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Chapter 1

Introduction

This �rst chapter presents the motivation of the approach taken in this thesis of using control theory as
a tool for software adaptation, and its application to two use-cases. Beforehand, some useful context
is detailed on those key notions. The present manuscript's outlines are given, and reading advises are
provided as a concluding section.

1.1 Context, Motivation and Applications

Computing systems, either for personal use or in the industrial world, are constantly growing in
amount and complexity. Smartphones provide user-based services such as personalized recommen-
dations or adapted roaming. Companies have access to growing amounts of information about their
clients and/or their environment and use them to develop business-intelligence based analytics and
services. These two simple examples highlight that computing tools are used, directly or indirectly,
with various degrees of consciousness and apprehension, by most people in their everyday life.

The last decade has seen the culmination of differentiation between software and hardware. Cloud
services have emerged as the new computing paradigms up to a point where companies that have
failed following this trend are now facing major dif�culties. Its principle is to provide access to
hardware infrastructures or services and take care of its maintenance so that clients can deploy their
own application without having to deal with hardware or operating systems issues. Cloud providers
own datacenters all around the globe and their clients can access those resources distantly. Customers
and contents of the cloud are extremely diverse, ranging from a simple person using Gmail or iCloud
Storage to international companies or organizations running large data analytics. This example shows
the interconnectivity and concurrency of softwares sharing the same resources and networks. Another
every-day life illustration of such dependencies - this time outside of the cloud world - is the battle for
computing and energy resources lead by applications and operating system on a smartphone. Data,
tasks and resources need to be managed to maximize the quality of services.

Softwares are highly dependent on the environment in which they are running, and this environ-
ment is constantly changing [98, 144]. Whether it is their workload or the concurrent applications,
the running environment of softwares are highly dynamic. A recent example, particularly timely for
researchers, is the outage of the latex cloud service Overleaf that happened synchronously to a fa-
mous machine learning conference [145]. At another scale, the hardware itself on which the software
is running can change, sometimes even constantly and unpredictably if the service is run on the cloud
[93]. It is also quite often that softwares have to run on hardware that did not even exist when it has
been designed, and that sometimes implies disrupting technologies.

Users and clients are asking for continuous availability, optimal performance and reliability; and
they are always more demanding. Moreover, they are asking for guarantees of those properties, of-
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ten embodied in service-level agreements (SLAs). Meeting SLA is a key challenge for all service
providers. Eventually, the clients requirements are sometimes changing during runtime of the soft-
ware, requiring system adaptation [164].

All those changes of context and requirements are enforced on the software even though this later
has incomplete knowledge about its environment (speci�cally in the case of cloud-based services). Its
working conditions are most of the time uncertain but also unpredictable, e.g. workload estimation.

Another important point is the energy consumption of large or small computing systems and, to a
larger extent, their running costs. Each non optimal decisions either on the software runtime strategy
or on the resources usage leads in useless extra costs. Given the scale of datacenters, the spread of
mobile devices and the always increasing usage of computing systems, wise and sparing planning of
resources need to be achieved.

Eventually, given the increasing complexity of computing tools, the question of their practical
usage, either by technical experts or simple users, raises. State-of-the art technologies mean always
more specialized experts to install them, con�gure them and monitor their behavior in real time, at a
point where these tasked are hardly feasible by humans anymore. On the other side of the pipeline,
end-user are more and more non-experts that hardly bene�ted from education on computing and
software usage. The usage of software tools should be adaptable to all kind of users.

A solution to all these challenges is software adaptation. It is a discipline of software engineering
which aims at modifying the software's parameters/mode/resources in reaction to changes of its own
behavior or of its environment. Many different tools can be used to realize adaptation in practice, such
as queuing theory, machine learning or control theory. In this work, we choose to focus on this last
technique. Control theory is an engineering �eld that aims at monitoring dynamic systems, through
the use of feedback loops. It started to be well established since the early 1900's, for its applications
to industrial systems, notably in aeronautics. Due to its history for systems ruled by physics' laws, it
is only since the late 2000's that its application to computing systems has been investigated. However,
its strong mathematical background and its formal guarantees on the results makes control theory a
prevalent solution for software adaptation. This is well illustrated by the signi�cant rise in the number
of papers about this topic [162].

In order to illustrate the potential of the use of control theory for software adaptation, two comple-
mentary computing systems will be studied. The �rst one deals with one side of the computing world,
namely the user of smartphone. More speci�cally, we investigate the protection of people's privacy
when sharing their localization through applications. Particular attention is paid on the quality of the
geo-localized service received. The literature on the use of control theory for privacy issues is almost
non-existing, which makes this use-case a real playground where everything is to be built, from the
de�nition of user's objectives to the privacy-ensuring setup. Cyber-privacy challenges are of prior
importance for the people but still lack of solutions. Moreover, the speci�c properties of such new
formulation of control problems has a lot to bring to the research community.

The second use-case is the monitoring of performance and reliability of cloud-based BigData
services, through resource allocation and admission control. This application deals with the other side
of the computing ecosystem, namely the data scientists and experts. This �ourishing area of research
has already produced many works and solutions, the efforts now focus on always more optimal and
reliable outcomes. In this context, we advocated to use state of the art control theory tools to deal with
this well established challenge. Indeed, highly complex systems can bene�t from all the experience
and maturity of control theory. On the other hand, a new application �eld means new objectives, new
challenges and new formulations that will make control theory grow.

Those two applications that will be further developed in this manuscript are complementary in
two ways. First, they are from two area of the vast computing world which re�ects the complexity
and diversity of challenges, from providing an accessible and useful tool for a large population, to
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building up the state of the art tools for data scientists. Second, most of the vast control theory
domain is illustrated, from its very beginning where problem has to be formulated and where simple
tools can be applied to the most complex non-linear time varying system for which recently developed
techniques are required.

A third use-case has been studied alongside and following this thesis work. The computing sys-
tems under consideration are machine learning algorithms, such as the well known k-means, decision
trees or the popular neural networks. Their control has been investigated in two complementary ways.
First, the challenge of robustness of the learning process regarding noise in the dataset was raised.
Second, research has been focused on the parametrization of the algorithms, with the introduction of
feedback action.

1.2 Main Results and Collaborations

1.2.1 Publications

The work developed in this thesis has lead to several contributions which have been published in
various venues, both the control and computing systems communities:

International Journals

� Sophie Cerf, Sara Bouchenak, Bogdan Robu, Nicolas Marchand, Vincent Primault, Sonia Ben
Mokhtar, Antoine Boutet, Lydia Y. Chen.Automatic Privacy and Utility Preservation for
Mobility Data: A Nonlinear Model-Based Approach. IEEE Transaction on Dependable and
Secure Computing (TDSC) [45].

� Submitted:Sophie Cerf, Bogdan Robu, Nicolas Marchand, Sara Bouchenak.Utility-Aware
Modeling and Control of Location Privacy. IEEE Transaction on Automatic Control (TAC),
special issue: Security and Privacy of Distributed Algorithms and Network Systems.

International Conferences with Proceedings

� Sophie Cerf, Mihaly Berekmeri, Nicolas Marchand, Sara Bouchenak, Bogdan Robu.Adaptive
Modelling and Control in Distributed Systems. PhD Forum 34th International Symposium
on Reliable Distributed Systems (SRDS2015), Sep 2015, Montreal, Canada [39].

� Sophie Cerf, Bogdan Robu, Nicolas Marchand, Antoine Boutet, Vincent Primault, Sonia Ben
Mokhtar, Sara Bouchenak.Toward an Easy Con�guration of Location Privacy Protection
Mechanisms. Posterat ACM/IFIP/USENIXMiddlewareconference, Dec 2016, Trente, Italy
[48].

� Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak.Towards
Control of MapReduce Performance and Availability. Fast Abstract in the 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2016), Jun
2016, Toulouse, France [42].

� Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak.Adaptive
Optimal Control of MapReduce Performance, Availability and Costs. 11th International
Workshop onFeedback Computingco-located with the 13th IEEE International Conference on
Autonomic Computing (ICAC 2016), Jul 2016, Wurzburg, Germany [40].

� Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak.Cost
Function based Event Triggered Model Predictive Controllers - Application to Big Data
Cloud Services.55th IEEE Conference on Decision and Control (CDC 2016), Dec 2016, Las
Vegas, United States [41].
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� Sophie Cerf, Vincent Primault, Antoine Boutet, Sonia Ben Mokhtar, Sara Bouchenak, Bogdan
Robu, Nicolas Marchand.Données de mobilité : protection de la vie privée vs. utilité
des données. Conférence francophone d'informatique en parallélisme, architecture et système
ComPAS, Jun 2017, Sophia Antipolis, France [46].

� Sophie Cerf, Mihaly Berekmeri, Bogdan Robu, Nicolas Marchand, Sara Bouchenak, Ioan
Landau. Adaptive Feedforward and Feedback Control for Cloud Services.IFAC World
Congress, Jul 2017, Toulouse, France [43].

� Sophie Cerf, Sonia Ben Mokhtar, Sara Bouchenak, Nicolas Marchand, Bogdan Robu.Dynamic
Modeling of Location Privacy Protection Mechanisms.18th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2018), June 2018, Madrid, Spain
[38].

� Sophie Cerf, Bogdan Robu, Nicolas Marchand, Sonia Ben Mokhtar, Sara Bouchenak.A Con-
trol Theoretic Approach for Location Privacy in Mobile Applications. 2nd IEEE Confer-
ence on Control Technology and Applications (CCTA 2018), Aug. 2018, Copenhagen, Den-
mark [49].

� Sophie Cerf, Robert Birke, Lydia Y. Chen.Duo Learning for Classi�cations with Noisy
Labels. Continual Learning Workshop, Neural Information Processing Systems (NIPS 2018),
Dec. 2018, Montréal, Canada [44].

� Zilong Zhao, Sophie Cerf, Robert Birke, Bogdan Robu, Sara Bouchenak, Sonia Ben Mokhtar,
Lydia Y. Chen.Robust Anomaly Detection on Unreliable Data.49th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2019), June 2019, Portland, Oregon,
USA [187].

� Zilong Zhao, Sophie Cerf, Bogdan Robu, Nicolas Marchand.Feedback Control for Online
Training of Neural Networks. 3rd IEEE Conference On Control Technology And Applica-
tions (CCTA 2019), Aug. 2019, Hong Kong, China [188].

1.2.2 Collaborations

Those works has been conducted thanks to fruitful collaborations:

� Pr. Sara Bouchenak (LIRIS lab, INSA-Lyon) on all the contributions of this manuscript,

� Dr. Sonia Ben Mokhtar (LIRIS lab, INSA-Lyon) on Location Privacy,

� Dr. Lydia Y. Chen (TU Delft) on data analytics and privacy,

� Pr. Ioan D. Landau (Gipsa-lab, Univ. Grenoble-Alpes) on adaptive control of Clouds,

� Dr. Antoine Boutet (Privatics, INRIA Lyon) on Location Privacy,

� Dr. Mihaly Berekmeri (Equifax UK) on modeling and control of Hadoop,

� Dr. Robert Birke (ABB Research) on data analytics and privacy,

� Dr. Vincent Primault (University College London) on Location Privacy.

I also had the great opportunity to work 5 months at IBM Research Center, Zürich, Switzerland
from July to November 2018 in the form of an intership. I developed fruitful collaboration with Dr.
Lydia Y. Chen and Dr. Robert Birke (former researchers at IBM) that expanded my research interest
in the direction of machine learning, see the corresponding publication in Appendices A B and C.
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1.2.3 Technical contributions

To foster the theoretical contributions presented in the above mentioned publications, technical ad-
vances were made. For the control of MapReduce over a cloud environment, the experimental envi-
ronment developed in the Gipsa-lab by Mihaly Berekmeri [25] was re-used, maintained and extended
to run more controllers and under more sophisticated workload conditions. The setup consists in
Matlab-based control laws running locally on a computer while Lunix bash scripts are used for the
interface between the remote cluster and the local computer.

For location privacy experimentations, the JSON-based setup developed in the LIRIS laboratory
by Vincent Primault [149] was used. For the dynamical control of privacy, an independent Matlab
experimental setup was built, allowing easy development and evaluation of modeling and control
tools.

1.3 Thesis Outline

This thesis is organized in six main parts. The �rst part is a general overview on control of computing
systems and the place of this work in the corresponding state of the art. The second part is dedicated to
the control of privacy and utility of geolocalized data in the context of personal mobile device use. The
third part details the contributions made on the area of performance and dependability guarantees for
cloud-based BigData services. The fourth part draws conclusions on this work and provides insights
of future works that would worth investigating on. The �fth part is a extended summary in French
of this manuscript and eventually the sixth part contains the appendices that gathers the publications
on the third application use-case, the control of learning algorithms. These contributions are only
presented as annex of this manuscript, as they were initiated as a side project during an internship in
the company IBM. However, they evolved as being the continuity of the application of control theory
for computing systems during the very last months of this thesis work, thus their are included to this
manuscript through papers in appendix.

Each part is divided in chapters, which contents are brie�y described in the following.

Part 1 - Generalities.
Chapter 1 - Introduction. The current chapter presents the context of this work, the approach and

applications taken and the reasons that motivated their choice. Main results, in terms of publications
and codes, and collaborations are presented and a reading roadmap is provided.

Chapter 2 - Background and Motivation. The second chapter provides background on control
theory for those who are not familiar with this domain. The description is made in a pedagogical
way, by giving the objectives, describing the major tools and concepts such as sensors, actuators,
models and controllers. Examples of applications are also given. Basics are provided regarding the
use of control theory for computing systems, starting with the condition of this duo and explaining
the advantages of the combination for both domains, concluding with the challenges it represents.

Chapter 3 - Related Work is then detailed. First, an overview of the different tools and theories
used for achieving software adaptation, namely observation-based rules, MAPE-K, queuing theory,
game theory, machine learning and discrete-event systems. For each of those techniques, background
on the theory is given, followed by examples of its application in our context and eventually limita-
tions of the approach are given. A second section is dedicated to the analysis of the state of the art on
control of computing systems. Different aspects are reviewed, such as the analysis of the works' moti-
vations and their application domains. Control-speci�c aspects are then detailed: objectives, sensors,
actuators, models, controllers and evaluation. Notes on publications trends are given. Eventually,
limitations and the corresponding challenges of control of computing systems are listed.
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Chapter 4 - Objectives and Contributions.Concluding the �rst part, the fourth chapter sums-up
the objectives of this works following the state of the art limitations highlighted beforehand. These
objectives are put in perspective of two uses cases: location privacy and utility; and cloud performance
and dependability. Contributions of this thesis are presented in four points with mention of the related
publications, each contribution being a distinct chapter in the next two parts - after an introduction
chapter for each.

Part 2 - Privacy and Utility Aware Control of Users' Mobility Data.
Chapter 5 - Location Privacy Background and Related Works.After the general introduction

on location privacy given in the previous chapter, more details are given. The mobility data are
described, the notion of privacy is de�ned both formally and through threats examples. The state of the
art mechanisms of privacy protection specially designed for location-related issues are then presented.
Methods to evaluate the so called Location Privacy Protection Mechanisms (LPPMs) are overviewed,
with special focus on privacy and utility metrics and on their practical illustration. Eventually, we
review the related works aiming at con�guring LPPMs, independently of the technique used.

Chapter 6 - PULP: Privacy and Utility through LPPMs Parametrization. This �rst contri-
bution chapter presents PULP, a framework that realize user-level LPPMs choice and con�guration
to meet privacy and utility objectives, in the case of already collected databases needing privacy
enhancement. An introduction on this scenario and on our proposed approach is �rst given. The
following section describes PULP's framework and its three components: the pro�ler, the modeler
and the con�gurator. PULP enables four objectives formulations, all combining differently privacy
and utility aspects, each of them and their corresponding con�guration law are presented. Evaluation
is eventually performed using mobility data collected on people in the wild.

Chapter 7 - dynULP: dynamical control of Utility and Location Privacy. The second contri-
bution on location privacy is presented in the seventh chapter. The scenario here is a mobile device
user using geolocalized services through time and willing to protect her privacy, while still bene�ting
of the service. After discussions on this context and on the proposed approach, dynULP solution is
presented in three steps: problem formulation, modeling and control law. Each time, the approach
is visualized and validated on synthetically generated mobility data. Afterwards, global evaluation is
carried out on real location data. An analysis of the work and on its perspective is then discussed.

Chapter 8 - Conclusions on Location Privacy.The last chapter of Part 2 summarizes the con-
tributions on the protection of users' location privacy and the preservation of their service utility.

Part 3 - Performance and Reliability of Hadoop Cloud Services.
Chapter 9 - BigData Cloud Services: Background and Related Works.The eighth chapter

gives context to the second area of contribution of this manuscript: the control of a cloud-based
bigdata framework: Hadoop. After presenting the above mentioned service, related work on the
state of the art of cloud control is reviewed. The control formulation on Hadoop con�guration, taken
from the state of the art, is then described and will serve as a basis for the development of the two
contributions detailed in the next sections.

Chapter 10 - Adaptive Control for Robust Cloud Services.State of the art techniques of control
are used in this section to improve Hadoop robustness to unpredicted �uctuations in its workload and
unmeasured ones for its environment. This speci�c issue is put in context and motivated, and the
approach we took is presented. The adaptation-based control strategy is then described, in principle
and in details. Evaluation is performed on a real platform deployed on a nation-wide grid with over
50 computing resources.

Chapter 11 - Cost-aware Control of Cloud Services.The last contribution of this thesis is
given in the ninth chapter. Here three contradictory objectives are formulated: performance in terms
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of execution time of jobs, availability which is the rate of accepted requests, and costs and energy
ef�ciency. For this scenario, an optimal model-predictive controller with a designed event-triggered
approach is developed. This control strategy is presented with mathematical preliminaries. Evaluation
is carried out using a real MapReduce workload.

Chapter 12 - Conclusions on MapReduce Control.Eventually, the contributions of this thesis
on the control of cloud services are summarized.

Part 4 - Conclusion and Perspectives.
Conclusions on this thesis contributions and broadly on the control of computing system is given.

Future works are put in perspective of the two applications use-cases presented: location privacy and
cloud services; and on the on-going work on control of learning algorithms.

Part 5 - Résumé en français.
This thesis work has been funded and conducted in the frame of the French communities of univer-

sities, and is thus brie�y presented in French.

Part 6 - Appendix - Machine learning algorithms as systems to control.
This ending thesis, the most recent works on control of computing systems through the use-case of

machine learning is given in appendix.

1.4 Reading Roadmap

This manuscript can interest various types of readers in their background and interests. This section
aims at directing the reader to relevant chapters.

For the reader with a control theory background and interested about the contributions of this
manuscript in this �eld. Chapter 2 Section 2.1 on control theory background can be eluded, while the
next Section 2.2 gathers the interesting challenges of control of computing systems. Chapter 4 can be
used to get familiar and possibly chose the application of interest, if not both. For location privacy,
Chapter 5 gives relevant background while Chapter 7 is the core control contribution. For Hadoop
performance and reliability monitoring, Chapter 9 sets the useful computing background while the
next two Chapters 10 and 11 are the contributions. The reader can also be interested in looking at
Appendix C, which presents the use of a feedback algorithm to control the training phase of a neural
network, with application to image classi�cation.

For the reader with interest in location privacy. If not familiar with control theory, please start
with Chapter 2. Then all the Part II is of relevant interest. Chapter 5 should be read �rst, the two other
Chapters 7 and 6 can be looked at independently.

For the reader with interest in Hadoop cloud-serviceperformance and reliability control. If not
familiar with control theory, please refer to Chapter 2 for relevant background. The Part III gathers
all the work on this topic. Chapter 9 detailing background and state of the art should be read �rst, the
two other Chapters 10 and 11 can be read without order.

For the reader with interest in machine learning. Chapter 2 should be read �rst in case back-
ground on control theory is needed. The Part VI gathers all the works on the machine learning topic.
No general introduction is given, one can successively read Appendix A and then Appendix B on
the topic of robustness to noise. The Appendix C on the use of a feedback controller can be read
independently.





Chapter 2

Background and Motivation

This chapter gives a general overview on Control Theory and on its use for Computing applications.
First, basic concepts of control are explained as an attempt to depict the global picture of the �eld.
Then, the association of control and software adaptation is motivated. Readers having notions on
control can skip the �rst section.

2.1 Basics on Control Theory

This section is for readers willing to have a �rst approach of control theory. More details and formal
formulations about relevant points will be given in due course in dedicated chapters. It is organized
as follows. First, the assumptions and hypothesis that de�ne the scope of control systems, as well
as dedicated representation, are presented. Second an overview of the goals one can achieve with
control theory is given. Then, the most common tools used by control engineers and researchers are
presented in simple terms. Some insights on the possible application areas of control conclude this
overview of the �eld. For a complete introduction to control theory for computing systems, refer to
Hellerstein et al.'s book [91].

2.1.1 Assumptions and Representations

Control theory is to be applied on dynamical systems: that is its main requirements. The process
under study should evolve over time and be causal (only past and present events impact the future). It
is also assumed that temporal signals can be measured or observed from the system, those later will
be called output signals, or onlyoutputs. The system (often referred to asplant) should also have
some tuning knobs or parameters than will in�uence its behavior, and indeed the output signals. The
evolution of the plant con�guration is characterized by so called input signals (orinputs). There can
also be other signals in�uencing the plant's behavior but that cannot be tuned, these are categorized
as exogenous input signals. Depending on the number of signals considered, a system can be either
SISO (Single-Input, Single-Output) or MIMO (Multi-Inputs, Multi-Outputs).

To sum-up, a system eligible for control should be dynamic, causal and be con�gurable by at least
one input signal, and observable with at least one output signal [86].

PLANToutputinput

Figure 2.1 – Block diagram: control representation of a system
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The usual way to illustrate a control system is to use block schemas, such as the one of Figure 2.1.
In those representations, the arrows represent signals evolving with time. Block are systems that can
be seen as transformations functions on the signals. The classic representation of a system eligible for
control is thus a block called plant with an arrow entering on the left hand side representing the input
and an arrow on the right hand side pointing outside representing the measured output. The arrow
shapes are here to remind that signals are evolving over time and the plant causality.

2.1.2 Objectives

Given such a system, three complementary goals can be achieved when using control theory:

� Stability. The basic idea behind the term stability is that, given a bounded input signal, the
output signal should also be bounded. As such, the system is stable and do not diverge to
in�nity. While some systems are inherently stable (e.g. a heating device), some other are
instable in absence of control strategy (e.g. a inverted pendulum). Control can be used to
stabilize an unstable system, but most of all it should ensure to keep stable an originally stable
one.

� Bring the system to a set point. Once the system is ensured to be stable, one may want
to decide onhow the plant should behave. This translates to objectives values on the output
signal, such as the temperature of a heating device. The main notions of performance regarding
output reference values in this context are theprecisionof the achieved set point compared to
the desired one, thesettling timetaken to achieve the set point, and theovershootabove the
achieved set-point. This objective is often referred to as a tracking problem.

� Disturbance Rejection. As no system evolves in a perfectly mastered environment, a control
strategy should be able to deal with exogenous in�uences. Whether these disturbances can be
measured or not, modeled or not; control theory provides ways to reject them, i.e. minimize
their impact on the plant outputs. This aspect of control is called a regulation problem.

The three objectives: stability, tracking and regulation are the main reasons of using the control
theory. In order to provide solutions to achieve these goals, some speci�c tools have been developed
or re-used from other disciplines. The major ones are presented in the next subsection. The use of
these tools have open new possibilities, making some people use them to achieve new goals than what
they where designed for. These complementary control objectives are dependent on the tool itself,
and thus will be explained after the tools description. Examples of such side objectives are modeling
of systems or estimation of unmeasurable characteristics of the plant.

2.1.3 Tools of a Control Engineer

An overview of the methods used to solve control problems is given next. First, the idea of feedback
loops is depicted. Second, insights on modeling tools are provided. Then, the control usage of
frequency domain is shortly presented. Eventually, last paragraphs explains the usage of applied
mathematic tools by control scientists.

2.1.3.1 Feedback loops and controllers

The idea behind control theory is the use of feedback loops [62]. The con�guration of the plant is
computed based on the measurement of its state: the output signal is fed back to decide on the input
signal. The mathematical relation that links the output to the input is calledcontroller. Going back
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to the block schemas, the controller is thus a box that expressed the link between the output signal
and the system input, see Figure 2.2. When controlled, the input of the plant is usually called control
signal.

PLANT

feedback loop

control signalCONTROLLER

Figure 2.2 – High-level representation of a controlled system

In its simplest form, the controller is called Proportional, see Figure 2.3. The output signal is
compared to its reference value, to which the plant should tend. The generated error is leveraged by a
gainKP, and this signal is set as system input. Thus, if in steady state the measured state of the plant
is equal to the reference value, then error equals to zero and so no action is taken any more on the
plant. If the system output and the objective set point are different, then action is taken on the plant,
and the larger the error, the bigger the action. The system is ensured to move in the right direction by
choosing the sign of the gain.

Figure 2.3 – Simplest controlled system: a Proportional Controller

Usually, the control signal is notedu(t), the system outputy(t) and the desired output signal
yre f (t). The Proportional controller formulation is thus:

u(t) = KP:(yre f (t) � y(t))

Indeed, the relation between the tracking error (difference between reference and output signal)
and the control signal is often more advanced than a simple proportional gain. Most of the controllers
used in industry falls into the PID controller category. P stands for proportional, I for integral and D
for derivative. As it can be assumed by their name, PID controllers also take into account the integral
and derivative of the error signal, once again weighted by a gain. With its variants only derivative
(PD) or only integral (PI), many control problems can be solved.

Even if in practice PID controllers are by far the most used ones, many more advanced control
techniques exists, that aim at dealing with either more complex systems that cannot be controlled by
PIDs (for instance multi-input and multi-output systems) or more restrictive objectives that a simple
non-optimal controller cannot achieve. These controllers usually take as input the measured states of
the plant, their reference value and possibly other signals such as measurement of the environment of
the plant, often called disturbances. The idea of using measures of the disturbances that impact the
system to control it (i.e. generate its input signal(s)) is called feedforward. The mathematical link
between all these variables can be of many kinds. The main categories of controllers are optimal ones
(in the formal mathematical meaning of the term), or robust, adaptive, non-linear etc.

Controllers are parametrized algorithms, see for instance the value of the gainKP of the propor-
tional. Their tuning enables to leverage the controller effect: speed up or slow down their action,
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re�ne the precision in reaching the desired state, reduce the use of resources, etc. The parametrization
of a controller also depends on the system's dynamics and behavior. For instance, a thermal system is
way slower than a electric engine, thus the same controller with the same parameters applied for both
systems is not likely to be ef�cient (neither stable) in all cases. This motivates the use of modeling.

2.1.3.2 Modeling

Models in control theory are mathematical equations that predict the current output(s) of a system,
knowing its previous ones and the input signal(s) applied. Other signals can also be taken into account,
such as the disturbances of the environment on the plant. Models can have various memory size
(called order, the number of past values of the signals needed to predict the current one), and of
course parametrization.

The mathematical tools to represent the models are quite speci�c to control theory. They use
the Laplace transform, which idea is to transform derivative and integral functions in products and
divisions. The SISO systems are often modeled by a transfer function, which is a link between the
input and the output of the system. It is more formally the ratio of the output over the input, both
being in Laplace transform.

Multi-variable (MIMO) systems use more advanced modeling techniques called state-space rep-
resentation, linking the states, inputs and disturbances to the derivative of thestates. These states
are all signals that are needed to describe the system. Some of them are measurable and thus called
outputs (sometimes subject to a transformation), other are not, and thus are mostly intermediate of
calculation. As a concrete example, let's take consider a pendulum. To fully describe its behavior,
both the position of the mass and its speed are needed. However, most of the time only the position is
measured. The pendulum two states are thus the mass position and speed, but only position is called
system output. Note that there exist an in�nity of state-space representations of a system.

In order to �nd the order and parameters of a system's model, two main techniques exist. The
�rst one consist in studying the system from a physical point of view, i.e. computing the behavioral
laws that links the input(s) to the output(s). This is for instance what is done if one wants to model a
electrical engine. The rotation speed can be linked to the engine input voltage though other physical
quantities. This solution has the advantage of being accurate, but can become complex or even im-
possible to apply depending on the system to be controlled. In the case that interest us in this thesis,
computing systems such as softwares do not depend on such kind of laws. The other tool of control
theory for modeling is called identi�cation, or black-box approach. The idea behind it is to vary the
input(s) of the plant and observe the output(s), and try to �t the observed behavior with a classical
model, which order and parameters can be varied. Controlled systems being always more complex
and large, identi�cation is the most used technique. One of its advantages is being able to leverage
the model complexity (and thus its precision) in order to have a computationally practical model. It
is worth noticing that, for a good behavior is closed loop, the model does not need to be perfect.

Models are usually computed to derive a proper controller that will enable to reach the objectives.
However, the development of advanced modeling tools for dynamical systems are sometimes used as
an end-goal, for instance is the biological domain, when trying to model complex dynamical systems.

2.1.3.3 Time and Frequency Domains

As in signal processing, the systems can be considered with two complementary points of view:
the time or the frequency domains. The use of time domain is linked to the nature of the control
systems, that have to be dynamic. However, the use of the frequency domain helps the analysis and
even sometimes the design of controllers. This will be the case in this thesis when designing robust
controllers (see Chapter 10).
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Some requirements can also be expressed in the frequency domain, for instance when working
in the acoustic �eld where speci�c frequencies have to be attenuated. In a general way, the study of
control systems in the frequency domain helps for analyzing stability, performance, etc. in all possible
scenarios that the system can encounter.

2.1.3.4 Filters, optimization and other applied mathematics tools

Even though the large usage of control in industry can be sum up to PID controllers, state-of-the-
art companies and indeed researchers are working with advanced control problems, being close to
applied mathematics. Optimization techniques are largely used for instance to �nd the best input
signal(s) that �ts the performance objectives, to minimize the use of resources, and so on. As a main
example of the contribution of control theory to the broad work of mathematics users is the work
of Kalman on �lters. From a control perspective, Kalman �lters are used as so calledobservers, that
estimate the states of Multi-Input Multi-Output systems that cannot be measured. Similar to modeling
tools, estimation techniques initially developed with the idea of deriving a controller are now widely
used as such for other applications, such as image processing to mention only one.

2.1.4 Applications

Control being a tool with few constraints regarding the application system, it has been used in an very
large variety of �elds [86]. To still try to give a overview, one can start by explaining the historical
domains that have motivated the emergence of control, and thus move to speci�c domains that can
now bene�t of control theory in its most advanced forms.

The most basic applications of control are for mechanic and thermodynamic systems. Temperature
regulation of a room or an oven, speed rotation of an engine, or water levels in tanks are simple every-
day examples. Control is now widely used in automotive, aeronautics, drones industries and all kind
of plants such as chemistry, nuclear or hydraulic ones. Event if the terminology ofapplicationmay
not be appropriated, the large and common contributions of control to mathematics is to be stated.

Control is also used in new and promising �elds of application. Biological systems are nowadays
studied with the point of view of control to better understand the natural regulation systems that exists
for instance in human bodies. Large scale and distributed systems such as electric grids and networks
are also a state-of-the-art application of control, particularly when considering issues of connection
of local renewable sources. Eventually, computing systems are a promising �eld to be explored by
control theorists and engineers. Section 2.2 is dedicated to the motivation of this association, while
Section 3.2 of Chapter 3 overviews its state-of-the-art works. Eventually, Chapter 4 presents the two
application cases this thesis will focus on.

2.2 On the use of Control Theory for Computing Systems

Using the basic notions overviewed given in Section 2.1, the use of control for software adaptation
is considered in this section. First, a precision is made on the notion ofcomputing systemthat can
bene�t from control, corresponding to the assumptions required. Second, the achievements a control
approach can provide is investigated from the point of view of a computer scientist. Then, the advan-
tages of the association is highlighted, from the point of view of both �elds. Finally, the challenges
one has to face when trying this approach are depicted, justifying the interest of researchers on this
question.
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2.2.1 Eligible Computing Systems

Computing systems are omnipresent in our society, and even though they emerged quite recently, their
diversity is huge. So what is meant by computing systems in this context? A �rst categorization can
be done between hardware and software. Both are eligible to bene�t from control theory. However,
this thesis focuses on software applications.

Coming back to assumptions, a controlled system �rst has to be dynamic, i.e. evolve with time.
In computing terms, that means that the process should beon-line, or in real time. However, this
temporal dimension is often scale-dependent. Let us take the example of a query request. From a
high scale perspective, this can be seen as an event that, when successively repeated, consist in a
dynamical system. At a smaller scale, all the processes involved in the request (network, computing,
etc.) can also be seen as a dynamic system on its own. Consequently, the problem formulation plays
an important role in the control approach.

The second main requirement is the possibility of tuning the system in an on-line fashion. Indeed,
one need to be able to adjust the behavior of the system over time to control its performance. For
instance, if an application is launched with a given amount of computing resources and there is no
way to leverage them while running, it will not be possible to control the application run time.

Third, the system willing to be controlled should be observable, which means that the desired
characteristic should be measured or estimated, possibly indirectly. If the response time of queries
cannot be evaluated in real time, it will not be possible to decide on a control strategy to accelerate
them.

These last two constraints (tunable input and measurable output of the system) are usually issues
that can be overpassed by the development of system add-ons if it is not present by default, if dealing
with softwares. However, sometimes the constraints on the system prevent from doing so, for instance
when working with certi�ed codes or embedded systems with limited resources. Once again, this
brings us to the challenge of problem formulation, where actuators (i.e. tuning mechanisms) and
sensors (i.e. measure of the system state) have to be designed and implemented.

2.2.2 Promises of control for software adaptation

Computing systems are most of the time stable. The contribution of control is thus not considered
there, even though one main contribution of the control is to offer guarantees about the stability of
complex systems. Performance monitoring and robustness to external factors are thus the contribu-
tions of control that mostly interest computer scientists.

In software adaptation, it is often an easy task to �nd ways to tune the system. Indeed, they have
a multitude of parameters that can be �xed but this task is very complex. Finding appropriate ways to
chose these parameters is precisely the purpose of control. After de�ning objectives such as response
time or resource consumption, controllers tune the system to reach these requirements. This often non
trivial dynamic relation between desired outputs and controllable inputs are dealt by the controller.

Another contribution of control is disturbance rejection, which in computing terms means han-
dling the impact of the changing environment, or external factors, on the system. For instance, the
steep raise in the number of people visiting a website requires the augmentation of dedicated resources
to avoid a crash. Control algorithms can detect such circumstances and adapt the system accordingly.

On top of all this, the mature mathematical foundations of control enable to provide analytical
guarantees about all the above mentioned contributions.
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2.2.3 Bene�ts

The advantages of using control on computing applications are for both community. A quick overview
is given in the next two paragraphs.

2.2.3.1 For the computing world

Computer scientists using control can rely on tools developed decades ago in well known, ef�cient
and complete formulation. Having a feedback, i.e. a closed loop, enables to monitor the states (data,
tasks, resources, etc.) of the systems to better understand its current behavior and better regulate it.
Control framework also enable to clearly formulate one's objectives, e.g. quality of service, and also
to leverage them if needed, through the use of cost functions. Thus, all aspects of the application can
be taken into account, such as energetic or �nancial costs.

Feedforward loops (or other advanced controllers) take into account the environment of the system
to decide on its later con�guration. This is a signi�cant advantage in computer science as most of the
systems to control are not isolated: they often are subsystems in a bigger framework. Adaptation
algorithms are able to react to the changes in the plant itself, for instance dealing with application
having multiple steps or stages. A side advantage of control approached is that they provide an
estimation or even prediction of the unmeasured metrics, for instant workload or completion rate of
tasks.

Last but not least, control theory provides mathematical guarantees of its performance and robust-
ness. This means that service providers can engage themselves to their clients and be aware of the
risks they are taking, even sometimes in the case of faults or attacks. From a juridic point of view it
can also be very interesting, this means that results obligation can be realized and checked in practice.

2.2.3.2 For the control community

Computer science is not yet another application �eld of control, whereas, it has a lot to offer. Control
has been developed and largely used for physics-rules systems. It has brought many constraints on
the systems that, when dealing with computing systems do not exists any more. Thus, many new
possibilities are open for control theory to expand, new control laws to be built and so on.

Another particularity of computing systems is their scale and complexity. Control theory started
recently dealing with such systems, for instance country-size electrical grids including local inter-
mittent sources. Advances in control of computing systems will also help the communities of other
control application �elds.

2.2.4 Challenges

Even though the use of control for computing system has been proved possible and bene�cial for both
�elds, this approach is still at its premises. The main challenges to face are regarding the problem
formulation, i.e. �nding the appropriate tunable input and performance output signal for the software.
The terminologies used is both �elds are different and even sometimes contradictory. A simple ex-
ample is the notion ofresponse time, which for computing people means the time for a request to
be answered, while for control people it is the time it takes for a objective to be reached. One can
also think of the principle ofadaptation, which in computer science means reacting to changes in the
plant or in the environment (which is what a controller do), while in control theory the adaptation is
one step higher, the control law itself is changing over time. Consequently, de�ning the bounds of the
system, its inputs and outputs that satisfy control conditions is a major part of the work.

Additional complexity comes from the properties of the systems themselves [99]. They have a
variety of time dynamics, power consumption and cost scales that require speci�c tuning of each
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control approach to the problem considered. Systems often involve multiple metrics with various
criticalities, each signal being able to vary over several orders of magnitude, requiring the control
solution to be scalable. Most computing systems also present hybrid behavior depending of the scale
at which they are considered, mixing discrete-events dynamics (for instance between the various
functions of a software), discrete-time (sequential execution of a program) or even continuous-time
(for instance if the heat dissipation is looked at for cost-related issues). All those challenges are what
motivates researchers to �nd appropriate formulations and tools to overcome them.



Chapter 3

Related Work

This chapter reviews the state of the art works on the control of computing systems. It is divided in
two sections, the �rst surveys the variety of theories and techniques used, the second one focuses on
the use of control theory and on the various applications that already bene�ted from it. Given the
vastness of the targeted �elds, this review is not meant to be exhaustive but rather to give the reader a
global picture of the methods and applications.

3.1 Monitoring Techniques for Software Adaptation

This section gives a classi�cation of the state of the art solutions that realize software adaptation.
Discarding hardware, we focus here on the software systems. The execution of these later are highly
dependent on their environment, for instance through available computing resources and concurrency
on them, or because of unexpected workload. Mechanisms that realize adaptation are thus needed,
and the diversity of applications and objectives has led to a variety of solutions. The remaining of
the section gives a non-exhaustive but hopefully representative overview of the literature on software
adaptation. For each technique, we �rst sum-up the principle (which is often a �eld on its own), then
give examples of applications and eventually conclude on the limitations.

3.1.1 Observations-based rules

This category gathers the simplest forms of adaptation, based on IF-THEN rules. Even if most solu-
tions are based on observations and end up with rules, we elude here all methods that use advanced
processing on measurements such as feedback. A simple example of such mechanism is for instance:

IF runtime> 10s
THEN #-resources= 2

which set the number of resources dedicated to a job depending of the its tasks' runtime.
These simple solutions are already implemented by cloud provider, see for instance Amazon EC2

Auto Scaling [13] of AWS Auto Scaling [12]. Another example is given byAutoScale[76], a frame-
work that scales up or down the number of server used in a datacenter depending on the current
workload. Other works monitor performance of web services using shared architecture [51]. They
measure the Quality of Service goal and adapt resources accordingly (accept queue and CPU). Their
main advantage is being able to deal with several web services classes and workload. More advanced
works have used the fuzzy rules theory to improve their approach. One can see as examples the works
of Jamshidi in the �eld of cloud resource provisioning [94, 95].
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These approaches have the advantage to be simple to implement as they do not require modeling
of the system nor complex algorithms to run. However, deciding on the thresholds is often a hard task,
even for experts, and could require another automatization. Eventually, those solutions are inherently
reactive, while it has been shown that predictive action of the adaptation show better results [162].

3.1.2 MAPE-K

A famous approach to autonomic computing is MAPE-K [98], which brings knowledge in the deci-
sion process. MAPE-K is a iterative approach that performs sequentially: Monitoring of the system,
Analysis of sensed data, Planning of actions to take and their Execution, all of this based on Knowl-
edge of the system under study, see Figure 3.1.

Figure 3.1 – MAPE-K autonomic manager [98].

MAPE-K approach is widely known and used, including in the industry [108, 58]. Its formulation
is really close to the control theory one as has been shown in various studies [156, 71]. Indeed,
the monitoring can be seen as the sensor and the execute part as the actuator. The analysis is the
states estimations, the planing is the control, and the knowledge is embedded in the system model.
Consequently in the following of this work, we will discard the MAPE-K formulation and stick with
the control theory perspective.

3.1.3 Queuing Theory

Along with control, queuing theory is the most used approach for software adaptation [89]. A queuing
model consists in two main parts: the service, calledserver, and the incomingclients willing to
bene�t from the service. A classic representation is given in Figure 3.2, where the server is the
circle on the right denotedmand the queue of arriving clients is the left partl . Queuing theory based
adaptation approaches model the system to predict the control signals, for instance resource allocation
or admission control, in order to monitor the delay of clients waiting for the server.

Figure 3.2 – Queuing basic model [89].

The probability distribution of the client arrival process and the one of the duration of the server
processing (also calledservice time) are two main elements of the queuing model. Two of the most
common distributions are the Poisson one where the inter-arrival times are exponentially distributed
or the general one for which arrivals are independent.



23

The Kendall notation is often used to de�ne queuing models. It comes in the form of three letters
separated by slashes, for instanceM=G=1. The �rst letter represents the distribution law of the clients
arrival l and the second the distribution of the serverm. As there is mostly two distributions, the
letters are usuallyM (which stands for Markovian or memory-less, and is the Poisson distribution) or
G (general, independent, also notedGI sometimes). The third element of the Kendall notation is the
number of servers.

The Kendall notation re�ects the parametrization of queuing models, but one can also play with its
architecture. Basic modeling elements (Figure 3.2) can be combined in series or parallel. The basic
model is a black-box approach at the system-level. Combining several allows to consider a model
detailed at the component-level, for instance by having a basic model for the processor and another
for the disk; or one for the web service and another for the database. Another queuing model knob
is the classes. The previously described models are single-class as the distribution of the clients are
the same for all of them. One can also consider multi-class models where several types of clients are
considered with different arrival rates and service distribution. Eventually, the previously mentioned
models are called open (regarding the clients), and one could consider there closed version where the
clients are limited and go back into the waiting queue after being processed (with some delay).

The literature that use queuing theory for software adaptation take advantage of all the possibilities
in the modeling, i.e. there is not a commonly accepted architecture and parametrization. For e-
commerce workload application, Ranjanet al. [154] used a openG=G=N while Liu et al. [117]
considered a multi-class closed model. OpenM=G=1 as been used to monitor algorithm execution
time [10]. Resource allocation in shared web servers has been addressed using mutli-class open
models [50] taking as evaluation workload theWorld Cup Soccer'98. Eventually, the load-balancing
and service time control challenge for cloud application has also been tackled using Poisson-based
queuing theory [143], however combined with a discrete controller.

The main limitation of queuing theory is that they mostly guarantee the steady-state monitoring
but dot not enable to handle transient phases [89]. Transient behavior is essential to monitor as it can
get the system through states that are detrimental or even dangerous for the system (e.g. too high CPU
or memory usage). Moreover, queuing models are not suitable to model systems with too complex
client arrival and server distribution. Nowadays software applications are become more and more
complex, which makes this limitation of prior importance.

In order to deal with those limitations, some approaches have proposed to combine queuing theory
and control [8, 116].

3.1.4 Game Theory

Game theory has initially been developed in the �eld of economic in the beginning of the 20th century
and has been excessively applied in the context of computing systems, notably with the particularly
relevant notion of rational agents. In the game theoretic formulation [174], a system is composed of
agents, or players, who can realize a set of possible strategies or decisions. Each of the players have
a utility function that de�nes their relative advantages and pro�ts. Game theory provides strategies
to players in order to maximize their pro�ts and reach equilibrium, such as the well known Nash
equilibrium [138]. Representation of game theory simplest models can be modeled with decision
trees or payoff matrices. An example of such matrix is given in Figure 3.3 in which two agents have
both two strategies available, and the quanti�ed gains of each strategies combinations is given for
each player(gainA;gainB). Many variants of this simple example can be drawn with for instance non-
symmetric options between players, sequential or simultaneous choices, zero or non-zero gain sum,
complete or partial information disposal, or eventually cooperative or non-cooperative agents (i.e. no
alliances).
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Figure 3.3 – Game theory payoff matrix, basic example.

This approach as been applied in various domains of software adaptation such as radio resource
allocation [163] or load balancing in grid computing [166]. The most common solution used is the
Nash equilibrium, such as by Guoet al. with a Nash cooperative bargain formulation for network
bandwidth sharing in datacenters [90] or by Grosuet al. in a non-cooperative formulation for load
balancing [87]. More complex formulations has also been studies, such as two steps models [180] or
parametrizable agents [122]. Combination of game and control theories have also been studies, for
instance to the network bandwidth allocation challenge for self-adaptive cameras [160].

The main limitations of game theory for software adaptations are that it is hard to distinguish
between positive and detrimental dynamic strategies [121] and that no self-adaptation is possible in
the sense that the trial-and-error process is not applicable [68]. Moreover, the learning of the solution
should be done online in the case of asymmetric formulation, as they depend on the initial state, which
can be computing intensive. Eventually, the formal solution gets more and more complex to retrieve
as the number of agents grows [68].

3.1.5 Machine Learning

Machine learning is the science that retrieves statistical models from datasets. Its popularity has
widely grown in the last decades, particularly with the advances in computing capacities, leading to
a really vast �eld of research regarding as well the diversity of its techniques and algorithms as their
application �eld. The basic stone of machine learning is data. Each record of the system under study
is calledinstance, and is characterized byfeatures, a set of values that describe the data instance.
The learning algorithm is then trained on a set a previously known instances in order to adapt its
parameters to best �t the system under study. Afterwards, the learned model is used to provide a
prediction on new unknown instances. In the case of classi�cation problems, the output of the model
is the category of the instance (for instance "short" or "medium" or "long" in case of service time
prediction) whereas for regression problems, a continuous value is retrieved (e.g. "150s"). Eventually,
a distinction can be done between supervised learning, for which the ground truth of the training set
is supposed to be known (i.e. the classes of each instance), and unsupervised learning. Figure 3.4
illustrates thek-nearest neighbor supervised classi�er, that predicts the class of an new sample by
taking the majority class between itsk neighbors from the training set. In this example, the feature
space is two dimensional.

All the variety of algorithm from the machine learning community has been applied in the context
of software adaptation. Wanget al. proposed the use of k-nearest neighbors for resource allocation
[177] in order to �nd the closest past scenario and apply its of�ine (near-)optimal solution. Decision
trees has been used to perform load balancing for IoT fog computing [11]. Most advanced techniques
such as time series has been studied for resource demand prediction [173] combined with an allocation
algorithm; and in the context of self-healing software [5]. Famous neural networks have also been
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Figure 3.4 – Machine learning simple example:k-nearest neighbor classi�er [177].

applied to predict power usage effectiveness in datacenters [77] or in their deep reinforcement learning
version for performing resource management [125].

Machine learning techniques are inherently limited by the quantity and the quality of available
data [77]. Moreover, they are modeling tools, able to achieve extremely good �tting to data, but
which are not designed together with a decision processes. In the context of software adaptation, the
objective is always to be able to achieve a suitable action on the system depending on the environment
changes. This objective does not exactly overlap the one of maximizing modeling accuracy, which
limits the use of machine learning for decision making.

3.1.6 Discrete Event Systems

The theory of discrete event systems is a part of the global control theory. However it has speci�c
hypothesis regarding the system's behavior that will make us consider it apart in this literature review.
A discrete event system must have the following properties: be describable with states that take
only discrete values (integer, Boolean, etc.), it should be dynamic, that is evolving through time, but
transitions between states should be event-driven, not necessary at regular time intervals [37]. Such
systems are modeled using automata, also called �nite state machines or transition systems, and are
mostly de�ned by a memory of the states and a transition function [156]. Petri nets are a variant of
automata in which states de�nition is based on token triggered by transitions. Such models are used
for two main objectives, being model checking and discrete controller synthesis. Only the last one
is of interest for us in the context of software adaptation. Discrete controller synthesis (DCS) is a
formal approach for automated controller design, with the speci�city of being compliant by design
to the control objectives [153]. The speci�cations are usually deadlock avoidance and invariance of
a subset of the state space (which can be seen as a kind of reference tracking), with the constraint of
being maximally permissive for all that is not stated in the objectives. DCS uses some classic tools of
control theory, such as the notions of feedback and controllable/uncontrollable inputs. A schematic
representation of a close-loop control of a discrete event system in given in Figure 3.5.

DCS in the context of software adaptation have mostly focus on fault tolerant systems [84, 178].
Other works have addressed more exotic systems such as IoT deployment and smart buildings [168]
or dynamically recon�gurable architectures such as FPGAs [17].

Discrete event systems control is inherently limited by its assumptions (discrete states and event-
driven dynamics) and thus cannot be generally applied for all software adaptation problems. More-
over, discrete controller synthesis are facing scaling issues regarding the size of the automata [156].
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Figure 3.5 – Discrete Event System Control Schema[156].

3.2 On the Use of Control Theory for Computing Systems

After describing the various techniques that can be used for software adaptation, we now review the
literature that used control theory. An overview of the issues addressed and the techniques used is
given. For readers who are not familiar with control theory, please refer to the terminology presented
in Chapter 2. This section is widely based on results given in Shevtsovet al. literature review on
control-theoretical software adaptation [162] and in Patikirikoralaet al. survey [147], which respec-
tively studied 42 papers from 1998 to 2016 and 158 papers from 2000 to 2011.

The remaining of this section is organized as follows. First the motivations that lead to the use of
control theory are reviewed. The application domains are presented, as well as the objectives of the
authors, that are then expressed as performance metrics. Next, we present the control knobs that have
been used. Modeling and control techniques are presented, and eventually we review the evaluation
methods used. Finally, we analyze the publication trends and conclude with the limitations raises in
those works.

3.2.1 Motivation for using Control Theory

When stated, the main reason given by the authors to use control is the formal guarantees that it
provides [162]. The second one is the maturity of the technique that has solid and formal foundations
and provides a systematic approach to �nd solutions. This highlights that the need for automation
and reliability is of �rst level importance for software systems. Note that another motivation is the
inef�ciency of other techniques, which can let us think that control is usually not used in the �rst
attempt to solve a new challenge. However, more than a fourth of the literature papers do not give
insights about the justi�cation of the choice of using control for software adaptation [162].

3.2.2 Application �elds

Two categories have to be distinguished: the application system and the application use-case. The
�rst categorization has been proposed by Patikirikoralaet al. [147]. A third of the paper they studied
focused on middleware systems, others on real-time systems and and data center management (around
20% each), the rest were dealing with Virtual Machines or data storage. Given that this study stops
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at the early 2010's, one can expect that the proportion of virtual machine and cloud con�guration is
signi�cantly higher nowadays. However we did not found a more recent global study to highlight this
point.

Regarding the use-case, most of the papers focus on web application (i.e. e-commerce) or on im-
age or video processing [162]. Some works also focus on service-based systems and search engines.
One can notice also that few works have dealt with software testing and development [34, 96].

3.2.3 Objectives

The three main objectives of control theory are performance, reliability and energy consumption.
Some minor aspects are also taken into account, such as security or usability. They can be expressed
though three formulations: setpoint tracking, with eventually con�dence intervals, disturbance rejec-
tion and minimization or maximization of a quantity (with the use of a cost function if some goals are
con�icting). According to Shevtsovet al. [162], 85% of the works are motivated by changes in the
environment (disturbance rejection), 70% by changes in the requirements (i.e. set point) and fewer
(15%) are also driven by changes in the software itself.

3.2.4 Sensors and performance metrics

Metrics measured by sensors can be distinguished in three main categories: software utility, resource
utilization and software inef�ciency [162]. The utility is measured with variables such as response
time (in around 40% of the papers [147]), throughput, latency or video quality and processing speed.
Resource utilization gathers processor/CPU/memory utilization, power consumption and bandwidth.
Eventually, software inef�ciency is measured with metrics such as miss ratio or failure rate.

Note that only 15% of the papers describe the sensor and its implementation, while the vast ma-
jority only describe the metrics used [162].

3.2.5 Actuators and control signal

The actuators being highly application dependent, their categorization is not a easy task. Three types
of actuators have been identi�ed [162]: parametric, component or mode adaptation. Parametric adap-
tations are the modi�cation of the parameters of the software system, for instance the degree of quality
of a �lter. Component adaptation intervene a degree of abstraction higher, for example the load of a
service or the number of service instances. Eventually, mode change can be for instance a switch to
the preference given to each service.

The particularity of software adaptation regarding actuator is that it is rather easy to create and
remove some [71]. However, one should be speci�cally careful when designing an actuator (the same
can apply to sensors) that this later is consistent with further modi�cations of the software under
study.

3.2.6 Modeling

The most common model used for software applications is a linear, time-invariant black-box discrete
model [162, 147]. In this case, the link between the control signal and the performance metric is linear
(i.e. not quadratic, exponential, etc.), the parameters do not depends on the time variable, and this
later is considered at regular time intervals (not in a continuous way). The parameters of the model
are found using system identi�cation techniques, that subtly solicit the system, record its behavior
and �t it with a model. The use of black-box is particularly spread because its an easy process that
can deal with highly complex systems and still enable to derive performance guarantees. Even though
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many studies state that their system is non-linear, linear modeling is preferred, maybe because of lack
of tools as simple and practical in the non-linear case.

However, when linear black-box is not used, models tends to be non-linear and analytical [162],
even though it represents a smaller portion of the literature. Most of the combination in terms of
linearity, continuity, time-variance and model type (analytical of black-box) can still be found in the
state of the art, even though only the two above mentioned combinations are popular.

As for the dimensions of the model, 60% are MIMO (multi-inputs multi-outputs) while 40% are
SISO (single input and output) [147].

3.2.7 Control

Almost all the controllers used were including feedback, and a small portion of them where also using
feedforward to deal with workload rates [147]. The most used controller is by far the PID one (50%
of the reviewed papers [162]), with a preference for its PI declination. They are mainly used in SISO
scenarios, for regulation and tracking objectives, and are most of the time adaptive to compensate for
the linear modeling of a non-linear system. The second main trend is the use of Model Predictive
Controllers, mostly with MIMO discrete time models, in a non adaptive formulation, to deal with a
minimization or maximization objective.

Some speci�c structures of controller can also be found, such as hierarchical control, switching
control or cascaded control.

3.2.8 Evaluation

Three kind of evaluation methods are used: formal analyze, simulations and real-case experimental
study. All three are widely used, simulations being however quite limited, and the quality and the gen-
eralizability of experimental use-cases are limited. Some benchmark and workloads are commonly
used for some works such as [147]. The main qualities that are looked at are indeed performance,
ef�ciency, costs and reliability. The metrics used to guarantee those later properties in control theory
are stability, settling time, overshoot, steady state error, robustness, optimality and control signal us-
age [162]. All of them are commonly used for evaluation, stability and settling time being the most
spread ones.

3.2.9 Publications trends

Aside from the technical content of papers, two interesting metadata to look at are the publication
year of the papers as well as their venue. Both review papers [147, 162] concluded that the number
of publication per year is signi�cantly increasing, showing a growing interest of control theory for
software adaptation. They also reported that the source of publication of such contributions are largely
spread among venues and communities. There is however a higher number of paper published in
the software engineering community, showing a higher interest in using control theory as a tool for
solving software issues as to use computing systems adaptation as a playground for control scientists,
at least from the point of view of the global communities.

3.2.10 Limitations and open challenges

Each design step previously detailed is subject to limitations. Using control theory for software re-
quire the use of new sensors and actuators that were not included in the design phase, such as the
evaluation of the cost of adaptation. Some others are crucial notions that however still lack of com-
monly accepted metrics, such a security, resilience or privacy. From an architectural/implementation
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point of view, actuators and sensors need to be consistent and evolve with the different versions of the
software.

The most common type of modeling used (linear time invariant discrete model) is still ineffective
when dealing with sharp and drastic disturbances. More research need to be done regarding the
properties of the models and how to chose them (linearity, continuity, etc.). The same conclusion
can be drawn about controllers. Even though various types of controller are used, few research has
been done to derive a systematic procedure regarding how to chose the best controller type. A recent
study has highlighted the promises of using more advanced modeling and control techniques such as
closed-loop metrics or real-time cooperative model predictive controllers [99].

Eventually, while the formal background of control theory is often cited at the number one rea-
son to choose this technique compared to another, the analysis of these guarantees in the evaluation
process is many times missing.





Chapter 4

Objectives and Contributions

In this context of association of control theory and computing systems, this thesis take the approach
of deeply exploring two use cases. In this work, these applications have been approached with a
large variety of complementary techniques. As such, diverse aspects of the combination of the two
�elds have been explored. In this chapter, the two application scenario are presented. The �rst one
focuses on the protection of mobility-related privacy of mobile devices' users, while ensuring the
usability of geo-localized services. The second one deals with BigData cloud services and how to
ensure their performance and reliability in their extremely variable environment. These two use-cases
cover different and complementary aspects of software systems, services running on mobile devices
for everyday users and large scale data processing, mostly business oriented. The last section of
this chapter summarize the contributions this thesis has brought to these two objective scenario. The
third use-case, seeing machine learning algorithms as a control systems, is not introduced here as a
contribution of this thesis work. One can however refer to Part VI for the corresponding publications.

First, these problematics will be presented in computer-science words, not only understandable
by experts but also by the everyday users that the reader can be. These scenario will be reformulated
with a more control-oriented vocabulary in due time, as introduction of contribution chapters.

4.1 Privacy and Utility for Mobility Data

The democratization of mobile devices has fostered the development of applications using the owners'
location data to provide or improve a service. Such applications are called Location Based Services
(LBS), their operating principle is illustrated in Figure 4.1(a). Examples of LBS are navigation ap-
plications, recommendation systems or �tness tracking apps. Some of the most used geo-localized
applications are Google Map, Uber, TripAdvisor or weather applications, see Figure 4.1(b).

A large number of mobility data are generated and collected, which are currently used by com-
panies and researchers. Indeed, the processing of mobility data can reveal valuable information that
may be used for a broad range of applications, e.g., traf�c congestion management, urban develop-
ment, etc. See Figure 4.2 for a schematic representation. Those applications and the corresponding
collected data thus bene�t to all parties.

LBSs provide users with always more personalized and convenient services but at the cost of
personal data publishing. Service providers, or any third party attackers, take advantage of these data
to derive always more informations about users. The attacks can happen at every processing step, as
pictured in Figure 4.2. The most common threats for users are (i) reidenti�cation attacks where the
identity of an anonymous user is guessed based on previously recorded data [73, 126], (ii) mobility
prediction that anticipates users' next moves based on their habits [184, 75], (iii) extraction of user's

31
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(a) Operating principle (b) Some illustrated examples

Figure 4.1 – Location Based Services

Figure 4.2 – Usages and threats of mobility data when using a LBS.

places of interest (home, workplace [74], place of worship [72], etc.) and (iv) inference of social
relationships (partners, coworkers, etc.) [29].

In order to provide ways to protect users' privacy, Location Privacy Protection Mechanisms
(LPPMs) have been developed. This terminology gathers all algorithms that modify location data
in order to improve the users' privacy, see Figure 4.3.

Simple examples of LPPMs are adding noise to the data of the user, reduce the precision of the

Figure 4.3 – Location Privacy Protection Mechanism
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data or merging close users' mobility information. There is a high diversity among LPPMs: some
are at the user level, other require trusted servers; some are on-line mechanisms, others can only be
applied on a dataset; etc.

Usually LPPMs are parametrized algorithms, for instance the amount of noise added to the data
can be varied. The tuning of those parameters enable to leverage their action, i.e. to enforce more or
less privacy on the data. This property is highly valuable considering that privacy often comes at the
cost of a reduction of the service utility. Hence, a con�gurable LPPM enable to tune the privacy to
utility trade-off. However, the �ne tuning of these parameters may require sophisticated knowledge
and experience. The choice of these con�gurations signi�cantly impacts the level of protection of
the obfuscated data. The obfuscation should be carried out carefully in order to make sure that the
utility of the protected data is preserved. Indeed, the mobility data are directly used by the LBS
to provide the user with a service, and when taking the LBS point of view, those data are jointly
processed to retrieve some high level information (road usage, means of transportation, etc.). Dealing
with both privacy and utility at the same time is not straightforward given the natural trade-off that
exists between the two. As privacy enhancing mechanisms consist in deforming the original data to
hide information, their usability is by de�nition decreased.

Moreover, every user mobility is highly dynamic, with varying speeds and frequencies of move.
Thus, the application of a protection mechanism may result in various levels of privacy and utility
depending on the properties of the user's mobility.

Objectives.To sum up, the objective is to guarantee given levels of privacy and utility both from
the user perspective and the data analytics one. Moreover, given the variability of users' moves and
his or her environment, the guarantees of privacy and utility should be robust.

4.2 Performance and Reliability of Cloud Services

In the last decades, the world has faced a steep surge in the number of produced data. The previously
presented case of people mobility data collection is a perfect example of how everyday activities
generates huge amounts of data: web pages requests, �nancial transactions, etc.. These Big Data
bring novel challenges for their storage and analysis.

New programming paradigms have emerged to face Big Data speci�cities, such as MapReduce,
Hadoop or Spark. Cloud computing, with its promise of barely unlimited storage and processing
capabilities, is becoming an increasingly attractive solution, see Figure 4.4 for on overview of some
of the most famous cloud services [142]. The use of clouds enables to share with others the physical
resources, as most applications do not require their full time usage.

Figure 4.4 – Common Cloud Services
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One of the biggest appeals of cloud computing is theon-demandassigning of shared hardware
resources to software applications, called elastic resource provisioning. This enables to provide more
resources to applications that need itwhenthey need it, and thus try to optimize the resource usage.
Therefore, there is a growing need for frameworks that ef�ciently deal with the dynamics of cluster
resources [119].

Current autonomic resource provisioning approaches that are deployed in public clouds still don't
work optimally for real time applications. In most clouds, if an application has to meet run time
criteria, a reactive algorithm scales the resources to the demand. However, it requires high level of
expertise to decide on how much to intervene, as it depends on many factors that are not necessary
directly accessible. The dif�culty of the task is increased by the fact that the optimal con�guration
can vary due to the shared use of hardware resources or workloads �uctuations over time [20], among
many other factors [103]. Therefore, there is a need for fully automatized and robust cluster scaling
algorithms able to deal with these environment disturbances.

Ensuring service performance is essential as missing deadlines result in consequent �nancial
losses. It is estimated that an on-line brokerage industry service unavailability costs around 100.000$
per minute. For on-line shopping companies, page load-time should not be more than 2 seconds or
users tend to give up their shopping or switch to another seller, resulting in revenue loss for companies
[137]. Figure 4.5 gives examples of unmastered resource usage that led to signi�cant consequences
for companies. Cloud providers have to guarantee service performance and availability in order to
win users' loyalty and avoid to huge �nancial impacts.

Figure 4.5 – News breaks showing that unmastered resource leads to service unavailability. All out-
ages were caused by unusual workload, where some where however expected to be of huge amplitude.
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Ensuring the performance of cloud services is a highly complex challenge. A cloud service be-
havior varies over time due to the dynamic of its environment (hardware, network, etc.). As cloud
providers desire to maximize the utilization of their clusters, they have mechanisms for the dynamic
reallocation of unused resources in the cluster, which further add to the variability of system perfor-
mance. Hence, even with the same workload and the same resource amount, an application perfor-
mance may vary depending on how noisy neighboring applications are. Moreover, cloud services
are highly complex paradigms that run on top of multiple software stacks, making their behavior
regarding resource provisioning highly non linear.

Objectives. To sum up, the objectives in this context are to ensure desired performance and
availability of cloud services while being robust to the changes in the application and its environment;
in a �nancial and energetic cost-aware manner.

4.3 Contributions of the Thesis

The challenges of the two uses cases presented in the beginning of this chapter have been overcome in
this thesis by four major contributions. They are presented in the next subsections, where an overview
is given on the scenario considered, the approach used and the publications that resulted from these
works.

4.3.1 Automatic Choice and Con�guration of Location Privacy Protection
Mechanisms

Mobility datasets collected by companies or researchers need to be protective regarding users' privacy
and still enable to extract useful aggregated information. Location Privacy Protection Mechanisms
(LPPMs) shall be used. However, the appropriated LPPM and its con�guration to use may vary for
each user. Moreover, some guarantees regarding the levels of protection and utility of resulting dataset
is needed.

PULP framework (standing for Privacy and Utility through LPPMs Parametrization) realizes user-
level objective-driven recommendation of the best LPPM to use and how to con�gure it. It works in
three steps: �rst the pro�ling of the impact of LPPM on individual users, then the non-linear modeling
of the LPPM behavior, and eventually the recommendation of a properly tuned LPPM for each user.
The recommendation is based on objectives, such as the trade-off between privacy of data and their
utility.

This work has been presented in an international conference [47] and is further extended in a
journal version [45].

4.3.2 Dynamic Control of Utility and Location Privacy

The dynULP framework (standing for dynamic and Useful Location Privacy) takes the perspective of
an individual using a mobile device to enjoy the service of a LBS. The data sent should be protected
while the service received should be useful. In this dynamic and user-centric scenario, the need for a
rightful con�guration of the LPPM also rises. Moreover, as the mobility of the user is changing over
time, the protection mechanism should also evolve to ensure a constant level of privacy.

Control theory is applied to this use-case. Privacy is considered as a measurable signal to con-
trol, while the con�guration of the LPPM enables to leverage it. Contributions have been made on
the problem formulation, i.e. �nding proper ways to measure privacy and utility of data to enable
controlling it. Then, modeling tools and control law have been applied to ensure privacy reference
tracking and robustness regarding user's mobility.
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The work can be found in two international conferences [38, 49] and a journal submission is under
review.

4.3.3 Adaptive Control for Cloud Service Performance Robust to Plant and
Environment Changes

The cost of cloud services is continuously decreasing, hence service performance is becoming a key
differentiator between providers. Solutions that aim to guarantee Service Level Objectives (SLO) in
term of performance by controlling cluster size are already used by cloud providers. However most
of these control solutions are based on staticif-then rules, they are therefore inef�cient in handling
the highly varying service dynamics of cloud environments.

In this thesis, a novel adaptive control approach realizing resource allocation is presented that is
robust to these phenomena. It consists of PI and feedforward controller which parameters are adapted
online. The use of adaptation enables to improve control ef�ciency and robustness with respect to
variations in the dynamic of the system.

Results of this approach have been presented in two international conferences [43, 110].

4.3.4 Cost-aware Optimal Control of Performance and Availability of Cloud
Services

High rate cluster recon�gurations is a costly issue in Big Data Cloud services. Current control solu-
tions manage to scale the cluster according to the workload, however they do not try to minimize the
number of system recon�gurations.

This thesis presents a novel event-triggered optimal control approach. The triggering mechanism
relies on a Model Predictive Controller and is de�ned upon the value of the optimal cost function,
to reduce the number of control changes but also ensures a very reactive behavior to changes of
exogenous inputs.

This work has lead to a publication in the control community [41].



Part II

Privacy and Utility Aware Control of Users'
Mobility Data
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This part tackles the issue of location privacy, i.e. the protection of people's privacy for whom
their mobility information is shared with untrusted parties. Two scenario appear: (i) the locations are
broadcasted in exchange of a service delivered to the mobile device user, e.g. a geo-located weather
forecast, or (ii) datasets of many users are used to performs analytics, e.g. �nding the most crowded
streets in a city. In both cases, two main notions can be identi�ed: knowing the privacy protection of
mobile devices holders and the utility or quality of the service.

The tools of modeling, con�guration and control for this use-case is presented here. Chapter 6
presents PULP (Privacy and Utility through LPPM Parametrization), a framework that address the
static scenario where a mobility database has been recorded and privacy protection needs to be per-
formed, wisely in order to ensure some accuracy of the performed analytics on it. Such scenario is
particularly pervading since the European regulation GPDR effective since May 2018 [79]. PULP
�nds the best Location Privacy Protection Mechanism and con�gures it at a user granularity to satisfy
both privacy and utility objectives. Chapter 7 presents dynULP (dynamic Utility-preserving Loca-
tion Privacy) the user-side version of PULP, which performs online protection of location data before
sending it to a third party while keeping a eye on the returned service quality. In dynULP, the action
of the protection mechanism is leveraged on line to cope with changes in users' mobility and envi-
ronment, and its objectives are driven in a way that enables the user to choose high utility when she
needs it, and enforced privacy (i.e. relaxed utility) otherwise. Beforehand, Chapter 5 gives all the
context and background needed to fully understand the data and mechanisms involved, and present
the related works from the state of the art. Eventually, Chapter 8 concludes on the contributions of
those works regarding location privacy, and gives perspectives for future works.





Chapter 5

Location Privacy Background and Related
Work

First, the key concepts of Location Privacy are presented in this Chapter: the location data itself and
the properties of a mobility dataset; the notion of privacy related to location data, both practically
and theoretically; and the state of the art solutions that aim at protecting privacy, with illustrated
examples. Then we focus on evaluating the protection mechanisms through the de�nition of state
of the art privacy and utility metrics. Finally, an overview of the state of the art on adaptation or
con�guration of protection mechanisms is given.

5.1 Mobility traces and datasets

Mobility data are records of locations over time. The location is often the one of a person using
a handled device, but it can also be records of some transportation modes (car, bikes, etc.). The
databases can re�ect two scenarios: either a user1 is collecting her locations and sending it from time
to time to an external service (e.g. crowdsensing applications) possibly with some remuneration; or a
person is using a location-based service that requires the user's location continuously through time.

Formally, mobility databases are GPS points (latitude, longitude) labeled with timestamps. In
the following, a mobility trace will be referred to with the notationM, as mobility trace, which is
mathematically a matrix with three columns: latitude, longitude, time. When the user that realized
this mobility is speci�ed, it is with the subscripti: Mi . A mobility trace is basically two signals
evolving through time, with most of the time a varying sampling rate. Many processing can be done
to those signals to characterize them. We will consider two complementary axis of analysis: (i)
the time scale and (ii) the derivation degree, as explained in the following. The time scale can be
instantaneoust, a small variationDt or a time windowT. The derivation can be of order 0 (position
through time), order 1 (speed) or order 2 (acceleration). By looking at the different signals (position,
speed, acceleration) in the various time properties enables to characterize the mobility, e.g. small
variations of position gives the changes in the user direction, the speed of the user at a given time, etc.
It exists some redundancy in this formulation, e.g. small variations of speed are indeed acceleration,
without being detrimental to the analysis. These properties of the mobility trace are what LBS use for
improving their services, it will be discussed more in details in the Utility Metric Section 5.4.2.

In this work, two types of mobility data have been used: datasets collected on the �eld, by mobile
devices carried by users or synthetic data that we generated in order to emphasis some properties.
The �rst dataset has the advantage of being realistic while the second enable to control and cover

1Note that in the Privacy community, the user is by convention referred to as a female. This usage will be kept for the
rest of this manuscript.
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all possible scenarios. Hence, synthetic data will be mostly used for analysis and modeling while
real-life datasets will enable validation and evaluation of our approaches.

For the �eld data, four datasets have been considered: Cabspotting [148], Privamov [31], Geolife
[191, 189, 190] and Mobile Data Challenge [102, 112]. They differ in their number of user sensed,
duration of the collection campaign, area covered, sampling time, number of records, etc.

Cabspotting dataset [148] gathered the mobility records of 536 taxi cabs during their service in
San Francisco Bay Area, USA, over one month, in May to June 2008. The sampling frequency is of
the order of magnitude of the tenth of seconds. Privamov dataset [31] records the location traces of
100 student and academic staff smartphone users in the region of Lyon, France. Data collection lasted
from October 2014 to January 2016 (15 months), with an average sampling period of 10 seconds.
The Mobile Data Challenge dataset (MDC) [102, 112] involves 185 users around the Lake Geneva
region, Switzerland. Data were collected between October 2008 and March 2011 (3.5 years), with
a sampling period of around 10 seconds. The last dataset considered is GeoLife [191, 189, 190],
collected by Microsoft Research Asia in Beijing region from April 2007 till August 2012 (5 years)
upon 182 users, with a higher sampling frequency that the other datasets: around a second. This
dataset has the advantage of have been labeled by the users regarding their transportation mode.

For fair comparison, we align the length period of the four datasets to that of the shortest one (i.e.
Cabspotting which has 30 days of mobility data). Hence, we extracted the most active period of 30
days from Privamov, GeoLife, and MDC data collections. Details on the restricted datasets can be
found in Table 5.1.

Dataset Location #users
Cabspotting San Francisco, USA 536
GeoLife Beijing, CN 42
MDC Geneva Region, CH 142
Privamov Lyon, FR 48

Table 5.1 – 30-days Mobility trace datasets

An extract of a mobility trace from a Cabspotting user can be found in Figure 5.1, the location
points on the map of San Francisco on the left and the variation of the user's speed through time on
the right. Some sections of this trace have been highlighted to show mobility diversity. First, the cab
driver is stopped at a cab station (yellow dots). Later on, he drives with high speed on a highway from
the airport to the city (blue crosses). Eventually, he drives in the city from a hotel to the piers with
relatively slow speed (green circles).

The synthetic data we generated is a variation on all the above mentioned properties of a mobility
trace. Its main characteristics are the speed of the user and the period between two changes of the
speed, that are illustrated in Figure 5.2. Speed can be high (e.g. in a train), medium (is a car or a bus),
low (walking or by bike) or null (the user is stopped). Frequencies of changes ranges from a short
stop at a traf�c light (less than a minute) to a longer stop in a shop (a tenth of minutes) or even longer
stops (hour-long). In the �rst two hours, the direction of the movement is varied. Around hours 8 to 9,
the acceleration of the user is considered. From hour 11, the user do not really stop, but has low speed
in a restricted area (e.g. walking around a mall). Those late properties are however hardly visible on
the speed over time plot of Figure 5.2. Sampling frequency is set constant at 10 seconds.

To sum-up, the user mobility is unpredictably changing with various amplitude, frequencies and
sampling time. Robustness against such behaviors is a real challenge.
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Figure 5.1 – GPS data are dynamic. Mobility data of a user from Cabspotting dataset illustration: (a)
on a map and (b) trough speed over time of various activities (a stop and two movements).

Figure 5.2 – Synthetic mobility trace scenario.

5.2 Notions of Location Privacy

The processing of location data also comes with threats on the privacy of the recorded users. As
a motivation for privacy protection among many others, one can cite the publication of a mobility
dataset by Strava in 2018 that revealed the locations of unknown US military bases [88]; or the new
regulations that are enforced by the governments, such as the European GDPR [79].

5.2.1 Threats

Many threats exist regarding privacy, which are coming from various processing of the data [69, 33].
The most common ones are:

� Re-identi�cation attacks. The attacker has access to prior knowledge about the user, such as
publicly available information or former mobility records, and tries to guess the identity of an
anonymous user [73, 126]. These approaches have shown that simple anonymisation, or pseudo
anonymisation that just remove the name of users is not enough to guarantee their privacy.
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� Mobility prediction. The attacker tries to anticipate users' next moves based on their habits
[184, 75]. Such knowledge could be used for commercial purposes (such as a cab company
suggesting you a ride) or even personal interception.

� Social relationship inference. By processing one's mobility pattern, the nature of relationship
between people can be found such a partners, co-workers, etc.

5.2.2 De�nitions

De�ning privacy is not a easy task, but there are �ourishing attempts in the literature. Nevertheless,
one can differentiate between two main categories: the formal de�nitions and the practical ones.

A well-known privacy guarantee is k-anonymity [167], which states that a user is k-anonymous
if it is hidden among k-1 other users sharing similar properties. In the context of location privacy, it
means that, instead of reporting their exact location, users report their position inside cloaking areas
containing at leastk users. This method has been successfully implemented using a trusted third
party to compute cloaking areas (e.g., CliqueCloak [81]) as well as in distributed systems relying on
peer-to-peer communication between users (e.g., PRIVÉ [82]). Another popular privacy guarantee is
differential privacy [65], which ensures that the presence or absence of a single user from a dataset
should not signi�cantly affect the outcome of any query on this dataset. Differential privacy has been
applied as such in [97] and [18], where a controlled amount of noise was added to each location of a
mobility trace. Those two concepts of k-anonymity and differential privacy are not speci�c to location
privacy and are used in many other �elds. However, they are the one that transpose the best to the
location speci�c challenges.

Practically, there are a lot of location privacy metrics, see [152] for a overview. A key concept of
privacy is the notion of Points Of Interest (POI), which are the signi�cant places where a user spends
his time, such as home, workplace [74], place of worship [72]. POI are a particular case of the data
density property, which has been identi�ed as a privacy thread indicator [33]. The retrieval of POI is
a crucial knowledge as it can reveal many information about the user. Indeed, it is often the very �rst
step for performing the above mention attacks, see [150] for re-identi�cation, and [75] for mobility
prediction.

Hence, this work considers the obfuscation of Points Of Interests as being the practical de�nition
of location privacy protection. We however acknowledge that some works of the literature consider
the POIs retrieval as being on the utility side [185, 55, 128].

5.3 Location Privacy Protection Mechanisms

The denomination LPPM (for Location Privacy Protection Mechanisms) groups all the processes or
algorithms that, by manipulating location data, aim at improving the privacy protection of the people
involved in the mobility. LPPMs attempt to enhance location privacy of users willing to interact with
location-based services.

Roughly speaking, state-of-art LPPMs alter the spatial information of user mobility data and/or
the temporal information of the data. They take as input a mobility data and outputs another mobility
data, hopefully a more private one. The input data is called raw data, or original one; while the output
is called obfuscated data. While a raw mobility trace (i.e. collection of records) is referred to atM,
or Mi where the subscripti refers to the user; the obfuscated trace is notedM0, or M0

i j when the user
and the LPPM used for obfuscation is speci�ed. A LPPM transformsM into M0, but the mechanism
applied can be of many kinds. It may require as input a single location data or a sequence of locations
(i.e. a trace) from a single user or from several. It may also use external knowledge, such a semantics
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of the location or of its demography. The transformation to the data itself is performed through a
removal of location, a modi�cation or even as an addition of new data.

Although our work does not consist in designing a new LPPM, we brie�y present here some
prominent privacy protection schemes. An interesting way to categorize LPPMs is to look at the gen-
eral principle of their protection mechanism. Therefore, according to [152], LPPMs can be classi�ed
in four categories:

� Mix-zones. This online approach creates zones in which users exchange their identi�ers in
order to fool the service, and redistribute the results to the right users. This follows thek-
anonymity concept. It has been developed by [28] and [27]. A version has been developed
where trajectories are exchanges based on their entropy to achieve equiprobability regarding
data sensitivity [32]. One issue that arise with this approach is to �nd the right delimitation of
those zones and their size (see [115]). The main limitation of this approach is that it requires
many users using it in a restricted area, thus it may not be always usable in practice.

� Generalization. A user location has usually a really good accuracy from few meters for classic
GPS systems [139], to a tenth of a meter for more accurate ones, using WiFi spots for instance
[104]. Generalization-based mechanisms tends to reduce this accuracy by reporting the location
of the user with location zones instead of a precise point. Such areas are called spatial cloaking
zones. The location based service knows the location of the user only with a �xed, deteriorated,
accuracy that depends of the size of the cloaking area.
An implementation of such principle requiring a trusted third party server has been developed
by [136], with in additionk-anonymity guarantees. This approach has hence two parameters:
the number of people between which you are hidden (k) and the size of the cloaking zone.
A peer to peer version has been presented in [56]. Another approach consist in providing
differential privacy guarantees on top of cloaking areas [140]. Eventually, of�ine versions of the
generalization based mechanisms have been presented by [1] and [2], where location databases
are modi�ed (both spacial and temporal data) to achievek-anonymity.
The main limitation of such approach are that the LBS is required to work with spacial zone. If
not, one can imagine reporting only the center of the cloaking zone, but then the guarantees are
not exactly the same, and the mechanism is close to perturbation-based one (see fourth point).
For some implementations a large number of people using the LPPM are required [136], and
might have a high computing complexity.

� Dummies. The idea behind those protection mechanisms is to hide the user between fake ones.
Extra locations or even users are generated, which are hopefully realistic enough to make the
user indistinguishable. The �rst online implementation of such principle has been provided
by [100], and has been extended by [165] with a historic considerations that enable to ensure
k-anonymity. The of�ine version of the dummies principle has been developed by SybilQuery
[161] which create false traces that still preserve some properties of the original trace like its
length or some semantic information of the places visited.
Depending on the quality of the fake locations generators, it can be quite easy with some pro-
cessing to distinguish them from real one, for instance by looking at the instantaneous speed
or by mapping the movements with a street map. Moreover, such mechanisms are often highly
demanding in communication data and in computing.

� Perturbation. More or less all the LPPMs that do not �t in the previous categories fall into the
perturbation one, which make this latter really diverse. The common point of those mecha-
nisms is the modi�cation of the mobility traces with the addition of some kind of noise. A �rst
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example of such LPPM that works online and alter the spatial dimension of the data is Geo-
Indistinguishability [18], that ensure differential-privacy guarantees. However, this process is
quite expensive in privacy budgete, so the authors developed a extension that uses prediction
to overcome this issue [52]. An approach using the temporal correlation between the locations
of the users are used in [182] to enable once again differential privacy but with higher utility
and less budget. For the of�ine approach of perturbation based protection mechanisms, some
differential privacy have also been applied [97] while other methods advocate for path confu-
sion between various users [92]. Eventually, some mechanisms took the approach of generating
completely fake traces but that preserve the information needed by the LBS to provide its ser-
vice [134], [30]. Those approaches differ from the dummies ones as they consist in sending
only a single fake trace, not hiding the true one between some synthetic ones.

Eventually, some protection mechanisms are not location speci�c but can still be used to ensure
location privacy, such as LBS with privacy-by-design guarantees or private query engines. In the �rst
one, the LBS itself is changed to ensure privacy guarantee. Those approach are however out of the
scope of this thesis.

In the following, we present in detail two examples of LPPMs in detail that will be used as ap-
plication cases of the proposed control approach. The two LPPM are complementary as the �rst one
Geo-Indistinguishability focuses on spatial distortion of user mobility data and can work in an online
fashion, while Promesse adds temporal disturbance to a location database.

Geo-I. Geo-Indistinguishability protects user's location data by adding spatial noise drawn from
a Laplace distribution to the actual user location of each record in the mobility trace [18]. Geo-I has a
con�guration parametere, expressed in inverse of meters varying inR+ , which quanti�es the amount
of noise to add to raw data. The lower thee is, the more noise is added. Geo-I is a state of the art
LPPM that follows the differential privacy model [65].

Figure 5.3 illustrates the application of Geo-I on the mobility trace of a user from Cabspotting for
two values of the parametere (b) and (c), and the raw trace as a comparison (a). The noisier the data
are, the more the user privacy is preserved: less information can be inferred from the trace. However,
the less accurate the service will be as the reported location data are far from the actual one. Tuning
Geo-I parameter enables to leverage the privacy protection and also the utility of the data sent to the
LBS.

(a) no obfuscation (b) obfuscated with (c) obfuscated with
Geo-I. (e = 10� 2) Geo-I. (e = 10� 2:5)

Figure 5.3 – Obfuscation of a mobility trace using Geo-I. Illustration on a Cabspotting user for various
con�gurations. (a) user raw trace, (b) obfuscation withe = 10� 2, (c) obfuscation withe = 10� 2:5.
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Promesse.The LPPM Promesse has been developed in order to prevent the extraction of Points-
Of-Interest (users' stop places) while maintaining a good spatial accuracy [150]. Its principle is to
distort timestamps of location traces as well as remove and insert records in a user's trace in order
to keep a constant distance between two events of the trace (tunable with ae parameter in meters).
One can see its behavior as adding temporal noise to a trace instead of spatial noise as in Geo-I.
However, as timestamps of location data are modi�ed, this LPPM can only be applied of�ine to a
whole database or semi-online, using batches of data.

Figure 5.4 illustrate Promesse obfuscation on the same Cabspotting user. No obfuscation is done
on the left map, while the middle one has Promesse applied with a medium value parameter (e =
400m) and the right plot has a largere, 1000 m. The distance between two consecutive points is
�xed, but the points do not seem to be on a grid, as the user is moving around. Privacy protection is
higher with the largere, however utility of the trace is also reduced.

(a) no obfuscation (b) obfuscated with (c) obfuscated with
Promesse. (e = 400m) Promesse. (e = 1000m)

Figure 5.4 – Obfuscation of a mobility trace using Promesse. Illustration on a Cabspotting user for
various con�gurations. (a) user raw trace, (b) obfuscation withe = 400m, (c) withe = 1000m:

5.4 Evaluation of LPPMs

Many LPPM �ourish in the literature, and a big challenge that we are facing currently is to be able
to evaluate them. Indeed, even though some rely on a strong theoretical basis, some are not, and in
both cases their practical performance need to be assessed to allow a fair comparison of the various
mechanisms. A contribution in this sense has been done in Primault's thesis [149]. Three aspects
must be evaluated: the privacy protection level, the quality or utility of the service answer and the
performance in terms of time or computing. While the last aspect is quite straightforward and unan-
imous, the privacy and utility require more explanations and justi�cations. There is no standard way
of assessing these two complementary dimensions associated to LPPMs at a user level. We advocate
to de�ne privacy by looking at a user's POI (i.e. signi�cant stops) protection [74], and utility by
evaluation the spatial accuracy of revealed locations [53]. Both metrics evaluate the gain in privacy
and the loss of utility of the obfuscated data compared to the raw data. The proposed metrics have
parameters that enable the notion of privacy and utility to be adjusted to the considered LBS and to
the user requirements.

In the following, we review standard privacy and utility metrics for a user mobility data and
present the one we opted for, before illustrating them when applying Geo-I and Promesse LPPMs.



48

5.4.1 Privacy metric

5.4.1.1 Overview

Notions of privacy have already been presented in Section 5.2, we now discuss how to evaluate the
location privacy protection of a user. We will not try to give an exhaustive list of the metrics that have
been used in the literature but only sum up two surveys that give a good overview of those methods
[107, 152]. Privacy can be evaluated using (i) formal guarantees such ask-anonymity ore differential
privacy, (ii) data distortion such as entropy of the data or (iii) attack correctness, which consist in
simulating a malicious behavior and see what can be retrieved from the data.

This work will consider a privacy metric of this third category, i.e. the robustness to POI retrieval.
We do not claim that privacy can be reduced to this metric, however it is the one we found the most
relevant for location privacy due to its intermediate scale between data point and global knowledge,
and it has been signi�cantly mentioned and used in the literature [75, 150].

5.4.1.2 De�nition

In the following, we formally de�ne the metric used, starting with the notion of Point of Interest. Note
that this de�nition only apply for evaluating the privacy of a mobility dataset.

A POI (point of interest) is a meaningful geographical area where a user made a signi�cant stop.
A POI is de�ned by the position of a centroid of a given diameterd where the user stayed for at least
t minutes. We de�nepoi(M) as the set of POIs retrieved from the mobility traceM.

Using the concept of POI andpoi(�) set, we aim to quantify a user's privacy level by how POIs
retrieved from the obfuscated data (under LPPMj) successfully match the POIs retrieved from the
non-obfuscated data, i.e., comparison between set ofpoi(Mi) and poi(M0

i j ). We de�ne the function
Matched(poi(M0

i j );poi(Mi)) that, given two sets of POIs, derive the subset ofpoi(M0
i j ) containing the

POIs that match with POIs in the second setpoi(Mi). Two POIs are considered asmatchedif they
are suf�ciently close to one another (dmax being the maximal distance threshold). To formally de�ne
privacy, one can either use the measurement of precision (Ppr(i; j)) which de�nes the ratio between the
number of obfuscated trace's POIs successfully matched with real POIs and the number of obfuscated
POIs,

Ppr(i; j) =
jMatched(poi(M0

i j );poi(Mi)) j

j poi(M0
i j )j

;

or recall (Rpr(i; j)) which de�nes the ratio between the number of obfuscated trace's POIs successfully
matched with real POIs and the number of real POIs,

Rpr(i; j) =
jMatched(poi(M0

i j );poi(Mi)) j

j poi(Mi)j
:

The precision function assesses the accuracy of the matching while the recall function evaluates the
completeness. To cater to both measurements, we advocate using F-score (see eq. (5.1)) to reconcile
both the precision and recall.

We formally write the privacy metric, showing the normalized percentage of successfully hidden
(non-matched) POIs, after applying LPPMj on useri as:

Pr(i; j) = 1�
2� Ppr(i; j) � Rpr(i; j)
Ppr(i; j) + Rpr(i; j)

: (5.1)

This privacy metric is de�ned in the range[0;1] where a higher value re�ects a better protection.
Leveraging the POI diameterd, its minimal stay timet and the matching thresholddmaxenables a

user's conception of her privacy to be clearly de�ned. For instance, a user wanting to hide her home
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and work place with a high accuracy should choose a larget, and smalld anddmax. However, if a
user wants to hide most of the places she goes to, in order to dissimulate her hobbies, she should set
a smallt and a rather largedmax.

5.4.2 Utility metric

5.4.2.1 Overview

The notion of utility, or quality of the data or service, is not easier to de�ne than privacy. In the
beginning of location privacy research, it was even absent from the main considerations. In Krumm's
survey of 2009 [107], only the last paragraph mention the quality of service and the importance of
the privacy over quality trade-off, but no de�nition nor overview is given. In Primault's 2018 survey
[152], utility metrics are categorized as eitherdata distortion, which is spatial (local or area-based)
and temporal precision, ortask oriented, referring to data mining or analytics queries.

This work introduce another dimension to the utility metrics, driven by control theory. Utility is
linked to the use-case scenario (online or of�ine), as well as to the recipient of the location-based
query. We will thus differentiate two cases: (i) the LBS user-oriented utility and (ii) the off-line
analytics utility.

An non-exhaustive overview of LBS categories and examples are given in Table 5.2, which are
extensively inspired by [107, 152, 33]. For each of those categories, the property of the utility data
used to perform the service is indicated. The properties are selected as explained in Section 5.1:
instantaneous position, direction of the movement, instantaneous speed, instantaneous acceleration,
average speed in the past instants. Two kind of applications appear: (i) some only require the current
position while (ii) the others are using all the features of the mobility trace to provide their service. The
direction and navigation apps can be studied more speci�cally, as it is one of the most common used
LBS. In order to compute and keep update the trip to the destination, only the instantaneous position is

Location-Based Service Used trace properties

Category Example
current
position

move
direction

current
speed

mean
speed

current
acceleration

Direction, navigation Waze + - - -
Weather Weather Channel +

Social games PokemonGo + - - - -
Venue �nder Trip Advisor +

Crowd-sensing apisense + - - - -
Public transportation Mobile CFF +

Nearby friends Facebook +
Movie times Cinemap +

Discount coupons RetailMeNot +
Local information France Bleu +

Image Sharing Instagram +
Fitness Strava + - + + +

Daylight f.lux +
Meeting Tinder +

Sky maps Sky Walk + -

Table 5.2 – Overview of Location-Based Services and the location properties used ('+' for main
purpose and '-' for accessory need) to satisfy the end-user.
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needed. Those services are often linked to venue �nders (e.g. to �nd the closest gas station), that also
use only the current location. However, some additional services can be provided, such as orientation
help if the direction of the move is computed, speed limit control with the instantaneous speed or
timing until end of the trip with average speed sensing. Consequently, sub-services of navigation apps
require the accuracy of many of the trace properties, however the main service only need instantaneous
location precision.

The other use-case is the knowledge inference from a mobility database. In this case, the util-
ity is oriented toward the one performing the analytics, most of the time companies or sometimes
researchers. Examples of such processing are transportation mean extraction, count of the transit at
a given point (for infrastructure management for instance) or path matching to an external database
(e.g. to compute the exposition of user to noise of pollution). In comparison to LBS user oriented
utility, the notion of temporarily appears here, as well as the shift from local precision accuracy to
more area based one.

While the notion of online user utility will be further developed in Chapter 7, the database, service-
level utility measure is presented in the following.

5.4.2.2 De�nition

To evaluate data utility, we resort to the comparison between the area coverage of the original mobility
traces and the one of the obfuscated data, as it covers most of the use-cases presented precedent. The
granularity of the utility is given at the user level.

Formally, we de�ne the area coverage by the concept of cells. The size of the cell re�ects the
granularity of the considered spatial dimension, ranging from the size of a house to an entire city. A
cell is said visited or covered by a user, if the mobility trace of the user contains at least one record
with coordinates in this cell. We �rst de�necell(Mi) andcell(M0

i j ) as the sets of cells visited by the
mobility trace of useri, respectively before and after applying the LPPM. One can think ofcell(�) as
a set containing cells that are visited by a user. To enable the comparison of cell coverage across a
user's trace, we use the measurement of precision and recall to describe the percentage of cells that are
correctly covered byM0

i j , relative to the original cell sets fromM0
i j andMi , respectively. We formally

write the precision and recall of correct recovered cells for useri as

Put(i; j) =
jcell(Mi) \ cell(M0

i j )j

jcell(M0
i j )j

;

Rut(i; j) =
jcell(Mi) \ cell(M0

i j )j

jcell(Mi)j
:

Similar to privacy the metric, we �nally de�ne the utility metric of useri obfuscated with LPPM
j, Ut(i; j); by the Fscore reconciling the precision and recall of cell coverage

Ut(i; j) =
2� Put(i; j) � Rut(i; j)
Put(i; j) + Rut(i; j)

: (5.2)

This utility metric is de�ned in the range of[0;1] where a higher value re�ects a better utility,
meaning a better spacial accuracy of the LBS results.

Playing with the cells' size enables adaptation to the analytics performed. Some services require
a really good spatial accuracy such as route matching and some are less demanding, such as weather
related information extraction. For the �rst category, cells' size should be small (tens of centimeters)
while for the other, the size can be much larger (more than a kilometer).

Note that the level of privacy and utility of a user depends not only on the LPPM used to protect
her data but also of its con�guratione. However, for the sake of readability, we did not introducee
here in our notations.
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5.4.3 Illustration of Privacy and Utility Metrics with LPPMs

To better illustrate the de�nition of privacy and utility, we use a schematic example by applying Geo-I
and Promesse on a synthetic user's trace, see Figure 5.5 and 5.6.

Computing privacy metric In Figure 5.5 (a), the raw mobility trace of the userMi is represented
with the small squares, each square being a location record. We overdraw the mobility trace of the
user after using Geo-I (M0

i j ), con�gured with a highe i.e. low noise (small dots). We clearly see
that the trace obfuscated with Geo-I corresponds to the original one but with some noise. For those
two traces, we illustrate their Points-of-Interest (POIs) with large circles. The set of POIs of the
original tracepoi(Mi) are the dashed circles, while POIs of the obfuscated tracepoi(M0

i j ) are the
continuous ones. Based on those sets, we can compute the number of obfuscated POIs that match the
real ones (here the two top ones Matched(poi(M0

i j );poi(Mi)) = 2). Then our privacy metrics can than
be computed using the precision of the matching of POIs and its recall, that both are 2=3. Then, the

level of privacy is 1� 2:
2=3� 2=3
2=3+ 2=3

= 0:33.

Figure 5.5 (b) is similar to Figure 5.5 (a) but here the considered LPPM is Promesse. In this case,
the obfuscated dataM0

i j (the small stars) are spatially regularly distributed (time-stamps are modi�ed).
In this illustration, all obfuscated POIs correspond to the real ones, the privacy precision is 1 and its

recall is 1=3. The resulting privacy value is then 2:
1� 1=3
1+ 1=3

= 0:5.

(a) Geo-I (b) Promesse

Figure 5.5 – Privacy computation: schematic examples of how POI retrieval is computed for a single
user when using Geo-I and Promesse.
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(a) Geo-I (b) Promesse

Figure 5.6 – Utility computation: schematic examples of how cell coverage is computed for a single
user when using Geo-I and Promesse.

Computing utility level Utility metric is illustrated in Figure 5.6 (a) for Geo-I and in (b) for
Promesse. In each case, the setcell(Mi) is illustrated by the cells with the right diagonal (7 in to-
tal) while the setscell(M0

i j ) are the ones with left dashed diagonals.
For Geo-I, the obfuscated trace covers 9 cells, the utility precision is 7=9 and the recall 1, thus the

utility level is 0:86.
From Promesse, the obfuscated trace covers only 6 cells, the precision and recall are respectively

1 and 6=7, hence a utility of 0:92.

5.5 LPPM Con�guration

What makes LPPMs dif�cult to use in practice is that they rely on a set of con�guration parameters.
For instance, thee parameter of differentially private protection mechanisms is a sensitive parameter
that has a great impact on the resulting data privacy and utility, see Figure 5.3 for an illustration.

In [106], the author showed that defeating a well-performing privacy attack would require adding
so much noise that it would make the resulting data unusable by any LBS, and hence useless. With
this inherent trade-off between privacy and utility, it is a dif�cult task to set LPPM con�guration
parameters to an appropriate value.

Here again, two approaches can be found in the literature, either formal or practical, implemented.
A formal framework for trading location privacy to the resulting quality of service has been �rst

attempted by Duckham [63] in 2005. This paper present a negotiation algorithm to enforce a privacy
to utility trade-off, abstract from any implementation, only taking the assumption of a perturbation-



53

based LPPM. However, this approach do not get rid of the challenge of the LPPM con�guration, and
only consider a static scenario, unlike in our approaches.

A few works have been proposed to help a user choose a LPPM con�guration that �ts his actual
needs. Agir et. al [3] proposed an adaptive mechanism that dynamically computes the size of the
cloaking area the user will be hidden within. More speci�cally, starting at a given parametrization
of the LPPM, they iteratively modify the con�guration in a way that strengthen the privacy until a
minimum privacy level, �xed by the user, is met. However, their privacy estimation routine has a
complexity ofO(L2), L being the maximum number of locations that a cloaked area can be formed
of. This routine is further repeated until required privacy level is met or at mostl times.

Theodorakopoulos et al. [170] presented new LPPMs that adapt to the user mobility pattern.
Knowing that a user trace is highly repetitive and correlated, it makes the user especially vulnera-
ble and in the need for personalized protection. The attacked is considered as a playing a Bayesian
Stackelberg game, in which he knows the details of the LPPM used and the pro�le of the user. Con-
�guration parameter of the LPPMs are optimally computed.

L2P2 is a solution that enable to re�ne the size of the cloaking area of a user LPPM, based on
her location-dependent privacy requirements [179]. This paper is one of the very few that address the
issue of a real-time LPPM con�guration, knowing that users' privacy objective vary depending on
both their location and their need.

Chatzikokolakis et. al introduced an extension of Geo-I that uses contextual information to adapt
the effective privacy level [53]. Speci�cally, the amount of noise effectively added to locations de-
pends whether the user is located in a dense urban area or in the countryside. This quali�cation is
done by looking at the density of venues (e.g., restaurants, monuments, amenities) in the vicinity.
It is expected that the number of venues is higher in urban environments and will better hide the
user's interests in the area than if located outside of a city. However, this approach still requires some
parametrization from the user side, which is not objective-driven. Koufogiannis et al. adopts a similar
approach, by combining differential privacy and the density of the surrounding areas, and prove this
translate into a locally Lipschitz constraint [105].

Primault et al. presentedALP, a system that con�gures a LPPM depending on users objec-
tives [151]. This solution relies on a greedy approach that iteratively evaluates the privacy and utility
for re�ning con�guration parameters. Evaluating privacy and utility has a complexity depending on
the objectives under consideration, varying betweenO(L) andO(L2). Moreover, the convergence is
not ensured and consequently there is no guarantee that the objectives are actually met. However,
this work is the closest to our approach, given its user-level objective formulation both in privacy and
utility, de�ned in an applied way.





Chapter 6

PULP: Privacy and Utility through LPPMs
Parametrization

This chapter presentsPULP, a framework that automatically chooses between protection mechanisms
and con�gure the chosen one in order to meet privacy protection objectives on a mobility dataset while
guaranteeing utility on its processing.PULP performs pro�ling runs on the dataset and then uses
nonlinear models to capture the impact of each LPPM on data privacy and utility levels. Eventually,
PULP uses those models to �nd the suitable protection mechanism and automatically con�gures it
for each user in order to achieve objectives in terms of both privacy and utility. Before describing
and evaluationPULPframework, some background is given regarding the working scenario, problem
statement and motivation.

6.1 Introduction

6.1.1 Description

Geolocation data is increasingly used to improve the quality of online services. Hence, a large number
of mobility data is generated and currently used by companies and researchers. Indeed, the processing
of mobility data can reveal valuable information that may be used for a broad range of applications,
e.g., traf�c congestion management, urban development, etc. The work presented in this section
focuses on these outbreaking mobility databases, and will not consider real-time online mobility data.
However, the processing of location data also comes with threats to the privacy of the recorded users.
As a motivation for privacy protection on mobility databases, one can cite the publication of the
mobility dataset by Strava in 2018 that revealed the maps of unknown US military bases [88]; or the
new regulations that are enforced by governments, such as the European GDPR [79].

To overcome these privacy issues, many efforts in the literature aim to develop protection mech-
anisms. The protection efforts are not only motivated by cautious companies and researchers but are
more and more forced by national and international governments and organizations. The so-called Lo-
cation Privacy Protection Mechanisms (LPPM) modify the location information of users to improve
their privacy level. An overview of the literature on the protections mechanisms has been provided
in Chapter 5, Section 5.3. LPPMs need �ne tuning of their parameters which may require sophisti-
cated knowledge and experience. The choice of these con�gurations (e.g. the amount of noise and
data granularity) signi�cantly impacts the level of protection of the obfuscated data. The obfuscation
should be carried out carefully to make sure that the utility of the protected data is preserved. Indeed,
the processing of the mobility data aims to retrieve some high level information (e.g. road usage and
means of transportation). Dealing with both privacy and utility simultaneously is not straightforward
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given the natural trade-off that exists between the two. As privacy enhancing mechanisms alter the
original datasets to hide information, the data usability by de�nition decreases. Using a LPPM may
result in various levels of privacy and utility depending on the properties of the user's mobility.

In order to enable the feasibility and practicability of these protection mechanisms for end-users,
some con�guration mechanisms have been proposed in the literature. An overview is given in Chapter
5, Section 5.5. They do not always explicitly take into account the usability of the protected data and
lack the objective-driven formulation that enables a user to de�ne her privacy and utility requirements.
Moreover, these works only focus on speci�c protection mechanisms, hindering their applicability to
compare across mechanisms.

6.1.2 Problem Statement

We present a motivating example showing that applying LPPMs in an ad-hoc fashion can result in very
different privacy and utility values for individual users. Particularly, we choose four users (selected
among all datasets to show diversity) and apply both Geo-I withe1 = 0:01m� 1 ande2 = 0:005m� 1,
and Promesse withe = 100m for all of them. Following de�nitions of eq. (5.1) and (5.2), we obtain
the privacy and utility metrics for all combinations of LPPMs, con�gurations, and users in Figure 6.1.
Let us �rst analyze those metrics from the perspective of individual users. Both utility and privacy
values of user 4 (triangles of all colors) differ when applying Geo-I or Promesse, showing the impor-
tance of LPPM choice. Such an observation can also be made for user 1, 2 and 3, with varying degrees
of differences. Taking the perspective �xed LPPM, either Geo-I or Promesse, one can see that they
offer different levels of privacy protection and utility preservation to different users (symbols of the
same color). Figure 6.1 also illustrates that using one LPPM but with various con�gurations can lead
to a totally different privacy protection and service utility. In other words, it is impossible to �nd a
single (con�guration) solution that �ts all users' privacy and utility objectives. All these observations
highlight the complex interplay among privacy/utility metrics, the LPPM and its con�guration. More-
over, to ensure the ful�llment of privacy and utility objectives for every user, it is deemed important
and necessary to consider the impact of LPPMs and their con�gurations at the level of individual
users.

There is a strong need for a solution that enables choosing between LPPMs and con�guring the
chosen one in order to meet user-de�ned objectives in terms of privacy and utility.

Figure 6.1 – The same LPPM can result in different privacy and utility metrics: examples from 4
users using Promesse withe = 100m and Geo-I with two different con�gurations:e1 = 0:01m� 1

ande2 = 0:005m� 1.
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6.1.3 Proposed Approach

In this chapter we presentPULP , standing for Privacy and Utility through LPPM Parametrization.
PULP is a framework which automatically selects a LPPM from different ones, and determines the
best con�guration of the LPPM based on each user's objective. The core ofPULP is user-speci�c
modeling that captures the impact of every considered LPPM on the privacy and utility level of the
obfuscated data. A model is built by measuring the privacy and utility levels of obfuscated data after
a few pro�ling runs of applying the LPPM with a set of con�guration parameters. Based on each
user's objectives, the behavioral model is used to choose and con�gure a LPPM for each user. Four
objective formulations are considered, for various combinations of objectives in terms of privacy and
utility: (i) ensure a given ratio between privacy and utility, (ii) guarantee minimal levels of privacy
and utility, (iii) keep privacy above a given level while increasing utility as much as possible, and (iv)
guarantee a minimal utility level while improving privacy as much as possible.

The speci�c contributions of this chapter are:

� Accurate, robust and adaptive modeling of LPPMs with different con�guration parameters,

� Computing-ef�cient objective-based recommendation and con�guration laws of protection mech-
anisms.

The rest of this chapter is organized as follows. FirstPULP is described in Section 6.2, �rst
by giving an overview of the framework and then by detailing its three parts. Section 6.3 describe
PULP's automatic LPPM con�guration laws. Experimental validation and analysis are carried out in
Section 6.4. Conclusion and perspectives end the chapter.

6.2 PULP Framework

Figure 6.2 –PULP framework

This section describes the methodology and design principles ofPULP , a framework that ef�-
ciently chooses and con�gures LPPMs according to each users' privacy and utility objectives.PULPlever-
ages a nonlinear modeling approach and provides several variants of automatic LPPM con�guration
laws. The key components of thePULP framework are illustrated in Figure 6.2.

Although we consider two speci�c LPPMs (Geo-I and Promesse), the proposed methodology
in the following sections is general for any LPPM that considers every user independently and that
has a single con�guration parameter (or a main one among many others). For some LPPMs, the
computation of obfuscated trace is done accordingly the obfuscation of other users, k-anonymity for
instance.PULP works only for LPPM for which the obfuscation for one user depends only on this
user.

The pro�ler conducts off-line experiments to build users' privacy and utility pro�les, with respect
to the LPPMs considered and a set of values of their con�guration parameter. For each user, the
modeler bases on its off-line pro�le and extrapolates the privacy models and utility models which
are non-linear functions in the LPPM con�guration parameter (one privacy model and one utility
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model for each LPPM). According to users' objectives and privacy & utility models, the con�gurator
suggests the suitable LPPM and its con�guration.

PULP is effective for processing databases already collected, with protection mechanisms that
work at the user level, and one main con�guration parameter. Indeed,PULPis not suitable for online
processes, as it does not include temporal aspects in the decision making.

The rest of this section presents each component ofPULP . Then, Section 6.3 describesPULP 's
automatic LPPM con�guration laws.

6.2.1 Pro�ler

The aim of the pro�ler is to obtain the values of privacy and utility of individual users under a given
LPPM and its con�guration parameter set of values. The pro�ler takes as input a user's mobility
traceMi and loops on all LPPMs and on a set of their possible con�gurations. The outputs are the
resulting list of privacy and utility metrics values for all cases. Speci�cally, the pro�ler considers two
LPPMs, Geo-I withe 2 [10� 4;1] in meter� 1 and Promesse withe 2 [50;104] in meterwhere range
values are chosen according to the LPPMs' conceptors recommendations. The necessary number of
con�guration values is driven by the �tting accuracy of the modeler. The set of con�guration values
to run and its size is chosen such that a certain accuracy of the model is reached. The number of
values required depends on the accuracy target as well as the functional form of models. Suggestions
on how to choose them are given in Section 6.4.2.3.

6.2.2 Modeler

The aim of the modeler is to derive the functional relation between privacy/utility metrics and the
con�guration parameter of a given LPPM, i.e.,Pr(i; j) = F i; j

pr (e) andUt(i; j) = F i; j
ut (e).

To search for the most suitable and general function, we conduct numerous data �tting schemes
on our datasets. Figure 6.3 depicts commonly seen dependency between privacy/utility ande, via
an example of applying Geo-I and Promesse on a cabspotting user (continuous lines). Experimental
conditions are further detailed in Section 6.4.1. The curves' shape can be explained by the limited
ranges of privacy and utility metrics in[0;1] and the insensitiveness of metrics to extreme values of
e. These observations lead us to choose the arctan function as our base model, instead of general
polynomial functions. The general shape of our observations causes us to useln(e) to �t the arctan
model ofF i; j

pr andF i; j
ut , instead ofe directly.

Now, we formally introduce the utility and privacy models with four coef�cients each. For sake
of simplicity, indexi of the user andj of LPPM are not used in the following notation even if there is
one privacy model and one utility model per user and per LPPM.

Fpr(e) = apr: tan� 1 (bpr(ln(e) � cpr)) + dpr; (6.1)

Fut(e) = aut: tan� 1 (but(ln(e) � cut)) + dut: (6.2)

Illustrations of model shapes are given in Figure 6.3, in dashed lines.
The physical meaning of model parameters in bothFpr andFut are: a andd represent the two

saturation levels,a models their amplitude andd their offset. b characterizes the transition speed
between the saturation levels while parameterc corresponds to thee value that results in the median
privacy (or utility) value. Speci�c values of parameters inFut andFpr need to be learned from each
combination of useri and LPPMj. The proposed models have the computational advantage that there
are only four coef�cients to be learned.
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Privacy with Geo-I Utility with Geo-I

(c) Privacy with Promesse (d) Utility with Promesse

Figure 6.3 – Impact of LPPMs con�guration on a user's privacy and utility metrics – Real system
vs. modeled system (for one cabspotting user used as an example).

6.2.3 Con�gurator

The aim of thePULPcon�gurator is to select and con�gure a LPPM from the available LPPM set so
as to satisfy the user de�ned objectives. These objectives are related to the user privacy (the proportion
of her POIs to be hidden) and to the data utility (the proportion of correct map cells coverage). We con-
sider four types of objective formulation, which combine privacy and utility differently, see Figure 6.4.

Figure 6.4 – Automatic con�guration laws in
PULP

� PU -ratio : keeping both privacy and utility
as high as possible, with a given ratio between
privacy and utility, e.g., privacy is twice as im-
portant as utility;

� P -thld : guaranteeing that privacy is above a
given threshold, while keeping utility as high
as possible;

� U -thld : guaranteeing that utility is above a
threshold, while keeping privacy as high as pos-
sible;

� PU -thld : keeping both privacy and utility as
high as possible, above given thresholds.
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Using the models that link each LPPM con�guration parameter to privacy and utility values, one
can reformulate the objectives on privacy and utility as requirements on LPPMs' con�guration. Then,
in the case where several LPPMs are able to ful�ll the objectives,PULP selects the most ef�cient
one to achieve the speci�ed objectives.PULP 's output is then the recommendedLPPM� and its
con�guratione� .

6.3 Con�guration Laws

In the following, we �rst presentPULP 's ratio-based con�guration lawPU -ratio and then describe
PULP 's threshold-based con�guration lawsP -thld , U -thld andPU -thld .

6.3.1 PULP 's Ratio-Based Con�guration Law

The �rst con�guration law proposed byPULP is PU -ratio . Its objectives are as follows:

(O1) Privacy-to-utility ratio is �xed:
Pr = wpr=ut �Ut, and

(O2) Privacy and utility are as high as possible.

For example, when a user speci�eswpr=ut = 0:5, that means that utility is twice as important for
her than privacy. On the contrary,wpr=ut = 2 implies that a user thinks preserving the privacy is twice
as important as contributing to the LBS accuracy. We now detail the solving procedure, in two steps,
to �nd LPPM� and its con�guration parametere� , based on a relative trade-offwpr=ut provided by the
user.

The �rst step consists of �nding, for eachLPPMj , its con�guratione�
j that satis�es objectives

(O1) and(O2). To achieve the trade-off ratio ofwpr=ut between the privacy and utility of objective
(O1), we need to �nd con�guratione�

j such thatPr = wpr=ut �Ut. Applying the model of Eq. (6.1)
and (6.2), we obtaine�

j by solving

Fpr(e�
j ) = wpr=ut � Fut(e�

j ):

Due to the complexity of this equation, we do not derive closed-form solution fore�
j . Instead, we

numerically solve it as the minimization problem of the absolute difference betweenFut andFpr

e�
j = argmin

ej
jFpr(ej ) � wpr=ut � Fut(ej )j: (6.3)

The convergence of the solution is ensured by the convexity of the function to minimize in Eq. (6.3).
However, when the resulting con�guration parameter value does not fall into its legitimate range
(which depends on the LPPM), we then considerLPPMj as an infeasible LPPM to provide the target
trade-off between privacy and utility. Thus, this �rst step results in the set of valuesf e�

j s.t. Eq. (6.3)
is minimized for a feasibleLPPMjg that ful�ll objective (O1) .

To better understand this step, we schematically illustrate in Figure 6.5 the behavioral models of
three LPPMs. Here, the model equations of eachLPPMj are represented, each point of the curve of a
LPPMj represents one ofLPPMj 's con�guration. In this example, objective(O1) speci�es a privacy
twice as important as utility, i.e.,wpr=ut = 2. Thus, the result of the �rst step ofPULP ratio-based
Con�guratorPU -ratio is the set of values off e�

1;e�
2;e�

3g, the con�guration of each feasible LPPM
that ful�lls objective (O1).

Among the subset of LPPMs that can achieve the target trade-off with a valid con�guration pa-
rameter, thePU -ratio Con�gurator then selects the LPPM that maximizes the weighted sum of the
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Figure 6.5 – Illustration ofPU -ratio con�guration law for three schematic LPPMs withwpr=ut = 2.

resulting privacy and utility, to keep privacy and utility as high as possible, c.f., objective(O2). Thus,
the resultingLPPM� and its con�guratione� for a user are

LPPM� = argmax
j

(Fpr(e�
j ) + wpr=ut � Fut(e�

j )) : (6.4)

From the example in Figure 6.5, the LPPM that best achieves objective(O2) is the one crossing
the objective(O1) line at the upper point. Here,PULP ratio-based Con�guratorPU -ratio returns
(LPPM1;e�

1).

6.3.2 P -thld Law: Privacy Above a Minimum Threshold

Another possible set of objectives is to guarantee a minimum privacy level while keeping utility as
high as possible:

(O3) Privacy is higher or equal to a minimum privacy value:Pr � Prmin, and

(O4) Utility Ut is as high as possible.

For each LPPM, we de�neepr as the con�guration parameter satisfying the equationFpr(epr) =
Prmin. Using eq. (6.1), we can expressepr as

epr = exp
�

1
bpr

tan
�

Prmin � dpr

apr

�
+ cpr

�
: (6.5)

Due to the trade-off between utility and privacy, the higher the utility is, the lower the privacy
will be. Then for objective(O4), utility can be increased until the privacy reaches its lower bound
speci�ed in objective(O3). Thus for eachLPPMj , the con�guratione�

j that achieves objectives(O3)
and(O4) for that LPPM is:

e�
j = epr f or LPPMj : (6.6)

Finally, as the privacy level is achieved for each combination(LPPMj ;e�
j ), the overallLPPM� is

the one that maximizes utility:
LPPM� = argmax

j
(Fut(e�

j )) : (6.7)
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6.3.3 U -thld Law: Utility Above a Minimum Threshold

Similarly, one can set the constraint on a minimal level of utility while keeping privacy as high as
possible:

(O5) Utility is not below a given minimum utility thresholdUt � Utmin,

(O6) With the highest data privacyPr.

For each LPPM, we de�neeut such thatFut(eut) = Utmin:

eut = exp
�

1
but

tan
�

Utmin � dut

aut

�
+ cut

�
: (6.8)

Here, objective(O6) is ensured given objective(O5) iff e converges to the highest value that
guaranteesFut(e) � Utmin, due to the trade-off between the two. Thus, the con�guratione�

j for
LPPMj is

e�
j = eut f or LPPMj : (6.9)

In order to elect the protection mechanismLPPM� , we compare the values of privacy of the
obfuscated data and choose the following:

LPPM� = argmax
j

(Fpr(e�
j )) : (6.10)

6.3.4 PU -thld : Privacy and Utility Above Minimum Thresholds

This con�guration law aims at guaranteeing that the level of privacyand the level of utility of the
obfuscated data are above given thresholds:

(O7) Privacy is higher than or equal to a given minimum threshold:Pr � Prmin, and

(O8) Utility is higher than or equal to a given minimum threshold:Ut � Utmin.

The trade-off between privacy and utility described in Section 6.1.2 shows that the utility func-
tion Fut(e) and privacy functionFpr(e) have opposite directions of variation, both functions being
monotonous. Let us �rst make the hypothesis that the privacy function is decreasing and utility func-
tion increasing (which is the case for Geo-I for example). Then the objective(O7) of a threshold
value on privacyFpr(e) � Prmin can be written as:

e � epr

And (O8) Fut(e) � Utmin as
e � eut:

Then the two objectives can be combined in one condition with regard to the value of the con�g-
uration parameter:

eut � e � epr:

Then for users for whomeut � epr, all the parameters in the range[eut;epr] satisfy the objectives, and
PULPreturns the mean value of the range:

e� =
epr + eut

2
: (6.11)
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Otherwise ifeut � epr, there is no solution to both objectives(O7) and(O8) for this particular
combination of LPPM and user.

Similarly, if the utility function on a LPPM decreases while the privacy function increases (as for
Promesse for instance), the objectives can be written as:

epr � e � eut

and the condition of the existence of a solution is thuseut � epr. However, in the case where a solution
exists,PULPreturns the same solution as eq. (6.11).

Once the con�guratione�
j of eachLPPM j is found, if any, the protection mechanismLPPM� is

selected as follows: the values of privacy and utility are compared by computing their weighted sum,
after using eachLPPMj in its previously calculated con�guration :

LPPM� = argmax
j

(Prmin � Fpr(e�
j ) + Utmin � Fut(e�

j )) : (6.12)

6.4 PULP Evaluation

PULP 's validation is carried out in three steps: �rst, an analysis of the modeler with an emphasis on
the accuracy of the derived models and on their robustness; second, the con�gurator evaluation that
illustrates its effectiveness in choosing a suitable LPPM to achieve different user's objectives; and
eventually a comparison with the state of the art. Prior to those core results, the experimental setup is
depicted.

6.4.1 Experimental Setup

For the experimental validation ofPULP , two different machines were used. The pro�ler was ex-
ecuted on a machine running Ubuntu 14.04 and equipped with 50Gb of RAM and 12 cores clocked
at 1.2 GHz. We run the pro�ler using the 30-days datasets. The modeler and the con�gurator use
Matlab R2016b on a Ubuntu 14.04 equipped with 3.7Gb of RAM and 4 cores clocked at 2.5 GHz.

The number of con�guration of each LPPM to be tested by the pro�ler has been set at �rst to
17 for Geo-I and 10 for Promesse, corresponding to 4 values per decade of the de�nition range,
uniformly distributed. The modeler searches for each user's model by �tting the experimental data
usingfminunc, and thePU -ratio con�guration law usesmin (both are Matlab functions).

The metrics of privacy and utility used have �rst been parametrized to correspond to our datasets
collected in dense-cities. For measuring privacy, we consider POIs of a maximum diameter ofd =
200 m and a minimal stay time oft = 15 min. In order to calculate intersections between sets of
POIs, we consider that two POIs matched if their centroids are withindmax= 100 m from each other.
Google's S2 geometry library [157] is used for cell extraction when computing utility. The size of
the cells is highly related to the nature of the LBS. Indeed, a navigation application needs a spatial
accuracy at a really �ne level while a recommendation system needs accuracy at a neighborhood level.
We consider cells at level 15, which corresponds to areas having the size of around 300 meters (city
block or neighborhood).

As initial values for the models' parameters of eq. (6.1) and (6.2), we choose the following:

a The metric amplitude. The arctan function varies between� p
2 and p

2 . Our metrics have been
de�ned to vary between 0 and 1. Moreover, we expect Geo-I utility function and Promesse
privacy function to be increasing and Geo-I privacy function and Promesse utility function to
be decreasing. Consequently, we seta = 1

p for Geo-I utility and Promesse privacy anda = � 1
p

for Geo-I privacy and Promesse utility.
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b The transition speed between the saturations. It should be non-null and positive, the valueb= 1
was chosen.

c The offset - con�guration parameter value. This parameter should be the default value of the
con�guration parameter de�ned by the authors of the LPPM:c = ln(10� 2) for Geo-I andc =
ln(200) for Promesse.

d The offset - metric value. As metrics vary between 0 and 1 (or 1 and 0), the offset was set to
d = 0:5.

When considering a new LPPM, all that is needed for con�guring the modeler is a standard value of
its parameter (update ofc initial value only).

6.4.2 Evaluation of thePULP Modeler

This section evaluates the ability of thePULP modeler to capture the behavior of privacy and utility
metrics when the LPPM con�guration varies. We focus particularly on the accuracy of the modeling,
its robustness regarding the amount of input data and its adaptability to model any privacy and utility
metric.

6.4.2.1 The Modeler's theoretic guarantees

The working hypothesis regarding LPPMs are their con�guration by a single parameter, in�uencing
both privacy and utility metrics. Thus, the variation of those metrics will be stable or monotonic (at
least on average in the case of stochastic LPPM), varying at most between 0 and 1 (by de�nition of
the metrics), with eventual saturated levels for high and low values of the parameter. The arctan shape
of the model allows us to capture this behavior. The accuracy of the modeling is thus given by the
relevance of the parameters of the model, output by thefminuncfunction. The tolerance for stopping
the iterative search for the best parameters has been set to 10� 6, nonetheless with a maximum number
of iterations set to 400.

6.4.2.2 The Modeler's performance

As a preliminary analysis, one can take a look at Figure 6.3. Experimental data (continuous lines with
circles for Geo-I and stars for Promesse) is compared to their model (dotted lines) for both the utility
and privacy metrics. The closer the model curves are to the real data, the better the model �tting is
for that user. For our cabs user example of Figure 6.3, the modeler accuracy is good for Geo-I and
Promesse utility and Promesse privacy; however for Geo-I privacy the modeler is less accurate but
still relevant as it avoids over�tting the experimental data.

In order to ensure thatPULP modeler is accuratefor every user, we compute the variance of
the �tting error (difference between experimental data and model prediction), which is a relevant
indicator for non-linear modeling. Results are shown in Figure 6.6, in the form of a cumulative
distribution function where low values of error variance show a high accuracy of the modeling. For
all metrics and all LPPMs, the median modeling accuracy is less than 5� 10� 2, which, when put into
the perspective of our metrics varying between 0 and 1, is a really good �t. Promesse privacy is by
far the better modeled data, 95% of users have an accuracy of less than 10� 4. This can be easily
explained as many users have a privacy of 100% no matter the con�guration of Promesse, as is the
case for the user illustrated in Figure 6.3. From Figure 6.6, one can also notice that the modeler still
has a high accuracy when dealing with outliers, as the 99th percentile of the error variance is smaller
than 2:10� 1 for all metrics and all LPPMs.
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Figure 6.6 –PULPmodeler accuracy. Cumulative distribution function (cdf) among all users.

6.4.2.3 The Modeler's robustness and adaptability

In the next paragraphs, we comment on the robustness of the modeler regarding both its sensibility to
input data and its adaptation to metrics parametrization.

First, we study the impact of the amount of pro�le data needed for accurate modeling. We vary
the number of values ofe taken for the pro�ling phase, from 1 value per decade up to 4. Results show
that the modeling accuracy varies depending on the LPPM. In all cases, the more data are used, the
better the modeling is. However the improvement is negligible when modeling Geo-I, which leads us
to recommend using only a few experiments for the pro�ling phase in order to limit computing. When
modeling Promesse, only 4 values per decade enable us to properly capture the behavior of users.

The metrics described in Chapter 5 are parametrized. The privacy metric depends on the diameter
and duration of a POI as well as on the maximum distance between two POIs to consider they match.
As for the utility metric, one can vary the size of the cells that discretize the map. When varying these
parameters, the metrics re�ect several notions of privacy and utility. To ensure the performance of the
modeler even with these other notions of privacy and utility, we varied the four metrics' parameters
and again computed the modeler accuracy. In a general way, the modeler is able to keep a good
accuracy: around 10� 3 for the median value and 10� 2 for the 99th percentile (excluding extreme
cases).

We now detail the impact of each metric parameter on modeling performance. We varied the
duration of a POI between 5 and 120 minutes. For Promesse, the longer the POI, the better the
modeling. For Geo-I however, medium duration POIs (around 15 to 30 minutes) are well modeled
while extreme ones have error variance close to 10� 1. When looking at the impact of the POI diameter
(from 100m to 1000m) on the modeling accuracy, we found none on Geo-I (all metrics are well
modeled), while for Promesse the smaller the POI is, the better the modeling is. As for the maximum
distance between two matched POIs (ranging from 25% of the POI diameter to 250%), we obtained
similar results: no impact for Geo-I modeling and the smaller the distance is, the better the modeling
is for Promesse. When looking at the size of the cells in the utility metric computation, we found that
the larger the cells are, the better Promesse behavior on users' traces is captured. However, Geo-I
modeling is more accurate for large or small cells, and a sightly worse for medium-size cells.
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6.4.3 Evaluation of thePULP Con�gurator

We now analyze the con�gurator's ability to ful�ll users' objectives. To do so, we ran the four versions
of PULPcon�guration laws, each of them with several objectives.

PULP outputs for a set of users (selected to show diversity) and a few objectives can be found in
Table 6.1. Results show that for each user, a LPPM is recommended with a con�guration value, except
when no LPPM can ful�ll the objectives, which is the case of user 3 with aPU -thld objective. As
a preliminary analysis, we can see that users have different recommendations even when having the
same objectives. Moreover, a single user gets various recommendations depending on her objectives.

The next sections (and corresponding Figures 6.7 to 6.10) detail the results for each law, by look-
ing at four indicators: the LPPM selected for each user (a) and its associated con�guration parameter
(b and c), the privacy and utility of users' data when obfuscating withPULP recommendation (d and
e), and the corresponding trade-off between privacy and utility (f).

Con�g. Law PU -ratio PU -thld P -thld U -thld
Objectives wpr=ut = 2 Prmin = 0:6 Utmin = 0:7 Prmin = 0:7 Utmin = 0:5

PULPOutput LPPM* e� LPPM* e� LPPM* e� LPPM* e�

User 1 Promesse 694 Geo-I 0.014 Promesse 69 Geo-I 0.004
User 2 Geo-I 0.001 Promesse 244 Promesse 197 Geo-I 0.0034
User 3 Promesse 173 NaN NaN Geo-I 0.0097 Geo-I 0.0074

Table 6.1 –PULPoutput for selected users

6.4.3.1 Evaluation of thePU -ratio Con�guration Law

In this variant of the con�gurator, the objective is to achieve a given trade-off between privacy and
utility. For its evaluation, we runPULPon all users with various objective ratioswpr=ut ranging from
0.5 (utility is twice as important as privacy) to 3 (privacy is three times more important than utility).
Results are shown in Figure 6.7. We computed the actual privacy to utility ratio after applying the
LPPM selected with its right con�guration. Results illustrated in Figure 6.7 (f) show that at least 95%
of the users have a resulting ratio in a range of +/- 1% of user speci�ed values.

From Figure 6.7 (a) we can see that all users ended with a recommended LPPM. For a given
objective, the LPPM chosen byPULP varies depending on the user, and the distribution changes
according to the objective, meaning that the adequate LPPM of a single user may vary depending on
the objective. There is no a priori relation between the objectivewpr=ut and the distribution of selected
LPPM.

When analyzing thePULPchoice of LPPM con�guration parameters from Figure 6.7 (b) and (c),
we make two observations: (i) users need different con�gurations to ful�ll the same objective and
(ii) different objectives lead to various con�gurations' distribution. When looking at users for whom
Geo-I is chosen, the higher the objective ratio is, the lower the recommendede value is. Whereas for
users with Promesse recommended, the higher the objective ratio is, the larger the suitablee value is
and the higher diversity there is in the recommended value. For instance withwpr=ut = 2, users have
e from 100m to 2km.

When using the appropriate LPPM con�gured in a suitable way, users can maintain privacy and
utility levels that jointly respect the objective trade-off. In terms of absolute values, when looking at
the utility, one can notice that most users have the same level of utility (Figure 6.7 (e)). The lower the
objective ratio is (i.e. the more utility matters), the higher the utility is and the more diversity there
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is in the utility values. For privacy, the same trend is observed: most users have the same privacy but
the lower the objective ratio is, the more diversity there is in the privacy values (see Figure 6.7 (d)).

With an objective expressed as a trade-off between privacy and utility, PULP �nds a suitable
LPPM for all users and guarantees a high utility and privacy to almost all of them.

6.4.3.2 Evaluation of thePU -thld Con�guration Law

In this section we evaluate thePULP PU -thld con�guration law, aiming to achieve privacy and
utility at levels higher than some minimal thresholds. The evaluation, reported in Figure 6.8, has been
carried out with �ve couples of objectives.

First, it is important to notice that some users do not have any LPPM recommended, as can be seen
in Figure 6.8 (a). High utility constraints seem to hamper the feasibility of recommending suitable
LPPMs. Recommendations range from less than 10% of all users (Prmin = 0:5;Utmin = 0:9) to more
than 95% (Prmin = 0:3;Utmin = 0:5). Most of the recommendations are Geo-I. The higher the utility
constraint, the more Geo-I is recommended. When looking at values of the LPPM con�guration
parameter, for Geo-I the general trend is thate is lower when privacy constraint in high, except in the
extreme case whereUtmin = 0:9. For Promesse, the higher the utility constraint, the smallere is.

The privacy criteria is always satis�ed, and almost no user gets the limit privacyPrmin, see Figure
6.8 (d). However, when the utility constraint is high, most users tend to have a privacy close to its
bound. All users have their utility criteria ful�lled (see Figure 6.8 (e)). The utility of most users is
really high: 80% of them have a utility above 0.8 (0.6 forPrmin = 0:9;Utmin = 0:4). As for the privacy
to utility ratio, within a set of objectives most users (70-90%) have the same privacy to utility ratio
(Figure 6.8 (f)).

PULP is not able to �nd a suitable LPPM for all users using this objective formulation; however,
when it can, the privacy and utility are, most of the time, way above the minimum values required.

6.4.3.3 Evaluation of theP -thld Con�guration Law

Here the objective is to guarantee that the privacy is above a given level. Results are given in Figure
6.9. PULPcan recommend a suitable LPPM and ful�ll all users' objectives considered here. Around
10 to 20% of users can even achieve higher privacy levels than the requested threshold (even 80%
for the objectivePrmin = 0:9), see Figure 6.9 (d). These proportions correspond to users to which
Promesse is recommended, see correspondence with Figure 6.9 (a).

For those Promesse users, the utility is quite low but for the other 80% of users, utility is more
than 0.5 (Figure 6.9 (e)). Moreover, the higher the privacy limit, the lower the utility. Looking at the
privacy to utility ratio (Figure 6.9 (f)), for 80% of users (those with Geo-I recommended), the lower
the privacy limit, the higher the ratio (allowing more utility to the data) and all users have the same
privacy to utility ratio. However, for 20% of them (Promesse users) the ratio is always the same no
matter what the objective.

As for the parameter values, for users with Geo-I recommended, the higher the objective is, the
smallere is. Users with Promesse recommended always seem to have the samee recommended no
matter what the value of the objective, except forPrmin = 0:9 wheree is at its upper bound for most
users.

When PULP guarantees a minimal privacy level, but two distinctive types of users are observed.
Some have are recommended Geo-I, a limited privacy and a high utility; while the others use Promesse
with a high privacy but a low utility.
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6.4.3.4 Evaluation of theU -thld Con�guration Law

The results of the con�guration law guaranteeing a minimum level of utility are illustrated in Figure
6.10. They show similar patterns than those of theP -thld con�guration law.

All users had a LPPM recommended, and the general trend is that the lower the utility limit, the
more Promesse is recommended. Hence, Promesse tends to protect better than Geo-I but results in
lower utility, see Figure 6.10 (a).

All users have exactly the minimum utility they wanted, no matter the value of the limit (see
Figure 6.10 (e)). The lower the utility limit, the higher the privacy. Most users (almost 70%) have
good privacy levels, i.e. more than 0.7, except withUtmin = 0:9 (see Figure 6.10 (d)). Therefore, the
lower the utility limit, the higher the ratio, allowing more privacy preservation in the data. Within a
set of objectives, most users have the same privacy to utility ratio (Figure 6.10 (f)).

For users with Geo-I recommended, the higher the objective is, the highere is. However, for users
with Promesse recommended, the higher the limit is, the smallere is.

In this objective formulation, PULP always sets utility to its minimum value, ensuring a good
privacy to users especially for those with Promesse recommended.

6.4.4 Comparison with State of the Art

Figure 6.11 – Execution time comparison,
Geolife dataset

As PULP works with few pro�ling experiments, its
execution time is signi�cantly shorter compared to
the state of the art. Indeed, all LPPMs con�gura-
tion mechanisms that we are aware of use greedy pro-
cesses that need to run many experiments in order
to converge to a suitable con�guration (if ever they
converge). We compare our frameworkPULP to the
closest work from the state of the art, the con�gura-
tor ALP from [151]. ALP is a framework that iter-
atively looks for a LPPM con�guration that satis�es
high level objectives such asmaximizing privacy and
utility. We consider only one LPPM inPULP, Geo-I,
and set our objective towpr=ut = 1 to be as close as possible to the ALP working conditions. The
execution time ofPULPin these conditions is of the order of the minute for the Geolife dataset while
ALP requires around ten hours to converge, as illustrated in Figure 6.11. This makes a difference of
3 orders of magnitude. The execution time ofPULPis almost all spent on the pro�ling phase. Indeed
the modeler and con�gurator execution times are of a few milliseconds. This enables a user to change
her objective and easily �nd again the new adequate LPPM and its con�guration.

ALP only considers the con�guration challenge and does not allow a choice between several
LPPM. Thus, to compare the accuracy ofPULP with regards to the state of the art, the focus will be
on the users' privacy and utility preservation after using the frameworks. While the objective given
to ALP is to maximize both utility and privacy (no preference is given to one or the other), the ratio
between the two after running ALP is almost always greater than 1, meaning that more importance
is given to privacy than to utility [151]. WithPULP , the ratio is almost always 1, see Figure 6.7 (f).
Moreover, withPULP , 80% of the users have a utility and privacy higher than 0.7, while with ALP
90% of the users have a privacy higher than 0.8, while 80% of them have their utility only between
0.4 and 0.7 [151]. The low utility with ALP comes from a small con�guration parameter (less that
5:10� 2 for 70% of the users). Hence, the objectives are more evenly treated when usingPULP , and
enable a better utility to be achieved.
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6.5 Conclusion

This chapter presentsPULP, a framework that ensures users' objectives regarding privacy and utility
for mobility databases by automatically choosing and con�guring LPPMs. Our notion of privacy
relies on the hiding of users' points of interest, and the utility of the services is measured by looking
at the spatial proximity of obfuscated data to the original ones.PULPrealizes an in-depth analysis of
the considered LPPMs applied at a user scale in order to capture the formal relationship between the
con�guration parameters of the LPPMs and both privacy and utility metrics. ThenPULP leverages
the models derived to identify the adequate LPPM and its con�guration that enables the objectives to
be achieved. The considered objectives aim at maximizing privacy and utility with various constraints
regarding minimal levels or the ratio between the two metrics.

We illustrated the ability of our systemPULP to ef�ciently protect a user while keeping utility of
her service using two LPPMs from the state of the art: Geo-I and Promesse. Evaluation has been done
for several objectives and using data from four real mobility datasets containing 770 users in total.
PULPcan accurately model the behavior of LPPMs on individual users and thus successfully achieve
privacy and utility objectives at the same time in an automated way. Moreover, when comparing with
the state of the art, we provedPULP to be 3 orders of magnitude faster (minutes versus hours) and
more robust to achieve user speci�ed privacy and utility objectives.

Regarding the future directions of research, let us put them in perspective of the assumptions
taken. The users' mobility data is supposed to have been recorded beforehand, but the on-line ob-
fuscation scenario could be considered too and it is the problem addressed in Chapter 7. The pri-
vacy metric used is based on POI protection, and the processing oriented utility measure is based
on timeless spacial accuracy. More metrics could be added, such as predictability of users' move-
ments for privacy and time distortion of traces for utility. This improvement would be achievable
with PULP current working principle; however it would add more constraints on the con�gurator
that would challenge even more the existence of a solution. In order to deal with this latter issue, we
advocate to investigate the use of other LPPMs that have more than one con�guration parameter, such
as [1]. On top of enlarging the capabilities ofPULP , it would transform the system in a multi-input
(several con�guration signals) multi-output (various privacy and utility metrics) problem, which is
feasible since backed-up with a strong theoretical background in control theory.
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(a) LPPM recommendation (b) Geo-I con�guration

(c) Promesse con�guration (d) Achieved privacy

(e) Achieved utility (f) Privacy to utility ratio

Figure 6.7 –PU -ratio con�guration law evaluation. (a) Recommended LPPM and its con�guration
(b) for Geo-I, (c) for Promesse. Achieved (d) level of privacy and (e) utility when users are protected
according toPULPrecommendations, and the corresponding (f) privacy to utility ratio. Four objective
ratioswpr=ut are illustrated: 0.5, 1, 2 and 3.
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(a) LPPM recommendation (b) Geo-I con�guration

(c) Promesse con�guration (d) Achieved privacy

(e) Achieved utility (f) Privacy to utility ratio

Figure 6.8 –PU -thld con�guration law evaluation. (a) Recommended LPPM and its con�guration
(b) for Geo-I, (c) for Promesse. Achieved (d) level of privacy and (e) utility when users are protected
according toPULPrecommendations, and the corresponding (f) privacy to utility ratio. Five objective
couples of constraints on privacy and utility are illustrated.
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(a) LPPM recommendation (b) Geo-I con�guration

(c) Promesse con�guration (d) Achieved privacy

(e) Achieved utility (f) Privacy to utility ratio

Figure 6.9 –P -thld con�guration law evaluation. (a) Recommended LPPM and its con�guration
(b) for Geo-I, (c) for Promesse. Achieved (d) level of privacy and (e) utility when users are protected
according toPULPrecommendations, and the corresponding (f) privacy to utility ratio. Five objective
constraints on privacyPrmin are illustrated: 0.3, 0.5, 0.7, 0.8, 0.9.
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(a) LPPM recommendation (b) Geo-I con�guration

(c) Promesse con�guration (d) Achieved privacy

(e) Achieved utility (f) Privacy to utility ratio

Figure 6.10 –U -thld con�guration law evaluation. (a) Recommended LPPM and its con�guration
(b) for Geo-I, (c) for Promesse. Achieved (d) level of privacy and (e) utility when users are protected
according toPULPrecommendations, and the corresponding (f) privacy to utility ratio. Five objective
constraints on utilityUtmin are illustrated: 0.3, 0.5, 0.7, 0.8, 0.9.





Chapter 7

dynULP: dynamic control of Utility and
Location Privacy

In this chapter, we are interested in the online control of privacy. A mobile device user can constantly
send her current location and bene�t from geo-localized services. She indeed wants to protect her
privacy while still enjoying a reasonable quality of service. Compared to PULP's approach presented
in Chapter 6, dynULP is at the user level, locally on the mobile device, thus the service utility consid-
ered here is the quality of the LBS answers. We advocate to use a control-theoretic approach for two
main reasons, being (i) the end-user do not want to bother with the understanding and con�guration
of a LPPM and (ii) the problem is by de�nition dynamic and needs �ne adaptation through time since
the user is mobile in a dynamic environment.

A simple controller is presented, that ensures privacy according to the user's requirements, while
being robust to her movement. To help the initial tuning of the controller, a control-oriented model
of the protection mechanism is derived. For each modeling and control steps, the methods used
are illustrated and validated on synthetic mobility data, which enable the full understanding of the
approaches. Afterwards, an evaluation using real users mobility records is also provided. dynULP
approach shows good results both for achieving a desired privacy level and for keeping it despite
disturbances. The quality of the resulting service is also maintained at a reasonable level.

The outlines of this Chapter are as follows. After a deeper introduction and motivation of dynULP
scenario (Section 7.1), the formulation of the problem in control words is given, with a emphasis on
the output metric sensing: real-time privacy (Section 7.2). Then the two-step modeling approach
(static then dynamic) is carried out (Section 7.3). Then the control strategy is presented (Section 7.4).
Eventually, an evaluation of the modeling and controller consisting in a proof of concept of the control
approach is given (Section 7.5) before a conclusion that end this chapter (Section 7.6).

7.1 Introduction

7.1.1 Context, Hypothesis and Motivation

The democratization of mobile devices has fostered the development of services using the users'
location data to provide or improve a service. Everyday examples of Location Based Services (LBS)
are navigation applications, recommendation systems or �tness tracking apps. Some of those services
are one-shot, they need one location point to provide their service e.g. a weather app. Some others
need dynamic records, for instance navigation or gaming apps. We advocate in this work to consider
them all as dynamic, for two main reasons. First, people using "one-shot location" application do not
necessary turn on and off instantaneously the GPS option on their phone, thus the records are still sent
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to the service constantly. Second, the dynamic problem is more challenging than the static one as it
has more complexity, the attacker has access to more information. Thus, without loss of generality,
we can focus here on the user-level dynamic, online scenario as illustration on Figure 7.1.

Figure 7.1 – Working scenario: location data are sent continuously and the service is received con-
stantly

LBSs provide users with always more personalized and convenient services but at the cost of
personal data publishing. Service providers, or any third party attackers, take advantage of these data
to derive always more information about users. In order to provide ways to protect users' privacy,
Location Privacy Protection Mechanisms (LPPMs) have been developed. In the dynamic scenario
considered here, only the LPPMs able to work in a real-time fashion, i.e. they only modify the current
position and are causal, are considered.

However, nowadays LPPMs are facing some limitations. On one hand, the notion of privacy is
often addressed with high level, theoretical principles that might lack of practical meaning for average
user of mobile devices. It is thus challenging to assess the impact of an LPPM on one's privacy for
a non expert user. On the other hand, the parametrization of LPPMs makes them tricky to use as the
user is not always able to predict what will be the impact of a given parametrization on her privacy.
Moreover, location data are highly dynamic, meaning that the user may be in a sensitive place at a
given time while she can move to a place of none interest for her few minutes later. Similarly, if a user
starts to obfuscate her data at a given point, it may take some time before she is actually protected,
due to memory of the potential attacker. Thus the measures and reactions must be real time processes.

To sum up, LPPMs are usually statically tuned, by experts. The problem needs to be shifted from
choosing the con�guration parameter of a LPPM to automatically setting a desired privacy level, all
this in a robust and automated fashion.

7.1.2 Proposed Approach

This thesis presents a control-theoretic approach to solve these challenges. The challenge of how to
automatically leverage a Protection Mechanism actionto meet users objectives, can be considered
as a reference tracking problem. When it comes to automatically leverage a Protection Mechanism
actionto be ef�cient whatever the mobility pattern the user is having, a regulation approach that aims
at rejecting the so called disturbances is used. Prior to those control considerations, some works have
to be done on the problem formulation, particularly on having continuous measures of performance
indicators (privacy and utility). Then identi�cation is performed to compute a model of the system
and eventually the controller itself can be designed. Those three steps form the next sections.
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7.2 Control Problem Formulation

7.2.1 Overview

The system under study is a Location Privacy Protection Mechanism (LPPM), that obfuscates a user
location record before sending it to the Location Based Service (LBS). This section details and for-
mulates in a control-theoretic way the following concepts: the protection mechanism (the plant), the
LPPM parameter (controllable input), the raw location data (latitude and longitude over time, seen as
an uncontrollable input) and the privacy and utility of the resulting obfuscated data (outputs). These
concepts are schematically represented in Figure 7.2 in a closed loop box-diagram form.

Figure 7.2 – Classic control schema applied for privacy protection of a location based service user.

7.2.2 Formalization

7.2.2.1 Process

Location Privacy Protection Mechanisms (LPPMs) are algorithms that aim at increasing privacy of
location data. They are parametrized algorithms that take as input raw mobility data and output the
obfuscated ones. For a control approach, only LPPMs that can work in real-time and enable on-line
tuning of their parameters to adapt privacy level of data can be considered. Such example of LPPMs
are perturbation based mechanisms such as cloaking algorithms [80, 131, 136, 146, 183].

A schematic example of the LPPM in its scenario is given in Figure 7.2. The user of a mobile
device send her location to a Location-Based Service through a LPPM, that performs the obfuscation
of the current location record before sending it to the LBS. The service is thus returned to the user,
and all this process is done in an online fashion.

Geo-Indistinguishability [18] (Geo-I for short), the chosen LPPM for this approach, is a well
known LPPM from the state of the art that can work on-line. As a reminder, its simple yet ef�cient
principle is to add spatial noise to the location data. Each new obfuscated location is computed using
a Laplacian distribution centered in the raw location record with parameterizable variance. Geo-I's
parameter is notede and is inversely proportional to the amount of noise added: the lowere is, the
more noise is added and the better the location is obfuscated.

Geo-I has been initially developed for an of�ine usage, meaning that it aimed at obfuscating a
location dataset in order to mathematically guarantee its differential privacy at a given levele. Given
the sparsity of the literature to provide consistent real-time LPPMs, we advocate to use Geo-I, or more



78

broadly the principle of adding spatial noise to a location record, knowing that the differential privacy
guarantee do not apply the same way for the online scenario.

To sum up, the methodology presented in this chapter can apply for LPPMs satisfying the follow-
ing requirements:

� being an on-line process, every location is individually obfuscated in real time,
� being tunable by a single parameter, such as thee of Geo-I,
� being user centric: the obfuscation should not depend on other people's location or other prop-

erties such as the density of the area.

The example of Geo-I will be used as illustration for the rest of this chapter. However, the core of
this work is to take a level of abstraction higher than the LPPM and consider that only the privacy and
utility achievements matter, the LPPM in itself being only a tool. In that sense, if the objectives are
met, there is no need to explore the use of other protection mechanisms.

7.2.2.2 Input signals

The control-oriented presentation of Geo-I's two inputs (the location record of the user and its own
parametere) is provided in the next paragraphs.

Control Variable. Geo-I's parametere can be changed at each iteration and impacts the POI-
oriented privacy and the utility of the obfuscated data. Indeed, as can been seen in Figure 5.3, the
lower e is, the more noise is added to the data and the more dif�cult it becomes to extract the real
points of interest of the user - or even to realize that the user has stopped.e usually takes its values in
the range 10� 4 m� 1 to 1 m� 1. A low e (i.e. high obfuscation) also alter utility of the data. When the
location record sent to the service is far from the real one, the quality of service can be signi�cantly
reduced. Then,e is chosen as the control variable.

Disturbance. Another factor impacting the level of privacy, even when using a LPPM, is the prop-
erties of the raw mobility data to be obfuscated. For instance if a user is in a train, the continuous
move naturally prevents from extracting any POI. Whereas if she is home, the location data require
obfuscation to protect the extractable POIs. This highlights the dependency of the privacy on the raw
mobility data itself. Indeed some cases are not as trivial regarding whether it requires obfuscation or
not (and how much), for instance when driving a car and stopping at traf�c lights or to grab groceries
at self-driving shops. In the following, raw data will be considered as an uncontrollable but measur-
able input.

For a quick illustration of the impact of those two parameters on the system outputs, one can refer
to Section 7.2.3. However, prior to this, the output metrics need to be de�ned.

7.2.2.3 Output signals

In the context of location privacy, there are two goals to be achieved: the protection of a user's
privacy and the guarantee of the usability of the revealed data. As a consequence, two performance
signals are considered, that will be called privacy and utility. The next sections formally de�ne those
output signals. Note that those de�nitions differ form the previously used ones in their real time
characteristic. Indeed, at the record of every new location, the measure of privacy and utility has to be
updated. The metrics de�ned in Chapter 5, Section 5.4 require the complete dataset to be computed
and do not capture the metrics' dynamics. Thus, new formulations of those metrics are given, however
still based on the notions of POIs for privacy and spacial distortion for utility.
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Privacy. This work takes as assumption that the objective of a user in terms of privacy is to prevent
an attacker from retrieving her points of interest. For the addressed problem, one should have an
onlinemeasure of privacy. The privacy signal should thus represent how likely the user is to reveal
a POI, i.e. if she is spending a signi�cant time in a restricted area. Regarding the control-theoretic
approach, the privacy signal should also enable a control as simple as possible, for instance by ensur-
ing its linearity. Consequently, the following requirements for the privacy signal are used: (i) re�ect
a user stop, (ii) being controllable.

The privacy de�nition is thus based on the spatial dispersion of the obfuscated data over a past
time window. Indeed a small dispersion represents a concentration in space (but also in time due to
the time window calculation) of location records, which matches with the de�nition of a POI. The
data density property of a data sharing has already been identi�ed as a privacy thread indicator [33],
however without formal de�nition nor use as a privacy signal. Formally, the privacy signal is de�ned
as being twice the median distance between the location records of the time window and the centroid
of those points. The locationl (k) is considered as being the vector of the latitude and longitude of the
user at timek. Then, the centroidlc(k) of the locations over the past window of lengthT is de�ned
by eq. (7.1)

lc(k) =
1
T

k

å
t= k� T

l (t) (7.1)

and the privacy signal is de�ned as

priv(k) = 2� median(dist[l (t);lc(k)]) ; t 2 [k� T;k] (7.2)

with dist[x;y] being the euclidean distance between two pointsx andy at the surface of the earth.
The privacy signal is expressed in meters and is to be related with the POI size. This formulation

with a factor 2 enables to have a meaningful measure, that is the radius of the smallest POI currently
extractable from the trace. The choice of the median rather that other aggregation methods such
as the mean or the maximum is to enhance the robustness of the metric regarding outliers, and thus
enable a more stable measure for the control perspective. Given its relation to POIs, the privacy signal
reference value is to be set by the user as previously explained for the of�ine case. The length of the
time windowT is again chosen by the user to �t her conception of privacy.

An illustration of the metric computation is given in Figure 7.3. Each sub�gure (a) to (e) is the
privacy computation at a given instantk = 1: : :5. Records of the user position are the small location
points, to be considered from left to right. The user was in a tram (most distant darker points revealing
high speed), went out and started walking (points are close one to another). The lighter points are the
ones in the moving time windowT considered at the instant of the picture. For instance on Figure
7.3 (a), the privacy is computed for the �fth point. The duration of the windowT is of �ve samples.
Figure 7.3 (b) illustrates the privacy at the instant of the sixth point, and so on. The centroidlc of the
selected points is the large location position. The privacy metric is then two times the median distance
between the centroid and any point of the time window (light points), the median is illustrated by the
arrow. In this illustration, as the user is slowing down and is likely to arrive in an important place for
her, the privacy metric decreases, as reported in the graph Figure 7.3 (f).

To sum up, the privacy metric is the radius of the smallest POI extricable on the last time window.
The higher the privacy value is, the better the user is protected

Utility. In this work, utility is considered as being instantaneous (the service mainly need the user's
current location) and spatial (the closer the location sent to the LBS is to the user's real one, the better
the service will be). This choice has been motivated in Chapter 5, Section 5.4.2, where a summary of
the most used properties of location data are used by the LBSs is given (Table 5.2).
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(a) Instant 1 (b) Instant 2 (c) Instant 3

(d) Instant 4 (e) Instant 5 (f) Privacy over time

Figure 7.3 – Privacy metric computation on a simple mobility trace.

The notion of utility in this chapter is the distance between the obfuscated data and the original
one. This information is partially given by Geo-I's parametere, as it is the parameter of the distri-
bution from which the noise is drawn. Utility here only measures the realization of this distribution,
actual distance between the real location of the user and the obfuscated one communicated to the
service:

util (k) = dist[l (t);l0(k)] (7.3)

Then, the objective of maximizing utility translates into minimizinge (which for reminder is
inversely proportional to the amount of noise added). We will thus focus out control on the privacy
variable and on the spare use of the control variable budgete.

We also cover the case where more location data are used to provide the service, however with
a higher constraint in our formulation as the leveraging of utility loss between the various records is
not possible. Some limitations exists however to this formulation. For instance, some applications are
using the speed of the user, which is not preserved in our formulation of utility.

7.2.3 Illustrated motivation

Now that the evaluation metrics have be formally de�ned, we illustrate the impact of both time and
the control variable on the user's privacy, for a real trace of a cabspotting mobility dataset user (see
Figure 5.1 for an overview of the trace on a map and its speed over time.). Figure 7.4 shows the
privacy and utility measures through time, for various scenario: (i) the mobility data has not been
obfuscated, it is the raw one, (ii) the user's trace has been obfuscated using Geo-I, parametrized with
e = 10� 2m� 1, and (iii) e = 10� 2:5m� 1. Figure 5.3 illustrates those three traces on a map. Note that
for the utility plot, the curve for the raw trace - constantly equal to 0, no distortion - is not visible due
to the logarithmic scale. Also, as the sampling period of the trace is not constant, there is no record
between 5 and 30 min.

Figure 7.4 illustrates that privacy varies through time, depending on the user's mobility behavior.
A high value means a good protection. The lowest privacy is close to 1m, meaning that the user
stayed in a 2 m diameter region during the previousT = 15min (or less if records do not cover the
exact �fteen past minutes). Knowing with such accuracy the location of a POI is indeed a important
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privacy breach. The highest privacy level of that user on this record is 7 km, corresponding to the
moment when the user is driving along the highway. With time, the privacy metric variation goes up
to four orders of magnitude difference, which illustrates the need of a time-varying adaptation of the
protection mechanism. Moreover, the privacy curves of the obfuscated traces show that (i) using Geo-
I increases privacy and that (ii) the LPPM parametere impacts the privacy level. The utility measures
vary through time due to the stochasticity of Geo-I process. However, the mean utility is constant
and only depends on the LPPM parametrizatione. With the smallest value, the spatial noise added to
the user trace is higher (see Figure 5.3), hence the spatial distortion is in average higher, meaning a
worst accuracy. Records around 120 min illustrate that there are situations for which having a lowere
do not induce more privacy as the user is inherently protected by its movement, but only damage the
utility of data.

Consequently, there is a need for a regulation of privacythrough timethat can be achieved by
wisely tuningGeo-I's parameter, which will also lead toutility gains.

Figure 7.4 – Privacy and utility variations over time for various static LPPM con�gurations. Data
from a cabspotting user.
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7.3 Privacy Modeling

7.3.1 Overview

The next step before being able to control privacy is to have a mathematical model describing and
quantifying the LPPM behavior, that links the inputs signals to the output one. No utility model is
identi�ed as we consider the minimization of the control signal usage to be our utility constraint.
Identi�cation in control theory consists in linking the input(s) and output(s) with a mathematical
formula, based on experiments. Various input scenario are applied to the system and the output(s)
that were generated are measured. The observed behavior is then matched to a set of already known
equations with varying properties (in terms of linearity, order, etc.) and parameters, and the best one is
kept. This black-box characterization can be done in two steps. First, a general overview of the input
to output link is drawn by overlooking the transitory dynamical behavior. A constant input signal is
applied and the stabilized output is measured. This process is repeated several times, each time with
a different input value. In case of multiple input signals, all combinations are tried. This step is called
static characterization. In the second step, the input signal is no longer constant but varies through
time. The induced variations of the output are measured. This is the dynamic modeling. In case
of multiple input signals, an hypothesis of linearity is often taken, thus only one input is varied at a
time and the others are �xed. Those two steps are detailed in the following subsections. Beforehand,
details are given regarding the values of our input signals taken during those processes.

7.3.2 Inputs Scenario

The control signal (i.e. LPPM parametere) is �rst iteratively set at different values taken in its whole
de�nition range (from 10� 4 m� 1 to 1 m� 1), for the static characterization. In a second time, a step, i.e.
a continuous signal with a sudden change, will be applied, in which the values of the initial and �nal
level will be chosen in the linear working range of the system, found with the static characterization.
The dynamics of the system, i.e. its variation through time, is expected to come only from the time
window calculation of the privacy signal, which motivates the time analysis over the frequency one.
Indeed, the use of a step enable to solicit all frequencies at once.

The second input we have is the movement of the user. To study its impact on the LPPM perfor-
mance, we �rst stimulate the system with a synthetic movement that we manually created, in order
the master perfectly its properties. The disturbance scenario, i.e. the mobility data, is characterized
by one main parameter: the user's speed. The synthetic mobility scenario that we created for the
preliminary analysis of the plant has thus various speeds. This parameter is discretized: speed can be
high (50 km=h), low (5 km=h) or null (the user is stopped).

A movement, i.e. an evolution of the user latitude and longitude through time, can indeed be
characterized with various other metrics, such as the direction of the movement and its changes over
time, the acceleration of the user, etc. Even though the model will be derived using this simpli�ed
movement scenario, we will validate it with real user data in the evaluation section.

7.3.3 Static Characterization

For the static characterization step, the LPPM parameter and the user movement are �xed, and the
privacy is measured. Those measures are repeated for each value of the parametere and each move-
ment.

Results are reported in Figure 7.5,x-axis being the control parameter,y-axis the privacy measure,
and each curve is a different disturbance condition. For both axis, a logarithmic scale is used. The
following statements can be formulated: (i) the logarithm of privacy is linear with respect to the
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logarithm of Geo-I parameter for low values ofe (high noise) and (ii) for high values ofe (low noise)
there is a saturation, and the level of this saturation depends on the disturbance (i.e. speed of the user).

The saturation re�ects that there are some conditions, for instance if the user is moving fast, for
which adding a few noise has no impact on the privacy as the user is already protected (i.e. only POI
with large diameters can be extracted from her raw trace). The linear part of the curve means that, at
some point, the more noise is added to the data, the larger the diameter of the extracted POI is.

The linear part of the static characteristic has the same equation in all cases:

log(priv) = a log(e)+ b (7.4)

with a = � 1 andb = 0:2 (parameters are found using Matlab regression tool).
The saturation level corresponds to the privacy of the mobility data whene ! + ¥ , i.e. no noise

is added. It is the privacy of the raw trace, that can be measured in real time, locally on the user's
mobile device. This value is denotedprivraw.

The static gainA links the LPPM parameter to the privacy level, still logarithmically, see eq. (7.5).

log(priv(t ! ¥ )) = Alog(e(t ! ¥ )) : (7.5)

According to the static characterisation, we have the following formula for the static gain:

A =
�

a if a log(e)+ b > log(privraw) : linear zone
0 otherwise : saturated zone.

In this formulation, no smooth transition between the saturation level and the linear behavior is mod-
eled.

Figure 7.5 – Static characteristics of thee to privacy function, for various disturbance scenario.
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Linearization In order to match the control theory formulation and due to the presence of the off-
setb, the model is linearized around a working pointe0 and its corresponding privacy levelpriv0
(computed using eq. (7.5)). Thus the control signal is de�ned as

De = log(e) � log(e0); (7.6)

and the performance signal as

DPriv = log(priv) � log(priv0): (7.7)

The linearization point is chosen as the value ofe in the middle of its de�nition range:e0 = 10� 2.

7.3.4 Dynamic modeling

The system is linear for low values of the control signal while for higher values, the control signal
do not impact the output signal. Therefore, the system will be dynamically characterized only in this
linear zone, where a single step response can be used for modeling. The control signal step goes from
e = 10� 1m� 1 to e = 10� 2m� 1 and the disturbance has constant null speed. The two values of the
control signal are in the linear zone of the system given the user is stopped. The evolution of privacy
through time is measured. Results are reported in Figure 7.6.

The shape of the step response can be approximated by a �rst order transfer function given its ex-
ponential form with non null tangent at the origin. The transfer function relating the LPPM parameter
to privacy is then:

H(s) =
DPriv(s)

De(s)
=

A
1+ t s

(7.8)

Figure 7.6 – System step response. Input frome = 10� 1m� 1 to e = 10� 2m� 1, during a stop (constant
disturbance).
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with t = 5 min by considering a rise time of around 15 min (i.e. the length of the privacy metric time
windowT) andA = a = � 1 (linear zone), withs the Laplace variable.

If written in the recursive form, eq. (7.8) becomes:

log(priv(t)) = a � log(priv(t � 1))+ b � log(e(t)) + g: (7.9)

When time goes to in�nity, eq. (7.9) should �t eq. (7.4) as it corresponds to the steady state value
of privacy. This creates the following constraints:

a =
b

1� a
; b =

g
1� a

: (7.10)

These two constraints let one degree of liberty in eq (7.9). This enables to tune the time dynamics of
the responset , i.e. the time the privacy signal takes to reach its steady state.

The resulting model for privacy prediction, combining both static and dynamic studies is the
following:

priv(t) =
�

10a �log(priv(t� 1))+ b �log(e(t))+ g if e < e0
privraw(t) otherwise.

This equation enables to predict, for each time instant, the value of privacy knowing the obfuscation
level (e), the past value of privacy (priv(t � 1)) and the raw trace properties (e0 andprivraw).

7.4 Control Strategy

7.4.1 Objectives

This section presents the Location Privacy controller. The user's objective is de�ned as a minimal
threshold on the privacy value no matter the mobility pattern. Indeed as privacy and utility are con-
tradictory objectives, in order to maximize utility the control signal should be high (i.e. low noise),
but still enabling the reference privacy to be met. Regarding the rejection time of disturbances, it can
vary according to the user's requirements. In our case, we chose a value of 5 min. It corresponds to a
constrained objective where every small stops (in a shop, at a bus stop, etc.) and all larger ones should
be hidden.

To sum up, the closed-loop speci�cations to assure are:

� follow the privacy reference,

� reject the perturbation with zero steady state error, small overshoot and in approximately 5 min,

� increase utility whenever privacy constraints are met.

Similarly as in [49], the control is meant to be simple, as its objective is not only to achieve the
above mentioned performance but also to be easily implementable on mobile devices. Hence, a PI
controller with anti-windup is selected. Its integral action enables zero steady state and its tuning
allows to avoid overshoot and reach a desired response time. The anti-windup action is added to cope
with the control signal saturations.
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7.4.2 Linear Control Problem Formulation

We now reformulate the problem to linearize it and take into account the logarithmic formulation.
The schema of Figure 7.7 illustrates the new notations on the control loop.DPrivsp is the desired
privacy level, linearized:

DPrivsp = log(privsp) � log(priv0): (7.11)

The user's objectiveprivsp is for instance 100 m, meaning that the user does not want POIs of 100 m
radius or smaller to be extractable from their mobility record.

The plant model that we are interested to derive in this section gathers the LPPM and the sensor
processes. In the static case studied just before, we hadH = A. We now study the time dynamic
scenario, to link the control signalDe to the output privacy signalDPriv

Figure 7.7 – Feedback loop with signal and transfer functions notations

7.4.3 PI Formulation

A classic PI controller has the following expression in thes-domain, after a Laplace transform:

PI(s) =
De(s)

DPrivsp(s) � DPriv(s)
=

KI

s
+ KP: (7.12)

In the time recursive form, the PI becomes:

log(ePI(ti)) = log(e(ti� 1)) � KP[log(privsp(ti� 1)) � log(priv(ti� 1))]
+[ KI (ti � ti� 1) + KP](log(privsp(ti)) � log(priv(ti)))

(7.13)

In our case the parameters are tuned using pole placement as detailed in [23]:KI =
t

A:t sp
and

KP =
1

A:t sp
, with t sp the pole of the objective closed loop, �xed by the desired response time. After

computation, witht sp = 5min, the parameters of the controller becomeKI =
� 1
300

; KP = � 1.

7.4.4 Anti-windup

In this control formulation, the gainK is assumed to be linear, always equal toa. As such, the con-
troller is not aware of the saturated effect on privacy (�at zones of Figure 7.5). If the privacy objective
is naturally overshooted thanks to the user mobility pattern, the controller will keep decreasinge as
it will not see any impact on privacy. This is a behavior that interest us, as decreasing the control
signal without impacting privacy actually means decreasing utility loss without damage on privacy.
However, if the user stops or slows down, the controller should not take too much time to react and
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decrease the control signal. In order to ensure such behavior, an anti wind-up strategy is added, in the
form of an actuator saturation (see [175]):

e(ti) = min(max(ePI(ti);emin);emax): (7.14)

where threshold are chosen according to Geo-I's common range of variations[emin;emax] = [ 10� 4;1] m� 1.

7.5 dynULP Evaluation

Both the modeling and the control are evaluated in this section. We �rst give an overview of the
methodology: the scenario considered and the performance indicators used for the evaluation.

7.5.1 Methodology

Results presented in this section are the outputs of single runs. No averaging is done on several similar
experiments in order (i) to preserve the explainability of the impacts of the signals on each other, (ii)
to �t as much as possible to the online scenario with only one-shot opportunities for the controller, and
(iii) not to hide the dif�culty of controlling a stochastic system by showing only its average control.

7.5.1.1 Inputs scenarios

The evaluation aims at illustrating three points: (i) the understanding andexplainability of the mod-
eling and control, (ii) thegenerality of their performance in front of a diversity of situations and (iii)
theapplicability of the solution on a real-life mobility scenario. The inputs of the model (mobility
trace ande signal) and the ones of the controller (mobility trace and the reference signal) are set in
order to re�ect those three points, as explained in the following:

� Mobility trace. First a simple scenario is used, in which the user is considered either stopped,
or moving with a constant speed (low or medium), with step variations between those situations.
The mobility trace used for generality validation is the synthetic one presented in Chapter 5,
Section 5.1, which gathers more complex moves such as turns, acceleration, micro-stops, etc.
Eventually, the applicability in practice is tested using a real-life mobility record, the one of a
Cabspotting user, also presented in Chapter 5, Section 5.1.

� LPPM parameter e. It is set by the controller in order to meet the reference signal. However,
in the modeling phase it is a free signal that should be set in order to stimulate the plant. In its
simplest form,e is constant at the median value of its de�nition range, 10� 2. A step signal -
instantaneous change from one value to another - is also used. Eventually, we generate a more
complex signal, with various amplitudes (10� 4 m� 1 to 1 m� 1) and periods (from one 10 s, i.e.
about a sampling period of the mobility trace, to 30 min).

� Privacy speci�cation privsp. When needed, e.g. for the control evaluation, the reference value
is either (i) constant at 500 m (POI of max 1 km of diameter), (ii) a step, or (iii) a random signal
with varying amplitude (from 1 m to 10 km) and period (from 5 min to 5 h). Changes in the
speci�cations are made by the user herself, thus are not as frequent as the changes ine, that
are driven by the controller. Regarding the values of amplitude values, they range from very
low, i.e. the stop place can be determined with the precision of a meter, to really large, the stop
location cannot be more precise than several kilometers.
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For the explianability scenario, the inputs are considered in their simplest form, i.e. the steps, and one
input varies at a time. For the generality and applicability scenarios, the robustness is �rst considered,
meaning that only the mobility of the user varies through time whilee is �xed for modeling and the
reference is �xed for control. Then, the complex varying scenarios of those last two signals are also
considered, still with the complex mobility behavior, in order to insure realism.

Even though the numerical values of each parameters and variables have been given and justi�ed
in due time, we give in Table 7.1 a sum-up. Some of the variables in this table are sometime varied,
only their nominal value is reported.

Notation De�nition Nominal value
T Privacy metric time window. 15 min
a Static characteristic parameters. -1
b 0.2
A Transfer function gain, -1
t characteristic time. 5 min
e0 Linearizion point. 10� 2 m� 1

t sp Desired rejection time. 5 min
KP Controller parameters. -1
KI -0.033

[emin;emax] Anti-windup parameters. [10� 4;1] m� 1

privsp Privacy reference value. 500 m

Table 7.1 – dynULP parameters sum-up.

7.5.1.2 Performance indicators

In order to evaluate modeling and control performance, both qualitative and quantitative aspects will
be considered. The qualitative one puts in perspective this work in its context, going back to the
signi�cation of the metrics and of their orders of magnitude. It also allows to take examples for
illustration. A quantitative evaluation is mainly meaningful when comparing two approaches, which
is not the case in this work. It will however be used to give a �rst idea on performance (even if
no reference on the values are available) and to allow comparison with future works. Moreover,
performance indicators will be useful to compare accuracy of the model and controller on real user's
data compared to synthetic ones.

Modeling accuracy. The mean normalized square error of privacy is used, for which the de�nition
is given in eq. (7.15), whereK is the set of all samples. Is represents the difference between the model
prediction and the measured privacy, with a quadratic importance of the difference, normalized with
regard to the measured privacy and averaged over all sampling instants. A logarithm function is �rst
applied on the privacy signals in order to give equal importance to a error made on small values of
privacy and on large ones. Like this, the performance indicator gives an idea of the errors in terms of
orders of magnitude.

Err priv
model=

1
jKj å

k2K

(log(privmodel(k)) � log(privmeasure(k))) 2

log(privmeasure(k))
(7.15)
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Privacy regulation. The controller's performance in terms of privacy is re�ected by its ability to
keep the measured privacyat leastat the required level no matter the disturbances. Indeed, a privacy
higher than the required level is not considered as detrimental. Based on this fact, for the simple refer-
ence tracking validation, only the maximum overshootbelowthe reference is reported, as well as the
time spent below 95% of the reference. Steady state error, rejection time and maximal ampli�cation
of the disturbance are also measured, still taking into account only the samples for which privacy is
lower that speci�ed.

For the scenarios with elaborated inputs, we again compute the mean normalized squared log-
arithmic error but taking into account only the error when privacy is lower than its reference. The
privacy evaluation indicator is calculated as follows:

Err priv
control =

1
jKj å

k2K

(max[log(privsp(k)) � log(privmeasure(k)) ;0])2

log(privsp(k))
: (7.16)

Here again the error is computed using the logarithm of the privacy signals, to weight the impor-
tance of all orders of magnitude.

Utility preservation. In order to evaluate the ability of the control law to preserve utility for the
user through time, two indicators are used: (i) the median utility over the experiment and (ii) its 99th

percentile. The �rst metric gives a global overview of the quality of the service, robust to the spread
of the metric across orders of magnitude, while the second ensures no major malfunction was done to
the service.

7.5.2 Modeling

This section evaluates the modeling, i.e. the ability of the model to capture the privacy level of
a user through time, knowing the LPPM parametrizatione and the user movement. We start the
evaluation with a simple step scenario for those two inputs, then we use a comprehensive synthetic
trace generated to overview most use cases and we conclude on its performance on a real-life data.

7.5.2.1 Validation on simple scenarios

We �rst �x the user movement (the user is stopped, 0 km=h) and vary the control variablee from
10� 1 m� 1 to 10� 2 m� 1 and then back to 10� 1 m� 1, to experiment both a step up and a step down, see
Figure 7.8. The top plot is the user's speed trough time, the middle one is the privacy measured and
its modeling and the bottom plot is the LPPM parametrization, all signal vary in time. This layout
is the same for Figures 7.8 to 7.13. At time 0, whene decreases, the noise amount increases and so
does privacy, both its measure and modeling. Conversely whene increases. The modeling presents
no steady state errors and no overshoots, but there are some errors during the transient phases. For
both steps, the model is slightly faster than the measure. The global modeling error is 1.1%.

Then we �x the control variable toe = 10� 2 m� 1 and vary the mobility, from moving at 50 km=h
to 2 km=h and then back to 50 km=h, see Figure 7.9. Here the privacy starts by decreasing, stabilizes
and then climbs back up to the same initial value. The model captures perfectly the dynamics, but
has a small steady state error on the step down while none on the step up. However, the steady state
error is limited, only 1.7% at 52 min if we take the logarithm of the privacy values, 8.3% otherwise.
The global modeling error is 0.1%, showing a better modeling of the impact of the user's speed
(disturbance) on privacy that of the one of the control variable, the LPPM parameter.
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Figure 7.8 – Privacy dynamic model validation with control variable steps.

Figure 7.9 – Privacy dynamic model validation with user's speed steps.
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7.5.2.2 Evaluation on substantial synthetic data

The accuracy of the privacy model is now investigated on a complete synthetic trace, see Figures 7.10
and 7.11, with the disturbance scenario represented by the user's speed each time on their top plot.

In Figure 7.10, the control variablee is kept constant, and only the modeling of the user's move-
ment is evaluated. Once again, the accuracy is very good, transients are perfectly captured and the
steady states are precisely modeled when privacy is high (above 103 m) but quite imprecise for low
privacy. However, the metric is most of the timeunderestimated, which in our privacy context results
in being more conservative, which is, even if non-optimal, not detrimental.

The global modeling error is here again 0.1%.

In Figure 7.11, the complex scenario for the control variable is used, see bottom plot. The values
taken bye cover all its de�nition range, the periods between two changes also vary, to stimulate
the system with various frequencies. The privacy's measure and model curves are almost overlaid,
indicating a good model accuracy most of the time. The steady state values are always correct, unless
at times 380, 405 and 840 min. At these moments,e raises so the model starts decreasing the privacy.
However, slightly after the user which was stopped starts moving, which make the privacy level rise
again. As the model is too fast whene varies, the predicted privacy went lower than in reality. The
faster dynamic of the model compared to the measure is also seen at times 685 min and 920 min, when
there are major steps up ofe while the user is stopped.

The global modeling error is 3.1%, a quite low value showing here again that the model is able to
successfully capture the in�uence of the LPPM con�guratione (control signal) and the user's mobility
(disturbance) on the privacy, for this comprehensive synthetic scenario.

7.5.2.3 Evaluation on a real user mobility trace

We now investigate the ability of the model to capture privacy of a user based on real records of a
mobility trace.

Figure 7.12 presents the privacy measured and modeled (middle plot) with regards to the user's
speed (top plot) and a constant LPPM parametrization (bottom plot). The sampling time in this trace
is not constant (in average around 10 s), for instance there are no samples between 5 and 30 min. This
explains why there is no measured privacy and why the modeling do not converge in the very �rst
minutes. In the remaining of the trace, the model capture with a good accuracy the variations of the
privacy level.

The global modeling error is 0.3%, which shows quite similar performance on synthetic traces
and on real data.

Figure 7.13 is the result of an experiment with the same mobility trace, but this time the control
signale varies according to the scenario presented in Section 7.5.1.1. Except for the initial minutes for
which the control predictions have not converged yet, the modeling is accurate both in steady state and
in dynamics. Even for large variations of the control signal (around 120 min), the model prediction
�ts the measured privacy with high accuracy. It could be that the higher frequency variations in the
real mobility trace compensates for the model inaccuracies.

The global modeling error is 0.6%, illustrating the ability of our controller to be used for real
traces as well as for synthetic ones, and for various conditions of control signal variations.

However, the model has been developed for a control perspective. Then, even though the model-
ing accuracy is satisfying to re�ect the user's privacy, we should now verify its main objective: the
controller performance.
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Figure 7.10 – Privacy dynamic model validation on substantial synthetic data, constant control signal.

Figure 7.11 – Privacy dynamic model validation on substantial synthetic data and control signal.
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Figure 7.12 – Privacy dynamic model validation on a real mobility trace, with constant control signal.

Figure 7.13 – Privacy dynamic model validation on a real mobility trace with a realistic control signal.
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7.5.3 Control

The controller aims at keeping privacy at the user speci�ed level, no matter her movements, while
ensuring a high utility. The ability of the controller to achieve those objectives is validated on simple
steps scenarios, evaluated on a synthetic comprehensive scenario and its practical applicability on real
data is tested.

7.5.3.1 Validation on simple scenarios

The �rst validation experiment consists in a reference tracking challenge. The disturbance is �xed,
i.e. the used is stopped, the controller is launched and the experiment do not start before it converged.
Then we ask the controller to set the privacy level an order of magnitude higher (from 102 m to 103 m)
and back to its initial value. Results are reported in Figure 7.14 with, from top to bottom, (i) the user's
speed over time, (ii) the privacy reference, the privacy level without using LPPM nor control and the
controlled privacy, (iii) the control signal and (iv) the utility metric. The privacy curve without control

Figure 7.14 – Dynamical privacy control of a stopped user with step privacy speci�cations.
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do not appear on this log-scale graph because, as the user is stopped, it is constantly null.
The controlled privacy follows the reference without steady state error. The time spent below

95% of the step amplitude is respectively of 17 min and 13 min. It takes longer than what was initially
aimed. Overshoot is present for both steps. The maximal negative ampli�cation (at time 75 min) is
of -40%. The privacy error indicator described in eq. (7.16) is of 1.36%. The median utility is of
106 m and its 99th percentile is 3:6 km, which are reasonable values. We clearly see here the trade-off
between a fast privacy tracking, which would have required higher amplitudes for the control variable,
and a maximal utility, which would have required to set the control variable instantly to its converged
value.

Figure 7.15 show the controller behavior in a step disturbance rejection scenario, with a constant
reference. Only the step down (the user reduces its speed) make the privacy level drop below its
speci�cation, but eventually converges again to its reference level without steady state error. In the
step up case, the privacy level converges higher that the reference, as the user movement naturally
protects her at a high level. The maximal amplitude reduction is of 48% at 15 min. The time spent

Figure 7.15 – Dynamical privacy control with constant privacy speci�cations, with user's speed steps.
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below the reference is of 17 min. The error indicator is of 2.9%: the controller performs better for
reference tracking. Median utility is of 4 m, with a 99th percentile at 1:8 km. Utility is well preserved
as there is no overshoot.

To conclude, the simple PI controller is stable and works perfectly in steady state. The transient
phases could be optimized, particularly regarding "down"-shoots and response times. The reference
tracking test works the best but the disturbance rejection is still good, which is the main the objective
of the controller.

7.5.3.2 Evaluation on substantial synthetic data

The controller is then evaluated on the complete scenario, �rst with a constant privacy reference, see
results in Figure 7.16. Similar to previous experiments, the controller keeps the privacy at its required
level without steady state error but with negative overshoot when speed decreases drastically. The pri-

Figure 7.16 – Dynamical privacy control with constant privacy speci�cations on substantial synthetic
data.
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vacy performance indicator - mean normalized squared logarithmic error - is of 2.7%, which is close
to the previous regulation experiment. Median utility is 4 m, and its 99th percentile 2:0 km, which are
still reasonable errors for instance for recommendation systems.

When the speci�cation also varies, see Figure 7.17, the controller performs similarly. Results are
even slightly better, as the negative overshoots seem to be reduced. However, this could be explained
by the fact that the reference level is below the privacy level inherent in the trace during more time
than in the previous experiment. Quantitatively, the performance indicator is of 1.5%. The median
utility is around 2 m, while its 99th percentile is of 1 km, signi�cantly better than the previous experi-
ment. This also could be explained by the relaxed speci�cation scenario.

The controller is able to keep privacy at its speci�ed level even in front of diverse mobility patterns.
Transient phases are however still noticeable.

Figure 7.17 – Dynamical privacy control with substantial synthetic data and privacy speci�cations.
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7.5.3.3 Evaluation on a real user mobility trace

The ability of the controller to cope with real data is now evaluated, using the trace of a Cabspotting
user. Unlike in Section 7.5.2.3, we use the trace on a longer period, up to 800 min. This extension
is useful for illustration as during the beginning of the trace, the user does not signi�cantly stop, and
thus is naturally well protected, even without control.

The �rst evaluation is set with a constant reference, see Figure 7.18. The privacy level is kept at
it desired level, with oscillations that re�ect the user's speed. When the user is fully stopped - from
580 min to 680 min - the controller manages to converge to a non oscillating steady state value. The
performance indicator is 1.1%, which in comparison with the tests on synthetic traces is even better.
Utility is well preserved both in general and in extreme cases, as its median value is of 11 m and it
99th percentile 1:2 km.

Figure 7.18 – Dynamical privacy control on a real mobility trace, with constant privacy speci�cations.
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The same mobility trace is then considered with a varying reference scenario, see Figure 7.19.
The controller performs signi�cantly better than the non monitored scenario. Negative ampli�cations
are very limited, and few oscillation are notable in the steady state values. The performance indicator
is of 0.5%, which is signi�cantly higher than the previous cases. Utility is however way worse, due
to the high privacy requirements. The median is kept around 136 m, but the 99th percentile is high:
6:6 km.

To conclude, the controller performs manage to keep track of the desired privacy level no matter
the mobility scenario. However its performance in terms of reaction time and disturbance ampli�-
cation are limited and could be improved, for instance with the use of a feedforward controller than
would anticipate on the impact of the user mobility on privacy. Regarding utility, the controller max-
imizes it when the privacy is naturally reached, however an optimal controller would enable to take
this speci�cation more formally into account.

Figure 7.19 – Dynamical privacy control, real mobility trace with a privacy speci�cations scenario.
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7.6 Conclusion

This chapter focused on the use of Location-Based Services through time, i.e. the user's location is
sent periodically. This scenario is particularly sensible to privacy attacks if a malicious agent has
access to the real-time position of the user. The focus has been made on the user's points of inter-
est, a low level indicator of habits and identity. Location Privacy Protection Mechanisms (LPPMs)
have been developed in order to address those threats. However, the use of LPPMs comes with an
unavoidable reduction of the service utility, as informations are degraded to ensure privacy. Three
issues remain open with state of the art LPPMs: (i) the usability by a non expert, especially regarding
LPPMs' con�guration, (ii) the possibility to change one's privacy requirements through time, and (iii)
the robustness to users' mobility speci�cities.

In this thesis a control-based approach is proposed that enables a user to control their privacy when
using such protection mechanisms while keeping an eye on utility, regardless of the user mobility
behavior. Contributions are on the novel problem formulation and particularly a de�nition of real-
time Points of Interest oriented privacy metric, on the modeling of the system and on a �rst PI control
strategy. Evaluation was carried out both in simulation and using real data collected on the �eld.
Results consist in a proof of concept that highlights the relevance of the control-based formulation
and the ef�ciency of the controller to regulate privacy in a utility aware way.

Limitations of this work are on the transient ef�ciency of the controller, that we would like to act
faster and with less overshoot. Moreover, the evaluation illustrates the possibility of using dynULP
is multiple scenario, but do not consist in a proof of usability on all users and in all situations. The
future of this work should thus be oriented in two directions. First its extensive evaluation using data
collected from many real users with all possible mobility patterns. This large scale work requires a
deeper work regarding the performance indicators of the control, to be able to signi�cantly aggregate
all the experiments results. Second, more advanced control techniques could be used to tackle the
PI limitations. One can for instance add a feed-forward action on top a the feedback one in order to
anticipate for the impact of the user' movement on the privacy level, and this react faster. A optimal
controller could also be use in order to better manage the trade-off between utility and privacy.

As a conclusion, dynULP is a promising initial work that opens the door for deep research on the
dynamical control of privacy and utility in the context of user-centric location privacy.



Chapter 8

Conclusions on Location Privacy

This ending chapter of Part II highlights this thesis contributions with regards to the Location Privacy
domain, its limitations and its perspectives.

The use of mobile devices has enabled the development of Location-Based Services, and the
collection and computation of location databases. The bene�ts of such resources are vast and cover
all the spectrum of the computing world, from the smartphone user to the data scientist. However,
location data are highly sensitive information for the user from which they have been recorded. It
is possible, for instance, to discover someone's home or work place using mobility data, and more
broadly anypoint of interestof the mobile user. During the last decade, awareness has be raised
on such privacy considerations, both coming from the people and the institutions, that enforce more
and more data-privacy regulations. While stopping the use of mobile devices is indeed a privacy-
protecting action, computer scientists have developed more moderated solutions that aim at ensuring
to the users the services while being privacy-compliant. Those so called Location Privacy Protection
Mechanisms can be used either at the individual level, on a mobile device, or in the case where the data
have already been collected and need to be protected, at a database level. In both cases, the question
of the LPPMs usability raises. As pointed out earlier, there exist an inherent trade-off between privacy
and utility, that has made most LPPM tunable. The smartphone users do want to be protected but do
not necessary want to knowhow or have to con�gure the tool whenever they require higher utility
(in case of a sudden strong service need) or higher privacy (when the service in use do not require
precise location). Indeed the speci�cities of the user movement also make her more threatened at
some moments than at others, a proper protection mechanism should be able to take this into account.
From the data analyst point of view, the literature on LPPMs is so broad that the adequate choice for
each individual of the database is a real challenge. And once again, the question of the con�guration
of the LPPM itself raises.

The two contributions of this part tackle those challenges. dynULP has been designed as a high
abstraction level tool for people carrying mobile devices. The users just have to de�ne a desired
privacy level, that they can change through time, and dynULP realizes the data obfuscation before
sending the location to the LBS. This solution relies on a control theory formulation of the location
privacy challenge, that enables the user to be automatically protected through time, with a controller
monitoring at each instant the her privacy level.PULP is a tool for the data scientist. It processes
databases and recommends a LPPM and its con�guration for all the database's users individually.
PULP framework is objective-driven, which enables the database owner to have guarantees on the
privacy and utility levels achieved in the obfuscated database.

The two systems are complementary, as they cover all the aspects of the location privacy issue.
PULPcan be either used on databases that have already been recorded and for which dynULP cannot
be applied, or in combination, jointly dealing with all the sources of malicious usages of location data,
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see Figure 4.2 on page 32.
Some limitations still persist. First, the notion of privacy used in this work is related to Points Of

Interest, which is a notion that requires two aspects that have to be �xed: the size limit of the POI
and its minimal duration time. Even if this parametrization enables to distinct a stop at a traf�c light
from a night spent at home, they can still be hard to set precisely according to each one concept of its
privacy limit. The second limitation comes from the restriction of the privacy concept to the notion
of POIs. If only one de�nition has to be taken, it is indeed a relevant choice as the POI extraction is
most of the time a preprocessing phase to more complex privacy attacks. However, this one notion
do not cover all the complexity of the privacy challenge. Seemingly, the utility metric that was used
(spatial distortion) is also a low level one, and is thus easily generalizable. However, speci�c services
require speci�c informations regarding the mobility trace, that may not be preserved by focusing only
on this utility notion.

This being said, the perspectives of the works are the following. First, awareness on the privacy
threats have to be raised, more speci�cly on the time aspect of the issue: users have no control on
data that have already been broadcasted, and the accumulation of data about an individual makes her
even more vulnerable. On a more technical aspect, more metrics could be used to precise the notions
of privacy and utility. Predictability of the next locations or probability of re-identi�cation are two
common notions of privacy which could bene�t toPULP and dynULP. On the utility side, one could
investigate the use of service-speci�c metrics. For instance, in the crowd-sourcing application, the
preservation of the inference of a map of attributes (for example a map of pollution levels) in pres-
ence of obfuscated data would be an interesting challenge for database analysts. On a lower level, the
preservation of the user's speed would be of great interest, for instance for navigation applications.
Eventually, we aim at implementing dynULP as a smartphone application, as its low computing al-
gorithm would enable it to be embedded.PULP framework could also be spread in companies, for
instance to ensure their GDPR compliance [79].

As a conclusion,PULP and dynULP works are two solutions that tackle the location privacy
applicability challenge from two complementary approaches, useful both for everyday smartphones
users and data scientists.



Part III

Performance and Reliability of Hadoop
Cloud Services
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The second area of contribution of this thesis is on the performance monitoring of BigData cloud
services. Tremendous amounts of data are generated everyday, and their processing is extremely valu-
able for companies and for the society. MapReduce and its open source implementation Hadoop have
emerged as state of the art frameworks to realize BigData processing. However, data analytics and
hardware management are two distinct computing area, requiring different expertise. This context
has foster the emergence of the cloud paradigm, enabling the on-demand use of cluster resources for
any type of applications or services. Indeed, many issues raise from this new con�guration such as
services performance monitoring, availability, cost-ef�ciency, guarantees, robustness, etc. This part
investigates the use of advanced control theory tools to tackle those challenges.

Chapter 9 provides the required background about cloud services and the MapReduce framework
and provide real-world examples. The key challenges regarding BigData cloud services are then mo-
tivated. An overview of the state of the art solutions realizing MapReduce or cloud performance
monitoring is given. A speci�c focus is made on the works based on control theory providing the
necessary problem formulation and modeling basics, required to understand the following two con-
tribution chapters. Eventually, the state of the art limitations are highlighted.

Chapter 10 presents the �rst contribution: the adaptive control of MapReduce. The presented
solution consists in an automated tool for MapReduce performance monitoring (in terms of jobs
response time) able to work in an environment perturbed by both the clients workload and the inherent
variability of the platform and network. First, this problem is motivated by illustrating the limitations
of the state of the art. Then, an adaptive feedback and feedforward controller is developed which,
by re-learning on-line the MapReduce model, adapts the control strategy. The controller stability
veri�cation is provided, and its performance are evaluated both in simulation and on a real cloud
platforms running BigData MapReduce jobs.

The second contribution, presented in Chapter 11, focuses on the monitoring of multiple con-
tradictory objectives: jobs performance, service availability and cost-ef�ciency. An optimal model
predictive controller is developed, and an event-based mechanism is added for cost-awareness. How-
ever, the event-based control related works lack of a proper solution for the cost formulation speci�c
to the cloud resources usage and pricing. Thus, a new event triggering method is developed, that
enables to better deal with the cloud costs. Stability and validation of the new controller is presented.
Evaluation of its performance in simulation using a real-life BigData processing workload is carried
out.

Eventually, Chapter 12 puts those contributions in perspective to the BigData cloud services needs
and state of the art; limitations are drawn and ideas for future works are proposed.





Chapter 9

BigData Cloud Services: Background and
Related Works

The widespread use of connected devices and sensors as well as the growing use of computing tools,
both for the industrial and personal usage, generates massive quantities of data. Those vast datasets
are highly diverse in forms and nature: DNA transcripts, connection logs, images databases, etc. The
denomination BigData gathers such datasets that have the two following properties: large scale and
unstructured data (in the classic informatics de�nition of the word, i.e. non relational database) [54].
Handling this new form of data is a real challenge both from the hardware and the software point of
view. Those two aspects have tend to decouple in the past decade, leading to the surge of the so called
Cloud Services. BigData processing has triggered the development of new computing paradigms,
such as the well known MapReduce framework. Those two key notions are presented in detail in the
next sections. Afterwards, the problem that will interest us - the performance monitoring of BigData
Cloud services - is motivated. Related works are presented, and a special attention is drawn on the
control theory based approaches, thus introducing the problem formulation and preliminary models
and controls.

9.1 Cloud Services

Cloud paradigm is the shared use of computing resources as an online service. The resources can
be either the hardware (called IaaS, Infrastructure as a Service); the platform, including for instance
the OS (PaaS); a service, such as an email client (SaaS); or even web or mobile apps (called BaaS as
Backend cloud storage is provided). The notion of Cloud Services raised in the end of the 2000s, with
the release or announcement of �rst-class clouds, such as Amazon, Google or Microsoft ones in 2008.
Since then, it has became one of the biggest computing trends, with for instance Microsoft spending
90% of its R&D budget on Cloud Strategy in 2011 [57]. The biggest cloud providers are Amazon
Web Services [14] and Microsoft Azure [132], see the market share diagram of 2017 published by the
Cloud Security Alliance [9] in Figure 9.1.

Regarding the reasons of adoption or not of the cloud paradigm, the same report surveyed that the
�rst reason is the scalability, that allows to adapt the resources according to the workload. The other
reasons are the costs reduction and the avoidance of the investment in capital, as the cloud providers
apply a pay-as-you-go pricing policy. Eventually, public clouds are trusted as more secure, which
consist in another driver of adoption of the cloud paradigm.

Regarding performance and guarantees, cloud providers often come with a Service Level Agree-
ments (SLAs), a dedicated terminology that gathers all the commitments of the provider regarding its
service. When those SLAs are more speci�c, one can also talk about Service Level Objectives, such
as a mean workload execution time for example.
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Figure 9.1 – Cloud IaaS platform adoption in 2017, percentage of applications deployed. [9]

9.2 A BigData Processing Framework: Hadoop/MapReduce

As BigData processing framework, we chose to use MapReduce under its open source implementation
Hadoop. This choice has been motivated by the fact that MapReduce is one of the most popular
parallel processing paradigms for Big Data systems currently in use [54]. It has been developed by
Google in 2004 as a general parallel computing algorithm running on distributed platforms (such
as clouds) that would automatically handle job and data management (data partitioning, consistency
and replication, task distribution, scheduling, load balancing and fault tolerance [60]). Nowadays,
numerous IT leaders such as Yahoo, Facebook or LinkendIn use versions of MapReduce. MapReduce
is a general paradigm that aims at being able to treat extremely diverse requests, such as data mining
or recommendation algorithms.

In order to better understand this new paradigm, a light analysis of how MapReduce works is pre-
sented here. MapReduce is a programming paradigm developed for parallel, distributed computations
over very large amounts of data. The initial implementation of MapReduce is based on a master-slaves
architecture, where the master node is in charge of task scheduling, monitoring and resource manage-
ment and the slave nodes take care of starting and monitoring local mapper and reducer processes.
For a user to run a MapReduce job, at least three elements need to be supplied to the framework:
the input data to be treated, a Map function, and a Reduce function. To better understand how those
functions that gave to the framework its name treat the data, we use the well know example of word
count.

Data processing in done in �ve steps, see Figure 9.2 for an illustration.

(i) Split. The framework analyses the input data and convert it into <key,value> input pairs, that
are sent to the computing nodes. In our word count example, the keys are for instance the text
lines, and the values here do not really matter.

(ii) Map. In this step, an operation is done on the pairs, that are transformed into intermediate pairs.
This operation is called mapping function. In this example, the mapper separates each word of
the input key and associates the number 1.

(iii) Collect and Sort. Data are collected and sorted by key. Hadoop takes care that the pairs
corresponding to a same key are sent to the same reducer (see step (iv)), even if several different
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Figure 9.2 – MapReduce step-wise functional scheme. [60]

keys can be sent to a same reducer. For instance, all the pairs containing the same word are sent
to the same reducer, but a reducer can treat several words.

(iv) Reduce. The reducer executes the second function: transforming the intermediate pairs in the
output ones. For word count, the reduce function is to sum up the number of iteration of a word
and return pairs with unique key and the value corresponding to its occurrence count in the entire
text.

(v) Store. Output pairs are then wrote back in a �le.

The main criticism against MapReduce is regarding the restriction of problem that it can address
using its current formulation. For instance, treatments on image databases are not a suitable MapRe-
duce problem. Advances in performance and implementation ef�ciency have been done since the �rst
release of MapReduce, see Hadoop 2 (YARN) and Hadoop 3 for instance. Even if this work is devel-
oped and validated on Hadoop 1, the high level problem formulation enables to apply its principles
on versions 2 and 3.

To conclude, MapReduce/Hadoop is a computing framework that enable the processing of un-
structured data where the classic SQL-based approach have failed or shown too slow results. Its wide
adoption in the industrial world makes it a attractive use-case for this thesis.

9.3 Problem Statement

This section highlights the challenges that rises from the use of the MapReduce framework on public
clouds, see for instance Amazon EMR [15] or Azure HDInsight [133].

Public clouds are open to everyone: multiple clients can send requests at the same time, thus
generating a concurrency for the access to speci�c resources such as network, which in�uences the
service performance. A single client also launches multiple MapReduce jobs, that concurrently access
the cluster nodes. If multiple concurrent jobs are running, the amount of resources allocated for
each job is reduced and thus the job service time is low. However, the distribution of those jobs is
not necessary known in advance. For instance, for an e-commerce company running MapReduce
to perform sale recommendation based on client preferences, the workload is directly linked to the
website frequenting which varies in time. Moreover, the jobs are highly heterogeneous between the
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different clients, and can also be so between the pool of a client's jobs. The workload of the system
is independent of the cloud provider and can be really brisk [83], it can thus be considered as a
disturbance impacting the system performance.

For a client using MapReduce, it is essential to have guarantees in term of service performance,
dependability and costs. In the example of the recommendation task, the company needs to have the
list of recommended products in a few tenth of seconds, otherwise their webpage will take too much
time to be loaded. Poor jobs performance lead to end-user performance degradation and eventually
lost of loyalty, and thus need to be avoided [137]. From the cloud provider point of view, this service
time (the time it takes for a user request to be treated) is thus a performance metric that should be
included in its Service Level Agreements. Aside from the performance perspective, availability of the
services must be ensured, both for the MapReduce client that wants to ensure that most of its tasks are
executed (and thus most of its end-users bene�t from a service), and for the cloud provider, that needs
all its clients to be served. A last objective is the cost ef�ciency. From the provider point of view,
running a MapReduce service has a cost in terms of energy consumption but also hardware usage,
wear and maintenance, which results in �nancial costs. Regarding the MapReduce clients, the pay-
as-you-go pricing strategy of clouds also translates into resource minimization objectives. Obviously,
all those objectives of performance, availability and cost ef�ciency are contradictory: a trade-off that
satisfy both the cloud provider and the clients have to be achieved and ensured.

However, the guarantees formulated by the cloud providers in their SLAs are mainly focused on
availability and dependability of their resources, i.e. their hardware, rather on what is of interest for
their clients: the application-level availability and performance. Regarding the MapReduce frame-
work itself, it has been designed to maximize throughput, resource utilization and jobs performance,
while the clients are more interested in the workload level performance. Even if those objectives
are related, they are not directly equivalent for instance in case of job concurrency. Here again, the
objectives must be shifted from low level ones to service ones.

We now investigate the reasons that make this difference between resources/jobs quality and ser-
vice performance. First, a cloud is a highly dynamic environment, in which the hardware is constantly
changing, both at short term (connection/shutdown of new nodes, resources concurrency, network
bottlenecks [113], etc.) and longer term (addition of new types of resources for instance). All those
changes through time are hard to measure and sometimes come from unknown sources, due to the
complexity of nowadays cloud infrastructures. As cloud providers desire to maximize the utilization
of their clusters, they have mechanisms for the dynamic reallocation of unused resources in the clus-
ter, which further add to the variability of system performance. Hence, even with the same workload
and the same resource amount, an application performance may vary depending on how noisy neigh-
boring applications are. Moreover, cloud services are highly complex paradigms that run on top of
multiple software stacks and on heterogeneous nodes [19], making their behavior regarding resource
provisioning highly non linear. For a software engineer, these unknown variation are particularly
dif�cult to deal with. On top of the environment and workload dynamics, the MapReduce itself is
evolving through time. At a low scale, the realization of Map and Reduce functions are not all syn-
chronous, leading to slight variations of the large scale system behavior. The framework is also not
safe from software failures [159]. Moreover, as stated before, many new versions and updates of the
MapReduce Hadoop framework are released, changing every time a bit MapReduce performance.

A simple action that can be done to modify the services run time is to play with the number of re-
sources of the cloud allocated to the jobs. For the MapReduce use case, adding resources, commonly
known asnodes, to the cluster will increase the number of Map and Reduce functions processing the
input data leading to a reduction of the service time. And conversely if the number of resources goes
down. The cluster size consists then in a control knob that can in�uence both the service performance
and indeed the costs. Another impacting factor is the admission control, i.e. the monitoring of the
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percentage of accepted jobs/clients. This variable impacts service availability �rst, but also perfor-
mance (the less clients are accepted, the more resources are dedicated for the selected ones) and costs
(less clients bene�t from the service). Cluster size and admission control can thus be used as control
knobs to monitor service performance, availability and cost.

To sum-up, MapReduce cloud services performance, availability and cost-ef�ciency needs to be
ensured despite the dynamical workloads and the environment unpredictabilities. Those objectives
could be tackled with proper resource provisioning and admission control.

9.4 Related Works

Many works have been done on the resource management, the monitoring of cloud platforms perfor-
mance and on supervision of MapReduce framework. We focus in this section on giving an overview
of the various techniques found in the literature, while next section details the control theory based
approaches.

9.4.1 Cloud Performance Monitoring

Most of the works that aim at ensuring high performance in a cloud environment focus on the resource
provisioning challenge. As their objective is similar, we categorize them by the technique they used.

The vast majority of the state of the art uses observation based rules. These are also the works
that are the most implemented in large scale industrial solutions. Amazon Auto Scaling [13] is one
of such examples where a load metric, such as CPU utilization, is monitored and used to scale up or
down the cluster. However, there are still parameters to tune, for instance regarding thresholds, that
requires the user to be well aware of its service behavior. More advanced rules-based techniques that
use for instance fuzzy logic systems have also been developed [95, 94].

Queuing theory is also a famous technique for cloud control [7, 8]. AutoScale [76] is a solution
that use queuing theory analytic models to decide capacity requirements by reacting to unpredicted
changes in request rate, request size and/or server ef�ciency. Queuing theory has also been coupled
with control theory, in the form of a integral discrete controller with anti-windup action, to realize
load balancing and service time control, using a graceful service degradation when needed [143].

A different approach consists of using predictive techniques to estimate the future load of a service
and provision accordingly, for instance using wavelets [141] or �uid modeling [124, 169].

Indeed, machine learning techniques can also be found, see for instance by Matsunaga et al. [129]
to predict the time and resources consumed by applications, or by Gong et al. [85] that realize on-line
resource demands predictions.

9.4.2 MapReduce Performance Monitoring

We focus now on the works that control MapReduce runtime performance using resource allocation
and admission control.

Verma et al. presented ARIA [172], standing for automatic resource inference and allocation. It
is an online mechanism that acts at the job level, and which is driven by runtime objectives for the
jobs. Ferguson et al. have developed Jockey [70], a framework that realizes resource provisioning in
order to ensure job performance objectives. It also aims at minimizing runtime costs and reducing
the concurrency between the jobs. DREAMS [118] is a framework that deals with the uneven map
tasks distribution among reduce tasks as it causes overhead of data repartitioning. This objective is
achieved by adjusting task run-time resource allocation. MRCP-RM [114], standing for MapReduce
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Constraint Programming based Resource Management is a resource allocator and scheduler. It con-
siders that MapReduce jobs arrives online and with each a SLA consisting in time deadlines. It sees
the system as an optimization problem and uses a constraint programming formulation. One can also
mention the work of Zacheilas et al. [186] in which the trade-off between performance and budget
is explored using a Pareto-search algorithm for scheduling and MapReduce con�guration parameters
optimization. CSAM-IISG [181] is one of the latest works on MapReduce resource allocation chal-
lenge. It novelty lies in its imperfect information Stackelberg Game formulation using hidden Markov
models. It works online and enables to deal with multi-service providers and various resources types.
Eventually, one can also refer to Cano's works on joint resource allocation for combines web ser-
vices and MapReduce jobs [35], for instance in the case of a e-commerce website realizing business
intelligence. The objectives are formulated as upper-bounds on the average response times of jobs
and services. It considers a �xed-size private cloud cluster and thus plays with admission control and
resource management. Their solution uses a non linear mathematical programming model and they
�nd a greedy solution. Note that their framework can deal with heterogeneous workloads.

Most of the presented works realizes resource allocation or optimization at a low level, i.e. with
objectives on the jobs or tasks, while our objective is to cover the higher level perspective: the whole
jobs workload. This difference in the objective scale makes most of those approaches compatible with
ours. Moreover, the state of the art solution are often intrusive, whereas our control theory approach
aims at tuning high level parameters with an overall outside controller.

9.4.3 Benchmarking and Platforms

Technical and practical issues are detailed in this section, regarding �rst the MapReduce benchmark
and workloads used, and then the cloud platform hosting it.

We selected the MapReduce Benchmark Suite (MRBS) [159] as our BigData processing frame-
work. MRBS is a performance and dependability benchmark suite for MapReduce systems. It has
the speci�city of being able to emulate several types of workloads and inject different fault types into
a MapReduce system. The workloads emulated by MRBS are selected to represent a large range of
loads, from the compute-intensive to the data-intensive (e.g. business intelligence - BI) workload.
One of the strong suits of MRBS is to emulate client interactions, which may consist of one or more
MapReduce jobs run at the same time. We selected a data intensive BI workload, which consists of a
decision support system for a wholesale supplier. Each client interaction emulates a typical business
oriented query run over a large amount of data (10GB here).

Other popular MapReduce benchmarks are MRBench [101], MRPerf [176] or PUMA [4]. MR-
Bench processes large volumes of relational data and executes highly complex queries. It addresses
the speci�c issues of business oriented queries and concurrent data modi�cations. It has been made to
help tune MapReduce parameters, such as data size and the number of (Map/Reduce) tasks. MRPerf
is a design tool for MapReduce infrastructures. It is however not a properly speaking a benchmark
but rather a simulator that reduced the number of parameters to simplify the con�guration. PUMA is
a MapReduce benchmark suite able to run a large range of applications with various characteristics,
such as high/low computation and high/low shuf�e volumes. Compared to its competitors, MRBS
has the advantage of simulating workloads with multiple clients, with realistic client interaction. It is
the reason why we opt for the MRBS benchmark.

Regarding the cloud platform, we used Grid5000 [36], a French nation-wide cluster infrastructure
made up of 5000 CPUs. Grid5000 is a large-scale and versatile testbed for experiment-driven research
in all areas of computer science, with a focus on parallel and distributed computing. It has the ad-
vantage of being highly recon�gurable and controllable, with extensive monitoring and measurement
capacities. Compared to its commercial competitor such as Amazon Web Services [14] or Microsoft
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Azure [132], it has the advantage of being free and open access for researcher. It is also a mastered
platform which enables reproducible research, while the industrial versions are constantly evolving,
making them more suitable for evaluation purposes than for the research work itself.

The combination of the MRBS benchmark and Grid5000 platform have already been used in the
BigData cloud control context. Berekméri [25] developed a tool to launch and monitor MapReduce
jobs on Grid5000, combined with a Matlab interface that enables to design and implement monitoring
algorithms, i.e. controllers. This experimental setup is used for the evaluation of the control strategies
presented in this thesis.

9.5 Background on Control Theory applied to MapReduce
The control problem formulation for BigData Cloud Control has been �rst introduced by Berekemeri
and al. in 2014 [24] and further extended in the following years [26, 25]. This section is a detailed
review of those works, on which this thesis contributions are based. In a �rst time, the signals used as
performance indicators and control knobs are de�ned. Second, dynamical models of their impact on
each other are introduced. Those models lead to the development of controllers, which are presented
in two categories: the feedback and feedforward based runtime monitoring, and the multi-dimensions
optimal control of runtime and availability.

9.5.1 Input and output signals

The output metrics of interest for our control problem are:
Service Time. NotedyST, it is the average run time of jobs that �nished in the previous time

window. The lower the service time is, the faster the clients requests are completed. Depending on
the MapReduce tasks, it can go from few seconds to several minutes or even hours. The size of the
size window is 15 min, as �xed in [25] for the BI applications.

Availability. It is the ratio of accepted MapReduce jobs over all received jobs, during the last
time window, refereed to with the notationyAV. Availability is thus between 0 and 1, this later value
meaning a 100% availability of the service, the best value achievable.

The input signals - control knobs that can be varied or external disturbances the service undergo -
impacting those performance metrics are:

Cluster Size.One simple action that can be done to control the on-line service time is to modify
the number of resources of the cloud allocated to the jobs. For the MapReduce use case, adding
resources, commonly known as nodes, to the cluster will increase the number of Map and Reduce
functions processing the input data leading to a reduction of the service time. If the number of
resources (nodes) diminishes, the results are converse. The cluster size is then one of our control
signaluN.

Workload. In the case of public clouds, multiple clients send requests at the same time thus
generating a varying input workload which in�uences the service performance. If multiple concurrent
jobs are running, the amount of resources allocated for each job is reduced and thus the job service
time increases. As the workload of the system is independent of the cloud provider we will consider
it as a disturbancedC.

Admission Control. Client requests can be rejected, when the available resources are considered
too few to satisfy all the incoming workload for instance. Admission control is thus another input
variable for our control, it is the number of accepted clientsuAC. Note that there is no more accepted
clients that the demand:uAC � dC.

Those input variables are linearized around a working point of 10 clients and 20 nodes [24].
Hence, the signals only express variations.
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9.5.2 Modeling

The modeling of the service time and availability are presented independently and afterwards gathered
into a MIMO formulation. We proceed like this as some of the controllers will only take into account
service time monitoring, and thus only SISO modeling.

9.5.2.1 Service Time Model

A dynamic model that predicts MapReduce cluster performance (i.e. the average service time of
the last �nished jobs) with respect to the number of nodes of the cluster and the number of clients
sending requests was proposed and experimentally validated by Berekméri et al. [24]. Its schematic
representation is given in Figure 9.3.

Figure 9.3 – MapReduce Service Time model.

The system is considered linear in its operating region. The models were �rst identi�ed as con-
tinuous transfer functions and then discretized using the sampling periodTs = 30 sec. The resulting
equation is2:

yST(t) = YC(q� 1)uAC(t) + YN(q� 1)uN(t): (9.1)

YC(q� 1) is the direct path transfer function, the link between the number of clients and the service
time performance metric, andYN(q� 1) represents the compensatory path that enables to modify the
cluster size to control the service time. Both models were identi�ed as �rst-order transfer function
with delays, as described in eq. (9.2):

YC(q� 1) =
bCq� 1

1+ aCq� 1q� rC; YN(q� 1) =
bNq� 1

1+ aNq� 1q� rN ; (9.2)

with bC = 1:0716,aC = � 0:7915,rC = 8, bN = � 0:17951,aN = � 0:919 andrN = 5.
Note that when there is no admission control,uAC = dC in eq. (9.1), as illustrated in Fig. 9.3.

9.5.2.2 Availability Model

Availability is impacted by the number of clients rejected by the MapReduce framework. It is thus a
combination of the workload, i.e. number of demandsdC, and the upper acceptance thresholduAC.

yAV(t) = YAC(q� 1)[dC(t) � uAC(t)] =
bACq� 1

1+ aACq� 1 [dC(t) � uAC(t)]: (9.3)

Parameters of the availability model arebAC = 0:1548,aAC = � 0:946 [25].
2The complex variablez� 1 will be used to characterize the system's behavior in the frequency domain and the delay

operatorq� 1 will be used for the time domain analysis.
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9.5.2.3 MIMO Model

The multi signal representation of MapReduce modeling combining the previous models is repre-
sented in Figure 9.4. A MIMO linear discrete model can be expressed in the following formulation:

�
xk+ 1 = Axk + Buk
yk = Cxk;

(9.4)

with yk the output vector at thekth sampling time:y = ( yST;yAV)T ; uk the vector of inputs (both
controllable and uncontrollable)u = ( uN;dC;uAC)T andxk the states vector. Starting from the SISO
formulations of eqs. (9.1) and (9.3), there exist automated tools to derive the non unique MIMO
formulation of eq. (9.4). Using Matlabtf2ssfunction, the number of states is 4. Those states have no
concrete physical explanation, we thus do not detail them here.

Figure 9.4 – MapReduce Service Time and Availability model.

Some work has also be done on the adaptation of those models online, both for the service time
modeling [39] and on the MIMO model [40]. Those works use a Recursive Least Square Estimator to
update the models parameters at each execution time, depending on an estimated gain and a covariance
matrix. The adaptation of those models are used to cope with the non-linearities of the system while
keeping a linear model. However, those models have shown limited results when coupled with a
control strategy, as the estimation optimization in those works is toward the model accuracy, not the
control performance, contrary to the work presented in Chapter 10.

9.5.3 Control

Several control laws have been developed: a feedback and feedforward controller for the service time
monitoring [26], and a Model Predictive Controller for the joint service time and availability control
[25, ?].

The service time controller time-domain equation is given in eq. (9.5):

uN(t) = PI(q� 1)[yST;re f (t) � yST(t)] + FF(q� 1)dC(t); (9.5)

with yST;re f (t) the reference value for the service time. The PI equation is classicallyPI(s) =
KI

s
+ KP,

with s the Laplace variable and the valuesKI = 0:25584 andKP = 0:0012372. The feedforward
control is in fact a static one, i.e. only a gainFF(s) = 5:96958 [26].
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A event-based version of this feedback and feedforward control has also been developed [26], that
triggers the control signal update based on the service time error rather that in a regular time-based
fashion.

The multi objectives control law, calledMR-Ctrl, is a model predictive controller that uses the
following cost function:

J = min
Uk

(Yk � Yre f )TQ(Yk � Yre f ) + UT
k RUk; (9.6)

whereUk = ( uk;uk+ 1; : : : ;uk+ N)T , Yk = ( yk;yk+ 1; : : : ;yk+ N)T andYre f = ( yre f ; : : : ;yre f ) are the se-
lected/predicted values of the signals on the optimization horizon ofN samples.yre f is the vector
of reference values for the system outputs, �xed here:yre f = ( yST;re f ;yAV;re f )T . This control law is
submitted to the following constraints:

8k;0 < uAC(k) � dC(k) anduN(k) � umax
N : (9.7)

Integral action and compensation for actuation delay are also added to cope with modeling errors
and control oscillatory behavior. States are estimated using the Luenberger observer [25].

9.5.4 Limitations

The two main limitations of the previously presented control of MapReduce are regarding robustness
and cost-ef�ciency, as illustrated in due time in Section 10.1 and Section 11.1.

An analysis of the cloud system behavior detailed in Section 9.3 intuitively shows that the systems
is non linear and time variant, thus the previous linear model is not accurate for a wide range of input
or disturbance values, so neither is the control law. Therefore, Chapter 10 develops an adaptive
technique to cope with system and environment uncertainties.

Moreover, theMR-Ctrl controller do not take into account the speci�cities of the cloud-based
system regarding costs. For instance, resources in a cloud are rented and priced based on the time
they where used, but with a minimal threshold that usually correspond the time needed to start or
initialized them. To tackle this cost formulation, a new event-based optimal control law is presented
in Chapter 11.



Chapter 10

Adaptive Control for Robust Cloud Services

This chapter presents a control theoretical approach aiming at controlling cloud services performance
in terms of average run time, using the on-demand assigning of a varying number of shared hard-
ware resources to the applications, called elastic resource provisioning. The selected use-case cloud
application is the MapReduce framework. Given the system non-linearities and uncertainties high-
lighted in Chapter 9 and illustrated in Section 10.1, an adaptive feedforward controller is developed
and combined with a feedback action (see Section 10.2 for the control development). The controller
adaptation is based on the on-line estimation of the models parameters, derived from the observation
of the system output. A stability analysis of the adaptive controller is provided. Simulations and
experimentations on a real MapReduce benchmark running on a nation wide cloud infrastructure il-
lustrate the performance of the system under various workload conditions (Section 10.3). Moreover,
the use of adaptation signi�cantly improves control ef�ciency and robustness with respect to varia-
tions in both the static and dynamic behaviors of the plant. Conclusions and perspectives of this work
end this chapter (Section 10.4).

10.1 Introduction

10.1.1 Context and Approach

Current autonomic resource provisioning approaches that are deployed in public clouds don't work
well for real time applications. The dif�culty of the task partially comes from the fact that the optimal
con�guration can vary due to workloads �uctuations over time [20]. Indeed, some applications such
as business intelligence processing do not have a constant number of tasks to treat.

The cloud service behavior itself varies over time due to the dynamic of its environment (hard-
ware, network, etc. [103]). Cloud providers use mechanisms to reallocate the available resources to
other applications (other clients or internal processing), in order to maximize the usage of the cluster's
resources. On top of disturbing the physically close resources and applications (due to network bottle-
neck for instance), it also creates a variability for the applications running in those reused resources.
Hence, even with the same workload and the same resource amount, an application performance may
vary depending on how noisy and �uctuating neighboring applications are. Moreover, cloud services
are highly complex paradigms that run on top of multiple software stacks, making their behavior
regarding to resource provisioning highly non linear.

Therefore, there is a need for fully automatized and robust cluster scaling algorithms able to deal
with those workload disturbances and system variability. The challenge looking into this issue of
resource provisioning from a robustness point of view, for instance through control adaptation able to
take into account system con�guration and environment variations, is new in the state of the art.

117
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In this chapter, we aim at providing a solution able to be ef�cient no matter the workload and
framework state. The approach developed in this paper is control theory-based. The controller is
composed of a reactive part (a feedback PI controller) that ensures steady state system convergence;
and a predictive feedforward controller to ensure disturbance rejection. Our control is made robust
with the addition of an adaptation algorithm that estimate the feedforward gain through time based on
the system output observation.

10.1.2 Illustrated Motivation

This section aims at illustrating two points: �rst that the state of the art dynamical modeling of
MapReduce fails to capture the system behavior, especially when the system goes beyond its linearity
range; and second that the current controllers have limitations when tested in practice.

Figure 10.1 (taken from Berekméri's thesis [25]) is the comparison of the measured MapReduce
service timeyST compared to the prediction computed with eq. (9.1). The left plots (A) illustrate
the impact of workload variation on the service time with �xed cluster size. Note that the maximum
number of accepted clients is �xed to 5, the workload has an impact on the performance only in the
�rst half of the plot. The �tting of the model predictions with the measures in this case is good. The
right plots (B), the size of the cluster is periodically varied, with always the same period of 30 min.
The model �ts the measured with low accuracy, both in static value (from 150 min to 180 min for
instance) and in dynamics (see at 90 min). Major differences are seen when the cluster size is far from
its nominal value of 20 nodes (� 10 nodes).

A. workload variation (uN = 20,uAC = 5) B. cluster size variation (uAC = 5, dC = 10)

Figure 10.1 – MapReduce State of the Art Modeling. [25]
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State of the art control performance are evaluated in Figure 10.2. More details about implemen-
tation are available in Section 10.3.1, we anticipate here to give more insights of motivation for the
reader. The controller consists in a static feedforward with PI feedback action [25]. Disturbance
scenario here varies reasonably around its linearization point of 10 clients (we setdC = uAC). The
controler ability to follow its reference is not always ensured. The controller starts by diverging (min
10 to 20) but then the initial client step up is well compensated. However, the following decrease of
the workload makes the controller diverge. This behavior is only mastered after a new change in the
workload helps bringing the system in a stable situation. However, the following decrease in client
number makes again the controller barely stable, i.e. the service time highly oscillates. The poor per-
formance can be explained by a workload scenario that is too far from the linearization hypothesis.
Indeed, the controller was not developed to cope with� 50% of its nominal workload.

The non-trustworthy node model parameters as well as the poor performance of the classical
controller, with more sophisticated disturbance scenarios than a step change, motivate the need for a
robust adaptive control.

Figure 10.2 – MapReduce State of the Art Feedback and Feedforward Control experimental perfor-
mance for a comprehensive client disturbance scenario.
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10.2 Control Strategy

The control presented in this chapter consists of a PI controller, for asymptotic zero reference tracking
error, and a feedforward loop, for dynamic disturbance compensation. A real time adaptation of the
feedforward compensator is added to the state-of-the-art controller, in order to take into account the
unknown and time-varying system's parameters. The parameter adaptation algorithm is based on the
measures of the system outputs in reaction to client disturbances [111, 109]. The control scheme is
given in Figure 10.3, with the previously seen MapReduce performance model in the light blue dotted
box and the adaptation algorithm in purple.

Figure 10.3 – MapReduce adaptive control schema.

10.2.1 Preliminary Formulation

Under the classical feedback-feedforward control loop (in black on Figure 10.3, without the PAA
adaptation path in purple) and using the eq. (9.2), the optimal value of the 0-order feedforward
controller is given by:

u�
N; f f (t) = �

bC(1+ aN)
bN(1+ aC)

:dC(t) , g� dC(t): (10.1)

For the initial development of the adaptation algorithm, we will make the following hypotheses:

(H1) the effect of the PI controller can be neglected in front of the feedforward one,

(H2) equal dynamics (aC = aN),

(H3) equal and known delays (rC = rN).

Then the algorithm will be extended for the cases where hypothesis H1, H2 and H3 do not hold.
Let us de�ne the adaptive feedforward control algorithm as:

uN; f f (t) = ĝ(t)dC(t) (10.2)

whereĝ is given by

ĝ(t + 1) = ĝ(t) + a x(t + 1)eST(t + 1)

= ĝ(t) +
a x(t + 1)

1+ a x2(t + 1)
e0

ST(t + 1) with a > 0:
(10.3)
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The �ltered disturbancex is de�ned by:

x(t) , sgn(bN)F(q� 1)dC(t) =
sgn(bN)q� (rN+ 1)

1+ âNq� 1 dC(t); (10.4)

where thea priori adaptation errore0
ST(t + 1) is the value of the regulation error at timet + 1 and

is based on the estimation of ˆg(t): e0
ST(t + 1) = e0

ST(t + 1=ĝ(t)) . The a priori error e0
ST(t + 1) is

considered as a performance metric for our system. One can also de�ne thea posteriorierroreST(t +
1) = e0

ST(t + 1=ĝ(t + 1)) which, based on eq. (10.3), gives:

eST(t + 1) =
1

1+ a x2(t + 1)
e0

ST(t + 1): (10.5)

Theorem 1 For the scheme represented in Figure 10.3, under the hypothesis H1, H2 and H3, using
the adaptive feedforward control given by eq.(10.2)to (10.4), one has:

limt! ¥ eST(t + 1) = limt! ¥ e0
ST(t + 1) = 0 (10.6)

for any initial conditions provided that:

H0(z� 1) =
1+ âNz� 1

1+ aNz� 1 (10.7)

is a strictly positive real transfer function.

Note that this later condition is always satis�ed provided thatjaNj < 1 (stability condition for the
model) and ˆaN � 0.

Proof: Under the hypothesis H1, H2 and H3, the expression of the erroreST for a �xed valueĝ is
(see Figure 10.3):

eST(t + 1) = e0
ST(t + 1) =

bNq� (rN+ 1)

1+ aNq� 1 (g� � ĝ)dC(t + 1) (10.8)

FilteringdC(t) by the �lter F given in eq. (10.4) allows to rewrite eq. (10.8) as:

eST(t + 1) = jbNj
1+ âNq� 1

1+ aNq� 1(g� � ĝ)x(t) (10.9)

When replacing ˆg with ĝ(t + 1) and neglecting the additional vanishing term resulting from the non
commutativity of time varying operators, one has:

eST(t + 1) = jbNj
1+ âNq� 1

1+ aNq� 1(g� � ĝ(t + 1))x(t) (10.10)

Eq. (10.10) has the standard form of ana posteriori adaptation error equationand one can use
straight-forwardly the results of [111], Chapter 3, Theorem (3.2). �

Note that the proof have shown the convergence of the adaptation error (i.e. the performance
variable). However, the convergence of ˆg ! g� is related to the richness of the disturbance signaldC.

10.2.2 Going beyond hypotheses

We know take one by one the assumptions taken during the initial formulation to overcome them; and
thus have an adaptation algorithm that works in the general case.
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10.2.2.1 When the effect of the PI controller cannot be neglected (H1)

The continuous time PI controller has the transfer function:

PI(s) =
KI

s
+ KP (10.11)

Using the difference approximation
1� q� 1

TS
(with TS being the sampling period) for differential op-

erator one gets:

PI(q� 1) =
KITS+ KP � KPq� 1

1� q� 1 =
r0 + r1q� 1

1� q� 1 =
BK(q� 1)
AK(q� 1)

(10.12)

Using the results of [109], Chapter 15, Section 15.17, eq. (15.86) for our particular scheme (with the
valuesAK = 1� q� 1; BK = r0+ r1q� 1; BN = bN q� (rN+ 1); AN = 1+ aN q� 1; S= 1; AM = 1; BM = 0),
one gets:

eST(t + 1) =
q� (rN+ 1) jbNj(1� q� 1)[g� � ĝ(t + 1)]dC(t)

(1+ aNq� 1)(1� q� 1) + bN(r0 + r1q� 1)q� (rN+ 1)
(10.13)

Using the parameter adaptation algorithm given in Section 10.2.1, the stability condition becomes
that the following transfer function

H00(z� 1) =
(1� z� 1)(1+ âNz� 1)

(1+ aNz� 1)(1� z� 1) + bN(r0 + r1z� 1)z� (rN+ 1)
(10.14)

should be a strictly positive real transfer function.
If this condition is not satis�ed, taking into account eq. (10.13), one can use instead the �lterF

given in eq. (10.4) to �lterFPI:

FPI(q� 1) =
sgn(bN)q� (rN+ 1)b̂N(1� q� 1)

(1+ âNq� 1)(1� q� 1) + b̂N(r0 + r1q� 1)q� (rN+ 1)
(10.15)

10.2.2.2 When clients and nodes impact on service time do not have the same dynamics:
aC 6= aN (H2)

Denoting the unmeasurable output of the disturbance propagation pathYC(q� 1) by z(t), eq. (10.13)
becomes in the presence of the PI controller:

eST(t + 1) = H00(q� 1) ([g� ĝ(t + 1)]dC(t) + [ aN � aC]z(t)) (10.16)

Since the adaptation does not affect directly the second term in the left hand side of eq. (10.16),
we have to analyze its in�uence. Asz(t) is the output of an asymptotically stable plant whose input
is bounded, it will also be bounded. Therefore the signald(t) = [ aN � aC]z(t) will be bounded.
Furthermore, due to the PI controller, the effect of this disturbance term will go to 0 asymptotically in
steady state for a constant value ofdC(t), since in eq. (10.13) the numerator of the transfer operator
contains(1� q� 1). This also holds if there is no PI since, for a constant disturbance, the adaptation
algorithm will interpret this term as an additional constant disturbance which will be canceled.

10.2.2.3 Transfer delays are different but known:rC 6= rN (H3)

Hypothesis H3 on delays can be relaxed torN � rG but both know. A delay corresponding of the
differencerC � rN is added to the feedforward-based control signal partuN; f f .
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10.3 Adaptive Controller Evaluation

This section presents the evaluation of the parameter adaptation algorithm. Both simulations using
Simulink and previously identi�ed models and experimentations of a real MapReduce system running
on a distributed platform are provided. The simulations enable to investigate stability of the proposed
approach, and to master the variation that we enforce on the plant. Experimentations being long
and heavy processes, they are only used to compare with the state of the art. Prior to those results,
the simulation and experimentation set-ups are presented, as well as the methodology and scenarios
considered for evaluation.

10.3.1 Evaluation Setup

The simulation of the adaptive controller is implemented on Matlab Simulink. We will consider that
H2 does not hold, that is to say that the two paths of our model do not have the same dynamics. H3
will always hold (only in simulation) while a PI is added (H1 removed). The need of the PI is however
investigated in Section 10.3.2.4.

The experiments were conducted on Grid'5000 [36], on a single cluster of 60 nodes. Each node
from the cluster used for the test has a quad-core Intel CPU of 2.53GHz, an internal RAM memory
of 15GB, 298GB disk space and in�nite band network. All the nodes in the cluster were on the same
switch to minimize network skews. The interaction between the cloud and the controller implemented
in Matlab (interfaces and communication protocols) have been reused from Berekméri's work [25].
The workload used for the experiments are Business Intelligence tasks, taken from MRBS benchmark
suite [158]. The MapReduce version is Hadoop (its most used open source implementation).

The adaptive feedforward is simulated with the learning parametera = 10� 4 and the initial condi-
tion ĝ(0) = 0 i.e. noa priori knowledge is considered. The PI is chosen with a really slow dynamics
in order to prevent over reaction, just as in [26].

The disturbance scenario, i.e. incoming workload, used both for simulations and experimentations
is given in Figure 10.4. After taking a constant value for stabilization of the system, the number of
clients sending requests to the cloud service varies with inconstant frequency and amplitude around
the nominal number of 10 clients. This scenario aims at soliciting the plant in a more comprehensive
way than a step signal, often used in the state of the art.

Figure 10.4 – Client disturbance Scenario
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10.3.2 Simulation Results

10.3.2.1 Stability

The stability of the adaptive control system without and with the PI controller is ensured with the �lter
F given in eq. (10.4) since the transfer functions given in eq. (10.7) and (10.14) are strictly positive
real as shown in the bode diagram of Figure 10.5. Indeed the phases always stay between� 90o and
+ 90o. When the node transfer function is mismodeled with a time constant two times slower or faster
(i.e. changing ˆaN), the stability is still ensured as illustrated with the non continuous lines. Moreover,
as the plant gain value do not affect the phase (as long as the sign stays the same which is ensured in
our use-case), the stability check still holds for all changes in the plant model.

Figure 10.5 – Bode diagram of the transfer functions given in eq. (10.7) and (10.14) a) without PI b)
with PI for âN = aN = � 0:92, âN = � 0:84 and ˆaN = � 0:96

10.3.2.2 Robustness to gain variation

In a �rst time, we test our adaptation control scheme in comparison with the non adaptive state of
the art, in a scenario where the node model gainbN was overestimated by a factor two during the
identi�cation process. Only the node model is varied, as the client model is fairly accurate (see
Figure 10.1 (A) and latter in Figure 10.9). Results are presented in Figure 10.6, with the performance
indicator on the top plot (eST = yST � yST;re f ) and the control signal (cluster size) in the bottom
plot. The referenceyST;re f is set to the stable value of the model at the set point ofuN = 20 nodes
anddC = uAC = 10 clients. The introduction of adaptation in the feedback and feedforward scenario
enables the signi�cant reduction of transient magnitudes and convergence times. The error variance is
reduced from 5:17 s to 0:78 s during the disturbance rejection phase (on the time horizon from 100 to
300 min). Moreover, the control signal presents a more attenuated pro�le, which is highly bene�cial
for our application for which renting extra node for a short period of time induces signi�cant costs.
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Figure 10.6 – Controllers performance comparison with overestimated model gain.

Figure 10.7 – Controller performance with characteristic time variation.
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10.3.2.3 Robustness to dynamics variation

Figure 10.7 illustrates the robustness of the adaptation algorithm (combined with a PI) with respect
to the value of ˆaN in the �lter F. This represents an identi�cation error regarding the dynamic of
the plant. The node model is considered with its usual gain and the �lter coef�cient is taken with its
nominal value ( ˆaN = � 0:92), with higher value ( ˆaN = � 0:84) and a lower value ( ˆaN = � 0:96). These
values re�ect a modi�cation of the estimated time constant by a factor 2.

After the control initialization, neither the magnitude of the transients nor the convergence time
change when the �lter pole varies. This allows to conclude that the performance of the adaptive
controller is robust with respect to changes in the node model dynamics (aN) or with respect to un-
certainties in its estimation.

10.3.2.4 On the value of the feedback action in the controller

The behavior of the static (non adaptive) feedforward controller on the nominal model, on the model
with a 50% different gain and eventually coupled with a PI controller are compared in Figure 10.8(a).
When simulating with the nominal model (dotted line), the performance tends to 0 in steady state even
if a transitory phase appears when a change in the disturbance occurs due to the difference of dynamics
in direct and compensatory paths (H2 not holding), and to the static feedforward compensation. The
modi�cation of the plant gain changes the behavior of the controlled system and adds a steady state
error (light blue line). Indeed, the feedforward gain calculated with eq. (10.1) is not correct anymore.
In order to deal with this steady state error, the PI is introduced, that drives back the performance
indicator to 0 in steady state (dark violet continuous line).

The evaluation of the PI with the adaptive feedforward is shown in Figure 10.8(b). Once again,
three scenarios are considered: nominal model, overestimated gain during identi�cation, both without
and with PI. When simulating with the nominal model, the adaptive feedforward control drives the
performance indicator to 0 but with a longer convergence time than in the static feedforward simula-
tion and with more oscillations. However, the adaptive control is able to maintain the steady state to
0 even for the case with modi�ed value ofbN. The addition of a PI controller considerably reduces
the convergence time and the magnitude of the transients.

(a) Static Feedforward (b) Adaptive Feedforward

Figure 10.8 – Controller performance for various plant gain scenarios, with and without PI
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10.3.3 Experimental Results

The experimentation evaluation compares the presented adaptive feedforward and feedback controller
(in Figure 10.10) to a system in open loop, i.e no control, (in Figure 10.9) and to the state of the art
non adaptive controller (see Figure 10.2).

In the open-loop experiment of Figure 10.9, the cluster size is �xed at its nominal value, i.e. 20
nodes, see bottom plot, and the workload varies with several steps up and down around its set point
value ofdC = uAC = 10 clients, as is shown in the top plot. The reference value for the service time is
chosen at the level at which it converges after the �rst minutes. This reference choice protocol is the
same for all the other experiments and enables to cope with the unmastered differences between the
various experiments (external load on the cluster, network usage, etc.).

We can recognize the �rst order dynamical behavior of the service time in response to the work-
load changes. As no adaptation of the cluster size is done, the reference is exceeded multiple times,
up to +56% overshoot. When the workload is low, the service time goes down to 30% lower than

Figure 10.9 – Experimental performance in Open Loop (no control).
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the desired value, which means that the resources are overused. The relative mean squared positive
error (computed only when the reference is exceeded) is of 17:4 s. This value will be compared to the
results of the various control strategies.

We now compare those results with the ones of the state of the art controller, see Figure 10.2. A
summary in given in Table 10.1. The controller shows very high overshoot (+146%) and unstable
oscillations in the end of the experiment. The relative mean squared positive error in this case is twice
bigger: 39:9 s. Moreover, quite some negative overshoot can be observed too (up to -38%); which
make this controller even worst than having no control, at least for this workload scenario.

Results of the addition of adaptation are plotted in Figure 10.10. Qualitatively, given the �at
pro�le of the service time, the controller performs better. The overshoot is at its maximum +32%
and at minimum -17%. Those values are not signi�cantly far from the ones of the other control laws,
partially due to the fact that the reference value for the service time here is lower that for the others.
However, the relative mean squared positive error of the time when the reference is overshooted is
of only 1:5 s, which is on order of magnitude smaller that the state of the art controller and the open

Figure 10.10 – Experimental performance with the adaptive feedforward and feedback controller.
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loop. Regarding the control signal, less oscillations can be seen compared to the static feedforward
controller. The cluster size is more wisely updated, which is more cost ef�cient.

In a second time, we evaluate our proposed controller on a comprehensive disturbance scenario,
similar to the one used for the simulation validation (see Figure 10.4). We aim at validating our
controller for workloads presenting large amplitude and frequency changes. Results are reported in
Figure 10.11. The controller manages to keep the service time at its required level. Two overshoots
can be seen when the workload is signi�cantly high, but their value is limited to +21.5%. The relative
mean squared positive error over the whole experiment is only of 3 s, slightly higher that with the
previous scenario but still an acceptable value compared to the value of the reference (around 160 s).
Eventually, the resources are sparsely used as the cluster size is kept below 20 nodes most of the time.
However, some really small oscillations (of one or two nodes) are present in the steady phases. This
behavior does not bring much to the performance while they are detrimental both from the economic
point of view and the perspective of the overload that is created by constantly switching on and off
some machines.

Figure 10.11 – Experimental performance of the adaptive controller for a comprehensive workload.
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10.4 Conclusion

This chapter presented an adaptive control strategy that ensures ef�cient monitoring for the perfor-
mance of Cloud Services in term of average service time of all jobs, by dynamically controlling its
resource cluster size. The control algorithm is based on a PI and feedforward with an adaptive es-
timation of the feedforward gain. Evaluation of the approach is provided both in simulations and
with experimentations. Simulations are based on a state of the art model of MapReduce, running
comprehensive workloads. Experimentations use MapReduce to realize benchmark workloads on a
nation-wide cluster. Results show the adaptive control stability and its ability to reduce by at least a
factor of 10 the error on the service time tracking compared to a PI and optimal feedforward. More-
over, the presented adaptive control has proved its robustness as it successfully manages to control
the cloud service even when the physical system is signi�cantly different from the considered model.

Future works will consist in extending the proposed adaptation algorithm to improve its conver-
gence behavior, as well as including more system speci�c constraints, such as control signal min-
imization. Other service metrics such as availability, dependability or costs which are crucial for
service providers and users should also be considered.

Controller
maximum
overshoot

maximum
negative

overshoot

relative mean
squared positive

error
Open Loop +56% -30% 17:4 s

State of the Art +146% -38% 39:9 s
Adaptive Approach +32% -17% 1.5 s

Table 10.1 – Experimental controllers performance comparison on the simple workload scenario. Best
results are in bold.



Chapter 11

Cost-aware Control of Cloud Services

BigData cloud services performance are evaluated by the jobs runtime, as presented so far, but also by
metrics such as the service availability and its cost ef�ciency. This chapter develops a control strategy
that enables to take those multiple objectives into account. The formulation is a Model Predictive
Control (MPC) with the addition of a event-based triggering mechanism (instead of a classical time-
based control signal generation). The triggering mechanisms of the control theory state of the art did
not correspond to the objectives of cost-ef�ciency speci�c to our cloud application. This made us
develop a new cost-function based triggering mechanism. The theoretical contribution of this chapter
however goes beyond the MapReduce use case, as it can be applied for all non linear discrete time
systems. Stability proof of the controller is provided, as well as simulation validation of the control
performance. We also evaluate the approach on the cloud use-case using simulations of a real world
workload, showing 8% cost saving (based on Amazon EC2 pricing) compared to the classic error-
based event triggered control.

After an introduction on motivation and related works (Section 11.1), the some background and
formalism is provided on the optimal control formulation, see Section 11.2. The new control strategy
is presented in Section 11.3 while Section 11.4 depicts its evaluation.

11.1 Introduction

When running requests on an online service, three major objectives can be formulated: maximization
of the performance in terms of run time, maximization of the service availability and reduction of
the costs. Those are the common criterias that make the clients choose one platforms rather than
another. While the previous chapter was focusing only on the �rst objective, we are now interested
in a complete framework able to satisfy performance, availability and cost requirements. Indeed,
they are contradictory objectives to achieve. For instance, if very few requests are accepted and
many resources are dedicated to the remaining tasks, the performance will be excellent but the other
objectives won't be satisfyingly reached. To be able to monitor the cloud service, two control knobs
are commonly available: resource cluster scaling and admission control. Indeed, too large clusters
have high monetary and energetic costs, while too small ones bring poor performance, often resulting
in �nancial and commercial penalties [67]. Those considerations lead to the use of a multi-input and
multi-output control problem formulation.

The cost ef�ciency objective can be directly linked to the cluster size, as more machines means
more power and network consumption. Any change in the number of resources implies a novel recon-
�guration of the system which takes considerable time and costs money due to system unavailability
and/or poor performance [119]. Moreover, quick changes in the control value (thus a high rate re-
con�guration of the cluster) can overload the communication channels and lead to an accumulation
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of delays, which in return increases the time needed for processing the requests [123]. Large de-
lays along with overloaded communication channels, besides being a security threat, can increase the
probability of hardware/software faults and lead to performance deterioration and skyrocket the �nan-
cial costs [67]. From the point of view of the low-scale user, the example of Amazon EC2 [16] public
cloud where one can rent resources for minimum ten minutes is a relevant example where scaling up
and down the cluster too often is detrimental.

Cloud services also face multiple disturbances of unusual natures. The workload, the amount of
requests that are received by a computing system, is an input signal that, usually, we cannot control.
For the considered application, workload variations can be categorized as:

� Small predictable variations. This disturbance can be statistically modeled using a long tailed
distribution, for example using a log-normal distribution [59]. The probability mass function
of the log-normal distribution islnN (m;s 2), with m its mean ands its standard deviation.
Figure 11.1 is an example of a big data workload over a day period. We can see for instance
from 5 to 7 h or 20 to 23 h that the distribution has a stable mean and low variance.

� Large instantaneous variations. In cloud services, large and unpredictable events also occur
quite often. An extreme example is the peak of connections to theMichael JacksonWikipedia
page just after his death (more than 1000 times more connections then usual and around 1
million views in 1 hour) [135]. This kind of sudden events changes the mean number of requests
and affect the variance, as can been seen at around 1, 9 or 12 h in Figure 11.1.

As we would like to minimize the total utilization cost, our objective in this chapter is twofold: (i)
as for computer systems a change in the number of resources automatically implies system recon�gu-
ration which increases the expenses, we want to reduce the amount of resources we use as well as the
number of cluster recon�gurations, that is to say the number of changes in the input signals but also
their absolute values; (ii) in the case of computing systems the environment changes very rapidly so
the system needs to react very fast to large disturbances but also be robust enough and not to react to
the small natural variations of it.

Figure 11.1 – On-line shopping website - MapReduce workload on a 2,000-node cluster [155]
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Related work regarding the control of cloud services has been presented in Chapter 9. We will
however mention here the work of Berekméri et al. on the control of MapReduce service time with
cost ef�ciency objectives [26]. The used controller was with feedback and feedforward action, both
coupled with an threshold-based triggering strategy to reduce the cluster size updates. However none
of the state of the art solutions are explicitly designed to reduce the cluster recon�guration rate in a
multi objectives context.

In this chapter, we present event-based control techniques to reduce the number of cluster recon-
�gurations. For the control community, the use of event mechanisms let hope for a reduction in the
use of resources [22, 64] without degrading performance [120] and with stability and robustness guar-
antees [127]. However, all the numerous event-based control strategies in the literature are focused
on stability and performance guarantees. Those researches are motivated by the communication or
computation reduction in networked controlled systems which are different objectives from reducing
the number of recon�gurations while guaranteeing an acceptable level of performance.

Event based control consist of switching the control from an traditional time-based periodic com-
putation to an event-based one. Today triggering strategies are based on level-crossing by the mea-
surement error (for instance when using PID controllers [21, 64]) or more generally by some Lya-
punov function (see for instance [171]) or on the vanishing of an event-function related to a Control
Lyapunov Function (see for instance [127]). Other event triggering mechanisms are linear functions
of the measurement error as in [78], [61]. In all cases, the decision of updating the control law or not
usually does not use a prediction of what will happen in the future. Those formulations arereactive, in
the sense that control is triggered only when the impact of disturbances has driven the system to cross
a critical threshold.Predictivemethods that consider explicitly the future evolution of the current
state are very encouraging but until now, few methods of this type have been developed. Eqtami et
al.'s work [66] is an example of this type where the prediction is based on thresholds crossing around
the desired states.

Deciding on the triggering based on threshold crossing might not be the best solution in all cases.
For example, an acceptable state at present time which leads to an undesirable behavior in the future
can be handled by the predictive controller straight away, thus improving performance. Conversely,
an undesired behavior in the present time but which leads to a stable situation in the future may not be
taken care of, to reduce events number and recon�gurations. Furthermore, when dealing with multi-
input and multi-output (MIMO) systems, the measurement errors alone are not suf�cient to decide
if the system is in a critical state and needs a control actuation. Indeed, the multiples signals impact
one another and a same value of the error for an output does not necessary re�ect a critical situation
for the system according to other signals values. For example, a CPU usage of 90% re�ect a normal
behavior if memory usage is high while it is alarming if memory usage is low.

In this chapter, we suggest an triggering mechanism based upon the optimal cost function for
Model Predictive Controllers (MPC) that addresses the issues presented above: the calculation of
the cost function which by de�nition deals with the different weights of the performance signals
and takes into account, the future behavior of the system on the prediction horizon using the model.
Furthermore, constraints on the command shape (for instance the command should be constant on
a time window) combined with an event mechanism ensure that changes in the command signal are
reduced while other speci�cations still hold.
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11.2 Preliminaries

Let us �rst de�ne the notation used and formalize the optimization problem. We consider a general
nonlinear discrete time system described by the equations

�
xk+ 1 = f (xk;uk)
yk = g(xk)

(11.1)

wherex 2 Rnx is the vector of describing the states,y 2 Rny is the measured outputs andu 2 Rnu

the control variables. We assume thatf (0;0) = 0 andg(0) = 0. Only stabilization at the origin is
considered here, as most problem formulations can be transformed to such stabilization points. The
subscriptk of a variable stands for its value at timekTS, TS being the sampling period. We de�ne a
time horizon ofN 2 N instants,N > 0. TheN notation in this Chapter is not referring to the cluster
size variable as in Chapters 9 and 10. In this section, we assume the system has no delay neither con-
straint on the control or state values. Extending the proposed results to delayed or constrained systems
can however be done as classically in model predictive control. The MapReduce application typically
has delays, saturation constraints on the control and positivity constraints on the states values. The
applicability of this technique will be validated on such complex system, but theory is provided only
for the system under the hypothesis of no delay nor constraint.

Let U 2 Rnu� N be a control pro�le over the horizonN de�ned by:

U :=
�
u0 u1 � � � uN� 1

�
(11.2)

For any initial conditionxi , and any control pro�leU 2 Rnu� N, we de�ne the corresponding state
trajectoryX 2 Rnx� (N+ 1) by:

X(xi ;U) :=
�
x0 x1 � � � xN

�
(11.3)

with
�

x0 := xi
xk+ 1 = f (xk;uk) 8k 2 f 0; : : : ;N � 1g;

(11.4)

and we associate to this state trajectory, the output trajectoryY 2 Rny� (N+ 1) de�ned by Y(X) :=�
y0 y1 : : : yN

�
with 8k 2 f 0; : : : ;Ng, yk = g(xk). Note that in the above de�nitions, the trajectories

are de�ned on the time horizon only. LetJ : Rnx � Rnu� N ! R+ be some cost function depending on
an initial conditionxi and a control pro�leU. A very common de�nition of the cost function for a
stabilization objective is the quadratic cost of the form:

J(xi ;U) =
N

å
k= 1

XjTk+ 1(xi ;U)QxXjk+ 1(xi ;U)+ UjTk RUjk; (11.5)

whereXjk(xi ;U) (resp.Ujk) denotes thekth column ofX(xi ;U) (resp.U), T is the transpose operator.
Qx andR are positive, de�nite matrices of appropriate sizes. Note the shift in the indexes:Ujk = uk� 1
andXjk = xk� 1. For a reference tracking objective, the cost function could be:

J(xi ;U) =
N

å
k= 1

ỸjTk+ 1QYỸjk+ 1 + UjTk RUjk; (11.6)

with QY andR positive, de�nite matrices of appropriate sizes,Ỹjk := Yjk(X(xi ;U)) � Yre f jk where
Yre f 2 Rny� (N+ 1) is the reference trajectory on the time horizonN. Finally, let us de�ne the setU of
controls as:

U (xi) :=
�
U 2 Rnu� N s.t. XjN+ 1(xi ;U) = 0

	
: (11.7)

U is the set of control pro�les that satisfy a terminal constraint at the end of the horizon on the state
variable. The �nal constraint is very common for stability purposes [130].
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Assumption 1 We assume that for all x2 Rnx, U (x) is not an empty set.

Under Assumption 1, the model predictive optimal control problem is formulated as follows:

Û : Rnx ! Rnu� N

x 7! ArgminU2U (x) J(x;U);
(11.8)

and the control law for system (11.1) expressed in a state feedback form is classically:

u(xk) := Ûj1(xk): (11.9)

Stability of the control law (11.8) has been studied in the literature [6]. If one de�nes the following
operatorP : Rnu� N ! Rnu� N that associates toU given by (11.2) the control pro�leP(U) de�ned by

P(U) :=
�
u1 u2 : : : uN� 1 0nu� 1;

�
(11.10)

the stability relies on the fact that at time(k+ 1)TS, thetranslationof one time step of the solution
control pro�le Û(xk) at timekTS, namelyP(Û(xk)) , belongs to the set of admissible controlU (xk+ 1).
This sort of invariance property guarantees that the cost associated to the control at time(k+ 1)TS is
necessarily strictly smaller than the one at timekTS and therefore the stability is guaranteed as soon
as the optimal cost function̂J(x) := J(x;Û(x)) is a Lyapunov function for system (11.1).

In our particular case, changing the control value too often may be �nancially expensive and need
to be avoided. For this, we propose to remove some degrees of freedom by adding linear constraints
on the control variable. Therefore, we extend the setU as follows:

V (xi) :=
�
U 2 Rnu� N s.t. XjN+ 1(xi ;U) = 0 andAU = B

	
; (11.11)

with A andB matrices of appropriate sizes. We assume that it is not empty:

Assumption 2 We assume that for all x2 Rnx, V (x) is not an empty set.

In order to keep the invariance property on which the stability relies, we de�ne for the �rst iteration

L̂ 0 : Rnx ! Rnu� N

x 7! ArgminV2V (x) J(x;V);
(11.12)

and for the following ones

L̂ : Rnx � Rnu� N ! Rnu� N

(x;U) 7! ArgminV2V (x)[ f P(U)g J(x;V):
(11.13)

The control pro�le for system (11.1) is then dynamically de�ned for anyxk at timekT by:

V̂k := L̂ (xk;V̂k� 1); (11.14)

whereV̂k� 1 is the control pro�le at time(k � 1)T. To initialize the process, we take atk = 0, V̂0 :=
L̂ 0(x0). The control law for system (1) expressed in a state feedback form is then:

uk := V̂kj1: (11.15)

The correspondingoptimalcost is thenĴk := J(xk;V̂k).

Theorem 2 Under Assumption 2, and if J is a Lyapunov function, the control law de�ned by (11.15)
asymptotically stabilizes system (11.1).

The proof is trivial since by construction the cost function is strictly decreasing. In particular, if
one takes a cost function of the form (11.5), one can prove that:

Ĵk+ 1 � Ĵk � J(xk+ 1;P(V̂k)) � Ĵk = � xT
k+ 1Qxxk+ 1 � uT

k Ruk: (11.16)
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11.3 Control Strategy

This section presents a triggering algorithm for MPC control laws (11.9) and (11.15) de�ned in the
previous section. This strategy will decide when the control pro�le needs to be recalculated. For sake
of simplicity, we assume in the following that the cost functionJ is of the form of eq. (11.5).

11.3.1 The Lyapunov based triggering strategy

To any statexk of the system at timekTS and any control pro�leWk� 1 at time (k � 1)TS, we as-
sociate two corresponding costs, namelyĴk de�ned as previously byĴk := J(xk;L̂ 0(xk)) and J̃k :=
J(xk;P(Wk� 1)) . The �rst costĴk corresponds to the cost if one updates the control with itsoptimal
value whereas,̃Jk is the cost obtained keeping the previous control pro�le. Note that by construction,
one has the following inequality:̃Jk � Ĵk. We can now de�ne the event functione: Rnx � R+ ! f 0;1g
by:

ek =
�

1 if J̃k � Ĵk � eJĴk or if k = 0
0 otherwise.

(11.17)

The proposed MPC event-triggered control pro�leWk at timekTS is then:

Wk =
�

L̂ 0(xk) if ek = 1
P(Wk� 1) otherwise.

(11.18)

The control law to apply is as previously the �rst element of the control pro�le, that is:

wk = Wkj1: (11.19)

Note that ife= 0 the control pro�le of the last time period is applied and thenwk = Wkj1 = Wk� 1j2.
Hence, contrary to usual event-based control, the input control value is not kept constant in the pro-
posed scheme. The control pro�le is updated when the cost can be reduced by a factor of 1+ eJ with
respect to the cost when keeping the same control pro�le.

Choice of eJ The thresholdeJ from eq.(11.17) should be chosen carefully. If it is too small, the
controller will unnecessarily react to noise, model uncertainties or observer error (if one), while ifeJ
is too large we may not react fast enough to disturbances. The tuning ofeJ can be done in a training
phase using data from an open-loop experiment with disturbances.

Whatever the value ofeJ might be, the point is that the threshold is relative to the current value
of expected cost function. This means that we can detect disturbances that do not have a comparable
absolute cost.

11.3.2 Stability of the proposed scheme

The proposed scheme asymptotically stabilizes the system at the origin since it ensures the strict
decrease of the cost function until the origin is reached:

Theorem 3 Under Assumption 2, and if J is a Lyapunov function, the control law de�ned by (11.19)
asymptotically stabilizes system (11.1).
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Proof: Assume at timekTS, the control pro�le isWk with a costJ(xk;Wk) de�ned by (11.5). At time
(k+ 1)TS, the state value is given byxk+ 1 = f (xk;Wkj1). Assume �rst thatek+ 1 = 0, thenWk+ 1 =
P(Wk) and

J(xk+ 1;Wk+ 1) = J(xk+ 1;P(Wk)) (11.20)

= J(xk;Wk) � xT
k+ 1Qxxk+ 1 � Wkj

T
1
RWkj1: (11.21)

J is therefore strictly decreasing in this case. Assume now thatek+ 1 = 1, the control pro�le needs
therefore to be updated. In that case,Wk+ 1 = L̂ 0(xk+ 1) and therefore one has:

(1+ eJ)J(xk+ 1;Wk+ 1) � J(xk+ 1;P(Wk)) (11.22)

� J(xk;Wk) � xT
k+ 1Qxxk+ 1 � Wkj

T
1
RWkj1: (11.23)

In that case again,J is strictly decreasing as long asxk+ 1 6= 0 which ends the proof of stability of the
scheme. �

11.4 Evaluation

This section presents the evaluation of the cost-based event triggered MPC both as a new controller
in itself and for its application to MapReduce control. First, the simulation conditions and evaluation
protocol is given.

11.4.1 Experimental conditions and methodology

The controlled system is simulated using Matlab Simulink, using the models presented in Chapter 9,
Section 9.5. The MPC controller has the following constraints:

� the cost function is based on the output signals: availability is a more critical output than the
service time, both should be at their reference values at the end of the horizonN = 100TS, with
TS = 30s;

� the cluster size should be minimized;

� for the constrained scenario, the size of the cluster can only change at regular time intervals.
This value is tuned to be the indivisible minimum renting time of resources in a cloud [16],
10 min, that is to say only 5 times during the horizonN;

� the maximum number of accepted clients is free to vary as long as it does not overshoot the
number of clients: 0� uMC � dC and we consider a limited resources con�guration where the
maximum size if the cluster is 60 nodes.

The validation initial scenario is the following: the system is launched with 20 nodes, a maximum
number of accepted clients at 8 and a constant disturbance load of 9 clients. Once the stabilization is
reached (att = 0 min) we start the control with the strong constraint that the outputs of the system
should remain at theses steady state values. Neither the availability reference nor the service time one
are varied. Indeed, we consider that those thresholds are �xed by the cloud provider in its SLAs and
thus that it is not possible to update them online. The controller performance are then only evaluated
in a disturbance rejection scenario. Initially we consider a disturbance changing by steps and we make
sure that it varies slowly enough to let the system stabilize between changes. This simple simulation
aims at enabling a deep analysis of the controller performance, specially regarding the choice of the
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triggering function thresholdeJ. Eventually, the record of a 1-day workload from a real cluster (see
Figure 11.1) is used for validation of the controller in a genuine situation (Section 11.4.4).

In a �rst time, the performance of our new event triggered function is compared to the state of
the art time triggered controller and error-based event triggered control. Then, the addition of the
constraints on the cluster size control signal will be studied. Eventually, we simulate a 1-day usage of
our controller based on a real scenario and compute the costs saving induced by our approach.

11.4.2 Cost based event triggering mechanism validation

First we compare our method referred to ascost basedevent solution to anerror basedone and atime
basedcontroller. All the solutions are calculated without speci�c constraints on the input signals,
as described by eq. (11.9). For the error based triggering mechanism the event function is either
when the control law over the whole horizon has been applied or when one of the outputs crosses
a certain threshold. As for the choice of the thresholds, we �xedeJ = 0:5 based on training data to
ensure no false alarms (see more in Figure 11.4), then we chose the error-method thresholds so that
the event-based and the cost based solutions ensure the same performance.

Results are shown in Figure 11.2. For comparable performance in term of reference tracking
and inputs variations, we observe that the cost based controller generates only 6 events over a 150-
minute period, which represents 98.5% less events than the time triggered solution (300 events in
total), and 71.5% less than the error based controller (21 events). Moreover, due to the dynamic of the
system, once the error thresholds are crossed it takes some time to stabilize the outputs signal inside
the threshold-de�ned bounds which leads to several events generated by the error based method after
each disturbance occurs. However, the cost based method takes into account this dynamic through
states predictions thus removing these redundant events. Hence, with signi�cantly less computing
efforts our proposed event mechanism can guarantee comparable performance.

11.4.3 Input-constrained control

Second, we simulate the behavior of the cost-based constrained controller forced to have constant
values of the input signaluN on large time intervals (see eq. (11.15)), that we compare to its un-
constrained version (eq. (11.9)). Results are given in Figure 11.3: with comparable performance in
reference tracking for both outputs and the exact same number of events, the constrained controller
imposes 94.5% less changes in the cluster size.

Furthermore, nonlinear delays caused by communication channel congestion happening when
cluster recon�gurations are too frequents were not taken into account in our modeling. Consequently
we expect that in real on-line experiments with the real MapReduce system, the constrained cost-
based event method will also signi�cantly improve the performance in terms of availability and ser-
vice time.

Threshold choice

When looking at the event function (Figure 11.4), we see that the condition for triggering an event
gives no false alarm and reacts each time workload conditions change. Moreover, every event is
caused by a clearly marked threshold crossing, it is an indicator of the robustness of our method
regarding the value ofeJ.

Furthermore, we see in Figure 11.4 the importance of the threshold expressed as a percentage. Just
after an event, the costJ is way higher than just before as it takes time and resources for the system
to reach speci�cations again, however this high value ofJ does not necessary re�ect that another
disturbance happened.
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Figure 11.2 – Comparison of time-based, error-based and cost-based controller performance without
constraints on the number of allowed recon�gurations
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Figure 11.3 – Comparison of cost-based controller performance with and without constraints on the
control changing time
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Figure 11.4 – Cost-based event function

11.4.4 Evaluation using a real MapReduce workload

We validate our proposed solution using a real 1-day MapReduce workload trace that was recorded
on a 2,000-node cluster of Taobao [155] (see Figure 11.1), an e-commerce website. We scaled the
values to �t our 60-nodes cluster but we did not modify the shape of the workload. In Figure 11.5 we
compare the unconstrained cost-based controller to the constrained one. Results are similar to what
we got with a simple 2-step workload scenario (see Figure 11.3) except that we reach our saturation
levels on the cluster size on the upper bound as well as the lower bound. This leads to better per-
formance for both controllers from 16 h to the end of the day because the minimum resources that
we have available are enough to provide barely full availability and really fast service time. In this
scenario we observe many peaks in the cluster size signal for the unconstrained controllers, those are
useless brief cluster over-sizing that we have already noticed with the simpler workload.

Using Amazon EC2 pricing, the constrained cost based solution enables to realize major saving
as detailed in Table 11.1.All the controllers performance on a 1-day workload were not plotted for
readability but they are included in the prices comparison of Table 11.1. We took Amazon pricing as
a reference for cost calculations as it is the �rst cloud provider, with around 40% of the market share
while the three other big providers (see Chapter 9, Section 9.5). From Table 11.1, it is important to
note that costs were calculated using the scaled workload, with maximum cluster size of 60 nodes.
When considering the original Taobao workload, fees should be around thirty times higher, however
saving percentages should not change.
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Figure 11.5 – Evaluation of cost-based controllers on a real 1-day MapReduce workload scaled to our
cluster size.

Method fees
Extra costs compare to
constrained cost based

No control $1500 $941 62.7%
Time based (unconstrained) $591 $32 5.4%
Error based (unconstrained) $606 $47 7.8%
Cost based (unconstrained) $590 $31 5.3%
Constrained cost based $559 - -

Table 11.1 – Cost comparison of different solutions based on a 1-day real workload
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11.5 Conclusion

In this chapter we presented a new event mechanism for model predictive controllers which has two
aims: (i) to reduce the number of events without degrading performance and (ii) to reduce the changes
in the control inputs thus reacting to large disturbances and being robust to smaller ones.

The latter constraint is particularly relevant in the context of big-data cloud services where a high
frequency of cluster recon�guration has major �nancial and energetic costs and leads to performance
degradation. The event mechanism developed here is a function of the cost function de�ned in the
optimal problem, and not based on measurement error as has often be the case until now. This enables
taking into account predictions of the system trajectory over a time horizon. In order to handle the
reduction of input changes we add constraints to the MPC formulation, allowing changes only at
regular time intervals.

The controller also has the advantage of being able to follow objectives expressed with various
metrics: service time performance, service availability and costs. The multi-signal cloud control
consists in a valuable improvement for the ful�llment of cloud services SLAs.

Evaluation is carried out in simulation on a model which was previously validated on a real
MapReduce system. The simulations show that the constrained cost-based event triggered MPC
signi�cantly reduce the number of events as well as changes in the control law. We generate 86%
less events in comparison to an error based method and we obtain at least 8% cost savings when
simulating with a real 1-day workload (based on Amazon EC2 pricing).

The next steps of this work would be to validate the constrained cost-based event triggered MPC
approach through experiments using the latest MapReduce release on a public Cloud such as Amazon
EC2. We expect to have more promising results due to the reduction of cluster recon�gurations
which are even more costly on the real system due to congestion of communication channels leading
to performance degradation. However, the variability of the system highlighted in Chapter 10 might
lead us to add a robustness oriented aspect to our controller.





Chapter 12

Conclusions on MapReduce Control

This ending chapter of Part III highlights this thesis contributions with regards to the bigdata cloud
services monitoring domain, its limitations and its perspectives.

The growing development of computing devices as well as their capacities soar has generated
massive amounts of so called bigdata. They are a windfall for companies that are able to extract from
them many valuable informations. The advances in data processing has been fostered by the rise of
the cloud computing paradigm, in which resources are made available and maintained as a service for
clients that just want to run their processing without dealing with the hardware or low level software
stacks. MapReduce/Hadoop is one of the most famous paradigm for bigdata processing able to work
in such cloud infrastructure. As for any service, the guarantee of its performance is a key challenge
both for the cloud provider and the client running MapReduce jobs. The execution time of the clients'
requests as well as the service availability are two of the prevalent indicators of the service quality. In
order to guarantee them, the cloud provider can realize elastic resource provisioning and admission
control.

The works presented in this thesis use control theory to approach this performance monitoring
challenge. Starting from the state of the art, we presented two main contributions. First, the problem
is addressed from the robustness perspective. Given the limits of the state of the art to capture the non
linear behavior of the MapReduce framework and to ensure performance in case of highly dynamic
workload, an adaptive controller has been developed. It consists in a PI feedback control with gain
feedforward action, which parameter is adapted on line based on the system observed behavior. This
approach has been validated both in simulation and by using a MapReduce benchmark on a real clus-
ter. However, the monitoring of jobs execution time only do not enable to apprehend the complexity
of the agreements between a cloud provider and his clients. The second contribution of this part real-
izes the joint optimal control of jobs service time and service availability. An emphasis is done on the
cost ef�ciency, which leads to the development of a new event-based triggering mechanism for the
Model Predictive Controller used. The triggering mechanism is based on the Lyapunov cost function
of the system, which enables to minimize the recon�gurations of the cluster, as it is the main source
of expenses in the cloud paradigm. Results are promising but however need to be evaluated on a real
cloud.

The robustness and cost-ef�ciency challenges are indeed complementary and a combination of
both approaches of adaptation and event-based control could stand as a promising solution. However,
adaptation for a MIMO model and triggering mechanisms able to deal with time varying systems are
more complex problems that would require extended research work. The bene�ts of such solutions
would go beyond the bigdata cloud control problem.

Nevertheless, those works present some limitations. The �rst one is the related to the metrics
choice. An ideal control satis�es the objectives for the values and behavior of the signal and costs
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functions used for the problem formulation. Thus, aside from the technical achievements, the de�-
nition of the problem is of �rst importance. For instance, the performance metric that was picked in
this work is the average execution time of the jobs that �nished in the last time slot. However, many
other choices could have been made: computing the 99th percentile instead of the average, taking
into account the duration of the running jobs instead of the �nished ones, etc. A deeper study of the
usuals SLAs of cloud providers could be of great use to re�ne those metrics. Moreover, the addition
of new dimensions to the problem should be considered, to cope with new demands of the clients,
such as dependability to hardware and software failure or security guarantees. The de�nition of a
wider MIMO problem could enable to take into account all those aspects.

In a second time, let us recall some of the hypothesis that were taken for this work: the cluster
has homogeneous resources, the jobs of the workload are of similar nature and the MapReduce ver-
sion is �xed. In order to increase the robustness of the presented approaches, the cases when those
assumptions do not hold should be tested. The homogeneity of current cloud is often a reality at
small scale. However, the datacenters are nowadays highly heterogeneous, with application speci�c
hardware such as GPUs. The adaptation algorithm presented in Chapter 10 could however enable
to deal to some extent with those differences, whereas it still needs to be tested. Eventually, even
if the experimentations were done on a real cluster deployment, Grid5000 is a research environment
with eased deployment facilities. The application of the presented control technique on a commercial
cloud hosting MapReduce framework, such as Amazon EMR [15], is still a technical challenge.



Part IV

Conclusions and Perspectives
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This thesis presented the use of control theory for autonomous computing systems. Being in
the middle of two distinct research domains, a comprehensive introduction was drawn. The two
�elds were presented and put in perspective, both with an accessible introduction and then in a more
technical way. The related work was then overviewed, �rst by reviewing the various tools for software
adaptation and then by focusing on detailing the solutions using control theory. The approach taken
in this work was to address this issue through two computing system applications, enabling to address
various problem speci�cations and to develop varied modeling and control techniques; but also to
investigate diverse and complementary aspects of the computing world.

First, we focused on the location privacy challenge. Mobile devices' users send queries to services
and include their location data to have a geo-localized answer, such as weather predictions or nearest
points of interests suggestion. Then, all those location data may be collected in a database, which
processing is of great interest (infer road usage frequency and the transportation mode used, derive
popularity of places, etc.). Indeed, all those useful services comes at the price of personal information
disclosure and is thus an major privacy breach. Our approach consisted in providing tools for the
mobile device user and the data processing instance to protect data privacy without sacri�cing their
utility. More speci�cally, starting from the state of the art Location Privacy Protection Mechanisms
(LPPMs), we combined them and con�gured them in a dynamic way that ful�ll both the users' privacy
and utility requirements. From a control theory perspective, this work provided the �rst formulation
of the location privacy challenge in terms of de�nition of the plant, the control input, the disturbance
signal as well as the performance outputs. Identi�cation was performed to derive a model of the
system and a �rst controller was presented to serve as a proof of concept.

Second, we considered the use-case of a bigdata processing framework running remotely on a
cloud. Monitoring of performance in terms of response time of the jobs and availability of the service
were the main objectives, which can be achieved by tuning the resource cluster size and by realizing
admission control. Controllers were designed in order to ensure the monitoring robustness to the
system changes and workload variations, and to minimize the service costs. Advanced control tech-
niques for achieving multi-objectives have been developed and applied: a robust adaptive feedback
controller and a event-based triggering mechanism for optimal control.

Conclusions regarding the contribution of this thesis, its limitations and perspective for the dif-
ferent application domains have been drawn in the respective parts. The works of this thesis has
brought signi�cant improvement regarding the state of the art, whether by the novelty of the problem
formulation or by the resulting performance of the controlled system.

On top of aiming to provide novel solutions for the speci�c use-cases, this work also enable to
draw lessons on bene�ts and dif�culties of using control theory to adapt software systems.

Computing applications are ruled by laws that are far from the physics ones, as usually considered
in the control theory framework. This leads to particularities in the systems' behaviors and constraints.
Taking the location privacy challenge, the metrics considered were varying over several orders of
magnitudes, with equal semantic importance of the performance on each of them. For the cloud
control problem, the system's costs were computed not only based on resource usage but also taking
into account a minimal utilization time for each instance, corresponding to the minimal renting time
on a cloud platform. Those two examples illustrate that the control theory has to be extended to cope
with those new behaviors, for instance by adding a logarithmic normalization of the metrics, or by
de�ning a new cost function of the optimal controller. Software systems adaptation enables to extend
the theory of control.

The bene�ts of the use of control for the various computing applications are even more valuable.
First, it provides a well de�ned methodology that is able to address many monitoring challenges.
Depending on how clear the problem is formulated, with regards to performance metrics and control
knobs, the development of modeling and control can be straightforward. From this, the monitored
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closed-loop system can be further studied to derive mathematical guarantees of its stability or perfor-
mance. This is highly relevant, for instance when a certi�cation of the algorithms is needed, e.g. in
the aeronautics industry.

Moreover, some limitations can be drawn. For instance, one can go back to the working hypothesis
of control theory: a dynamical system is considered with at least one observable output and a control-
lable input. The observability and controllability can often be dealt with for software applications by
the design of new sensor or actuator algorithms, but at the cost of modifying the initial system, which
is not always feasible or desirable. The dynamic hypothesis is the main limitation of control theory for
such applications, while being also its main advantage. It enables to deal with problem formulations
that have barely been addressed in the computing world (e.g. location privacy control) while it is of
no use for the static monitoring, even though such static challenge are often still unsolved problems
(e.g. con�guration of privacy protection mechanisms for static mobility databases).

Stepping back from the technical perspective, working at the intersection of different scienti�c
�eld induces some dif�culties which, as basic as they appear, signi�cantly slow down the research
process. For instance, some scienti�c terms are not de�ned and used in the same way. One can
mention the expressions "response time" which is a measure of the controller convergence speed in
control theory while it is the execution time of a request in the cloud computing world; or "utility"
which can be either the objective function of a user to be maximized or re�ect the quality of the
service provided to the user. Moreover, the expanse of the contributions over distinct publication
communities harden the literature review and the works diffusion.

We now take a look at the general perspectives of the association of control theory and software
adaptation. Following the trends in the computing world, a promising direction of research is the
inclusion of new performance metrics such as security level of applications or privacy protection
guarantees. Those concerns are among the �rst ones for industrials and individuals whereas they
are barely dealt with. The focus should particularly be done on the dynamic consideration of those
metrics, acknowledging that they can evolve according to varying requirements or modi�cations in
the external environment. Indeed, with such sensitive aspects, the results of a security or privacy
monitoring should come with guarantees both on the performance and on its robustness regarding
changes in its internal behavior and on the ones of its environment.

On top of considering new performance indicators, the focus should be done on the control of new
kind of softwares. The recent soar of machine learning, both in the development of new algorithms
and on the spreading of its applications, make it a prevalent class of systems that is interesting to
address from the control theory perspective. Machine learning applications show impressive results
regarding their accuracy performance, while little works have been dedicated to the study of their
robustness and most of all on the guarantees of their results. Those two limitations are areas for
which the control theory has decades of expertise that can bene�t both domains. Moreover, learning
algorithms can be considered as modeling tools, while most of the time the modeling prediction is
meant to derive a monitoring strategy. The association of learning with the decision and actuation
tools of control could enable to consider the challenges in their entirety, in a way to optimize the
decision process and not necessary the modeling accuracy. This direction of research has been inves-
tigated alongside and following this thesis work, the main results are presented as appendix of this
manuscript, see Part VI.

The combination of control theory and software systems has shown signi�cant bene�ts for the
research community, and still presents promising perspectives in which the science of the trade-offs,
robustness and guarantees, will be combined with the state of the art solutions of the peak problems
of the industrial and social worlds.
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Résumé en français
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Cette thèse présente l'utilisation de la théorie du contrôle pour l'automatisation des systèmes
informatiques.

Les systèmes informatiques, que ce soit pour un usage personnel ou dans le monde industriel,
sont de plus en plus nombreux et complexes. Les smartphones fournissent des services basés sur
l'utilisateur tels que des recommandations personnalisées. Les entreprises ont accès à une quantité
croissante d'informations sur leurs clients et/ou leur environnement, et les utilisent pour développer
des analyses et des services basés sur l'intelligence économique. Ces deux exemples simples mon-
trent que les outils informatiques sont utilisés, directement ou indirectement, à différents degrés de
conscience, par la plupart des gens dans leur vie quotidienne.

La dernière décennie a vu le point culminant de la différenciation entre le logiciel et le matériel.
Cette thèse se concentre uniquement sur l'aspect service et logiciel. Dans ce contexte, l'on retrouve
souvent les mêmes objectifs généraux: performance, disponibilité, �abilité, bas coûts, sécurité, re-
spect de la vie privée. Ces objectifs à atteindre sont désirés avec des propriétés telles que la robustesse
ou des garanties.

Une solution à tous ces dé�s est l'adaptation logicielle. Cette discipline vise à modi�er les
paramètres/mode/ressources d'un logiciel en réaction aux changements de son propre comporte-
ment ou de son environnement. De nombreux outils différents peuvent être utilisés pour réaliser
l'adaptation dans la pratique, tels que la théorie des �les d'attente, l'apprentissage automatique ou la
théorie du contrôle. Dans ce travail, nous avons choisi de nous concentrer sur cette dernière technique.
La théorie du contrôle est un domaine de l'ingénierie qui vise à surveiller les systèmes dynamiques,
grâce à l'utilisation de boucles de rétroaction. Il a commencé à être bien établi depuis le début des an-
nées 1900, pour ses applications aux systèmes industriels, notamment dans l'aéronautique. En raison
de son histoire pour les systèmes régis par les lois de la physique, ce n'est que depuis la �n des an-
nées 2000 que son application aux systèmes informatiques a été étudiée. Cependant, sa forte culture
mathématique et ses garanties formelles sur les résultats font de la théorie du contrôle une solution
prédominante pour l'adaptation logicielle. Ceci est bien illustré par l'augmentation signi�cative du
nombre d'articles sur ce sujet.

Dans ce contexte d'association de la théorie du contrôle et des systèmes informatiques, cette thèse
adopte l'approche d'explorer en profondeur deux cas d'utilisation. Dans ce travail, ces applications
ont été abordées avec une grande variété de techniques complémentaires. Ainsi, divers aspects de
la combinaison des deux domaines ont été explorés. La première est axée sur la protection de la
vie privée liée à la mobilité des utilisateurs d'appareils mobiles, tout en assurant la convivialité des
services géolocalisés. La seconde traite des services BigData Cloud et de la manière d'assurer leur
performance et leur �abilité dans leur environnement extrêmement variable. Les deux applications
qui sont développées dans ce manuscrit sont complémentaires à deux égards. Premièrement, ils provi-
ennent de deux domaines du vaste monde informatique qui re�ètent la complexité et la diversité des
dé�s à relever, qu'il s'agisse de fournir un outil accessible et utile pour une grande population ou
de mettre au point des outils à la �ne pointe de la technologie pour les spécialistes des données.
Deuxièmement, la plus grande partie du vaste domaine de la théorie du contrôle est illustrée, dès le
tout début, là où le problème doit être formulé et où des outils simples peuvent être appliqués au
système non linéaire le plus complexe variant dans le temps pour lequel des techniques récemment
développées sont nécessaires.

Un troisième cas d'utilisation a été étudié en parallèle et à la suite de ce travail de thèse. Les
systèmes informatiques considérés sont des algorithmes d'apprentissage automatique, tels que les k-
means, les arbres de décision ou les célèbres réseaux des neurones. Leur contrôle a été étudié sous
deux angles complémentaires. Premièrement, le dé� de la robustesse du processus d'apprentissage
vis-à-vis du bruit dans la base de données a été soulevé. Deuxièmement, les travaux se sont concen-
trées sur la paramétrisation des algorithmes, avec l'introduction d'une boucle de rétroaction.
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Protection de vie privée des données de mobilité

La première application traite d'un côté du monde de l'informatique, à savoir l'utilisateur de smart-
phone. Plus précisément, nous étudions la protection de la vie privée des personnes lors du partage
de leur localisation par le biais d'applications. Une attention particulière est portée à la qualité du
service géolocalisé reçu. La littérature sur l'utilisation de la théorie du contrôle pour les questions de
protection de la vie privée est presque inexistante, ce qui fait de ce cas d'utilisation un véritable terrain
de jeu où tout doit être construit, de la dé�nition des objectifs de l'utilisateur à la mise en place de la
protection de la vie privée et à son évaluation. Les dé�s de la cybersécurité et de la protection de vie
privée sont d'une importance primordiale mais cependant manquent de solutions aussi bien pratiques
que théoriques. De plus, les propriétés spéci�ques à cette nouvelle formulation d'un problème de
contrôle ont beaucoup à apporter à la communauté des chercheurs en automatique.

La démocratisation des appareils mobiles a favorisé le développement d'applications utilisant les
données de localisation des propriétaires pour fournir ou améliorer un service. Ces applications sont
appelées services basés sur la localisation (LBS) et sont par exemple les applications de navigation,
les systèmes de recommandation ou les applications de suivi de la condition physique.

Un grand nombre de données de mobilité sont générées, collectées, et actuellement utilisées par
les entreprises et les chercheurs. En effet, le traitement de ces données peut révéler des informations
précieuses qui peuvent être utilisées pour un large éventail d'applications, par exemple, la gestion du
tra�c routier, la plani�cation urbaine, etc. Ces services et les données collectées correspondantes prof-
itent donc à toutes les parties, mais au prix de la publication de données personnelles. Les fournisseurs
de services, ou tout attaquant tiers, pro�tent de ces données pour obtenir toujours plus d'informations
sur les utilisateurs. Les attaques peuvent se produire à chaque étape de traitement. Les menaces les
plus courantes pour les utilisateurs sont les attaques de réidenti�cation où l'identité d'un utilisateur
anonyme est devinée à partir de données précédemment enregistrées, la prédiction de la mobilité qui
anticipe les prochains déplacements des utilisateurs en fonction de leurs habitudes, l'extraction des
centres d'intérêt de l'utilisateur (domicile, lieu de travail, lieu de culte, etc.) et la déduction des re-
lations sociales (partenaires, collègues de travail, etc.). A�n d'offrir des moyens de protéger la vie
privée des utilisateurs, des mécanismes de protection de la vie privée liée à la localisation (LPPM)
ont été élaborés. Cette terminologie regroupe tous les algorithmes qui modi�ent les données de local-
isation a�n d'améliorer la con�dentialité des utilisateurs.

Des exemples simples de LPPM sont l'ajout de bruit aux données de l'utilisateur, la réduction de
la précision des données ou la fusion des informations de mobilité des utilisateurs proches. Il existe
une grande diversité parmi les LPPM : certains agissent au niveau de l'utilisateur, d'autres nécessitent
des tiers de con�ance ; certains sont des mécanismes en ligne, d'autres ne peuvent être appliqués que
sur un ensemble de données ; etc.

Habituellement, les LPPMs sont des algorithmes paramétrés, par exemple la quantité de bruit
ajoutée aux données peut varier. L'ajustement de ces paramètres permet de nuancer leur action, c'est-
à-dire de protéger plus ou moins la vie privée des données. Cette propriété est très précieuse étant
donné que la protection de la vie privée se fait souvent au prix d'une réduction de l'utilité du ser-
vice. Par conséquent, un LPPM con�gurable permet d'ajuster le compromis entre la con�dentialité et
l'utilité. En effet, les données de mobilité sont directement utilisées par le LBS pour fournir un service
à l'utilisateur, et lorsqu'il adopte le point de vue du LBS, ces données sont traitées conjointement pour
récupérer certaines informations de haut niveau (utilisation de la route, moyens de transport, etc.). Il
n'est pas facile de traiter à la fois de la protection de la vie privée et de l'utilité, étant donné le com-
promis naturel qui existe entre les deux. Comme les mécanismes d'amélioration de la protection de
la vie privée consistent à déformer les données originales pour cacher l'information, leur utilité est
par dé�nition réduite.
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De plus, chaque mobilité d'utilisateur est très dynamique, avec des vitesses et des fréquences de
déplacement variables. Ainsi, l'application d'un mécanisme de protection peut donner lieu à dif-
férents niveaux de con�dentialité et d'utilité selon les propriétés de la mobilité de l'utilisateur.

Toutefois, le réglage �n de ces paramètres peut nécessiter des connaissances et une expérience
approfondies. L'objectif est de garantir des niveaux donnés de con�dentialité et d'utilité tant du
point de vue de l'utilisateur que de l'analyse des données de manière automatisée. De plus, compte
tenu de la variabilité des déplacements des utilisateurs et de leur environnement, les garanties de
con�dentialité et d'utilité doivent être solides. Deux contributions correspondant à deux scenario
d'utilisation différents ont été développés.

Scénario statique: traitement d'une base de donnée de mobilité.

Les données de mobilité collectées par les entreprises ou les chercheurs doivent protéger la vie privée
des utilisateurs tout en permettant l'extraction d'informations agrégées utiles. Pour cela, des mé-
canismes de protection de la vie privée (LPPM) sont utilisés. Cependant, le LPPM approprié et
sa con�guration à utiliser peuvent varier pour chaque utilisateur et suivant son objectif. En outre,
des garanties concernant les niveaux de protection et l'utilité de l'ensemble de données obtenu sont
nécessaires.

Le système PULP (pour Privacy and Utility through LPPMs Parametrization) permet à l'utilisateur
de recommander le meilleur LPPM à utiliser et comment le con�gurer. Il fonctionne en trois étapes
: l'analyse de l'impact du LPPM sur la vie privée des individus et sur l'utilité du service, puis la
modélisation non linéaire du comportement du LPPM, et en�n la recommandation d'un LPPM cor-
rectement réglé pour chaque individu de la base de donnée. La recommandation est fondée sur des
objectifs, tels que la quanti�cation du compromis entre protection des données et utilité. Quatre bases
de données de mobilité regroupant plus de 770 utilisateurs sur plusieurs années a été utilisée pour
l'évaluation de PULP.

Scénario dynamique: diffusion dynamique de localisation.

Le système dynULP (pour dynamic and Useful Location Privacy) prend le point de vue d'une per-
sonne utilisant un appareil mobile pour pro�ter du service géolocalisé. Les données envoyées doivent
être protégées tandis que le service reçu doit être utile. Dans ce scénario dynamique et centré sur
l'utilisateur, la nécessité d'une con�guration correcte du LPPM se pose également. En outre, étant
donné que la mobilité de l'utilisateur évolue dans le temps, le mécanisme de protection devrait égale-
ment évoluer pour assurer un niveau constant de protection de la vie privée.

La théorie du contrôle est appliquée à ce cas d'utilisation. Le respect de la vie privée est considéré
comme un signal mesurable à contrôler, tandis que la con�guration du LPPM permet de l'in�uencer.
Des contributions ont été apportées à la formulation du problème, c'est-à-dire à la recherche de
moyens appropriés pour mesurer la protection de la vie privée et l'utilité des données a�n de per-
mettre leur contrôle. Ensuite, des outils de modélisation et des lois de contrôle ont été appliquées
pour assurer le suivi de référence (en terme de niveau de vie privée) et la robustesse vis à vis de la
mobilité de l'utilisateur.

Les deux systèmes sont complémentaires, car ils couvrent tous les aspects de la question de la
protection de la vie privée. PULP peut être utilisé soit sur des bases de données qui ont déjà été
enregistrées et pour lesquelles dynULP ne peut pas être appliqué, soit en combinaison, en traitant
conjointement toutes les sources d'utilisations malveillantes des données de localisation (à la diffusion
et au cours du traitement).
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Des améliorations de ces deux contributions pourraient être faites, notamment sur la complétion
des notions de vie privée (par exemple en ajoutant la notion de prédictibilité de la trajectoire) et
d'utilité. L'implémentation de dynULP en tant qu'application pour smartphone est prévue, car son
faible algorithme de calcul lui permet d'être embarqué. Le système PULP pourrait également être
étendu aux entreprises, par exemple pour assurer leur conformité au GDPR.

En conclusion, les travaux PULP et dynULP sont deux solutions qui relèvent le dé� de l'applicabilité
de la protection de la vie privée à partir de deux approches complémentaires, utiles à la fois pour les
utilisateurs quotidiens de smartphones et les experts en traitement des données.

Services BigData sur le Cloud

Le deuxième cas d'utilisation est la garantie de performance et de �abilité des services BigData sur
le cloud, par le biais de l'allocation de ressource et du contrôle des admissions. Cette application
traite de l'autre face de l'écosystème informatique, à savoir les entreprises et les experts en traitement
de données. Ce domaine de recherche �orissant a déjà produit de nombreux travaux et solutions, les
efforts se concentrent maintenant sur des résultats toujours plus avancés et �ables. Dans ce contexte:
les systèmes très complexes peuvent béné�cier de toute l'expérience et de la maturité de la théorie du
contrôle. D'autre part, un nouveau champ d'application signi�e de nouveaux objectifs, de nouveaux
dé�s et de nouvelles formulations qui feront croître la théorie du contrôle en elle-même.

Au cours des dernières décennies, le monde a été confronté à une forte augmentation du nom-
bre de données produites. Le cas précédemment présenté de la collecte de données sur la mobilité
des personnes est un parfait exemple de la façon dont les activités quotidiennes génèrent d'énormes
quantités de données : requêtes de pages Web, transactions �nancières, etc. Ces BigData posent de
nouveaux dé�s quant à leur stockage et leur analyse.

De nouveaux paradigmes de programmation sont apparus pour faire face aux spéci�cités de Big
Data, tels que MapReduce, Hadoop ou Spark. Le cloud computing, qui promet des capacités de stock-
age et de traitement presque illimitées, devient une solution de plus en plus attrayante. L'utilisation
du cloud permet de partager avec d'autres les ressources physiques, car la plupart des applications ne
nécessitent pas leur utilisation à plein temps.

L'un des plus grands attraits du cloud computing est l'affectation à la demande de ressources
matérielles partagées à des applications logicielles, appelée allocation élastique des ressources. Cela
permet de fournir plus de ressources aux applications qui en ont besoin quand elles en ont besoin, et
donc d'essayer d'optimiser l'utilisation de ces ressources. Par conséquent, il y a un besoin croissant
de solutions pour traiter ef�cacement la dynamique des ressources des clusters.

Les approches actuelles d'allocation de ressources qui sont déployées dans les clouds publics ne
fonctionnent toujours pas de manière optimale pour les applications en temps réel. Dans la plupart
des clouds, si une application doit répondre à des critères de temps d'exécution, un algorithme réactif
adapte le nombre de ressources à la demande. Cependant, il faut un haut niveau d'expertise pour
décider de l'ampleur de l'intervention, car elle dépend de nombreux facteurs qui ne sont pas néces-
sairement directement accessibles. La dif�culté de la tâche est accrue par le fait que la con�guration
optimale peut varier à cause de l'utilisation partagée des ressources matérielles ou des �uctuations des
charges de travail au �l du temps, et de nombreux autres facteurs. Par conséquent, il est nécessaire de
disposer d'algorithmes de mise à l'échelle des clusters entièrement automatisés et robustes capables
de traiter ces perturbations de l'environnement.

Les fournisseurs de cloud doivent garantir la performance et la disponibilité des services a�n
de �déliser les utilisateurs et d'éviter des impacts �nanciers importants. Garantir la performance
des services cloud est un dé� extrêmement complexe. Même avec la même charge de travail et
la même quantité de ressources, les performances d'une application peuvent varier en fonction du
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niveau de bruit des applications voisines. De plus, les services cloud sont des paradigmes très com-
plexes qui s'exécutent sur plusieurs couches de logiciels, ce qui rend leur comportement concernant
l'approvisionnement en ressources non linéaire.

Les objectifs dans ce contexte sont d'assurer la performance et la disponibilité souhaitées des
services cloud tout en étant robustes aux changements de l'application et de son environnement; tout
en étant sensible aux coûts �nanciers et énergétiques.

Contrôle adaptatif pour la garantie des performances de service cloud robustes
aux changements du système et de son environnement.

Le coût des services cloud ne cesse de diminuer, ce qui fait que la performance des services est en
train de devenir un facteur clé de différenciation entre les fournisseurs. Des solutions qui visent à
garantir des objectifs de niveau de service en terme de performance en contrôlant la taille des clusters
sont déjà utilisées par les fournisseurs de cloud. Cependant, la plupart de ces solutions de contrôle
sont basées sur des règles réactives statiques, elles sont donc inef�caces pour gérer la dynamique de
service très variable des environnements cloud.

Dans cette thèse, une nouvelle approche de contrôle adaptatif réalisant l'allocation des ressources
est présentée qui est robuste à ces phénomènes. Il se compose d'un PI et d'un régulateur à rétroaction
dont les paramètres sont adaptés en ligne. L'utilisation de l'adaptation permet d'améliorer l'ef�cacité
et la robustesse du contrôle par rapport aux variations de la dynamique du système. Cette approche a
été validée à la fois en simulation et en utilisant un benchmark MapReduce sur un cluster réel.

Contrôle optimal des performances et de la disponibilité des services cloud en
tenant compte des coûts.

Les multiples recon�gurations des clusters est un problème coûteux dans les services cloud traitant
des BigData. Les solutions de contrôle actuelles parviennent à faire évoluer le cluster en fonction
de la charge de travail, mais elles ne cherchent pas à minimiser le nombre de recon�gurations du
système.

Cette thèse présente une nouvelle approche de contrôle optimale déclenchée par des événement
(event-based control). Le mécanisme de déclenchement s'appuie sur un contrôleur prédictif basé
sur un modèle (Model Predictive Control) et est dé�ni sur la valeur de la fonction du coût, a�n de
réduire le nombre de changements de contrôle mais aussi d'assurer un comportement très réactif aux
changements des entrées exogènes. Les résultats sont prometteurs mais doivent être évalués sur un
vrai cloud.

Néanmoins, ces contributions présentent certaines limites, liées par exemple au choix des signaux
objectifs de performance ou à l'hypothèse d'homogénéité du cluster. A�n d'accroître la robustesse
des approches présentées, il convient de tester les cas où ces hypothèses ne tiennent.

Finalement, même si les expérimentations ont été faites sur un déploiement réel de cluster, Grid5000
est un environnement de recherche avec des facilités de déploiement. L'application de la technique
de contrôle présentée sur un framework commercial d'hébergement en nuage MapReduce, tel que
Amazon EMR, est encore un dé� technique.

En plus de viser à fournir des solutions novatrices pour les cas d'utilisation spéci�ques, ce travail
permet également de faire un pas en arrière et de tirer des leçons sur les avantages et les dif�cultés
d'utiliser la théorie du contrôle pour adapter les systèmes logiciels.
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Les applications informatiques sont régies par des lois qui sont loin des lois de la physique, comme
on le considère habituellement dans le cadre de la théorie du contrôle. Cela conduit à des particularités
dans les comportements et les contraintes des systèmes. La théorie du contrôle doit être étendue pour
faire face à ces nouveaux comportements.

Les avantages de l'utilisation du contrôle pour les différentes applications informatiques sont en-
core plus précieux. Premièrement, elle fournit une méthodologie bien dé�nie qui permet de relever de
nombreux dé�s en matière de surveillance. Selon la clarté de la formulation du problème, en ce qui
concerne les mesures de performance et les boutons de commande, le développement de la modélisa-
tion et de la commande peut être simple. A partir de là, le système en boucle fermée surveillé peut être
étudié plus avant pour en déduire des garanties mathématiques de stabilité ou de performance. Ceci
est très pertinent, par exemple lorsqu'une certi�cation des algorithmes est nécessaire, par exemple
dans l'industrie aéronautique.

De plus, certaines limites peuvent être observées. L'hypothèse dynamique est la principale limite
de la théorie du contrôle pour de telles applications, tout en étant aussi son principal avantage. Il per-
met de traiter des formulations de problèmes qui ont à peine été abordées dans le monde informatique
alors qu'il n'est d'aucune utilité pour la surveillance statique, même si ce dé� statique reste souvent
des problèmes non résolus.

En prenant du recul par rapport à la perspective technique, le travail à l'intersection de différents
domaines scienti�ques induit certaines dif�cultés qui, ralentissent considérablement le processus de
recherche. Par exemple, certains termes scienti�ques ne sont pas dé�nis et utilisés de la même
manière. De plus, l'étendue des contributions sur des communautés de publication distinctes durcit
l'analyse documentaire et la diffusion des contributions.

Examinons maintenant les perspectives générales de l'association de la théorie du contrôle et
de l'adaptation logicielle. Suivant les tendances du monde informatique, l'inclusion de nouvelles
mesures de performance telles que le niveau de sécurité des applications ou les garanties de protec-
tion de la vie privée constitue un axe de recherche prometteur. Ces préoccupations sont parmi les
premières pour les industriels et les particuliers alors qu'elles sont à peine prises en compte.

En plus de considérer de nouveaux indicateurs de performance, l'accent devrait être mis sur le
contrôle de nouveaux types de logiciels. L'essor récent de l'apprentissage automatique, tant dans le
développement de nouveaux algorithmes que dans la diffusion de ses applications, en fait une classe
dominante de systèmes qu'il est intéressant d'aborder sous l'angle de la théorie du contrôle. Les ap-
plications d'apprentissage automatique donnent des résultats impressionnants en termes de précision,
alors que peu de travaux ont été consacrés à l'étude de leur robustesse au bruit et surtout à la garantie
de leurs résultats. Ces deux limites sont des domaines pour lesquels la théorie du contrôle possède des
décennies d'expertise qui peut pro�ter aux deux domaines. De plus, les algorithmes d'apprentissage
sont considérés comme des outils de modélisation, alors que la plupart du temps, la prédiction de
modélisation est destinée à dériver une stratégie d'action. L'association de l'apprentissage avec les
outils de contrôle permet de considérer les dé�s dans leur globalité, de manière à optimiser le proces-
sus de décision et non pas nécessairement la précision de la modélisation. Cette direction de recherche
a été étudiée en parallèle et à la suite de ce travail de thèse, les principaux résultats sont présentés en
annexe de ce manuscrit, voir Partie VI.

La combinaison de la théorie de la régulation et des systèmes logiciels s'est révélée béné�que
pour la communauté des chercheurs, et présente encore des perspectives prometteuses dans lesquelles
la science des compromis, de la robustesse et des garanties sera combinée avec les solutions les plus
avancées des problèmes les plus importants du monde industriel et social.
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Appendix A

Duo Learning for Classi�cations with Noisy
Labels

The following paper results from the work conducted from July to November 2018 during an in-
ternship at IBM Research Center, Zürich, Switzerland. It has been published in the second Contin-
ual Learning Workshop at the Thirty-second Conference on Neural Information Processing Systems
(NIPS 2018) [44].
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Appendix B

Robust Anomaly Detection on Unreliable
Data

The following paper has been accepted for publication in the 49th IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2019) as a practical experience report [187].
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Appendix C

Feedback Control for Online Training of
Neural Networks

The following paper has been accepted for publication in the third IEEE Conference On Control
Technology And Applications (CCTA 2019) [188].
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Titre — Contrôle des systèmes informatiques: application aux services clouds et à la protection de
vie privée.

Résumé —Un algorithme de contrôle peut gérer des systèmes complexes, même lorsqu'ils sont
particulièrement sensibles aux variations de leur environnement. Cependant, l'application du contrôle
aux systèmes informatiques soulève plusieurs dé�s, par exemple dû au fait qu'aucune loi physique
ne régisse leur comportement. D'une part, le cadre mathématique fourni par la théorie du contrôle
peut être utilisé pour améliorer l'automatisation, la robustesse et la �abilité des systèmes informa-
tiques. D'autre part, les dé�s spéci�ques de ces cas d'étude permettent d'élargir la théorie du con-
trôle elle-même. L'approche adoptée dans ce travail consiste à utiliser deux systèmes informatiques
d'application: la protection de vie privée liée à la mobilité et les performances des services clouds. Un
troisième cas d'utilisation sur le contrôle des algorithmes d'apprentissage automatique est présenté
en annexe. Ces cas d'utilisation sont complémentaires par la nature de leurs technologies, par leur
échelle et par leurs utilisateurs �naux.

La popularité des appareils mobiles a favorisé la diffusion et la collecte des données de localisa-
tion, que ce soit pour que l'utilisateur béné�cie d'un service personnalisé ou pour que le prestataire de
services tire des informations utiles des bases de données de mobilité, au prix de la diffusion de don-
nées personnelles parfois très sensibles. Pour remédier à cette atteinte à la vie privée, des mécanismes
de protection spéci�ques aux données de mobilité (LPPM) ont été élaborés. Cependant, ces outils ne
sont pas facilement con�gurables par des novices et ne s'adaptent pas à la mobilité de l'utilisateur.
Dans cette thèse, nous développons deux outils, l'un pour les bases de données déjà collectées et
l'autre pour l'utilisation en ligne, qui garantissent aux utilisateurs des niveaux de protection de la vie
privée et de préservation de la qualité des services en con�gurant les LPPMs. Nous présentons la
première formulation du problème en termes de théorie du contrôle (système et contrôleur, signaux
d'entrée et de sortie), et un contrôleur PI pour servir de démonstration d'applicabilité. Dans les deux
cas, la conception, la mise en œuvre et la validation ont été effectuées par le biais d'expériences
utilisant des données réelles.

L'essor récent des bigdata a conduit au développement de programmes capables de les analyser, tel
que MapReduce. Les progrès des pratiques informatiques ont également permis d'établir le modèle du
cloud (location de ressources en ligne prêtes à l'emploi) comme une solution incontournable pour tous
types d'utilisateurs. Dans ce travail, nous nous intéressons aux performances des tâches MapReduce
exécutées sur les clouds et développons des techniques avancées de contrôle du temps d'exécution
des tâches et de la disponibilité de la plate-forme; en ajustant la taille du cluster de ressources et en
réalisant un contrôle d'admission, fonctionnant quelle que soit la charge de clients. A�n de traiter les
non linéarités, un contrôleur adaptatif a été conçu. Pour réduire l'utilisation du cluster et ses coûts,
nous présentons une nouvelle formulation du mécanisme de déclenchement du contrôle événementiel,
combiné à un contrôleur prédictif optimal. L'évaluation est effectuée sur un benchmark s'exécutant
en temps réel sur un cluster, et en utilisant des charges de travail industrielles.

Les algorithmes d'apprentissage automatiques sont maintenant répandus dans le monde industriel
et académique. Malgré d'excellentes performances, d'autres aspects ont été négligés jusqu'à présent,
tels que l'automatisation de leur con�guration ou leur robustesse. Nous réalisons donc le contrôle
d'algorithmes d'apprentissage de deux manières complémentaires: garantie de la robustesse vis-à-vis
du bruit de la base de données, et le paramétrage automatique des algorithmes par contre-réaction.
Les résultats sont validés à l'aide de bases de données classiques et industrielles.

Mots clés —Contrôle pour les systèmes informatiques; Problème inverse; Contrôle de la vie privée
pour la mobilité; Automatisation des clouds; Apprentissage automatique.
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Title — Control Theory for Computing Systems. Application to big-data cloud services & location
privacy protection.

Abstract — This thesis aims at investigating techniques to build and control ef�cient, dependable
and privacy-preserving computing systems. Ad-hoc service con�guration require a high level of
expertise which could bene�t from automation in many ways. A control algorithm can handle bigger
and more complex systems, even when they are extremely sensitive to variations in their environment.
However, applying control to computing systems raises several challenges, e.g. no physics governs
the applications. On one hand, the mathematical framework provided by control theory can be used to
improve automation and robustness of computing systems. Moreover, the control theory provides by
de�nition mathematical guarantees that its objectives will be ful�lled. On the other hand, the speci�c
challenges of such use cases enable to expand the control theory itself. The approach taken in this
work is to explore in details two application computing systems: location privacy and cloud services.
A third use-case on the use of control for machine learning algorithm is presented in appendix. Those
use-cases are complementary in the nature of their technologies, scale and end-users.

The widespread of mobile devices has fostered the broadcasting and collection of users' location
data. It enables users to bene�t from a personalized service and service providers or any other third
party to derive useful information from the mobility databases, whereas it also exposes highly sensi-
tive personal data. To overcome this privacy breach, algorithms have been developed that modify the
user's mobility data, hopefully to hide some sensitive information, called Location Privacy Protection
Mechanisms (LPPMs). However, those tools are not easily con�gurable by non experts and are static
processes that do not adapt to the user's mobility. We develop two tools, one for already collected
databases and one for online usage, that, by tuning the LPPMs, guarantee to the users objective-driven
levels of privacy protection and of service utility preservation. First, we present an automated tool
able to choose and con�gure LPPMs to protect already collected databases while ensuring a trade-off
between privacy protection and database processing quality. Second, we present the �rst formulation
of the location privacy challenge in control theory terms (plant and control, disturbance and per-
formance signals), and a feedback controller to serve as a proof of concept. In both cases, design,
implementation and validation has been done through experiments using data of real users.

The surge in data generation of the last decades, the so-called bigdata, has lead to the development
of frameworks able to analyze them, such as the well known MapReduce. Advances in computing
practices have also settled the cloud paradigms (online ready-to-use resources to rent) as premium
solution for all kind of users. In this work, we focus on performance of MapReduce jobs running on
clouds and thus develop advanced monitoring techniques of the jobs execution time and the platform
availability; by tuning the resource cluster size and realizing admission control, in spite of the unpre-
dictable client workload. In order to deal with the non linearities of the MapReduce system, a robust
adaptive feedback controller has been designed. To reduce the cluster utilization and costs, we present
a new event-based triggering mechanism formulation combined with an optimal predictive controller.
Evaluation is done on a MapReduce benchmark suite running on a large-scale cluster, and using real
jobs workloads.

Learning algorithms are now prevalent in both the research and industry worlds. While they show
impressive results in terms of performance, other aspects has been neglected so far, such as automa-
tion, robustness or privacy. Machine learning algorithms control is investigated in two complementary
ways: robustness regarding noise in the dataset, and the parametrization of the algorithms, with the
introduction of feedback action. Results are validated using classic datasets and task-speci�c ones.

Keywords — Control for Software Systems; Inverse Problem; Control of Location Privacy; Cloud
Control; Machine Learning.
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