ML) proposes models that are trained on partially
labeled dataset D = Dsup∪Dunsup with labeled pairs Dsup = {(x(k),y(k))}k=1..Ns and
unlabeled images Dunsup = {x(k)}k=1..Nu . We usually consider that all the images
in Dunsup belong to one of the classes of interest and that the images in Dunsup have
the same distribution as the images of Dsup. Many techniques exist as presented
by X. Zhu (2005). We propose to go over the most important ones, based on label
propagation, reconstruction and stability techniques.

2.2.4.1 Label propagation methods

A first idea to address SSL is to bootstrap the classification model, i.e. using it
to improve itself. This is done by training it on labeled images and using it to
produce labels for the unlabeled images, predictions that can then be considered
as ground truth and progressively added to Dsup for training (Blum and Mitchell
1998; X. Zhu and Ghahramani 2002).

This approach can of course be applied to DNNs as shown by Lee (2013), and is
said to be similar to Entropy Regularization (Grandvalet and Bengio 2005). More
recently, Shi et al. (2018) and Iscen et al. (2019) proposed some improvements to
these methods, adding confidence levels to the labels they assign to unlabeled
images, and using metric learning to improve the separability of the features
produced to represent the images. Similar methods can also be used in the context
of partially labeled problems to predict the missing labels (Durand et al. 2019).

While effective when correctly tuned, the risk with these kinds of approaches is
of course to assign the wrong labels to the unlabeled images, which can cause a
“vicious circle” where the model converges toward worse and worse predictions.
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2.2.4.2 Reconstruction based methods

Because we have unlabeled images, it is natural to use an unsupervised loss as
part of the semi-supervised training. Reconstruction is typically used to extract
robust features that are relevant representations of elements in the full dataset.
Thus, a mix of classification and reconstruction costs has been used for a long time
for SSL, e.g. Ranzato and Szummer (2008). This way, the classification decision can
be learned on labeled samples Dsup while representations used for the decision
are learned on all the images in D.

For this, an auto-encoding architecture is usually used, with an encoder E
producing h from the input x, and then feeding h to a decoder D to produce a
reconstruction x̂. The reconstruction loss can vary but is usually a Mean-Squared
Error (MSE):

L(x) = Lrec

(
x, D(E(x))

)
= ||x− x̂||22 . (2.5)

As we mentioned, this loss makes the encoder produce features that represent
the complete distribution of the dataset, without any consideration of labels. By
constraining the size of the vector h, compression can be encouraged, filtering
only the most significant and frequent patterns and producing more complex and
richer features. Compression can also be further encouraged by penalizing the
simple copy of x in h – in particular if h has more capacity than x. For this, sparse
AE can be used (Ranzato et al. 2007b; Ranzato et al. 2008; Glorot et al. 2011) in
order to produce compact representations that are likely to be more “complex”
and closer to semantic meaning – to solve the semantic gap problem – thus better
fitted for discriminative tasks.

Another common technique to improve AEs is to use Denoising Auto-Encoders
(DAEs) (Vincent et al. 2008), where we add a random noise ε to the input but keep
the reconstruction target intact:

L(x) = Lrec

(
x, D(E(x̃))

)
with x̃ = x + ε . (2.6)

Alain and Bengio (2014) shows that this encourages the encoder to explicitly learn
the shape of the data distribution manifold, since the models need to find the
closest point of x̃ that lies on the data manifold, which corresponds to x.

Finally, generative models also fall into this category of models that learn the
distribution of the input data. This includes the famous Generative Adversarial
Network (GAN) (Goodfellow et al. 2014) and its numerous derivatives, but also
the Variational Auto-Encoder (VAE) (Kingma and Welling 2013) literature.

Overall, this idea of modeling the distribution of the data is at the core of many
Deep Learning (DL) methods like Restricted Boltzmann Machines (Larochelle and
Bengio 2008), Deep Belief Networks (Goh et al. 2013), Deep Generative Models
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(Kingma et al. 2014) and discriminative Deep Neural Networks (DNNs) (Ranzato
and Szummer 2008; Larochelle and Bengio 2008). It is also a key component of
many SSL models based on AE using reconstruction (Weston et al. 2008; Turian
et al. 2010), VAE (Kingma et al. 2014) or GANs (Springenberg 2016; Denton et al.
2017; Bodla et al. 2018).

In Chapter 3, we will discuss the way information can be encoded and decoded
to both extract information from unlabeled data and be helpful for classification.
To that end, we will propose a new architecture design.

2.2.4.3 Stability techniques

Another unsupervised criterion designed for SSL relies on the stability and
smoothness of the prediction function. For example, Virtual Adversarial Training
(Miyato et al. 2016), an extension of Adversarial Training (Goodfellow et al. 2015)
for SSL, encourages the smoothness of the decision function around know data
points regardless of the label.

Another major direction is the idea proposed by Sajjadi et al. (2016), making the
prediction vector ŷ stable with regard to DA (translation, rotation, shearing, noise,
etc.) and model stochasticity (dropout) for a given input. This consists in saying
that all the outputs ŷ(i,k) should be the same for k = 1..K, each k representing a
random variation for the same input x(i). This is measured by MSE between all
the pairs, for an image i:

L =
K∑
j=1

K∑
k=1

||ŷ(i,k) − ŷ(i,j)||22 . (2.7)

Following work by Laine and Aila (2017) and Tarvainen and Valpola (2017) pro-
pose variants of this idea, with refined ways to enforce stability.

All those techniques can be used for SSL because they do not rely on any label
to produce stability but simply enforce local smoothness in the decision function
to produce invariance.

Those strategies of adding stability in DNNs to improve the quality of the
features in the context of SSL will be integrated in our proposed SSL framework in
Chapter 3.

2.2.5 Improving the semantic quality of representations

When trying to further improve the quality of the representations of DNNs
arises the question of disentangling. This problem can encompass a large range
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Figure 2.4. – Illustration of the purpose of disentangling. Here, the disentan-
gling model provides a bijective mapping between a complex en-
tangled manifold of faces and a series of independant semantic at-
tributes.

of techniques, but the general principle is to propose models that produce repre-
sentations that separate well the different factors of variation of the dataset. We
illustrate this idea in Figure 2.4. Since the definition of disentangling (Higgins
et al. 2018) and what the “factors of variation” are for a given dataset are both
vague, they can vary widely from one method to the other which thus makes for
a very broad literature.

A first category of techniques are simple generative models (G(y,hz)) that
combine and separate a binary class information y from the rest of the information
(non-class related) stored in hz. While initial work relied on a natural tendency of
the model to separate the information (Cheung et al. 2015; Perarnau et al. 2016),
more recent models explicitly try to make the model remove class information
from hz (Lample et al. 2017; Yang Liu et al. 2018).

However, representing each factor by a binary representation is very constrain-
ing and limiting because factors often comprise internal variability that we would
like to model. Thus a sort of variation on those generative models propose to
better represent and separate the information by learning two complementary
latent representations hy and hz, one for the class y and one for non-class related
attributes z. A famous contribution by Mathieu et al. (2016) propose this sort
of technique, using adversarial learning (Goodfellow et al. 2014) to separate the
information. It was later followed by many extensions of this idea to better rep-
resent those factors of variation (Peng et al. 2017; Jaiswal et al. 2018; Yu Liu et al.
2018).
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Finally, another category of methods propose to find and separate factors of
variation without any label, an approach we could call unsupervised disentan-
gling. In this case, the training objective mostly focuses on finding statistically
independent representations that can also be used to reconstruct the input data.
Many of those methods are based on the β-VAE (Higgins et al. 2017; T. Q. Chen
et al. 2018), which proposes to increase the independence of the neurons in the
latent space h of a VAE. The main issue with this type of models is that without
any labels, it is impossible to ensure that semantic factors of interest will in fact
be represented and separated as we would hope they do.

Being able to disentangle independent factors of variation is an important
research direction for DL, producing more interpretable and reliable latent repre-
sentations. This is why we will address this problem more deeply in Chapter 4

and propose a new approach that separates and structures the information in the
latent space.

2.3 SHADE: Encouraging Invariance in DNNs

As we saw in Section 2.2.3, many solutions exist to regularize DNNs and im-
prove their generalization performance. In particular, adding invariance in the
representations of DNNs is a promising and well addressed solution, especially for
classification purposes. Indeed, finding invariant representations has long been
an important goal in Computer Vision (CV), as illustrated by the famous Scale-
Invariant Feature Transform (SIFT) descriptors used before Deep Learning (DL).
We have seen that recent solutions using invariance try to model the transfor-
mations a representation should be invariant to, for example, Data Augmenta-
tion (DA) will add invariance toward handcrafted factors like rotation, scale, Gaus-
sian noise, etc.; and this is also the case for architectural blocks (e.g. translation
invariance for max-pooling) and invariant architectures (e.g. rotation invariance
for (Dieleman et al. 2015)).

However, for image recognition, it is very difficult to design an explicit mod-
eling of all transformations a model should be invariant to. Thus, for our first
contribution, we propose to work on the discriminative quality of the represen-
tations produced by a DNN by working on the invariance properties of those
representations. In particular, we want to let the network find what kind of in-
variance should be produced by the model, using an entropy-based measure as a
surrogate for invariance.

Indeed, as we have seen at the end of Section 2.2.3.3, the Information Bottleneck
(IB) framework is a recent and interesting source of inspiration to design new
regularization methods for DL. Based on this idea, we propose a regularizer called
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SHAnnon DEcay (SHADE) that aims at improving the intra-class invariance of the
representations produced by the model. Our main motivation is to design a model
that is robust to variations in the training data while preserving class information.
Because of this, our regularizer minimizes the entropy of the representations H
conditionally to a class Y :

minH(H | Y ) . (2.8)

In this section, we will detail the motivations of using conditional entropy to
measure the invariance of the representations. We then develop a differentiable
and tractable expression of this SHADE criterion. Finally, we evaluate its ability to
regularize a large variety of architectures, on CIFAR-10 and ImageNet; and when
using datasets with a small number of samples.

2.3.1 Context

Notations and definitions. For our work using information theory, we use the
following random variables and notations. We consider a random variable input
X ∈ X associated to a target class variable Y ∈ Y = {1, 2, .., Ncls}. X is fed
to a DNN named E (for encoder) of parameters w producing a succession of
intermediate representations H` after each layer `; H designating any of those
representations. We will also use information theory measures. First, the Shannon
entropy noted H (cf. Cover and Thomas 1991). Second, the mutual information
noted I, which quantifies the amount of information shared between two random
variables. Considering U ∈ U and V ∈ V with respective marginal probability
distributions PU and PV and mutual distribution P(U,V ), we have:

I(U, V ) =

∫
U×V

P(U,V )(u, v) log

[
P(U,V )(u, v)

PU(u)PV (v)

]
du dv (2.9)

Useful properties between the two measures are:

I(U, V ) = I(V, U) = H(U)−H(U | V ) = H(V )−H(V | U) (2.10)

Information Bottleneck (IB). The Information Bottleneck (IB) framework pro-
poses to regularize the encoder E by optimizing the following objective:{

maxw I(H,Y )

s.t. I(X,H) < D
(2.11)
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This can be rewritten with a Lagrange multiplier β as:

max
w
I(H, Y )− βI(X,H) . (2.12)

In this optimization problem, the first term I(H,Y ) maximizes the mutual infor-
mation between the representation and the target, which can be interpreted as
equivalent to the usual classification training objective minimizing cross-entropy
between ŷ and y. The second term −I(X,H) minimizes the mutual information
between the input and the representation, making the model forget most of the
information. Indeed, ideally, the model should filter out most of the input infor-
mation that is useless and focus only on the information that is related to the
target Y .

2.3.2 Measuring Invariance with Conditional Entropy

Inspired by this IB framework, we propose to analyze in more details why we
propose to use entropy, and more precisely conditional entropy, as a measure of
the invariance that we want to encourage.

Entropy as a measure of invariance. First, to study how the entropy of a
representation H(H) can be interpreted as a measure of the invariance of the
representations of a model, let’s write:

H(H) = I(X,H) +H(H | X) . (2.13)

Considering that our encoder E is a deterministic mapping of X into H (i.e. a
model without stochastic noise), we know that H(H | X) = 0, therefore:

H(H) = I(X,H) = H(X)−H(X | H) . (2.14)

H(X) is the entropy of the data and is fixed, therefore,H(H) is inversely related
to H(X | H). This entropy H(X | H) is a good measure to quantify how invariant
a representation is. Indeed, if a representation is invariant to many changes in the
image, this means that many inputs have the same representation. Consequently,
given a representation sample, it will be difficult to guess from which input it has
been computed. These properties are perfectly captured by H(X | H), represent-
ing the uncertainty in the input X knowing a representation H . The bigger the
uncertainty, the harder it is to predict X . The schematic behavior of a model on
which we minimize H(H) is represented in Figure 2.5a, where representations are
made more and more similar. Formally, when trying to guess X knowing H , we
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(a) Effect of minimizing H(H). Representations get more similar, increasing the
entropy of the input given the representation and thus the invariance.
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(b) Effect of minimizing H(H | Y ). Representations get more similar for each
class independently, making the representations more invariant intra-class.

Figure 2.5. – Illustration of the effect of entropy minimization and the differ-
ence between normal and conditional entropy as a regularizer.

can lower bound the error made in the best case, with an increasing function of
the conditional entropy (Blot et al. 2018a, Appendix D). Therefore, it seems that
H(H) is a good measure of the invariance of the model.

In the particular case of Deep Learning (DL), K. He et al. (2016), proposing
ResNet, explain that the stacking of multiple layers is responsible for improving
the generalization of DNNs. This fact can be explained by the data processing
inequality (Cover and Thomas 1991). This states that in the case of finite input
space, each additional computation layer can only remove a certain amount of
information and cannot add any. As clearly illustrated in Tishby and Zaslavsky
(2015), for each stage, the representation has a lower entropy than the represen-
tation of the preceding layer. Increasing the depth increases the capacity of the
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network to reduce the overall entropy of the DNN representation thus increasing
their invariance.

Importance of conditional entropy. We have seen that lowering the entropy
of the representation enables to make it more invariant. However, another fact
reported by K. He et al. (2016) is that stacking layers increases the difficulty to train
the network. Indeed, when reducing too much the entropy, there is a risk that the
information about the label is filtered as well. The representation is so invariant
that it is no longer possible to distinguish between the classes. In K. He et al.
(2016), they solve this issue by forcing the transmission of additional information
through skip-connections while IB prescribes to maximize the compression rate
at constant information about the label. All this highlights the fact that having
invariant representations is interesting if it is intra-class invariant.

Indeed, in our case above, we focused on a too broad meaning of invariance
that could lead to some issue. We stated that we want to be invariant to any kind
of information from the input X , which is actually not true. In fact, we want to
keep information regarding the label of the input. To illustrate, we do not want
two inputs from different classes to have the same representation, but do not
matter if inputs from the same class have the same representation. This is why we
prefer to focus on a criterion quantifying the intra-class compression rate in order
to maximize intra-class invariance: H(H | Y ). This is schematized in Figure 2.5b
that shows the difference between conditional and non-conditional entropy on
representations.

Behavior of SHADE and comparison with IB. Our criterion H(H | Y ) therefore
differs from standard IB regularizers based on I(X,H) (e.g. Achille and Soatto
2016; Alemi et al. 2017). In fact, the mutual information minimized in IB can be
rewritten:

I(X,H) = H(H | Y ) + I(Y,H) . (2.15)

Thus, we see that our choice of optimizing onlyH(H | Y ) ignores the term I(Y,H).
In fact, we argue that removing I(Y,H) from the optimization is a good thing
since this term is analogous to the classification loss and should not be minimized
since it would be detrimental to the actual objective. When minimizing I(X,H),
there is no control over how both terms H(H | Y ) and I(Y,H) are affected. Our
regularizer is therefore beneficial in the sense that minimizing H(H | Y ) does not
conflict with the mutual information I(Y,H) between the representation and the
label, information useful for classification that should not be penalized.

The behavior of SHADE is illustrated in Figure 2.6, where we show for each
layer of a DNN this decomposition of the information H(H) into the desired
information I(Y,H) used for classification, and the information SHADE intends to
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Figure 2.6. – Illustration of the effect of SHADE. Considering a DNN architecture
with corresponding layers’ entropies, we show the layer-wise action
of SHADE. Given that H(H`) = I(H`, Y ) + H(H` | Y ), SHADE mini-
mizes H(H` | Y ) without affecting I(H`, Y ).

minimize H(H | Y ). Next, we will further describe the development SHADE, our
regularization term based on the conditional entropy H(H | Y ) designed to drive
the optimization toward more intra-class invariant representations.

2.3.3 Entropy-based Regularization for Deep Neural Networks

We now propose to describe how we develop and instantiate our SHADE regu-
larizer. This section will present the important choices that we make to obtain the
loss function for SHADE, all the details about this process are given in Appendix A.

Toward a unit-wise regularization. Considering a DNN composed of L layers
that transform sequentially the input, we first propose to regularize all the layers
independently and minimize the sum of entropies Ωlayers =

∑L
`=1H(H` | Y ).

Noting H`,i the unit neurons of H`, we propose to use the upper bound H(H` |
Y ) ≤

∑D`

i=1H(H`,i | Y ) to define a unit-wise criterion that SHADE will seek to
minimize. Since we only work on individual and independent neurons, we will
use the notation H instead of H`,i for simplicity in the rest of the chapter. We thus
seek to minimize:

Ωunits =
L∑
l=1

D∑̀
i=1

H(H | Y )︸ ︷︷ ︸
ωunit(H|Y )

. (2.16)
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Limitations. Finding a tractable and differentiable expression of H(H | Y ) is
not obvious for multiple reasons. The conditional entropy H(H | Y ) requires to
compute Ncls different entropies H(H | Yk), which, when working on batches, re-
duces the number of samples used to compute each entropy down to problematic
levels. Entropy estimators are also very inaccurate with few samples and require a
discretization of the space using a histogram, an operation that raises new issues
on how to do it and to keep it tractable since bins for each neuron would lead to
important memory usages.

Reducing complexity with a binary latent code. Considering a neuron H prior
to the non-linearity, the ReLU can be interpreted as making it act as a detector,
returning a signal when a certain pattern is present in the input. We thus propose
to associate a binomial variable Z to each unit variable H (before ReLU). This
variable Z indicates if a particular pattern is present in the input (Z = 1 when
H � 0) or not (Z = 0 when H � 0).

We then assume that this variable Z is a sufficient statistic (see definition by
Cover and Thomas 1991) of H for Y , i.e. that it contains the necessary information
from H to predict the class Y . This means that we have I(H, Y ) = I(H,Z) and
we get the equivalent equality H(H | Y ) = H(H | Z). This has the advantage of
requiring to compute only 2 entropies (Z = 0 and 1) instead of Ncls. We finally
obtain:

ωunit(H | Y ) = H(H | Y ) = H(H | Z) =
∑

z∈{0,1}

p(z)H(H | Z = z). (2.17)

This variable Z represents a semantically meaningful factor about the class Y
and from which the input X is generated, and H is a quantification of the possi-
bility for this semantic attribute Z to be present in the input or not. Interpreting
p(Z | H) as the probability of presence of the semantic attribute in the input, we
choose to define it as:{

p(Z = 1 | H) = σ(H)

p(Z = 0 | H) = 1− σ(H)
using the sigmoid function σ(H) =

1

1 + e−H
.

(2.18)

Using a variance bound for tractability. To solve the problem of the complexity
of estimating the entropies, we propose to use a simple bound on H(H | Z) using
the variance, which does not require the definition of a histogram:

H(H | Z) ≤ 1

2
ln
(
2πeVar(H | Z)

)
. (2.19)
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This bound converges well and should be very tight if we consider that acti-
vations approximately follow a Gaussian distribution, which is often the case.
We then propose to simplify the expression and only keep the simpler term
Var(H | Z). We then estimate our loss using Monte-Carlo sampling on K inputs,
and use a moving average on the neurons to estimate the expectancy µz = E(H | z)

to compute this variance. We thus obtain our final loss for SHADE:

ΩSHADE =
L∑
`=1

D∑̀
i=1

∑
z∈{0,1}

p(Z`,i = z | H)Var(H | Z`,i = z) ; (2.20)

ΩSHADE =
L∑
`=1

D∑̀
i=1

K∑
k=1

∑
z∈{0,1}

p
(
Z`,i = z

∣∣∣H(k)
`,i

)(
H

(k)
`,i − µ

z
`,i

)2
. (2.21)

We obtain a regularizer that is applied on each neuron of the network, that is
differentiable, tractable and that can be integrated into the usual optimization
process of a DNN. Notably, SHADE requires only a small amount of additional
computation and memory usage (computation and storage of two moving aver-
ages per neuron). For comparison, SHADE adds only half as many parameters as
Batch Normalization (BN) does.

Comparison to Non-conditional Entropy and relation to Weight Decay

We propose to compare SHADE to a variant based on optimizing the entropy of
the representations H(H) instead of H(H | Y ). For this, one can use a variance
bound similar to Equation 2.19: H(H) ≤ 1/2 ln(2πeVar(H)) to derive a loss in order
to minimize the representations’ entropy H(H). Thus, minimizing the variance
of the representations is an upper bound of the entropy. This can be done by
penalizing the empirical variance, using an alternative loss called VarEntropy,
constructed the same way SHADE has been derived, but avoiding the introduction
of a latent variable Z:

ΩVarEntropy =
1

K

K∑
k=1

(
H(k) − E(H)

)2
. (2.22)

Interestingly, we can show that the weight decay actually reduces this variance
Var(H) and thereforeH(H) under some conditions. In fact when H = w>X+b, by
estimating Λ = Cov(X), the variance takes the immediate form Var(H) = w>Λw.
If Λ = Id – the identity matrix –, meaning that the input coordinates are considered
independent and with unit variance, then Var(H) = ||w||22. It corresponds to the
weight decay regularization or L2 penalty. Even if within a DNN layer, Batch
Normalization (BN) tends to enforce this unit variance hypothesis and the depth
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MLP AlexNet ResNet Inception

No regul. 62.38 83.25 89.84 90.97

Weight decay 62.69 83.54 91.71 91.87

VarEntropy 63.70 83.61 91.72 91.83

Dropout 65.37 85.95 89.94 91.11

SHADE 66.05 85.45 92.15 93.28
SHADE + Dropout 66.12 86.71 92.03 92.51

Table 2.2. – Classification accuracy (%) on CIFAR-10 test set.

of DNN tends to ensure the independence hypothesis the weight decay remains
poor at improving generalization as illustrated in C. Zhang et al. (2017).

2.3.4 Evaluation

We now propose different experiments to validate the capability of SHADE

to regularize common Computer Vision (CV) architectures. First, classification
results on CIFAR-10 for different architectures to show that SHADE is able to
regularize a broad range of models. We also validate that our regularization can
be applied on large scale models and datasets by applying it on ImageNet. We
then investigate the behavior of SHADE when using few images before some more
in-depth analysis of the behavior of SHADE and its intuitions.

2.3.4.1 Image Classification with Various Architectures on CIFAR-10

First, we perform image classification on the CIFAR-10 dataset, which contains
50k training images and 10k test images of 32×32 RGB pixels, fairly distributed
within 10 classes (Krizhevsky and Hinton 2009). Following the architectures used
by C. Zhang et al. (2017), we use a three-layer Multi-Layer Perceptron (MLP), and
an AlexNet-like model with 3 convolutional and 2 fully connected layers and a
small Inception model. We also use a ResNet architecture from Zagoruyko and
Komodakis (2016). Those architectures represent a large family of DNN and some
have been well studied in C. Zhang et al. (2017) regarding their generalization
ability. For training, we use randomly cropped images of size 28×28 with ran-
dom horizontal flips. For testing, we simply center-crop 28×28 images. We use
momentum SGD for optimization (same protocol as C. Zhang et al. 2017).

We compare SHADE with three regularization methods, namely weight decay,
dropout and VarEntropy presented in Equation 2.22. For all architectures, the reg-
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Accuracy (%)
Top-1 Top-5

ResNet-101 77.56% 93.89%
WELDON 78.51% 94.65%
WELDON + SHADE 80.14% 95.35%

Table 2.3. – Classification accuracy (%) on ImageNet validation set.

ularization parameters have been cross-validated to find the best ones for each
method and the obtained accuracies on the test set are reported in Table 2.2.

We obtain the same trends as C. Zhang et al. (2017), which get a small improve-
ment of 0.31% with weight decay on AlexNet. The improvement with weight
decay is slightly more important with ResNet and Inception (0.87% and 0.90%)
probably thanks to the use of Batch Normalization (BN). In our experiments,
dropout improves generalization performances only for AlexNet and MLP. It is
known that the use of BN lowers the benefit of dropout, which is in fact not used
in K. He et al. (2016).

We first notice that for all kind of architectures the use of SHADE significantly
improves the generalization performance. It demonstrates the ability of SHADE

to regularize the training of deep architectures. Moreover, SHADE systematically
outperforms other regularizations of the same type such as weight decay or Var-
Entropy, illustrating the advantage of minimizing the conditional entropy instead
of the entropy directly.

Finally, SHADE shows better performances than dropout on all architecture
except on AlexNet, for which they seem to be complementary, probably because
of the very large number of parameters in the fully-connected layers, with best
performances obtained with SHADE coupled with dropout. This association is
also beneficial for MLP. On Inception and ResNet, even if dropout and SHADE

independently improve generalization performances, their association is not as
good as SHADE alone, probably because it enforces too much regularization.

2.3.4.2 Large Scale Classification on ImageNet

In order to experiment SHADE regularization on very large scale dataset, we
train on ImageNet (Russakovsky et al. 2015) a WELDON network from Durand
et al. (2016) adapted from ResNet-101. This architecture changes the forward and
pooling strategy by using the network in a fully-convolutional way and adding a
max+min pooling, thus improving the performance of the baseline network.

There are two differences between the two networks: first, for WELDON the
images are simply re-scaled to size 448×448 before being forwarded into the
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(c) Examples of MNIST-M images misclassified by the baseline and
correctly classified using SHADE, both trained with 250 samples.

Figure 2.7. – Results when training with a limited number of samples in the
training set for MNIST-M and CIFAR-10 with and without SHADE.

network; second, compared to ResNet-101 architecture, the final average pooling
and fully connected layer are replaced with a 1×1 convolutional layer and a
particular max+min pooling described in Durand et al. (2016). This layer averages
the 50 highest and 50 lowest activations of the 14×14 output feature map to give
a prediction.

Results are summarized in Table 2.3. We report the results of a pre-trained
ResNet-101 and the WELDON architecture using those weights. After fine-tuning
the network using SHADE we obtain an improvement over the WELDON baseline,
demonstrating the ability to apply SHADE on very large scale image classification
successfully.

2.3.4.3 Training with a Limited Number of Samples

When datasets are small, DNNs tend to overfit quickly and regularization be-
comes essential. zBecause it tends to filter out information and make the network
more invariant, SHADE seems to be well fitted for this task. To investigate this, we
propose to train DNNs with and without SHADE on CIFAR-10 and MNIST-M with
different numbers of samples in the training set.

First, we tested this approach on the digits dataset MNIST-M (Ganin and Lem-
pitsky 2015). This dataset consists of the MNIST digits where the background
and digit have been replaced by colored and textured information (see Figure 2.7c
for examples). The interest of this dataset is that it contains lots of unnecessary
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information that should be filtered out, and is therefore well adapted to measure
the effect of SHADE.

We train a simple ConvNet (3 convolutional layers with pooling and 1 fully
connected layer) with different numbers of samples of MNIST-M. The samples,
chosen uniformly in the classes for each value of N , are kept the same for the
baseline and SHADE. The results can be seen in Figure 2.7a. We can see that
especially for small numbers of training samples (< 1000), SHADE provides an
important gain of 10 to 15% points over the baseline. This shows that SHADE
helped the model in finding invariant and discriminative patterns using fewer
data samples.

Additionally, Figure 2.7c shows samples that are misclassified by the baseline
model but correctly classified when using SHADE. These images contain a large
amount of intra-class variance (color, texture, etc.) that is not useful for the classi-
fication tasks. By encouraging the model to discard information, SHADE obtains
an important performance gain on this dataset and especially when only few
training samples are given.

Finally, to confirm this behavior, we also applied the same procedure in a more
conventional setting by training an Inception model on CIFAR-10. Figure 2.7b
shows the results in that case. We can see that once again SHADE helps the
model gain in performance and that this behavior is more noticeable when the
number of samples is limited, allowing a gain of 6% when using 4000 samples.

2.3.5 Discussion of SHADE

With SHADE, we introduced a new regularization method for DNNs training
that focuses on minimizing the entropy of the representation conditionally to the
labels.

Inspired by the Information Bottleneck (IB) framework, we proposed to increase
the invariance of the representations of DNNs without any prior model on the
factors to which those representations should be invariant and let the model find
those factors. Thus, SHADE is able to increase the intra-class invariance of the
model while keeping class information.

To develop SHADE, we make some hypotheses that we validate in additional
experiments described in Appendix A. First, we diverge from the regular IB frame-
work as described in Equation 2.15 because we show that part of the mutual
information I(X,H) is important for classification, as validated in Section A.2.1.
We also assume that neurons of a DNN act as a binary detector of factors that
encode the class information, a hypothesis that we validate in Section A.2.2.
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We also showed that SHADE significantly outperforms standard approaches
such as weight decay or dropout with various DNN architectures on CIFAR-10. We
also validated the scalability of SHADE by applying it on ImageNet. The invariance
potential brought out by SHADE is further illustrated by its ability to ignore
irrelevant visual information (texture, color) on MNIST-M. We also highlight
the increasing benefit of our regularizer when the number of training examples
becomes small.

2.4 Conclusion

In this chapter, we introduced the recent development in the domain of Deep
Learning (DL) and in particular with Convolutional Neural Networks (ConvNets).
We saw that deep convolutional architectures are now ubiquitous in Computer
Vision (CV) research and produce impressive results. To reach these performances
however, because of their complexity, a key aspect of research focus on proposing
regularization techniques that are required to make those architectures generalize
well to unseen data. As we have seen, many possible regularization approaches
exist, in particular by adding new data, changing the structure of the model or
adding loss terms to enforce constraints on the model.

Our first contribution in this thesis consisted in proposing a new regulariza-
tion method called SHADE, that takes the form of a new loss. Inspired by the
Information Bottleneck (IB) framework, SHADE influences the representations of a
ConvNets to be more invariant to the variance in visual inputs conditionally to
the class. SHADE thus makes the representations more intra-class invariant and
allows to obtain better classification results, as we demonstrated by using many
DNN architectures with SHADE on CIFAR-10 but also on ImageNet.

Another important direction to improve DNNs lies in the possibility of using
additional unlabeled data, which could greatly help the generalization perfor-
mances for a low cost compared to producing new labeled data. Semi-Supervised
Learning (SSL) techniques address this issue, often by mixing regularization ideas
adapted to discriminative models with motivations similar to the ones of SHADE;
and generative properties with models that are able to encode an image and
decode its representation back into the image. In this case, an invariance regular-
ization like SHADE would conflict with this second goal. To solve this conflict, it is
possible to work on the architecture of the model and go beyond the usual basic
one-branch encoder-decoder architecture. This idea will be further developed in
Chapter 3 where we propose a new type of architecture to address this issue.

Finally, we also saw that designing ConvNets that produce disentangled repre-
sentations of the different factors of variation of the data is an interesting direction
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to improve the semantic quality of those models, making them both more power-
ful for other tasks and more interpretable. To further work on this idea of struc-
turing the information of deep ConvNets, in Chapter 4, we address the problem
of disentangling by proposing a new architecture that separates the information
in a structured dual latent space for image editing and data generation.
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Chapter abstract

Regularizing Deep Neural Networks (DNNs) by encouraging invariance or
by encouraging reconstruction are two popular methods with conflicting be-
haviors toward classification. In this chapter, we study those methods in more
details and propose a new framework to make them cooperate in the context
of Semi-Supervised Learning (SSL), leveraging unlabeled data to improve gen-
eralization performances of image classifiers. To do so, we investigate ways
to organize the information in the latent space and introduce a two-branch
encoder-decoder architecture called HybridNet. The first branch of HybridNet
receives supervision signal and is dedicated to the extraction of invariant class-
related representations. The second branch is fully unsupervised and dedicated
to model information discarded by the first branch to reconstruct input data.
To further support the expected behavior of our model, we propose an original
training objective. It favors stability in the discriminative branch and com-
plementarity between the learned representations in the two branches. At the
time of publication, HybridNet was able to outperform state-of-the-art results
on CIFAR-10, SVHN, and STL-10 in various semi-supervised settings.

The work in this chapter has led to the publication of a conference paper:

• Thomas Robert, Nicolas Thome, and Matthieu Cord (2018). “Hybrid-
Net: Classification and Reconstruction Cooperation for Semi-Supervised
Learning”. In: European Conference on Computer Vision (ECCV).
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3.1 Introduction

We have seen that DNNs and Convolutional Neural Networks (ConvNets) now
show impressive state-of-the-art results on many Computer Vision (CV) tasks
(image classification (K. He et al. 2016), object localization (Dai et al. 2016), multi-
modal embedding (Engilberge et al. 2018; Carvalho et al. 2018), etc.). To achieve
these results, important progress has been made to provide ways to regularize the
huge number of parameters of DNNs (e.g. weight decay, dropout, Batch Normal-
ization (BN), etc.). In the previous chapter, we saw that these techniques mostly
consist in introducing prior knowledge of models that should perform well; thus
influencing the model’s architecture, the smoothness of its decision boundary, its
invariance capability, etc. In this regard, we introduced SHADE which proposes to
encourage intra-class invariance. However, we also saw that another very inter-
esting direction to regularize and improve ConvNets is through Semi-Supervised
Learning (SSL).

Indeed, supervised learning of DNNs requires very large labeled datasets like
ImageNet and its now 1.3 million images. Annotating such large quantities of
data is very expensive and remains an obstacle to the application of those models
to new tasks. Thus, in this chapter, we propose to tackle the problem of training
DNNs using Semi-Supervised Learning (SSL). In this context, only a small portion
of our large dataset has labels, making it much less expensive since the cost of
the dataset usually come from the expensive human annotation of the ground
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Figure 3.1. – Illustration of how an AE and HybridNet encode the information
differently. Considering an image contains discriminative and non-
discriminative information represented on the left. On the right, we
show the information preserved in the latent space of an AE and of
HybridNet. The auto-encoder will retain as much information as pos-
sible for reconstruction, possibly keeping lots of non-discriminative
information necessary to optimize the MSE loss. In HybridNet, we
are able to preserve more information and organize it in the two
branches, specializing hc on discriminative information and leaving
hu to encode the non-discriminative one.

truth. This problem is particularly true in domains where the annotation pro-
cess requires rare expertise such as the annotation of medical imagery. In such
domains, annotated data is very rare and effective SSL methods could be crucial.
Indeed, the idea of SSL is to take advantage of all the images (labeled or not) so
that the model can grasp the diversity of the images it should be able to recognize,
and simply use a few labeled images to effectively learn the classification rule,
which will generalize better thanks to this more general knowledge of the dataset
learned by the model.

As we saw in Section 2.2.4, the two main types of approaches for SSL are as fol-
lows. The first one is by improving the quality of the model toward classification,
introducing more invariance, often by enforcing stable predictions with regard
to artificial sources of variability introduced by different stochastic perturbations
(Sajjadi et al. 2016; Laine and Aila 2017; Tarvainen and Valpola 2017). Compared
to SHADE which encourages intra-class invariance, those methods encourage intra-
instance invariance to those stochastic perturbations. This criterion, not requiring
any label, can be used on the unlabeled samples of the dataset to improve the
quality of the features represented by the model.

The second major direction is reconstruction- or generation-based methods
(Bengio et al. 2007). In this case, the idea is that by making the model able to
encode and decode all the images of the dataset, we obtain representations that
model the whole distribution of images, even the ones for which we do not have
a label. Thanks to this, we can produce more robust representations that will



46 separating discriminative and non -discriminative information

+

Wc

Wu

x̂

ŷ
bird

HybridNet model

x

Figure 3.2. – Illustration of HybridNet’s behavior. The input image is processed
by two network paths of weights Wc and Wu; each path produces a
partial reconstruction, and both are summed to produce the final re-
construction, while only one path is used to produce a classification
prediction. Thanks to the joint training of both tasks, the weights Wc

and Wu influence each other to cooperate.

generalize better (Le et al. 2018). This strategy has been followed by historical
deep learning approaches (Hinton and Salakhutdinov 2006), but also in some
promising recent results with modern ConvNets (Y. Zhang et al. 2016).

Those two directions seem to be complementarity since invariance improves
classification and reconstruction should improve the generalization capabilities
of the features. However, when we look more closely at the behavior of those
techniques, they actually seem to have conflicting goals. Indeed, by definition, to
reconstruct an image, all the information from the input is necessary. This infor-
mation can be transformed, reshaped, but must be retained. On the other hand,
classification and intra-class invariance regularizers tend to explicitly remove the
information to achieve their goal.

In this chapter, we address this problem of conflict between classification and
reconstruction, previously investigated by Ladder Networks (Rasmus et al. 2015)
for example. To solve it, we propose a new type of architecture and training that
we call HybridNet. The general idea is illustrated in Figure 3.1. Instead of having
an auto-encoding model that will try to represent all the information in a single
latent space h, we propose to split this information into two complementarity
latent spaces hc and hu. To do so, we design a “hybrid” Auto-Encoder (AE) with a
feature extraction path decomposed into two branches as represented in Figure 3.2.
Thus, compared to a traditional AE, the presence of the two branches allows
separating discriminative and non-discriminative information. The first branch
(Wc) producing hc is responsible for extracting discriminative information and to
produce a class prediction, which is its main goal; it should thus extract invariant
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class-specific patterns as we have seen in Chapter 2. The second branch (Wu) is
then here to capture the non-discriminative information that is not useful for
classification. Combining both branches allows performing exact reconstruction
without compromising the invariance properties of the discriminative branch.

In Section 3.2, we present existing techniques to address SSL that are the most re-
lated to HybridNet and present their limitations. We then present our HybridNet
framework in Section 3.3. We then investigate its detailed behavior and capability
to improve on state-of-the-art techniques (at time of publication) in Section 3.4.

3.2 Reconstruction and Stability for Semi-Supervised
Learning

We have seen in Section 2.2.4 that Semi-Supervised Learning (SSL) is an inter-
esting approach for regularizing Deep Neural Networks (DNNs) and improving
the discriminative quality of their representations. We now propose to go over
recent SSL techniques that are most in relation to HybridNet.

As we described in Chapter 2, the usual framework of SSL assumes that we
have a partially labeled dataset D = Dsup ∪ Dunsup with labeled pairs Dsup =

{(x(k),y(k))}k=1..Ns and unlabeled images Dunsup = {x(k)}k=1..Nu and consider that
the images of Dunsup and Dsup are drawn from the same distribution and all
correspond to one of the known classes of Dsup. An SSL training usually consists
in mixing a supervised classification loss trained on Dsup with an unsupervised
regularization trained on the full dataset D. Here, we focus on two main types of
techniques: stability-based methods and reconstruction-based methods.

3.2.1 Stability based methods

A first unsupervised criterion for SSL relies on increasing the stability and
smoothness of the prediction function around the data points. As we have seen
in Section 2.2.3, this objective is fairly common to regularize DNNs, however, the
goal here is to find a way to also take advantage of additional unlabeled images.

In particular, an original idea by Sajjadi et al. (2016) proposes to force the model
to produce output prediction ŷ that are stable toward many sources of variability
to which the model should be invariant. The paper proposes to use heavy Data
Augmentation (DA) (translation, rotation, shearing, noise, etc.) and use a stochastic
model containing dropout. The loss is designed so that all the outputs ŷ(i,k) should
be the same for k = 1..K, each k representing a random variation of the same
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input x(i). This is measured by Mean-Squared Error (MSE) between all the pairs,
for each image i:

Lstability =
K∑
j=1

K∑
k=1

||ŷ(i,k) − ŷ(i,j)||22 . (3.1)

This, however, has the drawback of requiring many passes of the same image
to provide an effective regularization. To solve this, Laine and Aila (2017) and
Tarvainen and Valpola (2017) both propose variants where the loss becomes, for
an image i:

Lstability = ||ŷ(i) − ỹ(i)||22 , (3.2)

which can be seen as a special case of Sajjadi et al. (2016) where K = 2 (called the
Π model) but now using a virtual target ỹ(i). Laine and Aila (2017) and Tarvainen
and Valpola (2017) propose different solutions to obtain this virtual target, with
the idea that this target will be more “stable” and thus more useful that the
multiple targets of Sajjadi et al. (2016).

Laine and Aila (2017) propose Temporal Ensembling, defining ỹ(i) as the ex-
ponential moving average of the previous outputs ŷ(i). If we consider the model
constant, this would mean that the virtual target is an average of the outputs
for the sample i with many different random variants of x(i). Of course, because
the model is changing by being trained, the behavior of this averaging is more
complex because it also “contains” outputs produced by the model during past
epochs.

To overcome this problem of averaging outputs over many epochs, Tarvainen
and Valpola (2017) propose Mean Teacher, where instead of averaging outputs,
the weights of the classification model fw are averaged over the previous batches
to obtain the teacher model fMT

w . The virtual target is the output of this model:
ỹ(i) = fMT

w (x(i)). While the interpretation regarding stability becomes less clear,
this relies on the property that averaged models are more stable and accurate.
This model also retains the stability objective of the Π model because fw and fMT

w

use independent random sources of variability.

3.2.2 Reconstruction based methods

The main limit of stability approaches is that their regularization effect only
rely on the smoothing of the prediction function, encouraging the robustness and
invariance of their features. However, they do not encourage the extraction of new
and more general patterns using the appearance of the unlabeled images. This
question is addressed by other approaches which explore the use of reconstruction
in the SSL context. By adding a decoder to the classifier and learning to reconstruct,
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it is possible to extract new and more robust features that more broadly model
the full dataset, as we described in length in Section 2.2.4.2.

Mixing a classification and a reconstruction cost has been used for a long time as
a way to perform SSL (e.g. Ranzato and Szummer 2008). This way, the classification
decision can be learned on labeled samples Dsup while features used to make the
decision are learned on all the images in D. Existing SSL approaches can be based
on AE using reconstruction (Weston et al. 2008; Turian et al. 2010) or on generative
models that learn the data distribution, namely Variational Auto-Encoder (VAE)
(Kingma et al. 2014) and Generative Adversarial Networks (GANs) (Springenberg
2016; Denton et al. 2017; Bodla et al. 2018).

However, as we mentioned, this strategy of mixing classification and reconstruc-
tion is questionable since they play contradictory roles. Classification arguably
aims at extracting invariant class-specific features which induce an information
loss detrimental for an effective reconstruction. To overcome this issue, solutions
have been proposed. A decade ago, Ranzato et al. (2007a) already proposed to ad-
dress a specific component of this issue which is related to the localization of the
visual information. Indeed, because encoders usually include max-pooling layers,
this produces a loss of the spatial information that the decoder cannot guess. To
overcome this issue, they provide the position of the max-poolings to the decoder
to restore this information. This idea was applied more recently by Zhao et al.
(2016) in the model Stacked What-Where Auto-Encoder (SWWAE), designed for
SSL and based on an AE.

Ladder Networks (Rasmus et al. 2015) are another AE-based attempt to over-
come this, designing an encoder allowed to discard information thanks to noisy
skip connections to the decoder. Reconstruction at each layer of the decoder is
produced using upper-layer representation and a noisy version of the reconstruc-
tion target. However, it is not obvious that providing a noisy version of the target
and training the network to remove the noise allows the encoder to effectively
remove information and produce invariant features, since it must be able to cor-
rect “low-level” errors that require specific information about the image instance
being reconstructed.

The limit of those two approaches is that they explicitly provide by-passed infor-
mation to the decoder so that the encoder can discard this information, however,
it is not clear if this is sufficient to allow the encoder to effectively produce intra-
class invariant features. For example, while providing spatial information (in
SWWAE) is useful to enable translation invariance, the encoder still needs to repre-
sent lots of information that is not relevant for classification like detailed textures,
shapes, etc. For the Ladder Networks, as we have seen, it is not clear if providing
a noisy version of the reconstruction target can allow the model to only encode
intra-class invariant features. For example, the decoder must be able to correct a
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“by-passed” corrupted texture information by using “normal” information that
must be represented by the encoder.

Notes on decoder design

Finally, we can note that when using large modern ConvNets, the problem of
designing decoders able to invert an encoder still is an open question (Wojna et al.
2017). The usual solution is to mirror the architecture of the encoder by using
transposed convolutions (Dumoulin and Visin 2016), but this does not ensure that
we will be able to reconstruct perfectly the original information. This problem is
exacerbated with irreversible pooling operations such as max-pooling that must
be reversed by an upsampling operation. In Zhao et al. (2016) and Y. Zhang et
al. (2016), they use unpooling operations to bring back spatial information from
the encoder to the decoder, reusing pooling switches locations for upsampling.
Another interesting option is to explicitly create models which are reversible by
design. This is the option followed by recent works such as RevNet (Gomez et al.
2017) and i-RevNet (Jacobsen et al. 2018), being inspired by the second generation
of bi-orthogonal multi-resolution analysis and wavelets (Sweldens 1995) from the
signal processing literature.

3.3 HybridNet framework

In this section, we detail our contributions with the HybridNet framework,
that are twofold: first, in Section 3.3.1, we propose an architecture designed to
efficiently make reconstruction and classification losses cooperate; second, in
Section 3.3.2, we design a training loss adapted to it that includes reconstruction,
stability in the discriminative branch and a branch complementarity technique.
This framework will then be validated on CIFAR-10, SVHN and STL-10 datasets
in Section 3.4.

3.3.1 Designing the HybridNet architecture

3.3.1.1 Separating visual information in two latent spaces

As we have seen, a model designed for both classification and reconstruction
faces a conflict in the features it should encode. For classification, a model will
tend to filter out non-discriminative information, removing possibly a large part
of the visual data to produce intra-class invariance features. This is of course
especially true when using regularization that adds invariance. On the other hand,
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(b) Late fusion using two decoders
and merging the reconstructions.

Figure 3.3. – Overview of the architecture of HybridNet, with the two main pos-
sible fusion process for merging the two branches. The blue dot
symbolizes the fusion operation, like concatenation or addition, but
more complex fusion methods could be used.

reconstruction needs to preserve all the information in a compact representation,
and then decompress this representation into the reconstruction. If the same latent
space is used for both tasks, a clear competition between the two losses arise.

Previous methods addressing this problem (Rasmus et al. 2015; Zhao et al.
2016; Y. Zhang et al. 2016) mostly propose to add direct skip connections from the
encoder to the decode to provide pooling locations information or a noisy version
of the reconstruction target. Unlike those approaches, with HybridNet, we choose
to propose an explicit separation of the information in two distinct learned spaces,
which should allow for a finer and learned separation of discriminative and non-
discriminative features, and is thus expected to have a more favorable impact on
producing discriminative features. HybridNet also differs from reversible models
(Gomez et al. 2017; Jacobsen et al. 2018) by having an explicit separation between
the two latent spaces, which is complicated to achieve in reversible models due
to the their particular design. Another difference is that HybridNet is allowed to
discard information. Reversible models, by design, cannot discard any informa-
tion but can only deform the input manifold into a new one, as opposed to the
usual idea of introducing invariance in the representations.

As we illustrated in Figure 3.1 (page 45), the idea of HybridNet consists in using
a “hybrid” Auto-Encoder (AE) with the feature extraction path decomposed in two
complementarity branches. Compared to a traditional AE, the presence of the two-
branches allows separating discriminative and non-discriminative information.

Taking the example of the architecture in Figure 3.3a, the discriminative encoder
Ec (top) produces hc and is connected to a classification block C that produces
class predictions ŷ, which is the main goal of this branch. This encoder should
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thus ideally focus on discriminative features that are expected to extract invariant
class-specific patterns for a better generalization, as we have seen in Chapter 2. In
this case, part of the information is lost in this branch and exact reconstruction
from it should not be possible.

To complement this encoder and capture the missing information, a second
unsupervised encoder Eu (bottom) is added and produces hu. It is only by combining
the information in hc and hu that we are able to produce a complete reconstruction
x̂. During training, the supervised classification cost impacts the weights of Ec
while an unsupervised reconstruction cost is applied to bothEc andEu to properly
reconstruct the input image. The main assumption behind HybridNet is that this
two-path architecture helps in making classification and reconstruction cooperate.

An important goal of HybridNet is to produce encoders with complementary
roles. The discriminative path must extract discriminative features hc that should
eventually be well crafted to effectively perform a classification task, without
being able to produce a full reconstruction since preserving all the information is
not a behavior we want to encourage. Consequently, the role of the unsupervised
path is to be complementary to the discriminative branch by retaining in hu the
information lost in hc. The general HybridNet architecture can thus be described
with the following equations:

hc = Ec(x) ŷ = C(hc) hu = Eu(x) x̂ = D(hc,hu) . (3.3)

It is important to note that the end-role of reconstruction here is just to act as a
regularizer for the discriminative encoder Ec. However, as we have seen, complete
reconstruction is a too strong regularization since it requires to retain too much
information. Our unsupervised path via Eu is the key element that gives freedom
to the discriminative branch to take advantage of additional data while still being
able to filter out information and to perform the target task of classification.

Interestingly, this idea of separating the information in two subspaces and
combining it for reconstruction also has conceptual connections to wavelet de-
composition (Mallat and Peyré 2009): the first branch can be seen as extracting
discriminative low-pass features from input images, and the second branch acting
as a high-pass filter to restore the lost information.

3.3.1.2 Merging the information for reconstruction

After separating the information in two latent spaces, arise the question of
how to merge back the information to produce the final reconstruction. Indeed,
the decoding part of our model D(hc,hu) (cf. Equation 3.3) must produce the
reconstruction by merging the information from the two latent spaces. To do so,
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we have two main possibilities: an early fusion (cf. Figure 3.3a), merging directly
hc and hu and then producing the reconstruction; or a late fusion (cf. Figure 3.3b),
where each representation is decoded independently by a specific decoder, giving
partial reconstructions x̂c and x̂u that are then merged into x̂.

With early fusion, the equations describing the architecture are:

h = merge(hc,hu) , x̂ = D(h) . (3.4)

Using an early fusion has the advantage of using a single decoder D that has all
the information available and can combine it freely to produce the reconstruction.
Thus, this decoder can find complex combinations and interactions between the
two latent spaces to solve its task. In addition, we can introduce prior knowledge
in the choice of the merge function, which are numerous. The simplest solutions
are a merge by addition, concatenation or element-wise product. Each of these
solutions has its own semantic: addition enforces that representations have ad-
ditive values in a shared latent space, concatenation would be an extension of
addition where the first layer learns linear combinations of both representations,
and multiplication can be interpreted as a weighting or attention mechanism
between the two. More complex merging strategies could also be used, such as
using bilinear combinations of hc and hu (Ben-Younes et al. 2017; Paumard et
al. 2018). This merging method could model complex relations between the two
spaces and would give the ability to the encoders to produce strongly semantic
latent representations that could interact with each other. For example, semantic
information about the class of the image (e.g. a car) could be combined with se-
mantic information regarding the style of the object (e.g. the design and color) to
effectively reconstruct a specific object on the input.

With late fusion, the equations are:

x̂c = Dc(hc) , x̂u = Du(hu) , x̂ = merge(x̂c, x̂u) . (3.5)

In this case, a first advantage is that each decoder can be designed symmetrically
to its corresponding encoder, as is common when designing AE. In addition to
simplifying the design of the architecture, it also provides additional control over
the behavior of the model. For example, we can use the location of the max-
pooling layers in the encoder to use in the corresponding upsampling layer of
the decoder (Zhao et al. 2016). We can also introduce intermediate reconstruction
costs as we will see. Finally, we can ensure that both branches are contributing
to the final reconstruction, which is much more complex to do with an early
fusion. Using late fusion, we also have the question of how to merge the two
partial reconstructions. The easiest solution is to merge them by addition in the
pixel space, similarly to what is done with wavelet decomposition. But more
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complex merge techniques could be used to enforce specific semantics to partial
reconstructions through a specific merge strategy, as is proposed by some methods
(Shu et al. 2017; Shu et al. 2018; Luvizon et al. 2017). For example, it could be
interesting to investigate the use of a sort of soft attention or masking mechanism,
with one branch creating the textures and the other creating the shape. Such an
handcrafted mechanism should however be carefully designed to be aligned with
the goal of Ec and the production of discriminative features which is not obvious.

In this situation, the drawbacks of one solution are the absence of the advan-
tages proposed by the other. On one side, early fusion seems to enable more
complex complementarity between the two spaces. On the other side, late fusion
provides much more control over the behavior of the model. And actually, an
important and interesting challenge of HybridNet is to find a way to ensure that
the two branches will, in fact, behave in this desired way. The two main issues
that we tackle are the fact that we want the discriminative branch to focus on
discriminative features, and that we want both branches to cooperate and con-
tribute to the reconstruction. Indeed, in both cases, we can end up with two paths
that work independently: a classification path being ŷ = C(Ec(x)); and a recon-
struction path being x̂ = D(hc) with hu not intervening in D for early fusion or
x̂ = x̂u = Du(Eu(x)) and x̂c = 0 for late fusion.

Solving those two issues is achieved both through the choice of the architecture
of HybridNet and the development of a well-designed training loss to control the
behavior of HybridNet. While we tried both fusion strategies, late fusion is more
adapted to solve this problem. For this reason, the rest of the architecture will be
explained for this kind of fusion, using a merge by addition in the pixel space. On
the other hand, early fusion will be further explored in Chapter 4 in the context
of disentangling.

3.3.1.3 Designing a dual decoder HybridNet

Let us now describe more thoroughly the architecture of a HybridNet using late
fusion, i.e. with two complete separate encoding-decoding paths, merging partial
reconstructions by addition. An example of HybridNet architecture is presented
in Figure 3.4, described with the following equations:

hc = Ec(x) x̂c = Dc(hc) ŷ = C(hc) (3.6)

hu = Eu(x) x̂u = Du(hu) x̂ = x̂c + x̂u (3.7)

To design the HybridNet architecture, we start with a convolutional architecture
adapted to the targeted dataset, for example a state-of-the-art ResNet architecture
for CIFAR-10. This architecture is split into two modules: the discriminative en-
coder Ec and the classifier C. On top of this model, we add the discriminative
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Figure 3.4. – Example of a detailed HybridNet architecture using late fusion.
We represent the output feature maps of convolutions, max-pooling
and unpooling/upsampling layers.

decoder Dc. The location of the splitting point in the original network is free, but
C will not be directly affected by the reconstruction loss. In our experiments, we
choose hc (Ec’s output) to be the last intermediate representation before the final
pooling that aggregates all the spatial information, leaving in C a global average
pooling followed by one or more fully-connected layers.

The decoder Dc is designed to be a “mirror” of the encoder’s architecture, as
commonly done in the literature, e.g. (Zhao et al. 2016; Rasmus et al. 2015; Zeiler
and Fergus 2014). This means that all the convolutional layers (with unit stride)
are replaced by similar convolutions with swapped input/output planes number
and in the reverse order. Pooling layers or strides convolutions, that reduce the
spatial size, can be reversed using upsampling (or transposed convolutions (cf.
Dumoulin and Visin 2016) that can be seen as a special upsampling followed by
a regular convolution) or unpooling as we will see.

After constructing the discriminative branch, we add an unsupervised comple-
mentary branch. To ensure that both branches are “balanced” and behave in a
similar way, the internal architecture of Eu and Du is mostly the same as for Ec
and Dc. The only difference remains in the mirroring of pooling layers, using
either upsampling or unpooling. An upsampling will increase the spatial size of
a feature map without any additional information while an unpooling, used by
Zhao et al. (2016) and Y. Zhang et al. (2016), will use spatial information (pool-
ing switches) from the corresponding max-pooling layer to do the upsampling.
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Figure 3.5. – General description of the HybridNet framework. Ec and C cor-
respond to a classifier, Ec and Dc form an autoencoder that we call
discriminative path, and Eu and Du form a second autoencoder called
unsupervised path. The various loss functions used to train HybridNet
are also represented in yellow.

In our architecture, we propose to use upsampling in the discriminative branch
because we want to encourage spatial invariance, and use unpooling in the un-
supervised branch to compensate this information loss and favor the learning of
spatial-dependent low-level information.

As mentioned previously, one key problem to tackle is to ensure that this
model will behave as expected, i.e. by learning discriminative features in the
discriminative encoder and non-discriminative features in the unsupervised one.
This is encouraged by different ways in the design of the architecture. First, the
fact that only hc is used for classification means that Ec will be pushed by the
classification loss to produce discriminative features. Thus, the unsupervised
branch will naturally focus on information lost by Ec. Using upsampling in Dc

and unpooling in Du also encourages the unsupervised branch to focus on low-
level information. In addition to this, the design of an adapted loss and training
protocol is a major contribution to the efficient training of HybridNet.

3.3.2 Training HybridNet

The HybridNet architecture has two information paths with only one produc-
ing a class prediction and both producing partial reconstructions that should
be combined. In this section, we address the question of training this architec-
ture efficiently. The complete loss is composed of various terms as illustrated
in Figure 3.5. It comprises terms for classification with Lcls; final reconstruction
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with Lrec; intermediate reconstructions with Lrec−interb,l (for layer l and branch b);
and stability with Ωstability. It is also accompanied by a branch complementarity
training method. Each term is weighted by a corresponding parameter λ:

L = λcLcls + λrLrec +
∑

b∈{c,u},l λrb,lLrec−interb,l + λsΩstability . (3.8)

HybridNet can be trained on a partially labeled dataset, i.e. that is composed of
labeled pairsDsup = {(x(k),y(k))}k=1..Ns and unlabeled imagesDunsup = {x(k)}k=1..Nu .
Each batch is composed of n samples, divided into ns image-label pairs from Dsup

and nu unlabeled images from Dunsup.

3.3.2.1 Classification

The classification term is a regular cross-entropy term, that is applied only on
the ns labeled samples of the batch and averaged over them:

`cls(ŷ,y) = `CE(ŷ,y) = −
∑
i

yi log ŷi , Lcls =
1

ns

∑
k

`cls(ŷ
(k),y(k)) . (3.9)

3.3.2.2 Reconstruction losses

We saw that in HybridNet, we mostly choose to keep discriminative and unsu-
pervised paths separate so that they produce two complementary reconstructions
(x̂u, x̂c) that we combine with an addition into x̂ = x̂u + x̂c. Keeping the two
paths independent until the reconstruction in pixel space, as well as the merge-by-
addition strategy, allows us to apply different treatments to them and influence
their behavior efficiently. The reconstruction loss that we use is a simple MSE

between the input and the sum of the partial reconstructions:

`rec = ||x̂− x||22 = ||x̂u + x̂c − x||22 , Lrec =
1

n

∑
k

`rec(x̂
(k),x(k)) . (3.10)

In addition to the final reconstruction loss, we also add reconstruction costs
between intermediate representations in the encoders and the decoders which is
possible since encoders and decoders have mirrored structure. We apply these
costs to the representations hb,l (for branch b and layer l) produced just after
pooling layers in the encoders and reconstructions ĥb,l produced just before the
corresponding upsampling or unpooling layers in the decoders. This is common
in the literature (Zhao et al. 2016; Y. Zhang et al. 2016; Rasmus et al. 2015) but is
particularly important in our case: in addition to guiding the model to produce the
right final reconstruction, it pushes the discriminative branch to produce a recon-
struction and avoid the undesired situation where only the unsupervised branch
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Figure 3.6. – Illustration of the effect of branch balancing on reconstructions.
Without branch balancing, the model can learn two separate paths,
classifying with Ec and reconstructing with Du ◦ Eu without using
hc. The branch balancing forces both branches to produce a recon-
struction and ensures that Ec is regularized by the reconstruction
loss.

would contribute to the final reconstruction. This is applied in both branches
(b ∈ {c, u}):

Lrec−interb,l =
1

n

∑
k

||ĥ(k)
b,l − h

(k)
b,l ||

2
2 . (3.11)

3.3.2.3 Branch cooperation

As described previously, we want to ensure that both branches contribute to
the final reconstruction, otherwise, this would mean that the reconstruction is not
helping to regularize Ec, which is our end-goal. Having both branches produce a
partial reconstruction and using intermediate reconstructions already help with
this goal. In addition, to balance their training even more, we propose a training
technique such that the reconstruction loss is only backpropagated to the branch
that contributes less to the final reconstruction of each sample. This is done by
comparing ||x̂c−x||22 and ||x̂u−x||22 and only applying the final reconstruction loss
to the branch with the higher error. The expected effect of this branch balancing
strategy is shown in Figure 3.6.

This can be implemented either in the gradient descent or simply by pre-
venting gradient propagation in one branch or the other using features like
tf.stop_gradient in Tensorflow or .detach() in PyTorch:

`rec−balanced =

{
||x̂u + stopgrad(x̂c)− x||22 if ||x̂u − x||22 ≥ ||x̂c − x||22
||stopgrad(x̂u) + x̂c − x||22 otherwise

. (3.12)
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3.3.2.4 Encouraging invariance in the discriminative branch

We have seen that an important issue that needs to be addressed when training
this model is to ensure that the discriminative branch will filter out information
and learn invariant features. For now, the only signal that pushes the model to
do so is the classification loss. However, in a semi-supervised context, when only
a small portion of our dataset is labeled, this signal can be fairly weak and might
not be sufficient to make the discriminative encoder focus on invariant features.

A first option to encourage invariance would be to use SHADE. As presented
in Chapter 2, SHADE is designed to maximize the intra-class invariance of the
features. As such, it is a good candidate for our purpose and could be applied to
the discriminative encoder Ec.

The second option is to use a stability regularizer. Such a regularizer is currently
at the core of the models that give state-of-the-art results in a semi-supervised
setting on the most common datasets (Sajjadi et al. 2016; Laine and Aila 2017;
Tarvainen and Valpola 2017). The principle is to encourage the classifier’s output
prediction ŷ(k) for sample k to be invariant to different sources of randomness
applied on the input (translation, horizontal flip, random noise, etc.) and in the
network (e.g. dropout). This is done by minimizing the MSE between the output
ŷ(k) and a “stability” target ỹ(k). Multiple methods have been proposed to com-
pute such a target (Sajjadi et al. 2016; Laine and Aila 2017; Tarvainen and Valpola
2017), for example by using a second pass of the sample in the network with a
different draw of random factors that will therefore produce a different output.
We have:

Ωstability =
1

n

∑
k

||ŷ(k) − ỹ(k)||22 . (3.13)

By applying this loss on ŷ, we encourage Ec to find invariant patterns in the
data, patterns that have more chances of being discriminative and useful for
classification. Furthermore, this loss has the advantage of being applicable to
both labeled and unlabeled images.

3.4 Experiments

In this section, we study and validate the behavior of our novel framework. After
some preliminary experiments, we perform detailed ablation studies to validate
the architecture and loss terms of the model. We also propose visualizations of
the behavior of the model in various configurations, before demonstrating the
capability of HybridNet to obtain state-of-the-art results.
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Dataset Image size # Train # Test # Extra Samples

MNIST 32×32 50,000 10,000

MNIST-M 32×32 50,000 10,000

SVHN 32×32 73,257 26,032 531,131

CIFAR-10 32×32 50,000 10,000

STL-10 96×96 1,000 8,000 100,000

Table 3.1. – Overview of the datasets used. We report the size of the images, the
number of samples used for training (with only a subset of them for
which we will keep the labels), the number of test samples and the
number of extra images that are used only as labeled samples.

3.4.1 Datasets and data processing

In our experiments, we use different datasets of image classification among
10 classes. Those datasets are as follows, with additional numerical details and
samples presented in Table 3.1:

• MNIST (LeCun et al. 1998), is a simple and historical dataset that contains
black and white hand-written digits.

• MNIST-M (Ganin et al. 2016), is an interesting variant of MNIST constructed
artificially, initially to test domain adaptation models. In this dataset, textures
and colors taken from natural images are added to MNIST digits to introduce
variability. This additional information is non-discriminative and should be
represented by Eu.

• SVHN (Street View House Numbers, by Netzer et al. 2011), contains cropped
photos of house plate numbers taken by Google Street View cars. It is thus a
digits dataset with a much larger variability (camera angle, colors, textures,
noise, etc.) than MNIST, and is thus more difficult.

• CIFAR-10 (Krizhevsky and Hinton 2009) is a dataset of natural images that
cover 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). It is more complicated than the previous ones due to the high vari-
ability of the natural images. It can be seen as a small ImageNet dataset since
CIFAR-10 pictures are taken from ImageNet and have been resized to 32×32

pixels.
• STL-10 (Coates et al. 2011) is the most challenging dataset. It uses the same

classes as CIFAR-10 but with different images of higher resolution. Designed
for SSL, only a small number of labeled images are provided, with a large
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Figure 3.7. – Detailed architecture of an HybridNet trained with SHADE. We
indicate the supervised baseline (delimited in green), SWWAE (delim-
ited in blue) and HybridNet (whole figure) used for MNIST-M.

number of additional images that are unlabeled and taken from subclasses of
the real classes (e.g. animals and vehicles that are not in the 10 classes) which
increases the difficulty.

For our semi-supervised experiments, we will keep Ns labeled training samples
(with Ns/10 samples per class) while the rest of the data is kept unlabeled, as is
commonly done. The value for Ns varies over the experiments and will always be
indicated.

3.4.2 Preliminary results using SHADE

We first conduct preliminary experiments of HybridNet in conjunction with
SHADE in order to evaluate the effectiveness of our approach compared to existing
SSL baselines, and especially validate the idea of using a two-branch architecture.
For this, we especially compare our HybridNet framework to SWWAE by Zhao et al.
(2016), which proposes to address the same motivations as HybridNet. SWWAE is
an AE-based architecture for SSL that proposes to address the problem of decoding
from features made invariant because of max-pooling layers. To do so, SWWAE

uses unpooling layers in the decoder to reintroduce the pooling location and
provide this missing information.

For this experiment, we start with the architecture and protocol of Zhao et
al. (2016), illustrated in Figure 3.7 (delimited in blue). We develop an HybridNet
version of the architecture used by SWWAE by adding a second encoder and choose
to use an early fusion strategy by merging the information in the latent space
(h = hc + hu) by addition. We also do not use the unpooling strategy of SWWAE

and replace those with simple upsampling layers. This architecture is detailed in
Figure 3.7 (full figure).
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Dataset MNIST MNIST-M SVHN

Nb labeled samples Ns 100 1000 100 1000 1000

Supervised baseline 83.26 95.51 47.14 83.09 75.03

SWWAE∗ 86.38 95.72 45.83 82.89 75.27

HybridNet no regul. 84.13 96.01 48.07 84.86 75.63

HybridNet + weight decay 87.71 95.98 48.62 83.69 76.13

HybridNet + SHADE 89.15 97.18 52.58 88.23 79.12
∗ The results reported correspond to our reimplementation of this archi-
tecture based on the information provided in Zhao et al. 2016.

Table 3.2. – Results of a first version of HybridNet with SHADE compared to
SWWAE. We compare supervised and semi-supervised baselines to
HybridNet in different stability regularization setups. We report the
accuracy (%) measured on the test set of MNIST, MNIST-M and SVHN
for different sizes of labeled dataset.

We train the supervised baseline (without a decoder), SWWAE and three variants
of HybridNet with no stability regularization, with weight decay and with SHADE

for stability. We apply them on MNIST, MNIST-M and SVHN (see Table 3.1 for
image samples) and report the results in Table 3.2. Among the three, we can note
that MNIST-M is particularly interesting to demonstrate the capabilities of Hy-
bridNet. As we can see in the image samples, it contains a lot of variability in the
visual information (colors, textures) and very little semantic information useful
for classification (the overall shape of the digit). HybridNet, thanks to its two
latent spaces, should allow efficient separation of the two types of information.

First, SWWAE, our SSL baseline, improves over the supervised-only baseline ex-
cept on MNIST-M which could be explained by the fact that the reconstruction
loss might produce too many features that need to encode the wide variety of
textures in the dataset and does not learn features useful for classification. Hy-
bridNet without regularization usually does improve slightly over SWWAE, which
is normal since stability regularization is a key element to make this model work.
Indeed, adding weight decay – which can be seen as adding invariance cf. Sec-
tion 2.3.3 “Non-conditional Entropy” –, provides an interesting gain to HybridNet,
increasing the accuracy on MNIST (Ns = 100) from 84.1% to 87.7%. On MNIST-M
however, the gain is negligible, probably due to the non-class-conditional nature
of weight decay. Indeed, using SHADE for stability provides an important gain,
especially on MNIST-M where we gain ∼4 pts over the HybridNet baseline ∼6 pts
over the supervised and SSL baselines.

With Figure 3.8, we propose to visualize the effect of using SHADE in HybridNet
on MNIST-M. We show, for four different images, the final reconstruction x̂ =

D(h) = D(hc+hu) and partial reconstructions x̂c = D(hc) and x̂u = D(hu). This is
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and without SHADE. We show the final reconstruction x̂ = D(h) =
D(hc + hu) and the “partial” reconstructions x̂c = D(hc) and x̂u =
D(hu) produced when feeding the decoder with the features from a
single branch.

shown for two HybridNet models, trained with and without SHADE as a stability
regularizer. One can see that the full reconstructions x̂ with SHADE are quite
better than the ones with no stability regularization, particularly in terms of color
integrity and texture quality. This can be analyzed by looking at the contribution
of each branch through x̂c and x̂u. For the HybridNet with SHADE, we observe
that the details (color, texture, etc.) are encoded in the unsupervised branch hu as
desired, while the discriminative branch hc barely contains the shape of the digit.
This is not the case without regularization where the information does not seem
to be organized, which is particularly visible on the bottom digits 2 and 3 where
the green and red backgrounds are almost lost without stability.

In this experiment, we validated the relevance of using a two-branch architec-
ture to improve on existing techniques based on AE, in particular SWWAE. We
also show how adding a regularization encouraging invariance, namely SHADE,
can work in concert with the two-branch architecture to effectively separate the
information.

Discussion. While it made sense to reuse our work on invariance with SHADE in
HybridNet, we now propose to discuss its viability as a regularizer in this context.
During this first experiment, we observed that, while effective, SHADE was too
strong of a regularizer toward invariant representations, making it difficult for
representations from Ec to cooperate with reconstruction. Furthermore, SHADE is
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Figure 3.9. – Example of a HybridNet architecture. The original classifier (Con-
vLarge) constitutes Ec and has been mirrored to create Dc and dupli-
cated for Eu and Du, with the addition of unpooling in the discrimi-
native branch.

designed with the idea that the model trained with a supervision signal is able to
produce relevant class-related representations that we model with a binary latent
code z, cf. Section 2.3.3, z being a sort of surrogate of y for class information, to
compute a replacement of H(hc | y). In the context of SSL where we only have
very few labels to learn those latent codes z, it is not certain how SHADE will
behave. For this reason and in order to more easily compare HybridNet with
state-of-the-art methods, we choose to replace SHADE with stability methods like
Mean Teacher (Tarvainen and Valpola 2017).

In addition, these experiments confirmed that controlling the behavior of an
early fusion HybridNet was complicated and very sensitive to hyperparameters
values. This is why the rest of the experiments will use a late fusion strategy,
replacing the single decoder by two decoders, one for each branch, to provide
more control over the behavior of the model as explained in Section 3.3.2, “Branch
cooperation”.

3.4.3 HybridNet framework validation

We now propose a thorough analysis of the behavior of our model at two differ-
ent levels: first by comparing it to baselines that we obtain when disabling parts of
the architecture, and second by analyzing the contribution of the different terms
of the training loss of HybridNet both quantitatively and through visualizations.
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Encoders Ec and Eu

Input x̃ 32× 32× 3
Convolution 128 filters, 3× 3, padding 1 32× 32× 128
Convolution 128 filters, 3× 3, padding 1 32× 32× 128
Convolution 128 filters, 3× 3, padding 1 32× 32× 128
Pooling Maxpool 2× 2 16× 16× 128
Dropout p = 0.5 16× 16× 128
Convolution 256 filters, 3× 3, padding 1 16× 16× 256
Convolution 256 filters, 3× 3, padding 1 16× 16× 256
Convolution 256 filters, 3× 3, padding 1 16× 16× 256
Pooling Maxpool 2× 2 8× 8× 256
Dropout p = 0.5 8× 8× 256
Convolution 512 filters, 3× 3, padding 0 6× 6× 512
Convolution 256 filters, 1× 1, padding 1 6× 6× 256
Convolution 128 filters, 1× 1, padding 1 6× 6× 128
Output hc or hu 6× 6× 128

Classifier C

Input hc 6× 6× 128
Pooling Global average pool 1× 1× 128
Fully connected with Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 6× 6× 128
TConvolution 256 filters, 1× 1, padding 1 6× 6× 256
TConvolution 512 filters, 1× 1, padding 1 6× 6× 512
TConvolution 256 filters, 3× 3, padding 0 8× 8× 256
Upsampling 2× 2 (unpooling in Du) 16× 16× 256
TConvolution 256 filters, 3× 3, padding 1 16× 16× 256
TConvolution 256 filters, 3× 3, padding 1 16× 16× 256
TConvolution 128 filters, 3× 3, padding 1 16× 16× 128
Upsampling 2× 2 (unpooling in Du) 32× 32× 128
TConvolution 128 filters, 3× 3, padding 1 32× 32× 128
TConvolution 128 filters, 3× 3, padding 1 32× 32× 128
TConvolution 3 filters, 3× 3, padding 1 32× 32× 3
Output x̂c or x̂u 32× 32× 3

Table 3.3. – Architecture of HybridNet version of ConvLarge for CIFAR-10. This
architecture is also presented visually in Figure 3.9. The original Con-
vLarge model corresponds to C ◦ Ec. TConvolution stands for “trans-
posed convolution” (Dumoulin and Visin 2016). Each Convolution
or TConvolution is followed by a Batch Normalization layer and a
LeakyRELU of parameter α = 0.1.
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This study is performed based on the ConvLarge architecture introduced by
Rasmus et al. (2015) on CIFAR-10. This is the most common setup used in recent
SSL experiments (Sajjadi et al. 2016; Laine and Aila 2017; Tarvainen and Valpola
2017). This is a fairly simple ConvNet architecture, resembling VGG (Simonyan
and Zisserman 2015), with blocks of convolutions followed by max-poolings.

We detail this architecture in Table 3.3 and represent it schematically in Fig-
ure 3.9, in its HybridNet version. The design of the HybridNet version of Con-
vLarge follows Section 3.3 and uses Temporal Ensembling (Laine and Aila 2017)
to produce stability targets ỹ. We also use an adapted version of ConvLarge
for STL-10 with added blocks of convolutions and pooling to obtain additional
visualizations and quantitative results.

Models are trained with Adam with a learning rate of 0.003 for 600 epochs with
batches of 20 labeled images and 80 unlabeled ones. The various loss-weighting
terms λ of the general loss (Equation 3.8) were set so that the different loss terms
have values of the same order of magnitude. Thus, all λ were set to either 0 or 1

if activated or not, except λs set to 0 or 100. The details of the architecture and
hyperparameters values are provided in Appendix B.

3.4.3.1 Ablation study of the architecture

We start this analysis by validating our architecture with an ablation study on
CIFAR-10 with different number of labeled samples. By disabling parts of the
model and training terms, we compare HybridNet to different baselines and vali-
date the importance of combining both contributions of the paper: the architecture
and the training method.

Results are presented in Table 3.4. The classification and auto-encoder results
are obtained with the same code and hyperparameters by simply disabling dif-
ferent losses and parts of the model: the classifier only uses Ec and C; and the
auto-encoder (similar to Zhao et al. 2016) only Ec, Dc and C. For both, we can
add the stability loss. The HybridNet architecture only uses the classification and
reconstructions loss terms while the second result uses the full training loss.

First, we can see that the HybridNet architecture alone already yields an im-
provement over the baseline and the auto-encoder, except at 1000 labels. This
could be explained by the fact that with very few labels, the model fails to cor-
rectly separate the information between the two branches because of the faint
classification signal, and the additional loss terms that control the training of Hy-
bridNet are even more necessary. Overall, the architecture alone does not provide
an important gain since it is not guided to efficiently take advantage of the two
branches, indeed, we see that the addition of the complete HybridNet loss allows
the model to provide much stronger results, with an improvement of 6-7 pts over
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Labeled samples Ns

Model 1000 2000 4000

Classification 63.4 71.5 79.0
Classification and stability 65.6 74.6 81.3

Auto-encoder 65.0 73.6 79.8
Auto-encoder and stability 71.8 80.4 84.9

HybridNet architecture 63.2 74.0 80.3
HybridNet architecture and full training loss 74.1 81.6 86.6

Table 3.4. – Ablation study performed on CIFAR-10 with ConvLarge architecture.

the architecture alone, around 5-6 pts better than the stability or auto-encoding
baseline, and 7-10 pts more than the supervised baseline. The most challenging
baseline is the stabilized auto-encoder that manages to take advantage of the
stability loss but from which we still improve by 1.2-2.8 pts.

This ablation study demonstrates the capability of the HybridNet framework
to surpass the different architectural baselines, and shows the importance of the
complementarity between the two-branch architecture and the complete training
loss.

3.4.3.2 Importance of the various loss terms

We now propose a more fine-grain study to look at the importance of each
loss term of the HybridNet training described in Section 3.3.2, both through
classification results and visualizations.

First, in Table 3.5a we show the classification accuracy on CIFAR-10 with 2000

labels and STL-10 with 1000 labels for numerous combinations of loss terms.
These results demonstrate that each loss term has its importance and that all of
them cooperate in order to reach the final best result of the full HybridNet model.
In particular, the stability loss is an important element of the training but is not
sufficient as shown by lines b and f-h, while the other terms bring an equivalent
gain as shown by lines c-e. Both those ∼5 pts gains can be combined to work in
concert and reach the final score line i of a ∼10 pts gain.

Second, to interpret how the branches behave we propose to visualize the
different reconstructions x̂c, x̂u and x̂ for different combinations of loss terms in
Table 3.5b. With only the final reconstruction term (lines c), the discriminative
branch does not contribute to the reconstruction and is thus barely regularized
by the reconstruction loss, showing little gain over the classification baseline.
The addition of the intermediate reconstruction terms helps the discriminative
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information by-passes the discriminative branch and is completely captured by
x̂u. The different terms improve the organization of the information between
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Table 3.5. – Detailed ablation studies when activating different terms and tech-
niques of the HybridNet learning.
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Figure 3.10. – Evolution of reconstruction losses with and without branch bal-
ancing. Without branch balancing, x̂u reconstructs x alone and Ec
receives little regularization signal. Using branch balancing makes
both branches contribute to the reconstruction in comparable mag-
nitude.

branch to produce a weak reconstruction (lines d) and is complemented by the
branch balancing technique (lines e) to produce balanced reconstructions in both
branches. The stability loss (lines i) adds little visual impact on x̂c, it has probably
more impact on the quality of the latent representation hc and seems to help
in making the discriminative features and classifier more robust with a large
improvement of the accuracy.

Another way to see the effect of the branch balancing term is by looking at
the evolution of the partial reconstruction losses (||x − x̂c||22 and ||x − x̂u||22) that
measure how much each branch is contributing to the final reconstruction ||x−x̂||22.
We do so during the training of a HybridNet with and without branch balancing
and show the result in Figure 3.10: without it, we can see that ||x̂u − x||22 ≈ 0 so
the unsupervised branch is reconstructing almost alone; with it, the two branches
do not reconstruct perfectly which enables their cooperation, as expected.

3.4.3.3 Visualization of information separation on CIFAR-10 and STL-10

Overall, we can see in Table 3.5b lines i that thanks to the full HybridNet
training loss, the information is correctly separated between x̂c and x̂u than both
contribute somewhat equally while specializing on different types of information.
For example, for the blue car, x̂c produces a blurry car with approximate colors,
while x̂u provides both shape details and exact color information. For nicer vi-
sualizations, we also show reconstructions of the full HybridNet model trained
on STL-10, which has larger images, in Figure 3.11. These confirm the observa-
tions on CIFAR-10. HybridNet is able to produce a very good final reconstruction
composed of a rough reconstruction that lacks texture and color details from the
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Figure 3.11. – Visualizations of input, partial and final reconstructions of STL-
10 images using a HybridNet model derived from a ConvLarge-like
architecture.

discriminative branch, completed by low-level details of shape, texture, writings,
color correction and background information from the unsupervised branch.

3.4.4 State-of-the-art comparison

After studying the behavior of this novel architecture, we propose to demon-
strate its effectiveness and capability to produce state-of-the-art results for SSL on
three datasets: SVHN, CIFAR-10 and STL-10.

We use ResNet architectures to constitute the supervised encoder Ec and classi-
fier C; and augment them with a mirror decoder Dc and an unsupervised second
branch containing an encoder Eu and a decoder Du using the same architecture.
For SVHN and CIFAR-10, we use the small ResNet from (Gastaldi 2017), which is
used in Mean Teacher (Tarvainen and Valpola 2017) and currently achieves state-
of-the-art results on CIFAR-10. For STL-10, we upscale the images to 224×224 px
and use a regular ResNet-50 pretrained on the Places dataset.

We trained HybridNet with the training method described in Section 3.3.2,
using Mean Teacher to produce stability targets ỹ(k). The training protocol follows
exactly the protocol of Mean Teacher (Tarvainen and Valpola 2017) for CIFAR-10



3.4 experiments 71

D
at

as
et

C
IF

A
R

-1
0

SV
H

N
ST

L-
1
0

M
od

el
ty

pe
M

od
el

N
b.

la
be

le
d

im
ag

es
N
s

1
0
0
0

2
0
0
0

4
0
0
0

5
0
0

1
0
0
0

1
0
0
0

R
ec

on
st

ru
ct

io
n

/
G

en
er

at
io

n
ba

se
d

SW
W

A
E

(Z
ha

o
et

al
.2

0
1

6
)

2
3
.5

6
2
5
.6

7

La
dd

er
N

et
w

or
k

(R
as

m
us

et
al

.2
0

1
5

)
2
0

.4
0

Im
pr

ov
ed

G
A

N
(S

al
im

an
s

et
al

.2
0

1
6

)
2
1
.8

3
1
9
.6

1
1
8

.6
3

1
8

.4
4

8
.1

1

C
at

G
A

N
(S

pr
in

ge
nb

er
g

2
0

1
6

)
1
9

.5
8

St
ab

ili
ty

ba
se

d

St
ab

ili
ty

re
gu

la
ri

za
ti

on
(S

aj
ja

di
et

al
.2

0
1

6
)

1
1
.2

9
6

.0
3

Te
m

po
ra

lE
ns

em
bl

in
g

(L
ai

ne
an

d
A

ila
2

0
1

7
)

1
2
.1

6
5
.1

2
4
.4

2

M
ea

n
Te

ac
he

r
C

on
vL

ar
ge

(T
ar

va
in

en
an

d
V

al
po

la
2

0
1

7
)

2
1
.5

5
1
5
.7

3
1
2

.3
1

4
.1

8
3
.9

5

M
ea

n
Te

ac
he

r
R

es
N

et
(T

ar
va

in
en

an
d

V
al

po
la

2
0

1
7

)
1
0
.1

0
6
.2

8
∗ 2

.3
3

∗ 2
.0

5
∗ 1

6
.8

R
es

N
et

ba
se

lin
e

(G
as

ta
ld

i2
0

1
7

)
4
5

.2
2
4

.3
1
5
.4

5
1
2

.2
7

9
.5

6
1
8
.0

R
ec

.&
St

ab
ili

ty
H

yb
ri

dN
et

[o
ur

s]
8.

81
7.

87
6.

09
1.

85
1.

80
15

.9

Ta
bl

e
3
.6

.–
R

es
ul

ts
us

in
g

a
R

es
N

et
-b

as
ed

H
yb

ri
dN

et
.t

ra
in

ed
on

C
IF

A
R

-1
0
,S

T
L-

1
0

an
d

SV
H

N
.“

M
ea

n
Te

ac
he

r
R

es
N

et
”

is
ou

r
cl

as
si

fic
at

io
n

&
st

ab
ili

ty
ba

se
lin

e;
re

su
lts

m
ar

ke
d

w
ith

∗
ar

e
no

t
re

po
rt

ed
in

th
e

or
ig

in
al

pa
pe

r
an

d
w

er
e

ob
ta

in
ed

ou
rs

el
ve

s.



72 separating discriminative and non -discriminative information

and a similar one for SVHN and STL-10 for which (Tarvainen and Valpola 2017)
does not report results with ResNet. The hyperparameters added in HybridNet,
i.e. the weights of the reconstruction terms (final and intermediate), were coarsely
adjusted on a validation set. The details of the architecture used and the values
of the hyperparameters are provided in Appendix B.

The results of these experiments are presented in Table 3.6. We can see the huge
performance boost obtained by HybridNet compared to the ResNet baselines, in
particular with CIFAR-10 with 1000 labels where the error rate goes from 45.2%
to 8.81%, which demonstrates the large benefit of our regularizer. HybridNet also
improves over the strong Mean Teacher baseline (Tarvainen and Valpola 2017),
with an improvement of 1.29 pt with 1000 labeled samples on CIFAR-10, and 0.9 pt
on STL-10. We also significantly improve over other stability-based approaches
(Sajjadi et al. 2016; Laine and Aila 2017), and over the Ladder Networks (Rasmus
et al. 2015) and GAN-based techniques (Springenberg 2016; Salimans et al. 2016).

These results demonstrate the capability of HybridNet to apply to large residual
architectures – that are very common nowadays – and to improve over baselines
that already provided very good performance.

3.5 Conclusion

In this chapter, we proposed to go further in the development of new ways to
represent the information in a Convolutional Neural Network (ConvNet), tackling
the issue of Semi-Supervised Learning (SSL). In this context, one can usually use
regularization techniques like SHADE or stability techniques which propose to
increase the invariance of the representation, but this comes in conflict with a
reconstruction task that is often used to leverage unlabeled data in SSL.

To overcome this incompatibility and encourage efficient cooperation between
the two tasks, we proposed HybridNet, an auto-encoder-based architecture with
two distinct paths that separate the discriminative information useful for clas-
sification from the remaining information that is only useful for reconstruction.
By adding this new unsupervised branch, we are able to release the constraints
imposed by reconstruction and structure the information between the two latent
spaces. This is achieved by the loss terms and training technique that accompany
the architecture and allow it to behave in the desired way. In the experiments, we
validated the significant performance boost brought by HybridNet in compari-
son with several other common architectures that use reconstruction losses and
stability. We also showed that HybridNet can produce state-of-the-art results on
CIFAR-10, STL-10 and SVHN.
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While HybridNet was developed for the particular case of SSL, this idea of a two-
branch architecture that makes classification and reconstruction cooperate can
also be interesting in a wider variety of contexts. In the next chapter, we consider
the problem of using a two-branch architecture to encode two complementary
semantic information – thus using early fusion for a more complex combination –
from which we can reconstruct an image.
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Chapter abstract

To complete our work on latent representations of images, we address the prob-
lem of producing disentangled latent representations, which means finding
representations that model individual factors of variation in the data. For
this, we propose DualDis, a new auto-encoder-based framework that separates
and linearizes two complementary types of information that we call class and
attributes, improving the semantic quality of the representations and their
complementarity. This is achieved thanks to a two-branch architecture forcing
the separation of the two kinds of information, accompanied by a decoder for
image reconstruction and generation. To effectively separate the information,
we propose to use a combination of regular and adversarial classifiers to guide
the two branches in specializing for class and attribute information respec-
tively. We also investigate the possibility of using semi-supervised learning
for an effective disentangling even using few labels. We leverage the lineariza-
tion property of the latent spaces for semantic image editing and generation
of new images. We validate our approach on CelebA, Yale-B and NORB by
measuring the efficiency of information separation via classification metrics,
visual image manipulation and data augmentation.

The work in this chapter has led to the submission of a conference paper
currently under review:

• Thomas Robert, Nicolas Thome, and Matthieu Cord (2019). “DualDis:
Dual-Branch Disentangling with Adversarial Learning”. In: Under Review
at Advances in Neural Information Processing Systems (NeurIPS).
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4.1 Introduction

In the previous chapter, we proposed to separate the visual information con-
tained in an image in two latent spaces, one for the discriminative information
related to the category, and one for the non-discriminative information. This was
done in order to improve the accuracy of a classifier in the context of Semi-Supervi-
sed Learning (SSL) by solving a conflict between two popular ways of regularizing
Deep Neural Networks (DNNs) using HybridNet. One interpretation of the behav-
ior of HybridNet is that its first branch encodes discriminative information that is
related to the general pattern of the image (related to the class) while the second
and complementary unsupervised branch focuses on details independent of the
class such as local textures, detailed shape, etc.

In this chapter, we propose to pursue further this interpretation of information
separation and tackle the problem of disentangling. In Deep Learning (DL) and
especially in the Computer Vision (CV) community, this problem of disentangling
factors of variation is a very active field of research, cf. Higgins et al. (2018). The
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exact objective of those model vary but the overall idea of disentangling is to in-
crease the quality of the latent representations so that they represent independent
factors of variation in the data. We will see that this can be done in various ways.

By improving the semantic quality of the representations and their indepen-
dence, disentangling can be used to improve many applications such as transfer
learning (Ruiz et al. 2019), domain adaptation (Chang et al. 2019; Louizos et al.
2016), information retrieval (Mathieu et al. 2016), image generation (Perarnau et al.
2016), etc. In addition, since these models are usually based on encoder-decoder
architectures, they can combine visual understanding and image generation. For the
particular application of image generation, while disentangling models do not
yet compete with powerful generative models (e.g. Karras et al. 2019) regarding
the quality of generated images, they are an interesting direction for controlling
latent conditional factors regarding what is being generated, which remains a
challenging task in this literature.

To address this problem, we propose to further explore structured latent rep-
resentations of images, in continuation of our work in Chapter 3, but this time
designed for both image classification and visual attribute detection. We are interested
in modeling two complementary kinds of information that we will call information
domains. For example, with a face dataset, we would like to represent the identity
(i.e. the class) of the person and various visual attributes (hairstyle, makeup, facial
expression, etc.). This direction thus addresses the question of producing com-
plementary representation spaces that improve their cooperation to structure the
information, generalize better and produce good reconstructions and generations.

While HybridNet focused on separating discriminative and non-discriminative
information, with a clear asymmetry between the two, here we separate two
similarly interesting types of information. Leveraging the insights of the previ-
ous chapter, we propose DualDis, a dual-branch deep Auto-Encoder (AE) that
explicitly separates the information domains in two distinct latent subspaces as
schematized in Figure 4.1a: one space hy for class-related information and other hz
for attribute-related information. A decoder D(hy,hz) is then used to reconstruct
images and generate new ones. An important contribution lies in the learning
strategy that we propose. Using adversarial training, we are able to explicitly find
and remove wrongly organized information and effectively separate and “orthog-
onalize” the two information domains. This disentangling behavior is illustrated
in Figure 4.1b where we show that it allows mixing representations of different
images.

In addition, our architecture is also designed to linearize the factors of variation
in each latent space. This reinforces the semantic quality of the representations
and means that simple linear shifts of a latent representation in given directions
are directly linked to known semantic factors. Taking advantage of this property,
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(a) Behavior of our encoder-decoder, learned to explicitly separate complemen-
tary representations of identity (top) and attributes (bottom) in dual latent
subspaces.

D(    ,     ) =D(    ,     ) =D(     ,     ) =

(b) Illustration of the disentangling ability of DualDis, mixing the identity of a
first image and the attributes of a second. In the middle example, the man
framed in green takes the attributes of the women framed in yellow, becoming
a smiling woman with brown bangs.

D(   ,    ) =

D(   ,    ) =

D(   ,    ) =

D(   ,    ) =

D(   ,    ) =

D(   ,    ) =

(c) Illustration of the image editing ability of DualDis, provided by the lineariza-
tion of the factors of variation. For the first example (woman framed in blue),
we move the representation 6 along the directions male (first line) and glasses
(second line) to add those attributes.

Figure 4.1. – Overview of our DualDis framework. We present the general be-
havior of the model (a) and illustrate its abilities at disentangling (b)
and editing images (c).
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we can perform image editing by modifying the representations of a given image.
This is illustrated in Figure 4.1c, where we change the gender and eyeglasses
attributes of images while conserving the identity and the other attributes. This is
done by following the linear directions provided by the model, as shown on the
left of the figure. Thanks to this, we can also perform guided Data Augmentation
(DA) by generating variations of images with semantic changes instead of low-
level changes (flip, translation, color jitter, etc.) as usually done.

In this chapter, we first present the state of the art in Section 4.2, then we present
DualDis in depth in Section 4.3 and we validate the effectiveness of our approach
in the next sections quantitatively (Section 4.5), using SSL (Section 4.6), and for
editing (Section 4.7).

4.2 Related work

In this chapter, we try to go one step closer to eventually “bridging the gap”
between discriminative and generative models. Indeed, our objective is to produce
a model that both represents highly semantic information and is able to generate
new data. We thus propose to go over some generative and disentangling models
that exist in the literature.

Notations. Because the standard notations vary from one domain to another,
and to avoid any misunderstanding, we choose to unify the notations and use the
ones that follow:

y, z Labels of the primary and secondary semantic information are designated
respectively with y and z. The primary information (y) corresponds to the
class or identity of the subject of the image, while the secondary informa-
tion z corresponds to general visual attributes (e.g. for faces it represent the
expression, hairstyle, etc.).

h All latent vectors are designed with h, including inputs of generative models.

�̃ Vectors with a tilde correspond to elements that were randomly drawn from
a prior distribution or generated from one (e.g. h̃ ∼ p(h), x̃ = G(h̃))

�̂ Vectors with a hat correspond to elements that are estimated and usually
correspond to a known value (e.g. x̂ = D(E(x)) is the reconstruction of a
known input image x, ŷ is a prediction of a ground truth y)
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Figure 4.2. – Schematic representation of a VAE (top) and a GAN (bottom).

4.2.1 Generative models

First, we propose a quick overview of some modern generative models and how
they represent the information. In this context, the term generative models refers to
models that are able to generate new images x̃ from a randomly sampled input
noted h̃. In the recent Deep Learning (DL) literature, there are two main types
of models for this, Variational Auto-Encoders (VAEs) and Generative Adversarial
Networks (GANs).

Variational Auto-Encoder. VAEs were introduced by Kingma and Welling (2013)
and can be seen as an extension of an AE, represented in Figure 4.2 (top). To sum-
marize, after some modeling assumptions and lower-bounds of the data likelihood
maximization max log p(x), the training loss ends up consisting in adding a regu-
larization term on the latent representations h of an AE so that they match a prior
distribution pprior(h):

L(x) = Lrec

(
x, x̂

)
+DKL

(
h || pprior(h)

)
(4.1)

During the training, the model does not generate samples, it simply learns to
reconstruct and make sure that the representations h respect the prior distribution.
However, thanks to this prior distribution pprior(h), after the training, it is possible
to sample values h̃ ∼ p(h) and use the decoder D of the VAE to obtain a new



4.2 related work 81

image x̃ = D(h̃) that should belong to the distribution of real images. As we
mentioned, this is ensured through the maximization of the data likelihood.

Generative Adversarial Network. GANs were proposed by Goodfellow et al.
(2014) and rely on a different and original approach that directly addresses the
question of producing realistic images, as represented in Figure 4.2 (bottom). They
propose to use a generator G transforming an input noise h̃ ∼ pprior(h) (with a
chosen fixed prior pprior(h)) into an image x̃. This generator is accompanied by a
discriminator D that learns to detect if its input x is a real image from the dataset
(x∗) or a generated image from G (x̃). The discriminator is trained to make correct
predictions; and the generator is trained to fool the discriminator, i.e. to produce
images x̃ that D classify as real images. They have therefore opposite goals and
are often said to be trained toward a Nash equilibrium.

x̃ = G(h̃), h̃ ∼ pprior(h), D(x) ∈ [0, 1], ideally,

{
D(x̃) = 0, x̃ = G(h̃)

D(x∗) = 1, x∗ ∈ Dreal

(4.2)

Because of their particular training, the exact behavior of GANs has been widely
discussed. Very unstable especially in its early stages, solutions were proposed
(Kodali et al. 2017; Roth et al. 2017) and GANs can now produce very high-quality
images (Karras et al. 2017; Karras et al. 2019) and can also be used for image-to-
image translations (e.g. changing maps into satellite images) (J.-Y. Zhu et al. 2017;
Choi et al. 2018), super-resolution (Ledig et al. 2017), etc.

A difference that is often discussed between GANs and VAEs is the “sharpness”
of the images produced. This phenomenon is studied and quantified more thor-
oughly by Blau and Michaeli (2018) in the context of super-resolution or image
restoration and is described as the perception-distortion tradeoff. This shows that
models that produce “sharp” looking images (i.e. with good perceptual quality)
are actually adding incorrect local information that does not correspond to the
reality. Doing so, they actually produce more distortion (i.e. difference with the
ground truth) than models that produce blurry images. This may or may not be
problematic depending on the application, i.e. if matching a specific ground truth
is relevant or if artificial details are welcome.

Information representation in generative models. First, we can note that un-
like VAEs that come with an encoding model, GAN-based models usually do not,
making it impossible to know the representation h of an existing image, which
limits the possible applications to pure generation. To solve this, models propose
variations of the original GAN framework. They introduce an encoder E(x) pro-
ducing representations h that the generator G(h) must be able to decode back
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Figure 4.3. – Behavior of Latent Constraint VAE by Engel et al. (2018). They learn
a model G(z, z) that is capable of transforming an existing represen-
tation h (encoded from an image or sampled randomly) into a real-
istic image that is valid regarding the provided attributes z. Credits:
Illustration based on Engel et al. (2018)

into the original image (Dumoulin et al. 2017; Donahue et al. 2017; Brock et al.
2019), which also has the advantage of being a way to help prevent mode collapse
(Rosca et al. 2017; Bang and Shim 2018).

Second, we can see that those generative models define a prior distribution of
the latent information (the embedding of the VAE and the noise of the GAN), which
is usually very simple, like a Gaussian N (0, I) or a uniform distribution U[−1,1].
This means that the factors of variation of the dataset must be somehow encoded
in this unstructured space. The fact that there is no structure though, is limiting
if we wanted to manipulate or interpret this information. While Makhzani et al.
(2016) proposed to use more complex and structured latent spaces (e.g. a mixture
of Gaussians), it had little followup, possibly because choosing and enforcing a
structure a priori is not an easy task.

To overcome this and control semantic factors, the most simple way is to use
conditional generation, which consists in generating from a noise h̃ and a label
vector z, as proposed by Perarnau et al. (2016), T.-C. Wang et al. (2018), Bodla et al.
(2018), and Z. He et al. (2019) and many others. While effective, it seems clear
that all the complex information related to a semantic factor (e.g. the glasses on
a picture of a face) cannot be fully represented by a binary representation. Thus,
that part of this information must leak into h̃. This is why trying to find richer
representations of the semantic factors is an important direction.
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An interesting idea in this direction to model more complex representations of
semantic factors is proposed by Engel et al. (2018) and is illustrated in Figure 4.3.
They start with a regular trained VAE model that encoded the dataset without
supervision. Making the hypothesis that the information about semantic factors
has been somewhat organized in the latent space h of the AE, they add a model
G(h, z) which role will be to represent how the semantic information is organized
in h. More precisely, G is trained to transform any representation h into a rep-
resentation h′ that is “valid” with regard to the label vector z: h′ = G(h, z). For
example, if h represents someone without glasses, the glasses can be added using
a vector z with glasses set to true. G should produce a new vector h′ keeping the
same identity but adding glasses. The role of G is therefore to model how each
semantic factor zi has been represented and organized in the latent space h by the
original VAE. Unlike a conditional model, the information about z is represented
directly in h and G allows finding regions of h corresponding to factors z.

4.2.2 Unsupervised disentangling

The disentangling literature proposes to go further on this idea of structuring
the information in the latent space. “Disentangling” can have more or less con-
straining definitions depending on the articles, but overall it consists in explicitly
separating and representing independent factors of variation.

A first approach is unsupervised disentangling, where no labels about the
factors of variation are provided. Those approaches are usually based on VAEs
and try to produce a model in which latent units are all independent of each
other. A simple solution is for example β-VAE by Higgins et al. (2017), which adds
a weighting parameters β on the prior constraint, increasing how independent
the latent neurons are. T. Q. Chen et al. (2018) and Kim and Mnih (2018) both
study this phenomenon more thoroughly by decomposing the prior term into
multiple terms and increasing only the importance of the total correlation term in
their models FactorVAE and TC-VAE. Finally, Dupont (2018) proposes a variant
which allows discrete intermediate representation in h.

Those models are based on the assumption that each latent unit encodes one
variation factor and that all the units are independent of each other. To actually
quantify this phenomenon, they all propose their own metrics to, in fine, measure
how well labeled variation factors (used only for evaluation) are represented, each
in a single neuron of h. This definition (and metric) of disentangling is of course
widely discussed (Higgins et al. 2018). For example, it is not clear why a semantic
factor should only be encoded by a single neuron, and whether it is realistic to
consider only independent neurons and factors.
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Other models differ from this “disentangling by regularization” approaches
based on VAE. For example, Kulkarni et al. (2015) and Hu et al. (2018) work on
latent chunks, i.e. groups of neurons of h that should each encode a semantic
piece of information. In particular, Hu et al. (2018) propose to mix latent chunks
of different images and adversarially enforcing similarity and difference of images
generated from the mixes to obtain disentangling and independent chunks.

However, unsupervised disentangling has two important issues: first, without
any supervision, it is not easy to enforce that a model actually learns complex
semantic factors (e.g. facial expression, pose, hairstyle, etc.) and not for example
a decomposition of the factor into an ensemble of simpler and less semantic
ones. This is especially true when enforcing that each neuron encodes a different
factor. Second, because we don’t have labels, it is impossible to interpret the latent
representations, the only solution being to ask a human to look at the effect of
each neuron and visually interpret it, which is risky regarding the generalization
on the full dataset of the interpretation made on a few samples. Besides, if a
human needs to label the representations, it seems more reasonable to use this
time to label the factors in the dataset and use them in the training.

4.2.3 Supervised disentangling

Numerous approaches also propose supervised disentangling, using labels in ad-
dition to images to disentangle factors of variation. In this literature, the definition
of disentangling is even broader than for unsupervised disentangling, focusing on
separating different pieces of information.

A first approach for this is based on conditional generative models, where the
decoder takes (h, z) as input, where z are the labeled factors and h represents
the rest of the information. In this regard, we can cite Perarnau et al. (2016),
Tran et al. (2017), and Yang Liu et al. (2018). A good example is Fader Network
(Lample et al. 2017), which uses an AE-based model: the encoder producing h

is supposed to represent everything (mostly the identity and the background)
except the visual attributes (makeup, hairstyle, glasses, etc.); the decoder takes h

and the attributes as a binary vector z as input to reconstruct. The disentangling
between attributes and non-attributes is achieved by forcing the encoder to remove
z-related information in h using adversarial training.

Numerous approaches are also based on an approach similar to the intuition
of HybridNet, separating the information in two latent spaces. This is the case
of Mathieu et al. (2016), Peng et al. (2017), Klys et al. (2018), Hadad et al. (2018),
Jaiswal et al. (2018), and Yu Liu et al. (2018). The general idea of those models
is to find a way to separate two information domains (e.g. information related



4.3 dualdis approach 85

to a person’s identity y and information related to visual attributes z of a face)
in two latent spaces. Mostly, it consists in using classification and adversarial
training to represent y-related information in one subspace and remove y-related
information in the other subspace. These methods can be reproduced using parts
of our DualDis framework and will be discussed in depth in Section 4.4.

4.3 DualDis approach

In this chapter, we propose to build upon the intuitions and interpretations
of HybridNet to address supervised disentangling. Our objective is to separate
two information domains that are complementary: the first represents the class or
person’s identity y, i.e. a category that contains a lot of intra-class variability, and
the second domain represents semantic attributes z (e.g. hairstyle, makeup, pose,
lighting, etc.) related to this variability.

To this end, we propose an approach called DualDis presented in Figure 4.4. On
the left, we show the architectural part of our contribution, using a two-branch
model and disentangling to separate the two information domains. Those do-
mains have classification labels y and z that we want to predict (ŷ, ẑ), along with
a reconstruction x̂ of the input x. In the center of the figure, we describe the sec-
ond part of our approach which is the training process designed to successfully
disentangle the two domains, using adversarial classifiers and multiple loss terms.
On the right, to put our model in perspective, we indicate how some related works
can be reproduced using the same kind of architectures with variations in the
losses used as described in Section 4.4.

In this section, we will detail how DualDis is designed to separate the infor-
mation domains and linearize semantic factors. For information separation, each
latent space is connected to an adversarial classifier of the opposite information
domain which learns to find the information that belongs to the wrong domain.
The encoder will then learn to remove this information from the latent space,
making classification impossible and thus filtering only the relevant information.
DualDis is also designed to linearize the labeled factors. We use linear classifiers
that both guide the linearization process and provide us with the linear directions
that are associated with known labeled semantic factors. This allows us to seman-
tically navigate the latent spaces since moving in one of those linear directions
will increase the presence of the associated factor.
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4.3.1 Dual branch Auto-Encoder

We propose an encoder-decoder architecture with a latent space split into two
parts, hy and hz. Each representation is produced by a deep encoder Ey or Ez so
that the features are explicitly separated. These representations are concatenated
into h and fed to a decoder D, producing a reconstruction x̂. Having a decoder
enables image generation and also ensures that the model extracts robust features
(Le et al. 2018) as we have seen in the previous chapters.

While it would be possible to encode all the information in a single latent space,
having two branches encourages the model to encode two complementary kinds
of information (Mathieu et al. 2016; Hadad et al. 2018; Yang Liu et al. 2018). Taking
the example of a face dataset, we want the identity branch (Ey ◦ E) to capture
information related to the identity y with invariance toward other factors of
variation (hairstyle, makeup, pose, etc.); and we want the attribute branch (Ez ◦E)
to model this ignored information, since this branch needs to capture factors of
variation linked to visual attributes z. Having two separate deep encoders Ey
and Ez is key to an effective disentangling, and they should be designed deep
enough to produce “orthogonal” latent representations that encode very different
information. Since the low-level features represented by the first convolutional
layers are likely common to both domains, we use a single common encoder E
before specializing the information in our two branches.

This auto-encoding backbone is trained using a simple Mean-Squared Error
(MSE), Lrec = ||x−x̂||22. Using a different loss to train the decoder could be possible,
like using a GAN discriminator (Goodfellow et al. 2014) or a perceptual loss
(Dosovitskiy and Brox 2016) which are both known to produce sharper images.
However, we considered that it was out of the scope of this work since we are not
interested in producing high-quality generations but focus on the disentangling
ability of the model.

4.3.2 Modeling factors of variation

We want our architecture to produce robust representations of each information
domain as well as provide classification predictions. To that end, we have seen in
the previous chapter that having a two-branch encoder can improve classification
performance by encouraging representations hy and hz to be invariant toward
intra-class variations. To the encoders, we add linear classifiers Wy and Wz, one
for each branch, that predicts respectively ŷ and ẑ. These classifiers guide the
auto-encoding backbone to organize the information extracted for reconstruction
in the right branch between our two latent spaces hy and hz so that it allows
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predicting the class/identity and the attributes. To train those classifiers, we use
regular classification losses. We have:

ŷ = softmax(Wyhy) , ẑ = sigmoid(Wzhz) ; (4.3)

Ly = CrossEntropy(y, ŷ) , Lz = BinaryCrossEntropy(z, ẑ) . (4.4)

Linearization of the factors for manipulation. In addition, the design of those
classifiers is chosen in order to encourage the linearization of the representations
of labeled factors of variation. By choosing linear classifier, the presence of the ith

attribute zi in an input image is estimated by a linear predictor:

ẑi = sigmoid(wzi · hz) with wzi the ith row of the matrix Wz . (4.5)

This means that we can manipulate the latent space to artificially increase or
decrease the presence of this attribute by moving hz in the direction of this vector:

h′z = hz ± εw>zi . (4.6)

4.3.3 Disentangling information domains and factors of varia-
tion

We also want our architecture to explicitly disentangle the two domains. To this
end, we add classifiers Cy(hz) and Cz(hy) that predict the target of the opposite
domain (y from hz and vice versa). We call those classifiers “adversarial” since
their role is to find information that should not be present, e.g. information about
attributes encoded in the identity branch. By training a classifier to find this
information, we are then able to make the encoder remove it. Those classifiers are
designed as non-linear multi-layer classifiers to find the information even if it is
not linearly separable in the latent space.

4.3.3.1 Global loss and adversarial training

To train our model, we rely on adversarial training, with parts of the model
that have different training losses but are connected. Concretely, it means that
the parameters of the model are not all updated using the same losses, as is
represented in Figure 4.4.

We define θmain as the weights of the main model, i.e. the model that is eventually
used at the end of the training, which includes the encoders, the decoder and the
normal classifiers: E,Ey, Ez, D,Wy,Wz. We also define θdisc as the weights of the
two adversarial classifiers Cy and Cz (similarly to GANs denomination).
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To train the model, we have two losses: main loss Lmain describes the expected
behavior of the model and is propagated in the encoders, decoder and classifiers
W. The discriminative loss Ldisc is used to train the adversarial classifiers Cy and Cz
only; helping the main loss by searching for information that should be removed.

Lmain = λrLrec + λyLy + λzLz + λa,yLadv,y + λa,zLadv,z + λoLorth , (4.7)

Ldisc = λd,yLdisc,y + λd,zLdisc,z . (4.8)

Each loss term in these global losses can be weighted using various λ to control
their importance.

To optimize our model, we apply a gradient descent using backpropagation,
which for SGD writes:

θmain ← θmain − η∇θmain
Lmain , (4.9)

θdisc ← θdisc − η∇θdiscLdisc . (4.10)

Interestingly, we can see that to compute the gradients, we apply backpropagation
to layers that are not necessarily updated by the optimizer, which is unusual in
DL outside of adversarial learning.

4.3.3.2 Disentangling information domains

To effectively remove information where it should not be encoded, we thus
start by defining discriminative loss terms Ldisc,y and Ldisc,z, applied to Cy and
Cz, to make the adversarial classifiers achieve the correct classification of their
target. These will make the adversarial classifiers model the information we want
to remove.

We then define the adversarial terms Ladv,y and Ladv,z in the main loss to make
the encoders produce features that prevent the classifiers C to achieve their goal
and ideally have the accuracy of a random classifier. This means that the encoders
will need to remove the information that is used by the classifiers C, which is
unwanted. This goal can be expressed in different possible ways:

• maxH[ŷadv]

By maximizing the entropy of the adversarial prediction, which is optimal
when the classifier assigns the same probability to all the classes.

• min CrossEntropy(pprior(ŷadv), ŷadv)

By minimizing the cross-entropy with a prior distribution pprior(ŷadv) for which
we have different options: a uniform distribution among the classes (which has
the same optimum as maxH[ŷadv] but different gradients); a distribution that
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matches the prior distribution of the classes in the dataset if it is unbalanced;
etc.

• max CrossEntropy(y, ŷadv)

By simply encouraging the prediction of the “inverse” of the ground truth,
i.e. maximizing the cross-entropy with the ground truth. While being less
mathematically correct since it means the optimum would be to predict a
probability score of the ground truth class lower than the other classes, we
found this solution to be the most effective, probably because it has better
gradients and since in practice it is actually never able to reach the point
where the probability of the real class is lower than the others.

Thus, we choose to use the following loss terms:

Ldisc,y = CrossEntropy(y, ŷadv) , (4.11)

Ladv,y = −CrossEntropy(y, ŷadv) ; (4.12)

Ldisc,z = BinaryCrossEntropy(z, ẑadv) , (4.13)

Ladv,z = BinaryCrossEntropy(1− z, ẑadv) . (4.14)

4.3.3.3 Intra-branch disentangling

Using adversarial classifiers, we disentangled class and attribute features. We
now propose to disentangle the different labeled factors of variation by making the
rows of the matrix Wz orthogonal, meaning each factor detector is independent
of the others. We do so by minimizing the dot products of the pairs of normalized
row vectors w′zi of Wz:

Lorth =
∑
i

∑
j

w′ziw
′>
zj

with w′zi =
wzi

||wzi ||2
. (4.15)

4.4 Discussion

Let us now discuss our DualDis approach in regard to related works and exist-
ing state-of-the-art models of supervised disentangling. Interestingly, as shown
in Figure 4.4 (right), several existing state-of-the-art disentangling models can be
reproduced and evaluated using the same architecture and loss components. By
disabling parts of our architecture and/or with small additions and variations,
we can thus produce a complete and fair comparison to them. We assign letters
(A) to (E) to those models as we will refer to them in the experiments.
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Class-only adversarial disentangling (E). First, by starting with DualDis and
removing losses related to the attribute labels z, we obtain model (E) that learns
to predict the class y in one branch and dispel the information related to y in the
other. This is notably the case for the recent models by Hadad et al. (2018), Yu Liu
et al. (2018), and Klys et al. (2018).

The advantage compared to DualDis is that fewer annotations are required.
However, this means that the disentangling is asymmetrical: while identity-related
information is constrained, the attribute-related information remains unconstrai-
ned and can thus be encoded freely in hy and hz and remain entangled. It is there-
fore very difficult to ensure proper separation of the two information domains
with this asymmetry. Besides, without labels z, we lack a way to semantically
navigate in the latent space hz. This is why we choose strong supervision with
labels for both y and z.

Symmetric latent adversarial disentangling (D). To solve this asymmetry, UAI
(Jaiswal et al. 2018) proposes a new adversarial training used as model (D), still
without attribute labels. In their model, adversarial predictors Uy and Uz replace
Cy and Cz. Those predictors learn to predict ĥy from hz and vice versa, i.e. the
opposite latent space. The encoders try to fool those predictors and make them fail
at their prediction. Because no labels are needed for this task, this can be trained
in an unsupervised manner. Probably due to the complexity of the predictor’s
task, all the modules (encoders, predictors, decoder) in Jaiswal et al. (2018) are
linear.

This idea has the advantage of being symmetrical even without attribute labels,
but it only “orthogonalizes” hy and hz, making them independent of each other,
but without guarantee of semantic disentangling. In particular, nothing ensures
attribute information is removed from hy, since for it to happen, the model would
need to encoded attribute information in hz without labels. In addition, identity
information can even remain in hz if absent from hy. This is why we choose an
explicit disentangling of labeled information.

Attribute-conditional decoder (C). Some models like Fader Networks (Lam-
ple et al. 2017), IcGAN (Perarnau et al. 2016), or MTAN (Yang Liu et al. 2018)
(model (C)) propose to use a conditional generator approach, which a single latent
space hy to encode the identity and a decoder fed with a binary vector z: D(hy, z).
MTAN in particular applies a classification loss on y and an adversarial loss on z

to remove the attribute information from hy.

Simplifying the disentangling since z is by definition purely attribute informa-
tion and we only need to remove attribute information from hy, this approach has
other drawbacks. Notably, it makes the strong assumption that all the attribute
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information of a specific image is encoded in the binary vector z, which is unlikely
for complex semantic attributes, like a pair of glasses, a hat, facial expression, age,
etc. This means that attributes information will necessarily leak in hy, and that our
control on the attribute is very simple since we cant only control a binary value.
This is why we prefer to use two latent spaces to let the model encode complex
information in both information domains.

Multi-Task Learning (A&B). Finally, while not explicitly designed for it, two-
branch multi-task models could also lead to disentangling thanks to the special-
ization induced by classification, even without adversarial training. In particular,
we consider two possible setups. First, a model that learns to classify ŷ and ẑ like
UberNet (Kokkinos 2017) (model (A)). And second, a simple variation of Hybrid-
Net (model (B)), that both learn to classify ŷ while encoding additional information
in hz, and simultaneously learn to reconstruct to extract additional information
not present explicitly in the labels. Compared to those methods, we choose to
integrate an explicit disentangling process to effectively separate the information
domains.

4.5 DualDis evaluation

We now propose to validate the effectiveness of our DualDis approach to ef-
ficiently disentangle two information domains. In this section, we describe the
datasets used for this as well as the evaluation metrics that we use to quantita-
tively measure the disentangling and linearization performance of the models.
We evaluate DualDis and compare it to state-of-the-art techniques previously
described.

In Section 4.6, we present and evaluate own DualDis can be adapted to a
semi-supervised context. In Section 4.7, we perform a qualitative evaluation of
the possibility to perform image editing and use this capability to generate new
images for Data Augmentation (DA).

4.5.1 Datasets and architecture

For the experiments, we use three datasets (cf. Table 4.1) preprocessed to fit our
training protocol:

• CelebA (Z. Liu et al. 2015) is a face dataset of celebrities, for which we use
60k images with 2000 identities y and 40 attributes z (hairstyle, makeup,
expression, etc.).
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Dataset Image size # Train # Test |Y| |Z| Samples

CelebA 256×256 48,000 12,000 2,000 40

Yale-B 64×64 1,200 1,200 38 14

NORB 64×64 24,000 24,000 5 8

Table 4.1. – Overview of the datasets used. We report the size of the images,
the number of samples used for training and testing, the number of
classes |Y| in y and the number of attributes |Z| in z.

• Yale-B (Georghiades et al. 2001) is also a face dataset of 2.4k images with
38 identities y and 14 attributes z (light source position). More precisely,
each of the 38 persons has been photographed once with 64 possible lighting
combinations which we grouped into 14 categories of lightning.

• NORB (LeCun et al. 2004) is a dataset of 3D object renderings. 50 objects are
rendered with different camera position and lighting type (960 combinations
per object), making a dataset of 48k images with 5 categories y (10 objects per
category) and 8 attributes y (camera position and lighting, created by us by
grouping similar angles and lightings).

For CelebA and Yale-B, we create a test set by using respectively 20% and 50%
of the images of each class, regardless of the attributes. For NORB, the test set
is provided and consists of 25 of the 50 3D objects which represent 50% of the
images. The validation set represents 20% of the training set, defined with the
same process, and is used for the few hyper-parameters tests we do.

For the architecture, we use simple Convolutional Neural Networks (ConvNets)
inspired by exiting models used in the literature. Encoders and decoders are
composed of convolutional layers interlaced with Batch Normalization (BN) and
ReLU activations. Spatial information is aggregated using strided convolutions in
the encoders, and is recreated in the decoded with nearest neighbor upsampling.
The depth of the encoders and decoders depends on the dataset: the encoders
range from 6 to 8 layers, decoders between 7 and 13 layers and latent spaces hy
and hz are 80 to 196 units.

Finally, we can note that our model is not really sensitive to the hyperparameters
λ, which were set with logical values (depending on the importance of the loss
terms) and with validation tests. Also, the adversarial training does not present
particular instabilities like can be encountered with GANs, since we did not had
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issues during our experiments. The exact details about the data preprocessing,
the architectures used and the training information is provided in Appendix C.

4.5.2 Quantitative evaluation

We now study the ability of DualDis to successfully disentangle and linearize
the factors of variation of the two information domains (class/identity and at-
tributes) in the latent spaces. To do so, we compare our model to baselines de-
scribed in Section 4.4 that are reproduced similarly to an ablation study by de-
activating components of our model or by making small changes, cf. Figure 4.4.
We can therefore compare our model to fair reimplementations of the state of the
art. We also evaluate variants of the baselines where labels are available for both
information domains, like for DualDis. All models we train have the same archi-
tecture (in E, Ey, etc.) and the same hyperparameters’ values whenever those are
common between models. Only UAI (Jaiswal et al. 2018) has a slightly different
architecture since it requires shallow encoders Ey and Ez. 1

Evaluation metrics. First, to evaluate the quality of the representations, we
measure the accuracy of the linear classifiers Wy and Wz, which indicates both if
the information regarding the labels is correctly extracted and if this information
has been linearized to allow its manipulation. Second, to evaluate the disentan-
gling of the information domains, we measure the error rate (100 - accuracy) of
the adversarial classifiers Cy and Cz, which measures how much of the “unde-
sired” information has been removed through disentangling. 2 Of course, because
a random classifier would not have an error rate of 100%, this metric cannot reach
this value. Finally, since both these metrics increase when they improve on our
objective, we summarize the overall quality of a model with an aggregated metric
that averages those 4 values for a quicker interpretation of the results.

Note that the disentangling metric cannot go higher than a certain value that
depends on the dataset. For example, if we want to remove information about a
binary attribute z present for 80% of the examples, with a perfect disentangling,
Cz would predict this attribute randomly 80% of the time, would have an accuracy
of 80% and thus a disentangling metric of 20%. The best disentangling metric
value is the error rate of a random classifier considering the distribution of the
dataset. We indicate this value in the results for each dataset.

1. When using this architecture with shallow encoders with the other methods, we obtain the
same trends as the ones we report, only with a small degradation to all the models.

2. For models that do not include classifiers C, we add and train them to obtain disentangling
metrics, without impacting the behavior of the rest of the model, cf. details in the appendix.
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Labels Aggr. Accuracy Disentangling
Model used metric hy→y hz→z hz→yadv hy→zadv

C
el

eb
A

Dataset prior 99.5% 19.5%
(A) Multi-task classif. y, z 61.1 77.6% 91.8% 65.5% 9.5%
(B) HybridNet-like y 65.1 73.0% 82.4% 95.5% 9.4%
(B’) HybridNet-like + attr y, z 65.2 72.7% 90.1% 88.5% 9.5%
(C) MTAN y, z, zeval – 68.9% – – 13.8%
(D) UAI adv. loss y 63.7 67.9% 80.3% 97.3% 9.3%
(D’) UAI adv. loss + attr y, z 65.0 68.0% 89.4% 92.9% 9.5%
(E) Adv. on y only y 64.7 69.2% 83.6% 96.4% 9.6%

DualDis y, z 68.0 71.1% 88.6% 97.3% 14.9%

Ya
le

-B

Dataset prior 97.4% 92.9%
(A) Multi-task classif. y, z 81.5 98.5% 97.2% 85.3% 45.1%
(B) HybridNet-like y 65.3 97.6% 93.7% 23.3% 46.5%
(B’) HybridNet-like + attr y, z 80.5 99.0% 96.9% 80.0% 46.1%
(C) MTAN y, z, zeval – 98.4% – – 70.3%
(D) UAI adv. loss y 60.0 98.6% 65.5% 28.1% 48.0%
(D’) UAI adv. loss + attr y, z 65.1 96.1% 95.8% 44.4% 24.1%
(E) Adv. on y only y 79.8 98.3% 84.1% 92.5% 44.4%

DualDis y, z 92.0 98.6% 97.3% 98.8% 73.4%

N
O

R
B

Dataset prior 80.0% 31.3%
(A) Multi-task classif. y, z 53.7 93.0% 84.2% 13.5% 24.0%
(B) HybridNet-like y 51.1 93.3% 76.8% 12.2% 22.1%
(B’) HybridNet-like + attr y, z 52.5 92.9% 84.1% 10.7% 22.2%
(C) MTAN y, z, zeval – 92.2% – – 30.5%
(D) UAI adv. loss y 51.8 92.8% 76.0% 13.7% 24.7%
(D’) UAI adv. loss + attr y, z 52.5 93.2% 82.8% 8.0% 26.0%
(E) Adv. on y only y 67.3 92.2% 76.9% 78.9% 21.1%

DualDis y, z 72.3 93.5% 84.5% 80.7% 30.5%

Table 4.2. – Comparison to state-of-the-art models. We indicate the labels nec-
essary in train (y, z) and to use the model (zeval). We measure the
accuracy of the classifiers Wy(hy) and Wz(hz) to predict the classes
and attributes; and the disentangling quality as the error rate (100 -
accuracy) of the classifiers Cy(hz) and Cz(hy) indicating if the infor-
mation was correctly removed. Our aggregated metric is an average of
the four scores to indicate the overall performance. For all the scores,
higher is better. The dataset prior scores show the highest disentangling
score that we can obtain considering the prior on the distribution of
the dataset.
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Comparison to the state of the art. Results are presented in Table 4.2 with
baselines described in Section 4.4 labeled (A) to (E). DualDis provides the best
performances on the three datasets with a gain of 3 to 10 pts in the aggregated
metric compared to the best baseline. Overall, we obtain strong disentangling
results while having similar or better classification accuracies.

Looking at the baselines, first, the multi-task classifier (A) (Kokkinos 2017) pro-
vides good accuracies but completely fails at disentangling the information. This
is probably because classification is made easier by not needing to compromise
with reconstruction, that is not used in this model, also making generation im-
possible. Adding reconstruction gives (B & B’), which regularizes the model and
slightly helps the disentangling metrics by grounding latent features to specific
visual patterns in the reconstruction. In comparison, DualDis provides an explicit
disentangling mechanism to greatly improve disentangling metrics.

MTAN (C) (Yang Liu et al. 2018), using a conditional generation approach,
produces good results but uses a single latent space hy and thus cannot be directly
compared to DualDis. In particular, it is complicated to use in a real setup because
it always requires labels z as inputs of its decoder to be used, even in “test” (here
meaning the use of the model after training). Besides, this constraint of encoding
the attribute information in a binary vector causes lower quality reconstructions
because this information cannot be represented in such a compact space.

Finally, we can see that the orthogonalization mechanism applied to latent
representations proposed by UAI (D & D’) only produces weak disentangling
results because of the strong limitations that we discussed. The most competitive
disentangling results are provided by the asymmetrical disentangling of (E) (Yu
Liu et al. 2018), only applied to y. However, as we discussed, because of this
asymmetry, it lacks the ability to correctly remove the attribute information in the
identity space, with a disentangling metric on z that is similar to the results of
models that do not have any disentangling mechanism.

In comparison, we combine reconstruction for generation and features regu-
larization; classification and linearization to improve the semantic quality of the
features; and leverage symmetrical label-guided adversarial disentangling; and ef-
fectively separate the two domains in both latent spaces while having competitive
classification results.

4.6 Semi-Supervised Learning

The main drawback of DualDis is that it requires labels for both information
domains, which can be expensive to annotate and is rarely the case in existing
datasets. As we just saw in the previous section, using labels in both domains is
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Nb. attr. Aggr. Accuracy Disentangling
labels metric hy→y hz→z hz→yadv hy→zadv

400 63.9 65.2% 81.2% 97.7% 11.6%
1000 65.5 68.4% 84.3% 97.4% 11.9%
2000 66.8 71.0% 85.0% 98.4% 12.7%
4000 67.6 72.6% 85.8% 98.3% 13.8%

48000 68.0 71.1% 88.6% 97.3% 14.9%

Table 4.3. – Results of disentangling on CelebA using Semi-Supervised Learn-
ing (SSL) on attribute labels. “48k labels” is the fully supervised
baseline.

critical for an effective disentangling. However, ideally, only a few labeled samples
would be sufficient to guide the disentangling process of DualDis and provide
semantic information on how the information is organized in the latent space.
Thus, to strongly minimize the need for annotations, we propose to explore the
possibility of using Semi-Supervised Learning (SSL) in DualDis. As we saw in
Chapter 3, those methods can efficiently alleviate the need for labeled data with
a relatively low cost. This would relax the constraint of having a fully labeled
dataset for both domains, making the “cost” of applying this idea much lower.

A first and very simple “SSL” strategy is to just ignore unlabeled samples when-
ever the label is necessary for a loss term. To go further and really apply state-
of-the-art SSL method to DualDis, the most relevant solutions are probably the
techniques producing “virtual” targets like Temporal Ensembling (Laine and Aila
2017) or Mean Teacher (Tarvainen and Valpola 2017), or label propagation-based
methods (Iscen et al. 2019). Those methods would provide ground-truth-like vec-
tors that could be used as classification targets whenever needed in the various
loss terms.

We propose some preliminary experiments to investigate the possibility of
obtaining disentangling and linearization of the domains using few attribute
labels on CelebA. Using the same architecture as previously, we applied SSL

first by simply ignoring unlabeled samples when labels were needed, and second
using the more advanced Mean Teacher strategy (Tarvainen and Valpola 2017). We
found, however, only a negligible difference in the results between the two. This is
likely due to a sub-optimal tuning of the hyper-parameters of Mean Teacher which
are very sensitive, as we noticed when working on HybridNet and confirmed by
Oliver et al. (2018).

Even with this simple strategy, we obtain interesting results that we report in
Table 4.3. Interestingly, we can see that even 1000 or 2000 labels – corresponding
to 2 and 4% of the train set size – produce an aggregated score of 65.5 and 66.8,
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which is better than the baselines in Table 4.2 and reasonably close to the model
trained with full supervision. We also confirmed via a qualitative analysis of the
model with 1000 labels that it can produce image edition and we obtained results
visually similar to the ones of the fully supervised model in Figure 4.6. Applying
SSL to DualDis thus looks like a very promising idea.

4.7 Image Editing and Data Augmentation

We now propose to evaluate two possible applications of this architecture pro-
vided by our encoder-decoder architecture and the ability to manipulate its latent
representations: image editing and image generation for Data Augmentation (DA)
on Yale-B.

4.7.1 Semantic image editing

Using the disentangling and linearization abilities of DualDis, we perform
semantic image manipulation by applying linear changes to hz along attribute
directions wzi . As explained in Section 4.3.2, we can add or remove an attribute
like so:

h′z = hz ± εw>zi . (4.16)

In Figure 4.5, we show the visual effect of moving in positive and negative
directions with different magnitudes for different attributes. This shows that we
can finely control the importance of an attribute, increasing or decreasing its
original presence on the image, until the attribute can eventually be considered
removed or added. For example, we can add a small or big smile, choose among
different shades of blonde hair, etc.

For the next visualization in Figure 4.6, we fix a reasonable magnitude threshold
for when an attribute is considered as changed (i.e. added / removed). We then
apply the method used above with this magnitude, in a direction chosen to flip
the ground truth labels of different images for different attributes. Using this, we
show that we can switch the gender, add and remove eyeglasses, hair bangs, etc.
A similar protocol was also used on Yale-B and NORB as shown in Figure 4.7. On
those datasets though, because of the small size and variability in the datasets,
even if the effect mostly remains, it is less clear than on CelebA.

Overall, these two visualizations show that we effectively modeled and lin-
earized attribute information in hz. In order to confirm that we also effectively
separated the two domains, we propose another protocol on CelebA, where we
mix representations of two images and see the resulting reconstruction.
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Input

Female / Male

Eyeglasses

Heavy Makeup

Smiling

Beard

Bangs

Blond Hair

Brown Hair

remove add0

Attribute modification strength

Figure 4.5. – Visualizations of progressive attribute editing on CelebA. We do
so by moving hz with different strength ε and in positive and nega-
tive directions along each vector wzi .
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Figure 4.6. – Visualizations of attribute inversion on CelebA. For each image
k and each attribute i, we modify h

(k)
z along the vector wzi in the

direction opposite to the ground truth label.
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(b) NORB. We change the camera elevation
(from close to the ground to a view from
above), the camera angle around the object
and the intensity of light.

Figure 4.7. – Visualizations of image editing on Yale-B and NORB.

x
(id)

x
(attr)

DualDis

Baseline
without z

Generations from !"
#$
, !&

'(() produced by DualDis and the baseline

Initial images. x
(id) : Identity source / x(attr) : Attribute source

Figure 4.8. – Visualizations of the information separation through attribute
and identity mix. We show reconstructions using identity hy from
an image x(id) and attributes hz from an image x(attr). We do this with
our model and a baseline that do not use attribute labels for training
(Yu Liu et al. 2018). We see that our model does use attributes from
image x(attr) while keeping the identity of image x(id), whereas the
baseline did not manage to remove attribute information from hy
and still uses attributes of image x(id).
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More precisely, we propose to use hy from a first image noted x(id) and hz
from a second image x(attr), and reconstruct an image from those. We do this for
DualDis and the baseline not using attributes (E) (Hadad et al. 2018; Yu Liu et al.
2018). Results are presented in Figure 4.8 and show that our model is able to mix
the identity of the first image and the attributes of the second, while the baseline
could not correctly separate the two types of information and uses attributes from
the first image. For example, for the first pair, we keep the original identity but
change the smile and hair color; for the second, we change the gender and glasses;
for the third, we add glasses, etc. This confirms that our symmetrical disentangling
on both domains manage to separate the two types of information that otherwise
remain entangled for a complex dataset like CelebA.

4.7.2 Image generation for Data Augmentation

Finally, we propose to use DualDis for semantic guided Data Augmentation
(DA). Classical DA usually consists in producing variants of an existing image
by applying low-level changes to it, like mirroring, translation, changes in the
color space, etc. While efficient as a regularizer, this approach is limited since no
new semantic information is added. Using DualDis, we are able to manipulate
the semantic content of an image, making it possible to, for example, change the
attributes z of an image while keeping the class y fixed, which produces a new
image for the class y with new semantic information.

We propose to apply this method to Yale-B since is particularly well adapted to
illustrate this idea. Indeed, Yale-B contains different lighting for each identity. So
if we use a restricted number Ninit of images in train, each class contains only a
small portion of the possible lighting variations for each identity. Using DualDis,
we propose to generate the missing variants.

To do so, we first train a DualDis model with Ninit training images. Based on
the linearization and editing properties of our model, we generate variations in
attributes z (similarly to Figure 4.7a) for each training image to obtain new im-
ages with the same identity but a new and known attribute label z′. For each
identity, we generate Ngen new images, obtaining images with attributes missing
in the original train set as well as increasing the number of instances of exist-
ing attributes for robustness. This provides a more representative dataset of the
variations in attributes for each identity.

We apply this procedure for different values of Ninit and Ngen. We then learn a
classifier C that has the architecture C = Wy ◦ Ey ◦ E on a train set that contains
original and generated images and evaluates its accuracy on the test set. The
results are reported in Table 4.4. Adding generated images to the train set with
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Initial Nb. generated images per class

train size 0 10 20 30 60

480 78.9% 79.3% 80.1% 81.6% 82.8%
360 69.1% 70.5% 72.6% 73.1% 75.6%
240 48.9% 51.8% 55.5% 56.8% 58.6%

Table 4.4. – Accuracy of identity prediction on Yale-B using generated images
as Data Augmentation (DA).

new attribute variations for each identity provides a gain in our 3 setups. When
the initial train set is small, the gain is larger, with a gain of almost 10 pts between
the baseline without DA and a DA of 60 images per class. Adding more than 60

images per class does not yield a significant improvement.

4.8 Conclusion

In this chapter, we presented DualDis, a disentangling model designed to ef-
fectively separate two information domains using a two-branch architecture, one
branch for each domain. This is made possible by the use of classifiers and adver-
sarial training in order to organize the information and guide the training process.
Thanks to this, we obtain improved classification and disentangling results on
CelebA, Yale-B and NORB while linearizing and modeling semantic factors of
variation. Using our structured latent space, we perform image editing, mak-
ing it possible to change the attributes of an image. We also carry out semantic
Data Augmentation (DA) on Yale-B and obtain important identity classification
improvements.

For future work, an interesting direction would be to go further on the applica-
tion of Semi-Supervised Learning (SSL) to DualDis. Our preliminary experiments
on this subject indeed show interesting results, but further investigations on ap-
plying efficient state-of-the-art SSL methods could provide much better results. In
addition, it would be interesting to bring this model closer to the techniques used
in generative models. This could provide better quality generations which in turn
could strongly improve the results in semantic Data Augmentation (DA). Another
interesting idea would be to allow our model to generate new images from noise,
completely bridging the gap with generative models and enabling both image
generation and latent space manipulations.
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C O N C L U S I O N

We first summarize the contributions that we propose in this thesis before
discussing interesting directions for future work.

5.1 Summary of Contributions

In this thesis, we work on improving the quality of the latent spaces of deep
Convolutional Neural Networks (ConvNets) in three different contexts: regular-
ization, Semi-Supervised Learning (SSL) and disentangling.

Regularizing through intra-class invariance. Because powerful ConvNets are
easily subject to overfitting, we propose SHADE in Chapter 2, a novel regularization
method that encourages intra-class invariance in the representations. While the
idea of adding invariance is not new, the novelty of our contribution lies in the
way to enforce it. Indeed, we show that it is possible to use conditional entropy
H(H | Y ) as a measure of the intra-class invariance, which does not limit the
types of variance that are targeted. We then derive a tractable and differentiable
criterion from it. Applying this SHADE criterion to many standard Deep Neural
Network (DNN) architectures, we are able to outperform other common forms
of regularization and improve classification results on CIFAR-10 and ImageNet.
We also demonstrate that SHADE has the ability to significantly outperform the
baseline on small datasets. This first contribution is a step in the direction of
making ConvNets usable in more practical cases, that we continue to explore in
the following chapter with SSL.

Information separation for Semi-Supervised Learning (SSL). While SHADE ad-
dress the problem of scarce labeled data when overfitting becomes a preponderant
issue, we then propose to use additional inexpensive unlabeled data to further
make those models usable in more cases. We thus address Semi-Supervised
Learning (SSL) in Chapter 3 to greatly improve the quality of a ConvNet. In this
context, we propose a two-branch architecture called HybridNet, accompanied
by an adapted training loss, that separates the information in two complemen-
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tary latent spaces. We show that this novel idea was able to efficiently address a
conflict between classification and reconstruction that is detrimental to their coop-
eration, which is not the case with HybridNet. We demonstrate that HybridNet is
able to integrate existing stability techniques and produce state-of-the-art results
with large ResNet architectures on standard SSL datasets, obtaining impressive
performances with very few labeled samples. HybridNet is thus an interesting
idea to make it possible to train large ConvNets in contexts where labeled data is
particularly expensive such as the medical domain.

Disentangling of two information domains. Finally, pursuing our idea of sep-
arating the information in complementary latent spaces, we also address the
problem of producing highly semantic disentangled representations in Chapter 4.
To that end, we propose DualDis, an approach that allows to effectively separate
and linearize two labeled and complementary information domains in two la-
tent spaces. This study allows to underline some limitations of approaches using
asymmetrical labeling of the domains (i.e. only one information domain having
labels) and shows that DualDis is able to produce interesting domain-specific rep-
resentations that could then be used for other tasks such as information retrieval.
Using the linearization properties of DualDis, it is possible to control the presence
of the semantic attributes in the representation of an image, and thus perform
semantic image editing. We show that this property can be leveraged for semantic
data augmentation, producing new semantic variations of existing images.

5.2 Perspectives for Future Work

Let us now discuss interesting directions that could be addressed in future
work in relation to our contributions.

Handling data from different domains with domain adaptation

In this thesis, we had a particular focus on making ConvNets usable in more
practical cases by working on regularization and SSL, reducing the need for large
and expensive datasets. This goal can be pushed further by designing models that
can handle data coming from different domains, which is called domain adaptation.

With unsupervised domain adaptation (Ben-David et al. 2010), the goal is to
transfer knowledge from a labeled source dataset to an unlabeled target dataset
of interest, both sharing the same labels but having different image distributions.
The goal being to leverage the knowledge of an existing or inexpensive (e.g.
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synthetic) source dataset instead of getting expensive annotations for the target
dataset. This problem is of particular interest nowadays for applications such as
autonomous driving, where each city and country have different styles of cars,
roadsigns, architecture, weather, etc. To address domain adaptation, ideas from
both HybridNet and DualDis could be used.

Domain adaptation through information separation. Indeed, a first possible
solution for domain adaptation is to remove the information that is domain de-
pendent and keep only the domain independent information. There is thus a clear
link with the separation of discriminative and non-discriminative information in
HybridNet. A solution in this direction has been proposed by Bousmalis et al.
(2016), using three encoders, one that is common to both domains and should
extract domain invariant features (used for classification), and one for each do-
main for domain specific features. The features are then merged and decoded for
reconstruction. This shows that the idea of HybridNet to produce complementary
reconstructions could be exploited further for domain adaptation. In addition to
HybridNet, it would mostly require to design techniques to ensure the structuring
of domain specific and domain agnostic information in the latent spaces, through
adversarial training for example, and work on the architecture and merge strategy
for this specific context.

Domain adaptation through generation. Another recent approach of domain
adaptation consists in transforming the source images to target-like images, effec-
tively removing the domain shift. This allows to obtain a classifier adapted to the
target domain, trained on those labeled target-like images. Following this idea,
an extension of DualDis could help, offering the possibility of editing the image
from one domain to the other. For example, Chang et al. (2019) recently proposed
to disentangle domain invariant and domain specific features in order to perform
this image editing. This approach is based on assumptions that the changes must
be performed at the texture level without changing the structure of the image,
which is not always the case. An extension of DualDis using some labels about
domain specific factors could for example be developed to follow this idea.

Bridging the gap between discriminative and generative models

An important motivation during this thesis was to develop models that could
bridge the gap between discriminative and generative models. One the one hand,
discriminative models aim at extracting discriminative and relevant patterns for a
semantic task y from input data x (i.e. model p(y | x)). On the other hand, recent
generative models try to model the distribution of the data with no or small rela-
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tion with semantic information (i.e. model p(x) or p(x,y)). With HybridNet and
DualDis, we proposed models that are able to, at the same time, model all the
information about the data and provide powerful discriminative and semantic
features. However, some work still needs to be done to reach this goal. The objec-
tive would be to have a model that transforms an input x into a representation
h in which many semantic factors y can be analyzed, interpreted, manipulated;
that can be decoded back into an image x̂; and that also allows to generate new
images x̃ from scratch with fine control over the semantic factors. We propose to
go over some possible directions for this.

Semi-Supervised Learning (SSL) of semantic factors. As studied in DualDis,
we show that using labels related to semantic factors is important and has a
great advantage over fully unsupervised models. However, to actually make those
models usable in a large variety of cases, we believe that integrating SSL in such
models is a key direction. Indeed, the ideal situation would be to have a model that
can learn to capture semantic factors of a dataset with only a few examples of each
factor. This way, real world datasets that usually have many semantic factors could
be semantically represented by this hybrid discriminative/generative model at a
reasonable labeling expense. We showed preliminary results using SSL in DualDis
and we believe this should be further explored to make such a model viable.

Modeling factors diversity in separate subspaces. We also believe that it
would be important to model the internal diversity of each semantic factor. Indeed,
simple modelings of semantic factors consider they are represented by a binary
value (e.g. Perarnau et al. 2016) or a real value (e.g. Lample et al. 2017). Many
semantic factors however have a large variability (e.g. all the possible hairstyles,
makeup styles, etc. that exist) that cannot be realistically represented in such lim-
ited spaces. With DualDis, we relieve this constraint and simply require that they
be linearly separable, however, we cannot explore their internal variability. Klys
et al. (2018) proposes the idea of representing each factors in delimited latent
subspaces, but only show limited experiments on this idea. We thus believe this
kind of work should be pursued.

Semantic generation and reversible architectures. Finally, the question of find-
ing models that are both able to represent the information and produce sharp
reconstructions and generations remains open. In DualDis, we did not address
this problem, however, one goal of a good discriminative and generative model
would be to eventually produce clear images (e.g. Karras et al. 2019). To achieve
this, apart from the usual GAN and perceptual losses that are known to help in
this matter, reversible models (Gomez et al. 2017; Jacobsen et al. 2018) are also an
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interesting direction to address such an issue. Those models are, by design, able
to encode and decode an image without loss of information. However, because
of the particular layers they use to make this possible, manipulation in the latent
information is made much more difficult. Some recent research shows promising
results in this direction, such as Kingma and Dhariwal (2018) and Lucas et al.
(2019). We believe this idea should be pursued and could be an important part
of this goal of building a powerful model that could address both discriminative
and generative tasks.
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In this appendix, we first provide details about the development of SHADE that
were summarized in Chapter 2, and provide results of additional experiments
conducted to validate the hypotheses made during this development.

A.1 Detail on the development of SHADE

In this section, we provide more details about the development of SHADE
described in Section 2.3, from the original idea of minimizing the entropyH(Y | Y )

to the final loss.

A.1.1 Unit-wise Entropy Regularizer

Layer-wise regularization. A Deep Neural Network (DNN) is composed of a
number L of layers that transform sequentially the input. Each one can be seen as
an intermediate representation variable, noted H` for layer `, that is determined
by the output of the previous layer and a set of parameters w`. Each layer filters
out a certain part of the information from the initial input. Thus, from the data
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processing inequality in Cover and Thomas (1991) can be derived the following
inequalities for any layer `:

H(H` | Y ) ≤ H(H`−1 | Y ) ≤ · · · ≤ H(H1 | Y ) ≤ H(X | Y ). (A.1)

This shows that each layer can only remove some entropy from the previous
layer. What we want is to encourage the decrease in entropy. Thus, and following
the recommendation of Tishby and Zaslavsky (2015), we apply our regularization
to all the layers, using a layer-wise criterion H(H` | Y ), and producing a global
criterion to minimize:

Ωlayers =
L∑
`=1

H(H` | Y ). (A.2)

Unit-wise regularization. Examining one layer `, its representation variable
is a random vector of D` coordinates H`,i: H` = [H`,1, . . . , H`,D`

]>. The upper
bound 1 H(H` | Y ) ≤

∑D`

i=1H(H`,i | Y ) enables to define a unit-wise criterion
that SHAnnon DEcay (SHADE) seeks to minimize. For each unit i of every layer
` we design a loss ωunit(H`,i | Y ) = H(H`,i | Y ) that will be part of the global
regularization loss:

Ωlayers ≤ Ωunits =
L∑
l=1

D∑̀
i=1

H(H`,i | Y )︸ ︷︷ ︸
ωunit(H`,i|Y )

. (A.3)

Later in the chapter, we use the notation H instead of H`,i for simplicity since
the coordinates are all considered independently to define our criterion based on
ωunit(H`,i | Y ).

A.1.2 Estimating Conditional Entropy with a Latent Code

In this section, we describe how to define a loss based on the measure H(H |
Y ) with H being one coordinate variable of one layer. Defining this loss is not
obvious as the gradient of H(H | Y ) with respect to the layer’s parameters may
be computationally intractable. H has an unknown distribution and without
modeling it properly it is not possible to compute H(H | Y ) precisely for the
following reasons.

Since H(H | Y ) =
∑Ncls

k=1 p(Y )H(H | Yk) it is necessary to compute Ncls different
entropies H(H | Yk). This means that, given a batch, the number of samples used

1. This upper bound is well justified in deep learning as the neurons of a layer tend to be more
and more independent of each other as we go deeper within the network.
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to estimate one of these entropies is divided by Ncls on average which becomes
particularly problematic when dealing with a large number of classes such as
the 1,000 classes of ImageNet. Furthermore, entropy estimators are extremely
inaccurate considering the number of samples in a batch. For example, LME
estimators of entropy described by Paninski (2003) converge in O((logK)2/K) for K
samples. Finally, most estimators such as LME require discretizing the space in
order to approximate the distribution via a histogram. This raises issues on the
bins definition considering that the variable distribution is unknown and varies
during the training in addition to the fact that having a histogram for each neuron
of the model is computationally and memory consuming.

To tackle these drawbacks we investigate the two following workarounds: the
introduction of a binary latent representation that enables to use more examples to
estimate the entropy; and a bound on the entropy of the variable by an increasing
function of its variance to avoid the issue of entropy estimation with a histogram
and make the computation tractable and scalable.

Binary latent code. First, inspecting a neuron H prior to the non-linearity, the
ReLU activation makes it act as a detector, returning a signal when a certain pattern
is present on the input. If the pattern is absent the signal is zero, otherwise, it
quantifies the resemblance with it. We therefore propose to associate a binomial
variable Z to each unit variable H (before ReLU). This variable Z indicates if a
particular pattern is present on the input (Z = 1 when H � 0) or not (Z = 0 when
H � 0). It acts like a latent code in variational models (e.g. Kingma and Welling
2013) or in generative models (e.g. X. Chen et al. 2016). In our implementation,
we chose a binomial distribution p(Z = 1 | H) = sigmoid(H) that matches this
intuition.

Furthermore, it is very likely that most intermediate features of a DNN can take
similar values for inputs of different classes – this is especially true for low-level
features. The semantic information provided by a feature is thus more about
a particular pattern than about the class itself. Only the association of features
allows determining the class. So Z represents a semantically meaningful factor
about the class Y and from which the input X is generated. The feature value
H is then a quantification of the possibility for this semantic attribute Z to be
present in the input or not.

We assume the Markov chain Y → Z → X → H . During the training, the
distribution of H varies in order to get as close as possible to a sufficient statistic
of X for Y (see definition by Cover and Thomas 1991). Therefore, we expect Z to
be such that H draws near a sufficient statistic of Z for Y as well. By assuming
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the sufficient statistic relation I(H, Y ) = I(H,Z) we get the equivalent equality
H(H | Y ) = H(H | Z), and finally obtain:

ωunit(H | Y ) = H(H | Y ) = H(H | Z) =
∑

z∈{0,1}

p(z)H(H | Z = z). (A.4)

This modeling of Z as a binomial variable (one for each unit) has the advantage
of enabling good estimators of conditional entropy since we only divide the batch
into two sets for the estimation (z = 0 and 1) regardless of the number of classes.

Variance bound. Using a binomial latent code allows computing fewer entropy
estimates to obtain the global conditional entropy, thus increasing the sample
size used for each entropy estimation. Unfortunately, it does not solve the bin
definition issue. To address this, we propose to use the following bound on
H(H | Z), that does not require the definition of bins:

H(H | Z) ≤ 1

2
ln
(
2πeVar(H | Z)

)
. (A.5)

This bound holds for any continuous distributions H and there is equality if the
distribution is Gaussian. For many other distributions such as the exponential one,
the entropy is also equal to an increasing function of the variance. In addition, one
main advantage is that variance estimators are much more robust than entropy
estimators, converging in O(1/K) for K samples instead of O(log(K)2/K).

Finally, the ln function being one-to-one and increasing, we only keep the sim-
pler term Var(H | Z) to design our final loss:

ΩSHADE =
L∑
`=1

D∑̀
i=1

∑
z∈{0,1}

p(Z`,i = z | H)Var(H | Z`,i = z). (A.6)

In next section, we detail the definition of the differentiable loss using Var(H |
Z) as a criterion computed on a mini-batch.
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Algorithm A.1 Moving average updates: for z ∈ {0, 1}, pz estimates p(Z = z) and
µz estimates E(H | Z = z)

1: Initialize: µ0 = −1, µ1 = 1, p0 = p1 = 0.5, λ = 0.8
2: for each mini-batch {h(k), k ∈ 1..K} do
3: for z ∈ {0, 1} do
4: pz ← λpz + (1− λ) 1

K

∑K
k=1 p(z | h(k))

5: µz ← λµz + (1− λ) 1
K

∑K
k=1

p(z | h(k))
pz

h(k)

6: end for
7: end for

A.1.3 Instantiating SHADE

For one unit of one layer, the previous criterion writes:

Var(H | Z) =

∫
H
p(h)

∫
Z
p(z | h)

(
h− E(H | z)

)2
dz dh (A.7)

≈ 1

K

K∑
k=1

[∫
Z
p(z | h(k))

(
h(k) − E(H | z)

)2
dz

]
; (A.8)

estimating the quantity Var(H | Z) with Monte-Carlo sampling on a mini-batch of
input-target pairs

{
(x(k),y(k))

}
1≤k≤K of intermediate representations

{
h(k)
}
1≤k≤K .

p(Z | H) interpreted as the probability of presence of attribute Z on the input,
it should clearly be modeled such that p(Z = 1 | H) increases with H . The more
similarities between the input and the pattern represented by H , the higher the
probability of presence for Z. We suggest using:{

p(Z = 1 | h) = σ(h)

p(Z = 0 | h) = 1− σ(h)
with sigmoid function σ(h) =

1

1 + e−h
. (A.9)

For the expected values µz = E(H | z) we use a classic moving average that is
updated after each batch as described in Algorithm A.1. Note that the expected
values are not changed by the optimization since they have no influence on the
entropy H(H | Z).

For this proposed instantiation, our SHADE regularization penalty takes the
form:

ΩSHADE =
L∑
`=1

D∑̀
i=1

K∑
k=1

∑
z∈{0,1}

p
(
Z`,i = z

∣∣∣h(k)`,i )(h(k)`,i − µz`,i)2 . (A.10)
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Figure A.1. – Illustration of the effect of the regularization alone.. Evolution of
the accuracy of a pre-trained Inception model on CIFAR-10 when
only applying regularization.

A.2 Additional experiments with SHADE

Through these additional experiments, we validate the hypotheses made during
the development of SHADE, first regarding the preservation of class information by
conditional entropy compare to non-conditional entropy, and second by validating
of modeling of the behavior of neurons as binary detectors.

A.2.1 Class-Information Preservation by Conditional Entropy

We now propose to validate our hypothesis that the introduction of our variable
Z is able to capture class information used for our conditional entropy.

Indeed, the main difference between SHADE and VarEntropy is the introduction
of the latent variable Z, supposed to contain the information about the label Y .
The motivation of this extension is that minimizing H(H | Y ) instead of H(H)

enables to save the class information during the optimization of the regulariza-
tion loss, as explained in Section 2.3.2. To illustrate this benefit, we compare the
impact of the two regularization losses on the classification performances of a pre-
trained model. To do so, we fine tune a pre-trained Inception model only with a
regularization loss, either based on Var(H) or Var(H | Z); without any label data
or classification loss. The network performance obviously declines for both regu-
larizers as we can see in Figure A.1. However, this decline is slower with SHADE

than VarEntropy. This confirms the intuition that Z contains class-information
and that SHADE produces less class-information filtering. This is explained by the
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Figure A.2. – Visualization of 5 neurons from the penultimate activations (i.e.
the input of the last fully-connected layer) of an Inception model
trained on CIFAR-10. On the left is the distribution of the values
taken by each neuron H . In the middle and right is the distribution
of the discriminiative component H∗ of the neuron (the part that
does not belong to the kernel of the layer weights).

optimization of the metric Var(H | Z) that uses implicitly-learned information
encoded in the network.

A.2.2 Exploration of the latent representations

Finally, we propose to validate our hypothesis that neurons behave as binary
detectors, which motivated our binomial modeling Z. For this, we propose some
investigations on the behavior of the activations of trained Convolutional Neural
Networks (ConvNets).

Two modes neuron variable. First, we propose to experimentally show that
DNN optimization drives the neurons distribution toward a bi-modal distribution.

Focusing on the input neurons HL−1 of the last layer of a trained network (before
the class projection), the output of the network is obtained by applying a fully
connected layer on HL−1 plus a softmax activation: Ŷ = Softmax(W·HL−1+b), with
W and b the weights of this layer. By plotting a histogram of any coordinate (one
neuron) of HL−1, it will not be possible to identify two modes. This can be seen
on the purple distribution in Figure A.2 (left), which represents the distributions
of HL−1,i on CIFAR-10 training set for five random coordinates i of an Inception
model.

However HL−1 contains a lot of information that will not be exploited for the
prediction. Indeed, lets rewrite HL−1 = H⊥+H∗ with H⊥ in the kernel of W such
that W ·H⊥ = 0 and Y ∗ is in the supplementary of W’s kernel. The class space
has generally much fewer dimensions than the space of HL−1, thus the kernel of
w is not reduced to zero and some information will be filtered.
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Original Binarized layer

Architecture score Before ŷ (hL−1) Middle (hL/2) After input (h1)

MLP 64.68 64.92 62.45 61.13

AlexNet 83.25 82.71 82.38 82.01

Inception 91.34 91.41 90.88 90.21

ResNet 93.24 92.67 92.09 91.99

Table A.1. – Classification accuracy (%) using binarized activation on CIFAR-10

test set.

In Figure A.2 (middle and right) is the distribution of H∗ on the training set
(blue, middle) and on the validation set (green right), for the same neurons of
the same network as the activations on the left. H∗ is the information effectively
used for the prediction and its distribution look very much like a mixture of two
Gaussians. We clearly identify two modes, one negative and one positive. This
confirms the intuition of a binary latent variable Z whose values correspond to
the two modes. The fact that the distribution look like a mixture of two Gaussians
support the use of the inequality at Equation 2.19 in the definition of SHADE.

The distributions are obtain via a kernel density estimator using as data the
neuron variable output by a forward pass on the totality of the CIFAR-10 training
and test set. The three distributions are for the same coordinates taken randomly
among all H units. Note that the experiment could have been done on other
layers but the computation of H∗ would be more complicated as the following
transformations up to the top of the network are not linear.

Binary activation. To further demonstrate that activations in the models can be
represented as a binary information, we propose to transform the ReLU activation
function of a layer into a binary activation function that can only take two values.
By exhibiting that such a binary activation does not affect the accuracy, we show
that we can summarize the class information of a neuron into a binary variable
and still get the same prediction accuracy as with the continuous ReLU activation.
The experiment have been done on CIFAR-10 dataset with the same networks
used in Section 2.3.4.1.

To do this, we replace the ReLU activation of a trained model with a binary
activation function:

BinAct(H) =

{
0 if H ≤ 0

H+ if H > 0
(A.11)

with H+ a constant value defined as the average value of the positive activations
of the unit H .
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After replacing the activation function we fine tune the layers on the top of the
chosen layer, in order to adapt the top of the network to the new values and we
report the obtained accuracies in Table A.1 for different architecture and different
layers. We note that the differences in accuracy are very small. This confirms
that for a given layer, the information that is used for the class prediction can
be compressed in a binary variable confirming the existence of a binary latent
variable containing most of the class information that is exploited by the rest of
the network. The fact that this apply for all layers of the network is consistent
with the application of SHADE loss to all layers. Note that this binary activation
could be further researched to improve the modeling integrated in SHADE.
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B.1 Additional visualizations of HybridNet

Additional visualizations of HybridNet behavior are presented in Figure B.1
for CIFAR-10 and Figure B.2 for STL-10.
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B.1.1 Additional results on CIFAR-10

Figure B.1. – Example of visualizations for a ConvLarge-based HybridNet on
CIFAR-10. For each input image, there is block of 4 images on the

figure with the following organization:
[
x x̂
x̂c x̂u

]
.
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B.1.2 Additional results on STL-10

Figure B.2. – Example of visualizations for a ConvLarge-like-based HybridNet
on STL-10. For each input image, there is block of 4 images on the

figure with the following organization:
[
x x̂
x̂c x̂u

]
.
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B.2 Experiment details

B.2.1 Experimental setup for ConvLarge on CIFAR-10

B.2.1.1 Data preprocessing and model architecture

Input images are data-augmented with a random translation of a maximum of
2 pixels with mirror padding to fill-in the missing pixels, and randomly flipped.
This constitutes the input x. We also add a Gaussian noise on x (σ = 0.15) to
obtain x̃ that is fed into the model. The model’s architecture is described in
Table B.1.

B.2.1.2 Training details

The training method is similar to the one presented in recent paper using Conv-
Large (Sajjadi et al. 2016; Laine and Aila 2017; Tarvainen and Valpola 2017).

The model is optimized with Adam during 60,000 batches (which corresponds
to various number of epochs depending on the number of labeled images), with
batches of 80 unlabeled samples and 20 labeled samples.

The weights of the various loss terms and the optimizer’s parameters have
base values and are varied over the training similarly to previous work using this
model. The parameters’ values and variations are summarized in Table B.2. For
the ablation study, parts of the model are removed and/or some weights are set
to 0.

B.2.2 Experimental setup for ConvLarge-like on STL-10

B.2.2.1 Model architecture

Input images are data-augmented with a random translation of a maximum of
12 pixels with mirror padding to fill-in the missing pixels, and randomly flipped.
This constitutes the input x. We also add a Gaussian noise on x (σ = 0.15)

to obtain x̃ that is fed into the model. The model’s architecture is detailed in
Table B.3.

B.2.2.2 Training details

The model is optimized with Adam during 150,000 batches (corresponding to
300 epochs over the labeled images, 48 epochs over the unlabeled images), with
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Figure B.3. – Shake-Shake building block.

batches of 30 unlabeled samples and 2 labeled samples. Hyperparameters’ values
and scheduling over training are detailed in Table B.4.

B.2.3 Experimental setup for ResNet on CIFAR-10 and SVHN

The experimental setup described below follows the one described by Tarvainen
and Valpola (2017) for a fair comparison.

B.2.3.1 Model architecture

The data preprocessing simply consists in a classic per-color-channel mean-
variance standardization. Images are data-augmented using random translation
of a maximum of 4 pixels with mirror padding to fill-in the missing pixels and
random flip. For SVHN, we disable image mirroring for obvious reasons.

We use the ResNet architecture with Shake-Shake building blocks described by
Gastaldi (2017). A Shake-Shake building block consists of 2 similar branches each
containing 2 convolutions, with the first one possibly having a stride greater that 1.
The two branches are averaged with a weight α (see Figure B.3 for illustration
and the original paper for details) before being added to the result of a residual
connection.

A “layer” is constituted of 4 blocks with possibly the first one having a stride
in its first convolution and all convolutions having the same number of channels.
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To reverse a layer, we apply the same strategy as before. This means that only
the last transposed convolution of a decoding layer will have a smaller number
of channels and a “stride” larger than 1 to reverse the first convolution of the
corresponding layer in the encoder.

The architecture of the HybridNet based on this ResNet is described in Ta-
ble B.5.

B.2.3.2 Training details for CIFAR-10

The model’s training is based on the settings of Tarvainen and Valpola (2017). It
is trained with Nesterov SGD with a base learning rate of 0.04 with a momentum
of 0.9 over 300 epochs (one epoch correspond to one pass over the unlabeled
images) with batches of 61 unlabeled images and 19 labeled images. Hyperpa-
rameters values and scheduling over training are detailed in Table B.6.

B.2.3.3 Training details for SVHN

The model is trained with Nesterov SGD with a base learning rate of 0.04 with
a momentum of 0.9 over 150 epochs (one epoch correspond to one pass over the
unlabeled images) with batches of 265 unlabeled images and 15 labeled images.
Hyperparameters values and scheduling over training are detailed in Table B.7
for SVHN.

B.2.4 Experimental setup for ResNet on STL-10

B.2.4.1 Model architecture

The model is a ResNet-50 pretraind on the Places dataset available at https:
//github.com/CSAILVision/places365. We did not use a model trained on Ima-
geNet since the images of STL-10 have been extracted from ImageNet.

The data preprocessing simply consists in a classic per-color-channel mean-
variance standardization. Images are data-augmented using random translation
of a maximum of 30 pixels with mirror padding to fill-in the missing pixels and
random flip.

B.2.4.2 Training details

The model is trained with Nesterov SGD with a base learning rate of 0.01 with
a momentum of 0.9 over 350 epochs (one epoch correspond to one pass over the

https://github.com/CSAILVision/places365
https://github.com/CSAILVision/places365
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unlabeled images) with batches of 11 unlabeled images and 5 labeled images.
Hyperparameters values and scheduling over training are detailed in Table B.8.
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Table B.1. – Architecture of the HybridNet ConvLarge for CIFAR-10

Encoders Ec and Eu

Input x̃ 32× 32× 3
Convolution 128 filters, 3× 3, same padding 32× 32× 128
Convolution 128 filters, 3× 3, same padding 32× 32× 128
Convolution 128 filters, 3× 3, same padding 32× 32× 128
Pooling Maxpool 2× 2 16× 16× 128
Dropout p = 0.5 16× 16× 128
Convolution 256 filters, 3× 3, same padding 16× 16× 256
Convolution 256 filters, 3× 3, same padding 16× 16× 256
Convolution 256 filters, 3× 3, same padding 16× 16× 256
Pooling Maxpool 2× 2 8× 8× 256
Dropout p = 0.5 8× 8× 256
Convolution 512 filters, 3× 3, valid padding 6× 6× 512
Convolution 256 filters, 1× 1, same padding 6× 6× 256
Convolution 128 filters, 1× 1, same padding 6× 6× 128
Output hc or hu 6× 6× 128

Classifier C

Input hc 6× 6× 128
Pooling Global average pool 1× 1× 128
Fully connected with Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 6× 6× 128
TConvolution 256 filters, 1× 1, same padding 6× 6× 256
TConvolution 512 filters, 1× 1, same padding 6× 6× 512
TConvolution 256 filters, 3× 3, valid padding 8× 8× 256
Upsampling 2× 2 (unpooling in Du) 16× 16× 256
TConvolution 256 filters, 3× 3, same padding 16× 16× 256
TConvolution 256 filters, 3× 3, same padding 16× 16× 256
TConvolution 128 filters, 3× 3, same padding 16× 16× 128
Upsampling 2× 2 (unpooling in Du) 32× 32× 128
TConvolution 128 filters, 3× 3, same padding 32× 32× 128
TConvolution 128 filters, 3× 3, same padding 32× 32× 128
TConvolution 3 filters, 3× 3, same padding 32× 32× 3
Output x̂c or x̂u 32× 32× 3

TConvolution stands for “transposed convolution”.
Each Convolution or TConvolution is followed by a Batch Nor-
malization layer and a LeakyRELU of parameter α = 0.1
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Table B.2. – Evolution of weights for ConvLarge on CIFAR-10

Value Scheduling

η 0.003 Linear decrease to 0 over the last 1/3 of the training
β1 0.9 Exponential decrease to 0.5 over the last 1/5 of the training
λc 1 Exponential increase from 0 over 800 first batches
λs 100 Exponential increase from 0 over first 1/4 of the training

and exponential decrease to 0 over the last 1/5 of the training
λr 1 Exponential decrease over the last 5% of the training

η is the learning rate, β1 the first momentum of Adam, λc the classifica-
tion weight, λs the stability weight, λr the reconstructions weights.
Exponential decrease follows the function exp(−5t2) with t ∈ [0, 1] from
the start to the end of the decreasing interval. When increasing, t goes
from 1 to 0.
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Table B.3. – Architecture of the HybridNet ConvLarge-like architecture for STL-10

Encoders Ec and Eu

Input x̃ 96× 96× 3
Convolution 64 filters, 3× 3, same padding 96× 96× 64
Convolution 64 filters, 3× 3, same padding 96× 96× 64
Pooling Maxpool 2× 2 48× 48× 64
Convolution 128 filters, 3× 3, same padding 48× 48× 128
Convolution 128 filters, 3× 3, same padding 48× 48× 128
Pooling Maxpool 2× 2 24× 24× 128
Convolution 256 filters, 3× 3, same padding 24× 24× 256
Convolution 256 filters, 3× 3, same padding 24× 24× 256
Pooling Maxpool 2× 2 12× 12× 256
Convolution 256 filters, 3× 3, same padding 12× 12× 256
Pooling Maxpool 2× 2 6× 6× 256
Output hc or hu 6× 6× 256

Classifier C

Input hc 6× 6× 256
Convolution 512 filters, 4× 4, valid padding 3× 3× 512
Dropout p = 0.5 3× 3× 512
Convolution 512 filters, 1× 1, same padding 3× 3× 512
Dropout p = 0.5 3× 3× 512
Convolution 10 filters, 1× 1, same padding 3× 3× 10
Pooling Global average pool 1× 1× 10
Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 6× 6× 256
Upsampling 2× 2 (unpooling in Du) 12× 12× 256
TConvolution 256 filters, 3× 3, same padding 12× 12× 256
Upsampling 2× 2 (unpooling in Du) 24× 24× 256
TConvolution 256 filters, 3× 3, same padding 24× 24× 256
TConvolution 128 filters, 3× 3, same padding 24× 24× 128
Upsampling 2× 2 (unpooling in Du) 48× 48× 128
TConvolution 128 filters, 3× 3, same padding 48× 48× 128
TConvolution 64 filters, 3× 3, same padding 48× 48× 64
Upsampling 2× 2 (unpooling in Du) 96× 96× 64
TConvolution 64 filters, 3× 3, same padding 96× 96× 64
TConvolution 3 filters, 3× 3, same padding 96× 96× 3
Output x̂c or x̂u 96× 96× 3

TConvolution stands for “transposed convolution”.
Each Convolution or TConvolution is followed by a Batch Nor-
malization layer and a ELU activation.
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Table B.4. – Evolution of weights for ConvLarge-like on STL-10

Value Scheduling

η 0.001 Linear decrease to 0 over the last 1/10 of the training
β1 0.9 Constant
λc 1 Exponential increase from 0 over 4000 first batches
λs 300 Exponential increase from 0 over first 1/4 of the training

and exponential decrease to 0 over the last 1/4 of the training
λr 1 Exponential decrease over the last 5% of the training

η is the learning rate, β1 the first momentum of Adam, λc the classifica-
tion weight, λs the stability weight, λr the reconstructions weights.
Exponential decrease follows the function exp(−5t2) with t ∈ [0, 1] from
the start to the end of the decreasing interval. When increasing, t goes
from 1 to 0.

Table B.5. – Architecture of the HybridNet ResNet architecture for CIFAR-10 and
SVHN

Encoders Ec and Eu

Input x̃ 32× 32× 3
Convolution 16 filters, 3× 3, same padding 32× 32× 16
Shake Shake layer 4 blocks, 96 filters, 3× 3, stride 1 32× 32× 96
Shake Shake layer 4 blocks, 192 filters, 3× 3, stride 2 16× 16× 192
Shake Shake layer 4 blocks, 384 filters, 3× 3, stride 2 8× 8× 384
Output hc or hu 8× 8× 384

Classifier C

Input hc 8× 8× 384
Pooling Global average pool 1× 1× 384
Fully connected with Softmax 10
Output ŷ 10

Decoders Dc and Du

Input hc or hu 8× 8× 384
Shake Shake dec layer 4 blocks, 384 filters, 3× 3, stride 2 8× 8× 192
Shake Shake dec layer 4 blocks, 192 filters, 3× 3, stride 2 16× 16× 96
Shake Shake dec layer 4 blocks, 96 filters, 3× 3, stride 1 32× 32× 16
Output x̂c or x̂u 32× 32× 3
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Table B.6. – Evolution of weights for HybridNet ResNet architecture for CIFAR-10

Value Scheduling

η 0.04 Cosine decrease over the full training
λc 1 Constant
λs 300 Constant
λr 0.25 Exponential increase over the first 5 epochs
λrb,l 0.5 Exponential increase over the first 2 epochs

η is the learning rate, λc the classification weight, λs the
stability weight, λr the final reconstruction weight, λrb,l
the intermediate reconstructions weights.
Exponential decrease follows the function exp(−5t2) with
t ∈ [0, 1] from the start to the end of the decreasing inter-
val. When increasing, t goes from 1 to 0.
Cosine decrease follows the function cos(πt) + 1 with
t ∈ [0, 1] from the start to the end of the decreasing inter-
val.

Table B.7. – Evolution of weights for HybridNet ResNet architecture for SVHN

Value Scheduling

η 0.04 Cosine decrease over the full training
λc 1 Constant
λs 100 Exponential increase over the first 5 epochs
λr 0.1 Exponential increase over the first 5 epochs
λrb,l 0.2 Exponential increase over the first 2 epochs

η is the learning rate, λc the classification weight, λs the
stability weight, λr the final reconstruction weight, λrb,l
the intermediate reconstructions weights.
Exponential decrease follows the function exp(−5t2) with
t ∈ [0, 1] from the start to the end of the decreasing inter-
val. When increasing, t goes from 1 to 0.
Cosine decrease follows the function cos(πt) + 1 with
t ∈ [0, 1] from the start to the end of the decreasing inter-
val.
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Table B.8. – Evolution of weights for HybridNet ResNet architecture for STL-10

Value Scheduling

η 0.01 Exponential decrease during the last 8 epochs
β1 0.9 Exponential increase during the last 80 epochs down to 0.5
λc 0.1 Constant
λs 0.1 Exponential increase over the first 150 epochs
λr 0.01 Exponential decrease during the last 17 epochs
λrb,l 0.01 Exponential decrease during the last 17 epochs

η is the learning rate, β1 the first momentum of Adam, λc the classification
weight, λs the stability weight, λr the final reconstruction weight, λrb,l the
intermediate reconstructions weights.
Exponential decrease follows the function exp(−5t2) with t ∈ [0, 1] from
the start to the end of the decreasing interval. When increasing, t goes
from 1 to 0.
Cosine decrease follows the function cos(πt) + 1 with t ∈ [0, 1] from the
start to the end of the decreasing interval.
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C.1 Data pre-processing

C.1.1 CelebA

The official CelebA dataset 1 contains ∼200K images for 10,177 identities. As
is common, we used the cropped and aligned version. However, the number of
images per identity varies and some have very few images. Since our purpose is
to work on datasets with two classification tasks, we chose to reduce the number
of identities to 2,000, keeping those with the highest number of images. Because
of this, we obtain a dataset with ∼60K images.

The identities are our label y and the attributes provided with the dataset are
were not preprocessed and are used as z.

1. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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C.1.2 Yale-B

The Extended Yale-B dataset 2 is available for download in two variants: the
“full” version contains 16128 images of 28 human subjects under 9 poses and
64 illumination conditions, each image has a large part of background; and the
“cropped” version contains ∼2400 images with 38 subjects and 64 illumination
conditions with no background. We chose to work with the cropped version.

The 38 identities constitute our identity label y. The lighting source information
is provided as 2 real values indicating the angles (elevation and azimuth) of the
light source. We propose to convert this information in 14 “clusters”, we show
the id of each cluster between 0 and 13 in this table:

-95 -35 -20 20 35 95
80

20

-20

-80

Outside: 0 (back light)

1 2 3

4 5 6 7 8

9 10 11 12 13

Azimuth

E
le
va
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Each image is attributes to one of the clusters, and the label z is a one-hot vector
indicating the lighting source.

C.1.3 NORB

The NORB dataset 3 “contains images of 50 toys belonging to 5 generic cate-
gories: four-legged animals, human figures, airplanes, trucks, and cars. The objects
were imaged by two cameras under 6 lighting conditions, 9 elevations (30 to 70

degrees every 5 degrees), and 18 azimuths (0 to 340 every 20 degrees).” We use
the base dataset without jitter. The 5 categories are used as our classes y, and a
process similar to Yale-B is used to create the labels z, but with soft assignment:

• The 6 lighting classes are converted into a single unit with values between 0

(dark) and 1 (very light) with mapping as follows: [0.6, 0.3, 0, 0.7, 0.4, 1]

• The elevation is represented by 3 clusters ei of centers [35, 50, 65] with an
assignment to each defined as zi = 1−min(1, |elevation− ei|/15)

2. http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
3. https://cs.nyu.edu/~ylclab/data/norb-v1.0/

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
https://cs.nyu.edu/~ylclab/data/norb-v1.0/
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• The azimuth is represented by 4 clusters aj of center [0, 90, 180, 270] with an
assignment to each defined as zj = 1−min(1, |azimuth− aj|/9)

This gives us a complete vector z of size 8.

C.2 Architectures & Hyperparameters

C.2.1 Complete architecture overview

To obtain the different models that we report, we use start from a complete
architecture with all possible options, and then choose which parts of the model
we activate. This complete architecture is represented in Figure C.1.

In particular, we can see that we have:

• Uy and Uz which are the predictors that replace Cy and Cz for UAI model,
and that predict hy and hz. Their corresponding loss term is a MSE for both
LUAI,adv and LUAI,disc that is maximized for LUAI,adv and minimized for LUAI,disc.

• The possibility to replace hz by z as the second input of the decoder D, which
allows to produce MTAN.

• The possibility to block gradients between hz and Wz, which means that when
activated we can train Wz to measure the quality of the representation hz
regarding the attributes, while not backpropagating this signal to Ez, therefore
reproducing models that do not use z labels while keeping the metric.

• It is possible to train adversarial classifiers Cy and Cz with Ldisc even when
not proposed by the models, which allows to measure the quality of the
disentangling and will have no impact of the actual model as long as Ladv are
disabled since Ldisc is only backpropagated in C.
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C.2.2 Architecture details

In Table C.1, we provide the exact details about the architecture of the compo-
nents in Figure C.1 depending on the experiments and the dataset, along with
those general information:

• In the encoder, every layer is followed by batch normalization and ReLU.

• In the decoder, every layer is followed by a batch normalization and Leaky-
ReLU(0.2), except last layer which has no activation or BN.

• In the classifiers, every intermediate layer is followed by a ReLU.

• Layers are described using the following syntax:

• Conv: 128[k5][p0][s2] is a convolutional layer with 128 output channels,
a kernel of 5 (default is 3 if not written), padding of 0 (default is to keep
same output size), stride 2 (default is 1)

• Deconv: dec128[k4][p0][s1] is a transpose convolutional layer with 128

output channels, a kernel of 4 (default), padding of 0 (default is 1), stride 1

(default is 2) Linear: `128 is a linear layer with 128 output neurons

• Upsample: upsample means an upsampling of a factor 2 using the nearest
value

• MaxPool: maxpool2k3 is a max-pooling of stride 2 and kernel 3

C.2.3 Training and hyperparameters values

As a reminder, we have two losses composed of different loss terms, each
weighted by a parameter λ that controls its importance. Here is the global loss:

Lmain = λrecLrec + λyLy + λzLz + λadv,yLadv,y + λadv,zLadv,z + λoLorth . (C.1)

Ldisc = λdisc,yLdisc,y + λdisc,zLdisc,z . (C.2)

This loss is optimized using Adam with the recommended hyperparamters:
learning rate of 0.001, β1 = 0.9, β2 = 0.999. The number of epochs and batch sizes
depends on the datasets and are given below.

For all the experiments, we used λ = 1 for all the classification losses: λy = λz =

λdisc,z = λdisc,z = λUAI,disc,z = λUAI,disc,z = 1, and we set λo = 1× 10−6
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Architecture for UAI Architecture for all other models

CelebA (image size 256×256)

E 32p0s2, 32p0s1, 64p0, max-
pool2k3, 80k1, maxpool2k3, 96p0,
maxpool2k3, 128p0, 160p0s2,
196p0

32p0s2, 32p0s1, 64p0, max-
pool2k3, 80k1, maxpool2k3, 96p0,
maxpool2k3

Ey/Ez 196p0 96p0, 128p0s2, 196p0, 196p0

D dec392p0s1, 392, upsample, 392, upsample, 256, upsample, 196, up-
sample, 128, 128, upsample, 96, 96, upsample, 64, 64, 32, 3k1

Wy `2000 `2000

Wz `40 `40

Cy `256, `2000 `256, `256, `2000

Cz `256, `40 `256, `256, `40

Uy `196 N/A
Uz `196 N/A

Yale-B (image size 64×64)

E 32k4s2, 40k4s2, 48k4s2, 76k4s2,
100k3p0

32k4s2, 40k4s2, 48k4s2

Ey/Ez 80k2p0 64k4s2, 72k3p0, 80k2p0

D 160k2p1, dec80, dec64, dec48, dec32, dec32, 32, 3none
Wy `38 `38

Wz `14 `14

Cy `80, `80, `38 `80, `80, `38

Cz `80, `80, `14 `80, `80, `14

Uy `80 N/A
Uz `80 N/A

NORB (image size 64×64)

E 64k4s2, 64k4s2, 96k4s2, 164k4s2,
192k4s2

64k4s2, 64k4s2, 96k4s2

Ey/Ez 128k2p0 96k4s2, 128k3p0, 128k2p0

D 256k2p1, dec192, 128, dec128, 128, dec96, 96, dec64, 64, dec64, 64,
32, 1

Wy `5 `5
Wz `8 `8
Cy `128, `128, `5 `128, `128, `5
Cz `128, `128, `8 `128, `128, `8
Uy `128 N/A
Uz `128 N/A

Table C.1. – Architectures used for our experiments.
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Values of hyperparameters that depends on the dataset are provided in Ta-
ble C.2.

λrec λadv,y λadv,z λUAI,adv,y λUAI,adv,z Batch size Epochs

CelebA 0.3 0.1 0.1 0.3 0.3 32 330

Yale-B 1 0.08 0.08 0.3 0.3 64 400

NORB 10 0.25 0.25 0.3 0.3 128 250

Table C.2. – Hyperparameters for the various experiements.

C.3 Experiments details

C.3.1 Image editing

For image editing, we use the model trained for the ablation study of the
datasets, and start by obtaining the representations hy and hz for some test im-
ages. For attribute modification, we move hz in the direction i of each vector wzi

to obtain h′z = hz ± εwzi of the model and produce images using the decoder:
x̂ = D(hy,h

′
z). The amplitude of ε for the visualization was fixed after a quick

visual check of what values looked. For identity / attributes mixing between
images, we simply use hy and hz from different images and feed them to the
decoder.

C.3.2 Semi-supervised learning

For semi-supervised learning, we use batches with a pre-defined number of
supervised images in each batch. We iterate over the set of labeled and unlabeled
images independently and consider an epoch as the loop over the unlabeled
image set, during which we usually see images of the supervised set more than
once depending on the size of the sets. This is a common setting, e.g. (Sajjadi et al.
2016; Tarvainen and Valpola 2017; Robert et al. 2018). The hyperparameters that
differ from the model in the ablation study are provided in Table C.3.
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λrec λz λadv,y λadv,z Sup. batch size

4000 0.3 0.4 0.2 0.1 10

2000 0.5 0.4 0.2 0.1 10

1000 0.5 0.4 0.2 0.1 8

400 0.5 0.4 0.2 0.1 8

Table C.3. – Hyperparameters for the SSL experiements. “Sup. batch size” indi-
cates the number of labeled images in each batch.

C.3.3 Data Augmentation on Yale-B

For the Data Augmentation (DA) experiments, we start by training a new model
with different sizes of train datasets. Once trained, we produce 150 new images
for each identity using the image editing technique we described in order to
produce new images of the different attribute categories. For this, we iterate over
the train images of each identity (after excluding train images with attributes that
correspond to very bad lighting, i.e. attributes 0, 4, 8, 9, 13) and then randomly
choose an attribute for which we do not already have enough images for this
identity. This is done so that after DA, each identity has images that follows this
distribution D over attributes 0 to 13:

D = [1, 3, 3, 2, 5, 3, 10, 3, 5, 2, 2, 2, 2, 2]/45 (C.3)

Then, a classifier with the architecture Wy ◦ Ey ◦ E is trained with Adam for
400 epochs on the original train set used for to train the generator + the generated
images. It is then evaluated on all the remaining images of the original dataset.


	Abstract
	Résumé
	Remerciements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Motivations
	1.3 Contributions and outline
	1.4 Related publications

	2 Deep Neural Networks for Image Classification: Training, Regularization and Invariance
	2.1 Introduction
	2.2 Training and Regularizing Deep Neural Networks
	2.2.1 Deep Learning framework
	2.2.2 Convolutional architectures
	2.2.3 Regularizing DNNs with priors
	2.2.4 Regularizing DNNs with and for Semi-Supervised Learning
	2.2.5 Improving the semantic quality of representations

	2.3 SHADE: Encouraging Invariance in DNNs
	2.3.1 Context
	2.3.2 Measuring Invariance with Conditional Entropy
	2.3.3 Entropy-based Regularization for Deep Neural Networks
	2.3.4 Evaluation
	2.3.5 Discussion of SHADE

	2.4 Conclusion

	3 Separating Discriminative and Non-Discriminative Information for Semi-Supervised Learning
	3.1 Introduction
	3.2 Reconstruction and Stability for Semi-Supervised Learning
	3.2.1 Stability based methods
	3.2.2 Reconstruction based methods

	3.3 HybridNet framework
	3.3.1 Designing the HybridNet architecture
	3.3.2 Training HybridNet

	3.4 Experiments
	3.4.1 Datasets and data processing
	3.4.2 Preliminary results using SHADE
	3.4.3 HybridNet framework validation
	3.4.4 State-of-the-art comparison

	3.5 Conclusion

	4 Dual-Branch Structuring of the Latent Space for Disentangling and Image Editing
	4.1 Introduction
	4.2 Related work
	4.2.1 Generative models
	4.2.2 Unsupervised disentangling
	4.2.3 Supervised disentangling

	4.3 DualDis approach
	4.3.1 Dual branch Auto-Encoder
	4.3.2 Modeling factors of variation
	4.3.3 Disentangling information domains and factors of variation

	4.4 Discussion
	4.5 DualDis evaluation
	4.5.1 Datasets and architecture
	4.5.2 Quantitative evaluation

	4.6 Semi-Supervised Learning
	4.7 Image Editing and Data Augmentation
	4.7.1 Semantic image editing
	4.7.2 Image generation for Data Augmentation

	4.8 Conclusion

	5 Conclusion
	5.1 Summary of Contributions
	5.2 Perspectives for Future Work

	Bibliography
	A Details and additional experiments on SHADE
	A.1 Detail on the development of SHADE
	A.1.1 Unit-wise Entropy Regularizer
	A.1.2 Estimating Conditional Entropy with a Latent Code
	A.1.3 Instantiating SHADE

	A.2 Additional experiments with SHADE
	A.2.1 Class-Information Preservation by Conditional Entropy
	A.2.2 Exploration of the latent representations


	B Experimental details for HybridNet
	B.1 Additional visualizations of HybridNet
	B.1.1 Additional results on CIFAR-10
	B.1.2 Additional results on STL-10

	B.2 Experiment details
	B.2.1 Experimental setup for ConvLarge on CIFAR-10
	B.2.2 Experimental setup for ConvLarge-like on STL-10
	B.2.3 Experimental setup for ResNet on CIFAR-10 and SVHN
	B.2.4 Experimental setup for ResNet on STL-10


	C Experimental details for DualDis
	C.1 Data pre-processing
	C.1.1 CelebA
	C.1.2 Yale-B
	C.1.3 NORB

	C.2 Architectures & Hyperparameters
	C.2.1 Complete architecture overview
	C.2.2 Architecture details
	C.2.3 Training and hyperparameters values

	C.3 Experiments details
	C.3.1 Image editing
	C.3.2 Semi-supervised learning
	C.3.3 Data Augmentation on Yale-B



