D. B. Harden and J. M. Toynbee, VII.The Rothschild Lycurgus Cup, Archaeologia, vol.97, pp.179-212, 1954.

F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst et al., Before striking gold in gold-ruby glass, Nature, vol.407, issue.6805, pp.691-692, 2000.

R. C. Chirnside and P. M. Proffitt, The Rothschild Lycurgus Cup: an analytical investigation, Journal of Glass Studies, vol.5, pp.18-23, 1963.

A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo et al., Gold nanoparticles in ancient and contemporary ruby glass, Journal of Cultural Heritage, vol.9, pp.134-137, 2008.

M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.147, pp.145-181, 1857.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, vol.330, issue.3, pp.377-445, 1908.

R. Gans, ÜBER DIE FORM ULTRAMIKROSKOPISCHER SILBERTEILCHEN, Annalen der Physik, vol.352, issue.10, pp.270-284, 1915.

P. Drude, Zur Elektronentheorie der Metalle, Annalen der Physik, vol.306, issue.3, pp.566-613, 1900.

, Zur Elektronentheorie der Metalle II. Teil. Galvanomagnetische und thermomagnetische Effecte, vol.308, pp.369-402, 1900.

D. Pines and D. Bohm, A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions, Physical Review, vol.85, issue.2, pp.338-353, 1952.

R. Feynman, There is plenty of room at the bottom (talk tanscript), Caltech Engineering and Science, vol.23, issue.5, pp.22-36, 1960.

F. Wooten, Optical Properties of solids, p.9781483220765, 1972.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, pp.978-981, 1995.

J. D. Jackson and C. Electrodynamics, , p.471431311, 1999.

C. F. Bohren and D. R. Huffman, Adsorption and scattering of light by small particles

. London, , p.47105772, 1983.

F. Castro and B. Nabet, Numerical computation of the complex dielectric permittivity using Hilbert transform and FFT techniques, Journal of the Franklin Institute, vol.336, issue.1, pp.53-64, 1999.

P. Nilsson, Determination of Optical Constants from Intensity Measurements at Normal Incidence, Applied Optics, vol.7, issue.3, p.435, 1968.

J. E. Nestell and R. W. Christy, Optics of Thin Metal Films, American Journal of Physics, vol.39, issue.3, pp.313-320, 1971.

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.6, issue.12, pp.4370-4379, 1972.

P. O. Nilsson, Studies of AgIn and CuGe Alloys by Optical and Photoemission Techniques, Physica Scripta, vol.1, issue.4, pp.189-192, 1970.

G. P. Pells, Measurement of the optical properties of alloys in ultra-high vacuum, Journal of Scientific Instruments, vol.44, issue.12, pp.997-1000, 1967.

J. E. Nestell and R. W. Christy, Derivation of Optical Constants of Metals from Thin-Film Measurements at Oblique Incidence, Applied Optics, vol.11, issue.3, p.643, 1972.

V. M. Silkin, I. P. Chernov, P. M. Echenique, Y. M. Koroteev, and E. V. Chulkov, Influence of hydrogen absorption on low-energy electronic collective excitations in palladium, Physical Review B, vol.76, issue.24, pp.245-105, 2007.

V. M. Silkin, R. Muiño, I. P. Chernov, E. V. Chulkov, and P. M. Echenique, Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration, Journal of Physics: Condensed Matter, vol.24, issue.10, pp.104-125, 2012.

C. Hogan, O. Pulci, P. Gori, F. Bechstedt, D. S. Martin et al.,

. Borensztein, Optical properties of silicene, Si/Ag(111), and Si/Ag(110), Physical Review B, vol.97, issue.19, pp.195-407, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950957

A. Marini, R. D. Sole, and G. Onida, First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation, Physical Review B, vol.66, issue.11, pp.115-101, 2002.

H. Ehrenreich and H. R. Philipp, Optical Properties of Ag and Cu, Physical Review, vol.128, issue.4, pp.1622-1629, 1962.

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, Optical Properties of Noble Metals. II, Physical Review, vol.138, issue.2A, pp.494-507, 1965.

H. S. Sehmi, W. Langbein, and E. A. Muljarov, Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper, Physical Review B, vol.95, issue.11, pp.115-444, 2017.

M. Valamanesh, Y. Borensztein, C. Langlois, and E. Lacaze, Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles, The Journal of Physical Chemistry C, vol.115, issue.7, pp.2914-2922, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00569090

K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews, vol.111, issue.6, pp.3828-3857, 2011.

B. Luk'yanchuk, N. I. Zheludev, S. Maier, N. J. Halas, P. Nordlander et al., The Fano resonance in plasmonic nanostructures and metamaterials, Nature Materials, vol.9, issue.9, pp.707-715, 2010.

R. Kuladeep, L. Jyothi, K. S. Alee, K. L. Deepak, and D. N. Rao, Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency, Optical Materials Express, vol.2, issue.2, p.161, 2012.

L. Bossard-giannesini, Mesures et simulation du travail de sortie de nanoparticules d'or fonctionnalisées, 2018.

C. Goldmann, R. Lazzari, X. Paquez, C. Boissière, F. Ribot et al., Charge Transfer at Hybrid Interfaces: Plasmonics of Aromatic Thiol-Capped Gold Nanoparticles, ACS Nano, vol.9, issue.7, pp.7572-7582, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01291241

P. Mulvaney, J. Pérez-juste, M. Giersig, L. M. Liz-marzán, and C. Pecharromán, Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging, Plasmonics, vol.1, issue.1, pp.61-66, 2006.

B. G. Ershov, E. V. Abkhalimov, R. D. Solovov, and V. I. Roldughin, Gold nanoparticles in aqueous solutions: influence of size and pH on hydrogen dissociative adsorption and Au(III) ion reduction, Physical Chemistry Chemical Physics, vol.18, issue.19, pp.13-459, 2016.

B. S. Hoener, H. Zhang, T. S. Heiderscheit, S. R. Kirchner, A. S. De-silva-indrasekara et al., Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects, vol.8, pp.2681-2688, 2017.

A. H. Ali, R. J. Luther, C. A. Foss, and G. B. Chapman, Optical Properties of Nanoscopic Gold Particles Adsorbed At Electrode Surfaces: the Effect of Applied Potential on Plasmon Resonance Absorption, Nanostructured Materials, vol.9, issue.5, pp.559-562, 1997.

A. H. Ali, J. Colby, and A. Foss, Electrochemically Induced Shifts in the Plasmon Resonance Bands of Nanoscopic Gold Particles Adsorbed on Transparent Electrodes, Journal of The Electrochemical Society, vol.146, issue.2, p.628, 1999.

R. Chapman and P. Mulvaney, Electro-optical shifts in silver nanoparticle films, Chemical Physics Letters, vol.349, issue.5-6, pp.358-362, 2001.

T. Miyazaki, R. Hasegawa, H. Yamaguchi, H. Oh-oka, H. Nagato et al., Electrical Control of Plasmon Resonance of Gold Nanoparticles Using Electrochemical Oxidation, The Journal of Physical Chemistry C, vol.113, issue.19, pp.8484-8490, 2009.

M. Hu, D. P. Linder, M. Buongiorno, A. Nardelli, and . Striolo, Hydrogen Adsorption on Platinum-Gold Bimetallic Nanoparticles: A Density Functional Theory Study, vol.117, 2013.

B. T. Draine and P. J. Flatau, Discrete-Dipole Approximation For Scattering Calculations, Journal of the Optical Society of America A, vol.11, issue.4, p.1491, 1994.

H. Devoe, Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction, The Journal of Chemical Physics, vol.41, issue.2, pp.393-400, 1964.

E. M. Purcell and C. R. Pennypacker, Scattering and Absorption of Light by Nonspherical Dielectric Grains, The Astrophysical Journal, vol.186, p.705, 1973.

S. B. Singham and G. C. Salzman, Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation, The Journal of Chemical Physics, vol.84, issue.5, pp.2658-2667, 1986.

S. B. Singham and C. F. Bohren, Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method, Optics Letters, vol.12, issue.1, p.10, 1987.

K. A. Willets and R. P. Van-duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, vol.58, issue.1, pp.267-297, 2007.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors, Nature Materials, vol.7, issue.6, pp.442-453, 2008.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing, Chemical Reviews, vol.112, issue.5, pp.2739-2779, 2012.

D. Wild, The Immunoassay Handbook, p.80445268, 2005.

J. Satija, N. Punjabi, D. Mishra, and S. Mukherji, Plasmonic-ELISA: expanding horizons, RSC Advances, vol.6, pp.85-440, 2016.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, Shape-and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles, Langmuir, vol.24, issue.10, pp.5233-5237, 2008.

B. Ro?i?, J. Fresnais, C. Molinaro, J. Calixte, S. Umadevi et al., Oriented Gold Nanorods and Gold Nanorod Chains within Smectic Liquid Crystal Topological Defects, ACS Nano, vol.11, issue.7, pp.6728-6738, 2017.

, The Editors of Encyclopaedia Britannica

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Länk et al.,

M. Shvets and . Käll, Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces, Nanoscale, vol.8, issue.20, pp.10-576, 2016.

S. Tawfick, M. De, D. Volder, S. J. Copic, C. R. Park et al., Engineering of Micro-and Nanostructured Surfaces with Anisotropic Geometries and Properties, Advanced Materials, vol.24, issue.13, pp.1628-1674, 2012.

M. C. Traub, W. Longsine, and V. N. Truskett, Advances in Nanoimprint Lithography, Annual Review of Chemical and Biomolecular Engineering, vol.7, issue.1, pp.583-604, 2016.

B. J. Lin, The ending of optical lithography and the prospects of its successors, Microelectronic Engineering, vol.83, issue.4-9, pp.604-613, 2006.

V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs et al., Resolution Limits of Electron-Beam Lithography toward the Atomic Scale, Nano Letters, vol.13, issue.4, pp.1555-1558, 2013.

G. Q. Wallace, S. T. Read, D. M. Mcrae, S. M. Rosendahl, and F. Lagugné-labarthet, Exploiting Anisotropy of Plasmonic Nanostructures with Polarization Modulation Infrared Linear Dichroism Microscopy (µPM-IRLD), Advanced Optical Materials, vol.6, issue.6, pp.1-701, 2018.

J. Boneberg, F. Burmeister, C. Schäfle, P. Leiderer, D. Reim et al., The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography ?, Langmuir, vol.13, issue.26, pp.7080-7084, 1997.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland et al.,

. Kasemo, Hole-Mask Colloidal Lithography, Advanced Materials, vol.19, issue.23, pp.4297-4302, 2007.

Z. Tang and A. Wei, Fabrication of Anisotropic Metal Nanostructures Using Innovations in TemplateAssisted Lithography, ACS Nano, vol.6, issue.2, pp.998-1003, 2012.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Länk et al., Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces, Nanoscale, vol.8, issue.20, pp.10-576, 2016.

S. Lee, K. Lee, J. Ahn, J. Lee, M. Kim et al., Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography, ACS Nano, vol.5, issue.2, pp.897-904, 2011.

S. Park and A. Böker, Ceramic nanowrinkles via a facile replication process, Journal of Materials Chemistry, vol.21, issue.32, pp.11-734, 2011.

S. Y. Chou, Nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.4129, 1996.

S. J. Barcelo, W. Wu, X. Li, Z. Li, and R. S. Williams, Nanoimprint lithography of plasmonic platforms for SERS applications, Applied Physics A, vol.121, issue.2, pp.443-449, 2015.

Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song et al., Nanoimprint lithography: an enabling technology for nanophotonics, Applied Physics A, vol.121, issue.2, pp.327-333, 2015.

N. Alayo, A. Conde-rubio, J. Bausells, X. Borrisé, A. Labarta et al., Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography, Nanotechnology, vol.26, issue.44, pp.445-302, 2015.

T. Tomioka, S. Kubo, K. Nagase, M. Hoga, and M. Nakagawa, Fabrication of Au nanorod and nanogap split-ring structures by reactive-monolayer-assisted thermal nanoimprint lithography involving electrodeposition, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, vol.30, pp.6-8, 2012.

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, p.55, 1951.

M. Grzelczak, J. Pérez-juste, P. Mulvaney, and L. M. Liz-marzán, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.37, issue.9, p.1783, 2008.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, Gold Nanoparticles: Past, Present, and Future, Langmuir, vol.25, issue.24, pp.13-840, 2009.

M. C. Daniel and D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantumsize related properties and applications toward biology, catalysis and nanotechnology, Chemical Reviews, vol.104, pp.293-346, 2004.

J. Pérez-juste, B. Rodríguez-gonzález, P. Mulvaney, and L. M. Liz-marzán, Optical Control and Patterning of Gold-Nanorod-Poly(vinyl alcohol) Nanocomposite Films, Advanced Functional Materials, vol.15, pp.1065-1071, 2005.

E. Boisselier and D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chemical Society Reviews, vol.38, issue.6, p.1759, 2009.

Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker et al., Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers, Nature Materials, vol.6, issue.8, pp.609-614, 2007.

M. A. Correa-duarte, J. Pérez-juste, A. Sánchez-iglesias, M. Giersig, and L. M. Liz-marzán, Aligning Au Nanorods by Using Carbon Nanotubes as Templates, Angewandte Chemie International Edition, vol.44, issue.28, pp.4375-4378, 2005.

M. A. Correa-duarte, N. Sobal, L. M. Liz-marzán, and M. Giersig, Linear Assemblies of SilicaCoated Gold Nanoparticles Using Carbon Nanotubes as Templates, Advanced Materials, vol.16, issue.23-24, pp.2179-2184, 2004.

E. Lacaze, O. Merchiers, Y. Borensztein, and D. Coursault, Trapping of gold nanoparticles within arrays of topological defects: evolution of the LSPR anisotropy, Rendiconti Lincei, vol.26, issue.S2, pp.183-191, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285197

D. Coursault, J. Grand, B. Zappone, H. Ayeb, G. Lévi et al., Linear Self-Assembly of Nanoparticles Within Liquid Crystal Defect Arrays, Advanced Materials, vol.24, issue.11, pp.1461-1465, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777951

J. H. Park and Y. L. Joo, Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application, Soft Matter, vol.10, issue.19, p.3494, 2014.

G. Hsieh, J. Wang, K. Ogata, J. Robertson, S. Hofmann et al., Stretched Contact Printing of One-Dimensional Nanostructures for Hybrid Inorganic-Organic Field Effect Transistors, The Journal of Physical Chemistry C, vol.116, issue.12, pp.7118-7125, 2012.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Li, Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods, Applied Physics Letters, vol.96, issue.26, pp.263-103, 2010.

C. J. Murphy and C. J. Orendorff, Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces, Advanced Materials, vol.17, issue.18, pp.2173-2177, 2005.

J. Y. Chung, A. J. Nolte, and C. M. Stafford, Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties, Advanced Materials, vol.23, issue.3, pp.349-368, 2011.

A. Schweikart, A. Horn, A. Böker, and A. Fery, Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces, Advances in Polymer Science, p.9781118056776, 2009.

A. Horn, H. G. Schoberth, S. Hiltl, A. Chiche, Q. Wang et al., Nanostructured wrinkled surfaces for templating bionanoparticles-controlling and quantifying the degree of order, Faraday Discussions, vol.143, p.143, 2009.

M. Tebbe, M. Mayer, B. Glatz, C. Hanske, P. T. Probst et al.,

C. König, A. Kuttner, and . Fery, Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas, Faraday Discussions, vol.181, issue.0, pp.243-260, 2015.

C. Hanske, M. B. Müller, V. Bieber, M. Tebbe, S. Jessl et al., The Role of Substrate Wettability in Nanoparticle Transfer from Wrinkled Elastomers: Fundamentals and Application toward Hierarchical Patterning, Langmuir, vol.28, issue.49, pp.16-745, 2012.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk et al., Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal SelfAssembly, Nano Letters, vol.14, issue.12, pp.6863-6871, 2014.

M. Mueller, M. Tebbe, D. V. Andreeva, M. Karg, R. A. Alvarez-puebla et al., Large-Area Organization of pNIPAM-Coated Nanostars as SERS Platforms for Polycyclic Aromatic Hydrocarbons Sensing in Gas Phase, Langmuir, vol.28, issue.24, pp.9168-9173, 2012.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response, The Journal of Physical Chemistry C, vol.115, issue.29, pp.14-036, 2011.

L. Anghinolfi, L. Mattera, M. Canepa, and F. Bisio, Plasmon dispersion in self-organized Au nanoparticle arrays, Physical Review B, vol.85, issue.23, pp.235-426, 2012.

R. Verre, K. Fleischer, O. Ualibek, and I. V. Shvets, Self-assembled broadband plasmonic nanoparticle arrays for sensing applications, Applied Physics Letters, vol.100, issue.3, 2012.

R. Verre, K. Fleischer, J. F. Mcgilp, D. Fox, G. Behan et al., Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays, Nanotechnology, vol.23, issue.3, pp.35-606, 2012.

R. Verre, K. Fleischer, R. G. Sofin, N. Mcalinden, J. F. Mcgilp et al., In situ characterization of one-dimensional plasmonic ag nanocluster arrays, Physical Review B -Condensed Matter and Materials Physics, vol.83, issue.12, pp.125-432, 2011.

N. Semaltianos and E. Wilson, Investigation of the surface morphology of thermally evaporated thin gold films on mica, glass, silicon and calcium fluoride substrates by scanning tunneling microscopy, Thin Solid Films, vol.366, issue.1-2, pp.111-116, 2000.

H. Sun, M. Yu, X. Sun, G. Wang, and J. Lian, Effective Temperature Sensing by Irreversible Morphology Evolution of Ultrathin Gold Island Films, The Journal of Physical Chemistry C, vol.117, issue.7, pp.3366-3373, 2013.

A. Schaub, P. Slepi?ka, I. Ka?párková, P. Malinský, A. Macková et al., Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique, Nanoscale Research Letters, vol.8, issue.1, p.249, 2013.

R. Gupta, M. J. Dyer, and W. A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films, Journal of Applied Physics, vol.92, issue.9, pp.5264-5271, 2002.

Y. He, J. Fu, and Y. Zhao, Oblique angle deposition and its applications in plasmonics, Frontiers of Physics, vol.9, issue.1, pp.47-59, 2014.

T. Peng, W. Lin, C. Chen, D. P. Tsai, and H. Chiang, Enhanced Sensitivity of Surface Plasmon Resonance Phase-Interrogation Biosensor by Using Silver Nanoparticles, Plasmonics, vol.6, issue.1, pp.29-34, 2011.

J. Fu, A. Collins, and Y. Zhao, Optical Properties and Biosensor Application of Ultrathin Silver Films Prepared by Oblique Angle Deposition, The Journal of Physical Chemistry C, vol.112, issue.43, pp.16-784, 2008.

W. L. Watkins and Y. Borensztein, Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance, Phys. Chem. Chem. Phys, vol.19, issue.40, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627748

B. Hammer and J. K. Norskov, Why gold is the noblest of all the metals, Nature, vol.376, issue.6537, pp.238-240, 1995.

B. Hammer and J. Norskov, Theoretical surface science and catalysis -calculations and concepts, Advances in Catalysis, vol.45, pp.71-129, 2000.

L. Barrio, P. Liu, J. A. Rodríguez, J. M. Campos-martín, and J. L. Fierro, A density functional theory study of the dissociation of h 2 on gold clusters: Importance of fluxionality and ensemble effects, Journal of Chemical Physics, vol.125, issue.16, pp.12-16, 2006.

A. Corma, M. Boronat, S. González, and F. Illas, On the activation of molecular hydrogen by gold: A theoretical approximation to the nature of potential active sites, Chemical communications, pp.3371-3373, 2007.

L. Stobi?ski, L. Zommer, and R. Du?, Molecular hydrogen interactions with discontinuous and continuous thin gold films, Applied Surface Science, vol.141, issue.3-4, pp.319-325, 1999.

A. G. Sault, R. J. Madix, and C. T. Campbell, Adsorption of oxygen and hydrogen on au(110)-(1x2), Surface Science, vol.169, issue.2-3, pp.347-356, 1986.

M. Haruta, When gold is not noble: Catalysis by nanoparticles, Chemical Record, vol.3, issue.2, pp.75-87, 2003.

T. Fujitani, I. Nakamura, T. Akita, M. Okumura, and M. Haruta, Hydrogen dissociation by gold clusters, Angewandte Chemie -International Edition, vol.48, issue.50, pp.9515-9518, 2009.

A. Corma and H. Garcia, Supported gold nanoparticles as catalysts for organic reactions, Chemical Society Reviews, vol.37, issue.9, pp.2096-2126, 2008.

G. C. Bond, Hydrogenation by gold catalysts: An unexpected discovery and a current assessment, Gold Bulletin, vol.49, issue.3-4, pp.53-61, 2016.

M. Manzoli, A. Chiorino, F. Vindigni, and F. Boccuzzi, Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A ftir study, Catalysis Today, vol.181, issue.1, pp.62-67, 2012.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown et al., Hot electrons do the impossible: Plasmon-induced dissociation of h 2 on au, Nano Letters, vol.13, issue.1, pp.240-247, 2013.

S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-orozco et al., Hot-electron-induced dissociation of h 2 on gold nanoparticles supported on sio 2, Journal of the American Chemical Society, vol.136, issue.1, pp.64-67, 2014.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Plasmon-induced hot carrier science and technology, Nature Nanotechnology, vol.10, issue.1, pp.25-34, 2015.

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, Ultrathin, Ultrasmooth Gold Layer on Dielectrics without the Use of Additional Metallic Adhesion Layers, ACS Applied Materials and Interfaces, vol.7, issue.10, pp.5797-5802, 2015.

G. A. Somorjai, Introduction to surface chemistry and catalysis, pp.0-471, 1994.

S. S. Collins, M. Cittadini, C. Pecharromán, A. Martucci, and P. Mulvaney, Hydrogen spillover between single gold nanorods and metal oxide supports: A surface plasmon spectroscopy study, ACS Nano, vol.9, issue.8, pp.7846-7856, 2015.

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina et al., Seeing is believing: Hot electron based gold nanoplasmonic optical hydrogen sensor, ACS Nano, vol.8, issue.8, pp.7755-7762, 2014.

E. Bus, J. T. Miller, and J. A. Van-bokhoven, Hydrogen chemisorption on Al2O3-supported gold catalysts, Journal of Physical Chemistry B, vol.109, issue.30, pp.14-581, 2005.

P. Ferrin, S. Kandoi, A. U. Nilekar, and M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A dft study, Surface Science, vol.606, issue.7-8, pp.679-689, 2012.

X. Shen, Y. Li, X. Liu, D. Zhang, J. Gao et al., Hydrogen diffusion into the subsurfaces of model metal catalysts from first principles, Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys, vol.19, issue.19, pp.3557-3564, 2017.

L. Kristinsdóttir and E. Skúlason, A systematic dft study of hydrogen diffusion on transition metal surfaces, Surface Science, vol.606, pp.1400-1404, 2012.

Y. Santiago-rodríguez, J. A. Herron, M. C. Curet-arana, and M. Mavrikakis, Atomic and molecular adsorption on au(111), Surface Science, vol.627, issue.2, pp.57-69, 2014.

E. Del, V. Gómez, S. Amaya-roncancio, L. B. Avalle, D. H. Linares et al., Dft study of adsorption and diffusion of atomic hydrogen on metal surfaces, Applied Surface Science, vol.420, pp.1-8, 2017.

M. N-'dollo, P. S. Moussounda, T. Dintzer, and F. Garin, A density functional theory study of methoxy and atomic hydrogen chemisorption on au(100) surface, Journal of Modern Physics, vol.4, pp.409-417, 2013.

A. S. Barnard and Y. Chen, Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles, Journal of Materials Chemistry, vol.21, issue.33, pp.12-239, 2011.

G. D. Barmparis and I. N. Remediakis, First-principles atomistic Wulff constructions for gold nanoparticles, 2011.

G. D. Barmparis, K. Honkala, and I. N. Remediakis, Thiolate adsorption on Au(hkl) and equilibrium shape of large thiolate-covered gold nanoparticles, The Journal of Chemical Physics, vol.138, issue.6, pp.64-702, 2013.

T. Kizuka and N. Tanaka, Atomic process of epitaxial growth of gold on magnesium oxide studied by cross-sectional time-resolved high-resolution electron microscopy, Physical Review B -Condensed Matter and Materials Physics, vol.56, issue.16, pp.10-079, 1997.

S. Giorgio, M. Cabié, and C. R. Henry, Dynamic observations of au catalysts by environmental electron microscopy, Gold Bulletin, vol.41, issue.2, pp.167-173, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303638

D. A. King and M. G. Wells, Reaction mechanism in chemisorption kinetics: Nitrogen on the plane of tungsten, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.339, issue.1617, pp.245-269, 1974.

H. C. Kang and W. H. Weinberg, Dynamic monte carlo simulations of surface-rate processes, Accounts of Chemical Research, vol.25, issue.6, pp.253-259, 1992.

X. Kuang, X. Wand, and G. Liu, A comparative study between all-electron scalar relativistic calculation and all-electron calculation on the adsorption of hydrogen molecule onto small gold clusters, Journal of Chemical Sciences, vol.125, issue.2, pp.401-411, 2013.

A. Lyalin and T. Taketsugu, A computational investigation of h 2 adsorption and dissociation on au nanoparticles supported on tio 2 surface, Faraday Discussions, vol.152, issue.0, pp.1359-6640, 2011.

S. Zhao, Y. Ren, Y. Ren, J. Wang, and W. Yin, Density functional study of hydrogen binding on gold and silver-gold clusters, The Journal of Physical Chemistry A, vol.114, issue.14, pp.4917-4923, 2010.

B. D. Adams and A. Chen, The role of palladium in a hydrogen economy, Materials Today, vol.14, issue.6, pp.282-289, 2011.

N. P. Brandon and Z. Kurban, Clean energy and the hydrogen economy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.375, p.400, 2017.

V. G. Dovì, F. Friedler, D. Huisingh, and J. J. Kleme?, Cleaner energy for sustainable future, Journal of Cleaner Production, vol.17, issue.10, pp.889-895, 2009.

I. Dincer and C. Acar, A review on clean energy solutions for better sustainability, International Journal of Energy Research, vol.39, issue.5, pp.585-606, 2015.

G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, The Hydrogen Economy, Physics Today, vol.57, issue.12, pp.39-44, 2004.

A. Midilli and I. Dincer, Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption, International Journal of Hydrogen Energy, vol.33, issue.16, pp.4209-4222, 2008.

, Safety Standard for Hydrogen and Hydrogen Systems, p.37, 1997.

D. Imamura, M. Akai, and S. Watanabe, Exploration of hydrogen odorants for fuel cell vehicles, Journal of Power Sources, vol.152, issue.1-2, pp.226-232, 2005.

T. Hübert, L. Boon-brett, G. Black, and U. Banach, Hydrogen sensors -A review, Sensors and Actuators B: Chemical, vol.157, issue.2, pp.329-352, 2011.

B. Sharma, A. Sharma, and J. Kim, Recent advances on H 2 sensor technologies based on MOX and FET devices: A review, Sensors and Actuators B: Chemical, vol.262, pp.758-770, 2018.

A. Katsuki and K. Fukui, H2 selective gas sensor based on SnO2, Sensors and Actuators B: Chemical, vol.52, issue.1-2, pp.30-37, 1998.

S. J. Mckeown and L. L. Goddard, Reflective Palladium Nanoapertures on Fiber for Wide Dynamic Range Hydrogen Sensing, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.2, pp.263-268, 2017.

N. Javahiraly, Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium, Optical Engineering, vol.54, issue.3, pp.30-901, 2015.

J. Dai, L. Zhu, G. Wang, F. Xiang, Y. Qin et al., Optical Fiber Grating Hydrogen Sensors: A Review, Sensors, vol.17, issue.3, p.577, 2017.

Y. Zhang, H. Peng, X. Qian, Y. Zhang, G. An et al., Recent advancements in optical fiber hydrogen sensors, Sensors and Actuators B: Chemical, vol.244, pp.393-416, 2017.

C. Wadell, S. Syrenova, and C. Langhammer, Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides, ACS Nano, vol.8, issue.12, pp.11-925, 2014.

G. Behzadi and L. , Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO 2 /Si structure at room temperature, Results in Physics, vol.7, 1993.

K. Aoki, Applicability of palladium membrane for the separation of protium and deuterium, International Journal of Hydrogen Energy, vol.23, issue.5, pp.325-332, 1998.

F. D. Manchester, A. San-martin, and J. M. Pitre, The H-Pd (hydrogen-palladium) System, Journal of Phase Equilibria, vol.15, issue.1, pp.62-83, 1994.

P. Johnson, R. Christy-;-ti, V. Cr, . Mn, . Fe et al., Optical constants of transition metals, Physical Review B, vol.9, issue.12, pp.5056-5070, 1974.

K. Sugawa, H. Tahara, A. Yamashita, J. Otsuki, T. Sagara et al., Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material, ACS Nano, vol.9, issue.2, pp.1895-1904, 2015.

I. Zori?, E. M. Larsson, B. Kasemo, and C. Langhammer, Localized Surface Plasmons Shed Light on Nanoscale Metal Hydrides, Advanced Materials, vol.22, issue.41, pp.4628-4633, 2010.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam et al., Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals, Nature Materials, vol.12, issue.10, pp.905-912, 2013.

W. E. Vargas, D. E. Azofeifa, N. Clark, H. Solis, F. Montealegre et al., Parametric formulation of the dielectric function of palladium and palladium hydride thin films, Applied Optics, vol.53, issue.24, p.5294, 2014.

V. M. Silkin, R. Muiño, I. P. Chernov, E. V. Chulkov, and P. M. Echenique, Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration, Journal of Physics: Condensed Matter, vol.24, issue.10, pp.104-125, 2012.

N. Clark, W. E. Vargas, and D. E. Azofeifa, Dielectric function of Pd hydride thin films in terms of hydrogen concentration and film's thickness: A parametric formulation, Journal of Alloys and Compounds, vol.645, issue.S1, pp.320-324, 2015.

A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Srabionyan, L. A. Bugaev et al., Temperature-and Pressure-Dependent Hydrogen Concentration in Supported PdH x Nanoparticles by Pd K-Edge X-ray Absorption Spectroscopy, The Journal of Physical Chemistry C, vol.118, issue.19, pp.10-416, 2014.

R. Kirchheim, T. M. Tschele, W. Kieninger, T. Mutschele, H. Gleiter et al., Hydrogen in amorphous and nanocrystalline metals, vol.99, pp.457-462, 1988.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, Plasmons in Strongly Coupled Metallic Nanostructures, Chemical Reviews, vol.111, issue.6, pp.3913-3961, 2011.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zori?, Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry, Nano Letters, vol.10, issue.9, pp.3529-3538, 2010.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus, Nature Materials, vol.10, issue.8, pp.631-636, 2011.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen, Advanced Functional Materials, vol.24, issue.46, pp.7328-7337, 2014.

C. Wadell, F. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner et al., HysteresisFree Nanoplasmonic Pd-Au Alloy Hydrogen Sensors, Nano Letters, vol.15, issue.5, pp.3563-3570, 2015.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van-duyne et al., Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing, ACS Nano, vol.8, issue.8, pp.7639-7647, 2014.

C. Wadell and C. Langhammer, Drift-corrected nanoplasmonic hydrogen sensing by polarization, Nanoscale, vol.7, issue.25, pp.10-963, 2015.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland et al.,

. Kasemo, Hole-Mask Colloidal Lithography, Advanced Materials, vol.19, issue.23, pp.4297-4302, 2007.

M. Matuschek, D. P. Singh, H. Jeong, M. Nesterov, T. Weiss et al., Chiral Plasmonic Hydrogen Sensors, vol.14, pp.1-702, 2018.

S. Syrenova, C. Wadell, and C. Langhammer, Shrinking-hole colloidal lithography: Self-aligned nanofabrication of complex plasmonic nanoantennas, Nano Letters, vol.14, issue.5, pp.2655-2663, 2014.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu et al., Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing, Nano Letters, vol.11, issue.10, pp.4366-4369, 2011.

H. K. Yip, X. Zhu, X. Zhuo, R. Jiang, Z. Yang et al., Gold Nanobipyramid-Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ?140 nm at 2 vol% Hydrogen Concentration, Advanced Optical Materials, vol.5, issue.24, p.740, 2017.

D. Aspnes, Optical properties of thin films, Thin Solid Films, vol.89, issue.3, pp.249-262, 1982.

X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp et al., Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires Formed on Filtration Membranes, Nano Letters, vol.11, issue.1, pp.262-268, 2011.

M. Johansson, E. Skúlason, G. Nielsen, S. Murphy, R. M. Nielsen et al., Hydrogen adsorption on palladium and palladium hydride at 1 bar, Surface Science, vol.604, issue.7-8, pp.718-729, 2010.

R. Griessen, N. Strohfeldt, and H. Giessen, Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles, Nature Materials, vol.15, issue.3, pp.311-317, 2016.

V. M. Silkin, I. P. Chernov, P. M. Echenique, Y. M. Koroteev, and E. V. Chulkov, Influence of hydrogen absorption on low-energy electronic collective excitations in palladium, Physical Review B, vol.76, issue.24, pp.245-105, 2007.

C. K. Gupta and C. Metallurgy, , p.9783527602001, 2004.

N. Lopez, Z. ?odziana, F. Illas, and M. Salmeron, When Langmuir is too simple: H 2 dissociation on Pd(111) at high coverage, Physical review letters, vol.93, issue.14, pp.146-103, 2004.

T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies, Nature, vol.422, issue.6933, pp.705-707, 2003.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, An overview of hydrogen safety sensors and requirements, International Journal of Hydrogen Energy, vol.36, issue.3, pp.2462-2470, 2011.

T. Hübert, L. Boon-brett, V. Palmisano, and M. Bader, Developments in gas sensor technology for hydrogen safety, International Journal of Hydrogen Energy, vol.39, issue.35, pp.20-474, 2014.

S. S. Kalanur, Y. Lee, and H. Seo, Eye-readable gasochromic and optical hydrogen gas sensor based on CuS-Pd, RSC Adv, vol.5, issue.12, pp.9028-9034, 2015.

K. Christmann, Interaction of hydrogen with solid surfaces, Surface Science Reports, vol.9, issue.1-3, pp.1-163, 1988.

R. Delmelle and J. Proost, An in situ study of the hydriding kinetics of Pd thin films, Physical Chemistry Chemical Physics, vol.13, issue.23, pp.11-412, 2011.

C. Nyberg and C. G. Tengstål, Adsorption and reaction of water, oxygen, and hydrogen on Pd(100): Identification of adsorbed hydroxyl and implications for the catalytic H 2 -O 2 reaction, The Journal of Chemical Physics, vol.80, issue.7, pp.3463-3468, 1984.

R. H. Radzilowski and R. D. Pehlke, Absorption of gaseous oxygen by liquid cobalt, copper, iron and nickel, Metallurgical Transactions B, vol.9, issue.1, pp.129-137, 1978.

C. J. Smithells and C. E. Ransley, The Diffusion of Gases through Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.150, issue.869, pp.172-197, 1935.

F. Mackenzie and J. Mackenzie, Our changing planet, p.132713217, 1995.

M. Gao, M. Cho, H. Han, Y. S. Jung, and I. Park, Palladium-Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing, Small, vol.14, issue.10, pp.1-703, 2018.

A. Baylet, P. Marécot, D. Duprez, P. Castellazzi, G. Groppi et al., In situ Raman and in situ XRD analysis of PdO reduction and Pd? oxidation supported on ?-Al 2 O 3 catalyst under different atmospheres, Physical Chemistry Chemical Physics, vol.13, issue.10, p.4607, 2011.

D. Wang and T. B. Flanagan, Diffusion of oxygen in Pd, Scripta Materialia, vol.52, issue.7, pp.599-601, 2005.

R. Westerström, C. Weststrate, A. Resta, A. Mikkelsen, J. Schnadt et al.,

N. Schmid, J. Seriani, F. Harl, G. Mittendorfer, and . Kresse, Stressing Pd atoms: Initial oxidation of the Pd(110) surface, Surface Science, vol.602, issue.14, pp.2440-2447, 2008.

G. Zheng and E. Altman, The oxidation mechanism of Pd(100), Surface Science, vol.504, pp.253-270, 2002.

D. Zemlyanov, B. Aszalos-kiss, E. Kleimenov, D. Teschner, S. Zafeiratos et al., In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10 ?3 mbar O 2, Surface Science, vol.600, issue.5, pp.983-994, 2006.

H. H. Kan and J. F. Weaver, Mechanism of PdO thin film formation during the oxidation of Pd(111), Surface Science, vol.603, issue.17, pp.2671-2682, 2009.

G. Ketteler, D. F. Ogletree, H. Bluhm, H. Liu, E. L. Hebenstreit et al., In Situ Spectroscopic Study of the Oxidation and Reduction of Pd(111), Journal of the American Chemical Society, vol.127, issue.51, pp.18-269, 2005.

H. H. Kan, R. B. Shumbera, and J. F. Weaver, Adsorption and abstraction of oxygen atoms on Pd(111): Characterization of the precursor to PdO formation, Surface Science, vol.602, issue.7, pp.1337-1346, 2008.

P. O. Nilsson, Optical properties of PdO in the range of 0.5-5.4 eV, Journal of Physics C: Solid State Physics, vol.12, issue.7, pp.1423-1427, 1979.

Y. Chiang, K. Li, Y. Lin, and F. Pan, A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 ? C, Physical chemistry chemical physics : PCCP, vol.17, issue.5, pp.3039-3088, 2015.

D. Zemlyanov, B. Klötzer, H. Gabasch, A. Smeltz, F. H. Ribeiro et al., Kinetics of Palladium Oxidation in the mbar Pressure Range: Ambient Pressure XPS Study, Topics in Catalysis, vol.56, issue.11, pp.885-895, 2013.

A. U. Ortiz, A. P. Freitas, A. Boutin, A. H. Fuchs, and F. Coudert, What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption, Phys. Chem. Chem. Phys, vol.16, issue.21, pp.9940-9949, 2014.

W. Koo, S. Qiao, A. F. Ogata, G. Jha, J. Jang et al., Accelerating Palladium Nanowire H 2 Sensors Using Engineered Nanofiltration, ACS Nano, vol.11, issue.9, pp.9276-9285, 2017.

L. E. Kreno, J. T. Hupp, and R. P. Van-duyne, Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing, Analytical Chemistry, vol.82, issue.19, pp.8042-8046, 2010.

T. Tian, M. T. Wharmby, J. B. Parra, C. O. Ania, and D. Fairen-jimenez, Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8, Dalton Transactions, vol.45, issue.16, pp.6893-6900, 2016.

. Figure-a, 1: UV-Vis transmission spectra of the Au discussed in section 3.2 before annealing (black) and after annealing for 10min at 140 ? (green). The spectra were taken using polarised light parallel (solid) and normal (dashed) to the direction of evaporation

, A.6 References

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.6, issue.12, pp.4370-4379, 1972.

P. Johnson, R. Christy-;-ti, V. Cr, . Mn, . Fe et al., Optical constants of transition metals, Physical Review B, vol.9, issue.12, pp.5056-5070, 1974.

V. M. Silkin, R. Muiño, I. P. Chernov, E. V. Chulkov, and P. M. Echenique, Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration, Journal of Physics: Condensed Matter, vol.24, issue.10, pp.104-125, 2012.

, Résumé en français B.1 Introduction générale et methodologie

, Interaction du dihydrogène avec des nanoparticules d'or

, Utilisation du palladium pour la détection du dihydrogène

D. B. Harden and J. M. Toynbee, VII.The Rothschild Lycurgus Cup, Archaeologia, vol.97, pp.179-212, 1954.

F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst et al., Before striking gold in gold-ruby glass, Nature, vol.407, issue.6805, pp.691-692, 2000.

R. C. Chirnside and P. M. Proffitt, The Rothschild Lycurgus Cup: an analytical investigation, Journal of Glass Studies, vol.5, pp.18-23, 1963.

A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo et al., Gold nanoparticles in ancient and contemporary ruby glass, Journal of Cultural Heritage, vol.9, pp.134-137, 2008.

M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philosophical Transactions of the Royal Society of London, vol.147, pp.145-181, 1857.

G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, vol.330, issue.3, pp.377-445, 1908.

R. Gans, ÜBER DIE FORM ULTRAMIKROSKOPISCHER SILBERTEILCHEN, Annalen der Physik, vol.352, issue.10, pp.270-284, 1915.

P. Drude, Zur Elektronentheorie der Metalle, Annalen der Physik, vol.306, issue.3, pp.566-613, 1900.

, Zur Elektronentheorie der Metalle II. Teil. Galvanomagnetische und thermomagnetische Effecte, vol.308, pp.369-402, 1900.

D. Pines and D. Bohm, A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions, Physical Review, vol.85, issue.2, pp.338-353, 1952.

R. Feynman, There is plenty of room at the bottom (talk tanscript), Caltech Engineering and Science, vol.23, issue.5, pp.22-36, 1960.

F. Wooten, Optical Properties of solids, p.9781483220765, 1972.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, pp.978-981, 1995.

J. D. Jackson and C. Electrodynamics, , p.471431311, 1999.

C. F. Bohren and D. R. Huffman, Adsorption and scattering of light by small particles

. London, , p.47105772, 1983.

F. Castro and B. Nabet, Numerical computation of the complex dielectric permittivity using Hilbert transform and FFT techniques, Journal of the Franklin Institute, vol.336, issue.1, pp.53-64, 1999.

P. Nilsson, Determination of Optical Constants from Intensity Measurements at Normal Incidence, Applied Optics, vol.7, issue.3, p.435, 1968.

J. E. Nestell and R. W. Christy, Optics of Thin Metal Films, American Journal of Physics, vol.39, issue.3, pp.313-320, 1971.

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.6, issue.12, pp.4370-4379, 1972.

P. O. Nilsson, Studies of AgIn and CuGe Alloys by Optical and Photoemission Techniques, Physica Scripta, vol.1, issue.4, pp.189-192, 1970.

G. P. Pells, Measurement of the optical properties of alloys in ultra-high vacuum, Journal of Scientific Instruments, vol.44, issue.12, pp.997-1000, 1967.

J. E. Nestell and R. W. Christy, Derivation of Optical Constants of Metals from Thin-Film Measurements at Oblique Incidence, Applied Optics, vol.11, issue.3, p.643, 1972.

V. M. Silkin, I. P. Chernov, P. M. Echenique, Y. M. Koroteev, and E. V. Chulkov, Influence of hydrogen absorption on low-energy electronic collective excitations in palladium, Physical Review B, vol.76, issue.24, pp.245-105, 2007.

V. M. Silkin, R. Muiño, I. P. Chernov, E. V. Chulkov, and P. M. Echenique, Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration, Journal of Physics: Condensed Matter, vol.24, issue.10, pp.104-125, 2012.

C. Hogan, O. Pulci, P. Gori, F. Bechstedt, D. S. Martin et al.,

. Borensztein, Optical properties of silicene, Si/Ag(111), and Si/Ag(110), Physical Review B, vol.97, issue.19, pp.195-407, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01950957

A. Marini, R. D. Sole, and G. Onida, First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation, Physical Review B, vol.66, issue.11, pp.115-101, 2002.

H. Ehrenreich and H. R. Philipp, Optical Properties of Ag and Cu, Physical Review, vol.128, issue.4, pp.1622-1629, 1962.

B. R. Cooper, H. Ehrenreich, and H. R. Philipp, Optical Properties of Noble Metals. II, Physical Review, vol.138, issue.2A, pp.494-507, 1965.

H. S. Sehmi, W. Langbein, and E. A. Muljarov, Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper, Physical Review B, vol.95, issue.11, pp.115-444, 2017.

M. Valamanesh, Y. Borensztein, C. Langlois, and E. Lacaze, Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles, The Journal of Physical Chemistry C, vol.115, issue.7, pp.2914-2922, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00569090

K. M. Mayer and J. H. Hafner, Localized Surface Plasmon Resonance Sensors, Chemical Reviews, vol.111, issue.6, pp.3828-3857, 2011.

B. Luk'yanchuk, N. I. Zheludev, S. Maier, N. J. Halas, P. Nordlander et al., The Fano resonance in plasmonic nanostructures and metamaterials, Nature Materials, vol.9, issue.9, pp.707-715, 2010.

R. Kuladeep, L. Jyothi, K. S. Alee, K. L. Deepak, and D. N. Rao, Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency, Optical Materials Express, vol.2, issue.2, p.161, 2012.

L. Bossard-giannesini, Mesures et simulation du travail de sortie de nanoparticules d'or fonctionnalisées, 2018.

C. Goldmann, R. Lazzari, X. Paquez, C. Boissière, F. Ribot et al., Charge Transfer at Hybrid Interfaces: Plasmonics of Aromatic Thiol-Capped Gold Nanoparticles, ACS Nano, vol.9, issue.7, pp.7572-7582, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01291241

P. Mulvaney, J. Pérez-juste, M. Giersig, L. M. Liz-marzán, and C. Pecharromán, Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging, Plasmonics, vol.1, issue.1, pp.61-66, 2006.

B. G. Ershov, E. V. Abkhalimov, R. D. Solovov, and V. I. Roldughin, Gold nanoparticles in aqueous solutions: influence of size and pH on hydrogen dissociative adsorption and Au(III) ion reduction, Physical Chemistry Chemical Physics, vol.18, issue.19, pp.13-459, 2016.

B. S. Hoener, H. Zhang, T. S. Heiderscheit, S. R. Kirchner, A. S. De-silva-indrasekara et al., Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects, vol.8, pp.2681-2688, 2017.

A. H. Ali, R. J. Luther, C. A. Foss, and G. B. Chapman, Optical Properties of Nanoscopic Gold Particles Adsorbed At Electrode Surfaces: the Effect of Applied Potential on Plasmon Resonance Absorption, Nanostructured Materials, vol.9, issue.5, pp.559-562, 1997.

A. H. Ali, J. Colby, and A. Foss, Electrochemically Induced Shifts in the Plasmon Resonance Bands of Nanoscopic Gold Particles Adsorbed on Transparent Electrodes, Journal of The Electrochemical Society, vol.146, issue.2, p.628, 1999.

R. Chapman and P. Mulvaney, Electro-optical shifts in silver nanoparticle films, Chemical Physics Letters, vol.349, issue.5-6, pp.358-362, 2001.

T. Miyazaki, R. Hasegawa, H. Yamaguchi, H. Oh-oka, H. Nagato et al., Electrical Control of Plasmon Resonance of Gold Nanoparticles Using Electrochemical Oxidation, The Journal of Physical Chemistry C, vol.113, issue.19, pp.8484-8490, 2009.

M. Hu, D. P. Linder, M. Buongiorno, A. Nardelli, and . Striolo, Hydrogen Adsorption on Platinum-Gold Bimetallic Nanoparticles: A Density Functional Theory Study, vol.117, 2013.

B. T. Draine and P. J. Flatau, Discrete-Dipole Approximation For Scattering Calculations, Journal of the Optical Society of America A, vol.11, issue.4, p.1491, 1994.

H. Devoe, Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction, The Journal of Chemical Physics, vol.41, issue.2, pp.393-400, 1964.

E. M. Purcell and C. R. Pennypacker, Scattering and Absorption of Light by Nonspherical Dielectric Grains, The Astrophysical Journal, vol.186, p.705, 1973.

S. B. Singham and G. C. Salzman, Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation, The Journal of Chemical Physics, vol.84, issue.5, pp.2658-2667, 1986.

S. B. Singham and C. F. Bohren, Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method, Optics Letters, vol.12, issue.1, p.10, 1987.

K. A. Willets and R. P. Van-duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, vol.58, issue.1, pp.267-297, 2007.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors, Nature Materials, vol.7, issue.6, pp.442-453, 2008.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Gold Nanoparticles in Chemical and Biological Sensing, Chemical Reviews, vol.112, issue.5, pp.2739-2779, 2012.

D. Wild, The Immunoassay Handbook, p.80445268, 2005.

J. Satija, N. Punjabi, D. Mishra, and S. Mukherji, Plasmonic-ELISA: expanding horizons, RSC Advances, vol.6, pp.85-440, 2016.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, Shape-and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles, Langmuir, vol.24, issue.10, pp.5233-5237, 2008.

B. Ro?i?, J. Fresnais, C. Molinaro, J. Calixte, S. Umadevi et al., Oriented Gold Nanorods and Gold Nanorod Chains within Smectic Liquid Crystal Topological Defects, ACS Nano, vol.11, issue.7, pp.6728-6738, 2017.

, The Editors of Encyclopaedia Britannica

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Länk et al.,

M. Shvets and . Käll, Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces, Nanoscale, vol.8, issue.20, pp.10-576, 2016.

D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, Reflectance-difference spectroscopy system for real-time measurements of crystal growth, Applied Physics Letters, vol.52, issue.12, pp.957-959, 1988.

D. E. Aspnes and A. A. Studna, Anisotropies in the Above-Band-Gap Optical Spectra of Cubic Semiconductors, Physical Review Letters, vol.54, issue.17, pp.1956-1959, 1985.

G. Binnig and C. F. Quate, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.

R. D. Rodriguez, E. Lacaze, and J. Jupille, Probing the probe: AFM tip-profiling via nanotemplates to determine Hamaker constants from phase-distance curves, Ultramicroscopy, vol.121, pp.25-30, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01238977

M. R. Ryder, Z. Zeng, K. Titov, Y. Sun, E. M. Mahdi et al.,

M. D. Kelley, G. Frogley, J. Cinque, and . Tan, Dielectric Properties of Zeolitic Imidazolate Frameworks in the Broad-Band Infrared Regime, The Journal of Physical Chemistry Letters, vol.9, issue.10, pp.2678-2684, 2018.

S. Tawfick, M. De, D. Volder, S. J. Copic, C. R. Park et al., Engineering of Micro-and Nanostructured Surfaces with Anisotropic Geometries and Properties, Advanced Materials, vol.24, issue.13, pp.1628-1674, 2012.

M. C. Traub, W. Longsine, and V. N. Truskett, Advances in Nanoimprint Lithography, Annual Review of Chemical and Biomolecular Engineering, vol.7, issue.1, pp.583-604, 2016.

B. J. Lin, The ending of optical lithography and the prospects of its successors, Microelectronic Engineering, vol.83, issue.4-9, pp.604-613, 2006.

V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs et al., Resolution Limits of Electron-Beam Lithography toward the Atomic Scale, Nano Letters, vol.13, issue.4, pp.1555-1558, 2013.

G. Q. Wallace, S. T. Read, D. M. Mcrae, S. M. Rosendahl, and F. Lagugné-labarthet, Exploiting Anisotropy of Plasmonic Nanostructures with Polarization Modulation Infrared Linear Dichroism Microscopy (µPM-IRLD), Advanced Optical Materials, vol.6, issue.6, pp.1-701, 2018.

J. Boneberg, F. Burmeister, C. Schäfle, P. Leiderer, D. Reim et al., The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography ?, Langmuir, vol.13, issue.26, pp.7080-7084, 1997.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland et al.,

. Kasemo, Hole-Mask Colloidal Lithography, Advanced Materials, vol.19, issue.23, pp.4297-4302, 2007.

Z. Tang and A. Wei, Fabrication of Anisotropic Metal Nanostructures Using Innovations in TemplateAssisted Lithography, ACS Nano, vol.6, issue.2, pp.998-1003, 2012.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Länk et al., Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces, Nanoscale, vol.8, issue.20, pp.10-576, 2016.

S. Lee, K. Lee, J. Ahn, J. Lee, M. Kim et al., Highly Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography, ACS Nano, vol.5, issue.2, pp.897-904, 2011.

S. Park and A. Böker, Ceramic nanowrinkles via a facile replication process, Journal of Materials Chemistry, vol.21, issue.32, pp.11-734, 2011.

S. Y. Chou, Nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.4129, 1996.

S. J. Barcelo, W. Wu, X. Li, Z. Li, and R. S. Williams, Nanoimprint lithography of plasmonic platforms for SERS applications, Applied Physics A, vol.121, issue.2, pp.443-449, 2015.

Y. Yao, H. Liu, Y. Wang, Y. Li, B. Song et al., Nanoimprint lithography: an enabling technology for nanophotonics, Applied Physics A, vol.121, issue.2, pp.327-333, 2015.

N. Alayo, A. Conde-rubio, J. Bausells, X. Borrisé, A. Labarta et al., Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography, Nanotechnology, vol.26, issue.44, pp.445-302, 2015.

T. Tomioka, S. Kubo, K. Nagase, M. Hoga, and M. Nakagawa, Fabrication of Au nanorod and nanogap split-ring structures by reactive-monolayer-assisted thermal nanoimprint lithography involving electrodeposition, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, vol.30, pp.6-8, 2012.

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discussions of the Faraday Society, vol.11, p.55, 1951.

M. Grzelczak, J. Pérez-juste, P. Mulvaney, and L. M. Liz-marzán, Shape control in gold nanoparticle synthesis, Chemical Society Reviews, vol.37, issue.9, p.1783, 2008.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, Gold Nanoparticles: Past, Present, and Future, Langmuir, vol.25, issue.24, pp.13-840, 2009.

M. C. Daniel and D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantumsize related properties and applications toward biology, catalysis and nanotechnology, Chemical Reviews, vol.104, pp.293-346, 2004.

J. Pérez-juste, B. Rodríguez-gonzález, P. Mulvaney, and L. M. Liz-marzán, Optical Control and Patterning of Gold-Nanorod-Poly(vinyl alcohol) Nanocomposite Films, Advanced Functional Materials, vol.15, pp.1065-1071, 2005.

E. Boisselier and D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chemical Society Reviews, vol.38, issue.6, p.1759, 2009.

Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker et al., Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers, Nature Materials, vol.6, issue.8, pp.609-614, 2007.

M. A. Correa-duarte, J. Pérez-juste, A. Sánchez-iglesias, M. Giersig, and L. M. Liz-marzán, Aligning Au Nanorods by Using Carbon Nanotubes as Templates, Angewandte Chemie International Edition, vol.44, issue.28, pp.4375-4378, 2005.

M. A. Correa-duarte, N. Sobal, L. M. Liz-marzán, and M. Giersig, Linear Assemblies of SilicaCoated Gold Nanoparticles Using Carbon Nanotubes as Templates, Advanced Materials, vol.16, issue.23-24, pp.2179-2184, 2004.

E. Lacaze, O. Merchiers, Y. Borensztein, and D. Coursault, Trapping of gold nanoparticles within arrays of topological defects: evolution of the LSPR anisotropy, Rendiconti Lincei, vol.26, issue.S2, pp.183-191, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285197

D. Coursault, J. Grand, B. Zappone, H. Ayeb, G. Lévi et al., Linear Self-Assembly of Nanoparticles Within Liquid Crystal Defect Arrays, Advanced Materials, vol.24, issue.11, pp.1461-1465, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777951

J. H. Park and Y. L. Joo, Tailoring nanorod alignment in a polymer matrix by elongational flow under confinement: simulation, experiments, and surface enhanced Raman scattering application, Soft Matter, vol.10, issue.19, p.3494, 2014.

G. Hsieh, J. Wang, K. Ogata, J. Robertson, S. Hofmann et al., Stretched Contact Printing of One-Dimensional Nanostructures for Hybrid Inorganic-Organic Field Effect Transistors, The Journal of Physical Chemistry C, vol.116, issue.12, pp.7118-7125, 2012.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Li, Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods, Applied Physics Letters, vol.96, issue.26, pp.263-103, 2010.

C. J. Murphy and C. J. Orendorff, Alignment of Gold Nanorods in Polymer Composites and on Polymer Surfaces, Advanced Materials, vol.17, issue.18, pp.2173-2177, 2005.

J. Y. Chung, A. J. Nolte, and C. M. Stafford, Surface Wrinkling: A Versatile Platform for Measuring Thin-Film Properties, Advanced Materials, vol.23, issue.3, pp.349-368, 2011.

A. Schweikart, A. Horn, A. Böker, and A. Fery, Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces, Advances in Polymer Science, p.9781118056776, 2009.

A. Horn, H. G. Schoberth, S. Hiltl, A. Chiche, Q. Wang et al., Nanostructured wrinkled surfaces for templating bionanoparticles-controlling and quantifying the degree of order, Faraday Discussions, vol.143, p.143, 2009.

M. Tebbe, M. Mayer, B. Glatz, C. Hanske, P. T. Probst et al.,

C. König, A. Kuttner, and . Fery, Optically anisotropic substrates via wrinkle-assisted convective assembly of gold nanorods on macroscopic areas, Faraday Discussions, vol.181, issue.0, pp.243-260, 2015.

C. Hanske, M. B. Müller, V. Bieber, M. Tebbe, S. Jessl et al., The Role of Substrate Wettability in Nanoparticle Transfer from Wrinkled Elastomers: Fundamentals and Application toward Hierarchical Patterning, Langmuir, vol.28, issue.49, pp.16-745, 2012.

C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk et al., Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal SelfAssembly, Nano Letters, vol.14, issue.12, pp.6863-6871, 2014.

M. Mueller, M. Tebbe, D. V. Andreeva, M. Karg, R. A. Alvarez-puebla et al., Large-Area Organization of pNIPAM-Coated Nanostars as SERS Platforms for Polycyclic Aromatic Hydrocarbons Sensing in Gas Phase, Langmuir, vol.28, issue.24, pp.9168-9173, 2012.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response, The Journal of Physical Chemistry C, vol.115, issue.29, pp.14-036, 2011.

L. Anghinolfi, L. Mattera, M. Canepa, and F. Bisio, Plasmon dispersion in self-organized Au nanoparticle arrays, Physical Review B, vol.85, issue.23, pp.235-426, 2012.

R. Verre, K. Fleischer, O. Ualibek, and I. V. Shvets, Self-assembled broadband plasmonic nanoparticle arrays for sensing applications, Applied Physics Letters, vol.100, issue.3, 2012.

R. Verre, K. Fleischer, J. F. Mcgilp, D. Fox, G. Behan et al., Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays, Nanotechnology, vol.23, issue.3, pp.35-606, 2012.

R. Verre, K. Fleischer, R. G. Sofin, N. Mcalinden, J. F. Mcgilp et al., In situ characterization of one-dimensional plasmonic ag nanocluster arrays, Physical Review B -Condensed Matter and Materials Physics, vol.83, issue.12, pp.125-432, 2011.

N. Semaltianos and E. Wilson, Investigation of the surface morphology of thermally evaporated thin gold films on mica, glass, silicon and calcium fluoride substrates by scanning tunneling microscopy, Thin Solid Films, vol.366, issue.1-2, pp.111-116, 2000.

H. Sun, M. Yu, X. Sun, G. Wang, and J. Lian, Effective Temperature Sensing by Irreversible Morphology Evolution of Ultrathin Gold Island Films, The Journal of Physical Chemistry C, vol.117, issue.7, pp.3366-3373, 2013.

A. Schaub, P. Slepi?ka, I. Ka?párková, P. Malinský, A. Macková et al., Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique, Nanoscale Research Letters, vol.8, issue.1, p.249, 2013.

R. Gupta, M. J. Dyer, and W. A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films, Journal of Applied Physics, vol.92, issue.9, pp.5264-5271, 2002.

Y. He, J. Fu, and Y. Zhao, Oblique angle deposition and its applications in plasmonics, Frontiers of Physics, vol.9, issue.1, pp.47-59, 2014.

T. Peng, W. Lin, C. Chen, D. P. Tsai, and H. Chiang, Enhanced Sensitivity of Surface Plasmon Resonance Phase-Interrogation Biosensor by Using Silver Nanoparticles, Plasmonics, vol.6, issue.1, pp.29-34, 2011.

J. Fu, A. Collins, and Y. Zhao, Optical Properties and Biosensor Application of Ultrathin Silver Films Prepared by Oblique Angle Deposition, The Journal of Physical Chemistry C, vol.112, issue.43, pp.16-784, 2008.

M. Born and E. Wolf, A homogeneous dielectric film, Principles of Optics, pp.60-63

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, pp.978-981, 1995.

R. G. Barrera, M. Castillo-mussot, G. Monsivais, P. Villaseor, and W. L. Mochán, Optical properties of two-dimensional disordered systems on a substrate, Physical Review B, vol.43, issue.17, pp.13-819, 1991.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin et al., Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films, Physical Review Letters, vol.82, issue.22, pp.4520-4523, 1999.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn et al., Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance, Physical Review Letters, vol.84, issue.20, pp.4721-4724, 2000.

M. O. Stetsenko, L. S. Maksimenko, S. P. Rudenko, I. M. Krishchenko, A. A. Korchovyi et al., Surface Plasmon's Dispersion Properties of Porous Gold Films, Nanoscale Research Letters, vol.11, issue.1, p.116, 2016.

R. Esteban, R. W. Taylor, J. J. Baumberg, and J. Aizpurua, How Chain Plasmons Govern the Optical Response in Strongly Interacting Self-Assembled Metallic Clusters of Nanoparticles, Langmuir, vol.28, issue.24, pp.8881-8890, 2012.

F. Abelès, Y. Borensztein, and T. López-rios, Optical properties of discontinuous thin films and rough surfaces of silver, Advances in Solid State Physics, vol.125, pp.93-117, 1984.

M. Jebari, Y. Borensztein, and G. Vuye, Anomalous optical absorption in porous metal films, Physica A: Statistical Mechanics and its Applications, vol.157, pp.371-376, 1989.

T. V. Teperik, V. V. Popov, and F. J. García-de-abajo, Void plasmons and total absorption of light in nanoporous metallic films, Physical Review B, vol.71, issue.8, pp.85-408, 2005.

D. Aspnes, Optical properties of thin films, Thin Solid Films, vol.89, issue.3, pp.249-262, 1982.

P. Johnson, R. Christy-;-ti, V. Cr, . Mn, . Fe et al., Optical constants of transition metals, Physical Review B, vol.9, issue.12, pp.5056-5070, 1974.

W. L. Watkins and Y. Borensztein, Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance, Phys. Chem. Chem. Phys, vol.19, issue.40, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627748

B. Hammer and J. K. Norskov, Why gold is the noblest of all the metals, Nature, vol.376, issue.6537, pp.238-240, 1995.

B. Hammer and J. Norskov, Theoretical surface science and catalysis -calculations and concepts, Advances in Catalysis, vol.45, pp.71-129, 2000.

L. Barrio, P. Liu, J. A. Rodríguez, J. M. Campos-martín, and J. L. Fierro, A density functional theory study of the dissociation of h 2 on gold clusters: Importance of fluxionality and ensemble effects, Journal of Chemical Physics, vol.125, issue.16, pp.12-16, 2006.

A. Corma, M. Boronat, S. González, and F. Illas, On the activation of molecular hydrogen by gold: A theoretical approximation to the nature of potential active sites, Chemical communications, pp.3371-3373, 2007.

L. Stobi?ski, L. Zommer, and R. Du?, Molecular hydrogen interactions with discontinuous and continuous thin gold films, Applied Surface Science, vol.141, issue.3-4, pp.319-325, 1999.

A. G. Sault, R. J. Madix, and C. T. Campbell, Adsorption of oxygen and hydrogen on au(110)-(1x2), Surface Science, vol.169, issue.2-3, pp.347-356, 1986.

M. Haruta, When gold is not noble: Catalysis by nanoparticles, Chemical Record, vol.3, issue.2, pp.75-87, 2003.

T. Fujitani, I. Nakamura, T. Akita, M. Okumura, and M. Haruta, Hydrogen dissociation by gold clusters, Angewandte Chemie -International Edition, vol.48, issue.50, pp.9515-9518, 2009.

A. Corma and H. Garcia, Supported gold nanoparticles as catalysts for organic reactions, Chemical Society Reviews, vol.37, issue.9, pp.2096-2126, 2008.

G. C. Bond, Hydrogenation by gold catalysts: An unexpected discovery and a current assessment, Gold Bulletin, vol.49, issue.3-4, pp.53-61, 2016.

M. Manzoli, A. Chiorino, F. Vindigni, and F. Boccuzzi, Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A ftir study, Catalysis Today, vol.181, issue.1, pp.62-67, 2012.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown et al., Hot electrons do the impossible: Plasmon-induced dissociation of h 2 on au, Nano Letters, vol.13, issue.1, pp.240-247, 2013.

S. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala-orozco et al., Hot-electron-induced dissociation of h 2 on gold nanoparticles supported on sio 2, Journal of the American Chemical Society, vol.136, issue.1, pp.64-67, 2014.

M. L. Brongersma, N. J. Halas, and P. Nordlander, Plasmon-induced hot carrier science and technology, Nature Nanotechnology, vol.10, issue.1, pp.25-34, 2015.

L. Leandro, R. Malureanu, N. Rozlosnik, and A. Lavrinenko, Ultrathin, Ultrasmooth Gold Layer on Dielectrics without the Use of Additional Metallic Adhesion Layers, ACS Applied Materials and Interfaces, vol.7, issue.10, pp.5797-5802, 2015.

G. A. Somorjai, Introduction to surface chemistry and catalysis, pp.0-471, 1994.

S. S. Collins, M. Cittadini, C. Pecharromán, A. Martucci, and P. Mulvaney, Hydrogen spillover between single gold nanorods and metal oxide supports: A surface plasmon spectroscopy study, ACS Nano, vol.9, issue.8, pp.7846-7856, 2015.

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina et al., Seeing is believing: Hot electron based gold nanoplasmonic optical hydrogen sensor, ACS Nano, vol.8, issue.8, pp.7755-7762, 2014.

E. Bus, J. T. Miller, and J. A. Van-bokhoven, Hydrogen chemisorption on Al2O3-supported gold catalysts, Journal of Physical Chemistry B, vol.109, issue.30, pp.14-581, 2005.

P. Ferrin, S. Kandoi, A. U. Nilekar, and M. Mavrikakis, Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A dft study, Surface Science, vol.606, issue.7-8, pp.679-689, 2012.

X. Shen, Y. Li, X. Liu, D. Zhang, J. Gao et al., Hydrogen diffusion into the subsurfaces of model metal catalysts from first principles, Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys, vol.19, issue.19, pp.3557-3564, 2017.

L. Kristinsdóttir and E. Skúlason, A systematic dft study of hydrogen diffusion on transition metal surfaces, Surface Science, vol.606, pp.1400-1404, 2012.

Y. Santiago-rodríguez, J. A. Herron, M. C. Curet-arana, and M. Mavrikakis, Atomic and molecular adsorption on au(111), Surface Science, vol.627, issue.2, pp.57-69, 2014.

E. Del, V. Gómez, S. Amaya-roncancio, L. B. Avalle, D. H. Linares et al., Dft study of adsorption and diffusion of atomic hydrogen on metal surfaces, Applied Surface Science, vol.420, pp.1-8, 2017.

M. N-'dollo, P. S. Moussounda, T. Dintzer, and F. Garin, A density functional theory study of methoxy and atomic hydrogen chemisorption on au(100) surface, Journal of Modern Physics, vol.4, pp.409-417, 2013.

A. S. Barnard and Y. Chen, Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles, Journal of Materials Chemistry, vol.21, issue.33, pp.12-239, 2011.

G. D. Barmparis and I. N. Remediakis, First-principles atomistic Wulff constructions for gold nanoparticles, 2011.

G. D. Barmparis, K. Honkala, and I. N. Remediakis, Thiolate adsorption on Au(hkl) and equilibrium shape of large thiolate-covered gold nanoparticles, The Journal of Chemical Physics, vol.138, issue.6, pp.64-702, 2013.

T. Kizuka and N. Tanaka, Atomic process of epitaxial growth of gold on magnesium oxide studied by cross-sectional time-resolved high-resolution electron microscopy, Physical Review B -Condensed Matter and Materials Physics, vol.56, issue.16, pp.10-079, 1997.

S. Giorgio, M. Cabié, and C. R. Henry, Dynamic observations of au catalysts by environmental electron microscopy, Gold Bulletin, vol.41, issue.2, pp.167-173, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303638

D. A. King and M. G. Wells, Reaction mechanism in chemisorption kinetics: Nitrogen on the plane of tungsten, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.339, issue.1617, pp.245-269, 1974.

H. C. Kang and W. H. Weinberg, Dynamic monte carlo simulations of surface-rate processes, Accounts of Chemical Research, vol.25, issue.6, pp.253-259, 1992.

X. Kuang, X. Wand, and G. Liu, A comparative study between all-electron scalar relativistic calculation and all-electron calculation on the adsorption of hydrogen molecule onto small gold clusters, Journal of Chemical Sciences, vol.125, issue.2, pp.401-411, 2013.

A. Lyalin and T. Taketsugu, A computational investigation of h 2 adsorption and dissociation on au nanoparticles supported on tio 2 surface, Faraday Discussions, vol.152, issue.0, pp.1359-6640, 2011.

S. Zhao, Y. Ren, Y. Ren, J. Wang, and W. Yin, Density functional study of hydrogen binding on gold and silver-gold clusters, The Journal of Physical Chemistry A, vol.114, issue.14, pp.4917-4923, 2010.

F. Libisch, J. Cheng, and E. A. Carter, Electron-transfer-induced dissociation of h 2 on gold nanoparticles: Excited-state potential energy surfaces via embedded correlated wavefunction theory, Zeitschrift für Physikalische Chemie, vol.227, 2013.

M. Hu, D. P. Linder, M. Buongiorno, A. Nardelli, and . Striolo, Hydrogen Adsorption on Platinum-Gold Bimetallic Nanoparticles: A Density Functional Theory Study, vol.117, 2013.

B. D. Adams and A. Chen, The role of palladium in a hydrogen economy, Materials Today, vol.14, issue.6, pp.282-289, 2011.

N. P. Brandon and Z. Kurban, Clean energy and the hydrogen economy, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.375, p.400, 2017.

V. G. Dovì, F. Friedler, D. Huisingh, and J. J. Kleme?, Cleaner energy for sustainable future, Journal of Cleaner Production, vol.17, issue.10, pp.889-895, 2009.

I. Dincer and C. Acar, A review on clean energy solutions for better sustainability, International Journal of Energy Research, vol.39, issue.5, pp.585-606, 2015.

G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, The Hydrogen Economy, Physics Today, vol.57, issue.12, pp.39-44, 2004.

A. Midilli and I. Dincer, Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption, International Journal of Hydrogen Energy, vol.33, issue.16, pp.4209-4222, 2008.

, Safety Standard for Hydrogen and Hydrogen Systems, p.37, 1997.

D. Imamura, M. Akai, and S. Watanabe, Exploration of hydrogen odorants for fuel cell vehicles, Journal of Power Sources, vol.152, issue.1-2, pp.226-232, 2005.

T. Hübert, L. Boon-brett, G. Black, and U. Banach, Hydrogen sensors -A review, Sensors and Actuators B: Chemical, vol.157, issue.2, pp.329-352, 2011.

B. Sharma, A. Sharma, and J. Kim, Recent advances on H 2 sensor technologies based on MOX and FET devices: A review, Sensors and Actuators B: Chemical, vol.262, pp.758-770, 2018.

A. Katsuki and K. Fukui, H2 selective gas sensor based on SnO2, Sensors and Actuators B: Chemical, vol.52, issue.1-2, pp.30-37, 1998.

S. J. Mckeown and L. L. Goddard, Reflective Palladium Nanoapertures on Fiber for Wide Dynamic Range Hydrogen Sensing, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.2, pp.263-268, 2017.

N. Javahiraly, Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium, Optical Engineering, vol.54, issue.3, pp.30-901, 2015.

J. Dai, L. Zhu, G. Wang, F. Xiang, Y. Qin et al., Optical Fiber Grating Hydrogen Sensors: A Review, Sensors, vol.17, issue.3, p.577, 2017.

Y. Zhang, H. Peng, X. Qian, Y. Zhang, G. An et al., Recent advancements in optical fiber hydrogen sensors, Sensors and Actuators B: Chemical, vol.244, pp.393-416, 2017.

C. Wadell, S. Syrenova, and C. Langhammer, Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides, ACS Nano, vol.8, issue.12, pp.11-925, 2014.

G. Behzadi and L. , Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO 2 /Si structure at room temperature, Results in Physics, vol.7, 1993.

K. Aoki, Applicability of palladium membrane for the separation of protium and deuterium, International Journal of Hydrogen Energy, vol.23, issue.5, pp.325-332, 1998.

F. D. Manchester, A. San-martin, and J. M. Pitre, The H-Pd (hydrogen-palladium) System, Journal of Phase Equilibria, vol.15, issue.1, pp.62-83, 1994.

P. Johnson, R. Christy-;-ti, V. Cr, . Mn, . Fe et al., Optical constants of transition metals, Physical Review B, vol.9, issue.12, pp.5056-5070, 1974.

K. Sugawa, H. Tahara, A. Yamashita, J. Otsuki, T. Sagara et al., Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material, ACS Nano, vol.9, issue.2, pp.1895-1904, 2015.

I. Zori?, E. M. Larsson, B. Kasemo, and C. Langhammer, Localized Surface Plasmons Shed Light on Nanoscale Metal Hydrides, Advanced Materials, vol.22, issue.41, pp.4628-4633, 2010.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam et al., Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals, Nature Materials, vol.12, issue.10, pp.905-912, 2013.

W. E. Vargas, D. E. Azofeifa, N. Clark, H. Solis, F. Montealegre et al., Parametric formulation of the dielectric function of palladium and palladium hydride thin films, Applied Optics, vol.53, issue.24, p.5294, 2014.

V. M. Silkin, R. Muiño, I. P. Chernov, E. V. Chulkov, and P. M. Echenique, Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration, Journal of Physics: Condensed Matter, vol.24, issue.10, pp.104-125, 2012.

N. Clark, W. E. Vargas, and D. E. Azofeifa, Dielectric function of Pd hydride thin films in terms of hydrogen concentration and film's thickness: A parametric formulation, Journal of Alloys and Compounds, vol.645, issue.S1, pp.320-324, 2015.

A. L. Bugaev, A. A. Guda, K. A. Lomachenko, V. V. Srabionyan, L. A. Bugaev et al., Temperature-and Pressure-Dependent Hydrogen Concentration in Supported PdH x Nanoparticles by Pd K-Edge X-ray Absorption Spectroscopy, The Journal of Physical Chemistry C, vol.118, issue.19, pp.10-416, 2014.

R. Kirchheim, T. M. Tschele, W. Kieninger, T. Mutschele, H. Gleiter et al., Hydrogen in amorphous and nanocrystalline metals, vol.99, pp.457-462, 1988.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, Plasmons in Strongly Coupled Metallic Nanostructures, Chemical Reviews, vol.111, issue.6, pp.3913-3961, 2011.

C. Langhammer, E. M. Larsson, B. Kasemo, and I. Zori?, Indirect nanoplasmonic sensing: Ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry, Nano Letters, vol.10, issue.9, pp.3529-3538, 2010.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus, Nature Materials, vol.10, issue.8, pp.631-636, 2011.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen, Advanced Functional Materials, vol.24, issue.46, pp.7328-7337, 2014.

C. Wadell, F. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner et al., HysteresisFree Nanoplasmonic Pd-Au Alloy Hydrogen Sensors, Nano Letters, vol.15, issue.5, pp.3563-3570, 2015.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van-duyne et al., Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing, ACS Nano, vol.8, issue.8, pp.7639-7647, 2014.

C. Wadell and C. Langhammer, Drift-corrected nanoplasmonic hydrogen sensing by polarization, Nanoscale, vol.7, issue.25, pp.10-963, 2015.

H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland et al.,

. Kasemo, Hole-Mask Colloidal Lithography, Advanced Materials, vol.19, issue.23, pp.4297-4302, 2007.

M. Matuschek, D. P. Singh, H. Jeong, M. Nesterov, T. Weiss et al., Chiral Plasmonic Hydrogen Sensors, vol.14, pp.1-702, 2018.

S. Syrenova, C. Wadell, and C. Langhammer, Shrinking-hole colloidal lithography: Self-aligned nanofabrication of complex plasmonic nanoantennas, Nano Letters, vol.14, issue.5, pp.2655-2663, 2014.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu et al., Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing, Nano Letters, vol.11, issue.10, pp.4366-4369, 2011.

H. K. Yip, X. Zhu, X. Zhuo, R. Jiang, Z. Yang et al., Gold Nanobipyramid-Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ?140 nm at 2 vol% Hydrogen Concentration, Advanced Optical Materials, vol.5, issue.24, p.740, 2017.

D. Aspnes, Optical properties of thin films, Thin Solid Films, vol.89, issue.3, pp.249-262, 1982.

X. Q. Zeng, M. L. Latimer, Z. L. Xiao, S. Panuganti, U. Welp et al., Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires Formed on Filtration Membranes, Nano Letters, vol.11, issue.1, pp.262-268, 2011.

M. Johansson, E. Skúlason, G. Nielsen, S. Murphy, R. M. Nielsen et al., Hydrogen adsorption on palladium and palladium hydride at 1 bar, Surface Science, vol.604, issue.7-8, pp.718-729, 2010.

R. Griessen, N. Strohfeldt, and H. Giessen, Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles, Nature Materials, vol.15, issue.3, pp.311-317, 2016.

V. M. Silkin, I. P. Chernov, P. M. Echenique, Y. M. Koroteev, and E. V. Chulkov, Influence of hydrogen absorption on low-energy electronic collective excitations in palladium, Physical Review B, vol.76, issue.24, pp.245-105, 2007.

C. K. Gupta and C. Metallurgy, , p.9783527602001, 2004.

N. Lopez, Z. ?odziana, F. Illas, and M. Salmeron, When Langmuir is too simple: H 2 dissociation on Pd(111) at high coverage, Physical review letters, vol.93, issue.14, pp.146-103, 2004.

T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies, Nature, vol.422, issue.6933, pp.705-707, 2003.

W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, An overview of hydrogen safety sensors and requirements, International Journal of Hydrogen Energy, vol.36, issue.3, pp.2462-2470, 2011.

T. Hübert, L. Boon-brett, V. Palmisano, and M. Bader, Developments in gas sensor technology for hydrogen safety, International Journal of Hydrogen Energy, vol.39, issue.35, pp.20-474, 2014.

S. S. Kalanur, Y. Lee, and H. Seo, Eye-readable gasochromic and optical hydrogen gas sensor based on CuS-Pd, RSC Adv, vol.5, issue.12, pp.9028-9034, 2015.

K. Christmann, Interaction of hydrogen with solid surfaces, Surface Science Reports, vol.9, issue.1-3, pp.1-163, 1988.

R. Delmelle and J. Proost, An in situ study of the hydriding kinetics of Pd thin films, Physical Chemistry Chemical Physics, vol.13, issue.23, pp.11-412, 2011.

C. Nyberg and C. G. Tengstål, Adsorption and reaction of water, oxygen, and hydrogen on Pd(100): Identification of adsorbed hydroxyl and implications for the catalytic H 2 -O 2 reaction, The Journal of Chemical Physics, vol.80, issue.7, pp.3463-3468, 1984.

R. H. Radzilowski and R. D. Pehlke, Absorption of gaseous oxygen by liquid cobalt, copper, iron and nickel, Metallurgical Transactions B, vol.9, issue.1, pp.129-137, 1978.

C. J. Smithells and C. E. Ransley, The Diffusion of Gases through Metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.150, issue.869, pp.172-197, 1935.

F. Mackenzie and J. Mackenzie, Our changing planet, p.132713217, 1995.

M. Gao, M. Cho, H. Han, Y. S. Jung, and I. Park, Palladium-Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing, Small, vol.14, issue.10, pp.1-703, 2018.

A. Baylet, P. Marécot, D. Duprez, P. Castellazzi, G. Groppi et al., In situ Raman and in situ XRD analysis of PdO reduction and Pd? oxidation supported on ?-Al 2 O 3 catalyst under different atmospheres, Physical Chemistry Chemical Physics, vol.13, issue.10, p.4607, 2011.

D. Wang and T. B. Flanagan, Diffusion of oxygen in Pd, Scripta Materialia, vol.52, issue.7, pp.599-601, 2005.

R. Westerström, C. Weststrate, A. Resta, A. Mikkelsen, J. Schnadt et al.,

N. Schmid, J. Seriani, F. Harl, G. Mittendorfer, and . Kresse, Stressing Pd atoms: Initial oxidation of the Pd(110) surface, Surface Science, vol.602, issue.14, pp.2440-2447, 2008.

G. Zheng and E. Altman, The oxidation mechanism of Pd(100), Surface Science, vol.504, pp.253-270, 2002.

D. Zemlyanov, B. Aszalos-kiss, E. Kleimenov, D. Teschner, S. Zafeiratos et al., In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10 ?3 mbar O 2, Surface Science, vol.600, issue.5, pp.983-994, 2006.

H. H. Kan and J. F. Weaver, Mechanism of PdO thin film formation during the oxidation of Pd(111), Surface Science, vol.603, issue.17, pp.2671-2682, 2009.

G. Ketteler, D. F. Ogletree, H. Bluhm, H. Liu, E. L. Hebenstreit et al., In Situ Spectroscopic Study of the Oxidation and Reduction of Pd(111), Journal of the American Chemical Society, vol.127, issue.51, pp.18-269, 2005.

H. H. Kan, R. B. Shumbera, and J. F. Weaver, Adsorption and abstraction of oxygen atoms on Pd(111): Characterization of the precursor to PdO formation, Surface Science, vol.602, issue.7, pp.1337-1346, 2008.

P. O. Nilsson, Optical properties of PdO in the range of 0.5-5.4 eV, Journal of Physics C: Solid State Physics, vol.12, issue.7, pp.1423-1427, 1979.

Y. Chiang, K. Li, Y. Lin, and F. Pan, A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 ? C, Physical chemistry chemical physics : PCCP, vol.17, issue.5, pp.3039-3088, 2015.

D. Zemlyanov, B. Klötzer, H. Gabasch, A. Smeltz, F. H. Ribeiro et al., Kinetics of Palladium Oxidation in the mbar Pressure Range: Ambient Pressure XPS Study, Topics in Catalysis, vol.56, issue.11, pp.885-895, 2013.

A. U. Ortiz, A. P. Freitas, A. Boutin, A. H. Fuchs, and F. Coudert, What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption, Phys. Chem. Chem. Phys, vol.16, issue.21, pp.9940-9949, 2014.

W. Koo, S. Qiao, A. F. Ogata, G. Jha, J. Jang et al., Accelerating Palladium Nanowire H 2 Sensors Using Engineered Nanofiltration, ACS Nano, vol.11, issue.9, pp.9276-9285, 2017.

L. E. Kreno, J. T. Hupp, and R. P. Van-duyne, Metal-Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing, Analytical Chemistry, vol.82, issue.19, pp.8042-8046, 2010.

T. Tian, M. T. Wharmby, J. B. Parra, C. O. Ania, and D. Fairen-jimenez, Role of crystal size on swing-effect and adsorption induced structure transition of ZIF-8, Dalton Transactions, vol.45, issue.16, pp.6893-6900, 2016.

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.6, issue.12, pp.4370-4379, 1972.

P. Johnson, R. Christy-;-ti, V. Cr, . Mn, . Fe et al., Optical constants of transition metals, Physical Review B, vol.9, issue.12, pp.5056-5070, 1974.

V. M. Silkin, R. Muiño, I. P. Chernov, E. V. Chulkov, and P. M. Echenique, Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration, Journal of Physics: Condensed Matter, vol.24, issue.10, pp.104-125, 2012.