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“Mathematics is the art of giving the same name to different things.”

Henri Poincaré

“If people do not believe that mathematics is simple, it is only because they do not realize how
complicated life is.”

John von Neumann



iii

Abstract
Habilitation

Primal-Dual Approaches in Online Algorithms, Algorithmic Game Theory and
Online Learning

by NGUYỄN KIM Thắng

Primal-dual is an elegant and powerful method in optimization and in the de-
sign of algorithms. The main idea of the method is to construct feasible primal and
dual solutions interactively and an algorithm, together with the analysis, are derived
naturally from the primal-dual interaction. In this thesis, we present primal-dual ap-
proaches as unified techniques in order to study and build connections between the
domains of Online Algorithms, Algorithmic Game Theory and Online Learning.

Primal-duale est une méthode élégante et puissante en optimisation et en algo-
rithmique. La méthode consiste à établir de manière interactive des solutions pri-
mals et duales, puis un algorithme, ainsi que son analyse, sont guidés naturelle-
ment par l’interaction primal-duale. Dans cette habilitation, nous présentons les
approches primal-duales comme techniques unifiées afin d’étudier et de dévelop-
per des liens entre les domaines de l’algorithmique en ligne, de la théorie des jeux
algorithmiques et de l’apprentissage en ligne.

Primal-dual là một phương pháp đẹp và hiệu quả trong tối ưu và trong thiết kế
các thuật toán. Ý tưởng chính của phương pháp là xây dựng các nghiệm đối ngẫu
và sau đó, thuật toán, cùng với phân tích, sẽ dần dần hình thành từ những tương
tác đối ngẫu. Trong luận án này, chúng tôi trình bày các phương pháp đối ngẫu như
những kỹ thuật thống nhất để nghiên cứu và kết nối các lĩnh vực: Thuật toán trực
tuyến, Lý thuyết trò chơi thuật toán và Học máy trực tuyến.
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Chapter 1

Introduction

Research has its own beauty: the beauty of diversity and also of unicity. A research
domain witnesses continually the beauty in its development: interesting notions, re-
sults have been flourished at the early stage (stage of diversity), then deep methods,
techniques have been established at a more mature stage (stage of unicity). These
methods/techniques lead to further achievements, connections to other domains
(higher stage of diversity) and so on. Beauty lies in the eyes of the beholder. My
research, following this beauty perception, is the quest of the diversity, the unicity
and the simplicity in algorithms.

Among others, the algorithmic methods based on duality [33] have particularly
attracted by their conceptual simplicity, their wide applicability (diversity) and the
fact that they provide a general recipe (unicity) for classes of problems. My research
is devoted to the development of primal-dual methods in Online Algorithms, Al-
gorithmic Game Theory and Online Learning and to explore connections between
these domains using the primal-dual approach as a versatile tool.

1.1 The Primal-Dual Method in Algorithm Design and in
Machine Learning

The primal-dual method has been widely used in the design and analysis of algo-
rithms. The main idea of the method is to construct feasible primal and dual so-
lutions interactively and an algorithm is naturally derived from the primal-dual in-
teraction. The method has several advantages: (i) it provides conceptually simple
algorithms; (ii) the designed algorithms are usually faster then the ones relying on
directly solving linear/mathematical programs; and (iii) the analysis of the algo-
rithm performance interactively comes with the primal-dual construction.

Combinatorial Optimization. Primal-dual algorithms have been designed for var-
ious problems such as linear programming problems, network flow problems, short-
est s− t path problems, and many others. Primal-dual algorithms start with a dual
feasible solution and use dual information to infer a primal, possibly infeasible, solu-
tion. If the primal solution is infeasible, the dual solution is modified and so on. For
example, the shortest s− t path problem can be solved by an algorithm that greedily
increases dual variables until the corresponding primal solution becomes feasible
[76]. For an overview of the primal-dual method in combinatorial optimization, one
can see the book of Papadimitriou and Steiglitz [104].
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Approximation Algorithms. The primal-dual method for approximation algorithms
is a generalization of the primal-dual method used for linear programming and com-
binatorial optimization problems. The first use of the primal-dual method in approx-
imation algorithms is due to Bar-Yehuda and Even [19] who gave an algorithm for the
vertex cover problem. Primal-dual approximation algorithms was aroused by work
on the generalized Steiner tree problem, especially the 2-approximation primal-dual
algorithm of Agrawal et al. [1]. The use of linear programming and LP duality
was made explicit by Goemans and Williamson [64]. Subsequently, the primal-
dual method has been extensively studied for approximation algorithms (surveys
in [127, 126]).

Online Algorithms. The first explicite primal-dual approach in online algorithm
is given by Buchbinder and Naor [34] who presented general algorithms based on
the multiplicative weights update method for covering/packing problems. Work on
primal-dual online algorithms was revived by Buchbinder and Naor’s framework.
Several uses of the primal-dual method and competitive algorithms for online al-
gorithms then followed; for example the generalized caching problem [17, 16], the
ad-auction maximization [35] and others. We refer the reader to the survey [32]. Re-
cently, Azar et al. [11] have generalized Buchbinder and Naor’s framework for a class
of convex functions with monotone gradient.

Online Learning (Online Convex Optimization). The primal-dual method has
been used in machine learning in different forms. The multiplicative weights up-
date method, which can be viewed as a primal-dual method (by Buchbinder and
Naor [32]), is indeed a ubiquitous meta-algorithm in computation and learning [7].
This method has first used in online learning by Littlestone and Warmuth [91] to
derive the Weighted Majority algorithm for the problem of prediction from expert
advice. Besides, the multiplicative weights update method belongs to the class of
first-order methods in optimization.

Among the first-order methods, mirror descent is the one which explicitly uses
the interaction between solutions in primal and dual spaces. Hazan and Kale [72]
showed that the mirror descent method is equivalent to the Follow-the-Regularized-
Leader (FTRL), an algorithm introduced by Shalev-Shwartz and Singer [115] for the
regret minimization problem.

1.2 Research Directions

Online Primal-Dual Algorithms for Non-Convex Problems. One real-world phe-
nomenon, known as the economy of scale, consists in sub-linear grow of cost as a
function of the amount of used resources. This happens in many scenarios in which
one gets a discount when buying resources in bulk. A representative setting is the
extensively-studied domain of sub-modular optimization. Another phenomenon,
known as the diseconomy of scale, is that the cost grows super-linearly in the quantity
of resources used. An illustrative example for this phenomenon is the energy cost of
computation where the cost grows super-linearly, typically as a convex function. The
diseconomy of scale has been widely studied in the domain of convex optimization
[29]. However, in many settings, the costs are the mix of both phenomena and the
objective functions are indeed non-convex. Non-convex objective functions appear
in various problems in both theory and practice, ranging from scheduling, sensor
energy management, to influence and revenue maximization, and facility location.
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Such problems call for the design of algorithms with performance guarantee for non-
convex objective functions.

Convex objectives have been extensively studied in recent years where the con-
vexity was crucial for the analyses. As mentioned earlier, Azar et al. [11] have gen-
eralized the Buchbinder and Naor’s framework for a class of convex functions with
monotone gradient. However, problems with non-convex objectives resist against
current approaches and non-convexity represents a strong barrier in optimization in
general and in online algorithms in particular. Hence, designing competitive algo-
rithms for non-convex problems represents an interesting and important challenge.

Primal-Dual Approach in Algorithmic Game Theory. Algorithmic Game Theory
— a domain at the intersection of Game Theory and Algorithms — has been exten-
sively studied in the last two decades. In a game, the price of anarchy (PoA) [84]
is defined as the worst ratio between the cost of a Nash equilibrium and that of an
optimal solution. The PoA is now considered as standard and is the most popular
measure to characterize the inefficiency of Nash equilibria — solutions to games —
in the same spirit of the approximation ratio in Approximation Algorithms (the price
of being restricted to polynomial running time) and the competitive ratio in Online
Algorithms (the price of limited knowledge about the future).

Mathematical programming in general and linear programming in particular
are powerful tools in many research fields. Among others, linear programming
has a tremendous impact on the design of algorithms. Linear programming and
duality play crucial and fundamental roles in several elegant methods such as the
primal-dual and the dual-fitting ones for Approximation Algorithms [127] and on-
line primal-dual framework [32] in Online Algorithms. Given the tremendous im-
pact of tools from mathematical programming in the design of algorithms and the
similarity of the notions of PoA, approximation and competitive ratios, it is intrigu-
ing and also desirable to develop a framework based on duality to study the effi-
ciency of games.

Connections between Online Algorithms, Online Learning and Algorithmic Game
Theory. The success of machine learning in a wide range of applications opens
many exciting directions, in particular exploring the interaction between Algorithms
and Machine Learning. While primal-dual is an elegant tool developed in algorith-
mic community, the mirror descent approach is widely studied in learning commu-
nity. Primal-dual methods in Online Algorithms and mirror descent methods in
Online Learning are recently revealed to be the same thing but have been viewed
by different lenses in different communities. Recently, Buchbinder et al. [39] have
shown an unified framework for the methods and its connection by the mean of reg-
ularization technique [37]. Furthermore, Bubeck et al. [31] have achieved a break-
through (on the k-server problem) in Online Algorithms using powerful tools in
Online Learning. Exploring the interaction between Online Algorithms and Online
Learning is a promising research direction.

A challenge in Online Learning is the design of efficient (polynomial time) al-
gorithms with performance guarantees in adversarial non-stationary, non-stochastic
environments by applying optimization methods that learn from experience and ob-
servations. Hazan and Koren [74] have proved that designing such algorithms is
not possible in general adversarial environments. However, efficient online learning
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may be achievable in well-structured settings with regularity conditions. Character-
izing conditions, or in general discovering the hidden regularity, under which effi-
cient online learning algorithms exist is a major research agenda in online learning.
Among others, studying learning dynamics and designing efficient learning algo-
rithms in games are of particular interests as described in the book of Cesa-Bianchi
and Lugosi [42], which served as an inspiration to the entire field of learning in
games, and the current work in data-driven mechanism design [52, 113].

1.3 Primal-Dual Approach

In this section, we present the key notions and our approach on the development of
primal-dual methods along these directions.

1.3.1 Configuration Linear Programs

Linear program based techniques are powerful tools in theoretical computer science
in general and in approximation and online algorithms in particular. Given an opti-
mization problem, one first attempt consists in formalizing the problem as an inte-
ger/linear program. The most common and natural way to construct a formulation
for a problem is to consider the optimization procedure locally. That is, variables
represent local decisions of an algorithm (for example, if some object is selected, if
some edge in a graph is used, ect) and the aggregation of these decisions (variables)
through constraints of the formulation forms a solution. Another way to derive a
formulation for a problem is to see the optimization procedure globally. Now, one
considers all feasible solutions and each variable, associated to a solution, represents
a global decision of an algorithm. In other words, variables indicate which solution
is chosen in order to optimize the objective of the problem. The latter formulation, if
it is linear, is called configuration linear program (LP).

The first crucial step for any LP-based approach, including the primal-dual method,
is to derive an LP formulation with reasonably small integrality gap. The latter is de-
fined as the worst ratio between the optimal integer solution of the formulation and
the optimal solution with the integrality conditions relaxed. The quest for formu-
lations with small integrality gap and for techniques to reduce this gap is a major
direction in the area of approximation algorithms. Different techniques have been
successfully developed: the lift-and-project methods (Sum-of-Squares hierarchy, LP-
hierarchies), knapsack-inequalities, etc. For this purpose, in our approach we con-
sider configuration LPs constructed as follows.

First consider a natural (local) formulation of a given optimization problem. As
we are interested in non-linear cost functions, it is not surprising that the natural re-
laxation suffers from large integrality gap. Then, introduce an exponential number
of new variables that represent global decisions of an algorithm and constraints that
make connection between new variables (in global view) to original variables (in lo-
cal view). Specifically, the new variables represent which outcome of the problem is
selected. Moreover, the new constraints guarantee that (1) the problem admits ex-
actly one outcome; and (2) if a local decision is made then this local decision must
be a component of the outcome. The new LP captures both local and global deci-
sions of an algorithm and it indeed reduces substantially the integrality gap. The
construction of configuration LP has been observed and presented by Makarychev
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and Sviridenko [94] where they study the problem of minimizing the objective of
form f (u) = uα for constant α.

Example 1 (Network Routing) Consider a network G(V, E) and a set of k routing
requests (si, ti) for 1 ≤ i ≤ k. The cost fe : R+ → R+ of a link e is fe(u) where u is
the quantity of flow passing through the link. The objective is to route integrally one
unit flow from si to ti for every i with minimum total cost.

We illustrate the issue of the integrality gap even on a very simple setting. As-
sume that the network consists of two nodes s, t and m parallel links connecting s
and t. The cost of each link e is fe(u) = u2 for every e where u is the quantity of flow
passing through link e. The goal is to route integrally one unit from s to t with mini-
mum cost. The optimal integer solution has cost 1 by routing one unit flow through
an arbitrary link. However, the following natural relaxation has optimal fractional
solution of cost m · (1/m)2 = 1/m which leads to an integrality gap of m.

min
m

∑
e=1

u2
e s.t

m

∑
e=1

ue = 1, ue ≥ 0 ∀e.

Now we show the construction of configuration LPs from the natural LP (for the
general setting). Let Si be the set of paths connection si to ti. Let xij be a 0-1 variable
such that xij = 1 if one routes the unit flow from si to ti through the path Pij ∈ Si.
Besides, for every subset A ⊆ {1, 2, . . . , k} and for every link e, let zeA = 1 if the set
of requests using link e is exactly A (and zeA = 0 otherwise).

min ∑
e,A

fe(|A|)ze,A

∑
j:Pij∈Si

xij = 1 ∀i

∑
A

ze,A = 1 ∀e

∑
A:i∈A

ze,A = ∑
j:e∈Pij

xij ∀i, e

xij, ze,A ∈ {0, 1} ∀i, j, e, A

The first constraint ensures that every request i has to be routed by some path from
si to ti. This is a constraint in the natural relaxation. The other constraints relate
(local) variables x to (global) variables z. The second constraint stands for the fact
that for every link e, there is a subset of requests, possibly empty, using e. The third
constraint means that if a link e is used by the request i (by choosing some path Pij
such that e ∈ Pij) then the set of requests using link e must contain i. We will see later
that the configuration LP, obtained by relaxing the integral constraint of x and z, has
significantly smaller integrality gap compared to the natural one and for a large class
of cost functions, it gives the optimal relaxation.

1.3.2 Smoothness and concavity properties

In our approach, we characterize the performance of algorithms based on proper-
ties of the cost functions, called smoothness. The notion together with its name are
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inspired by the smoothness framework introduced by Roughgarden [108] in the con-
text of algorithmic game theory in order to characterize the price of anarchy for large
classes of games. We first recall the smoothness definition of Roughgarden [108] in
game theory.

Consider a game with n players in which each player i selects a strategy si from
a set Si for 1 ≤ i ≤ n. These strategies form a strategy profile s = (s1, . . . , sn). The
cost Ci(s) of player i is a real function of the strategy profile s. A game with a joint
cost objective function C(s) = ∑n

i=1 Ci(s) is (λ, µ)-smooth if for every two outcomes
s and s∗, it holds that

n

∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + µ · C(s)

The price of anarchy of a game can be bounded, using the smoothness notion, by the
following term

inf
{

λ

1− µ
: the game is (λ, µ)-smooth where µ < 1

}
which is proved to be optimal for many games (for example, the celebrated conges-
tion games) [108]. Rapidly, the smoothness framework became popular and has been
generalized and widely used to bound the price of anarchy of games in complete and
incomplete information environments [109, 119].

Inspired by the generality and applicability of the smoothness framework in al-
gorithmic game theory, we define properties of cost functions which will be used to
characterize the performance of our algorithms. Through these notions, we show an
interesting connection between online algorithms and algorithmic game theory.

Smoothness Property

We start with a notion of smoothness of functions, which is the closest to the definition
in [108].

Definition 1.1 Let N be a ground set of elements. A set function f : 2N → R+ is (λ, µ)-
smooth if for any set A = {a1, . . . , an} ⊆ N and any collection B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆
B ⊆ N , the following inequality holds.

n

∑
i=1

[
f
(

Bi ∪ ai
)
− f

(
Bi
)]
≤ λ f

(
A
)
+ µ f

(
B
)

A set of cost functions { fe : e ∈ E} is (λ, µ)-smooth if every function fe is (λ, µ)-smooth.

Let us explain intuitively the meaning of the definition. Imagine that Bi is the
current solution of an algorithm at step i. Then, the inequality means the follow-
ing: if the total marginal increase by following the choice/strategy ai at step i (the
left-hand side) can be bounded by a combination of the algorithm cost (the second
term of the right-hand side) and the cost of an adversary (potentially the set A of all
strategies ai’s), then the algorithm is competitive. As we will see later, the compet-
itive ratio will be λ/(1− µ). Indeed, given a (λ, µ)-smooth function, the quantity

λ
1−µ informally measures how far the function is from being linear.

Example 2
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1. IfN consists of real numbers and f is an affine linear function ( f (A) = ∑a∈A a)
then it is (1, 0)-smooth since

n

∑
i=1

[
f
(

Bi ∪ ai
)
− f

(
Bi
)]

= ∑
a∈A

a = 1 · f
(

A
)
+ 0 · f

(
B
)

2. If N consists of real numbers and f (A) = g(∑a∈A a) where g is a polynomial
of degree k with non-negative coefficients, then f is

(
Θ
(
kk−1), k−1

k

)
-smooth.

That is due to the following inequality proved in [45].

n

∑
i=1

[(
bi +

i

∑
j=1

aj

)k

−
( i

∑
j=1

aj

)k
]
≤ Θ

(
kk−1

)
·
( n

∑
i=1

bi

)k

+
k− 1

k
·
( n

∑
i=1

ai

)k

Local Smoothness Property

We extend the notions of smoothness in order to design algorithms in more complex
settings. Given two vectors x and y in [0, 1]n, denote x ∨ y the vector such that its
component at coordinate 1 ≤ i ≤ n is max{xi, yi}. For minimization problems, we
consider the following notion of min-locally-smooth.

Definition 1.2 A differentiable function F : [0, 1]n → R+ is (λ, µ)-min-locally-smooth
if for any set S ⊆ {1, . . . , n}, and for all vectors xe ∈ [0, 1]n with 1 ≤ e ≤ n, the following
inequality holds.

∑
e∈S
∇eF(xe) ≤ λF

(
1S
)
+ µF

(
x
)

(1.1)

where x :=
∨

e∈S x
e, meaning that xi = maxe{xe

i } for every coordinate 1 ≤ i ≤ n.

If the gradient ∇F(x) is non-decreasing, we only need a simpler version. We
say that a differentiable function F : [0, 1]n → R+ with monotone gradient is (λ, µ)-
min-locally-smooth if for any set S ⊆ {1, . . . , n}, and for any vector x ∈ [0, 1]n, the
following inequality holds.

∑
e∈S
∇eF(x) ≤ λF

(
1S
)
+ µF

(
x
)

(1.2)

The local smoothness has similar meaning as the standard smoothness notion.
Considering Inequality (1.2) and imagine that x is the current solution of an algo-
rithm. Then, if the local increase of the objective function F (the left-hand side) at the
current solution in any direction (including the direction chosen by an adversary)
can be bounded by a combination of the current cost (the second term of the right-
hand side) and the cost of an adversary (the first term of the right-hand side), then
the algorithm is competitive. The competitive ratio will be determined as a function
of λ and µ.

An advantage of min-local-smoothness over smoothness is that the former allows
us to analyze the algorithm performance locally, which in several settings, captures
precisely the nature of the corresponding problem.

Example 3

1. If F(A) = g(∑a∈A a) where g is a polynomial of degree k with non-negative
coefficients, then F is also

(
Θ
(
kk−1), k−1

k

)
-min-locally-smooth.
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2. If F is the multilinear extension of a submodular function f then F is ( 1
1−κ , 0)-

min-locally-smooth (proof can be found in Proposition 2.8) where κ is the total
curvature [47] of f over an universe E is defined as

κ f = 1−min
e∈E

f (1E )− f (1E\{e})
f (1{e})

For maximization problems, we introduce another appropriate notion of local-
smoothness.

Definition 1.3 A differentiable function F : [0, 1]n → R+ is (λ, µ)-max-locally-smooth
if for any set S ⊂ E , and for any vectors xe ∈ [0, 1]n, the following inequality holds:

∑
e∈S
∇eF(xe) ≥ λF

(
1S
)
− µF

(
x
)

where x :=
∨

e∈S x
e, meaning that xi = maxe{xe

i } for any coordinate 1 ≤ i ≤ n.

This definition is different to the min-local-smoothness. On one hand, it is due to
different natures of minimization and maximization problems. On the other hand,
in non-convex problems only weak duality holds while strong duality does not. So
informally, there is no symmetry between primal and dual. Specifically, in linear
programming, the dual of the dual is the primal while this property does not hold
in a non-convex setting.

Example 4 Let F be the multilinear extension of a submodular function f .

1. If f is monotone then F is (1, 1)-max-locally-smooth.

2. If f is non-monotone then F is (1/3, 1)-max-locally smooth.

The proof can be found in Lemma 2.8.

Concavity Property

As mentioned earlier in Section 1.2, characterizing conditions under which efficient
online learning algorithms exist is a major research agenda in online learning. In
this direction, we introduce a regularity condition which is crucial in our approach
in order to design efficient online learning algorithm and in analyze dynamics of
games. The regularity notion generalizes the standard notion of concavity and it
also has the flavour of the smoothness concept.

Definition 1.4 A function F is (λ, µ)-concave if for all vectors x and x∗,

〈∇F(x),x∗ − x〉 ≥ λF(x∗)− µF(x).

Example 5

1. If F is concave then it is (1, 1)-concave (according to the definition above).

2. If F is the multilinear extension of a monotone submodular function then F is
(1, 2)-concave (Lemma B.1).
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1.3.3 Primal-dual framework

The primal-dual method typically consists of three steps:

1. formulation of the given problem as a mathematical program,

2. construction of the primal and dual variables,

3. proving primal-dual feasibility and bounding the primal/dual objectives.

In the following, we describe these steps in our framework.

Formulations

In our approach, we consider systematically the configuration LPs constructed from
natural relaxations of given problems in order to reduce the integrality gap. To the
best of our knowledge, the configuration LPs have been used only in the offline
setting and the approach is to round an optimal fractional solution to an integer
one and to bound the approximation ratio. The first encountered difficulty of this
approach is that a configuration LP has exponential size, so one has to look for a
separating oracle (for the dual LP) in order to compute an optimal fractional solution.
Finding separating oracles is in general far from trivial and represents an obstacle in
using configuration LPs to design performant algorithms. Moreover, solving an LP
is intrinsically offline and it is not suitable for studying problems in online settings.

Primal-dual has several advantages in order to bypass this difficulty. First, one
does not have to compute an optimal fractional solution. Second, the configuration
formulation admits a sparsity property: the number of variables is exponential but
for an integer solution, only one configuration variable equals 1 (that corresponds to
the chosen solution of an algorithm) and all others equals 0. Intuitively, this sparsity
property explains why primal-dual is appropriate to study configuration LP. For-
mally, although there are exponentially many variables in a configuration LP, at any
time in our primal-dual framework, one needs to maintain only a feasible primal
solution and a small number of meaningful dual variables with non-zero values.

Construction of Primal-Dual Variables

In the direction of designing competitive algorithms for non-convex problems, we
consider a primal-dual updating procedure which is inspired by the frameworks
of Buchbinder and Naor [33] for linear objectives and Azar et al. [11] for convex
objectives with monotone gradients. The procedure is essentially the multiplica-
tive weights update. However, the crucial distinguishing point of our algorithm
compared to the ones in [11] is that they use the gradient of the objective function
at the current primal solution to define a multiplicative update whereas our up-
date is guided by the gradient of the multilinear extension of the objective function.
This multiplicative update, together with the configuration LPs and the notions of
smoothness, enable us to derive competitive algorithms for convex objective func-
tions whose gradients are not necessarily monotone and more generally, for non-
convex objectives.

In the direction of analyzing the price of anarchy, the dual variables of configura-
tion LPs have a surprising connection with the concept of Nash equilibria in games.
Specifically, if dual variables are defined as the cost of players and the social cost in
a game (up to some constant factors) then the dual constraints represent exactly the
definitions of Nash equilibria and of smooth games. Indeed, this observation is the
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starting point to the introduction of the smoothness notions in Section 1.3.2 in order
to analyze the algorithm performances. Based on this observation, the construction
of dual variables in our framework is guided by economic concepts. This allows us
to derives other interesting connections and improved PoA bounds in games.

In the direction of designing efficient online learning algorithms, the updating
procedure is carried out by the mirror descent method. We consider a discretization
of the objective function and the multilinear extension of this discretization. Then,
building on salient ideas in the above directions, we update the solutions in the di-
rection of the gradient of this multilinear extension. The discretization guarantees
the efficiency of algorithms and the multilinear-extension-based updates have sev-
eral useful properties which can be exploited using the machinery developed in our
framework.

Feasibility and Performance Guarantee

The notions of smoothness/concavity are particularly useful in our approach. Specif-
ically, the dual feasibility is proved naturally using these notions. The performance
of an algorithm and the efficiency of a game are then characterized by the smooth-
ness/concavity parameters of cost functions. The use of the smoothness/concavity
notions have several advantages: (i) it avoids the cumbersome technical details in the
analysis as well as in the assumptions of objective functions; (ii) it reduces the anal-
ysis of bounding the competitive ratios to determining the smoothness/concavity
parameters.

1.4 Contributions to Online Algorithms

We systematically use the primal-dual framework to design competitive algorithms
for problems with non-convex objective. We first illustrate our approach by consid-
ering a model which captures several well-studied problems. Then, we study general
online problems with covering and packing constraints.

1.4.1 Notations and Preliminaries

In an online problem, requests arrive over time and at any time an algorithm needs
to make an irrevocable decision to satisfy the current request without the full knowl-
edge about the future. An algorithm is r-competitive if for any request sequence, the
algorithm cost (or gain) is at most (at least, resp.) r times that of the optimal solution
(which has the full knowledge on the request sequence).

1.4.2 Primal-Dual Algorithms for A General Class

Model. In the model, there is a set of resources E and requests arrive online. At
the arrival of request i, a set of feasible strategies (actions) Si to satisfy request i is
revealed. Each strategy sij ∈ Si consists of a subset of resources in E . Each resource e
is associated to an arbitrary non-negative non-decreasing cost function fe and the cost
induced by resource e depends on the set of requests using e. The cost of a solution
is the total cost of resources, i.e., ∑e fe(Ae) where Ae is the set of requests using
resource e. The goal is design an algorithm that upon the arrival of each request,
selects a feasible strategy for the request while maintaining the cost of the overall
solution as small as possible.
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Result. Following the primal-dual approach based on configuration LPs and the
smoothness notion (Definition 1.1), we derive a simple competitive algorithm which
achieves optimal bounds in several applications.

Theorem 1.1 Assume that all resource cost functions are (λ, µ)-smooth for some parameters
λ > 0, µ < 1. Then there exists a greedy λ

1−µ -competitive algorithm for the general problem.

Applications.

We show the applicability of the theorem by deriving competitive algorithms for
several problems in online setting, such as MINIMUM POWER SURVIVAL NETWORK

ROUTING, VECTOR SCHEDULING, ENERGY-EFFICIENT SCHEDULING, PRIZE COLLECT-
ING ENERGY-EFFICIENT SCHEDULING, SUBSPACE APPROXIMATION, NON-CONVEX

FACILITY LOCATION. We describe some of the most representative ones below.
In ONLINE ENERGY-EFFICIENT SCHEDULING, one has to process jobs on unre-

lated machines. Each job has a released date, a deadline and a processing volume.
Each job has to be assigned and fully processed in a machine between its release
date and deadline. An algorithm can choose appropriate speed to process jobs and
that incur energy cost. The objective is to minimize the total energy cost. No result
has been known for this problem in parallel machine environments. Among oth-
ers, a difficulty is the construction of formulation with bounded integrality gap. We
notice that for this problem, Gupta et al. [67] gave a primal-dual competitive algo-
rithm for a single machine. However, their approach cannot be used for unrelated
parallel machines due to the large integrality gap of their formulation. For this prob-
lem, we present competitive algorithms for arbitrary energy cost functions beyond
the convexity property. Note that the convexity of cost functions is a crucial prop-
erty employed in previous work. If the energy cost have typical form f (x) = xα (as
the function of the speed x) for some parameter α then the competitive ratio of our
algorithm is O(αα). This competitive ratio is optimal up to a constant factor.

In ONLINE NON-CONVEX FACILITY LOCATION, clients arrive online and have to
be assigned to facilities. The cost of a facility consists of a fixed opening cost and
and a serving cost, which is an arbitrary monotone function depending on the num-
ber of clients assigned to the facility. The objective is to minimize the total client-
facility connection cost and the facility cost. This problem is related to the capac-
itated network design and energy-efficient routing problems [6, 87]. In the latter,
given a graph and a set of connectivity demands, the cost of each edge is uniform
and given by c + f α if f > 0 and 0 if f = 0, where c is a fixed cost for every edge
and f is the total of flow passing through the edge. (Here uniformity means the cost
functions are the same for every edge.) The objective is to minimize the total cost
while satisfying all connectivity demands. Antoniadis et al. [6], Krishnaswamy et al.
[87] have provided online/offline algorithms with poly-logarithmic guarantees. It is
an intriguing open questions (originally raised in [4]) to design a poly-logarithmic
competitive algorithm for non-uniform cost functions. The ONLINE NON-CONVEX

FACILITY LOCATION can be seen as a step towards this goal. In fact, the former can
be considered as the connectivity problem on a simple depth-2-graph and the cost
functions are now non-uniform.

Using our primal-dual framework, we derive a O(log n + λ
1−µ )-competitive algo-

rithm if the cost function is (λ, µ)-smooth. Specifically, the algorithm is inspired by
a primal-dual algorithm [58] in the classic setting and our configuration LP-based
approach. In particular, for the problem with non-uniform cost functions such as
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ci + wi f α
i where ci, wi are parameters depending on facility i and fi is the number of

clients assigned to facility i, the algorithm yields a competitive ratio of O(log n+ αα).
Besides, the algorithm mentioned in Theorem 1.1 can be used in the offline set-

ting. Restricted to the class of polynomials with non-negative coefficients, our al-
gorithm yields the competitive ratio of O(αα) while the best-known approximation
ratio is Bα ≈

(
α

log α

)α [94]. Our greedy algorithm is light-weight and much simpler
and faster than that in [94] which requires solving an LP of exponential size and
rounding fractional solutions. Hence, our algorithm can also be used to design ap-
proximation algorithms if one looks for the tradeoff between the simplicity and the
performance guarantee.

1.4.3 Primal-Dual Approach for 0− 1 Covering Problems

0− 1 Covering Problems. Let E be a set of n resources and let f : {0, 1}n → R+ be
an abitrary monotone cost function. Let xe ∈ {0, 1} be a variable indicating whether
resource e is selected. If a resource e is selected then it remains selected until the
end. The covering constraints ∑e ai,exe ≥ 1 for every i are revealed one-by-one and
at any step, one needs to maintain a feasible integer solution x. The goal is to design
an algorithm that minimizes f (x) subject to the online covering constraints and xe ∈
{0, 1} for every e such that variables can only be changed from 0 to 1.

In order to design algorithms for this class of problem, we consider the multilin-
ear extension of function f .

Definition 1.5 Given f : {0, 1}n → R+, its multilinear extension F : [0, 1]n → R+ is
defined as

F(x) := ∑
S

∏
e∈S

xe ∏
e/∈S

(1− xe) · f (1S)

where 1S is the characteristic vector of S (i.e., the eth-component of 1S equals 1 if e ∈ S and
equals 0 otherwise).

An alternative way to define F is to set F(x) = E
[

f (1T)
]

where T is a random
set such that a resource e appears in T with probability xe. Note that F(1S) = f (1S).

Our algorithm, as well as the one in [11] for convex with monotone gradients
and the recent algorithm for `k-norms [101], are extensions of the Buchbinder-Naor
primal-dual framework [33]. A distinguishing point of our algorithm compared to
the ones in [11, 101] relies on the multiplicative update, which is crucial in online
primal-dual methods. The approaches in [11, 101] use the gradient ∇ f (x) at the
current primal solution x to define a multiplicative update for the primal. In our
approach, we multiplicatively update the primal by some parameter related to the
gradient of the multilinear extension ∇F(x). This parameter is always maintained
to be at least ∇F(x) and in case ∇F(x) is non-decreasing, the parameter is indeed
equal to ∇F(x). This multiplicative update, together with the configuration LPs
and the notion of local smoothness, enable us to derive a competitive algorithm for
convex objective functions whose gradients are not necessarily monotone and more
generally, for non-convex objectives.

Building on our approach, we derive a primal-dual algorithm in which the com-
petitive ratio is determined in terms of the min-locally-smoothness parameters (Def-
inition 1.2).

Theorem 1.2 Let F be the multilinear extension of the objective cost f and d be the maximal
row sparsity of the constraint matrix, i.e., d = maxi |{aie : aie > 0}|. Assume that F is
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(
λ, µ

ln(1+2d2)

)
-min-locally-smooth for some parameters λ > 0 and µ < 1. Then there exists

a O
(

λ
1−µ · ln d

)
-competitive algorithm for the fractional covering problem.

Applications.

We apply our algorithm to several widely-studied classes of functions in optimiza-
tion.

First, for the class of non-negative polynomials of degree k, the algorithm yields
a O
(
(k log d)k)-competitive fractional solution that matches a result in [11].

Second, beyond convexity, we consider a natural class of non-convex cost func-
tions which represent a typical behaviour of resources in serving demand requests.
Non-convexity represents a strong barrier in optimization in general and in the de-
sign of algorithms in particular. We show that our algorithm is competitive for this
class of functions.

Finally, we illustrate the applicability of our algorithm to the class of submod-
ular functions. We make a connection between the local-smooth parameters to the
concept of total curvature κ of submodular functions. The total curvature has been
widely used to determine both upper and lower bounds on the approximation ra-
tios for many submodular and machine learning problems [47, 65, 12, 124, 80, 117].
We show that our algorithm yields a O

( log d
1−κ

)
-competitive fractional solution for the

problem of minimizing a submodular function under covering constraints. To the
best of our knowledge, the submodular minimization under general covering con-
straints has not been studied in the online setting.

1.4.4 Primal-Dual Approach for 0− 1 Packing Problems

0− 1 Packing Problems. Let E be a set of n resources and let f : {0, 1}n → R+ be
an abitrary cost function. Let xe ∈ {0, 1} be a variable indicating whether resource
e is selected. The packings constraints ∑e bi,exe ≤ 1 for every i are given in advance
and resources e are revealed online one-by-one. At any time, one needs to maintain
a feasible integer solution x. The goal is to design an algorithm that maximizes f (x)
subject to the online packing constraints and xe ∈ {0, 1} for every e.

Following the salient ideas for fractional covering problems, we derive an algo-
rithm with the competitive ratio determined in terms of the max-locally-smoothness
parameters (Definition 1.3).

Theorem 1.3 Let F be the multilinear extension of the objective cost f . Denote the row
sparsity d := maxi |{bie : bie > 0}| and ρ := maxi maxe,e′ :bie′>0

bie/bie′ . Assume that F
is (λ, µ)-max-locally-smooth for some parameters λ > 0 and µ < 1. Then there exists a
O
( 2 ln(1+dρ)+µ

λ

)
-competitive algorithm for the fractional packing problem.

Note that when f is a linear function, the smooth parameters are λ = 1 and
µ = 0. In this case, the performance guarantee is the same (up to a constant factor)
to that of maximizing a linear function under packing constraints [33] and therefore
asymptotically optimal.

Applications

We consider applications to online submodular maximization problems. Submod-
ular functions are interesting since they are neither convex nor concave. Besides,
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submodular maximization constitutes a major research agenda in optimization, ma-
chine learning and has been widely studying. However, in the context of online al-
gorithms, not much has been known especially for submodular maximization with
constraints. Designing competitive algorithms for online submodular maximization
has been identified as an important direction in the recent survey [85]. Buchbinder
et al. [36] have studied the online problem of maximizing the sum of weighted rank
functions subject to matroid constraints. The objective here is a particular submodu-
lar function. The authors give an algorithm with competitive ratio depending loga-
rithmically on the numbers of elements and on weighted rank functions. In another
approach, Buchbinder et al. [38] have considered submodular optimization with pre-
emption, where one can reject previously accepted elements, and have given con-
stant competitive algorithms for unconstrained and knapsack-constraint problems.

We show that there exists an algorithm which outputs competitive fractional so-
lutions for online submodular maximization with packing constraints. The competi-
tive ratio is O

(
log(1 + dρ)

)
which is independent of the submodular objective. Note

that using the online contention resolution rounding schemes [57], one can obtain
randomized algorithms for several specific constraint polytopes, for example, knap-
sack polytopes, matching polytopes and matroid polytopes.

1.4.5 Related work

In this section we summarize further related work which are not mentioned earlier.
Primal-dual methods have been shown to be powerful tools in online compu-

tation. Buchbinder and Naor [33] presented a primal-dual method for linear pro-
grams with packing/covering constraints. Their method unifies several previous
potential-function-based analyses and give a principled approach to design and an-
alyze algorithms for problems with linear relaxations. Convex objective functions
have been extensively studied in online settings in recent years, in areas such as
energy-efficient scheduling [3, 103, 50, 78, 10], paging [96], network routing [67],
combinatorial auctions [28, 77] and matching [51]. Recently, Azar et al. [11] gave
an unified framework for covering/packing problems with convex objectives whose
gradients are monotone. Consequently, improved algorithms have been derived for
several specific problems. The above approaches rely crucially on the convexity of
cost functions. Specifically, the construction of dual programs is based on convex
conjugates and Fenchel duality for primal convex programs. Very recently, Nagara-
jan and Shen [101] have considered objective functions as the of sum of `k-norms.
This class of functions does not fall into the framework developped in [11], since the
gradients are not necessarily monotone. Nagarajan and Shen [101] proved that the
algorithm presented in [11] yields a nearly tight O

(
log d + log max aij

min aij

)
-competitive

ratio where aij’s are entries in the covering matrix. Using these approaches, it is
not clear how to design competitive algorithms for non-convex functions or even for
other convex functions with non-monotone gradient. A distinguishing point of our
approach is that it gives a framework to study non-convex cost functions.

1.5 Contributions to Algorithmic Game Theory

The goal of this section is to present a unified primal-dual approach to analyze effi-
ciency of games. Recall that the approach consists of associating a game to an opti-
mization problem and formulate a corresponding configuration integer program to
the problem. Next consider the linear program by relaxing the integer constraints
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and its dual LP. Then given a Nash equilibrium, construct dual variables in such a
way that one can relate the dual objective to the cost of the Nash equilibrium. Intu-
itively, one dual constraint corresponds exactly to the definition of Nash equilibrium
and the other constraint settles the PoA bounds. The PoA is then bounded by the
primal objective (essentially, the cost of the Nash equilibrium) and the dual objective
(a lower bound of the optimum cost by weak duality).

We show the potential and the wide applicability of the approach throughout
various results in the contexts of complete and incomplete-information environ-
ments, from the settings of congestion games to welfare maximization. The approach
allows us to unify several previous results and establish new ones beyond the current
techniques. It is worthy to note that the analyses are simple and are guided by dual
LP in the same spirit as primal-dual methods for designing algorithms. Moreover,
under the lens of LP duality, the notion of smooth games in both full-information
settings [108] and incomplete-information settings [109, 119], the recent notion of
no-envy learning [49] and the new notion of dual smooth (in this paper) can be nat-
urally derived, which lead to the optimal bounds of the PoA of several games.

1.5.1 Notations and Preliminaries

Nash Equilibria and Smooth Games

In a game, there are n players and each player i selects a strategy si from a set Si for
1 ≤ i ≤ n and this forms a strategy profile s = (s1, . . . , sn). The cost Ci(s) of player i
is a function of the strategy profile s. A pure Nash equilibrium is a strategy profile s
such that no player can decrease its cost via a unilateral deviation; that is, for every
player i and every strategy s′i ∈ Si,

Ci(s) ≤ Ci(s′i, s−i)

where s−i denotes the strategies chosen by all players other than i in s. The notion of
Nash equilibrium is extended to the following more general equilibrium concepts.

A mixed Nash equilibrium [102] of a game is a product distribution σ = σ1 × . . .×
σn where σi is a probability distribution over the strategy set of player i such that no
player can decrease its expected cost under σ via a unilateral deviation:

Es∼σ[Ci(s)] ≤ Es−i∼σ−i [Ci(s′i, s−i)]

for every i and s′i ∈ Si, where σ−i is the product distribution of all σi′ ’s other than σi.
A correlated equilibrium [8] of a game is a joint probability distribution σ over the

strategy profile of the game such that

Es∼σ[Ci(s)|si] ≤ Es∼σ[Ci(s′i, s−i)|si]

for every i and si, s′i ∈ Si.
Finally, a coarse correlated equilibrium [98] of a game is a joint probability distribu-

tion σ over the strategy profiles of the game such that

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s′i, s−i)]

for every i and s′i ∈ Si.
These notions of equilibria are presented in the order from the least to the most

general ones and a notion captures the previous one as a strict subset.
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Let C : S1 × . . .× Sn → R be the social cost of a game. Then the price of anarchy
(PoA) of a minimization game is defined as sups C(s)/OPT where the suprimum is
taken all Nash equilibria s and OPT is the optimal social cost. The definition extends
to the notions of mixed PoA, coarse PoA and coarse correlated PoA.

Definition 1.6 ([108]) A game with a joint cost objective function C(s) = ∑n
i=1 Ci(s) is

(λ, µ)-smooth if for every two outcomes s and s∗,

n

∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + µ · C(s)

The robust price of anarchy of a game G is defined as

ρ(G) := inf
{

λ

1− µ
: the game is (λ, µ)-smooth where µ < 1

}

Mechanism Design and Smooth Auctions

In a general mechanism design setting, each player i has a set of actions Ai for 1 ≤
i ≤ n. Given an action ai ∈ Ai chosen by each player i for 1 ≤ i ≤ n, which lead
to the action profile a = (a1, . . . , an) ∈ A = A1 × . . .×An, the auctioneer decides
an outcome o(a) among the set of feasible outcomes O. Each player i has a valuation
(or type) vi taking values in a parameter space Vi. For each outcome o ∈ O, player i
has utility ui(o, vi) depending on the outcome of the game and its valuation vi. Since
the outcome o(a) of the game is determined by the action profile a, the utility of a
player i is denoted as ui(a; vi). We are interested in auctions that in general consist
of an allocation rule and a payment rule. Given an action profile a = (a1, . . . , an),
the auctioneer decides an allocation and a payment pi(a) for each player i. Then,
the utility of player i with valuation vi, following the quasi-linear utility model, is
defined as

ui(a; vi) = vi − pi(a)

The social welfare of an auction is defined as the total utility of all participants (the
players and the auctioneer):

SW(a;v) =
n

∑
i=1

ui(a; vi) +
n

∑
i=1

pi(a)

In incomplete-information settings, the valuation vi of each player is a private
information and is drawn independently from a publicly known distribution F with
density function f . Let ∆(Ai) be the set of probability distributions over the actions
in Ai. A strategy of a player is a mapping σi : Vi → ∆(Ai) from a valuation vi ∈ Vi
to a distribution over actions σi(vi) ∈ ∆(Ai).

Definition 1.7 (Bayes-Nash equilibrium) A strategy profileσ = (σ1, . . . , σn) is a Bayes-
Nash equilibrium (BNE) if for every player i, for every valuation vi ∈ Vi, and for every
action a′i ∈ Ai:

Ev−i∼F−i(vi)

[
Ea∼σ(v) [ui(a; vi)]

]
≥ Ev−i∼F−i(vi)

[
Ea−i∼σ−i(v−i)

[
ui(a′i,a−i; vi)

]]
For a vectorw, we usew−i to denote the vectorw with the i-th component removed.
Besides, F−i(vi) stands for the probability distribution over all players other than i
conditioned on the valuation vi of player i.
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The price of anarchy of Bayes-Nash equilibria of an auction is defined as

inf
F ,σ

Ev∼F
[
Ea∼σ(v)[SW(a;v)]

]
Ev∼F

[
OPT(v)

]
where the infimum is taken over Bayes-Nash equilibria σ and OPT(v) is the optimal
welfare with valuation profile v.

Smooth auctions have been defined by Roughgarden [109] and Syrgkanis and
Tardos [119]. The definitions are slightly different but both are inspired by the origi-
nal one [108] (Definition 1.6) and all known smoothness-based proofs can be equiv-
alently analyzed by one of these definitions.

Definition 1.8 ([109]) For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every
valuation profile v = (v1, . . . , vn), there exist action distributions D∗1(v), . . . , D∗n(v) over
A1, . . . ,An such that, for every action profile a,

∑
i

Ea∗i ∼D∗i (v)
[
ui(a∗i ,a−i; vi)

]
≥ λ · SW(a∗;v)− µ · SW(a;v). (1.3)

Definition 1.9 ([119]) For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every
valuation profile v = (v1, . . . , vn), there exist action distributions D∗1(v), . . . , D∗n(v) over
A1, . . . ,An such that, for every action profile a,

∑
i

Ea∗i ∼D∗i (v)
[
ui(a∗i ,a−i; vi)

]
≥ λ ·OPT(v)− µ · REV(a;v). (1.4)

1.5.2 Games in Full-Information Settings

We first revisit smooth games by the primal-dual approach and show that the primal-
dual approach captures the smoothness framework. The smoothness framework
was introduced in [108] and quickly became a standard technique. More precisely,
Roughgarden [108] proved that every (λ, µ)-smooth game admits the PoA at most
λ/(1− µ). Through the duality approach, we show that in terms of techniques to
study the PoA for complete information settings, LP duality and the smoothness
framework are exactly the same thing. Specifically, one of the dual constraint corre-
sponds exactly to the definition of smooth games given in [108].

Theorem 1.4 The primal-dual approach captures the smoothness framework in full infor-
mation settings.

Congestion Games

We consider fundamental classes of congestion games in which we revisit and unify
results for both atomic and non-atomic congestion games and prove the optimal PoA
bound of coarse correlated equilibria in splittable congestion games.

Atomic congestion games. In this class, although the PoA bound follows the re-
sults for smooth games (Theorem 1.4), we provide another configuration formula-
tion and a similar primal-dual approach. The purpose of this formulation is twofold.
First it shows the flexibility of the primal-dual approach. Second, it sets up the
ground for an unified approach to other classes of congestion games.
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Non-atomic congestion games. In this class, we re-prove the optimal PoA bound
[112]. Along the line towards the optimal PoA bound for non-atomic congestion
games, the equilibrium characterization by a variational inequality is at the core of
the analyses [112, 48, 46]. In our proof, we establish the optimal PoA directly by
the mean of LP duality. By the LP duality as the unified approach, one can clearly
observe that non-atomic setting is a version of the atomic setting in large games
(in the sense of [55]) in which each player weight becomes negligible (hence, the
PoA of the atomic congestion games tend to that of non-atomic ones). Besides, an
advantage with LP approaches is that one can benefit from powerful techniques
that have been developing for linear programming. Concretely, using the general
framework on resource augmentation and primal-dual recently presented [92], we
manage to recover and extend a resource augmentation result related to non-atomic
setting [111].

Theorem 1.5 In every non-atomic congestion game, for any constant r > 0, the cost of an
equilibrium is at most 1/r the optimum of the underlying optimization problem in which
each demand is multiplied by a factor (1 + r).

Splittable congestion games. Roughgarden and Schoppmann [110] has presented
a local smoothness property, a refinement of the smoothness framework, and proved
that every (λ, µ)-local-smooth splittable game admits the PoA λ/(1−µ). This bound
is tight for a large class of scalable cost functions in splittable games and holds for
PoA of pure, mixed, correlated equilibria. However, this bound does not hold for
coarse correlated equilibria and it remains an intriguing open question raised in
[110]. Building upon the resilient ideas of non-atomic and atomic settings, we de-
fine a notion, called dual smoothness, which is inspired by the dual constraints. This
new notion indeed leads to the tight PoA bound for coarse correlated equilibria in
splittable games for a large class of cost functions; that answers the question in [110].
Not that the matching lower bound is given in [110] and that holds even for pure
equilibria.

Definition 1.10 A cost function ` : R+ → R+ is (λ, µ)-dual-smooth if for every vectors
u = (u1, . . . , un) and v = (v1, . . . , vn),

v`(u) +
n

∑
i=1

ui(vi − ui) · `′(u) ≤ λ · v`(v) + µ · u`(u)

where u = ∑n
i=1 ui and v = ∑n

i=1 vi. A splittable congestion game is (λ, µ)-dual-smooth
if for every resource e in the game, function `e is (λ, µ)-dual-smooth.

Theorem 1.6 The price of anarchy of coarse correlated equilibria of a splittable congestion
game G is at most inf λ/(1 − µ) where the infimum is taken over (λ, µ) such that G is
(λ, µ)-dual-smooth. This bound is tight for the class of scalable cost functions.

1.5.3 Games in Incomplete-Information Settings

We next consider the inefficiency of Bayes-Nash equilibria in the context of welfare
maximization in incomplete-information environments.

Smooth Auctions. The notion of smooth auctions in incomplete-information set-
tings, inspired by the original smoothness framework [108], has been introduced
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by Roughgarden [109], Syrgkanis and Tardos [119]. This powerful notion has been
widely used to study the PoA of Bayes-Nash equilibria (see the recent survey [114]).
We show that the primal-dual approach captures the smoothness framework in
incomplete-information settings. In other words, the notion of smooth auctions can
be naturally derived from dual constraints in the primal-dual approach.

Informal Theorem 1.1 The primal-dual approach captures the smoothness framework in
incomplete-information settings.

Simultaneous Item-Bidding Auctions: Beyond Smoothness. Many PoA bounds
in auctions are settled by smoothness-based proofs. However, there are PoA bounds
for auctions proved via non-smooth techniques and these techniques seem more
powerful than the smoothness framework in such auctions. Representative exam-
ples are the simultaneous first- and second-price auctions where players’ valuations
are sub-additive. Feldman et al. [54] have proved that the PoA is constant while
the smooth argument gives only logarithmic guarantees. We show that in this con-
text, our approach is beyond the smoothness framework and also captures the non-
smooth arguments in [54] by re-establishing their results. Specifically, a main step in
our analysis — proving the feasibility of a dual constraint — corresponds exactly to
a crucial claim in [54]. From this point of view, the primal-dual approach helps to
identify the key steps in settling the PoA bounds.

Informal Theorem 1.2 ([54]) Assume that players have independent distributions over
sub-additive valuations. Then, every Bayes-Nash equilibrium of a first-price auction and
of a second price auction has expected welfare at least 1/2 and 1/4 of the maximal welfare,
respectively.

Subsequently, we illuminate the potential of the primal-dual approach in formu-
lating new concepts. Concretely, Daskalakis and Syrgkanis [49] have very recently
introduced no-envy learning dynamic — a novel concept of learning in auctions. Note
that when players have fractionally sub-additive (XOS) valuations1, no-envy out-
comes are a relaxation of no-regret outcomes. No-envy dynamics have advantages
over no-regret dynamics. In particular, no-envy outcomes maintain the approxi-
mate welfare optimality of no-regret outcomes while ensuring the computational
tractability. Perhaps surprisingly, there is a connection between the primal-dual ap-
proach and no-envy dynamics. Indeed, the latter can be naturally derived from the
dual constraints very much in the same way as the smoothness argument is. We
show this connection by revisiting the following theorem by the means of the primal-
dual approach.

Informal Theorem 1.3 ([49]) Assume that players have XOS valuations. Then, every no-
envy dynamic has the average welfare at least half the expected optimal welfare.

Sequential Auctions. To illustrate the applicability of the primal-dual approach,
we consider thereafter another format of auctions — sequential auctions. In a simple
model of sequential auctions, items are sold one-by-one via single-item auctions. Se-
quential auctions have a long and rich literature [86] and sequentially selling items
leads to complex issues in analyzing PoA. Leme et al. [90], Syrgkanis and Tardos

1A valuation v(·) is XOS if there exists a family of vectors W = (w`)` where w` ∈ Rm
+ such that

v(S) = maxw`∈W ∑j∈S w`
j ∀S ⊂ [m]. The class XOS is a subset of sub-additive functions and is a

superset of sub-modular functions.



20 Chapter 1. Introduction

[118] have studied sequential auctions for matching markets and matroid auctions
in complete and incomplete-information settings in which at each step, an item is
sold via the first-price auctions. In this paper, we consider the sequential auctions
for sponsored search via the second-price auctions. Informally, auctioneer sells ad-
vertizing slots one-by-one in the non-increasing order of click-though-rates (from the
most attractive to the least one). At each step, players submit bids for the currently-
selling slot and the highest-bid player receives the slot and pays the second highest
bid. In the auction, we study the PoA of perfect Bayesian equilibria and show the fol-
lowing improvement over the best-known PoA bound of 2.927 [41] for the sponsored
search problem.

Informal Theorem 1.4 The PoA of sequential second-price auctions for the sponsored search
problem is at most 2.

An observation is that although the behaviour of players in sequential auctions
might be complex, the performance guarantee is better than the currently best-known
one for simultaneous second price auctions for the sponsored search problem. Con-
sequently, this result shows that the efficiency of sequential auctions is not necessar-
ily worse than the simultaneous ones (and also analyzing sequential auction is not
necessarily harder than analyzing simultaneous ones). Moreover, using the primal-
dual approach, the proof is fairly simpler than the smoothness-based one.

Building upon the salient ideas for the sponsored search problem, we provide an
improved PoA bound of 2 for the matching market problem where the best known
PoA bound is 2e/(e − 1) ≈ 3.16 due to Syrgkanis and Tardos [118]. That also an-
swers a question raised in [118] whether the PoA in the incomplete-information set-
tings must be strictly larger than the best-known PoA bound (which is 2) in the full-
information settings.

Informal Theorem 1.5 The PoA of sequential first-price auctions for the matching market
problem is at most 2.

1.5.4 Related works

As the main point of the paper is to emphasize the primal-dual approach to study
game efficiency, in this section we mostly concentrate on currently existing meth-
ods. Results related to specific problems will be summarized in the corresponding
sections.

The most closely related to our work is a recent result [88]. In their approach,
Kulkarni and Mirrokni [88] considered a convex formulation of a given game and
its dual program based on Fenchel duality. Then, given a Nash equilibrium, the
dual variables are constructed by relating the cost of the Nash equilibrium to that of
the dual objective. In high-level, our approach has the same idea as [88] and both
approaches indeed have inspired by the standard primal-dual and dual-fitting in
the design of algorithms. Our approach is distinguished to that in [88] in the two
following aspects. First, we consider arbitrary (non-decreasing) objective functions
and make use of configuration LPs in order to reduce substantially the integrality
gap while the approach in [88] needs convex objective functions. In term of ap-
proaches based on mathematical programs in approximation algorithms, we came
up with stronger formulations than those in [88] — a crucial point toward optimal
bounds. Second, we have shown a wide applicability of our approach from full-
information environments to incomplete-information ones while the approach in
[88] deals only with full-information settings. A question, which has been raised
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in a the recent survey [114], is whether the framework in [88] could be extended to
incomplete-information settings. Our primal-dual approach gives a positive answer
to that question.

The connection between LP duality and the PoA have been previously consid-
ered by Nadav and Roughgarden [100] and Bilo [25]. Both papers follow an ap-
proach which is different to ours. Roughly speaking, given a game they consider
corresponding natural formulations and incorporate the equilibrium constraint di-
rectly to the primal (whereas in our approach the equilibrium constraint appears
naturally in the dual). This approach surfers the integrality-gap issue when one con-
siders pure Nash equilibria and the objectives are non-linear or non-convex.

For the problems studied in the paper, we systematically strengthen natural LPs
by the construction of configuration LPs presented in [94]. Makarychev and Sviri-
denko [94] propose a scheme that consists in solving the new LPs (with exponential
number of variables) and rounding the fractional solutions to integer ones using de-
coupling inequalities for optimization problems. Instead of rounding techniques,
we consider a primal-dual approach which is more adequate to studying game effi-
ciency.

The smoothness framework has been introduced by Roughgarden [108]. This
simple, elegant framework gives tight bounds for many classes of games in full-
information settings including the celebrated atomic congestion games (and others
in [108, 24]). Subsequently, Roughgarden and Schoppmann [110] presented a sim-
ilar notion, called local-smoothness, to study the PoA of splittable games in which
players can split their flow to arbitrarily small amounts and route the amounts in
different manners. The local-smoothness is also powerful. It has been used to settle
the PoA for a large class of cost functions in splittable games [110] and in opinion
formation games [23].

The smoothness framework has been extended to incomplete-information envi-
ronments by Roughgarden [109], Syrgkanis and Tardos [119]. It has successfully pro-
duced tight PoA bounds for several widely-used auction formats. We recommend
the reader to a very recent survey [114] for applications of the smoothness frame-
work in incomplete-information settings. However, the smoothness argument has
its limit. As mentioned earlier, the most illustrative examples are the simultaneous
first and second price auctions where players’ valuations are sub-additive. Feldman
et al. [54] have proved that the PoA is constant while the smooth argument gives
only logarithmic guarantees. An interesting open direction, as raised in [114], is to
develop new approaches beyond the smoothness framework.

Linear programming (and mathematical programming in general) has been a
powerful tool in the development of game theory. There is a vast literature on this
subject. One of the most interesting recent treatments on the role of linear program-
ming in game theory is the book [122]. Vohra [122] revisited fundamental results in
mechanism design in an elegant manner by the means of linear programming and
duality. It is surprising to see that many results have been shaped nicely by LPs.

1.6 Contributions to Efficient Online Learning Algorithms

We consider the direction of designing efficient learning algorithms and present reg-
ularity conditions which enables such algorithms. We establish the applicability of
our approach by deriving efficient online learning algorithms in welfare and revenue
maximization problems.
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1.6.1 Definitions and Framework

General problem. We are given a convex set K ⊂ Rn and a family of gain func-
tions F . At each time step t = 1, 2, . . ., an algorithm chooses xt ∈ K. After the
algorithm committed to its choice, an adversary selects a function f t ∈ F : K → R

that subsequently induces the gain f t(xt) for the algorithm. Function f t is consid-
ered as a black-box and one can only query its values. The goal is to achieve the total
gain approximately close to that obtained by the best decision x ∈ K in hindsight.

We consider the following notion of regret which measures the performance of
algorithms.

Definition 1.11 An algorithm is (r, R(T))-regret if for arbitrary total number of time steps
T and for any sequence of cost functions f1, . . . , fT ∈ F ,

T

∑
t=1

f t(xt) ≥ r ·max
x∈K

T

∑
t=1

f t(x)− R(T).

In the paper, we seek algorithms with regret bound (r, R(T)) such that r > 0 is as
large as possible (ideally, close to 1) and R(T) is sublinear as a function of T, i.e.,
R(T) = o(T). We also call r as the approximation ratio of the algorithm.

As mentioned earlier, efficient online algorithms do not exist in general adver-
sarial environments without any structure regularity. In our framework, we intro-
duce the regularity notion of (λ, µ)-concavity (Definition 1.4) which is crucial in our
framework in order to design efficient online learning algorithms.

Our approach follows the mirror descent algorithm. Using the latter, one can
derive the regret bound as a function of the concavity parameters assuming access to
the gradient values. However, the main issue of the problem is that functions f t’s
are given as black-boxes and we do not have access to the gradients of the functions.
(However, we can query the values of the functionss.) We bypass that issue by con-
sidering a lattice discretization of the domain [0, 1]n and the multilinear extension
of the functions restricted on the lattice. The multilinear extension approximates
the corresponding function when the latter is regular, for example a Lipschitz func-
tion. More importantly, the gradient of the multilinear extension can be computed
by requesting function values at lattices points. Subsequently, applying the standard
technique of mirror descent w.r.t the gradient of the multilinear extension, we can
bound the regret of our algorithm.

Theorem 1.7 Given functions f t : [0, 1]n → R for 1 ≤ t ≤ T. Let Ft be the multilinear
extension of the discretization of f t based on a lattice L (defined later). Assume that for every
1 ≤ t ≤ T, the multilinear extension Ft is (λ, µ)-concave, ‖∇Ft‖∗ is bounded by L and the
Bregman divergence (defined later) based on some αΦ-strongly convex function Φ is bounded
by G2. Then, there exists an efficient online randomized algorithm that achieves

T

∑
t=1

E
[

f t(xt)
]
≥ λ

µ
·max
x∈K

T

∑
t=1

f t(x)−O
(

GL
µ

√
2αΦT

)
The algorithm makes a polynomial number of value queries to functions f t’s.

1.6.2 Application to Fictitious Play in Smooth Auctions

We consider adaptive dynamics in auctions. In the setting, there is an underly-
ing auction o and there are n players, each player i has a set of actions Ai and a
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valuation function vi taking values in [0, 1] (by normalization). In every time step
1 ≤ t ≤ T, each player i selects a strategy which is a distribution in ∆(Ai) accord-
ing to some given adaptive dynamic. After all players committed to their strategies,
which results in a strategy profile σt ∈ ∆(A), the auction induces a social wel-
fare SW(o,σt) := Ea∼σt

[
SW(o(a);v)

]
. In this setting, we study the total welfare

achieved by the given adaptive dynamic and compare it to the optimal welfare. This
problem can be cast in the online optimization framework in which at time step t,
the player strategy profile corresponds to the decision of the algorithm and subse-
quently, the gain of the algorithm is the social welfare induced by the auction w.r.t
the strategy profile.

Smooth auctions (Definitions 1.9) is an important class of auctions in welfare
maximization. The smoothness notion has been introduced in order to characterize
the efficiency of (Bayes-Nash) equilibria of auctions. It has been shown that several
auctions in widely studied settings are smooth; and many proof techniques analyz-
ing equilibrium efficiency can be reduced to the smooth argument.

It has been proved that if an auction is (λ, µ)-smooth then every Bayes-Nash
equilibrium of the auction has expected welfare at least λ/µ fraction of the optimal
auction [109, 119]. The performance guarantee holds even for vanishing regret se-
quences. A sequence of actions profiles a1,a2, . . . , is a vanishing regret sequence if for
every player i and action a′i,

lim
T

1
T

T

∑
t=1

[
ui(a′i,a

t
−i; vi)− ui(a

t; vi)
]
≤ 0.

The smoothness framework does not extend to non-vanishing regret dynamics.
However, several interesting dynamics are not guaranteed to have the vanishing
regret property. In a recent survey, Roughgarden et al. [114] have raised a ques-
tion whether adaptive dynamics without the vanishing regret condition can achieve
approximate optimal welfare. Among others, fictitious play [30] is an interesting,
widely-studied dynamic which attracts a significant attention in the community.

We consider a continuous version of fictitious play in smooth auctions, called Per-
turbed Discrete Time Fictitious Play (PDTFP). This dynamic in general does not ad-
mit vanishing regret [21, Example 1.2]. We prove that given an offline (λ, µ)-smooth
auction, PDTFP dynamic achieves a λ/(1 + µ) fraction of the optimal welfare; thus
answering the above open question of Roughgarden et al. [114]. To the best of our
knowledge, prior to our work, no such guarantee has been proven in non-stationary,
non-stochastic environments.

Theorem 1.8 If the underlying auction o is a (λ, µ)-smooth then the PDTFP dynamic
achieves

(
λ

1+µ , R(T)
)

-regret where R(T) = O
(G
√

T
1+µ

)
and G is a parameter defined later.

1.6.3 Application to Revenue Maximization in Multi-Dimensional Envi-
ronments

We consider online simultaneous second-price auctions with reserve prices. In this
setting, there are n bidders2 and m items to be sold to these bidders. At every time
step t = 1, 2, . . . , T, the auctioneer selects reserve prices rt

i = (rt
i1, . . . , rt

im) for each
bidder i where rt

ij is the reserve price of item j for bidder i. Each bidder i for 1 ≤ i ≤ n
has a (private) valuation vt

i : 2[m] → R+ over subsets of items. After the reserve

2in this setting we call players as bidders
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prices have been chosen, every bidder i picks a bid vector bt
i where bt

ij is the bid of
bidder i on item j for 1 ≤ j ≤ m. Then the auction for each item 1 ≤ j ≤ m works as
follows: (1) remove all bidders i with bt

ij < rt
ij; (2) run the second price auction on the

remaining bidders to determine the winner of item j; (3) charge the winner of item j
the maximum between rt

ij and the second highest bid among non-removed bids bt
ij.

The objective of the auctioneer is to achieve the total revenue approximately close to
that achieved by the best fixed reserve-price auction.

The second-price auctions with reserve prices in single-parameter environments
have been considered in online learning framework by Roughgarden and Wang
[113]. They gave a polynomial-time online algorithm that achieves half the revenue
of the best fixed reserve-price auction minus a term O(

√
T log T) (so their algorithm

is (1/2, O(
√

T log T))-regret in our terminology).
In this paper, we show that there exists an efficient online learning algorithm

for the problem in multi-parameter environments. A distinguishing point of our
algorithm compared to [113] is that we consider the Follow-the-Regularized-Leader
approach whereas [113] considers the Follow-the-Perturbed-Leader strategy.

Theorem 1.9 There exist an online polynomial-time algorithm that achieves a regret bound
of
(
1/2, O(m

√
nmT log T)

)
for revenue maximization in multi-parameter environments.

Using our framework, the main task is to design a (λ, µ)-concave offline algo-
rithm. Roughly speaking, the offline algorithm selects a reserve price or the fixed
zero reserve price, each with probability 1/2. This offline algorithm is based on
the observation that the maximum between the revenue of a reserve price and that
of the fixed zero reserve price gives rise to a (1, 1)-concave function. Therefore, in
order to guarantee a competitive revenue, the offline algorithm chooses each with
probability 1/2. Interestingly, the offline algorithm is exactly the one in [113] (for
single-parameter environments) which has been proved using a different approach.
Note that on the negative side, no efficient algorithm can achieve an approximation
ratio better than 884

885 unless NP ⊆ RP [113].

1.6.4 Related Work

Our work is related to the design of efficient online learning algorithms and the
auction design using learning techiques.

Online Learning. Online Learning, or Online Convex Optimization, is an active re-
search domain. In this section, we only summarize works which are directly related
to ours. We refer the reader to excellent books [116, 75] and references therein for a
more complete overview. The first no-regret algorithm has been given by Hannan
[68]. Subsequently, Littlestone and Warmuth [91] and Freund and Schapire [60] gave
improved algorithms with regret

√
log(|A|)o(T) where |A| is the size of the action

space. However, these algorithms have running-time Ω(|A|) which is exponential in
many applications. An intriguing question is whether there exists a no-regret online
algorithm with running-time polynomial in log(|A|). As mentioned earlier, Hazan
and Koren [74] proved that no such algorithm exists in general settings without any
assumption on the structure. Characterizing necessary and sufficient conditions of
the existence of efficient no-regret online algorithms is a major open question.

In their breakthrough, Kalai and Vempala [81] presented the first efficient online
algorithm, called Follow-the-Perturbed-Leader (FTPL), for linear objective functions.
The strategy consists of adding perturbation to the cumulative gain (payoff) of each
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action and then selecting the action with the highest perturbed gain. This strat-
egy has been generalized and successfully applied to several settings [73, 120, 49].
Recently Dudik et al. [52] gave an algorithm called Generalized Follow-the-Perturbed-
Leader (GFTPL) and derived sufficient conditions for oracle-efficient online learn-
ing. As its name suggested, algorithm GFTPL generalizes the Follow-the-Perturbed
Leader approach for linear functions [81] and its extension to submodular functions
[73], contextual learning [120] and learning in simultaneous second-price auctions
[49]. Consequently, Dudik et al. [52] obtained oracle-efficient no-regret algorithms
for several classes in auction design and in contextual learning. Note that their ap-
proach requires an (exact/approximate) best-response oracle.

In the primal-dual aspect, the FTPL is indeed the Follow-the-Regularized-Leader
(FTRL), introduced by Shalev-Shwartz and Singer [115], in which the random per-
turbation can be considered as a regularization. Moreover, Hazan and Kale [72]
showed that FTRL is equivalent to Online Mirror Descent. In the paper, we consider
the latter to design our online learning algorithm.

Smooth Auctions and Fictitious Play. The smoothness framework has been in-
troduced in order to prove approximation guarantees for equilibria in complete-
information [108] and incomplete-information [119, 109] games. Smooth auctions
(Definitions 1.8 and 1.9) is a large class of auctions where the price of anarchy can be
systematically characterized by the smooth arguments. Many interesting auctions
have been shown to be smooth; and the smooth argument is a central proof tech-
nique to analyze the price of anarchy. We refer the reader to a recent survey [114] for
more details.

The smoothness framework extends to adaptive dynamics with vanishing regret.
However, several important dynamics are not guaranteed to have the vanishing re-
gret property, for example the class of fictitious play [30] and other classes of dynam-
ics in [62]. A research agenda, as raised in [114], is to characterize the performance
of such dynamics.

Revenue Maximization. Optimal truthful auctions in single-parameter environ-
ments are completely characterized by Myerson [99]. A crucial assumption in the
Myerson’s construction of optimal auctions is the full knowledge of the distribution
over bidder valuations. Recently, a major line of research in data-driven mechanism
design focus on designing competitive auctions without the full knowledge on the
valuation distribution and even in non-stochastic settings. The study of second-price
auctions with reserve prices in single-parameter environments are of particular in-
terest since the optimal auctions correspond to second-price auctions with reserve
prices when knowledge on the distribution over valuations is available to the auc-
tioneer. That problem and its variants have been considered in [82, 26, 43]. Recently,
Roughgarden and Wang [113] gave a polynomial-time online algorithm that achieves
(1/2, O(

√
T))-regret. Subsequently, Dudik et al. [52] showed that the same regret

bound can be obtained using their framework. Our approach differs from [113, 52]
in that we consider the regularization approach whereas they follow the perturba-
tion approaches.
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Chapter 2

Online Primal-Dual Algorithms
with Configuration Linear
Programs

In this chapter, we present our contribution to online algorithms. We first give a
primal-dual algorithm for the general class described in Section 1.4.2. Despite the
simplicity of the algorithm, it has indeed various direct and indirect applications
(shown in subsequent sections) with optimal bounds. We will go through them as
a warm-up to present our approach. Subsequently, we give competitive algorithms
for online problems with covering and packing constraints.

2.1 Primal-Dual Algorithm for A General Class of Problems

Recall that the problem consists of a set of resources E and requests which arrive
online. At the arrival of request i, a set of feasible strategies (actions) Si to satisfy
request i is revealed. Each strategy sij ∈ Si consists of a subset of resources in E .
Each resource e is associated to a non-negative non-decreasing arbitrary cost function
fe : 2E → R+ and the cost induced by resource e depending on the set of requests
using e. The cost of a solution is the total cost of resources, i.e., ∑e fe(Ae) where Ae
is the set of requests using resource e. The goal is to design an algorithm that upon
the arrival of each request, selects a feasible strategy while maintaining the cost of
the overall solution as small as possible.

2.1.1 A Greedy Algorithm

Formulation. We consider the formulation for the resource cost minimization prob-
lem following the configuration LP construction in [94]. We say that A is a configura-
tion associated to resource e if A is a subset of requests using e. Let xij be a variable
indicating whether request i selects strategy (action) sij ∈ Si. For configuration A
and resource e, let zeA be a variable such that zeA = 1 if and only if for every request
i ∈ A, xij = 1 for some strategy sij ∈ Si such that e ∈ sij. In other words, zeA = 1 iff
the set of requests using e is exactly A. We consider the following formulation and
the dual of its relaxation.



28 Chapter 2. Online Primal-Dual Algorithms with Configuration Linear Programs

Primal:

min ∑
e,A

fe(A)ze,A

∑
j:sij∈Si

xij = 1 ∀i

∑
A:i∈A

zeA = ∑
j:e∈sij

xij ∀i, e

∑
A

zeA = 1 ∀e

xij, zeA ∈ {0, 1} ∀i, j, e, A

Dual:

max ∑
i

αi + ∑
e

γe

αi ≤ ∑
e:e∈sij

βie ∀i, j

γe + ∑
i∈A

βie ≤ fe(A) ∀e, A

In the primal, the first constraint guarantees that request i selects some strategy
sij ∈ Si. The second constraint ensures that if request i selects strategy sij that con-
tains resource e then in the solution, the set of requests using e must contain i. The
third constraint says that in the solution, there is always a configuration associated
to resource e.

Algorithm. We first interpret intuitively the dual variables, dual constraints and
derive useful observations for a competitive algorithm. Variable αi represents the
increase of the total cost due to the arrival of request i. Variable βi,e stands for the
marginal cost on resource e if request i uses e. By this interpretation, the first dual
constraint clearly indicates the behaviour of an algorithm. That is, if a new request i
is released, select a strategy sij ∈ Si that minimizes the marginal increase of the total
cost. Therefore, we deduce the following greedy algorithm.

Let A∗e be the set of current requests using resource e. Initially, A∗e ← ∅ for every
e. At the arrival of request i, select strategy s∗ij that is an optimal solution of

min ∑
e∈sij

[
fe(A∗e ∪ i)− fe(A∗e )

]
over sij ∈ Si. (2.1)

Although computational complexity is not a main issue for online problems, we no-
tice that in many applications, the optimal solution for this mathematical program
can be efficiently computed (for example when fe’s are convex and Si can be repre-
sented succinctly in form of a polynomial-size polytope).

Dual variables. Assume that all resource cost fe are (λ, µ)-smooth for some fixed
parameters λ > 0 and µ < 1. We are now constructing a dual feasible solution. De-
fine αi as 1/λ times the optimal value of the mathematical program (2.1). Informally,
αi is proportional to the increase of the total cost due to the arrival of request i. Note
that this increase is also called marginal cost due to request i. For each resource e and
request i, define

βi,e :=
1
λ

[
fe(A∗e,≺i ∪ i)− fe(A∗e,≺i)

]
where A∗e,≺i is the set of requests using resource e (due to the algorithm) prior to the
arrival of i. In other words, βij equals 1/λ times the marginal cost of resource e if i
uses e. Finally, for every resource e define the dual variable γe := − µ

λ fe(A∗e ) where
A∗e is the set of all requests using e (at the end of the instance).

Lemma 2.1 The dual variables defined as above are feasible.
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Proof The first dual constraint follows immediately from the definitions of αi, βi,e
and the decisions by the algorithm. Specifically, the right-hand side of the constraint
represents 1/λ times the increase cost if the request selects a strategy sij. This is
larger than 1/λ times the minimum increase cost optimized over all strategies in Si,
which is αi.

We now show that the second constraint holds. Fix a resource e and a configura-
tion A. The corresponding constraint reads

− µ

λ
fe(A∗e ) +

1
λ ∑

i∈A

[
fe(A∗e,≺i ∪ i)− fe(A∗e,≺i)

]
≤ fe(A)

⇔ ∑
i∈A

[
fe(A∗e,≺i ∪ i)− fe(A∗e,≺i)

]
≤ λ fe(A) + µ fe(A∗e ).

This inequality is due to the definition of (λ, µ)-smoothness for resource e. Hence,
the second dual constraint follows. �

Theorem 1.1 Assume that all resource cost functions are (λ, µ)-smooth for some parameters
λ > 0, µ < 1. Then there exists a greedy λ

1−µ -competitive algorithm for the general problem.

Proof By the definitions of dual variables, the dual objective is

∑
i

αi + ∑
e

γe = ∑
e

1
λ

fe(A∗e )−∑
e

µ

λ
fe(A∗e ) =

1− µ

λ ∑
e

fe(A∗e )

Besides, the cost of the solution due to the algorithm is ∑e fe(A∗e ). Hence, the com-
petitive ratio is at most λ/(1− µ). �

2.1.2 Applications

Theorem 1.1 yields simple algorithm with optimal competitive ratios for several prob-
lems as shown in the following sections. Among others, we give optimal algorithms
for energy efficient scheduling problems (in unrelated machine environment) and
the facility location with client-dependent cost problem. Prior to our work, no com-
petitive algorithm has been known for the problems. The proofs are now reduced
to computing smooth parameters λ, µ that subsequently imply the competitive ra-
tios. We mainly use the following smooth inequality, developed in [45], to derive the
explicit competitive bounds in case of non-negative polynomial cost functions. (For
completeness, the proof can be found in Appendix A).

Lemma 2.2 For any sequences of non-negative real numbers {a1, a2, . . . , an} and
{b1, b2, . . . , bn} and for any polynomial g of degree k with non-negative coefficients, it holds
that

n

∑
i=1

[
g
(

bi +
i

∑
j=1

aj

)
− g
( i

∑
j=1

aj

)]
≤ λ(k) · g

( n

∑
i=1

bi

)
+ µ(k) · g

( n

∑
i=1

ai

)

where µ(k) = k−1
k and λ(k) = Θ

(
kk−1). The same inequality holds for µ(k) = k−1

k ln k and
λ(k) = Θ

(
(k ln k)k−1).
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2.1.2.1 Minimum Power Survival Network Routing

Problem. In the problem, we are given a graph G(V, E) and requests arrive online.
The demand of a request i is specified by a source si ∈ V, a sink ti ∈ V, the load
vector pi,e for every edge (link) e ∈ E and an integer number ki. At the arrival of
request i, one needs to choose ki edge-disjoint paths connecting si to ti. Request i
increases the load pi,e for each edge e used to satisfy its demand. The load `e of an
edge e is defined as the total load incurred by the requests using e. The power cost of
edge e with load `e is fe(`e). The objective is to minimize the total power ∑e fe(`e).
Typically fe(`e) = ce`

αe
e where ce and αe are parameters depending on e.

This problems generalizes the MINIMUM POWER ROUTING problem — a variant
in which ki = 1 and pi,e = 1 ∀i, e — and the LOAD BALANCING problem — a variant
in which ki = 1, all the sources (sinks) are the same si = si′ ∀i, i′ (ti = ti′ ∀i, i′) and
every si − ti path has length 2. For the MINIMUM POWER ROUTING in offline set-
ting, Andrews et al. [5] gave a polynomial-time poly-log-approximation algorithm.
The result has been improved by Makarychev and Sviridenko [94] who gave an Bα-
approximation algorithm. In the online setting, Gupta et al. [67] presented an αα-
competitive online algorithm. For the LOAD BALANCING problem, the currently
best-known approximation is Bα due to [94] via their rounding technique based on
decoupling inequality. In the online setting, it has been shown that the optimal com-
petitive ratio for the LOAD BALANCING problem is Θ(αα) [40].

Contribution. In the problem, a strategy for each request i consists of ki edge-
disjoint paths connecting si and ti. Applying the general framework, we deduce
the following greedy algorithm.

Let `e be the load of edge e. Initially, set `e ← 0 for every edge e. At the arrival of
request i, compute a strategy consisting of ki edge-disjoint paths from si and ti such
that the increase of the total cost is minimum. Select this strategy for request i and
update `e.

We notice that computing the strategy for request i can be done efficiently. Given
the current loads `e on every edge e, create a graph H consisting of the same vertices
and edges as graph G. For each edge e in graph H, define the capacity to be 1 and the
cost on e to be fe(pi,e + `e)− fe(`e). Then the computing ki edge-disjoint paths from
si and ti with the minimal marginal cost in G is equivalent to solving a transportation
problem in graph H.

Proposition 2.1 If the congestion costs of all edges are (λ, µ)-smooth then the algorithm is
λ/(1− µ)-competitive. In particular, if fe(z) = zαe then the algorithm is O(αα)-competitive
where α = maxe αe.

Proof The proposition follows directly from Theorem 1.1 and the particular case is
derived additionally by Lemma 2.2. �

2.1.2.2 Online Vector Scheduling

Problem. In the problem, there are m unrelated machines and jobs arrive online.
The load of a job j in machine i is specified by a vector pij = 〈pij(k) : 1 ≤ k ≤ d〉
where pij(k) ≥ 0 and d, a fixed parameter, is the dimension of the vector. At the
arrival of a job j, vectors pij for all i are revealed and job j must be assigned imme-
diately to a machine. Given a job-machine assignment σ, the load in dimension k
of machine i is defined as `i,σ(k) := ∑j:σ(j)=i pij(k) for 1 ≤ k ≤ d. The Lα-norm for



2.1. Primal-Dual Algorithm for A General Class of Problems 31

α ≥ 1 in dimension k is ‖Λσ(k)‖α :=
(
∑m

i=1 `i,σ(k)α
)1/α; and the L∞-norm (makespan

norm) in dimension k is ‖Λσ(k)‖∞ := maxm
i=1 `i,σ(k). In the Lα-norm, the objective

is to find an online assignment σ minimizing maxk ‖Λσ(k)‖α. In the L∞-norm, the
objective is to find an online assignment σ minimizing maxk ‖Λσ(k)‖∞. An algo-
rithm is r-competitive for the Lα-norm if it outputs an assignment σ such that for
any assignment σ∗, it holds that maxk ‖Λσ(k)‖α ≤ r ·maxk ‖Λσ∗(k)‖α.

The online vector scheduling is introduced by Chekuri and Khanna [44]. Re-
cently, Im et al. [79] showed an optimal competitive algorithm for this problem. Their
analysis is based on a carefully constructed potential function. In the following, we
can also derive an optimal algorithm for this problem based on our general frame-
work. The analysis is much simpler and follows directly from Theorem 1.1.

Contribution. In the problem, the set of strategies of a job j is the st of all machines.
Applying the general framework, we deduce the following greedy algorithm.

In the Lα-norm objective for 1 ≤ α < ∞, consider the cost function

C(σ) :=
d

∑
k=1

( m

∑
i=1

`i,σ(k)α

) α+log d
α

where σ is a job-machine assignment of all jobs released so far.
In the L∞-norm objective, consider the cost function

C(σ) :=
d

∑
k=1

m

∑
i=1

`i(k)log m+log d.

Initially, σ is an empty assignment. At the arrival of j, assign j to machine i∗ that
minimizes the increase of C(σ). Again, the assignment of a job j can be efficiently
computed.

Proposition 2.2 ([79]) For the Lα-norm objective where α < ∞, the algorithm is
O(max{α, log d})-competitive. For the L∞-norm objective, the algorithm is O(log d +
log m)-competitive.

Proof Let σ∗ is an optimal assignment for the Lα-norm objective. We have

( m

∑
i=1

`i,σ(k)α

) α+log d
α

≤
d

∑
k=1

( m

∑
i=1

`i,σ(k)α

) α+log d
α

≤ O
(
α + log d

)α+log d ·
d

∑
k=1

( m

∑
i=1

`i,σ∗(k)α

) α+log d
α

≤ O
(
α + log d

)α+log d · d · d
max
k=1

( m

∑
i=1

`i,σ∗(k)α

) α+log d
α

In these inequalities, we apply Theorem 1.1 and Lemma 2.2 (note that C(σ) is a
polynomial of degree (α + log d)). Taking the (α + log d)th root, the result for Lα-
norm objective follows.
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For the L∞-norm, similarly we have

d
max
k=1

m
max
i=1

`i,σ(k)log m+log d ≤
d

∑
k=1

m

∑
i=1

`i,σ(k)log m+log d

≤
(
log m + log d

)log m+log d ·
d

∑
k=1

m

∑
i=1

`i,σ∗(k)log m+log d

≤
(
log m + log d

)log m+log d · d ·m · d
max
k=1

m
max
i=1

`i,σ∗(k)log m+log d.

Again, taking the (log m + log d)th root, the proposition follows. �

2.1.2.3 Online Energy-Efficient Scheduling

Problem. Energy-efficient algorithms have received considerable attention and have
been widely studied in scheduling. One main direction is to design algorithms to-
wards a more realistic setting — online multiple machine setting [2]. We consider the
following energy minimization problem. In the problem, we are given m unrelated
machines and a set of jobs. Each job j is specified by its released date rj, deadline
dj and processing volumes pij if job j is processed in machine i. We consider non-
migration schedules; that is, every job j has to be assigned to exactly one machine
and is fully processed in that machine during time interval [rj, dj]. However, jobs can
be executed preemptively, meaning that a job can be interrupted during its execution
and can be resumed later on the same machine. An algorithm can choose appropri-
ate speed si(t) for every machine i at any time t in order to complete all jobs. Every
machine i has a non-decreasing energy power function Pi(si(t)) depending on the
speed si(t). Typically, Pi(z) has form zαi for constant αi ≥ 1 or in a more general
context, Pi(z) is assumed to be convex. In the problem, we consider general non-
decreasing continuous functions Pi without convexity assumption. The objective is
to minimize the total energy consumption while completing all jobs. In the online
setting, jobs arrive over time and the assignment and the schedule have to be done
irrevocably.

In the offline setting, for the typical energy function P(z) = zα, the best known
algorithms [66, 13] have competitive ratio O(Bα) where Bα is the Bell number. Prior
to our work, competitive algorithms for this online problem are known only in the
single machine setting and the energy power function P(z) = zα. Specifically, Bansal
et al. [15] gave a 2

(
α

α−1

)αeα-competitive algorithm. In terms of lower bounds, Bansal
et al. [18] showed that no deterministic algorithm has competitive ratio less than
eα−1/α for single machine. For unrelated machines, the lower bound Ω(αα) follows
the construction of Caragiannis [40] for LOAD BALACING (with Lα-norm) (by con-
sidering all jobs have the same span [rj, dj] = [0, 1]). Kling and Pietrzyk [83] gave
a O(αα)-competitive algorithm in the multi-identical-processor setting in which job
migration is allowed. Surprisingly, no competitive algorithm is known in the non-
migratory multiple-machine environment, that is in contrast to the similar online
problem with objective as the total energy plus flow-time [3]. The main difference
here is that for the latter, one can make a tradeoff between energy and flow-time and
derive a competitive algorithm whereas for the former, one has to deal directly with a
non-linear objective and no LP with relatively small integrality gap was known. We
notice that Gupta et al. [67] gave also a primal-dual competitive algorithm for the
single machine environment. However, their approach cannot be used for unrelated
machines due to the large integrality gap of the formulation.
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Contribution. In this problem, the speed of a job can be an arbitrary (non-negative)
real number. However, in order to employ tools from linear programming, we con-
sider a discretization of speeds at the price of a small loss in the competitive ratio.
Fix an arbitrary constant ε > 0 and δ > 0. Define the set of speeds V = {` · ε : 0 ≤
` ≤ L} for some sufficiently large L. During a time interval [t, t + δ], a job can be
executed at a speed in V . As the energy cost functions are continuous, this assump-
tion on the setting worsens the energy cost by at most a factor (1 + ε̃) for arbitrarily
small ε̃. Given a job j, the set of feasible strategies Sj of j contains all feasible non-
migratory executions of j on some machine. Specifically, a strategy of job j can be
described as the union over all machines i of solutions determined by the following
program:

dj

∑
t=rj

δ · vijt ≥ pij s.t. vijt ∈ V ,

where in the sum we increment each time t by δ. Here, vijt stands for the speed of
executing job j in machine i at time t.

Applying the general framework, we derive the following algorithm.

Algorithm. Assume that the energy functions are (λ, µ)-smooth. Let uit be the
speed of machine i at time t. Initially, set uit ← 0 for every machine i and time t. At
the arrival of a job j, compute the minimum energy increase if job j is assigned to
machine i and define βij to be equal to 1/λ times that minimum energy. It is indeed
an optimization problem

min
dj

∑
rj

δ ·
[

Pi
(
uit + vijt

)
− Pi

(
uit
)]

s.t
dj

∑
rj

δ · vijt ≥ pij, vijt ∈ V (2.2)

Observe that if Pi is a convex function then it is a convex program and can be
solved efficiently. In this case, using the KKT conditions, the optimal solution can

be constructed as follows. We initiate a variable vijt as 0. While ∑
dj
rj δ · vijt < pij,

i.e., the total volume of job j has not been completed, continue increasing vijt at
arg minrj≤t≤dj uit + vijt. Note that this is exactly algorithm OA in [15] for a single
machine. Let v∗i∗ jt be an optimal solution to the mathematical program (2.2). Then,
assign job j to machine i∗ ∈ arg mini βij and execute j at time t with speed v∗i∗ jt.

Proposition 2.3 If the energy cost functions are (λ, µ)-smooth then the algorithm is (1 +
ε)λ/(1− µ)-competitive for arbitrarily small ε. In particular, if Pi(z) = zαi then the algo-
rithm is (1 + ε)O(αα)-competitive where α = maxi αi.

Proof The proposition follows directly from Theorem 1.1. The factor (1+ ε) is due to
the discretization of the speeds. In the particular case Pi(z) = zαi , the functions are
(λ, µ)-smooth with µ = (α− 1)/α and λ = O(αα−1) by Lemma 2.2. The competitive
ratio of this case follows. �

2.1.2.4 Online Prize Collecting Energy-Efficient Scheduling

Problem. We consider the same setting as in the ENERGY MINIMIZATION prob-
lem. Additionally, each job j has a penalty πj. There is no penalty from job j if it
is completely executed during [rj, dj] in some machine i. Otherwise, if job j is not
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completed (even if most volume of job j have been executed) then the algorithm has
to pay a penalty πj. The objective is to minimize the total penalty of uncompleted
jobs plus the energy cost.

Contribution. The result does not follow immediately from Theorem 1.1 but the
approach is exactly the one for the general framework.

By the same formulation from the previous section, assume that the set of speeds
is finite and discrete. The set of feasible strategies Sj of a job j are all the feasible
non-migratory executions of a job j on some machine as defined in the previous
section. The sets Sj’s are also finite and discrete. We say that A is a configuration
of machine i if it is a schedule of a subset of jobs in i. Specifically, a configuration
A consists of tuples (i, j, k) specifying that a job j is assigned to machine i and is
executed according to strategy sijk ∈ Sj.

We are now formulating a configuration LP for the problem. Let xijk be a variable
indicating whether job j is processed in machine i according to strategy sijk ∈ Sj. For
configuration A and machine i, let ziA be a variable such that ziA = 1 if and only if
xijk = 1 for every (i, j, k) ∈ A. In other words, ziA = 1 iff A is the solution of the
problem restricted on machine i. Let ci,A be the energy cost of configuration A in
machine i. We consider the following formulation.

min ∑
i,A

ci,AziA + ∑
j

(
1−∑

i,k
xijk

)
πj

∑
i,k

xijk ≤ 1 ∀j

∑
A:(i,j,k)∈A

ziA = xijk ∀i, j, k

∑
A

ziA = 1 ∀i

xijk, ziA ∈ {0, 1} ∀i, j, A

The first constraint guarantees that a job j can be assigned to at most one machine
i and be executed according to at most one feasible strategy. The second constraint
ensures that if job j is assigned to machine i and is executed according to strategy
sijk ∈ Sj then the configuration corresponding to the solution restricted on machine
i must contain (i, j, k). The third constraint says that there is always a configuration
associated to machine i for every i. The dual of the relaxation reads

max ∑
j
(πj − αj) + ∑

i
γi

αj + βijk ≥ πj ∀i, j, k

γi + ∑
(i,j,k)∈A

βijk ≤ ciA ∀i, A

αj ≥ 0 ∀j

Greedy Algorithm. Assume that all energy power functions are (λ, µ)-smooth for
some fixed parameters λ and µ. At the arrival of job j, compute the minimum energy
increase if j is assigned to some machine i. If the minimum energy increase is larger
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than λ · πj then reject the job. Otherwise, assign and execute j such that the energy
increase is minimum.

Proposition 2.4 Assume that all energy power functions are (λ, µ)-smooth. Then the algo-
rithm is λ/(1− µ)-competitive.

Proof We define the dual variables similarly as in the general framework. Let A∗i,≺j
be the configuration of machine i (due to the algorithm) before the arrival of job j.
(Initially, A∗i,≺1 ← ∅ for every machine i.) For each machine i and a strategy sjk ∈ Sj
such that sjk is a schedule of j in machine i, define

βijk =
1
λ

[
ci(A∗i,≺j ∪ sjk)− ci(A∗i,≺j)

]
.

If sjk is not a schedule of j in machine i then define βijk = ∞. Moreover, define

αj = max
{

πj −min
i,k

βijk, 0
}

and γi =
µ

λ
ci(A∗i )

where A∗i is the configuration of machine i at the end of the instance (when all jobs
have been released).

The variables constitute a dual feasible solution. The first dual constraint fol-
lows the definition of αj. The second dual constraint follows the definition of (λ, µ)-
smoothness. Note that that for any configuration A of a machine i (a feasible sched-
ule in machine i), if (i, j, k) ∈ A then by definition of dual variables, βijk 6= ∞.

We are now bounding the dual. The algorithm has the property immediate-reject.
It means that if the algorithm accepts a job then the job will be completed; and other-
wise, the job is rejected at its arrival. By the algorithm, αj = 0 for every rejected job j.
Besides, if job j is accepted then πj− αj = βijk where i is the machine to which job j is
assigned and job j is executed according to strategy sjk. Therefore, by the definition
of dual variables, ∑j(πj − αj), where the sum is taken over accepted jobs j, equals
1/λ times the total energy consumption. Recall that the total energy consumption of
the algorithm is ∑i ci(A∗i ). The dual objective is

∑
j
(πj − αj) + ∑

i
γi = ∑

j:j rejected
πj +

1
λ ∑

i
ci(A∗i )−

µ

λ ∑
i

ci(A∗i )

Moreover, the primal is equal to the total penalty of rejected jobs plus ∑i ci(A∗i ).
Therefore, the ratio between primal and dual is at most λ/(1− µ). �

2.1.2.5 Facility Location with Client-Dependent Facility Cost

Non-Convex Facility Location. In the problem, we are given a metric space (M, d)
and clients arrive online. Let N be the set of clients and n = |N|. A location i ∈ M is
characterized by a fixed opening cost ai and an arbitrary non-decreasing serving cost
function fi : 2N → R+. If a subset S of clients is served by a facility at location i then
the facility cost at this location is ai + fi(S). At the arrival of a client, an algorithm
needs to assign the client to some facility. The goal is to minimize the total cost,
which is the total distance from clients to their facilities plus the total facility cost.

Facility Location is one of the most widely studied problems. In the classic ver-
sion, the facility cost consists only of the opening cost. There is a large literature in
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the offline setting. In online setting, Meyerson [97] gave a randomized O( log n
log log n )-

competitive algorithm. This competitive ratio matches to the randomized lower
bound due to Fotakis [59]. For deterministic algorithms, Fotakis [58] first presented a
primal-dual O(log n)-competitive algorithm and subsequently improved it to an op-
timal O( log n

log log n )-competitive algorithm [59]. The online capacitated facility location
in which function fi(S) = 0 if |S| ≤ ui for some capacity ui and fi(S) = ∞ other-
wise has been studied in [9]. Using a primal-dual framework for mixed packing and
covering constraints, the authors derived a O(log m log mn)-competitive algorithm.

Contribution. We derive a competitive algorithm by combining the primal-dual
algorithm due to Fotakis [58] for the online (classic) facility location and our primal-
dual framework for non-convex functions.

Let xij and yi be variables indicating whether client j is assigned to facility i and
whether facility i is open, respectively. For subset S ⊂ N, let zi,S be a variable such
that zi,S = 1 if and only if xij = 1 for every client j ∈ S, and xe = 0 for j /∈ S. We
consider the following formulation and the dual of its relaxation.

Primal:

min ∑
i

aiyi + ∑
i,j

dijxij + ∑
i,S

fi(S)zi,S

∑
i

xij ≥ 1 ∀j

yi ≥ xij ∀i, j

∑
S:j∈S

zi,S = xij ∀i, j

∑
S

zi,S = 1 ∀i

xij, zi,S ∈ {0, 1} ∀i, j, S

Dual:

max ∑
j

αj + ∑
i

θi

αj ≥ dij + βij + γij ∀i, j

∑
j

βij ≤ ai ∀i

θi + ∑
j∈S

γij ≤ fi(S) ∀i, S

αj, βij ≥ 0 ∀i, j

Algorithm. Assume that all serving cost fi are (λ, µ)-smooth for some parameters
λ and µ. Intuitively, βij and γij can be interpreted as the contributions of client
j to the opening cost and the serving cost at location i. At the arrival of client j,
continuously increase αj. For any facility such that αj = dij, start increasing βij. If
∑j′ βij′ = ai then stop increasing βij and start increasing γij until µ

λ

[
fi(S ∪ j)− fi(S)

]
where S is the current set of clients assigned to i. Assign j to the first facility i such
that γij =

µ
λ

[
fi(S ∪ j) − fi(S)

]
, i.e., xij = 1. Open i (i.e., yi = 1) if it has not been

opened.

Proposition 2.5 Assume that all serving cost fi are (λ, µ)-smooth. Then the algorithm is
O
(
log n + λ

1−µ

)
-competitive.

Proof We define dual variables similarly as in Theorem 1.1. The α-variables, β-
variables and γ-variables are defined in the algorithm. Define θi equal −1/λ times
the (final) serving cost at facility i. Let π(j) be the facility to which j is assigned and
π(N) the set of facilities opened by the algorithm.

The dual variables constitute a feasible solution. The first and second dual con-
straints are due to the algorithm. Note that by the definition of γ-variables, it always
holds that γij ≤ µ

λ

[
fi(S ∪ j)− fi(S)

]
where S is the set of clients assigned to i before



2.2. Primal-Dual Framework for 0− 1 Covering Problems 37

the arrival of j. The last constraint follows the (λ, µ)-smoothness of serving costs.
We are now bounding the primal and the dual. We have

∑
i∈π(N)

ai + ∑
j

dπ(j),j ≤ O(log n)∑
j

(
αj − γπ(j),j

)

∑
i

fi
(
π−1(i)

)
≤ λ

1− µ

(
∑

j
γπ(j),j + ∑

i
θi

)
where the first inequality is due to Fotakis [58] and the second one follows the defi-
nition of dual variables. The proposition follows. �

2.2 Primal-Dual Framework for 0− 1 Covering Problems

Consider the following integer optimization problem. Let E be a set of n resources
and let f : {0, 1}n → R+ be a monotone cost function. Let xe ∈ {0, 1} be a variable
indicating whether resource e is selected. The problem is to minimize f (x) subject
to covering constraints ∑e ai,exe ≥ 1 for every constraint i and xe ∈ {0, 1} for every
e. In the online setting, the constraints are revealed one-by-one and at any step, one
needs to maintain a feasible integer solution x.

2.2.1 Algorithm for Fractional Covering

Recall that a differentiable function F : [0, 1]n → R+ is (λ, µ)-min-locally-smooth
if for any set S ⊂ E , and for any vectors xe ∈ [0, 1]n where e ∈ E , the following
inequality holds:

∑
e∈S
∇eF(xe) ≤ λF

(
1S
)
+ µF

(
x
)

where x :=
∨

e∈S x
e, meaning that xe′ = maxe{xe

e′} for any coordinate e′.

Formulation. We say that S ⊂ E is a configuration if 1S corresponds to a feasible
solution. Let xe be a variable indicating whether the resource e is used. For con-
figuration S, let zS be a variable such that zS = 1 if and only if xe = 1 for every
resource e ∈ S, and xe = 0 for e /∈ S. In other words, zS = 1 iff 1S is the selected
solution to the problem. For any subset A ⊂ E , define ci,A = max{1−∑e′∈A ai,e′ ; 0}
and ai,e,A := min{ai,e; ci,A}. Denote bi,e,A =

ai,e,A
ci,A

where ci,A > 0. We consider the
following formulation and the dual of its relaxation.

Primal:

min ∑
S

f (1S)zS

∑
e/∈A

bi,e,A · xe ≥ 1 ∀i, A ⊂ E

∑
S:e∈S

zS = xe ∀e

∑
S

zS = 1

xe, zS ∈ {0, 1} ∀e, S

Dual:

max ∑
i,A

αi,A + γ

∑
i

∑
A:e/∈A

bi,e,A · αi,A ≤ βe ∀e

γ + ∑
e∈S

βe ≤ f (1S) ∀S

αi ≥ 0 ∀i
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In the primal, the first constraints are knapsack-constraints of the form
∑e/∈A ai,e,A · xe ≥ ci,A corresponding to the given polytope. Note that it is sufficient
to consider only constraints with ci,A > 0. The second constraint ensures that if a
resource e is chosen then the selected solution must contain e. The third constraint
says that one solution (configuration) must be selected.

Algorithm. Assume that function F(·) is
(
λ, µ

4 ln(1+2d2)

)
–min-locally smooth. Let d

be the maximal number of positive entries in a row, i.e., d = maxi |{aie : aie > 0}|.
Denote ∇eF(x) = ∂F(x)/∂xe. Consider the following Algorithm 1 which follows
the scheme in [11] with some more subtle steps due to the non-monotone behavior
of the gradient. In the algorithm, the current dual variable α increases at constant
rate (Step 6) and the update of dual variables β’s in shown in Step 8. If the gradient
∇eF(x) at coordinate e is monotone then βe is set to be 1

λ∇eF(x). However, in case
∇eF(x) decreases, the value of βe is kept unchanged. The primal update rule follows
a multiplicative increase where the increasing rate of xe is inversely proportional to
βe (Step 9). Finally, using the same idea as in [11], some dual variables α will be
decreased in order to maintain the feasibility of our dual solution.

Algorithm 1 Algorithm for Covering Constraints.
1: Initially, set A∗ ← ∅. Intuitively, A∗ consists of all resources e such that xe = 1.
2: All primal and dual variables are initially set to 0.
3: At every step, always maintain zS = ∏e∈S xe ∏e/∈S(1− xe).
4: Upon the arrival of primal constraint ∑e ak,exe ≥ 1 and the new corresponding

dual variable αk.
5: while ∑e/∈A∗ bk,e,A∗xe < 1 do # Increase primal, dual variables
6: Increase τ at rate 1 and increase αk,A∗ at rate 1

λ·ln(1+2d2)
.

7: for e /∈ A∗ such that bk,e,A∗ > 0 do
8: if βe <

1
λ∇eF(x) then βe ← 1

λ∇eF(x)
9: Increase xe according to the following function

∂xe

∂τ
← bk,e,A∗ · xe + 1/d

λ · βe

10: end for
11: if xe = 1 then update A∗ ← A∗ ∪ {e}.
12: for e /∈ A∗ such that

k

∑
i=1

∑
A:e/∈A

bi,e,A · αi,A ≥ βe

do # Decrease dual variables
13: Let m∗e ← arg max{bi,e,A|∀A : e /∈ A, ∀1 ≤ i ≤ k : αi,A > 0}.
14: Increase αm∗e ,A continuously at rate − bk,e,A∗

bm∗e ,e,A
· 1

λ·ln(1+2d2)
.

15: end for
16: end while

Dual variables. Variables αi,A and βe are constructed in the algorithm. Let x be the
current solution of the algorithm. Define γ = − µ

4λ·ln(1+2d2)
F(x). Note that due to

the algorithm, βe ≥ 1
λ · ∇eF(x).
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The following lemma gives a lower bound on x-variables. Remark that the mono-
tonicity of the gradient is crucial in the analysis of [11], in particular to prove the
bounds on x-variables. However, by our approach the gradient monotonicity is not
needed.

Lemma 2.3 Let e be an arbitrary resource. At any moment during the execution of the
algorithm where the kth request has been released , it always holds that

xe ≥
1

max bi,e,A · d

[
exp

(
ln(1 + 2d2)

βe
· ∑

A:e/∈A
∑

i
bi,e,A · αi,A

)
− 1

]

where denote max bi,e,A := max{bi,e,A > 0|∀A : e /∈ A, ∀1 ≤ i ≤ k : αi,A > 0}.

Proof Fix a resource e. We prove the lemma by induction. At the beginning of the
instance, while no request has been released yet, both sides of the lemma are 0.
Assume that the lemma holds until the arrival of the kth request. Consider a moment
τ and let A∗ be the current set of resources e′ such that xe′ = 1. If at time τ, xe = 1
then by the algorithm, the set A∗ has been updated so that e ∈ A∗. The increasing
rates of both sides in the lemma inequality are 0. In the remaining, assume that
xe < 1. Recall that by the algorithm, βe ≥ 1

λ∇eF(x). We consider two cases: βe >
1
λ∇eF(x) and βe =

1
λ∇eF(x).

Case 1: βe > 1
λ∇eF(x). In this case, by the algorithm, the value of βe remains

unchanged at time τ. Hence, the derivative of the right hand side of the lemma
inequality according to τ is

∑
i

∂αi,A∗

∂τ
· bi,e,A∗

max bi,e,A · d
· ln(1 + 2d2)

βe
· exp

(
ln(1 + 2d2)

βe
· ∑

A:e/∈A
∑

i
bi,e,Aαi,A

)
≤ bk,e,A∗ · xe + 1/d

λ · βe
=

∂xe

∂τ

In the inequality, we use the induction hypothesis; ∂αk,A∗
∂τ > 0 and ∂αi,A∗

∂τ ≤ 0 for i 6= k
and ∂βe

∂τ = 0; and the increasing rate of αk,A∗ according to the algorithm. So the rate
in the left-hand side is always larger than that in the right-hand side. Moreover, at
some steps in the algorithm, α-variables might be decreased while the x-variables
are maintained monotone. Hence, the lemma inequality holds.

Case 2: βe = 1
λ∇eF(x). In this case, by the algorithm, 1

λ∇eF(x) is locally non-
decreasing at τ (since otherwise, βe is not maintained to be equal to 1

λ∇eF(x)).
Therefore, ∂βe

∂τ ≥ 0 and so ∂
( 1

βe

)
/∂τ ≤ 0. Hence, the derivative of the right hand

side of the lemma inequality according to τ is upper bounded by

∑
i

∂αi,A∗

∂τ
· bi,e,A∗

max bi,e,A · d
· ln(1 + 2d2)

βe
· exp

(
ln(1 + 2d2)

βe
· ∑

A:e/∈A
∑

i
bi,e,Aαi,A

)

which is bounded by ∂xe
∂τ by the same argument as the previous case. The lemma

follows. �

Lemma 2.4 The dual variables defined as above are feasible.
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Proof As long as a primal covering constraint is unsatisfied, the x-variables are al-
ways increased. Therefore, at the end of an iteration, the primal constraint is sat-
isfied. Consider the first dual constraint. The algorithm always maintains that
∑i ∑A:e/∈A bi,e,Aαi,A ≤ βe (strict inequality happens only if xe = 1). Whenever this
inequality is violated then by the algorithm, some α-variables are decreased in such
a way that the increasing rate of ∑i ∑A:e/∈A bi,e,Aαi,A is at most 0. Hence, by the defi-
nition of β-variables, the first dual constraint holds.

Consider the second dual constraint. Let x be the current solution of the algo-
rithm. By the algorithm, for each fixed resource e, βe =

1
λ∇eF(ye) for some ye where

ye
e′ ≤ xe′ for every resource e′. (Since at some moment, the algorithm increases xe

without increasing βe for some e.) Moreover, y :=
∨

e y
e ≤ x (meaning that ye′ ≤ xe′

for every e′). By definitions of dual variables, the second dual constraint (after rear-
ranging terms) reads

1
λ ∑

e∈S
∇eF(ye) ≤ F(1S) +

µ

4λ · ln(1 + 2d2)
F(x).

Besides, as F is monotone, F(x) ≥ F(y). To prove the above inequality, it is sufficient
to prove that

1
λ ∑

e∈S
∇eF(ye) ≤ F(1S) +

µ

4λ · ln(1 + 2d2)
F(y).

This inequality is exactly the
(
λ, µ

4 ln(1+2d2)

)
-min-local smoothness of F. Hence, the

lemma follows. �

We are now ready to prove the main theorem.

Theorem 1.2 Let F be the multilinear extension of the objective cost f and d be the maximal
row sparsity of the constraint matrix, i.e., d = maxi |{aie : aie > 0}|. Assume that F is(
λ, µ

ln(1+2d2)

)
-min-locally-smooth for some parameters λ > 0 and µ < 1. Then there exists

a O
(

λ
1−µ · ln d

)
-competitive algorithm for the fractional covering problem.

Proof We will bound the increases of the cost and the dual objective at any time τ
in the execution of Algorithm 1. Let A∗ be the current set of resources e such that
xe = 1. The derivative of the objective with respect to τ is:

∑
e
∇eF(x) · ∂xe

∂τ
= ∑

e:bk,e,A∗>0
xe<1

∇eF(x) · bk,e,A∗ · xe + 1/d
λ · βe

≤ ∑
e:bk,e,A∗>0

(
bk,e,A∗ · xe +

1
d

)
≤ 2. (2.3)

The first inequality follows by ∇eF(x) ≤ λ · βe. The second inequality is due to
the definition of d and the fact that ∑e/∈A∗ bk,e,A∗ · xe ≤ 1 always holds during the
algorithm.

For a time τ, let U(τ) be the set of resources e such that ∑i ∑A:e/∈A bi,e,Aαi,A = βe
and bk,e,A∗ > 0. Note that |U(τ)| ≤ d by definition of d. As long as ∑e/∈A∗ bk,e,A∗xe < 1,
by Lemma 2.3, we have for every e ∈ U(τ),

1
bk,e,A∗

> xe ≥
1

max bi,e,A · d

[
exp

(
ln(1 + 2d2)

)
− 1
]

.
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Therefore, bk,e,A∗
maxi bi,e,A

≤ 1
2d .

We are now bounding the increase of the dual at time τ. The derivative of the
dual with respect to τ is:

∂D
∂τ

= ∑
i

∑
A

∂αi,A

∂τ
+

∂γ

∂τ
= ∑

i
ci,A∗ ·

∂αi,A∗

∂τ
+

∂γ

∂τ

=
1

λ · ln(1 + 2d2)

(
1− ∑

e∈U(τ)

bk,e,A∗

bm∗e ,e,A

)
− µ

4λ · ln(1 + 2d2) ∑
e
∇eF(x) · ∂xe

∂τ

≥ 1
λ · ln(1 + 2d2)

(
1− ∑

e∈U(τ)

1
2d

)
− µ

2λ · ln(1 + 2d2)

≥ 1− µ

2λ · ln(1 + 2d2)

The third equality holds since αk,A∗ is increased and other α-variables in U(τ) are
decreased. The first inequality uses the fact that bk,e,A∗

maxi bi,e,A∗
≤ 1

2d and Inequality (2.3).

The last inequality holds since |U(τ)| ≤ d. Hence, the competitive ratio is O
(

λ
1−µ ·

ln d
)
. �

2.2.2 Applications

In this section, we consider the applications of Theorem 1.2 for classes of cost func-
tions which have been extensively studied in optimization such as polynomials with
non-negative coefficients, `k-norms and submodular functions. We are interested
in deriving fractional solutions1 with performance guarantee. We show that Al-
gorithm 1 with multilinear extension yields competitive fractional solutions for the
classes of functions mentioned above and also for some natural classes of non-convex
functions.

We first take a closer look to the definition of min-local smoothness. Let F be
a multilinear extension of a set function f . By definition of multilinear extension,
F(x) = E

[
f (1T)

]
where T is a random set such that a resource e appears in T with

probability xe. Moreover, since F is linear in xi, we have

∂F
∂xe

(x) = F(x1, . . . , xe−1, 1, xe+1, . . . , xn)− F(x1, . . . , xe−1, 0, xe+1, . . . , xn)

= E

[
f
(
1R∪{e}

)
− f

(
1R
)]

where R is a random subset of resources N \ {e} such that e′ is included with proba-
bility xe′ . Therefore, in order to prove that F is (λ, µ)-min-locally-smooth, it is equiv-
alent to show that, for any set S ⊂ E and for any vectors xe ∈ [0, 1]n for e ∈ E ,

∑
e∈S

E

[
f
(
1Re∪{e}

)
− f

(
1Re
)]
≤ λ f

(
1S
)
+ µE

[
f
(
1R
)]

(2.4)

1Rounding schemes (in order to obtain integral solution) for concrete problems are problem-specific
and are not considered in this section. Several rounding techniques have been shown for different prob-
lems, for example in [11] for polynomials with non-negative coefficients, or using online contention
resolution schemes for submodular functions [57].
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where Re is a random subset of resources N \ {e} such that e′ is included with prob-
ability xe

e′ and R is a random subset of resources N \ {e} such that e′ is included
with probability maxe∈S xe

e′ . Note that if ∇F is monotone (in all coordinates) then
the following inequality implies Inequality (2.4).

∑
e∈S

E

[
f
(
1R∪{e}

)
− f

(
1R
)]
≤ λ f

(
1S
)
+ µE

[
f
(
1R
)]

(2.5)

2.2.2.1 Polynomials with non-negative coefficients.

Let g : R→ R be a polynomial with non-negative coefficients and the cost function
f : {0, 1}n → R+ defined as f (1S) = g

(
∑e∈S ae

)
where ae ≥ 0 for every e. The

following proposition shows that our algorithm yields the same competitive ratio as
the one derived in [11] for this class of cost functions. This bound indeed is tight
[11] (up to a constant factor). Note that, Azar et al. [11] gave randomized algorithms
for several problems by rounding their fractional solutions. As one can approach a
multilinear extension of any function up to a high precision [123], applying the same
rounding schemes in [11] for the corresponding problems based on our fractional
solutions, one can obtain randomized algorithms with similar bounds as in [11].

Proposition 2.6 ([11]) For any convex polynomial function g of degree k, there exists an
O
(
(k ln d)k)-competitive algorithm for the fractional covering problem.

Proof We prove that Algorithm 1 is O
(
(k ln d)k)-competitive for this class of cost

functions. By Theorem 1.2, it is sufficient to verify that F is ((k ln k)k−1, k−1
k ln d )-min-

locally smooth. Note that ∇F is monotone. We indeed prove a stronger inequality
than (2.5), that is for any set R ⊂ E ,

∑
e∈S

[
f
(
1R∪{e}

)
− f

(
1R
)]
≤ O

(
(k ln k)k−1) · f (1S) +

k− 1
k ln k

· f
(
1R
)

or equivalently, for any set R ⊂ E ,

∑
e∈S

[
g
(

ae + ∑
e′∈R

ae′

)
− g
(

∑
e′∈R

ae′

)]
≤ O

(
(k ln k)k−1) · g(∑

e∈S
ae

)
+

k− 1
k ln k

· g
(

∑
e′∈R

ae′

)
This inequality holds by Lemma 2.2 (in the appendix). Hence, the proposition fol-
lows. �

2.2.2.2 Beyond convex functions.

Consider the following natural cost functions which represent more practical costs
when serving clients as mentioned in the introduction (the cost initially increases
fast then becomes more stable before growing quickly again). Let g : R → R be
a non-convex function defined as g(y) = yk if y ≤ M1 or y ≥ M2 and g(y) =
g(M1) if M1 ≤ y ≤ M2 where M1 < M2 are some constants. The cost function
f : {0, 1}n → R+ defined as f (1S) = g

(
∑e∈S ae

)
where ae ≥ 0 for every e. In fact,

the corresponding multilinear extension F is ((k ln k)k−1, k−1
k ln d )-min-locally smooth.

Again, it sufficient to verify Inequality (2.5) and the proof is similar to the one in
Proposition 2.6 (or more specifically, Lemma 2.2 in the appendix) and note that the
derivative of g for M1 < y < M2 equals 0.



2.2. Primal-Dual Framework for 0− 1 Covering Problems 43

Proposition 2.7 The algorithm is O
(
(k ln d)k)-competitive for minimizing the non-convex

objective function defined above under covering constraints.

2.2.2.3 Submodular functions.

Consider the class of submodular functions f satisfying

f (1S∪{e})− f (1S) ≥ f (1T∪{e})− f (1T) ∀e, S ⊂ T,

and f (1∅) = 0. Submodular optimization has been extensively studying in opti-
mization and machine learning. In the context of online algorithms, Buchbinder
et al. [38] have considered submodular optimization with preemption, where one
can reject previously accepted elements, and have given constant competitive al-
gorithms for unconstrained and knapsack-constraint problems. To the best of our
knowledge, the problem of online submodular minimization under covering con-
straints have not been considered.

An important concept in studying submodular functions is the curvature. Given
a submodular function f , the total curvature κ f [47] of f is defined as

κ f = 1−min
e

f (1E )− f (1E\{e})
f (1{e})

.

Intuitively, the total curvature mesures how far away f is from being modular. The
concept of curvature has been used to determine both upper and lower bounds on
the approximation ratios for many submodular and learning problems [47, 65, 12,
124, 80, 117].

In the following, we present a competitive algorithm for minimizing a mono-
tone submodular function under covering constraints where the competitive ratio is
characterized by the curvature of the function (and also the sparsity d of the covering
matrix). We first look at an useful property of the total curvature.

Lemma 2.5 For any set S, it always holds that

f (1S) ≥ (1− κ f ) ∑
e∈S

f (1{e}).

Proof Let S = {e1, . . . , em} be an arbitrary subset of E . Let Si = {e1, . . . , ei} for
1 ≤ i ≤ m and S0 = ∅. We have

f (1S) ≥ f (1E )− f (1E\S) =
m−1

∑
i=0

f (1E\Si
)− f (1E\Si+1

) ≥
m

∑
i=1

f (1E )− f (1E\{ei})

≥ (1− κ f )
m

∑
i=1

f (1ei)

where the first two inequalities are due to submodularity of f and the last inequality
follows by the definition of the curvature. �

Proposition 2.8 The algorithm is O
( log d

1−κ f

)
-competitive for minimizing monotone submod-

ular function under covering constraints.

Proof It is sufficient to verify that F is
( 1

1−κ f
, 0
)
-min-locally smooth. Indeed, the( 1

1−κ f
, 0
)
-min-local smoothness holds due to the submodularity and Lemma 2.5: for
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any subsets Re, we have

∑
e∈S

[
f
(
1Re∪{e}

)
− f

(
1Re
)]
≤ ∑

e∈S

[
f
(
1{e}

)]
≤ 1

1− κ f
· f (1S).

Therefore, the proposition follows. �

2.3 Primal-Dual Framework for Packing Problems

Consider the following integer optimization problem. Let E be a set of n resources
and let f : {0, 1}n → R+ be an arbitrary cost function. Let xe ∈ {0, 1} be a variable
indicating whether resource e is selected. The packings constraints ∑e bi,exe ≤ 1 for
every i are given in advance and resources e are revealed online one-by-one. At any
time, one needs to maintain a feasible integer solution x. The goal is to design an
algorithm that maximizes f (x) subject to the online packing constraints and xe ∈
{0, 1} for every e.

2.3.1 Algorithm for Fractional Packing

Recall that a differentiable function F : [0, 1]n → R+ is (λ, µ)-max-locally-smooth if
for any set S ⊂ E , and for any vectors xe ∈ [0, 1]n, the following inequality holds:

∑
e∈S
∇eF(xe) ≥ λF

(
1S
)
− µF

(
x
)
.

where x :=
∨

e∈S x
e, meaning that xe′ = maxe{xe

e′} for any coordinate e′.

Formulation. We say that S ⊂ E is a configuration if 1S corresponds to a feasible
solution. Let xe be a variable indicating whether the resource e is used. For configu-
ration S, let zS be a variable such that zS = 1 if and only if xe = 1 for every resource
e ∈ S, and xe = 0 for e /∈ S. In other words, zS = 1 iff 1S is the selected solution
of the problem. We consider the following formulation and the dual of its relaxation.

Primal:

max ∑
S

f (1S)zS

∑
e

bi,e · xe ≤ 1 ∀i

∑
S:e∈S

zS = xe ∀e

∑
S

zS = 1

xe, zS ∈ {0, 1} ∀e, S

Dual:

min ∑
i

αi + γ

∑
i

bi,e · αi ≥ βe ∀e

γ + ∑
e∈S

βe ≥ f (1S) ∀S

αi ≥ 0 ∀i

In the primal, the first constraints represent the given polytope. Note that the
box constraint xe ≤ 1 is included among these constraints. The second constraint
ensures that if a resource e is chosen then the selected solution must contain e. The
third constraint says that one solution (configuration) must be selected.
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Algorithm. Assume that function F(·) is (λ, µ)-max-locally smooth. Let d be the
maximal number of positive entries in a row, i.e., d = maxi |{bie : bie > 0}|. Define
ρ = maxi maxe,e′ :bie′>0

bie/bie′ . Denote ∇eF(x) = ∂F(x)/∂xe. In the algorithm, at the
arrival of a new resource e, while ∇eF(x) > 0 (i.e., one can still improve the cost
by increasing xe) and ∑i bi,eαe ≤ 1

λ∇eF(x), the primal variable xe and dual variables
αi’s are increased by appropriate rates. We will argue in the analysis that the pri-
mal/dual solutions returned by the algorithm are feasible. Recall that by definition
of the multilinear extension, ∇eF(x) = E

[
f
(
1R∪{e}

)
− f

(
1R
)]

where R is a random
subset of resources N \ {e} such that e′ is included with probability xe′ . Therefore,
during the iteration of the while loop with respect to resource e, only xe is modified
and xe′ remains fixed for e′ 6= e, so ∇eF(x) is constant during the iteration.

Algorithm 2 Algorithm for Packing Constraints.
1: All primal and dual variables are initially set to 0.
2: At every step, always maintain zS = ∏e∈S xe ∏e/∈S(1− xe).
3: Upon the arrival of new resource e.
4: while ∑i bi,eαi ≤ 1

λ∇eF(x) and ∇eF(x) > 0 do
5: Increase τ at rate 1 and increase xe at rate 1

∇eF(x)·ln(1+dρ)
.

6: for i such that bi,e > 0 do
7: Increase αi according to the following function

∂αi

∂τ
← bi,e · αi

∇eF(x)
+

1
dλ

8: end for
9: end while

Dual variables. Variables αi’s are constructed in the algorithm. Letx be the current
solution of the algorithm and let xe be the solution after the while loop with respect
to resource e. Define γ = µ

λ F(x) where x and βe = 1
λ · ∇eF(xe). Note that by the

observation above, during the while loop with respect to resource e, βe =
1
λ · ∇eF(x).

The following lemma gives a lower bound on α-variables.

Lemma 2.6 At any moment during the execution of the algorithm, it always holds that for
every i

αi ≥
∇eF(x)

maxe′ bi,e′ · dλ

[
exp

(
ln
(
1 + dρ

)
·∑

e′
bi,e′ · xe′

)
− 1

]
.

Proof We prove the lemma by induction. At the beginning of the instance, while no
resource has been released, both sides of the lemma are 0. Assume that the lemma
holds until the arrival of a resource e. Consider a moment τ during the loop corre-
sponding to resource e. Note that as F is a linear extension, ∂∇eF(x)/∂τ = 0. The
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derivative of the right hand side of the lemma inequality according to τ is

∇eF(x)
maxe′ bi,e′ · dλ

· ln
(
1 + dρ

)
· bi,e ·

∂xe

∂τ
· exp

(
ln
(
1 + dρ

)
·∑

e′
bi,e′ · xe′

)
≤ ∇eF(x)

maxe′ bi,e′ · dλ
· ln
(
1 + dρ

)
· bi,e ·

1
∇eF(x) · ln(1 + dρ)

·
(

maxe′ bi,e′ · dλ · αi

∇eF(x)
+ 1
)

≤ bi,e · αi

∇eF(x)
+

1
dλ

=
∂αi

∂τ

where in the first inequality, we use the induction hypothesis. So the rate in the
left-hand side is always larger than that in the right-hand side. Hence, the lemma
follows. �

Lemma 2.7 The dual variables defined as above are feasible.

Proof We first prove the primal feasibility. During the execution of the algorithm, if
∑i bi,e′xe′ > 1 for some constraint i then by Lemma 2.3,

αi >
∇eF(x)

maxe′ bi,e′ · dλ

[
exp

(
ln
(
1 + dρ

))
− 1
]
=

ρ · ∇eF(x)
λ maxe′ bi,e′

≥ ∇eF(x)
λbi,e

Therefore, ∑i bi,eαi > 1
λ∇eF(x) and hence the algorithm would have stopped in-

creasing xe at some earlier point. Consequently, the constraint ∑i bi,e′xe′ ≤ 1 is alway
maintained.

The first dual constraint is satisfied by the algorithm. The second dual constraint
reads

1
λ ∑

e∈S
∇eF(xe) +

µ

λ
F(x) ≥ F(1S)

which is, by arranging terms, exactly the (λ, µ)-max-local smoothness of F. Hence,
the lemma follows. �

We are now ready to prove the main theorem.

Theorem 1.3 Let F be the multilinear extension of the objective cost f . Denote the row
sparsity d := maxi |{bie : bie > 0}| and ρ := maxi maxe,e′ :bie′>0

bie/bie′ . Assume that F
is (λ, µ)-max-locally-smooth for some parameters λ > 0 and µ < 1. Then there exists a
O
( 2 ln(1+dρ)+µ

λ

)
-competitive algorithm for the fractional packing problem.

Proof We will bound the increases of the cost and the dual objective at any time τ in
the execution of Algorithm 2. The derivative of the primal with respect to τ is:

∇eF(x) · ∂xe

∂τ
= ∇eF(x) · 1

∇eF(x) · ln(1 + dρ)
=

1
ln(1 + dρ)
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We are now bounding the increase of the dual at time τ. The derivative of the
dual with respect to τ is:

∂D
∂τ

= ∑
i

∂αi

∂τ
+

∂γ

∂τ
= ∑

i:bi,e>0

(
bi,e · αi

∇eF(x)
+

1
dλ

)
+

µ

λ

∂F(x)
∂τ

= ∑
i:bi,e>0

bi,e · αi

∇eF(x)
+ ∑

i:bi,e>0

1
dλ

+
µ

λ
· 1

ln(1 + dρ)

≤ 2
λ
+

µ

λ · ln(1 + dρ)
=

2 ln(1 + dρ) + µ

λ · ln(1 + dρ)

where the inequality holds since during the algorithm ∑i bi,e · αi ≤ βe = 1
λ∇eF(x).

Hence, the competitive ratio is O
( 2 ln(1+dρ)+µ

λ

)
. �

Note that the competitive ratio is the same up to a constant factor as the perfor-
mance guarantee for maximizing a linear function under packing constraints. Specif-
ically, if function f is linear then the smooth parameters are λ = µ = 1.

2.3.2 Applications to online submodular maximization

Consider a online submodular maximization subject to packing constraints. We in-
corporate additional constraints xe ≤ 2/3 (instead of box constraint xe ≤ 1) for every
e. The advantage of these stronger constraints, as shown below, is that we can bound
the smooth parameters while loosing only a constant factor in the competitive ratio.
We are now determining smooth parameters of the multilinear extension F.

Lemma 2.8 Let f be an arbitrary submodular function. Then, the multilinear extension F
is (1,1)-smooth if f is monotone and is (1/3, 1)-smooth if f is non-monotone.

Proof For arbitrary submodular function f , it holds that [56, Lemma III.5] for any vec-
tor y and any subset S, F

(
1S ∨ y

)
≥ (1−maxe ye)F(1S). Moreover, if f is monotone,

F
(
1S ∨ y

)
≥ F(1S).

Consider arbitrary vectors xe and let x =
∨

e x
e. As F is the linear extension of

a submodular function, ∇eF(xe) ≥ ∇eF(x) = E
[

f
(
1R∪{e}

)
− f

(
1R
)]

where R is
a random subset of resources N \ {e} such that e′ is included with probability xe′ .
Therefore, for any subset S,

F(x) + ∑
e∈S
∇eF(xe) ≥ F(x) + ∑

e∈S
E
[

f
(
1R∪{e}

)
− f

(
1R
)]

= E

[
f (1R) + ∑

e∈S

[
f
(
1R∪{e}

)
− f

(
1R
)]]
≥ E

[
f (1R∪S)

]
= F

(
1S ∨ x

)
≥
{

F(1S) if f monotone,
(1−maxe xe)F(1S) otherwise

≥
{

F(1S) if f monotone,
1/3 · F(1S) otherwise

where the second inequality is due to the submodularity of f , and the last inequality
holds since xe ≤ 2/3 for every e. The lemma follows. �

The previous lemma and Theorem 1.3 lead to the following result.

Proposition 2.9 Algorithm 2 yields a O
(
ln(1 + dρ)

)
-competitive fractional solution for

maximizing (arbitrary) submodular functions under packing constraints.
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One can derive online randomized algorithms for specific problems by round-
ing the fractional solutions. For example, using the online contention resolution
rounding schemes [57], one can obtain randomized algorithms for several specific
constraint polytopes, for example, knapsack polytopes, matching polytopes and ma-
troid polytopes.
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Chapter 3

Game Efficiency through Linear
Programming Duality

In this chapter, we present the primal-dual approach to algorithmic game theory.
We show the natural development and the applicability of our framework from full-
information games (Sections 3.1 and 3.2) to incomplete-information games (Sections
3.3, 3.4 and 3.5) by visiting known results and establishing new ones. The approach
provides a general recipe to analyze the efficiency of games and also to derive con-
cepts leading to improvements. In this chapter, we consider games in discrete set-
tings of games (for example, discrete values of valuations and payments, i.e., there
are only a finite (large) number of possible valuations and payments). The main
purpose of restricting to discrete settings is that we can use tools from linear pro-
gramming. The continuous settings can be done by considering successively finer
discrete spaces.

3.1 Smooth Games under the Lens of Duality

We consider smooth games [108] in the point of view of configuration LPs and dual-
ity. Recall that in a game, each player i selects a strategy si from a set Si for 1 ≤ i ≤ n
and that forms a strategy profile s = (s1, . . . , sn). The cost Ci(s) of player i is a function
of the strategy profile s — the chosen strategies of all players. A game with a joint
cost objective function C(s) = ∑n

i=1 Ci(s) is (λ, µ)-smooth if for every two outcomes
s and s∗,

n

∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + µ · C(s)

The robust price of anarchy of a game G is

ρ(G) := inf
{

λ

1− µ
: the game is (λ, µ)-smooth where µ < 1

}
In his seminal paper, Roughgarden [108] has introduced the notion of smooth

games and characterize the efficiency of equilibria as follows.

Theorem 3.1 ([108]) For every game G with robust PoA ρ(G), every coarse correlated equi-
librium σ of G and every strategy profile s∗, it holds that

Es∼σ[C(s)] ≤ ρ(G) · C(s∗).

Until the end of the section, we revisit this theorem by our primal-dual approach.
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Formulation. Given a game, we formulate the corresponding optimization prob-
lem by a configuration LP. Let xij be a variable indicating whether player i chooses
strategy sij ∈ Si. Informally, a configuration A in the formulation is a strategy profile
of the game. Formally, a configuration A consists of pairs (i, j) such that (i, j) ∈ A
means that in configuration A, xij = 1. (In other words, in this configuration, player
i selects strategy sij ∈ Si.) For every configuration A, let zA be a variable such that
zA = 1 if and only if xij = 1 for all (i, j) ∈ A. Intuitively, zA = 1 if configuration
A is the outcome of the game. For each configuration A, let c(A) be the cost of the
outcome (strategy profile) corresponding to configuration A. Consider the follow-
ing formulation and the dual of its relaxation.

Primal:

min ∑
A

c(A)zA

∑
j:sij∈Si

xij ≥ 1 ∀i

∑
A

zA = 1

∑
A:(i,j)∈A

zA = xij ∀i, j

xij, zA ∈ {0, 1} ∀i, j, A

Dual:

max ∑
i

αi + β

αi ≤ γij ∀i, j

β + ∑
(i,j)∈A

γij ≤ c(A) ∀A

αi ≥ 0 ∀i

In the formulation, the first constraint ensures that a player i chooses a strategy
sij ∈ Si. The second constraint means that there must be an outcome of the game.
The third constraint guarantees that if a player i selects some strategy sij then the
outcome configuration A must contain (i, j).

Construction of dual variables. Assuming that the game is (λ, µ)-smooth. Fix the
parameters λ and µ. Given a (arbitrary) coarse correlated equilibrium σ, define dual
variables as follows:

αi :=
1
λ

Es∼σ[Ci(s)], β := −µ

λ
Es∼σ[C(s)], γij :=

1
λ

Es∼σ[Ci(sij, s−i)].

Informally, up to some constant factors depending on λ and µ, αi is the cost of player
i in equilibrium σ,−β stands for the cost of the game in equilibrium σ and γij repre-
sents the cost of player i if player i uses strategy sij while other players i′ 6= i follows
strategies in σ. Notice that β has negative value.

Feasibility. We show that the constructed dual variables form a feasible solution.
The first constraint follows exactly the definition of (coarse correlated) equilibrium.
The second constraint is exactly the smoothness definition. Specifically, let s∗ be the
strategy profile corresponding to configuration A. Note that Es∼σ[Ci(s

∗)] = Ci(s
∗).

The dual constraint reads

−µ

λ
Es∼σ[C(s)] + ∑

i

1
λ

Es∼σ[Ci(s∗i , s−i)] ≤ Es∼σ[Ci(s
∗)]

which is the definition of (λ, µ)-smoothness by rearranging the terms and using the
linearity of expectation.
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Price of Anarchy. By weak duality, the optimal cost among all outcomes of the
problem (strategy profiles of the game) is at least the dual objective of the con-
structed dual variables. Hence, in order to bound the PoA, we will bound the ratio
between the cost of an (arbitrary) equilibrium σ and the dual objective of the cor-
responding dual variables. The cost of equilibrium σ is Es∼σ[C(s)] while the dual
objective of the constructed dual variables is

n

∑
i=1

1
λ

Es∼σ[Ci(s)]−
µ

λ
Es∼σ[C(s)] =

1− µ

λ
Es∼σ[C(s)].

Therefore, for a (λ, µ)-smooth game, the PoA is at most λ/(1− µ).

Remark. As shown in [108], Theorem 3.1 applies also to outcome sequences gen-
erated by repeated play such as vanishing average regret. By the same duality ap-
proach, we can also recover this result (by setting dual variables related to the aver-
age cost during the play).

3.2 Congestion Games

3.2.1 Atomic Congestion Games

Model. Atomic congestion games were defined by Rosenthal [106]. In this sec-
tion, we consider atomic weighted congestion games, a generalized version of the
standard congestion game. In the game, we are given a ground set E of resources,
a set of n players with strategy sets S1, . . . ,Sn ⊆ 2E and weights w1, . . . , wn and a
cost function `e : R+ → R+ for each resource e ∈ E. Note that the weighted set-
ting generalizes the standard congestion games in which wi = 1 for all players i.
Given a strategy profile s = (s1, . . . , sn) where si ∈ Si for each player i, we say that
we(s) = ∑i:e∈si

wi is the load induced on e by s. The cost of a player i is defined as
Ci(s) = ∑e:e∈si

wi · `e(we) where we is the load on resource e induced by profile s. The
total cost of the game in profile s is C(s) = ∑n

i=1 Ci(s) = ∑e:e∈si
we(s) · `e

(
we(s)

)
.

The PoA of atomic congestion games has been a extensively studied topic in algo-
rithmic game theory. Most notably, Roughgarden [108] proved that the smoothness
argument gave tight bounds for (unweighted) atomic congestion games. For the
weighted setting, Bhawalkar et al. [24] showed that the smoothness framework also
gave tight bounds for large classes of congestion games.

In this section, we reprove the upper bound [108, 24] on the PoA in atomic con-
gestion games. The result is proved by the same duality approach described in Sec-
tion 3.1. Nevertheless, we present a proof for this result for the following reasons.
First, we give a slightly different formulation of the configuration LP. To establish
smoothness, all current proofs are based on smooth-inequalities related to resources.
The new formulation is given to capture the smooth-inequality notion on resources.
Second, the new proof will be used later to show that in terms of PoA, the atomic
congestion games have a strong connection with non-atomic and splittable conges-
tion games under the viewpoint of duality.

We say that a cost function `e : R+ → R+ for a resource e is (λ, µ)-resource-smooth
if for all sequences of non-negative real numbers (ai)

n
i=1 and (bi)

n
i=1, it holds that

n

∑
i=1

`e

( i

∑
j=1

aj + bi

)
≤ λ · `e

( n

∑
i=1

bi

)
+ µ · `e

( n

∑
i=1

ai

)
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Theorem 3.2 ([108, 24]) Let L be a non-empty set of cost functions. The PoA of every
coarse correlated equilibrium of every (weighted) atomic congestion game with cost functions
`e ∈ L is at most

inf
{

λ

1− µ
: `e is (λ, µ)-resource-smooth where µ < 1 ∀e ∈ E

}
Proof
Formulation. Let xij be variable indicating whether player i chooses strategy sij ∈ Si.
For every resource e and every subset of players T, let zeT be a variable such that
zeT = 1 if and only if every player i ∈ T uses resource e, i.e., e ∈ si, and player i /∈ T
does not use resource e. Denote w(T) = ∑i∈T wi. Consider the following integer
program and its dual. In the primal, the first constraint says that a player i has to
select a strategy sij ∈ Si. The second constraint means that a subset of players T
will use resource e. The third constraint guarantees that if a player i chooses some
strategy sij ∈ Si containing resource e then there must be a subset of players T such
that i ∈ T and zeT = 1.

Primal:

min ∑
e

w(T)`e(w(T))zeT

∑
j

xij ≥ 1 ∀i

∑
T

zeT = 1 ∀e

∑
T:i∈T

zeT = ∑
j:e∈sij

xij ∀i, e

xij, zeT ∈ {0, 1} ∀i, j, e, T

Dual:

max ∑
i

αi + ∑
e

βe

αi ≤ ∑
e:e∈sij

γi,e ∀i, j

βe + ∑
i∈T

γi,e ≤ w(T)`e(w(T)) ∀e, T

αi ≥ 0 ∀i

Dual Variables. Fix parameters λ and µ. Given a coarse correlated equilibrium σ,
define corresponding dual variables as follows.

αi :=
1
λ

Es∼σ[Ci(s)],

βe := −µ

λ
Es∼σ

[
∑

i:e∈si

wi`e(we(s))

]
,

γi,e :=
1
λ

Es∼σ
[
wi · `e

(
we(s−i) + wi

)]
where we(s−i) = ∑i′ 6=i,e∈si′

wi′ . Informally, up to some constant factors, αi is the cost
of player i in equilibrium σ, −βe stands for the total cost of players on resource e in
this equilibrium and γi,e represents the cost of player i on resource e if player i uses
strategy containing e while other players i′ follows strategy si′ for all i′ 6= i.

Feasibility. By this definition of dual variables, the first dual constraint follows
from the definition of coarse correlated equilibrium. The second dual constraint is
satisfied due to the smoothness definition. Specifically, the constraint for a resource
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e and a subset of players T reads

−Es∼σ

[
µ

λ
we(s)`e

(
we(s)

)]
+ Es∼σ

[
1
λ ∑

i∈T
wi`e

(
we(s−i) + wi

)]
≤ w(T)`e(w(T)).

The inequality holds since without expectation and by linearity of expectation (and
also Es∼σ

[
w(T) · `e(w(T))

]
= w(T)`e(w(T))), it is exactly the smoothness defini-

tion.

Bounding primal and dual. The PoA is bounded by the ratio between the primal
objective and the dual one. Note that

∑
i

αi = ∑
i

1
λ

Es∼σ[Ci(s)] = Es∼σ
[ 1

λ ∑
e

we(s)`e(we(s))
]
.

Therefore,

∑
i

αi + ∑
e

βe =
1− µ

λ ∑
e

we(s)`e(we(s))

Hence, PoA ≤ λ/(1− µ). �

3.2.2 Nonatomic Congestion Games

Model. Non-atomic congestion games were defined by Roughgarden and Tardos
[112], motivated by the non-atomic routing games of Wardrop [125] and Beckmann
et al. [20] and the congestion games of Rosenthal [106]. We consider a discrete ver-
sion of non-atomic congestion games. The main purpose of restricting to discrete
settings is that we can use tools from linear programming. The continuous settings
can be done by considering successively finer discrete spaces.

Fix a constant ε (arbitrarily small). A non-atomic congestion game consists of a
ground set E of resources and n different types of players. The set of strategies of
players of type i is Si and each strategy consists of a subset of resources. Players
of type i are associated to an integer number mi that corresponds to a total amount
wi := mi · ε. Players of type i select strategies sij ∈ Si and distribute amounts fsij

— a non-negative multiple of ε — to strategy sij, which lead to a strategy distribution
f = ( fsij) with ∑sij∈Si

fsij = wi = miε for player type i. We abuse notation and let fe

be the total amount of congestion induced on resource e by the strategy distribution
f . That is, fe := ∑n

i=1 ∑e∈sij
fsij . Each resource has a non-decreasing cost function

`e : R+ → R+. With respect to a strategy distribution f , players of type i selecting
strategy sij ∈ Si incurs a cost Csij(f ) = ∑e∈sij

`e( fe). A strategy distribution f is an
pure equilibrium if for each player type i and strategy sij, sij′ ∈ Si with fsij > 0,

Csij(f ) ≤ Csij′ (f ).

The more general equilibrium concept such as mixed, correlated and coarse corre-
lated equilibria, are defined similarly as in Section 1.5.1. The social cost of a strategy
distribution f is

C(f ) =
n

∑
i=1

∑
sij∈Si

fsij · Csij(f ) = ∑
e

fe · `e
(

fe
)
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For non-atomic congestion games, tight bounds on the PoA for almost all classes
of cost functions have been given in [112]. The core of all analyses for PoA bounds
is indeed the characterization of the unique equilibrium via a variational inequality
due to Beckmann et al. [20]. This argument is explained in [48, 46]. Moreover, the
connection between smoothness arguments and PoA bounds for non-atomic conges-
tion games was revealed in [48].

3.2.2.1 Efficiency of Non-Atomic Congestion Games

In this section, we reprove the tight bound for non-atomic congestion games by the
duality approach. It has been shown that in non-atomic congestion games all equi-
libria are essentially unique; specifically, all coarse correlated equilibria of a non-
atomic congestion game have the same cost [27]. Hence, the robust PoA is indeed
the PoA of pure Nash equilibrium. However, as we do not use the equilibrium char-
acterization from [20], we will prove the PoA bound for coarse correlated equilibria.
Consequently, the tight PoA bound can be proved for non-regret sequences and short
best-reponse sequences. Moreover, we avoid the standard assumptions on the cost
functions: x`e(x) is convex and `e(x) is differentiable.

Let L be a non-empty set of cost functions. The Pigou bound ξ(L) for L is defined
as

ξ(L) := sup
`∈L

sup
u,v

u · `(u)
v · `(v) + (u− v) · `(u) .

Theorem 3.3 ([112]) Let L be a set of cost functions. Then, for every splittable congestion
game G with cost functions in L, the price of anarchy of G is at most ξ(L).

Proof
Formulation. Denote a finite set of integer multiples of ε as {a0, a1, . . . , am} where
ak = k · ε and m = maxn

i=1 mi. We say that Te is a configuration of a resource e
if Te = {(i, k) : 1 ≤ i ≤ n, 0 ≤ k ≤ m} in which a couple (i, k) specifies the
player type i and the amount ak that the player type i distributes to some strategy
sij ∈ Si where e ∈ sij. Note that in a configuration Te of a resource e, there might
be multiple couples (i, k) ∈ Te and (i, k′) ∈ Te corresponding to players of the same
type. It simply means that players of type i distribute the amounts ak and ak′ to
some strategies sij and sij′ respectively that contain resource e, i.e., e ∈ sij and e ∈ sij′ .
Intuitively, a configuration of a resource is a strategy distribution of a game restricted
on the resource.

Let xijk be a variable indicating whether player type i distributes an amount ak to
strategy sij ∈ Si. For every resource e and a configuration Te, let ze,Te be a variable
such that ze,Te = 1 if and only if players of type i distribute ak to some strategy con-
taining resource e for (i, k) ∈ Te. In other words, ze,Te = 1 if and only if for (i, k) ∈ Te,
xijk = 1 for some sij ∈ Si such that e ∈ sij. For a configuration Te of a resource e, let
w(Te) be the total amount distributed by players on resource e in this configuration.
Consider the following configuration integer program and the dual of its relaxation.
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Primal:

min ∑
e,Te

w(Te)`e(w(Te))ze,Te

∑
j,k

akxijk = wi ∀i

∑
Te

ze,Te = 1 ∀e

∑
Te :(i,k)∈T

ze,Te = ∑
j:e∈sij

xijk ∀(i, k), e

xijk, ze,Te ∈ {0, 1} ∀i, j, e, Te

Dual:

max ∑
i

wiαi + ∑
e

βe

akαi ≤ ∑
e:e∈sij

γi,k,e ∀i, k, j

βe + ∑
(i,k)∈Te

γi,k,e ≤ w(Te)`e(w(Te))

∀e, Te

In the primal, the first constraint ensures that players of type i distribute the total
amount wi among its strategies. The second constraint means that a resource e is al-
ways associated to a configuration (possibly empty). The third constraint guarantees
that if player type i distributes an amount ak to some strategy sij containing resource
e then there must be a configuration Te such that (i, k) ∈ Te and ze,Te = 1.

Dual Variables. Given a coarse correlated equilibriumσ, define the corresponding
dual variables as follows.

αi := Ef∼σ

[
∑

e∈sij

`e( fe)

]
for some sij ∈ Si : fsij > 0,

γi,k,e := Ef∼σ
[
ak · `e( fe)

]
,

βe := inf
Te

{
w(Te)`e

(
w(Te)

)
−Ef∼σ

[
∑

(i,k)∈Te

ak · `e( fe)

]}
The dual variables have similar interpretations as in previous analysis. Variable

αi is the total cost of resources in a strategy used by player type i in equilibrium σ
and γi,k,e represents an estimation of the cost of player i on resource e if player type i
distributes an amount ak in some strategy containing e while other players i′ follows
their strategies in σ.

Feasibility. By this definition of dual variables, the first dual constraint holds since
it is the definition of coarse correlated equilibrium. The second dual constraint for a
resource e and a configuration Te reads

βe + ∑
(i,k)∈Te

Ef∼σ
[
ak · `e( fe)

]
≤ w(Te)`e(w(Te)).

This inequality follows directly from the definition of β-variables and linearity of
expectation.

Bounding primal and dual. For each resource e, let ve be the amount in Te corre-
sponding the infimum in the definition of βe. (As we consider discrete and finite
settings, the infimum is indeed the minimum.) The dual objective is

∑
i

wiαi + ∑
e

βe = Ef∼σ

[
∑

e

(
fe`e( fe) + ve`e(ve)− ve`e( fe)

)]
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where in the equalities, we use the definition of dual variables. Note that the term(
fe`e( fe) + ve`e(ve)− ve`e( fe)

)
≥ 0 for every resource e. Specifically, since `e is non-

decreasing, if fe ≥ ve then fe`e( fe) ≥ ve`e( fe); else ve`e(ve) ≥ ve`e( fe).
Besides, the primal objective is Ef∼σ

[
∑e fe`e( fe)

]
. Hence, the ratio between pri-

mal and dual is at most

max
e

fe`( fe)

ve`e(ve) + ( fe − ve)`e( fe)

which is bounded by the Pigou bound ξ(L) where L is the class of cost functions on
resources in the game. �

Remark. The proofs of Theorem 3.2 and Theorem 3.3 are essentially the same. By
the duality approach as a unifying tool, the main difference in term of equilibrium
efficiency between atomic and non-atomic congestion games is due to the definition
of player cost. In the context of large games [55], while the weight of a player is
negligible then the player cost in a atomic congestion game coincides with the one in
the corresponding non-atomic congestion game. In this context, the PoA in atomic
congestion game tends to that in non-atomic setting.

3.2.2.2 Resource Augmentation in Non-Atomic Congestion Games

Roughgarden and Tardos [111] proved that in every non-atomic selfish routing game,
the cost of an equilibrium is upper bounded by that of an optimal solution routing
twice as much traffic. In this section, we recover this result by the mean of linear
programming duality. Resource augmentation have been widely studied in many
contexts in algorithms. Recently, Lucarelli et al. [92] have presented an unified ap-
proach to study resource augmentation in online (scheduling) problems based on
primal-dual techniques. We will follow this framework to prove the resource aug-
mentation result in non-atomic congestion games.

Let (G, (1+ r)w, `) for some constant r be a non-atomic congestion game in which
the total amount for players of type i is (1 + r)wi and the cost function on each
resource e is `e. Our purpose is to bound the cost of an arbitrary equilibrium in
(G, w, `) by that of an optimal solution in (G, (1 + r)w, `) for some r > 0. Consider
the following formulation (similar to the previous section) (Pr) for (G, (1 + r)w, `).
By weak duality, the optimal cost in (G, (1 + r)w, `) is at least the objective of a dual
feasible solution in (Dr).

Primal:

min ∑
e,Te

w(Te)`e(w(Te))ze,Te (Pr)

∑
j,k

akxijk = (1 + r) · wi ∀i

∑
Te

ze,Te = 1 ∀e

∑
Te :(i,k)∈Te

ze,Te = ∑
j:e∈sij

xijk ∀(i, k), e

xijk, ze,Te ∈ {0, 1} ∀i, j, e, Te

Dual:

max ∑
i
(1 + r)wiαi + ∑

e
βe (Dr)

akαi ≤ ∑
e:e∈sij

γi,k,e ∀i, k, j

βe + ∑
(i,k)∈Te

γi,k,e ≤ w(Te)`e(w(Te))

∀e, Te
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Hence, our scheme consists of bounding the cost of an arbitrary equilibrium in
(G, w, `) and the objective (Dr) of an appropriate dual feasible solution.

Theorem 3.4 In every non-atomic congestion game, for any constant r > 0, the cost of an
equilibrium in (G, w, `) is at most 1/r times the cost of of an optimal solution in (G, (1 +
r)w, `).

Proof Let σ be a coarse correlated equilibrium of the game where the amount for
players of type i is wi. Construct the dual feasible solution for (Dr) as in the proof of
Theorem 3.3. As the dual constraints of (Dr) and (D0) are the same, the construction
in the proof of Theorem 3.3 gives a dual feasible solution for (Dr). It remains to
bound the objective of (Dr) of this dual solution to the cost of equilibrium σ, which
is Ef∼σ [∑e fe`e( fe)]. The former is

∑
i
(1 + r)wiαi + ∑

e
βe = Ef∼σ

[
∑

e

(
(1 + r) · fe`e( fe) + ve`e(ve)− ve`e( fe)

)]

≥ Ef∼σ

[
∑

e
r · fe`e( fe)

]

where the inequality holds since fe`e( fe) + ve`e(ve) ≥ ve`e( fe). Precisely, if fe ≥ ve
then fe`e( fe) ≥ ve`e( fe) and if fe < ve then ve`e(ve) > ve`e( fe) (since `e in non-
decreasing). Hence, we deduce that the objective of (Dr) is at least r times the cost
of equilibrium σ. �

3.2.3 Splittable Congestion Games

Model. In this section we consider the splittable congestion games also in the dis-
crete setting. Fix an arbitrarily small constant ε > 0. In a splittable congestion game,
there is a set E of resources where each resource is associated to a non-decreasing
differentiable cost function `e : R+ → R+ such that x`e(x) is convex. There are
n players, a player i has a set of strategies Si ⊆ 2E and has weight wi, a multiple
of ε. A strategy of player i is a distribution ui of its weight wi among strategies sij

in Si such that ∑sij∈Si
ui

sij
= wi and ui

sij
≥ 0 is a multiple of ε. A strategy profile

is a vector u = (u1, . . . , un) of all players’ strategies. We abuse notation and de-
fine ui

e = ∑e∈sij
ui

sij
as the load player i distributes on resource e and ue = ∑n

i=1 ui
e

the total load on e. Given a strategy profile u, the cost of player i is defined as
Ci(u) := ∑e ui

e · `e(ue). A strategy profile u is a pure Nash equilibrium if and only if
for every player i and all sij, sij′ ∈ Si with ui

sij
> 0:

∑
e∈sij

(
`e(ue) + ui

e · `′e(ue)
)
≤ ∑

e∈sij′

(
`e(ue) + ui

e · `′e(ue)
)

The proof of this equilibrium characterization can be found in [69]. Again, the more
general concepts of mixed, correlated and coarse correlated equilibria are defined
similarly as in Section 1.5.1. In the game, the social cost is defined as C(u) :=
∑n

i=1 Ci(u) = ∑e ue`e(ue).
The PoA bounds has been recently established for a large class of cost func-

tions by Roughgarden and Schoppmann [110]. The authors proposed a local smooth-
ness framework and showed that the local smoothness arguments give optimal PoA
bounds for a large class of cost functions in splittable congestion games. Prior to
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Roughgarden and Schoppmann [110], the works of Cominetti et al. [46] and Harks
[69] have also the flavour of local smoothness, though their bounds are not tight.
The local smooth arguments extends to the correlated equilibria of a game but not to
the coarse correlated equilibria. Motivated by the duality approach, we define a new
notion of smoothness and prove a bound on the PoA of coarse correlated equilibria.
It turns out that this PoA bound for coarse correlated equilibria is indeed tight for
all classes of scale-invariant cost functions by the lower bound given by Roughgar-
den and Schoppmann [110, Section 5]. A class of cost functions L is scale-invariant if
` ∈ L implies that a · `(b · x) ∈ L for every a, b > 0.

Formulation. Given a splittable congestion game, we formulate the problem by the
same configuration program used for non-atomic congestion game. Denote a finite
set of multiples of ε as {a0, a1, . . . , am} where ak = k · ε and m = maxn

i=1dwi/εe. We
say that Te is a configuration of a resource e if Te = {(i, k) : 1 ≤ i ≤ n, 0 ≤ k ≤ m} in
which a couple (i, k) specifies the player (i) and the amount ak of the weight wi that
player i distributes to some strategy sij ∈ Si with e ∈ sij. Intuitively, a configuration
of a resource is a strategy profile of a game restricted to the resource. Let xijk be
variable indicating whether player i distributes an amount ak of its weight to strategy
sij ∈ Si. For every resource e and a configuration Te on resource e, let ze,Te be a
variable such that ze,Te = 1 if and only if for (i, k) ∈ Te, xijk = 1 for some sij ∈ Si
such that e ∈ sij. For a configuration Te of resource e, denote w(Te) the total amount
distributed by players in Te to e.

min ∑
e,Te

w(Te)`e(w(Te))ze,Te

∑
j,k

akxijk = wi ∀i

∑
Te

ze,Te = 1 ∀e

∑
Te :(i,k)∈Te

ze,Te = ∑
j:e∈sij

xijk ∀(i, k), e

xij, ze,Te ∈ {0, 1} ∀i, j, e, Te

max ∑
i

wiαi + ∑
e

βe

akαi ≤ ∑
e:e∈sij

γi,k,e ∀i, k, j

βe + ∑
(i,k)∈Te

γi,k,e ≤ w(Te)`e(w(Te))

∀e, Te

Again, in the primal, the first constraint says that a player i distributes the total
weight wi among its strategies. The second constraint means that a resource e is
always associated to a configuration (possibly empty). The third constraint guaran-
tees that if a player i distributes an amount ak to some strategy sij containing resource
e then there must be a configuration Te such that (i, k) ∈ Te and ze,Te = 1.

All previous duality proofs have the same structure: in the dual LP, the first
constraint gives the characterization of an equilibrium and the second one settles
the PoA bounds. Following this line, we give the following definition.

Definition 3.1 A cost function ` : R+ → R+ is (λ, µ)-dual-smooth if for every vectors
u = (u1, . . . , un) and v = (v1, . . . , vn), it holds that

v`(u) +
n

∑
i=1

ui(vi − ui) · `′(u) ≤ λ · v`(v) + µ · u`(u)

where u = ∑i ui and v = ∑i vi. A splittable congestion game is (λ, µ)-dual-smooth if
every resource e in the game, function `e is (λ, µ)-dual-smooth.
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Theorem 3.5 For every (λ, µ)-dual-smooth splittable congestion game G, the price of anar-
chy of coarse correlated equilibria of G is at most λ/(1− µ). This bound is tight for the class
of scalable cost functions.

Proof The proof follows the duality scheme.

Dual Variables. Fix parameter λ and µ. Given a coarse correlated equilibrium σ,
define corresponding dual variables as follows.

αi =
1
λ

Eu∼σ

[
∑

e∈sij

`e(ue) + ui
e`
′
e(ue)

]
for some sij ∈ Si : ui

sij
> 0,

βe = −
1
λ

Eu∼σ

[
µ · ue`e(ue) + ∑

i
(ui

e)
2 · `′e(ue)

]
,

γi,k,e =
1
λ

Eu∼σ
[
ak
(
`e(ue) + ui

e`
′
e(ue)

)]
.

The dual variables have similar interpretations as in previous analysis. Up to some
constant factors, variable αi is the marginal cost of a strategy used by player i in the
equilibrium; and γi,k,e represents an estimation of the cost of player i on resource e
if player i distributes an amount ak of its weight to some strategy containing e while
other players follow their strategies in the equilibrium.

Feasibility. By this definition of dual variables, the first dual constraint holds since
it is the definition of coarse correlated equilibrium. Rearranging the terms, the sec-
ond dual constraint for a resource e and a configuration Te reads

1
λ ∑

(i,k)∈Te

Eu∼σ
[
ak · `e(ue) + ui

e(ak − ui
e)`
′
e(ue)

)]
≤ w(Te)`e(w(Te)) +

µ

λ
Eu∼σ

[
ue`e(ue)

]
.

This inequality follows directly from the definition of (λ, µ)-dual-smoothness and
linearity of expectation (and note that w(Te)`e(w(Te)) = Eu∼σ

[
w(Te)`e(w(Te))

]
and

w(Te) = ∑(i,k)∈Te
ak).

Bounding primal and dual. By the definition of dual variables, the dual objective
is

∑
i

wiαi + ∑
e

βe = ∑
e

(
∑

i
ui

eαi + βe

)
=

1
λ

Eu∼σ

[
∑

e
ue`e(ue) + ∑

i
(ui

e)
2 · `′e(ue)

]
− 1

λ
Eu∼σ

[
µ · ue`e(ue) + ∑

i
(ui

e)
2 · `′e(ue)

]
=

1− µ

λ
Eu∼σ

[
∑

e
ue`e(ue)

]
while the cost of the equilibrium σ is Eu∼σ

[
∑e ue`e(ue)

]
. The theorem follows. �
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3.3 Efficiency of Smooth Auctions in Welfare Maximization

In this section, we show that the primal-dual approach also captures the smooth-
ness framework in studying the inefficiency of Bayes-Nash equilibria in incomplete-
information settings. Recall the definition of smooth games.

Definition 1.8 ([109]) For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every
valuation profile v = (v1, . . . , vn), there exist action distributions D∗1(v), . . . , D∗n(v) over
A1, . . . ,An such that, for every action profile a,

∑
i

Ea∗i ∼D∗i (v)
[
ui(a∗i ,a−i; vi)

]
≥ λ · SW(a∗;v)− µ · SW(a;v). (1.3)

Definition 1.9 ([119]) For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every
valuation profile v = (v1, . . . , vn), there exist action distributions D∗1(v), . . . , D∗n(v) over
A1, . . . ,An such that, for every action profile a,

∑
i

Ea∗i ∼D∗i (v)
[
ui(a∗i ,a−i; vi)

]
≥ λ ·OPT(v)− µ · REV(a;v). (1.4)

In this section, we consider Definition 1.8 of smooth auctions in [109] and revisit
the price of anarchy bound of smooth auctions. In the end of the section, we show
that a similar proof carries through the smooth auctions defined by Syrgkanis and
Tardos [119].

Theorem 3.6 ([109]) If an auction is (λ, µ)-smooth and the distributions of player valua-
tions are independent then every Bayes-Nash equilibrium has expected welfare at least λ

1+µ

times the optimal expected welfare.

Proof Given an auction, we formulate the corresponding optimization problem by a
configuration LP. A configuration A consists of pairs (i, ai) specifying that in config-
uration A, player i chooses action ai. Intuitively, a configuration is an action profile
of players. For every player i, every valuation vi ∈ Vi and every action ai ∈ Ai, let
xi,ai(vi) be the variable representing the probability that player i chooses action ai.
Besides, for every valuation profile v, let zA(v) be the variable indicating the prob-
ability that the chosen configuration (action profile) is A. For each configuration A
and valuation profile v, the auctioneer outcomes an allocation and a payment and
that results in a social welfare denoted as cA(v). In the other words, if a is the action
profile corresponding to the configuration A then cA(v) is in fact SW(a;v). Consider
the following formulation.

max ∑
v

cA(v)zA(v)

∑
ai∈Ai

xi,ai(vi) ≤ fi(vi) ∀i, vi

∑
A

zA(v) ≤ f (v) ∀v

∑
A:(i,ai)∈A

zA(vi,v−i) ≤ f−i(v−i) · xi,ai(vi) ∀i, ai, vi,v−i

xi,ai(vi), zA(v) ≥ 0 ∀i, ai, A, vi,v

The first and second constraints guarantee that variables x and z represent indeed
the probability distribution of each player and the joint distribution, respectively.
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The third constraint makes the connection between variables x and z. It ensures that
if a player i with valuation vi selects some action ai then in the valuation profile
(vi,v−i), the probability that the configuration A contains (i, ai) must be f−i(v−i) ·
xi,ai(vi). The primal objective is the expected welfare of the auction.

The dual is the following.

min ∑
i,vi

fi(vi) · αi(vi)+∑
v

f (v) · β(v)

αi(vi) ≥∑
v−i

f−i(v−i) · γi,ai(vi,v−i) ∀i, ai, vi

β(v) + ∑
(i,ai)∈A

γi,ai(v) ≥ cA(v) ∀A,v

αi(vi), β(v), γi,ai(v) ≥ 0 ∀i, vi,v

Construction of dual variables. Assuming that the auction is (λ, µ)-smooth. Fix
the parameters λ and µ. Given an arbitrary Bayes-Nash equilibrium σ, define the
dual variables as follows.

αi(vi) :=
1
λ

Ev−i

[
Eb∼σ(vi ,v−i)[ui(b; vi)]

]
,

β(v) :=
µ

λ
Eb∼σ(v)

[
SW(b;v)

]
,

γi,ai(v) :=
1
λ

Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)].

Informally, up to some constant factors depending on λ and µ, αi(vi) is the expected
utility of player i in equilibrium σ; β(v) stands for the social welfare of the auction
where the valuation profile is v and players follow the equilibrium actions σ(v);
and γi,ai(v) represents the utility of player i in valuation profile v if player i chooses
action ai while other players i′ 6= i follows their equilibrium strategies σ−i(v−i).

Feasibility. We show that the constructed dual variables form a feasible solution.
By the definition of dual variables, the first dual constraint reads

1
λ

Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
≥ 1

λ ∑
v−i

f−i(v−i) ·Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)]

=
1
λ

Ev−i

[
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)]

]
This is exactly the definition of a Bayes-Nash equilibrium.

For every valuation profile v = (v1, . . . , vn) and for any configuration A (corre-
sponding action profile a = (a1, . . . , an)), the second constraint reads:

µ

λ
Eb∼σ(v)

[
SW(b;v)

]
+ ∑

(i,ai)∈A

1
λ

Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)] ≥ SW(a;v). (3.1)

Note that we can write SW(a;v) = Eb∼σ(v)
[
SW(a;v)

]
. For any fixed realization b of

σ(v), by (λ, µ)-smoothness

µ

λ
SW(b;v) + ∑

i

1
λ

ui(ai, b−i; vi) ≥ SW(a;v).
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Hence, by taking expectation over σ(v), Inequality (3.1) follows.

Price of Anarchy. The welfare of equilibrium σ is EvEb∼σ(v)
[
SW(b;v)

]
while the

dual objective of the constructed dual variables is

∑
i,vi

fi(vi) ·
1
λ

Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
+ ∑

v

f (v) · µ

λ
Eb∼σ(v)

[
SW(b;v)

]
≤ 1 + µ

λ
·EvEb∼σ(v)

[
SW(b;v)

]
.

Therefore, the PoA of a (λ, µ)-smooth auction is at most λ/(1 + µ). �

Remark. Consider the notion of (λ, µ)-smooth auctions defined by Syrgkanis and
Tardos [119]. In order to bound the price of anarchy, Inequality (1.4) can be replaced
by a weaker one, which is:

∑
i

Ea∗i ∼D∗i (v)
[
ui(a∗i ,a−i; vi)

]
≥ λ · SW(a∗;v)− µ · REV(a;v). (3.2)

Using the same proof structure of Theorem 3.6, we can prove that the price of
anarchy is at most λ/µ [119]. Specifically, define dual variables α and γ as previous
and

β(v) =
µ

λ
Eb∼σ(v)

[
REV(b;v)

]
.

The feasibility follows the definitions of Bayes-Nash equilibria and smooth auctions,
in particular Inequality (3.2). To bound the price of anarchy, as µ ≥ 1, we have

∑
i,vi

fi(vi) ·
1
λ

Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
+ ∑

v

f (v) · µ

λ
Eb∼σ(v)

[
REV(b;v)

]
≤ µ

λ
·EvEb∼σ(v)

[
SW(b;v)

]
.

Therefore, the price of anarchy is at most λ/µ.

3.4 Simultaneous Item-Bidding Auctions

Model. In this section, we consider the following Bayesian combinatorial auctions.
In the setting, there are m items to be sold to n players. Each player i has a private
monotone valuation vi : 2[m] → R+ over different subsets of items S ⊂ 2[m]. For sim-
plicity, we denote vi(S) as viS. The valuation profile v = (v1, . . . , vn) is drawn from
a product distribution F . In other words, the probability distributions Fi of valua-
tions vi are independent. Designing efficient combinatorial auctions are in general
complex and a major direction in literature is to seek simple and efficient auctions
in term of PoA. Among others, simultaneous item-bidding auctions are of particular
interest.

We consider two forms of simultaneous item-bidding auctions: simultaneous first-
price auctions (S1A) and simultaneous second-price auctions (S2A). In the auctions, each
player submits simultaneously a vector of bids, one for each item. A typical assump-
tion is the non-overbidding property in which each player submits a vector bi of bids
such that for any set of items S, ∑j∈S bij ≤ viS. Given the bid profile, each item is
allocated to the player with highest bid. In a simultaneous first-price auction, the
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payment of the winner of each item is its bid on the item; while in a simultaneous
second-price auction, the winner of each item pays the second highest bid on the
item.

3.4.1 Connection between Primal-Dual and Non-Smooth Techniques

In this section, we consider the setting in which all player valuations are sub-additive.
That is, vi(S ∪ T) ≤ vi(S) + vi(T) for every player i and all subsets S, T ⊂ 2[m].
The PoA of simultaneous item-bidding auctions has been widely studied in this set-
ting. Using smoothness framework in auctions, logarithmic bounds on PoA for S1A
and S2A are given by Hassidim et al. [71] and Bhawalkar and Roughgarden [22],
respectively. Recently, Feldman et al. [54] presented a significant improvement by
establishing the PoA bounds 2 and 4 for S1A and S2A, respectively. Their proof argu-
ments go beyond the smoothness framework. In the following, we revisit the results
of Feldman et al. [54] and show that the duality approach captures the non-smooth
technique from [54].

Formulation. Given a valuation profile v, let xij(v) be the variable indicating whether
player i receives item j in valuation profile v. Let ziS(v) be the variable indicating
whether player i receives a set of items S. Then for any profile v and for any item j,
∑i xij(v) ≤ 1, meaning that an item j is allocated to at most one player. Moreover,
∑S:j∈S ziS(v) = xij(v), meaning that if player i receives item j then some subset of
items S allocated to i must contain j. Besides, ∑S ziS(v) = 1 since some subset of
items (possibly empty) is allocated to i.

Let xij(vi) and ziS(vi) be interim variables corresponding to xij(v) and ziS(v) and
are defined as follows:

xij(vi) := Ev−i∼F−i

[
xij(vi,v−i)

]
, ziS(vi) := Ev−i∼F−i

[
ziS(vi,v−i)

]
,

where F−i is the product distribution of all players other than i. Consider the fol-
lowing relaxation with interim variables. The constraints in the primal follow the
relationship between the interim variables xij(vi), ziS(vi) and variables xij(v), ziS(v).

max ∑
i,S

∑
vi

fi(vi)
[
viS · ziS(vi)

]
∑

i
∑

vi∈Vi

fi(vi)xij(vi) ≤ 1 ∀j

∑
S

ziS(vi) = 1 ∀i, vi

∑
S:j∈S

ziS(vi) = xij(vi) ∀i, j, vi

xij(vi), ziS(vi) ≥ 0 ∀i, j, S, vi
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The dual is the following.

min ∑
i,vi

αi(vi) + ∑
j

β j

fi(vi) · β j ≥ γi,j(vi) ∀i, j, vi

αi(vi) + ∑
j∈S

γi,j(vi) ≥ fi(vi) · viS ∀i, S, vi

αi(vi) ≥ 0 ∀i, vi

Dual Variables. Fix a Bayes-Nash equilibrium σ. Given a valuation v, denote b =
(b1, . . . , bn) = σ(v) as the bid equilibrium. Let B be the distribution of b over the
randomness of v and σ. Let B(vi) be the distribution of b over the randomness of
v and σ while the valuation vi of player i is fixed. Since vi and v−i are independent
and each σi is a mapping Vi → ∆(Ai), strategy bi is independent of b−i. Let B−i be
the distribution of b−i. We define the dual variables as follows.

Let αi(vi) be proportional to the expected utility of player i with valuation vi,
over the randomness of valuations v−i of other players. Specifically,

αi(vi) := 2 fi(vi) ·Ev−i∼F−i

[
Eσ
[
ui
(
σ(vi,v−i), vi

)]]
= 2 fi(vi) ·Eb∼B(vi)

[
ui
(
b, vi

)]
Besides, let γi,j(vi) be proportional to the expected value of the bid on item j if player
i with valuation vi wants to win item j while other players follow the equilibrium
strategies. Formally,

γi,j(vi) := 2 fi(vi) ·Eb−i∼B−i

[
max
k 6=i

bkj

]
.

Finally, define β j := 2 maxi Eb−i∼B−i

[
maxk 6=i bkj

]
.

The following lemma shows the feasibility of the variables. The main core of the
proof relies on an argument in [54].

Lemma 3.1 The dual vector (α, β, γ) defined above constitutes a dual feasible solution.

Proof The first dual constraint follows immediately by the definitions of dual vari-
ables β and γ. We are now proving the second dual constraint. Fix a player i with
sub-additive valuation vi and assume that fi(vi) > 0 (otherwise, it is trivial). By [54]
(or see [107, Lemma 1.3] for another clear exposition), for any set of items S, there
exists an action b∗i such that

Eb−i∼B−i

[
ui
(
(b∗i , b−i), vi

)]
+ Eb−i∼B−i

[
∑
j∈S

max
k 6=i

bkj

]
≥ 1

2
viS.

Moreover, the first term in the left-hand side is at most the utility of player i with
valuation vi since (bi, b−i) is a Bayes-Nash equilibrium. Therefore,

Eb∼B(vi)

[
ui
(
b, vi

)]
+ Eb∼B(vi)

[
∑
j∈S

max
k 6=i

bkj

]
≥ 1

2
viS.

By the definition of dual variables, this inequality is exactly the second constraint
when multiplying both sides by 2 fi(vi). �
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Theorem 3.7 ([54]) If player valuations are sub-additive then every Bayes-Nash equilib-
rium of a S1A (or S2A) has expected welfare at least 1/2 (or 1/4, resp) of the optimal one.

Proof For an item j, let i∗(j) ∈ arg maxi Ev−i∼F−i

[
maxk 6=i bkj

]
. Hence,

β j = 2Ev−i∗(j)∼F−i∗(j)Eσ

[
max

k 6=i∗(j)
bkj

]
= 2Evi∗(j)∼Fi Ev−i∗(j)∼F−i∗(j)Eσ

[
max

k 6=i∗(j)
bkj

]
= 2Ev∼FEσ

[
max

k 6=i∗(j)
bkj

]
,

where the second equality is due to the fact that the term Ev−i∗(j)∼F−i∗(j)Eσ
[
maxk 6=i∗(j) bkj

]
is independent of vi∗(j). Therefore, the dual objective is

∑
i,vi

αi(vi) + ∑
j

β j = 2Ev∼F Eσ

[
∑

i
ui(b, vi) + ∑

j
max

k 6=i∗(j)
bkj

]
Fix a random choice of profile v and σ (so the bid profile b is fixed). We bound the
dual objective, i.e., the right-hand side of the above equality, in S1A and S2A. Note
that the utility of a player winning no item is 0.

First Price Auction. Partition the set of items into the winning items of each player.
Consider a player i with the set of winning items S. The utility of this player i is viS−
∑j∈S maxk bkj. Hence, viS −∑j∈S bij + ∑j∈S maxk 6=i∗(j) bkj ≤ viS since by the allocation
rule, bij = maxk bkj for every j ∈ S. Hence, summing over all players, the dual
objective is bounded by twice the total expected valuation of winning players, which
is the primal. So the price of anarchy is at most 2.

Second Price Auction. Similarly, consider a player i with the set of winning items
S. The utility of player i as well as its payment (by no-overbidding) are at most viS.
Therefore, summing over all players, the dual objective is bounded by four times the
total expected valuation of winning players. Hence, the price of anarchy is at most 4.

�

Remark. The non-overbidding assumption, a risk-aversion assumption, is given
in order to prevent players from suffering negative utility while receiving items. We
use this assumption in the proof only in settling the ratio between the primal and the
dual; specifically to argue that the payment of a player does not exceed its valuation
on the received items. The above analysis holds even without this assumption in
the following sense. Assume that players are allowed to bid up to a constant r times
their valuation (hence, players risk to have negative utility). Then, the PoA for S2A
is 2(1 + r).

3.4.2 Connection between Primal-Dual and No-Envy Learning

Very recently, Daskalakis and Syrgkanis [49] have introduced no-envy learning — a
novel concept of learning in auctions. The notion is inspired by the concept of Wal-
rasian equilibrium and it is motivated by the fact that no-regret learning algorithms
(which converge to coarse correlated equilibria) for the simultaneous item-bidding
auctions are computationally inefficient as the number of player actions are expo-
nential. When the players have fractionally sub-additive (XOS) valuation, Daskalakis
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and Syrgkanis [49] showed that no-envy outcomes are a relaxation of no-regret out-
comes. Moreover, no-envy outcomes maintain the approximate welfare optimality
of no-regret outcomes while ensuring the computational tractability. In this section,
we explore the connection between the no-envy learning and the primal-dual ap-
proach. Indeed, the notion of no-envy learning would be naturally derived from the
dual constraints very much in the same way as the smoothness argument is.

We recall the notion of no-envy learning algorithms [49]. We first define the
online learning problem. In the online learning problem, at each step t, the player
chooses a bid vector bt = (bt

1, . . . , bt
m) where bt

j is the bid on item j for 1 ≤ j ≤ m;
and the adversary picks adaptively (depending on the history of the play but not
on the current bid bt) a threshold vector θt = (θt

1, . . . , θt
m). The player wins the set

S∗(bt, θt) = {j : bt
j ≥ θt

j} and gets reward:

u(bt, θt) := v
(
S∗(bt, θt)

)
− ∑

j∈S∗(bt,θt)

θt
j

where v : 2[m] → R is the valuation of the player.

Definition 3.2 ([49]) An algorithm for the online learning problem is r-approximate no-
envy if, for any adaptively chosen sequence of (random) threshold vector θ1:T by the adver-
sary, the (random) bid vector b1:T chosen by the algorithm satisfies:

1
T

T

∑
t=1

E
[
u(bt, θt)

]
≥ max

S⊂[m]

(
1
r
· v(S)−∑

j∈S

1
T

T

∑
t=1

E
[
θt

j
])
− ε(T) (3.3)

where the no-envy rate ε(T) → 0 when T → ∞. An algorithm is no-envy if it is 1-
approximate no-envy.

Now we show the connection between primal-dual and no-envy learning by re-
visiting the following theorem. As we will see, the notion of no-envy learning corre-
sponds exactly to a constraint of the dual program.

Theorem 3.8 ([49]) If n players in a S2A use a r-approximate no-envy learning algorithm
with envy rate ε(T) then in T steps, the average welfare is at least 1

2r OPT − n · ε(T) where
OPT is the expected optimal welfare.

Proof Let bt
i be the bid vector of player i where bt

ij is the bid of player i on item j in
step t. In a S2A the threshold θt

ij = maxk 6=i bt
kj. Consider the same primal and dual

LPs in Section 3.4.1.

Dual variables. Recall that r is the approximation factor and ε(T) the no-envy rate
of the learning algorithm. Define dual variables (similar to the ones in Section 3.4.1)
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as follows.

αi(vi) := r · fi(vi) ·Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt(vi ,v−i)

[
ui
(
bt

i , θt
i
)]]

+ r · ε(T)

γi,j(vi) := r · fi(vi) ·Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt(vi ,v−i)

[
θt

ij
]]

= r · fi(vi) ·Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt
−i(v−i)

[
θt

ij
]]

β j := r ·max
i

max
vi

Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt(vi ,v−i)

[
θt

ij
]]

= r ·max
i

Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt
−i(v−i)

[
θt

ij
]]

where the second equalities in the definitions of γ and β follow the fact that player
valuations are independent and θt

ij does not depend on bt
ij for every i, j.

Feasibility. The first dual constraint follows immediately by the definitions of dual
variables β and γ. For a fixed set S and a player i with valuation vi, the second dual
constraint reads

r · fi(vi) ·Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt(vi ,v−i)

[
ui
(
bt

i , θt
i
)]]

+ r · ε(T)

+ r ·∑
j∈S

fi(vi) ·Ev−i∼F−i

[
1
T

T

∑
t=1

Ebt
−i(v−i)

[
θt

ij
]]
≥ fi(vi) · viS.

This inequality follows immediately from the definition of r-approximate no-envy
learning algorithms (specifically, Inequality (3.3)) by simplifying and rearranging
terms. (Note that Ev−i∼F−i [ fi(vi) · viS] = fi(vi) · viS).

Bounding the cost. In T steps, the average welfare is

Ev
[ 1

T

T

∑
t=1

Ebt(v)

[
vi
(
bt

i , θt
i
)]]

= Ev
[ 1

T

T

∑
t=1

Ebt(v)

[
vi
(
S∗(bt

i , θt
i )
)]]

.

Besides, in the dual objective,

∑
i,vi

αi(vi) ≤ r ·Ev
[

1
T

T

∑
t=1

Ebt(v)

[
vi
(
S∗(bt

i , θt
i )
)]]

+ n · r · ε(T),

∑
j

β j ≤ r ·Ev
[

1
T

T

∑
t=1

Ebt(v)

[
vi
(
S∗(bt

i , θt
i )
)]]

where the last inequality is due to the non-overbidding property. Hence, the theo-
rem follows by weak duality. �
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3.5 Sequential Auctions

3.5.1 Sequential Second Price Auctions in Sponsored Search

Model. In the sponsored search problem, there are n players and n slots for online
advertisement. Each player i has a private valuation vi, representing its valuation per
click. We use v = (v1, . . . , vn) to denote the valuation profile of players. Additionally,
each player i has a quality factor αi that reflect the click-ability of the ad. The couple
of valuation and quality factor (vi, αi) of player i is drawn from a publicly known
distribution Fi. In the model, we assume that the distributions Fi’s are mutually
independent. The slots have associated click-through-rates β1 ≥ β2 ≥ . . . ≥ βn. An
outcome is an one-to-one assignment of slots to players. When player i is assigned to
the j-th slot, the player gets αiβ j clicks.

In the auction, the auctioneer sells slots sequentially one-by-one in non-increasing
order of β j via the second price mechanisms. At the consideration of slot j, the auc-
tioneer collects all the bid bij on item j from every player i , which is interpreted as a
valuation declaration. We also assume that the non-overbidding property, meaning
that bij ≤ vi for all i and j. The auctioneer then assigns slot j to the player (that has
not received any slot so far) with highest effective bid, defined as αibi. The payment of
the winning player is set according to critical value: the smallest bid that guarantees
the player still gets the slot. Specifically, if a slot j is assigned to player i then the
payment of i is pi = αi′βi′/αi where αi′βi′ is the second highest effective bid on slot
j. The utility of player i is αiβ j(vi − pi). The social welfare of the outcome is ∑i,j β jαivi
where the sum is taken over all player i with their allocated slots j.

This setting is captured by extensive form games (see [63, 105] for comprehensive
treatments). The strategy of each player is an adaptive bidding policy: the bid of
player i for slot j is a function of its valuation vi, the common knowledge about the
distributions of player valuationsF and the history hj of outcomes in auctions before
the consideration of slot j. Thus a player strategy can be denoted as bij(vi, hj). We
are interested in the perfect Bayesian equilibria which is a refinement of the concepts of
Bayes-Nash equilibria and subgame perfect equilibria. A profile of bidding polices
is a perfect Bayesian equilibrium if it is a Bayes-Nash equilibrium of the original game
and given an arbitrary history (of some t first rounds), the policy profile remains
also a Bayes-Nash equilibrium of this induced game.

The sponsored search problem has been extensively studied via the generalized
second-price (GSP) auctions. It was first considered by Mehta et al. [95] from op-
timization perspective and was proposed simultaneously by Edelman et al. [53]
and Varian [121] from a game theoretical point of view (see [89, 93] for surveys on
the topic). Recently, Caragiannis et al. [41] have proved the PoA upper bound of
2.927 (without the independence assumption on distributions Fi’s), the currently best
known PoA bound, using a technique called semi-smoothness, an extension of the
smoothness framework in [108]. The study of PoA in sequential auctions has been
initiated by Leme et al. [90]. The authors studied sequential first price auctions for
matching markets and matroid auctions in the full-information environments and
showed that the PoA (of pure Nash equilibria) is at most 2. Subsequently, Syrgkanis
and Tardos [118] extended the results to incomplete-informations settings and gave
constant bounds for both auctions. Leme et al. [90], Syrgkanis and Tardos [118] pro-
posed a bluffing deviation, where a player pretends to play as in equilibrium, until
the right moment when the player deviates to acquire some item. This hypothetical
deviation gives rise to useful inequalities to bound the PoA.
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In this section, we show a PoA bound of 2. To our knowledge, this is the best-
known PoA guarantee among all auctions of different formats for the sponsored
search problem. In the analysis, the dual variables are intuitively constructed such
that they correspond to the player utilities and player payments. In order to show
the feasibility of dual variables, we also use the idea of bluffing deviations. These
deviations, coupling with the assumption of equilibrium, lead to useful inequalities
which are served to prove the feasibility. The primal-dual approach indeed enables
the improvement as well as a fairly simple proof.

Formulation. For player i with valuation vi and quality factor αi, let xij(vi, αi) be a
variable indicating the interim assignment of slot j to player i. Recall that Fi is the
distribution of (vi, αi). Consider the following relaxation of the sponsored search
problem. In the primal relaxation, the first constraint says that a player receives at
most one slot and the second one ensures that one slot is assigned to at most one
player.

max ∑
i,j

E(vi ,αi)∼Fi

[
β jαivi·xij(vi, αi)

]
∑

j
xij(vi, αi) ≤ 1 ∀i, vi, αi

∑
i

∑
(vi ,αi)

fi(vi, αi)xij(vi, αi) ≤ 1 ∀j

xij(vi, αi) ≥ 0 ∀i, j, vi, αi

The dual is the following.

min ∑
i

∑
(vi ,αi)

yi(vi,αi) + ∑
j

zj

yi(vi, αi) + fi(vi, αi)zj ≥ fi(vi, αi) · β jαivi ∀i, j, vi, αi

yi(vi, αi), zj ≥ 0 ∀i, j, vi, αi

Theorem 3.9 For every sequential second-price auction setting, the expected welfare of ev-
ery perfect Bayesian equilibrium is at least half the maximum welfare.

Proof Fix a Bayes-Nash equilibrium σ. Let π(σ(v,α), i) be the random variable in-
dicating the slot that player i receives in the equilibrium σ(v,α) given the valuation
profile v and the quality factor profile α. Whenever σ and (v,α) are clear in the
context, we simply write π(σ(v,α), i) as π(i). Inversely, let π−1(σ(v,α), j) be the
winner of slot j in profile σ(v,α). Note that π−1(σ(v,α), j) is also a random vari-
able.

Dual Variables. For fixed (vi, αi), denote B(vi, αi) the distribution of the equilib-
rium bid b = σ

(
(vi,v−i), (αi,α−i)

)
. Recall that b = (b1, . . . , bn) where bi is a bid

vector over bids bij — the equilibrium bid that player i submits in the round sell-
ing slot j. Moreover, denote B−i the distribution of the equilibrium bid b−i =
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σ−i
(
(vi,v−i), (αi,α−i)

)
= σ−i

(
v−i,α−i)

)
where the last equality is due to the in-

dependence of distributions Fi’s. Define the dual variables as follows.

yi(vi, αi) := fi(vi, αi) ·Eb∼B(vi ,αi)

[
βπ(b,i) · αivi

]
,

zj := max
i

Eb−i∼B−i

[
β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

]
Note that π−1(b−i, j) is the winner of slot j in the round selling slot j assuming that
player i does not participate to this round.

Feasibility. Fix a player i with valuation vi and quality factor αi, and a slot j. We
show that the dual constraint corresponding to i, j, vi, αi is satisfied. By the dual
variable definitions and the independence of distributions, it is equivalent to prove
that:

Eb∼B(vi ,αi)

[
βπ(b,i) · αivi + β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

]
≥ β j · αivi (3.4)

We prove this inequality through a choice of a hypothetical deviation of player
i and use the assumption that σ is a Bayes-Nash equilibrium. We first make some
observations. Consider a fixed valuation profile v−i, a fixed quality factor profile
α−i and a realization of (mixed) equilibrium σ

(
(vi,vi), (αi,α−i)

)
, denoted as b =

(b1, . . . , bn). Now the assignment π of slots to players is completely determined.
There are three different cases.

Case 1: Player i receives some slot π(i) ≤ j. Then βπ(i) · αivi ≥ β j · αivi since βπ(i) ≥
β j.

Case 2: π(i) > j and απ−1(j)bπ−1(j),j ≥ αivi. Then β j · απ−1(j) · bπ−1(j) ≥ β j · αivi.

Case 3: π(i) > j and απ−1(j)bπ−1(j),j < αivi. Note that in this case in the round
j, player i could have submitted a bid without violating the no-overbidding
property such that the corresponding effective bid is infinitesimal larger than
απ−1(j)bπ−1(j),j and could have received slot j.

We are now choosing a bid deviation in order to prove the dual constraint based
on the fact that σ is a Bayes-Nash equilibrium. Intuitively, the different cases above
suggest the following deviation. For the first two cases, the term inside the expec-
tations in the left-hand-side of (3.4) is already larger than the right-hand-side (so no
need to deviate). Hence, the deviation is necessary only in Case 3.

Formally, we define the (mixed) deviation b
′
i as follows. First, player i follows the

equilibrium strategy bi. If until the allocation step of slot j, player i has not received
any slot then he submits vi. As σ is a Bayes-Nash equilibrium, the utility of player i
is at least that induced by this deviation. Specifically,

Eb∼B(vi ,αi)

[
ui(b)

]
≥ Eb−i∼B−i Eb′i

[
ui(b′i , b−i)

]
,

where, for short, we write ui(b) = ui(b; vi, αi) since (vi, αi) is fixed.
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By definition of the deviation b′i , player i follows the same equilibrium strategy
bi if Case 1 happens. Therefore, the above inequality is equivalent to

Eb∼B(vi ,αi)

[
ui(b)

∣∣Case 2 or Case 3
]

≥ Eb−i∼B−i Eb′i

[
ui(b′i , b−i)

∣∣Case 2 or Case 3
]

(3.5)

Note that if Case 3 holds then player i gets slot j with the payment

απ−1(b−i ,j)bπ−1(b−i ,j),j

αi
.

So

Eb−i∼B−i Eb′i

[
ui(b′i , b−i)

∣∣Case 3
]

= Eb−i∼B−i

[
β j · αi

(
vi −

απ−1(b−i ,j)bπ−1(b−i ,j),j

αi

)∣∣Case 3
]

(3.6)

We are now ready to prove the inequality (3.4). We have

Eb∼B(vi ,αi)

[
βπ(b,i) · αivi + β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

]
= ∑

`=1,2,3
Eb∼B(vi ,αi)

[
βπ(b,i) · αivi + β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

∣∣Case `
]

≥ Eb∼B(vi ,αi)

[
β j · αivi

∣∣Case 1
]

+ Eb∼B(vi ,αi)

[
βπ(b,i) · αivi + β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

∣∣Case 2 or 3
]

≥ Eb∼B(vi ,αi)

[
β j · αivi

∣∣Case 1
]

+ Eb∼B(vi ,αi)

[
ui(b) + β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

∣∣Case 2 or 3
]

≥ Eb∼B(vi ,αi)

[
β j · αivi

∣∣Case 1
]

+ Eb∼B(vi ,αi)

[
ui
(
(b′i , b−i)

)
+ β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

∣∣Case 2 or 3
]

≥ Eb∼B(vi ,αi)

[
β j · αivi

∣∣Case 1 or 2
]

+ Eb∼B(vi ,αi)

[
ui
(
(b′i , b−i)

)
+ β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

∣∣Case 3
]

≥ Eb∼B(vi ,αi)

[
β j · αivi

∣∣Case 1 or 2
]

+ Eb∼B(vi ,αi)

[
β j · αivi − β j · απ−1(b−i ,j)bπ−1(b−i ,j),j + β j · απ−1(b−i ,j)bπ−1(b−i ,j),j

∣∣Case 3
]

= Eb∼B(vi ,αi)

[
β j · αivi

]
= β j · αivi

The first inequality uses the assumption of Case 1: βπ(i) ≥ β j. The second inequality
holds since the utility ui(b) ≤ βπ(b,i) · αivi. The third inequality is due to (3.5). The
fourth inequality follows the assumption of Case 2: απ−1(j)vπ−1(j) ≥ αivi. The last
inequality follows (3.6). Hence, the constructed dual variables form a dual feasible
solution.
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Bounding primal and dual. Let B be the distribution of the equilibrium bid b =
σ(v). The expected welfare of equilibrium σ is Eb∼B

[
∑i βπ(b,i)αivi

]
. By the defini-

tion of dual variables, we have

∑
i,(vi ,αi)

yi(vi, αi) = ∑
i

E(vi ,αi)∼Fi
Eb∼B(vi ,αi)

[
βπ(b,i)αivi

]
= Eb∼B

[
∑

i
βπ(b,i)αivi

]
.

Besides, consider a slot j and let i∗ be the player such that

zj = Eb−i∗∼B−i∗

[
β j · απ−1(b−i∗ ,j)bπ−1(b−i∗ ,j),j

]
.

As the right-hand side is independent of bi∗ , we have

zj = Ebi∗Eb−i∗∼B−i∗

[
β j · απ−1(b−i∗ ,j)bπ−1(b−i∗ ,j),j

]
= Eb

[
β j · απ−1(b−i∗ ,j)bπ−1(b−i∗ ,j),j

]
.

Moreover,

zj ≤ Eb

[
β j · απ−1(b,j)bπ−1(b,j),j

]
≤ Eb

[
β j · απ−1(b,j)vπ−1(b,j)

]
.

The first inequality holds since the effective bid of the slot-j-winner in round j in-
cluding all players is larger than that in case player i∗ does not participate. The last
inequality is due to the non-overbidding property. Summing over all j, we have

∑
j

zj ≤ Eb

[
∑

j
β j · απ−1(b,j)vπ−1(b,j)

]
= Eb

[
∑

i
βπ(b,i)αivi

]
.

Thus, the dual objective value is at most twice the expected welfare of the equilib-
rium. �

Remark. The non-overbidding assumption can be relaxed in the same way as the
remark in Section 3.4.1. Specifically, if players are allowed to bid up to a constant r
times their valuations (hence, the utility of a winning player may be negative) then
the PoA is at most (1 + r).

3.5.2 Sequential First Price Auctions in Matching Markets

Model. In the matching market problem, there are n players and m items. Each
player i has a private unit-demand valuation vi : 2[m] → R defined as viS := maxj vij
where vij is the valuation of player i on item j. Note that in the sponsored search
problem vij ≥ vij′ for slots j < j′ and for every player i, while in the matching market
problem it might be that for some items j, j′ and some players i, i′, vij > vij′ and
vi′ j < vi′ j′ . The valuation vector vi is drawn from a publicly known distribution Fi.
In the model, we assume that the distributions Fi’s are mutually independent. An
outcome is an assignment of items to players.

In the auction, the auctioneer sells items sequentially one-by-one via the first
price mechanisms. At the consideration of item j, the auctioneer collects all the bids
bij on item j from all players. We also assume that the non-overbidding property,
meaning that bij ≤ vi for all i and j. The auctioneer then assigns item j to the player
with highest bid. Note that, in contrast to the sponsored search problem, a player
may receive multiple items. The payment of the winning player is simply the win-
ning bid. The utility of player i is (viS −∑j∈S bij) where S is its allocated items. The
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social welfare of the outcome is ∑i,j viS where the sum is taken over all players i and
their corresponding allocated items S.

Related work about sequential auctions have been summarized in the previous
section. For the matching market problem, Leme et al. [90] proved that the sequen-
tial auctions via the second price mechanisms may lead to unbounded inefficiency.
The authors [90] then considered the sequential first price auctions and showed that
in full-information settings, the PoA is at most 2 and 4 for pure and mixed Nash equi-
libria. Subsequently, Syrgkanis and Tardos [118] extended the results to incomplete-
information settings. They proved a Bayesian PoA bound 2e/(e − 1) for matching
markets with independent valuations. They also raised a question whether the dif-
ference of PoA bounds between the full-information settings and the incomplete-
information ones is necessary.

In this section, we answer this question by showing that the (mixed) Bayesian
PoA is at most 2. In the proof, we use similar bluffing deviations as in [90, 118] and
the primal-dual approach enables the improvement. The proof follows similar struc-
ture as the one in Section 3.5.1; however, there is a subtle difference compared to the
sponsored search problem. In the latter, each player receives at most one item (slot)
so in constructing the hypothetical deviation, it is sufficient to design a deviation in
which the player gets one item, improves its utility and then leaves the game (bids 0
in subsequent rounds). In the matching market problem, a player may receive mul-
tiple items hence the player would deviate in such a way that he receives only the
highest valuable item without receiving (so paying for) items allocated in previous
rounds. However, such deviations may lead to completely different outcomes and
the equilibrium structure could be very complex to analyze. Therefore, we do not
reason directly on the utility of players in deviation. Instead, we explore the connec-
tion between the winning bid and the player valuation. Consequently, the argument
works only for the sequential auctions via the first price mechanisms (but not via the
second price mechanisms).

Formulation. For every player i, every valuation vi and every set of items S, let
xiS(vi) be a variable indicating the interim assignment of S to player i. Consider the
following formulation and its dual. In the primal, the first and second constraints
are relaxations of the facts that a player receives a set of items and that an item is
assigned to at most one player, respectively.

max ∑
i,S

Evi∼Fi

[
viS·xiS(vi)

]
∑
S

xiS(vi) ≤ 1 ∀i, vi

∑
i

∑
vi

fi(vi) ∑
S:j∈S

xiS(vi) ≤ 1 ∀j

xiS(vi) ≥ 0 ∀i, j, vi

min ∑
i

∑
vi

yi(vi) + ∑
j

zj

yi(vi) + fi(vi) ∑
j∈S

zj ≥ fi(vi) · viS

∀i, S, vi

yi(vi), zj ≥ 0 ∀i, j, vi

Theorem 3.10 For every sequential first-price auction, the expected welfare of every perfect
Bayesian equilibrium is at least half the maximum welfare.

Proof Fix a Bayes-Nash equilibrium σ. Let π(σ(v), i) be the random variable indi-
cating the set of items allocated to player i in the equilibrium given the valuation
profile v. Inversely, let π−1(σ(v), j) be the winner of item j. Note that π−1(σ(v), j)
is also a random variable.
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Dual Variables. For a fixed valuation vi, denoteB(vi) the distribution of the equi-
librium bid b = σ(vi,v−i). Recall that b = (b1, . . . , bn) where bi is a bid vector
over bij — the equilibrium bid that player i submits in the round selling item j
for 1 ≤ j ≤ m. Moreover, denote B−i the distribution of the equilibrium bid
b−i = σ−i(vi,v−i) = σ−i(v−i) where the last equality is due to the independence
of distributions. Define the dual variables as follows.

yi(vi) := fi(vi) ·Eb∼B(vi)

[
vi,π(b,i)

]
,

zj := max
i

Eb−i∼B−i

[
bπ−1(b−i ,j),j

]
.

Note that π−1(b−i, j) is the winner of item j assuming that player i does not partici-
pate to this round.

Feasibility. Fix a player i with valuation vi and a set of items S. We show that the
dual constraint corresponding to i, S, vi is satisfied. By the dual variable definitions
and the independence of distributions, it is equivalent to prove that:

Eb∼B(vi)

[
vi,π(b,i) + ∑

j∈S
bπ−1(b−i ,j),j

]
≥ viS. (3.7)

We prove this inequality through a choice of a hypothetical deviation of player
i and use the assumption that σ is a Nash-Bayes equilibrium. For any set of items
U, let j∗(U) ∈ U be an item such that vj∗ = maxj∈U vij = viU . We first make some
observations. Consider a fixed valuation profile v−i and a realization of (mixed)
equilibrium σ(vi,vi), denoted as b = (b1, . . . , bn). Now the assignment π of items to
players is completely determined. Let T = π(b, i). There are three different cases.

Case 1: vi,j∗(T) ≥ vi,j∗(S).

Case 2: vi,j∗(T) < vi,j∗(S) (so j∗(S) /∈ T) and the round of j∗(S) is before the round
of j∗(T). In this case, bπ−1(j∗(S)),j∗(S) ≥ vi,j∗(S) − vi,j∗(T) since otherwise i could
have improved its utility by submitting a bid of value (vi,j∗(S) − vi,j∗(T)) and
stop playing the remaining rounds (i.e., submitting bids 0).

Case 3: vi,j∗(T) < vi,j∗(S) (so j∗(S) /∈ T) and the round of j∗(T) is before the round of
j∗(S). Again, in this case, bπ−1(j∗(S)),j∗(S) ≥ vi,j∗(S) − vi,j∗(T) by the same argu-
ment.

The cases suggest the following (mixed) deviation b
′
i for player i. Player i draws

a random sample of a valuation profile w−i ∈ F−i and determines the winning set
T = π(σ(vi,w−i), i) and also item j∗(T). If vi,j∗(T) ≥ vi,j∗(S) then player i follows the
equilibrium strategy bi. Otherwise, player i first follows strategy bi until the round of
item j∗(S). In the round of j∗(S), bid b′i,j∗(S) = vi,j∗(S) − vi,j∗(T) and in the subsequent
rounds, bid 0.

As σ is a Bayes-Nash equilibrium, the utility of player i is at least that induced
by this deviation. Specifically,

Eb∼B(vi)

[
ui(b)

]
= Ev−i∼B−i Eσ

[
ui
(
bi,σ−i(v−i)

)]
≥ Ew−i∼B−i Eσ

[
ui
(
b′i ,σ−i(w−i)

)]
where since vi is fixed, for short, we write ui(b) = ui(b; vi). By definition of the
deviation b′i , player i follows the same equilibrium strategy bi if Case 1 happens.
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Therefore, the above inequality implies

Ev−i∼B−i Eσ

[
b

π−1
(
σ−i(v−i),j∗(S)

)
,j∗(S)

∣∣Case 2 or 3
]

≥ Ev−i∼B−i Eσ

[
vi,j∗(S) − vi,j∗(T)

∣∣Case 2 or 3
]

, (3.8)

where T = π
(
σ−i(vi,v−i), i

)
the set of items allocated to i.

We are now ready to prove the inequality (3.7). We have

Eb∼B(vi)

[
vi,π(b,i) + ∑

j∈S
bπ−1(b−i ,j),j

]
≥ ∑

`=1,2,3
Eb∼B(vi)

[
vi,π(b,i) + bπ−1(b−i ,j∗(S)),j∗(S)

∣∣Case `

]
≥ Eb∼B(vi)

[
viS
∣∣Case 1

]
+ Eb∼B(vi)

[
vi,π(b,i) + bπ−1(b−i ,j∗(S)),j∗(S)

∣∣Case 2 or 3
]

≥ Eb∼B(vi)

[
viS
∣∣Case 1

]
+ Eb∼B(vi)

[
vi,π(b,i) +

(
vi,j∗(S) − vi,j∗(T)

)∣∣Case 2 or 3
]

= viS

The first inequality holds since j∗(S) ∈ S and the bids are non-negative. The sec-
ond inequality holds due to the assumption of Case 1. The third inequality follows
Inequality (3.8). Hence, the constructed dual variables form a dual feasible solution.

Bounding primal and dual. By the definition of dual variables, we have

∑
i,vi

yi(vi) = ∑
i

Evi∼Fi Eb∼B(vi)

[
vi,π(b,i)

]
= Eb

[
∑

i
vi,π(b,i)

]
.

Besides, consider an item j and let i∗ be a player such that

zj = Eb−i∗∼B−i∗

[
bπ−1(b−i∗ ,j),j

]
.

As the right-hand side is independent of bi∗ , we have

zj = Ebi∗Eb−i∗∼B−i∗

[
bπ−1(b−i∗ ,j),j

]
= Eb

[
bπ−1(b−i∗ ,j),j

]
≤ Eb

[
bπ−1(b,j),j

]
.

Summing over all items j, we get

∑
j

zj ≤ Eb

[
∑

j
bπ−1(b,j),j

]
= Eb

[
∑

i
∑

j∈π(b,i)
bij

]
≤ Eb

[
∑

i
vi,π(b,i)

]
,

where the last inequality is due to non-overbidding property. Thus, the dual objec-
tive value is at most twice the expected welfare of the equilibrium. �
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Chapter 4

Efficient Online Learning
Algorithms and Auction Design

In this chapter, we present a general efficient online learning algorithm and charac-
terize its regret bound based on the concavity parameters. We give an online algo-
rithm which at any step has access to the gradient of the black-box functions (Sec-
tion 4.1.1) and derive an algorithm without this assumption (Section 4.1.2). Subse-
quently, using the general algorithm, we provide the performance of fictitious plays
in Section 4.2 and revenue maximization in multi-dimensional environments in Sec-
tion 4.3.

4.1 Framework of Online Learning

We say that a function Φ : Rn → R is αΦ-strongly convex w.r.t ‖ · ‖ if

Φ(x′) ≥ Φ(x) + 〈∇Φ(x),x′ − x〉+ αΦ

2
‖x′ − x‖2.

Given a strictly convex function Φ : Rn → R, define the Bregman divergence

DΦ(x‖x′) := Φ(x)−Φ(x′)− 〈∇Φ(x′),x− x′〉

The following lemma generalizes the Pythagorean theorem (proof can be found
in [14] for example).

Lemma 4.1 (Generalized Pythagorean Property) Given a convex body K ⊂ Rn. Let
x ∈ K and y′ ∈ Rn. Let y be the projection of y′ onK, defined as y = arg miny∈K DΦ(y‖y′).
Then DΦ(x‖y) ≤ DΦ(x‖y′).

4.1.1 Regret of (λ, µ)-Concave Functions

In this section, we assume that at every time step, the online algorithm has access to
the gradient of the functions. The algorithm is the standard mirror descent.

Mirror descent. Let Φ be a αΦ-strongly convex function w.r.t ‖ · ‖. At time step t,
define∇t = −∇Ft(xt) and denote θt = ∇Φ(xt). The algorithm selects the decision
xt+1 as follows.

ϑt+1 = θt − η · ∇t

yt+1 = ∇Φ∗(ϑt+1)

xt+1 = arg min
x∈K

DΦ(x‖yt+1)
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An equivalent description is

xt+1 = arg max
x∈K

{
〈η∇Ft(xt),x− xt〉 − DΦ(x‖xt)

}
. (4.1)

The regret bound of the mirror descent follows the standard technique. Here we
give the proof based on the potential argument of Bansal and Gupta [14] and derive
the bound based on the concavity parameters.

Theorem 4.1 If Ft is (λ, µ)-concave for every 1 ≤ t ≤ T, then the mirror descent algorithm
achieves

(
λ
µ , R(T)

)
-regret where

R(T) =
1

µ · η DΦ(x
∗‖x1) +

η

µ · 2αΦ

T

∑
t=1
‖∇t‖2

∗.

If ‖∇t‖∗ ≤ L for 1 ≤ t ≤ T (i.e., Ft is L-Lipschitz w.r.t ‖ · ‖) and DΦ(x
∗‖x1) is bounded

by G2 then by choosing η = G
L

√
2αΦ

T ,

R(T) ≤ GL
µ

√
2αΦT.

Proof Define the potential as

Ψt =
1
η

DΦ(x
∗‖xt).

It is proved in [14] that:

DΦ(x
∗‖xt+1)− DΦ(x

∗‖xt) ≤ η〈∇t,x∗ − xt〉+ η2

2αΦ
‖∇t‖2

∗ (4.2)

= −η〈∇Ft,x∗ − xt〉+ η2

2αΦ
‖∇t‖2

∗.

For completeness we give the proof of this inequality. We have

η
(

Ψt+1 −Ψt
)
= DΦ(x

∗‖xt+1)− DΦ(x
∗‖xt)

≤ DΦ(x
∗‖yt+1)− DΦ(x

∗‖xt)

= Φ(x∗)−Φ(yt+1)− 〈∇Φ(yt+1)︸ ︷︷ ︸
ϑt+1

,x∗ − yt+1〉 −Φ(x∗) + Φ(xt) + 〈∇Φ(xt)︸ ︷︷ ︸
θt

,x∗ − xt〉

= Φ(xt)−Φ(yt+1)− 〈ϑt+1,xt − yt+1〉 − 〈ϑt+1 − θt,x∗ − xt〉
= Φ(xt)−Φ(yt+1)− 〈θt,xt − yt+1〉+ 〈η∇t,xt − yt+1〉+ 〈η∇t,x∗ − xt〉

≤ −αΦ

2
‖yt+1 − xt‖2 + η〈∇t,xt − yt+1〉+ η〈∇t,x∗ − xt〉

= −αΦ

2
‖yt+1 − xt‖2 +

1
αΦ

〈
η∇t, αΦ

(
xt − yt+1

)〉
+ η〈∇t,x∗ − xt〉

≤ η2

2αΦ
‖∇t‖2

∗ + η〈∇t,x∗ − xt〉

where the first inequality is due to the generalized Pythagorean property (Lemma 4.1);
the fourth equality follows the update rule ϑt+1 = θt − η · ∇t; the second inequal-
ity holds since Φ is αΦ-strongly convex; and in the last inequality, we use Cauchy-
Schwarz inequality 〈a, b〉 ≤ ‖b‖‖a‖∗ ≤ ‖b‖2/2 + ‖a‖2

∗/2.
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Using the bound of the potential change due to Inequality (4.2), we get

T

∑
t=1

(
λFt(x∗)− µFt(xt)

)
≤ Ψ1 +

T

∑
t=1

[
λFt(x∗)− µFt(xt) + Ψt+1 −Ψt

]
≤ Ψ1 +

T

∑
t=1

[
λFt(x∗)− µFt(xt)− 〈∇Ft(xt),x∗ − xt〉︸ ︷︷ ︸

≤ 0 since Ft is (λ, µ)-concave

+
η

2αΦ
‖∇t‖2

∗

]

≤ 1
η

DΦ(x
∗‖x1) +

η

2αΦ

T

∑
t=1
‖∇t‖2

∗ (4.3)

If the norms ‖∇t‖∗ are bounded by L and DΦ(x
∗‖x1) is bounded by G2 then

T

∑
t=1

Ft(xt) ≥ λ

µ

T

∑
t=1

Ft(x∗)− 1
µ · η G2 − η

µ · 2αΦ
TL2

Choose η = G
L

√
2αΦ

T , we deduce that the algorithm is
(

λ
µ , R(T)

)
-regret where R(T) =

O
(GL

µ

√
2αΦT

)
. �

4.1.2 Multilinear Extension of Discretization

In this section, we consider the domain K = [0, 1]n. In order to apply the mirror
descent algorithm, it is crucial to compute the gradient of the black-box function
whereas we can only query its values. In order to bypass this issue, we consider
a discretization of [0, 1]n and the multilinear extensions of the functions on these
discrete points.

Let f be a function f : [0, 1]n → R. Consider a lattice L = {0, 2−M, 2 · 2−M, . . . , ` ·
2−M, . . . , 1}n where 0 ≤ ` ≤ 2M for some large parameter M as a discretization
of [0, 1]n. Note that each xi ∈ {0, 2−M, 2 · 2−M, . . . , ` · 2−M, . . . , 1} can be uniquely
decomposed as xi = ∑M

j=0 2−jyij where yij ∈ {0, 1}. Hence, there is a bijective corre-
spondance between x = (x1, . . . , xn) ∈ L and y = (y10, . . . , y1M, . . . , yn0, . . . , ynM) ∈
{0, 1}n×(M+1) where xi = ∑M

j=0 2−jyij. Therefore, the restriction of function f to the
discrete set L can be represented as f̃ : {0, 1}n×(M+1) → R such that f̃ (y) = f (x)
where xi = ∑M

j=0 2−jyij.
Consider a multilinear extension F : [0, 1]n×(M+1) → R of f̃ defined as follows.

F(z) := ∑
S⊂[n×(M+1)]

f̃ (1S) ∏
(i,j)∈S

zij ∏
(i,j)/∈S

(1− zij)

By the definition, F(z) can be seen as E[ f̃ (1S)] where the (ij)th-coordinate of 1S
equals 1 (i.e., (1S)ij = 1) with probability zij. We remark some properties of the
multilinear function F:

∂F
∂zij

(z) = F(z−ij, 1)− F(z−ij, 0),

and in general,

∂F
∂zij

(z) =
F(z−ij, z∗ij)− F(z−ij, zij)

z∗ij − zij
∀ 0 ≤ z∗ij 6= zij ≤ 1
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where these equalities follow the fact that F is linear with respect to any zij. There-
fore,

〈∇F(z), z∗ − z〉 =
n

∑
i=1

M

∑
j=0

[
F(z−ij, z∗ij)− F(z−ijzij)

]
(4.4)

Evaluation. Given a function f , it requires an exponential number of queries to
f in order to evaluate exactly the linear extension F. However, one can evaluate F
approximately up to any precision by the following lemma (proof can be found in
[123]).

Lemma 4.2 Let 1S1 , . . . ,1Sk be independent random vectors in {0, 1}n×(M+1) where for
every 1 ≤ h ≤ k, element (i, j) appears independently in Sh with probability zij. Then,∣∣∣∣∣1k k

∑
h=1

f̃ (1Sh)− F(z)

∣∣∣∣∣ ≤ ε|max
S

f̃ (1S)|

with probability at least 1− e−kε2/4.

Online Learning Algorithm. We consider the following algorithm for the general
problem where the domain K = [0, 1]n.

Algorithm 3 Algorithm for the general problem with K = [0, 1]n.

1: Initially, let z1 be an arbitrary point in [0, 1]n×(M+1).
2: for t = 1 to T do
3: Round zt to a random solution xt ∈ L corresponding to the point 1St+1 ∈

{0, 1}n×(M+1) such that element (i, j) appears in St+1 with probability zt+1
ij .

4: Play xt.
5: Let Ft : [0, 1]n×(M+1) → R be the multilinear relaxation of the discretization of

f t (defined above).
6: Update and get a solution zt+1 ∈ [0, 1]n×(M+1) by applying the mirror descent

framework on Ft (Section 4.1.1). Specifically,

zt+1 = arg max
z∈[0,1]n×(M+1)

{
〈η∇Ft(zt), z − zt〉 − DΦ(z‖zt)

}
.

Note that ∇Ft can be computed using Equation (4.4).
7: end for

Theorem 4.2 Given an arbitrarily small constant ε and let f t : [0, 1]n → R be the reward
functions for 1 ≤ t ≤ T. Let Ft be the multilinear extension of the discretization of f t based
on a lattice L (defined earlier). Assume that for every x ∈ [0, 1]n, there exists x ∈ L such
that | f t(x∗) − f t(x)| ≤ ε. Moreover, assume that for every 1 ≤ t ≤ T, the multilinear
extension Ft is (λ, µ)-concave and ‖∇Ft‖∗ is bounded by L and DΦ(·‖·) is bounded by G2.
Then, the online randomized algorithm (described above) achieves

T

∑
t=1

E
[

f t(xt)
]
≥ λ

µ

T

∑
t=1

f t(x∗)−O
(

GL
µ

√
2αΦT +

λ

µ
Tε

)
Moreover, the algorithm makes a polynomial number of value queries to functions f t’s.
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Proof Let x∗ ∈ arg maxx∈[0,1]n ∑T
t=1 f t(x) be the best solution in hindsight. By the

assumption of L, x∗ is close to some x ∈ L, i.e., | f t(x∗) − f t(x)| ≤ ε. Let 1S ∈
{0, 1}n×(M+1) be the point corresponding to x. Note that Ft(1S) = f̃ t(1S) for every
t. By Theorem 4.1, we have

T

∑
t=1

Ft(zt) ≥ λ

µ

T

∑
t=1

Ft(1S)−O
(

GL
µ

√
2αΦT

)
Hence, we deduce the regret bound:

T

∑
t=1

E
[

f t(xt)
]
=

T

∑
t=1

E
[

f̃ t(1St)
]
≥ λ

µ

T

∑
t=1

f̃ t(1S)−O
(

GL
µ

√
2αΦT

)
=

λ

µ

T

∑
t=1

f t(x)−O
(

GL
µ

√
2αΦT

)
≥ λ

µ

T

∑
t=1

[
f t(x∗)− ε

]
−O

(
GL
µ

√
2αΦT

)
≥ λ

µ

T

∑
t=1

f t(x∗)−O
(

GL
µ

√
2αΦT +

λ

µ
Tε

)
.

We consider the complexity of the algorithm. At time t, the algorithm needs to
compute zt+1 such that

zt+1 = arg min
z∈D

{
〈−η∇Ft(zt), z − zt〉+ DΦ(z‖zt)

}
and round zt+1 to xt+1. By the property of multilinear extension, in particular Equa-
tion (4.4), one can evaluate the term 〈∇Ft(zt), z − zt〉 by computing Ft(zt) and
n(M + 1) terms Ft(zt

−ij, zij) for 1 ≤ i ≤ n and 0 ≤ j ≤ M. These values can be
computed approximately up to high precision with a polynomial numbers of value
queries to function f t. For example, given an arbitrary ε > 0, applying Lemma 4.2
with k = 8 log T

ε′2
one can approximate the value of F to error ε′ with probability

1 − T−2. Besides, one can apply the standard independent rounding in Step 2 in
order to round zt+1 to xt+1. Hence, the algorithm needs to make only a polynomial
numbers of value queries at each time step. �

4.2 Applications to Fictitious Play in Smooth Auctions

We consider adaptive dynamics in auctions. In the setting, there is an underlying
auction o and there are n players, each player i has a set of actions Ai (that can
be arbitrarily large but finite) and a valuation function vi taking values in [0, 1]. In
each time step 1 ≤ t ≤ T, each player i selects a strategy which is a distribution
in ∆(Ai) according to some adaptive dynamic. The strategy profile at time t is de-
noted as σt ∈ ∆(A). Given the strategy profile σt, the auction induces a social
welfare SW(o,σt) := Ea∼σt

[
SW(o(a);v)

]
. In this setting, we study the performance

of adaptive dynamics, especially the ones which are not guaranteed to fulfill the
vanishing regret condition, and eventually design dynamics/auctions with perfor-
mance guarantee. Among others, fictitious play is an interesting, widely-studied dy-
namic which attracts a lot of attention in the community. In this section, we will
study the performance of a version of fictitious play in smooth auctions.
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Valuation-Oriented Fictitious Play. Consider the Perturbed Discrete Time Ficti-
tious Play (PDTFP). Initially, each player chooses some arbitrary action. At time t+ 1,
given a strategy profile σt where σt

i ∈ ∆(Ai) and perturbations Nt
i : ∆(Ai) → R for

1 ≤ i ≤ n, player i selects a mixed strategy σt+1
i such that

σt+1
i ∈ arg max

σi∈∆(Ai)
Eai∼σi Eat

−i∼σt
−i

[
vi(a

t
−i, ai)

]
− 1

η
Nt

i (σi)

Equivalently,

σt+1
i ∈ arg max

σi∈∆(Ai)
Eai∼σi Eat∼σt

[
vi(a

t
−i, ai)− vi(a

t)
]
− 1

η
Nt

i (σi) (4.5)

since E
[
vi(a

t)
]

is already determined. One common example of perturbations is the
relative entropy (or Kullback-Leibler divergence), defined as

Nt
i (σi) = ∑

ai∈Ai

σi(ai) log
σi(ai)

σt
i (ai)

.

which is the Bregman divergence with the negative entropy function

Φi(σi) = ∑
a∈Ai

σi(ai) log σi(ai).

Let Vi be the multilinear extension of the valuation vi of player i (construction
in Section 4.1.2) where now the corresponding lattice is the set of pure strategies
A. Note that the social welfare is the sum of all player valuations. Given an action
profile at, define ∇t(at) : Rn → R such as

〈∇t(at),x〉 =
n

∑
i=1

∂Vi(a)

∂ai
· xi.

As Vi is the multilinear extension of vi, for every action a∗ we have

〈∇t(at),a∗ − at〉 =
n

∑
i=1

[
Vi(a∗i ,at

−i)−Vi(at
i ,a

t
−i)
]
.

The PDTFP dynamic can be cast as the mirror descent algorithm. By Equa-
tion (4.5) — the update rules of PDTFP dynamic — at every time step t, strategy
profile σt+1 = (σt+1

1 , . . . , σt+1
n ) is exactly the solution of the mirror descent update

Equation (4.1):

σt+1 ∈ arg max
σ∈∆(A)

Ea∼σEat∼σt
[
〈∇t(at),a− at〉 − 1

η
DΦ(a‖at)

]
,

where Φ is a strongly convex function such that E[DΦ(a‖at)] = ∑n
i=1 Nt

i (σi). Again,
if the perturbations Nt

i are relative entropy functions then Φ(σ) = ∑n
i=1 Φi(σi) =

∑n
i=1 ∑a∈Ai

σi(ai) log σi(ai).
Note that the PDTFP dynamic associated to a specific choice of entropy function

is usually called smooth fictitious play [61] (or logit dynamic). Benaı̈m and Faure [21]
have provided an explicite example [21, Example 1.2] showing that this dynamic
does not always admit vanishing regret (consistent in their terms).
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In the following, we prove the regret bound of the PDTFP dynamics (without the
vanishing regret condition) in smooth auctions.

Theorem 4.3 If the underlying auction o is a (λ, µ)-smooth and DΦ(·‖·) is bounded by G2

then the PDTFP dynamic achieves
(

λ
1+µ , R(T)

)
-regret where where R(T) = O

(G
√

T
1+µ

)
. In

particular, R(T) = O
(√T log(n|A|)

1+µ

)
if the perturbation is the relative entropy function.

Proof The analysis follows closely the one of Theorem 4.1 with some modifications.
For simplicity, without loss of generality, assume that the distributions D1, . . . , Dn in
the definition of smooth auctions (Definition 1.9) give rise to a pure strategy profile
a and at any time step t, the PDTFP dynamic outputs a pure profile at . The analy-
sis remains the same for general distributions/mixed profiles by putting additional
expectations into some formula.

As the underlying auction is (λ, µ)-smooth, given a fixed valuation profile v,
there exists a strategy profile a such that for any profile a, it holds that

n

∑
i=1

ui(ai,a−i; vi) ≥ λ ·OPT(v)− µ · REV(a),

where OPT(v) stands for the optimal welfare given the valuation profile v. We first
derive an useful inequality based on the smoothness of the auction. We have

〈∇t(at),a− at〉 = ∑
i

[
Vi(ai,at

−i;v)−Vi(ai,at
−i;v)

]
= ∑

i

[
ui(ai,at

−i; vi) + pi(ai,at
−i; vi)

]
− SW(at;v)

≥ λ ·OPT(v)− µ · REV(at;v)− SW(at;v)

≥ λ ·OPT(v)− (1 + µ) · SW(at). (4.6)

The first inequality follows the (λ, µ)-smoothness and the non-negativity of pay-
ments pi’s. The second inequality is obvious since the revenue is always smaller
than the welfare. We remark that Inequality (4.6) is similar to (but not the same as)
the notation of (·, ·)-concavity since it can written as

〈∇SW(at),a− at〉 ≥ λ · SW(a∗)− (1 + µ) · SW(at)

where a∗ is the optimal strategy. Hence, there would be a connection between con-
cavity and smoothness.

Define the potential as Ψt = 1
η DΦ(a‖at). Note that here we use the Bregman

divergence from the strategy a (induced by the smooth auction) to at instead of the
Bregman divergence from the optimal strategy a∗ to at (as in Theorem 4.1). By the
same arguments as for proving Inequality (4.2), we have

η
(
Ψt+1 −Ψt) = DΦ(a‖at+1)− DΦ(a‖at) ≤ −η〈∇t(at),a− at〉+ η2

2αΦ
‖∇t(at)‖2

∗.

Given the valuation profile v, let a∗ be the action that gives the optimal welfare,
i.e., SW(a∗;v) = OPT(v). Using the same arguments as in the proof of Theorem 4.1,
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we have

T

∑
t=1

(
λSW(a∗)− (1 + µ)SW(at)

)
≤ Ψ1 +

T

∑
t=1

[
λSW(a∗)− (1 + µ)SW(at) + Ψt+1 −Ψt

]
≤ Ψ1 +

T

∑
t=1

[
λOPT(v)− (1 + µ)SW(at)− 〈∇t(at),a− at〉︸ ︷︷ ︸

≤0 by Inequality (4.6)

+
η

2αΦ
‖∇t(a

t)‖2
∗

]

≤ 1
η

DΦ(a‖a1) +
η

2αΦ

T

∑
t=1
‖∇t(at)‖2

∗.

Thus,

T

∑
t=1

SW(at) ≥ λ

1 + µ

T

∑
t=1

SW(a∗)− 1
(1 + µ)η

DΦ(a‖a1)− η

(1 + µ)2αΦ

T

∑
t=1
‖∇t(at)‖2

∗

Note that if player valuations are in the range [0, 1], then

‖∇t(at)‖∗ ≤ ‖∇t(at)‖∞ ≤ 1.

By the theorem assumptions, DΦ(a‖a1) ≤ G2. Hence, choosing η = O(G/
√

T), the
PDTFP dynamic achieves

(
λ

1+µ , R(T)
)
-regret where R(T) = O

(G
√

T
1+µ

)
.

Consider the particular PDTFP dynamic with relative entropy perturbation. Func-
tion Φ(σ) is αΦ = 1

2 ln 2 -strongly convex (due to Pinsker’s inequality). Moreover,

DΦ(a‖a1) ≤ max
i

log(n|Ai|) ≤ log(n|A|).

Therefore, choosing η = O
(
1/
√

T log(n|A|)
)
, the PDTFP dynamic with relative

entropy perturbation achieves
(

λ
1+µ , R(T)

)
-regret where R(T) = O

(√T log(n|A|)
1+µ

)
. �

4.3 Online Simultaneous Second-Price Auctions with Reserve
Prices

In this section, we are interested in the objective of maximizing the revenue. In the
setting, there are n bidders and m items to be sold to these bidders. At each time
step t = 1, 2, . . . , T, the auctioneer selects reserve prices rt

i = (rt
i1, . . . , rt

im) for each
bidder i where rij is the reserve price of item j for bidder i. Subsequently, every
bidder i picks a bid vector bt

i = (bt
i1, . . . , bt

im) where bt
ij is the bid of bidder i on item

1 ≤ j ≤ m. Then the auction for each item 1 ≤ j ≤ m works as follows: (1) remove
all bidders i with bt

ij < rt
ij; (2) run the second-price auction on the remaining bidders

to determine the winner of item j; (3) charge the winner of item j the larger of rt
ij and

the second highest bid among the bids bt
ij of remaining bidders.

Denote the revenue of selling item j as REVj(r
t, bt) where bt = (bt

1, . . . , bt
n) and

rt = (rt
1, . . . , rt

n). The revenue of the auctioneer at time step t is REV(rt, bt) =

∑j REVj(r
t, bt). The goal of the auctioneer is to achieve the total revenue approxi-

mately close to that achieved by the best fixed reserve-price auction.
In the setting, by scaling assume that every bid satisfies 0 ≤ bij ≤ 1 for every

i, j, and make the same assumption for every reserve price. The convex domain
K = [0, 1]n×m. Consider the set of values {` · 2−M : 0 ≤ ` ≤ 2M} for some large
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parameter M as a discretization of [0, 1]. Observe that for any reserve price vector r,
|REV(r, b)−REV(r, b)| ≤ m · 2−M where r is a reserve price vector such that rij is the
largest multiple of 2−M smaller than rij for every i, j. Therefore, one can approximate
the revenue up to any arbitrary precision by restricting the reserve price values in
the discretization (by choosing large enough M).

Consider the lattice L = {` · 2−M : 0 ≤ ` ≤ 2M}n×m. Note that K ∩ L = L.
We slightly abuse notation by denoting REVj(1S, b) as REVj(r, b) where 1S is the
point in the lattice corresponding to the reserve price r. Following the construction
of multilinear extension on the lattice L described in Section 4.1.2, the multilinear
extension of the revenue is defined as follows. Given a bid vector b, REV(·, b) :
[0, 1]n×m×(M+1) → R such that

REV(z, b) = ∑
S⊂[n×m×(M+1)]

( m

∑
j=1

REVj(1S, b)
)

∏
(i,j,k)∈S

zijk ∏
(i,j,k)/∈S

(1− zijk)

Online Reserve-Price Algorithm. Initially, let z1 = r1 be an arbitrary feasible
reserve-price. At each time step t > 1, compute a random reserve price rt+1 using
the online algorithm in Section 4.1.2. Specifically, compute

zt+1 = arg max
z∈[0,1]n×m×(M+1)

{
η〈∇REV(zt, bt), z − zt〉 − DΦ(z‖zt)

}
where Φ is the negative entropy function. Then, round zt+1 to a random reserve-
price rt+1 ∈ L. In other words, rt+1 ∈ L corresponds to a random point 1St+1 ∈ L
such that element (i, j, k) ∈ St with probability zt+1

ijk . Return rt+1 or 0 each with
probability 1/2.

Note that the convex domain K = [0, 1]n×m so this algorithm is polynomial.
Specifically, an offline algorithm (function) in this setting is REVj(1S, b), given re-
serve prices 1S and bids b, it returns the revenue of selling item j. The algorithm
needs to request only a polynomial number of value queries at each time step (The-
orem 4.2).

Analysis. In order to analyze the performance of this algorithm, we study the
properties of some related functions and then derive the regret bound for the al-
gorithm.

Fix a bid vector b. Let rj be a vector consisting of reserve prices on item j, i.e.,
rj = (r1j, . . . , rnj). As b is fixed and the selling procedure of each item depends only
on the reserve prices to the item, so for simplicity denote REVj(r, b) as REVj(rj)

and REV(r, b) as REV(r). Define a function hj : {0, 1}n×(M+1) → R such that
hj(1T) = max{REVj(1T), REVj(1∅)} = max{REVj(r), REVj(0)} where rj is the re-
serve price corresponding to 1T for T ⊂ [n× (M + 1)]. Let Hj : [0, 1]n×(M+1) → R

be the multilinear extension of hj. Moreover, define H : [0, 1]n×m×(M+1) → R as the
multilinear extension of max{REV(r), REV(0)} defined as

H(z) = ∑
S⊂[n×m×(M+1)]

max{REV(1S), REV(1∅)} ∏
(i,j,k)∈S

zijk ∏
(i,j,k)/∈S

(1− zijk)

Lemma 4.3 It holds that H(z) = ∑m
j=1 Hj(zj) where zj is the restriction of z to the coordi-

nate related to item j.
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Proof As items are sold separately,

H(z) = ∑
S⊂[n×m×(M+1)]

( m

∑
j=1

hj(1A)

)
∏

(i,j,k)∈S
zijk ∏

(i,j,k)/∈S
(1− zijk)

where A ⊂ [n × (M + 1)] is the restriction of S on coordinates related to item j.
Therefore,

H(z) =
m

∑
j=1

∑
U⊂[n×(m−1)×M]

[
∑

A⊂[n×(M+1)]
hj(1A)

)
∏

(i,k)∈A
zijk ∏

(i,k)/∈A
(1− zijk)

]
︸ ︷︷ ︸

independent of U since the allocation of j depends only on bids to item j.

· ∏
(i,j′,k)∈U

zij′k ∏
(i,j′,k)/∈U,j′ 6=j

(1− zij′k)

=
m

∑
j=1

[
∑

A⊂[n×(M+1)]
hj(1A) ∏

(i,k)∈A
zijk ∏

(i,k)/∈A
(1− zijk)

]
· ∑

U⊂[n×(m−1)×(M+1)]
∏

(i,j′,k)∈U
zij′k ∏

(i,j′,k)/∈U,j′ 6=j
(1− zij′k)︸ ︷︷ ︸

=1

=
m

∑
j=1

[
∑

A⊂[n×(M+1)]
hj(1A) ∏

(i,k)∈A
zijk ∏

(i,k)/∈A
(1− zijk)

]
=

m

∑
j=1

Hj(zj)

�

We will prove that H is (1, 1)-concave. By Lemma 4.3, it is sufficient to prove that
property for every function Hj.

Lemma 4.4 Function Hj is (1, 1)-concave.

Proof We prove that the inequality of (1, 1)-concavity holds for all points in the lat-
tice. As the multilinear extension can be seen as the expectation over these points,
the lemma will follow. Fix a bid profile bj = (b1j, . . . , bnj). Without loss of general-
ity, assume that b1j ≥ b2j ≥ . . . ≥ bnj. Let rj and r∗j be two arbitrary reserve price
vectors. We will show that

n

∑
i=1

[
max{REVj(r−i,j, r∗ij),REVj(0)} −max{REVj(rj), REVj(0)}

]
≥ max{REVj(r

∗
j ), REVj(0)} −max{REVj(rj), REVj(0)}

(4.7)

where r−i,j stands for the reserve price vectors on item j without the reserve price of
bidder i.

Observe that the revenue max{REVj(r
′
j), REVj(0)} for every reserve price r′j is at

least the second highest bid b2j (that is obtained in REVj(0)). In particular, for any
reserve price r′j such that the auction either (1) removes the first bidder (with highest
bid) or (2) removes the second bidder and r′1j ≤ b2j, the revenue

max{REVj(r
′
j), REVj(0)} = REVj(0).

Hence, max{REVj(r
′
j), REVj(0)} 6= REVj(0) if and only if b2j < r′1j ≤ b1j.
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By these observations, we deduce that

max{REVj(r−ij, r∗ij), REVj(0)} 6= max{REVj(rj), REVj(0)}

if and only if i = 1 and

• either b2j ≤ r1j 6= r∗1j ≤ b1j;

• or r∗1j ∈ (b2j, b1j] but r1j /∈ (b2j, b1j];

• or inversely r1j ∈ (b2j, b1j] but r∗1j /∈ (b2j, b1j].

Thus, proving Inequality (4.7) is equivalent to showing that

max{REVj(r−1j, r∗1j),REVj(0)} −max{REVj(rj), REVj(0)}
≥ max{REVj(r

∗
j ), REVj(0)} −max{REVj(rj), REVj(0)}.

Case 1: b2j ≤ r1j 6= r∗1j ≤ b1j. In this case, both sides are equal to r∗1j − r1j.

Case 2: r∗1j ∈ (b2j, b1j] but r1j /∈ (b2j, b1j]. In this case, both sides are equal to r∗1j − b2j.

Case 3: r1j ∈ (b2j, b1j] but r∗1j /∈ (b2j, b1j]. In this case, both sides are equal to b2j − r1j.

Case 4: the complementary of all previous cases. In this case, both sides are equal
to 0.

Therefore, Inequality (4.7) holds and so the lemma follows. �

Theorem 4.4 The online reserve price algorithm achieves
(
1/2, O(m

√
nm
√

T log T)
)
-regret.

Proof Consider an imaginary algorithm which is similar to our online reserve price
algorithm but at every step t, its gain is max{REVj(r

t), REVj(0)}. (This algorithm
is called imaginary since one cannot decide which reserve price between rt and
0 is better when the bid vector is not known.) We verify the conditions of Theo-
rem 4.2. The discretization satisfies the condition that for any given bids b, for any
reserve price r, there exists a reserve price r in the lattice which gives |REV(r, b)−
REV(r, b)| ≤ m · 2−M. For arbitrary ε > 0, choose the parameter M = log(mT/ε),
|REV(r, b)− REV(r, b)| ≤ ε/T. Besides, bids are in the range [0, 1], then

‖∇Ht‖∗ ≤ m‖∇Ht
j‖∞ ≤ m.

For Φ is the negative entropy function,

DΦ(z‖z1) ≤ O
(
log(2nm(M+1))

)
= O(nm log(mT))

with the chosen parameter M. Finally, Lemma 4.4 shows the (1, 1)-concavity of H.
Therefore, applying Theorem 4.2, the imaginary algorithm achieves the regret bound
of (1, R) where

R = O
(

m
√

nm
√

T log
(mT

ε

)
+ ε

)
= O

(
m
√

nm
√

T log T
)

if one chooses ε = m.
As the online reserve price algorithm selects at every step t either rt or 0 with

probability 1/2, the revenue of the algorithm is at least half that of the imaginary
algorithm. The theorem follows. �
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Chapter 5

Conclusion

In this thesis, we have presented primal-dual approaches as unified techniques in or-
der to design competitive algorithms for online problems, to analyze the efficiency
of games and to study the dynamics of online learning processes. Designing online
algorithms and online learning algorithms or analyzing the PoA are essentially re-
duced to constructing/studying the smoothness or concavity parameters (also with
other standard properties/conditions). We have shown the applicability of the ap-
proaches on a wide variety of settings and have given simple and improved analyses
for several problems in settings of different natures. The approaches have brought
new ideas not only for the analyses and the understanding of current games but
also for the design of new algorithms/games/dynamics and new concepts leading
to improved efficiency.

Theoretically, non-convexity is considered as a strong barrier in optimization.
However, it has been observed that in many settings such as deep learning, non-
convex problems have been efficiently solved by different methods (for example,
stochastic gradient descent, etc). As showed in the thesis, the notions of smoothness
and (λ, µ)-concavity shed some light on the study of non-convex problems. We hope
that our approach would contribute some elements towards the understanding of
non-convex problems. Studying non-convex problems constitutes a direction of my
research in the next years.

A major challenge in Learning is the design of solutions which are robust in dy-
namically evolving environments. An important research agenda is the design of
efficient (polynomial time) algorithms with performance guarantee in adversarial
non-stationary, non-stochastic environments by applying optimization methods that
learn from experience and observations. As mentioned earlier, designing such algo-
rithms is not possible in general adversarial environments. However, efficient online
learning may be achievable in well-structured settings with regularity conditions.
Characterizing conditions, or in general discovering the hidden regularity or hidden
structures, under which efficient online learning algorithms exist is in my current
research agenda.
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Appendix A

Smoothness Parameters

A.1 Smoothness Parameters of Polynomials

We show technical lemmas in order to determine smoothness parameters for poly-
nomials with non-negative coefficients. The following lemma has been proved in
[45].

Lemma A.1 ([45]) Let k be a positive integer. Let 0 < a(k) ≤ 1 be a function on k. Then,
for any x, y > 0, it holds that

y(x + y)k ≤ k
k + 1

a(k)xk+1 + b(k)yk+1

where α is some constant and

b(k) =



Θ

(
αk ·

(
k

log ka(k)

)k−1
)

if limk→∞(k− 1)a(k) = ∞, (A.1a)

Θ
(

αk · kk−1
)

if (k− 1)a(k) are bounded ∀k, (A.1b)

Θ
(

αk · 1
ka(k)k

)
if limk→∞(k− 1)a(k) = 0. (A.1c)

Lemma A.2 For any sequences of non-negative real numbers {a1, a2, . . . , an} and {b1, b2, . . . , bn}
and for any polynomial g of degree k with non-negative coefficients, it holds that

n

∑
i=1

[
g
(

bi +
i

∑
j=1

aj

)
− g
( i

∑
j=1

aj

)]
≤ λ(k) · g

( n

∑
i=1

bi

)
+ µ(k) · g

( n

∑
i=1

ai

)

where µ(k) = k−1
k and λ(k) = Θ

(
kk−1). The same inequality holds for µ(k) = k−1

k ln k and
λ(k) = Θ

(
(k ln k)k−1).

Proof We first prove for µ(k) = k−1
k and λ(k) = Θ

(
kk−1). Let g(z) = g0zk + g1zk−1 +

· + gk with gt ≥ 0 ∀t. The lemma holds since it holds for every zt for 0 ≤ t ≤ k.
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Specifically,

n

∑
i=1

[
g
(

bi +
i

∑
j=1

aj

)
− g
( i

∑
j=1

aj

)]
=

k

∑
t=1

gk−t ·
n

∑
i=1

[(
bi +

i

∑
j=1

aj

)t

−
( i

∑
j=1

aj

)t
]

≤
k

∑
t=1

gk−t ·
[

t · bi ·
(

bi +
i

∑
j=1

aj

)t−1
]

≤
k

∑
t=1

gk−t ·
[

λ(t)
( n

∑
i=1

bi

)t

+ µ(t)
( n

∑
i=1

ai

)t
]

(A.2)

≤ λ(k) · g
( n

∑
i=1

bi

)
+ µ(k) · g

( n

∑
i=1

ai

)
The first inequality follows the convex inequality (x + y)k+1 − xk+1 ≤ (k + 1)y(x +
y)k. The second inequality follows Lemma A.1 (Case A.1b and a(k) = 1/(k + 1)).
The last inequality holds since µ(t) ≤ µ(k) and λ(t) ≤ λ(k) for t ≤ k.

The case µ(k) = k−1
k ln k and λ(k) = Θ

(
(k ln k)k−1) is proved similarly. The only dif-

ferent step is in inequality (A.2). In fact, applying Lemma A.1 (Case A.1c and a(k) =
1

(k+1) ln k ), one gets the lemma inequality for µ(k) = k−1
k ln k and λ(k) = Θ

(
(k ln k)k−1).

�
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Appendix B

Concavity Parameters

B.1 Concavity Parameters of Multilinear Extension of Sub-
modular Functions

Let f : {0, 1}n → R+ be a monotone submodular function. We determine the con-
cavity parameter of the multilinear extension F of f . By notation, x ≤ y iff xi ≤ yi
for all 1 ≤ i ≤ n. Recall the following useful properties of F which is due to the
monotonicity and the diminishing return property of f , respectively.

F(x) ≤ F(y), ∇F(x) ≥ ∇F(y) ∀ x ≤ y (B.1)

The following theorem has been proved in [70]. We represent it here for complete-
ness.

Lemma B.1 ([70]) Let F be the multilinear extension of a monotone submodular function.
Then, for any vectors x,y, it holds that

〈∇F(x),y − x〉 ≥ F(y)− 2F(x)

Proof For any vectors x ≤ z, using Inequality (B.1), we have

F(z)− F(x) =
∫ 1

0

〈
z − x,∇F

(
x+ t(z − x)

)〉
dt

≤
∫ 1

0

〈
z − x,∇F(x)

〉
dt =

〈
z − x,∇F(x)

〉
Therefore,

F(x∨ y)− F(x) ≤
〈
x∨ y − x,∇F(x)

〉
(B.2)

Similarly, for any vectors x ≥ z we have

F(z)− F(x) =
∫ 1

0

〈
z − x,∇F

(
x+ t(z − x)

)〉
dt

≥
∫ 1

0

〈
z − x,∇F(x)

〉
dt =

〈
z − x,∇F(x)

〉
Therefore,

F(x∧ y)− F(x) ≤
〈
x∧ y − x,∇F(x)

〉
(B.3)

Summing (B.2) and (B.3) and note that (x∨ y) + (x∧ y) = x+ y, we get

F(x∨ y) + F(x∧ y)− 2F(x) ≤
〈
y − x,∇F(x)

〉
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Hence,
F(y)− 2F(x) ≤

〈
y − x,∇F(x)

〉
since F(y) ≤ F(x∨ y) (monotonicity of F) and F(x∧ y) ≥ 0. �
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