J. F. Kennedy, Address at Rice University in Houston on the Nation's Space Effort, vol.1, pp.669-670, 1962.

P. Zeller, Handbuch Fahrzeugakustik. Grundlagen, Auslegung, Berechnung, Versuch, 2009.

K. Genuit, Sound-Engineering im Automobilbereich, 2010.

H. Fastl and E. Zwicker, Psychoacoustics -Facts and Models, 2007.

P. M. Morse and K. U. Ingard, Theoretical Acoustics, 1986.

H. W. Flannery, B. P. Teukolsky, S. A. , and W. T. Vetterling, Numerical recipes, 1987.

M. V. Van-der-seijs, Experimental dynamic substructuring: Analysis and design strategies for vehicle development, 2016.

D. De-klerk, D. J. Rixen, and S. N. Voormeeren, General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques, AIAA Journal, vol.46, issue.5, pp.1169-1181, 2008.

O. Heaviside, Electrical Papers, London: Macmillan, vol.1, issue.2, pp.1882-1884

P. Gardonio and M. J. Brennan, On the origins and development of mobility and impedance methods in structural dynamics, Journal of Sound and Vibration, vol.249, issue.3, pp.557-573, 2002.

A. G. Webster, Acoustical impedance and the theory of horns and of the phonograph, Proceedings of the National Academy of Sciences, vol.5, issue.7, pp.275-282, 1919.

F. A. Firestone, A new analogy between mechanical and electronical systems, The Journal of the Acoustical Society of America, vol.4, issue.3, pp.249-267, 1933.

P. , L. Corbeiller, and Y. Yeung, Duality in Mechanics, The Journal of the Acoustical Society of America, vol.24, issue.6, pp.643-648, 1952.

G. J. O'hara, Mechanical Impedance and Mobility Concepts, The Journal of the Acoustical Society of America, vol.41, issue.5, pp.1180-1184, 1967.

S. Rubin, Transmission matrices for vibration and their relation to admittance and impedance, Journal of Manufacturing Science and Engineering, vol.1, issue.89, pp.9-21, 1964.

S. Rubin, Mechanical Immittance-and Transmission-Matrix Concepts, Journal of the Acoustical Society of America, vol.5, issue.41, pp.1171-1179, 1967.

C. Höller and B. M. Gibbs, Indirect determination of the mobility of structureborne sound sources, Journal of Sound and Vibration, vol.334, issue.26, pp.38-58, 2015.

V. Meyer, L. Maxit, J. Guyader, and T. Leissing, Prediction of the vibroacoustic behavior of a submerged shell with non-axisymmetric internal substructures by a condensed transfer function method, Journal of Sound and Vibration, vol.360, pp.260-276, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01272237

S. M. Kim and M. J. Brennan, A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustics systems, Journal of Sound and Vibration, vol.223, issue.1, pp.97-113, 1999.

C. Cacciolati and J. Guyader, Acoustic mobility for vibroacoustic prediction, Proceedings of ICSV 7, 2000.

J. Chazot and J. Guyader, Prediction of transmission loss of double panels with a patch-mobility method, The Journal of the Acoustical Society of America, vol.121, issue.1, pp.267-278, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00414877

J. Chazot and J. Guyader, Transmission loss of double panels filled with porogranular materials, The Journal of the Acoustical Society of America, vol.126, pp.3040-3048, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420608

J. Guyader, C. Cacciolati, and J. D. Chazot, Transmission loss prediction of double panels filled with porous materials and mechanical stiffeners, Proceedings of ICA, 2010.

L. Maxit, C. Cacciolati, and J. Guyader, Airborne noise prediction using patch acoustic impedance, Proceedings of ICSV 9, 2002.

M. Ouisse, L. Maxit, C. Cacciolati, and J. Guyader, Patch Transfer Functions as a Tool to Couple Linear Acoustic Problems, Journal of Vibration and Acoustics, vol.127, issue.5, pp.458-466, 2004.

J. Rejlek, G. Veronesi, C. Albert, E. Nijman, and A. Bocquillet, A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems, 2013.

N. Totaro, B. Andro, C. Péteul, and J. Guyader, Extension of the Patch Transfer Functions method (PTF method) to high frequency domain (sub-cavities decomposition)," in proceedings of Inter-Noise, pp.28-31, 2007.

M. Aucejo, Vibro-acoustique des structures immergées sous écoulement turbulent, 2010.

M. Aucejo, L. Maxit, N. Totaro, and J. Guyader, Convergence acceleration using the residual shape technique when solving structure-acoustic coupling with the Patch Transfer Functions method, Computers & Structures, vol.88, issue.11-12, pp.728-736, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01668981

L. Maxit, M. Aucejo, and J. Guyader, Improving the Patch Transfer Function Approach for Fluid-Structure Modelling in Heavy Fluid, Journal of Vibration and Acoustics, vol.134, issue.5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01668963

L. Maxit, C. Yang, L. Cheng, and J. Guyader, Modeling of micro-perforated panels in a complex vibro-acoustic environment using patch transfer function approach, The Journal of the Acoustical Society of America, vol.131, issue.3, pp.2118-2130, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744503

G. Veronesi, C. Albert, E. Nijman, J. Rejlek, and A. Bocquillet, Patch Transfer Function Approach for Analysis of Coupled Vibro-Acoustic Problems Involving Porous Materials, 2014.

C. G. Albert, G. Veronesi, E. Nijman, and J. Rejlek, Prediction of the vibro-acoustic response of a structure-liner-fluid system based on a patch transfer function approach and direct experimental subsystem characterisation, Applied Acoustics, vol.112, pp.14-24, 2016.

N. Totaro and J. Guyader, Efficient positioning of absorbing material in complex systems by using the Patch Transfer Function method, Journal of Sound and Vibration, vol.331, issue.13, pp.3130-3143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730539

A. L. Bot, Foundation of Statistical Energy Analysis in Vibroacoustics, 2015.

T. Lafont, N. Totaro, and A. L. Bot, Coupling strength assumption in statistical energy analysis, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.473, issue.2200, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01709502

J. Guyader and N. Totaro, Structural partitioning and power flow analysis. The Keys for vibroacoustic pre-design.," in proceedings of Inter-Noise, pp.22-25, 2004.

N. Totaro and J. Guyader, SEA substructuring using cluster analysis: The MIR index, Journal of Sound and Vibration, vol.290, issue.1-2, pp.264-289, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00414808

N. Totaro and J. Guyader, Automatic SEA partitioning of complex structures using cluster analysis, pp.1613-1628, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00418604

M. Kassem, C. Soize, and L. Gagliardini, Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle, Journal of Sound and Vibration, vol.330, issue.5, pp.937-946, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00684293

C. Díaz-cereceda, J. Poblet-puig, and A. Rodríguez-ferran, Automatic subsystem identification in statistical energy analysis, Mechanical Systems and Signal Processing, pp.182-194, 2015.

A. Bocquillet, Méthodes énergétiques de caractérisations vibroacoustiques des réseaux complexes, 2000.

L. Maxit, Extension et reformulation du modèle SEA par la prise en compte de la répartition des énergies modales, 2000.

L. Maxit and J. Guyader, Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, Part I: Theory, Journal of Sound and Vibration, vol.239, issue.5, pp.907-930, 2001.

L. Maxit and J. Guyader, Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, Part II: Numerical applications, Journal of Sound and Vibration, vol.239, issue.5, pp.931-948, 2001.

L. Maxit and J. Guyader, Extension of SEA model to subsystems with nonuniform modal energy distribution, Journal of Sound and Vibration, vol.265, issue.2, pp.337-358, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01518054

N. Totaro, C. Dodard, and J. Guyader, SEA Coupling Loss Factors of Complex Vibro-Acoustic Systems, Journal of Vibration and Acoustics, vol.131, issue.4, pp.41009-041009, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418599

H. D. Hwang, Extension de la méthode SmEdA par la prise en compte des matériaux dissipatifs en moyennes fréquences, 2015.

H. D. Hwang, L. Maxit, K. Ege, Y. Georges, and J. Guyader, SmEdA vibroacoustic modelling in the mid-frequency range including the effect of dissipative treatments, Journal of Sound and Vibration, vol.393, pp.187-215, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01444453

M. Möser, W. Kropp, B. Körperschall, and . Heidelberg, , 2010.

M. Möser and T. Akustik, , 2015.

G. R. Sinambari and S. Sentpali, , 2014.

D. Clouteau, R. Cottereau, and G. Lombaert, Dynamics of structures coupled with elastic media-A review of numerical models and methods, Journal of Sound and Vibration, vol.332, issue.10, pp.2415-2436, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00795002

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method -Its Basis and Fundamentals, 2005.

R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bulletin of the American Mathematical Society, vol.49, issue.1, pp.1-23, 1943.

D. J. Ewins, Modal Testing: Theory, Practice and Application, 2000.

P. Avitabile, Experimental Modal Analysis (A Simple Non-Mathematical Presentation), vol.35, pp.20-31, 2001.

M. S. Shephard, M. W. Beall, R. M. O'bara, and B. E. Webster, Toward simulationbased design, Finite Elements in Analysis and Design, vol.40, issue.12, pp.1575-1598, 2004.

J. Migeot, J. Coyette, and G. Lielens, Phénomènes fondamentaux de l'acoustique linéaire, 2015.

E. Deckers, O. Atak, L. Coox, R. D'amico, H. Devriendt et al., The wave based method: An overview of 15 years of research, Wave Motion, vol.51, issue.4, pp.550-565, 2014.

M. Pflüger, F. Brandl, U. Bernhard, and K. Feitzelmayer, , 2010.

R. L. Mayes and M. R. Ross, Advancements in hybrid dynamic models combining experimental and finite element substructures, Mechanical Systems and Signal Processing, vol.31, pp.56-66, 2012.

M. V. Van-der-seijs, D. De-klerk, and D. J. Rixen, General Framework for Transfer Path Analysis: History, Theory and Classification of Techniques, Mechanical Systems & Signal Processing, pp.217-244, 2016.

A. T. Moorhouse and G. Seiffert, Characterisation of an airborne sound source for use in a virtual acoustic prototype, Journal of Sound and Vibration, vol.296, issue.1-2, pp.334-352, 2006.

A. T. Moorhouse, A. S. Elliott, and T. A. Evans, In situ measurement of the blocked force of structure-borne sound sources, Journal of Sound and Vibration, vol.325, issue.4-5, pp.679-685, 2009.

M. W. Wernsen, M. V. Van-der-seijs, and D. De-klerk, An indicator sensor criterion for in-situ characterisation of source vibrations, IMAC-XXXIV: International Modal Analysis Conference, 2016.

G. Pavic, Air-borne sound source characterization by patch impedance coupling approach, Journal of Sound and Vibration, vol.329, issue.23, pp.4907-4921, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00560329

M. Aucejo, N. Totaro, and J. Guayder, Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method, Journal of Sound and Vibration, vol.329, issue.18, pp.3691-3708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01668973

D. Vigoureux, Déconfinement de sources acoustiques par utilisation d'une méthode holographique à double information, 2012.

L. Du, Characterisation of Air-borne Sound Sources using Surface Coupling Techniques, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01777809

G. Veronesi, A novel PTF-based experimental characterisation for poro-elastic liners: Method and sampling criterion, 2015.

S. Rakotonarivo, W. Kuperman, and E. Williams, Prédiction de l'impédance mécanique d'un objet élastique à partir de la corrélation de bruit aléatoire, 13ème Congrès Français d'Acoustique, 2016.

S. Adhikari, Damping Models for Structural Vibration, 2000.

G. Veronesi and E. Nijman, On the sampling criterion for structural radiation in fluid, The Journal of the Acoustical Society of America, vol.139, issue.5, pp.2982-2991, 2016.

Q. Leclère, Acoustic imaging using under-determined inverse approaches: Frequency limitations and optimal regularization, Journal of Sound and Vibration, vol.321, issue.3-5, pp.605-619, 2009.

P. C. Hansen, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion, 2005.

Y. Kim and P. A. Nelson, Spatial resolution limits for the reconstruction of acoustic source strength by inverse methods, Journal of Sound and Vibration, vol.265, issue.3, pp.583-608, 2003.

P. Gauthier, A. Gérard, C. Comier, and A. Berry, Acoustical inverse problems regularization: direct definition of filter factors using Signal-to-Noise Ratio, Journal of Sound and Vibration, vol.333, issue.3, pp.761-773, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00810862

N. Totaro, D. Vigoureux, Q. Leclere, J. Lagneaux, and J. Guyader, Sound fields separation and reconstruction of irregularly shaped sources, Journal of sound and vibration, vol.336, pp.62-81, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01275283

H. G. Choi, A. N. Thite, and D. J. Thompson, Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination, Journal of Sound and Vibration, vol.304, issue.3-5, pp.894-917, 2007.

H. De-bree, P. Leussink, T. Korthorst, H. Jansen, T. S. Lammerink et al., The ?-flown: a novel device for measuring acoustic flows, Sensors and Actuators A: Physical, vol.54, issue.1-3, pp.552-557, 1996.

H. De-bree, An Overview of Microflown Technologies, Acta Acustica united with Acustica, vol.89, issue.1, pp.163-172, 2003.

M. Möser, Messtechnik der Akustik, 2010.

B. Jetmundsen, R. Bielawa, and W. Flannelly, Generalized Frequency Domain Substructure Synthesis, Journal, vol.1, issue.33, pp.55-64, 1988.

D. Lee, W. Hwang, and C. Kim, Design sensitivity analysis and optimization of an engine mount system using an FRF-based substructuring method, Journal of Sound and Vibration, vol.255, issue.2, pp.383-397, 2002.

S. Donders, B. Pluymers, P. Ragnarsson, R. Hadjit, and W. Desmet, The wavebased substructuring approach for the efficient description of interface dynamics in substructuring, Journal of Sound and Vibration, vol.329, issue.8, pp.1062-1080, 2010.

R. Roy and J. Craig, Coupling of Substructures for Dynamic Analyses: an Overview, Structures, Structural Dynamics and Material Conference, 2000.

M. S. Allen, H. M. Gindlin, and R. L. Mayes, Experimental modal substructuring to estimate fixed-base modes from tests on a flexible fixture, Journal of Sound and Vibration, vol.330, issue.18-19, pp.4413-4428, 2011.

S. Weng, Y. Xia, X. Zhou, Y. Xu, and H. Zhu, Inverse substructure method for model updating of structures, Journal of Sound and Vibration, vol.331, issue.25, pp.5449-5468, 2012.

R. H. , A Hybrid Method of Component Mode Synthesis, Computers & Structures, vol.1, pp.581-601, 1971.

N. Totaro, Caractérisation de sources aérodynamiques et sous-structuration pour la méthode SEA, 2004.

H. Riou, P. Ladevèze, and L. Kovalevsky, The Variational Theory of Complex Rays: An answer to the resolution of mid-frequency 3D engineering problems, Journal of Sound and Vibration, vol.332, issue.8, pp.1947-1960, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01647868

G. Pavic, C. Sandier, and X. Carniel, Characterisation of a small vibration source, Proc. of ISMA2014 including USD2014, 2014.

A. Pereira, J. Antoni, and Q. Leclère, Empirical Bayesian regularization of the inverse acoustic problem, Applied Acoustics, vol.97, pp.11-29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176879

S. N. Voormeeren and D. J. Rixen, A family of substructure decoupling techniques based on a dual assembly approach, Mechanical Systems and Signal Processing, vol.27, pp.379-396, 2012.

F. J. Fahy, Some applications of the reciprocity principle in experimental vibroacoustics, Acoustical Physics, vol.49, issue.2, pp.217-229, 2003.

M. S. Allen, R. L. Mayes, and E. J. Bergman, Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections, Journal of Sound and Vibration, vol.329, issue.23, pp.4891-4906, 2010.

B. Besselink, U. Tabak, A. Lutowska, N. Van-de-wouw, H. Nijmeijer et al., A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control, Journal of Sound and Vibration, vol.332, issue.19, pp.4403-4422, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01711355

A. S. Elliott, A. T. Moorhouse, T. Huntley, and S. Tate, In-situ source path contribution analysis of structure borne road noise, Journal of Sound and Vibration, vol.332, issue.24, pp.6276-6295, 2013.

W. and A. Fregolent, Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain, Mechanical Systems and Signal Processing, vol.45, issue.2, pp.360-377, 2014.

T. S. Kuhn, The Structure of Scientific Revolutions, 1996.

D. Menzel, H. Fastl, R. Graf, and J. Hellbrück, Influence of vehicle color on loudness judgments, The Journal of the Acoustical Society of America, vol.123, issue.5, pp.2477-2479, 2008.

T. Lafont, N. Totaro, and A. L. Bot, Review of statistical energy analysis hypotheses in vibroacoustics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.470, issue.2162, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00918078

W. and A. Fregolent, Decoupling procedures in the general framework of Frequency Based Substructuring, Proceedings of the XXVII International Modal Analysis Conference (IMAC), 2009.

F. A. Firestone, Twixt Earth and Sky with Rod and Tube; the Mobility and Classical Impedance Analogies, The Journal of the Acoustical Society of America, vol.28, issue.6, pp.1117-1153, 1956.

D. Nicgorski and P. Avitabile, Conditioning of FRF measurements for use with frequency based substructuring, Mechanical Systems and Signal Processing, vol.24, issue.2, pp.340-351, 2010.

Z. Wang, J. Wang, Y. Zhang, C. Hu, and Y. Zhu, Application of the Inverse Substructure Method in the Investigation of Dynamic Characteristics of Product Transport System, Packaging Technology and Science, vol.25, issue.6, pp.351-362, 2012.

D. J. Rixen, A. Boogaard, M. V. Van-der-seijs, G. Van-schothorst, and T. Van-der-poel, Vibration source description in substructuring: A theoretical depiction, Mechanical Systems and Signal Processing, pp.498-511, 2015.

J. C. Snowdon, Mechanical four-pole parameters and their application, Journal of Sound and Vibration, vol.15, issue.3, pp.307-323, 1971.

P. Sjövall and T. Abrahamsson, Substructure system identification from coupled system test data, Mechanical Systems and Signal Processing, vol.22, issue.1, pp.15-33, 2008.

Y. Ren and C. F. Beards, On substructure synthesis with FRF data, Journal of Sound and Vibration, vol.185, issue.5, pp.845-866, 1995.

D. J. Rixen, A dual Craig-Bampton method for dynamic substructuring, Journal of Computational and Applied Mathematics, vol.168, issue.1-2, pp.383-391, 2004.

L. D. Flippen, Current dynamic substructuring methods as approximations to condensation model reduction, Computers & Mathematics with Applications, vol.27, issue.12, pp.17-29, 1994.

L. D. Flippen, A theory of condensation model reduction, Computers & Mathematics with Applications, vol.27, issue.2, pp.9-40, 1994.

J. Wang, Z. Wang, and L. Lu, Step-by-step decoupling method for inverse substructuring analysis of a three-component coupled packaging system, Journal of Vibration and Control, vol.21, issue.4, pp.676-683, 2013.

L. Keersmaekers, L. Mertens, R. Penne, P. Guillaume, and G. Steenackers, Decoupling of mechanical systems based on in-situ frequency response functions: The link-preserving, decoupling method, Mechanical Systems and Signal Processing, pp.340-354, 2015.

A. T. Moorhouse, T. A. Evans, and A. S. Elliott, Some relationships for coupled structures and their application to measurement of structural dynamic properties in situ, Mechanical Systems and Signal Processing, vol.25, issue.5, pp.1574-1584, 2011.

D. Nicgorski, P. Avitabile, and ;. Lyon-nom, Experimental issues related to frequency response function measurements for frequency-based substructuring, Mechanical Systems and Signal Processing, vol.24, issue.5, pp.1324-1337, 2010.

:. Prénoms, . Matthieu, and T. Patrick, Vibro-acoustics Substructuring: Combining simulations and experimental identification of subdomains for low frequency vehicle acoustics NATURE : Doctorat Numéro, pp.2018-109

, Acoustique RESUME : La sonorité de l'échappement joue un rôle significatif sur le confort acoustique des occupants, ainsi que sur le caractère du véhicule. L'étude proposée porte sur la problématique industrielle suivante : « Description et quantification de la transmission du son entre la bouche d'échappement et l'intérieur du véhicule ». Physiquement la transmission sonore entre l'échappement et l'intérieur du véhicule s'effectue en trois étapes : Propagation des ondes sonores de la canule à la

, Le bruit structurel se propage de la peau extérieure du véhicule à l'habillage intérieur

, La surface intérieure du véhicule rayonne de l'énergie dans l'air à l'intérieur

, PTF) est considérée comme une alternative viable à la problématique proposée. Cependant, avant d'appliquer la méthode sur un véhicule complet, la problématique suivante devait être résolue : « Caractérisation expérimentale d'un sous-système par des mesures sur un système couplé ». Ce manuscrit propose une méthode originale pour mesurer des fonctions de transfert d'un système découplé, sur la base de la réponse d'un système couplé. En raison de la nature mal posée du problème inverse, une méthode originale de régularisation a été proposée

. Mots-clés, Sous-Structuration, vibro-acoustique, méthode hybride, méthode inverse, échappement, bourdonnement

, Guyader JeanLouis (Directeur de thèse), Totaro Nicolas (co-Directeur de thèse), Composition du jury : Leclaire Philippe (Rapporteur)