
HAL Id: tel-02181613
https://hal.science/tel-02181613

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions and perspectives on combinatorial
optimization and machine learning for graph matching

and classification
Romain Raveaux

To cite this version:
Romain Raveaux. Contributions and perspectives on combinatorial optimization and machine learning
for graph matching and classification. Computer Vision and Pattern Recognition [cs.CV]. Université
de Tours, 2019. �tel-02181613�

https://hal.science/tel-02181613
https://hal.archives-ouvertes.fr


 

 

 

 
  

 

HABILITATION À DIRIGER DES RECHERCHES 

 
En INFORMATIQUE 

 

Titre en français : 

Contributions et perspectives sur l’optimisation combinatoire et l’apprentissage pour l'appariement 

et la classification de graphes 

Titre en anglais : 

Contributions and perspectives on combinatorial optimization and machine learning for graph 

matching and classification 

 

Année universitaire : 2018 / 2019  

 

présentée et soutenue publiquement par : 

 

Romain RAVEAUX 
 

le 26 Juin 2019 

 

RAPPORTEURS : 

M. Luc BRUN Professeur des universités ENSI Caen 

M. Frederico DELLA CROCE Professeur Ecole Polytechnique de Turin, 

Italie 

M. Kaspar RIESEN Professeur University of Applied Sciences 

FHNW, Olten, Suisse 

M. Francesc SERRATOSA             Professeur Université de Tarragone, 

Espagne 

JURY : 

M. Luc BRUN Professeur des universités ENSI Caen 

M. Frederico DELLA CROCE Professeur Ecole Polytechnique de Turin, 

Italie 

M. Josep LLADOS Professeur Université Autonome de 

Barcelona, Espagne 

M. Jean-Yves RAMEL Professeur des universités Université de Tours 

M. Franscesc SERRATOSA Professeur Université de Tarragone, 

Espagne 

Mme Christine SOLNON               Professeur des universités INSA Lyon 

Mme Nicole VINCENT Professeur des universités Université Paris Descartes 

 





Remerciements
Je tiens à exprimer tout d'abord mes remerciements aux membres du jury, qui ont accepté

d'évaluer mon travail d'HDR. Merci à Mme Christine Solnon, Professeur des universités, à l'INSA
Lyon, d'avoir accepté de présider le jury de cette HDR. Merci à messieurs les Professeurs Kaspar
Riesen de l'université des sciences appliquées FHNW de Suisse, Franscesc Serratosa de l'université
de Tarragone en Espagne, Frederico Della Croce de l'école polytechnique de Turin en Italie et Luc
Brun de l'ENSI Caen d'avoir accepté d'être les rapporteurs de ce manuscrit. Leurs remarques et
suggestions lors de la lecture de mon rapport m'ont permis d'apporter des améliorations à la qualité
de ce dernier. Merci également aux professeurs Nicole Vincent de l'université de Paris et Josep
Llados de l'université de Barcelone, pour avoir accepté d'examiner mon mémoire et de faire partie
de mon jury de thèse. Merci à Jean-Yves Ramel pour avoir accepté d'être le référent de cette HDR,
son regard et ses suggestions ont été une aide précieuse pour la construction de ce manuscrit. Je
tiens également à le remercier pour la con�ance et la sympathie qu'il m'a témoignée.

Merci aux doctorants que j'ai eu la chance de co-encadrer, Zeina Abu-Aisheh, Mostafa Darwiche
et Maxime Martineau. Ces collaborations ont mené à un enrichissement mutuel.

Je tiens à remercier aussi l'équipe RFAI du LIFAT sans laquelle tout cela n'aurait été possible.
Une autre équipe m'a grandement aidé dans l'élaboration de mon HDR, l'équipe ROOT du LIFAT
avec laquelle j'ai aimé collaborer. Merci au LIFAT de m'avoir permis de travailler dans de bonnes
conditions. Merci à Polytech'Tours de l'université de Tours de m'avoir soutenu dans ma démarche.

Finalement, j'adresse un grand merci à toute ma famille qui a toujours été présente lorsque j'en
ai eu besoin, en particulier à ma compagne Laetitia et mon �ls.

i



Résumé
Mots clés: Appariement de graphes, classi�cation de graphes, apprentissage, optimisation com-
binatoire, reconnaissance des formes, vision par ordinateur.
Problématique de recherche

La problématique de recherche abordée dans ce manuscrit est la suivante:
Comment mettre en correspondance, mesurer des similarités et classi�er des objets
lorsque les objets sont représentés par des graphes?

En d'autres termes, comment comparer deux graphes? Comment sont reliés graphes et clas-
si�cation? Comment extraire l'information contenue dans des graphes? Les graphes sont des
structures de données informatiques très souples qui permettent une description très riche et très
�ne d'une gamme très large d'objets, allant des molécules chimiques aux images, en passant par
des réseaux sociaux. Le revers de la médaille est que comparer des graphes peut s'avérer une tâche
d'une grande complexité calculatoire. La complexité et l'optimisation combinatoire sont liées à une
discipline entière appelée la Recherche opérationnelle. En recherche opérationnelle, les problèmes
d'optimisation doivent être formalisés et bien structurés. Un algorithme d'optimisation exploite
ces informations structurées pour les résoudre. Au contraire, l'apprentissage automatique est un
domaine de recherche traitant de la conception d'algorithmes permettant de résoudre des problèmes
au moyen d'approches statistiques. Les algorithmes d'apprentissage automatique extraient des in-
formations à partir d'exemples pour faire des prédictions, ce qui constitue une di�érence majeure
par rapport aux algorithmes de recherche opérationnelle. Le c÷ur des algorithmes d'apprentissage
réside dans leur capacité à apprendre et à généraliser à partir d'informations "non structurées"
ou "non formalisées". Mes travaux concernent l'apprentissage et l'optimisation combinatoire
pour la mise en correspondance et la classi�cation de graphes dans des problèmes de reconnais-
sance des formes et de vision par ordinateur.

Abstract
Keywords: Graph matching, graph classi�cation, structural learning, combinatorial optimisation,
pattern recognition, computer vision.
Research problems
How to match, measure similarities and classify objects when objects are represented
by graphs?

Graphs are very �exible computer data structures that allow a very rich and very detailed
description of a very wide range of objects, ranging from chemical molecules to images, via social
networks. However, the reverse of the medal is often an increase of computational complexity.
Complexity and combinatorial optimization are related to an entire discipline called operations
research. In operations research, optimization problems need to be formalized and well structured.
An optimization algorithm exploits this structured information to solve it. At the opposite, machine
learning is a research �eld dealing with the design of algorithms for solving problems by means of
statistical approaches. Machine learning algorithms learn from examples to make predictions, which
is a major di�erence with operations research algorithms. The core of machine learning algorithms
is their ability to learn and generalize from �unstructured� or �not formalized� information. The
tricptic machine learning, combinatorial optimization and pattern recognition is still very open
to new contributions and interesting discoveries remain to be realized. My research activities
are focused around combinatorial optimization and machine learning to match and classify
graphs for pattern recognition and computer vision problems.
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Résumé long en français
Les problèmes de classi�cation et d'appariement de graphes peuvent être traités sous deux

angles di�érents que sont l'apprentissage et l'optimisation combinatoire. Ces deux visions radicale-
ment opposées peuvent être réunies pour servir un objectif commun et résoudre un même problème.
L'hybridation des deux domaines, optimisation combinatoire et apprentissage, conduit à de nou-
velles méthodes de résolution ainsi qu'à de nouvelles perspectives. Le manuscrit est découpé en
trois parties, la première traitant de l'optimisation combinatoire et la deuxième de l'apprentissage.
Chacune de ces parties est elle-même découpée en deux sous-parties traitant de l'appariement et
de la classi�cation de graphes. Une dernière partie porte sur les perspectives évoquant notamment
les interactions entre optimisation combinatoire et apprentissage.

Optimisation discrète pour l'appariement et la classi�cation
de graphes

Dans cette section sont discutées les problématiques liées au calcul de dissimilarité de graphes ainsi
qu'à la classi�cation de graphe basée sur ces dissimilarités.

Comparaison de graphes

De nombreuses applications, comme par exemple la recherche ou la classi�cation d'informations,
nécessitent de mesurer la distance ou la similarité entre deux graphes, i.e., apparier �mettre en
correspondance� les sommets des graphes a�n d'identi�er leurs points communs et leurs di�érences.
Il existe di�érents types d'appariements de graphes donnant chacun lieu à une dé�nition di�érente
de la distance entre deux graphes. Les appariements exacts (isomorphisme de graphes ou de sous-
graphe) permettent de montrer que deux graphes sont identiques ou qu'un graphe est inclus dans
un autre graphe. Cependant, dans de nombreuses applications, supposer l'existence d'un tel ap-
pariement est une hypothèse trop forte. Par conséquent, des appariements de graphes tolérants
aux erreurs tels que la recherche du plus grand sous-graphe commun à deux graphes ou la dis-
tance d'édition de graphes ont été proposés. L'appariement recherché est alors un "meilleur"
appariement, i.e., un appariement devant préserver le plus grand nombre de sommets et d'arcs
des graphes sans pour autant nécessairement tous les préserver. L'idée de la distance d'édition
de graphes est de dé�nir la similarité de deux graphes par le nombre minimal d'opérations élé-
mentaires d'édition nécessaires pour transformer un graphe en un autre. La distance d'édition
de graphes est calculée par un ensemble standard d'opérations d'édition, i.e. les insertions de
n÷uds ou d'arcs, les suppressions de n÷uds ou d'arcs et les substitutions de n÷uds ou d'arcs. En
outre, une fonction de coûts est associée à chacune de ces opérations et l'objectif est de trouver
l'ensemble des opérations qui minimise la somme des coûts d'édition. Nous nous sommes intéressés
au problème du calcul de la distance d'édition entre graphes qui fournit à la fois un appariement et
une mesure de dissimilarité entre deux graphes. Un premier objectif a été de dé�nir de nouveaux
modèles mathématiques pour représenter le problème de la distance d'édition entre graphes. Lors
d'une collaboration avec le LITIS et dans la thèse de Mostafa Darwiche, trois modèles fondés sur
la programmation linéaire en nombres entiers (PLNE) ont été élaborés. La PLNE est une manière
de décrire un problème par une fonction de coût, des contraintes linéaires et par des variables
entières. Ce formalisme permet de béné�cier de méthodes de résolution e�caces facilement ex-
ploitables grâce à des solveurs. Un solveur est un logiciel informatique capable de résoudre des
équations mathématiques ou des problèmes de logique. La distance d'édition entre graphes est un
problème d'optimisation NP-Di�cile. Son temps de résolution croit de manière exponentielle en
fonction du nombre de n÷uds des deux graphes. Par conséquent, deux dé�s apparaissent pour
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ce type de problème. Tout d'abord, l'élaboration de méthodes exactes permettant d'obtenir la
solution optimale du problème de manière rapide. La résolution exacte n'est pas toujours possible
en pratique du fait de l'explosion combinatoire engendrée par la complexité du problème. De ce
constat né le deuxième dé�, la conception de méthodes heuristiques capables de fournir rapidement
une solution sous optimale de qualité. Nous avons proposé deux méthodes de résolutions exactes
calculant la solution optimale du problème d'optimisation. Dans la thèse de Zeina Abu-aisheh
une recherche arborescente de type séparation et évaluation a été proposée. Une évaluation de
toutes les solutions possibles est exécutée sans les énumérer explicitement. Les solutions partielles
sont éliminées à l'aide des bornes inférieures et supérieures. Dans la thèse de Mostafa Darwiche
l'utilisation d'un solveur mathématique a permis de résoudre les trois formulations basées sur la
PLNE. Le couple PLNE et solveur mathématique a permis d'obtenir les meilleurs résultats. Etant
donné que la résolution exacte n'est pas toujours possible en pratique, nous nous sommes intéressés
à la résolution heuristique. Dans ma thèse, j'ai exploré la possibilité de simpli�er le problème ini-
tiale pour le transformer en un problème d'a�ectation de sous graphes dont la résolution s'opère en
temps polynomiale et non plus en temps exponentiel comme le problème de départ. Bien sûr, ce
gain de temps ne se fait pas sans conséquence sur la qualité de la solution obtenue. There is no free
lunch 1. Dans la thèse de Zeina Abu-aisheh et dans la collaboration avec le LITIS, des heuristiques
sont obtenues simplement en limitant en temps l'exécution des méthodes exactes. Ce faisant, il est
aisé de répondre aux contraintes de temps de certaines applications mais aucune information sur la
qualité de la solution retournée n'est prise en compte pour stopper la méthode. Cet inconvénient
est levé dans la thèse de Mostafa Darwiche, deux recherches locales, au sens d'un opérateur de
voisinage dans l'espace des solutions, s'appuyant sur la PLNE et un solveur mathématique ont
été proposées. Ces méthodes explorent l'espace des solutions localement autour d'un voisinage et
s'arrêtent si aucune solution améliorante n'est trouvée. Pour �nir, les solveurs mathématiques,
comme IBM Cplex par exemple, sont en évolutions constantes et deviennent d'année en année de
plus en plus e�caces. Cet élément laisse à penser que les approches développées par le LIFAT
vont encore gagner en e�cacité dans l'avenir. Une prise de recul sur les méthodes de résolution
du problème de la distance d'édition entre graphes a permis de rapprocher les notions de méthode
exacte et heuristique en proposant les méthodes dites anytime. Ce type de méthode est capable
de délivrer une première solution réalisable très rapidement pour ensuite l'améliorer progressive-
ment jusqu'à converger vers une solution optimale. A chaque fois qu'une solution améliorante est
trouvée, elle est mise à disposition pour l'application �nale qui utilise la méthode anytime comme
un service de production de solutions. Cette manière d'appréhender le problème rend la méthode
anytime très �exible et applicable lorsque l'on ne connait pas à l'avance les contraintes de temps de
l'application �nale. Pour �nir, une base méthodologique solide composée de bases de graphes et de
métriques a été proposée pour l'évaluation de performance des méthodes de résolution du problème
de la distance d'édition entre graphes. De cette démarche est né un concours sur ce problème dans
le cadre de la conférence internationale en reconnaissance des formes ICPR 2016 en collaboration
avec des collègues du laboratoire GREYC de Caen.

Classi�cation de graphes basée distance

Cette partie aborde la problématique de classi�cation supervisée de graphes. Dans de nombreuses
applications, il est en e�et nécessaire d'a�ecter une classe (catégorie) à un graphe inconnu. Cette
étape de classi�cation s'appuie sur un ensemble de graphes dont la classe est connue. Cet ensemble
de graphes est appelé base d'apprentissage. La littérature propose principalement deux types
d'approches pour résoudre un problème de classi�cation supervisée de graphes: les approches à
base de noyaux et des approches de type K Plus Proches Voisins (KPPV). Cette dernière est la
plus fréquemment adoptée pour sa simplicité de mise en ÷uvre et ses bonnes performances.

1Phrase de l'économiste Milton Friedman
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Elle ne nécessite pas d'apprentissage mais simplement le stockage des données d'apprentissage
(TrS=base d'apprentissage). Une nouvelle donnée (ou requête) de classe inconnue est comparée
à toutes les données de la base d'apprentissage. Pour la requête, l'algorithme choisit la classe
majoritaire parmi ses K plus proches voisins dans la base d'apprentissage au sens d'une distance
choisie.

Cette méthode dans le cadre des graphes sou�re toutefois d'un défaut majeur qu'est la com-
plexité calculatoire. Ce défaut apparait pour deux raisons: 1) la méthode des KPPV nécessite de
calculer pour chaque graphe requête g toutes les distances d(g, g′) ∀g′ ∈ TrS. 2) Dans le contexte
des graphes, calculer d(g, g′) est un problème NP-Di�cile. Trois angles méthodologiques di�érents
corrigent ces défauts: 1) L'utilisation d'une heuristique rapide du problème d'édition de graphes
pour calculer d(g, g′) dans un contexte de KPPV. Cette solution a été usitée dans la thèse de Zeina
Abu-aisheh ainsi que dans ma thèse. 2) Il est aussi possible de "réduire" la base d'apprentissage
de graphes, en sélectionnant ou en générant des représentants à partir de la base initiale. Dans
ma thèse et dans une collaboration avec le LITIS, je m'étais intéressé au calcul de graphe mé-
dian (modélisant une classe) et de graphe prototype (discriminant). Ces aspects de sélection ou de
génération de prototypes relèvent de la section apprentissage qui sera développée après. 3) En�n, le
dernier angle d'attaque consiste à modéliser le problème du calcul des KPPV comme un problème
d'optimisation discret et à le résoudre de manière heuristique. Cette méthodologie orignale a été
validée dans un travail avec Zeina Abu-aisheh. La modélisation du problème du calcul des KPPV a
été réalisée en généralisant à plusieurs graphes le problème de la distance d'édition. Cette approche
rend alors possible la réalisation d'un algorithme de type séparation et évaluation qui élimine des
comparaisons de graphes non prometteuses grâce aux bornes supérieures et inférieures calculées
sur le problème des KPPV. Il en résulte une exploration optimisée de l'arbre des comparaisons.

Apprentissage dans l'espace des graphes pour l'appariement
et la classi�cation de graphes

Dans cette section est discutée l'élaboration et l'utilisation de méthode d'apprentissage pour ré-
soudre des problèmes d'appariement et de classi�cation de graphes.

Appariement de graphes

Dans la thèse de Maxime Martineau, le problème de la distance d'édition entre graphes a été
paramétré. Les paramètres w viennent pondérer les fonctions de coûts entre deux n÷uds ou deux
arcs ainsi le problème de mise en correspondance "n÷ud à n÷ud " ou "arc à arc" est dépendant
de paramètres continus (réels). L'algorithme d'apprentissage a pour objectif de trouver les valeurs
des paramètres qui minimisent un critère dé�ni sur les données de la base d'apprentissage (risque
empirique). Un exemple de critère peut être de minimiser la somme des erreurs au carré entre les
appariements obtenus par une heuristique (paramétrée) et une méthode exacte. Le but étant d'avoir
une heuristique aussi précise qu'une méthode exacte. Ce problème s'apparente à un problème de
régression structurée. Un outil e�cace pour résoudre un problème de régression est la modélisation
par réseau de neurones et l'entrainement de ce dernier par la méthode de la descente de gradient.
Dans contexte, l'apprentissage consiste à trouver les valeurs des paramètres w. La distance d'édition
paramétrée peut être vue comme une couche particulière appelée couche combinatoire qui est
intégrable dans un réseau de neurones. Cette couche combinatoire nécessite un hyper-paramètre:
un graphe modèle/prototype qui doit être �xe pendant la phase d'apprentissage. L'inconvénient
de cette méthode est qu'elle ne permet pas de généraliser les paramètres appris à plusieurs graphes
prototypes. Les paramètres w sont donc associés à un graphe prototype en particulier.
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Classi�cation de graphes

L'approche précédente a été adaptée pour classi�er des graphes. Le critère à minimiser est une
erreur de classi�cation sur la base d'apprentissage. Dans le cadre d'un problème à deux classes,
la sortie de la couche combinatoire vient alimenter une fonction d'activation a�n de prédire la
classe du graphe à classi�er. Les entrées de la couche combinatoire restent similaires à l'approche
précédente: un graphe prototype �xe durant la phase d'apprentissage. La question du calcul
du graphe prototype a été évoquée sur la partie concernant le problème des KPPV. Dans ma
thèse et en collaboration avec le LITIS, nous avions dé�ni quatre types de graphe prototype:
1) les graphes d'ensemble appartenant à la base d'apprentissage, 2) les prototypes généralisés
pouvant ne pas appartenir à la base d'apprentissage, les graphes généralisés sont des graphes
synthétiques issus d'un processus de génération. Chacune de ces deux grandes familles se scindent
en deux parties: 3) les graphes médians sont construits au regard d'une seule et unique classe du
problème de classi�cation sans prendre en considération les autres classes. Par opposition, 4) les
graphes discriminants sont construits en tenant compte de toute la base d'apprentissage dans un
objectif de minimiser une erreur de classi�cation. Dans l'approche mentionnée précédemment, le
prototype de graphe est choisi a priori en calculant un graphe médian d'ensemble. Dans la thèse
de Maxime Martineau, l'architecture précédente de type perceptron a été étendue au concept de
réseau de neurones convolutifs (CNN). Cette stratégie a permis de s'abstraire des prototypes de
graphes calculés a priori pour le béné�ce de graphes discriminants déterminés pendant la phase
d'apprentissage. L'ensemble de ces travaux constitue des bases solides pour étendre les réseaux de
neurones profonds (deep learning) à des données représentées sous forme de graphe.

Perspectives pour l'appariement et la classi�cation de graphes

Dans les problèmes d'appariement et de classi�cation de graphes, l'apprentissage peut être intégré
à di�érents niveaux allant de l'apprentissage des graphes (structures et attributs) en passant par les
mesures de similarité entre n÷uds et arcs jusqu'à l'exploration de l'arbre de recherche composé de
tous les appariements possibles entre graphes. Des perspectives sont évoquées comme les couches
combinatoires dans les réseaux profonds, le transport optimal pour l'appariement de graphes et
l'apprentissage par renforcement. Finalement, des applications sont décrites comme l'adaptation
de domaine non supervisée et le tracking d'objets dans des vidéos.
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Chapter 1

General introduction

According to C. Bishop [Bishop, 2006], pattern recognition (PR) has its origins in engineering,
whereas machine learning grew out of computer science. The �eld of PR is the term given to
the science of automating the decisions on data such as classifying them into di�erent categories.
Humans are faced with a great diversity of pattern recognition problems in their everyday life.
Examples of pattern recognition tasks, which are in the majority of cases intuitively solved, include
the recognition of a written or a spoken word, the face of a friend, an object on the table, a
tra�c sign on the road, and many others. These simple examples illustrate the essence of PR.
In the world, there exist classes of patterns which are recognized by humans according to certain
knowledge learned before. The terminology pattern refers to any observation in the real world (e.g.,
an image, an object, a symbol, or a word, to name just a few). Roughly, pattern recognition is the
assignment of a label to a given input value. In statistics, discriminant analysis was introduced
for this purpose by Ronald Fisher in 1936. However, its mathematical foundations even go back
to the 18th century (with Bayes, Laplace, Euler, etc.). Pattern classi�cation can be a nontrivial
problem due to the wide variability of patterns. For instance, image classi�cation could be tackled
using handcrafted rules or heuristics for distinguishing the visual patterns based on shape, color
or texture. In practice such an approach would lead to a proliferation of rules and exceptions
to the rules and so on, and could give poor results. An alternative solution can be obtained by
adopting a machine learning (ML) approach. For S. Shwartz et al [Shalev-Shwartz and Ben-
David, 2014], the term machine learning refers to the automated detection of meaningful patterns
in data. For example, a large set of images along with their category is called a training set.
This training set can be used to tune the parameters of an adaptive model during a so called
learning phase. An algorithm that is capable to adapt the parameters of a model from the data
is named a learning algorithm. During the learning phase, sub-patterns are detected, selected and
combined to better take decisions. The traditional PR pipeline is depicted in Figure 1.1. Feature
extraction and decision steps are coupled and can be trained together. PR is one approach to
Arti�cial Intelligence 1 which underpins developments in cognate �elds such as computer vision 2,
image processing, text and document analysis for instance. Since in recent years, our world has
become increasingly �digitized� and the amount of data available is dramatically increasing. In
twenty years, our world has seen the explosion of Internet, the emergence of social networks, the

11956: Dartmouth workshop, �rst occurence of the term AI. "We propose a study of arti�cial intelligence [...].
The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be made to simulate it" John McCarthy, Marvin L.
Minsky, Nathaniel Rochester, and Claude E. Shannon

2It is commonly accepted that the father of Computer Vision is Larry Roberts (L. Roberts, "Machine perception
of 3D solids", Chapter 9 in J. T. Tipp), who in his Ph.D. thesis (cir. 1960) at MIT discussed the possibilities of
extracting 3D geometrical information from 2D perspective views of blocks. Computer vision has later emerged as
a student summer project at MIT proposed by Papert, Seymour A https://dspace.mit.edu/handle/1721.1/6125
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Figure 1.1: A functional block diagram of a pattern recognition process. The whole procedure
maps the pattern domain to the label domain.

cloud, the Digital Humanities, the 4.0 Industry. Today, even fridges send spam3. Some examples:

• Worldwide, there are over 2.23 billion monthly active Facebook users (2018)

• The number of smartphone users is forecast to grow from 2.1 billion in 2016 to around 2.5
billion in 2019

• 100 terabytes of data uploaded daily to Facebook servers (2017).

• 600 million of photos, 200 millions of voice messages and 100 millions of video messages are
posted on WhatsApp ... each day (2014)

• In 2016, IDC and SAP 4 predicted that 60 percent of global manufacturers would use ana-
lytics data recorded from connected devices to analyze processes and identify optimization
possibilities. (2017)

At the same time, the explosion of computing power imagined by Moore 5 is one source of trans-
formations in machine learning. Driven by this huge amount of data, the computational power and
recent algorithmic progress, PR techniques has entered in a new era during the last 10 years. But
with great power comes great responsibility as mentioned by Cedric Villani and al6, it is important
to structure and regulate the use of such powerful techniques. More than ever, Humanity (the
quality of being humane) must be placed at the heart of the technological progress.

The question how to represent patterns in a formal way such that they can automatically be
processed by machine is a key issue in pattern recognition and related �elds. In general, there are
two major ways to tackle this crucial step, viz., the statistical and the structural approach. In the
statistical approach, feature vectors are employed for representing the underlying patterns. Vectors
do not provide a direct possibility to describe relationships that might exist among di�erent parts
of a pattern. The use of structural data structures (i.e. strings, trees, or graphs) in PR, has created
the branch of Structural Pattern Recognition (SPR). Among the data structures used, the one with
the largest number of contributions, conferences and special issues of international journals is the
representation based on graphs. Their growing popularity in the �elds of PR can be explained by
the ability of graphs to represent complex shapes across their ability to model simpler component
interactions. However, we have to pay a price when using this type of enriched and interesting
representations: computational complexity. Complexity and combinatorial optimization are re-
lated to an entire discipline called Operations Research [Korte and Vygen, 2007]. Operations

3https://www.tomshardware.fr/articles/internet-objet-frigo-spam,1-46695.html
4http://digitalistmag.wpengine.netdna-cdn.com/files/2016/03/IDC_IoT_white_paper_Mar2016.pdf
5Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every

two years
6https://www.aiforhumanity.fr/pdfs/9782111457089_Rapport_Villani_accessible.pdf
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research is a research �eld dealing with modelling and solving combinatorial optimization prob-
lems. In operations research, optimization problems need to be formalized and well structured.
Mathematical programming, classically used when dealing with such problems, is a perfect exam-
ple: a problem is completely modelled by variables, constraints and objectives to optimize. An
optimization algorithm exploits this structured information to solve it. At the opposite, machine
learning is a research �eld dealing with the design of algorithms for solving problems by means of
statistical approaches. ML algorithms learn from examples to make predictions, which is a major
di�erence with operations research algorithms. The core of ML algorithms is their ability to learn
and generalize from �unstructured� or �not formalized� information. The tricptic machine learning,
combinatorial optimization and pattern recognition make SPR still very open to new contributions
and interesting discoveries remain to be realized. Thus, more than twenty years ago, a community
has formed around the problematic of SPR. This community was built at the national level around
groups such as AFRIF (French Association for Pattern Recognition and Interpretation) and at the
international level around technical committees TC15 7 (Graph-based representation for pattern
recognition), TC2 (structural and syntactical pattern recognition) of International Association for
Pattern Recognition (IAPR).

Graph-based representations have been used with considerable success for solving many prob-
lems in Document Image Analysis. For instance, my PhD thesis entitled "Graph Mining and
Graph Classi�cation: Application to cadastral map analysis." was established in this context.
The rise of graph-based pattern recognition methods has been greatly supported by the docu-
ment image analysis community. At the national level thank to Written Communication Research
Group (GRCE) and at the international level through TC10 Graphic Recognition (GREC) and
TC11 Reading Systems. Therefore, the dissemination is conveyed by a high number of scienti�c
journals that are concerned with this research area (e.g., Pattern Analysis and Applications, In-
ternational Journal of Document Analysis and Recognition (both Springer), Pattern Recognition
and Pattern Recognition Letters (both Elsevier), and the IEEE Transactions on Pattern Analysis
and Machine Intelligence, to name just a few examples. Conferences and workshop are also de-
voted to this topic Graph-based Representation (GbR), Structural/Syntactic Pattern Recognition
(SSPR) workshops and a dedicated track on the International Conference on Pattern Recogni-
tion (ICPR). Finally, it is interesting to name some recent competitions on this �eld: Graph
Distance Contest (2016), Competition on Subgraph Spotting in Graph Representations of Comic
Book Images (2018) and Contest on Graph Matching Algorithms for Pattern Search in Biologi-
cal Databases (2014) hosted by the ICPR. Subgraph Isomorphism challenge launched by the MIT
(http://graphchallenge.mit.edu). Regionally speaking, problems related to graph computation
are well represented at the ICVL Federation (Informatique Centre Val de Loire) and the research
axis called Graph algorithmics and exponential complexity (18 members from 3 teams).

My work concerns the structural pattern recognition, proposing contributions related respec-
tively to supervised graph classi�cation and graph matching. Especially, a focus is given on sim-
ilarity and dissimilarity computation on graphs. My work is applied to image analysis problems
for object recognition and detection as well as molecule classi�cation (Chemoinformatics). My
scienti�c course is at the con�uence of two research areas: combinatorial optimization and ma-
chine learning. By confronting and combining theses two visions, new proposals and a better
understanding of structural pattern recognition problems have arisen. Since my �rst research ac-
tivities started with my doctoral studies, I was led to model problems, to formalize and design
algorithms. I have followed this thread to tackle problems in SPR. Of course, various colleagues
contributed inestimably to this work. It would not be possible without the hard work of "my"
PhD students (Zeina Abu-Aisheh, Mostafa Darwishe and Maxime Martineau) and my colleagues
(Donatello Conte, Jean-Yves Ramel, Vincent T'kindt, Gilles Venturini, Antoine Tabbone, Alireza
Alaei, Jean-Marc Ogier, Jean-Christophe Burie, Pierre Héroux and Sébastien Adam).

7https://iapr-tc15.greyc.fr/
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The manuscript is organized as follows: Section 2 is dedicated to de�nitions and notations
necessary to introduce the problems of graph matching and classi�cation. In Section 3, state of
the art, deadlocks and contributions on the two aforementioned problems are presented through
the view point of combinatorial optimization. On the contrary, in Section 4, graph matching
and classi�cation problems are addressed in the light of machine learning. Short and long term
perspectives are presented in Section 5.
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Chapter 2

Notations, problems and applications

The objective of this section is to present basic notions about the graph theory. Notations used
in the rest of the document are introduced, problems and applications are identi�ed. This section
is organized as follows. Formal de�nitions of graphs are presented in Section 2.1. Mathematical
de�nitions of the graph matching problems are given in Section 2.2. A categorization of the
structural pattern recognition problems are proposed in Section 2.3. Then, applications of SPR
are put forward in Section 2.4. Finally, the main surveys on SPR problems are mentioned and the
organization of the manuscript is explained in Section 2.5.

2.1 Graphs: types and de�nitions

Graphs are an e�cient data structure and the most general formalism for object representation
in structural Pattern Recognition (PR). They are basically composed of a �nite or in�nite set of
vertices V , that represents parts of objects, connected by a set of edges E ⊆ V ×V , that represents
the relations between these two parts of objects, where each edge connects two vertices in the
graph. Formally saying, e = (ui, uj), or eij , where both ui and uj are vertices that belong to the
set V .

De�nition 1. Graph
G = (V,E)
V is a set of vertices
E is a set of edges such that E ⊆ V × V

A graph G is said to be undirected when each edge eij of the set E has no direction. This kind
of graphs represents a symmetric relation. Mathematically saying: (ui, uj) ∈ E = (uj , ui) ∈ E.
In contrast to the directed graphs which respect the direction that is assigned to each edge eij .
Thus, for the directed graphs (ui, uj) 6= (uj , ui). Non-attributed graphs are only based on their
neighborhood structures de�ned by edges. Thus, no attributes can be found on neither the edges
nor the vertices of graphs. Whereas in attributed, or labelled, graphs (AG), signi�cant attributes
can be found on edges, vertices or both of them which e�ciently describe objects (in terms of
shape, color, coordinate, size, etc.) and their relations.

In AGs, four extra components have been added (LV ,LE ,µ,ζ) to take into account vertex and
edge attributes.

Mathematically speaking, AG is considered as a set of 6 tuples (V ,E,LV ,LE ,µ,ζ) such that:

De�nition 2. Attributed Graph
G = (V ,E,LV ,LE,µ,ζ)

9



2.1. GRAPHS: TYPES AND DEFINITIONS

V is a set of vertices
E is a set of edges such as E ⊆ V × V
LV is a set of vertex attributes
LE is a set of edge attributes
µ : V → LV . µ is a vertex labeling function which associates the label lui

to a vertex ui
ζ : E → LE. ζ is an edge labeling function which associates the label leij to an edge eij

In the literature and to make the notation simpler, LV and LE are omitted which leads to G
= (V ,E,µ,ζ).

De�nition 2 allows to handle arbitrarily structured graphs with unconstrained labeling func-
tions. For example, attributes of both vertices and edges can be part of the set of integers L =
{1, 2, 3, · · · }, the vector space L = Rn and/or a �nite set of symbolic attributes L = {x, y, z, · · · }.

In PR, a combination of both symbolic and numeric attributes on vertices and edges is required
in order to describe the properties of vertices and their relations. For notational convenience,
directed attributed relational graphs are simply referred to as graphs in the rest of the manuscript.

Graph size Let G = (V ,E,µ,ζ) be a graph. In this manuscript, the size of G is the number of
nodes in V . The size of G is denoted by N = |V |. Let G1 = (V1,E1,µ1,ζ1) and G2 = (V2,E2,µ2,ζ2)
be two graphs. The size of G1 is denoted by n1 = |V1|. The size of G2 is denoted by n2. When
two graphs have the same size then we use the notation N = n1 = n2.

Walk, circuit, path and cycle

1. Walk: A walk is a sequence of vertices and edges of a graph. Vertices can be repeated and
edges can be repeated.

2. Trail A Walk in which no edge is repeated. Vertices can be repeated and edges cannot be
repeated.

3. Circuit: is a closed trail. Vertices can be repeated and edges are not repeated.

4. Path: It is a trail in which neither vertices nor edges are repeated.

5. Cycle: Traversing a graph such that no vertex and no edge are repeated but the starting
and ending vertex must be same i.e. starting and ending vertices can be repeated. Vertices
are not repeated and edges are not repeated.

Adjacency matrix The adjacency matrix representation of a graph is |V |× |V | matrix A where
Aij = 1 if eij ∈ E and 0 otherwise. For undirected graphs the matrix A is symmetric and AT =
A. Walks of length n can be computed by looking at the n-th power of A (An).

Degree matrix The out-degree of a node ui, ω+(ui) is equal to ω+(ui) =
∑

(ui,uj)∈E Aij . The in-
degree of a node ui, ω−(ui) is equal to ω−(ui) =

∑
(uj ,ui)∈E Aji. Note that in an undirected graph,

ω+(ui) = ω−(ui)∀ui ∈ V and is denoted ω(ui). The out-degree matrix Ω+ is a diagonal matrix
with Ω+

ii = ω+(ui), and similarly for Ω−. When the graph is undirected, one has Ω+ = Ω− = Ω.
Ã = Ω−1A is a stochastic matrix such that each row sums to one. Ãnij gives the probability of
walks of length n from node i to node j.

10



2.2. GRAPH MATCHING PROBLEMS

Laplacian For undirected graphs, several Laplacian formulation exist. The combinatorial Lapla-
cian is the matrix ∇ = Ω−A. The normalized Laplacian is ∇̃ = Ω−1/2∇Ω−1/2. The random walk
Laplacian ∇rw = Ω−1 −∇. More details on Laplacian are given in [Zhou and Schölkopf, 2005].

Once we have de�ned these basic notions of graph theory, we can de�ne the graph matching
problems in the next section.

2.2 Graph matching problems

Graph matching (GM) is the process of �nding a correspondence between the vertices and the
edges of two graphs that satis�es some (more or less stringent) constraints ensuring that similar
substructures in one graph are mapped to similar substructures in the other. Matching problems
are divided into two broad categories: the �rst category contains exact GM problems that require
a strict correspondence among the two objects being matched or at least among their subparts.
The second category de�nes error-tolerant GM problems, where a matching can occur even if the
two graphs being compared are structurally di�erent to some extent. GM, whether exact or error-
tolerant, is applied on patterns that are transformed into graphs. This approach is called structural
in the sense of using the structure of the patterns to compare them.

2.2.1 Exact isomorphism

2.2.1.1 Induced subgraph isomorphism

Induced Subgraph Isomorphism is the problem of �nding a subgraph (G1) in a larger graph (G2).
More formally, when comparing two graphs G1 = (V1,E1,µ1,ζ1) and G2 = (V2,E2,µ2,ζ2), we are
looking for an function f : V1 → V2 which maps each vertex ui ∈ V1 onto a vertex uj ∈ V2 such
that certain conditions are ful�lled :

Problem 1. Induced SubGraph Isomorphism (ISGI)
An injective function f : V1 → V2 is a subgraph isomorphism from G1 to G2 if:

1. ∀ui ∈ V1, µ1(v) = µ2(f(ui))

2. ∀ui, uj ∈ V1, (ui, uj) ∈ E1 ⇔ (f(ui), f(uj)) ∈ E2

3. ∀(ui, uj) ∈ E1, ζ1((ui, uj)) = ζ2((f(ui), f(uj)))

The NP-completeness proof of subgraph isomorphism can be found in [Garey and Johnson,
1990].

2.2.1.2 Maximum Common Subgraph (MCS)

Maximum Common Subgraph is the problem of mapping a subgraph of the source graph to an
isomorphic subgraph of the target graph. Usually, the goal is to �nd the largest subgraph for which
such a mapping exists.

Problem 2. Maximum Common Subgraph (MCS)
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. A graph Gs = (Vs, Es) is said to be a
common subgraph of G1 and G2 if there exists subgraph isomorphism from Gs to G1 and from Gs
to G2. The largest common subgraph is called the maximum common subgraph, or MCS, of G1

and G2.
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2.2. GRAPH MATCHING PROBLEMS

2.2.2 Error-tolerant problems

Error-tolerant problems is a family of graph matching problems that contains two important mem-
bers error-tolerant subgraph matching and error-correcting graph matching.

2.2.2.1 From exact to error-tolerant: problem transformation

The stringent constraints imposed by exact GM are, in some circumstances, too rigid for the
comparison of two graphs. So the matching process must be tolerant: it must accommodate the
di�erences by relaxing, to some extent, the constraints that de�ne the matching type.

Error-tolerant matching is generally needed when no signi�cant identical part of the structure
together with the corresponding vertex and edge attributes in graphs G1 and G2 can be found.
Instead, matching G1 and G2 is associated to a penalty cost. For example, this case occurs when
vertex and edge attributes are numerical values (scalar or vectorial). The penalty cost for the
mapping can then be de�ned as the sum of the distances between label values. A �rst solution
to tackle such problems relies on a discretization or a classi�cation procedure to transform the
numerical values into nominal/symbolic attributes. The main drawback of such approaches is their
sensitivity to frontier e�ects of the discretization or misclassi�cation. A subsequent exact GM
algorithm would then be unsuccessful. A second solution consists in using exact GM algorithms
and customizing the compatibility function for pairing vertices and edges. The main drawback of
such approaches is the need to de�ne thresholds for these compatibilities. A last way consists in
using an error-tolerant GM procedure that overcomes this drawback by integrating the numerical
values during the mapping search. In this case, the matching problem turns from a decision one
to an optimization one.

2.2.2.2 Error-Tolerant Subgraph Matching

Error-Tolerant Subgraph Matching [Messmer and Bunke, 1998] takes into account the di�erence in
topology as well as attributes. Thus, it requires that each vertex/edge of graph G1 is mapped to
a distinct vertex/edge of graph G2 or to a dummy vertex/edge. This dummy elements can absorb
structural modi�cations between the two graphs. εV1

is a set of dummy vertices of G2 such that
|εV1
| = |V1| and V2 = V2 ∪ εV1

. Similarly, εE1
is a set of dummy edges of G2 and E2 = E2 ∪ εE1

.

Problem 3. Error-Tolerant SubGraph Matching (ETSGM)
An injective function f : V1 → V2 is an error-tolerant subgraph isomorphism from G1 = (V1,E1,µ1,ζ1)
to G2 = (V2,E2,µ2,ζ2)
Function f must satisfy certain conditions:

1. ∀ui ∈ V1, f(ui) ∈ V2

2. ∀ui, uj ∈ V1, (ui, uj) ∈ E1 ⇒ (f(ui), f(uj)) ∈ E2

3. ∀ui ∈ V1, µ1(ui) ≈ µ2(f(ui)) and ∀(ui, uj) ∈ E1, ζ1((ui, uj)) ≈ ζ2((f(ui), f(uj)))

2.2.2.3 Error-Correcting Graph Matching

When the Error-tolerant subgraph matching problem draws attention on graph G1 (only all vertices
of G1 must be matched), error-tolerant graph matching is a problem that considers with equity to
G1 and G2. To give the possibility to G2 of capturing structural distortions, G1' sets of vertices
and edges should be extended. εV2 is a set of dummy vertices of G1 such that |εV2 | = |V2| and
V1 = V1 ∪ εV2 . Consequently, V1 and V2 have the same size (i.e, N = |V1| = |V2|). Similarly, εE2

is a set of dummy edges of G1 and E1 = E1 ∪ εE2
.
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2.2. GRAPH MATCHING PROBLEMS

Problem 4. Error-Correcting Graph Matching (ECGM)
A function f : V1 → V2 is an error-tolerant graph matching from G1 = (V1,E1,µ1,ζ1) to G2 =
(V2,E2,µ2,ζ2).
Function f must ful�ll certain conditions:

1. ∀ui ∈ V1 ⇒ f(ui) ∈ V2

2. ∀vi ∈ V2 ⇒ f−1(vi) ∈ V1

3. ∀ui, uj ∈ V1, (ui, uj) ∈ E1 ⇒ (f(ui), f(uj)) ∈ E2

4. ∀vi, vj ∈ V2, (vi, vj) ∈ E2 ⇒ (f−1(vi), f
−1(vj)) ∈ E1

5. ∀ui ∈ V1, µ1(ui) ≈ µ2(f(ui))

6. ∀(ui, uj) ∈ E1, ζ1((ui, uj)) ≈ ζ2((f(ui), f(uj)))

Mapping a vertex ui ∈ V1 to a dummy vertex if often called a deletion of ui while mapping
a dummy vertex to vi ∈ V2 is referred to an insertion operation. This vocabulary is inspired by
the string edit distance. The string edit distance is a way of correcting a string to correspond to a
second one by means of edit operations. Therefore this graph matching problem is often denoted
as error-correcting graph matching.

2.2.2.4 Multivalent Matching

All the aforementioned matching problems, whether exact or error-tolerant ones, belong to the
univalent family in the sense of allowing one vertex to be matched to at most one vertex in the
other graph. In multivalent matching, a vertex can be matched to zero or many vertices [Sorlin
et al., 2007].

Details and more graph matching problems are presented in Appendix A.

2.2.2.5 Error-tolerant matching cost

In error-tolerant GM, a measurement of the strength of matching vertices and/or edges is called
cost. This cost is applicable on both graph structures and attributes. The basic idea is to assign a
penalty cost to each matching operation according to the amount of distortion that it introduces
in the transformation. When (sub)graphs di�er in their attributes or structures, a high cost is
added in the matching process. Such a cost prevents dissimilar (sub)graphs from being matched
since they are di�erent.

2.2.3 Graph Edit Distance

The graph edit distance (GED) was �rst reported in [Tsai et al., 1979, A. Sanfeliu, 1983, H. Bunke,
1983]. GED is a dissimilarity measure for graphs that represents the minimum-cost sequence of
basic editing operations to transform a graph into another graph by means classically included
operations: insertion, deletion and substitution of vertices and/or edges. Therefore, GED can be
formally represented by the minimum cost edit path transforming one graph into another. Edge
operations are taken into account in the matching process when substituting, deleting or inserting
their adjacent vertices. From now on and for simplicity, we denote the substitution of two vertices
ui and vk by (ui → vk), the deletion of vertex ui by (ui → ε) and the insertion of vertex vk by
(ε→ vk). Likewise for edges (ui, uj) and (vk, vz), ((ui, uj)→ (vk, vz)) denotes edges substitution,
((ui, uj)→ ε) and (ε→ (vk, vz)) denote edges deletion and insertion, respectively.
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2.2. GRAPH MATCHING PROBLEMS

An edit path (λ) is a set of edit operations oi where i = 1 . . . k and k is the number of edit
operations. This set is referred to as Edit Path and it is de�ned in De�nition 3.

De�nition 3. Edit Path
A set λ = {o1, · · · , ok} of k edit operations oi that transform G1 completely into G2 is called a
(complete) edit path.

Let c(oi) be the cost function measuring the strength of an edit operation oi. Let Γ(G1, G2) be
the set of all possible edit paths (λ). The graph edit distance problem is de�ned by Problem 5.

Problem 5. Graph Edit Distance (GED)
Let G1 = (V1,E1,µ1,ζ1) and G2 = (V2,E2,µ2,ζ2) be two graphs, the graph edit distance between G1

and G2 is de�ned as:

dmin(G1, G2) = min
λ∈Γ(G1,G2)

∑
oi∈λ

c(oi) (2.1)

The GED problem is a minimization problem and dmin is the best distance. In its general form,
the GED problem (Problem 5) is very versatile. The problem has to be re�ned to cope with the
constraints of a graph matching problem. First, let us de�ne constraints on edit operations (oi) in
De�nition 4.

De�nition 4. Edit operations constraints

1. Deleting a vertex implies deleting all its incident edges.

2. Inserting an edge is possible only if the two vertices already exist or have been inserted.

3. Inserting an edge must not create more than one edge between two vertices.

Second, let us de�ne constraints on edit paths (λ) in De�nition 5. This type of constraint
prevents the edit path to be composed of an in�nite number of edit operations.

De�nition 5. Edit path constraints

1. k is a �nite positive integer.

2. A vertex/edge can have at most one edit operation applied on it.

Finally, let us de�ne the topology constrain in De�nition 6. This type of constraints avoids
edges to be matched without respect to their adjacent vertices.

De�nition 6. Topology constraints

1. The topology constraint implies that matching (substituting) two edges (i, j) ∈ E1 and (k, l) ∈
E2 is valid if and only if their incident vertices are matched ((i→ k) and (j → l)).

An important property of the GED can be inferred from the topology constraint de�ned in
De�nition 6.

Property 1. The edges matching are driven by the vertices matching

1. Assuming that constraint de�ned in De�nition 6 is satis�ed then three cases can appear :
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(a) If there is an edge eij = (ui, uj) ∈ E1 and an edge ekl = (vk, vl) ∈ E2, edges substitution
between (ui, uj) and (vk, vl) is performed (i.e., (eij → ekl)).

(b) If there is an edge eij = (ui, uj) ∈ E1 and there is no edge between vk and vl then an
edge deletion of (ui, uj) is performed (i.e., (eij → ε)).

(c) If there is no edge between ui and uj and there is an edge between and an edge ekl =
e(vk, vl) ∈ E2 then an edge insertion of e(vk, vl) is performed (i.e., (ε→ ekl)).

The GED problem has been proved to be NP-hard by [Zeng et al., 2009]. So, unless P = NP,
solving the problem to optimality cannot be done in polynomial time of the size of the input graphs.
Regarding the complexity proof, [Zeng et al., 2009] have used a reduction of an induced subgraph
isomorphism instance (see Problem 2.2.1.1 to a GED instance.

2.2.3.1 On the relation between GED and error-tolerant graph matching

The GED problem de�ned in Problem 5 and re�ned with constraints de�ned in De�nitions 4, 5
and 6 is equivalent to the error-correcting graph matching problem de�ned in Problem 4 (ECGM).
In this manuscript, the GED problem will always refer to the constrained version of the original
problem.

2.2.3.2 Cost function : de�nition and discussion

Cost function c(.) can be expressed thanks to the vertex/edge attributes. For instance, c(ui →
vk) = Sub(µ1(ui), µ2(vk)). The function Sub stands for substitution and explicitly exposes the
labelling functions µ. If attributes are numeric, an example of the substitution function is the L2
norm Sub = ||µ1(ui) − µ2(vk)||2. Neuhaus and Bunke [Neuhaus and Bunke., 2007] have shown
that if each operation cost satis�es the criteria of a distance (positivity, uniqueness, symmetry,
triangular inequality) then the edit distance de�nes a metric between graphs and it can be inferred
that if GED(G1, G2) = 0⇔ G1 = G2.
Furthermore, it has been shown that standard concepts from graph theory, such as graph iso-
morphism, subgraph isomorphism, and maximum common subgraph, are special cases of error
correcting graph matching under particular cost functions [Bunke, 1997, 1999]. Thus, any al-
gorithm that implements error correcting graph matching can be used for the computation of
graph isomorphism, subgraph isomorphism, and maximum common subgraph if it is run under
an appropriate cost function. Conversely, for certain cost functions, algorithms for graph iso-
morphism, subgraph isomorphisms, or maximum common subgraph detection can be used to
implement error correcting graph matching.
Another aspect to consider, when integrating the GED into a �nal application, is that cost
functions must re�ect the user need, thus they can be learned to �t a speci�c goal. For instance,
the goal can be to reduce the gap between the ground-truth matchings and the optimal matchings.
Finally, it is worth to mentioned that graph matching di�culty can be reduced when the cost
functions allow to easily di�erentiate between vertices and edges of the two graphs.

Now that we have de�ned graph matching problems, we can highlight how they are used in
structural pattern recognition problems.

2.3 Structural pattern recognition problems

2.3.1 Graph-based search

De�nition 7. Graph-based search
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An unknown graph that models an object must be compared with all graphs in a database of known
objects in order to �nd similarities. [Zeng et al., 2009] classify graph searches into three categories,
for a database of graphs D = {g1, g2, · · · , gn} and a query graph q:

• Full search: �nd all graphs gi in D that are the same as q.

• Subgraph search: �nd all graphs gi in D that contain or are contained by q.

• Similarity search: �nd all graphs gi in D that are similar to q, based on some de�ned similarity
measure.

2.3.2 Graph classi�cation

De�nition 8. Graph Classi�cation
Let D be the set of graphs and let T be the set of classes. Given a graph training set TrS =
{(Gj , tj)}Mj=1, where Gj ∈ D is a graph and tj ∈ T is the class of the graph. The classi�er induces
from TrS a mapping function f : G → T which assigns a class to an unknown graph from the test
set TeS and G is the graph space.

Graph classi�ers can be categorized into two categories whether the classi�er operates in a
graph space or in a vector space.

2.3.2.1 Vector space:

2.3.2.1.1 Explicit graph embedding (φ : G → Rn) A �rst one consists in transforming the
initial structural problem in a common statistical pattern recognition one by describing the graphs
with vectors in an Euclidean space. Such an approach can be achieved thanks to hand-crafted
features extracted from the graphs [Luqman et al., 2013] or thanks to end-to-end learning methods
as Graph Neural Networks [Nowak et al., 2017]. In such a context, some features (vertex degree,
labels occurrence histograms,etc.) are extracted from the graph. Hence, the graph is projected in
a Euclidean space and classical machine learning algorithms can be applied.

2.3.2.1.2 Implicit graph embedding (k :< G,G >→ R) Another family of approaches also
consists in using kernel-based machine learning algorithms. In the kernel approaches, an explicit
data representation is of secondary interest. That is, rather than de�ning individual representations
for each pattern or object, the data at hand is represented by pairwise comparisons only. The graphs
are not explicitly but implicitly projected in a Euclidean space without de�ning the function φ.
More formally, under given conditions, a similarity function can be replaced by a graph kernel
function k :< G,G >→ R. Most kernel methods can only process kernel values which are established
by symmetric and positive de�nite kernel functions. Many kernels have been proposed in the
literature [Gaüzère et al., 2012]. In most cases, the graph is embedded in a feature space composed
of label sequences through a graph traversal. According to this traversal, the kernel value is then
computed by measuring similarity between label sequences. In [Neuhaus and Bunke., 2007], graph
kernels based on graph matching have been proposed to improve their expressiveness.

2.3.2.1.3 Dissimilarity space embedding Another possible approach also consists in pro-
jecting the graphs in a Euclidean space of a given dimension but using a distance matrix between
each pairs of graphs. Each line of the distance matrix is a feature vector of a given graph. In such
cases, a dissimilarity measure between graphs has to be designed [Bunke and Riesen, 2008]. Ker-
nels can be derived from the distance matrix. It is the case for multidimensional scaling methods
proposed in [Roth et al., 2003].
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2.3.2.2 Graph space (d : G × G → R):

This paradigm is characterized by the fact that classi�cation and learning problems are directly
faced in the graph space, i.e. working on the graphs describing the objects at hand. The objects
are classi�ed by comparing the corresponding graphs, using suited matching algorithms. This
paradigm operates directly on the graph space and can thus capture more structural distortions.
Any distance-based classi�er can be involved in the classi�cation task.

2.3.2.3 Discussion

The recent rise of graph kernels and graph embedding methods might lead to state that the
traditional gap between statistical and structural pattern recognition has been bridged. Yet,
graph embedding crucially depends on similarity or dissimilarity computation on graphs. That is
the topic of (e�cient) graph comparison is still of high importance. We have de�ned a classi�er
as a high level function f : G → T . Behind this black box view is hidden many general problems
such as :

• Data reduction: Graph prototypes/clustering/indexing/partitioning [Musmanno and
Ribeiro, 2016]

• Graph distance [Riesen, 2015]

The objectives of data reduction are (i) to overcome the well-known disadvantages of the large
storage requirements, the large computational e�ort and the sensitivity to noisy examples and (ii)
to keep classi�cation performance as high as possible. The choice or the learning of the distance
function is an important element in classi�cation. The goal is to design fast and discriminant
distance functions.

2.3.3 Graph analytic problems

Graph-based search and graph classi�cation problems assume that a data set containing many
graphs is available. On the other hand, graph analytic problems focus mainly on a single graph.
Accordingly, graph analytic problems do not belong to structural pattern recognition
problems.

Graph analytic tasks can be broadly abstracted into the following four categories: (a) vertex
classi�cation, (b) link prediction, (c) vertex clustering, and (d) visualization. A graph can be a
friendship network, a Protein-Protein interaction network, a 3D mesh, or a Telecom network for
instance. Vertex classi�cation aims at determining the label of vertices based on other attributed
vertices and the topology of the graph. Link prediction refers to the task of predicting missing links
or links that are likely to occur in the future. Clustering is used to �nd subsets of similar vertices
and group them together; �nally, visualization helps in providing insights into the structure of the
graph. Reviews of graph embedding methods for graph analytic problems can be found in theses
two surveys [Goyal and Ferrara, 2017, Cai et al., 2017].

2.4 Applications and representations

2.4.1 Applications

Graph-based search (De�nition 7) or classi�cation (De�nition 8) problems appear in many appli-
cation �elds and a taxonomy has been proposed by [Stau�er et al., 2017, Conte et al., 2004]. They
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belong to many research �elds such as Pattern Recognition, Computer Vision, Chem-informatics,
Bio-informatics and Document analysis. The following examples are not exhaustive but they pro-
vide an interesting picture of the wide range of applications based on structural pattern recognition.

2.4.1.1 Image analysis.

Graphs are used in images to represent objects and patterns. They are �exible, so they can
represent objects in both 2D- or 3D-images. Vertices model the main components that form the
object, and each vertex has a list of attributes that characterizes the component, e.g. (x; y) -
coordinates, color intensities around, special features, etc. Then, the edges are used to link the
components, with additional attributes to carry information describing those links. Examples of
graphs modeling objects, e.g. houses, cars, bikes and even human face features [Zhang et al.,
2016b, Mateus et al., 2008]. Graphs can also describe silhouettes or skeletons of objects extracted
from videos [Singh and Mohan, 2017, Jin Chang and Demiris, 2015]. Then, the graph matching
problems can be solved in order to compare objects and patterns and therefore to perform: object
detection and recognition, image segmentation [Yu and Wang, 2016]. Visual question answering
(VQA) is another interesting problem in image analysis where a question is formulated in natural
language about the content of an image. With structured representations of both scene contents
and questions, graph-based methods operate over graphs of the scene objects and over the question
words [Teney et al., 2017].

2.4.1.2 Handwritten document analysis.

Graphs are constructed over segmented words in images, where vertices represent the keypoints
or strokes, and the edges link pairs of keypoints or strokes. A graph models the documents words
and their relations. Then, graph matching can be applied between a query graph and documents
graphs to �nd correspondences. Such an application is called keyword spotting and there exists
many works in the literature that use graph matching [Stau�er et al., 2018].

2.4.1.3 Biometrics.

Retina vessels, �ngerprints or signatures are considered as biometrical characteristics. There are
many applications with the goal of identifying an individual based on the �ngerprint or signature.
So, graphs can be used to model a �ngerprint, where vertices represents segmented core areas, and
edges relates adjacent areas. Graphs can then be classi�ed [Choi and Kim, 2010].

2.4.1.4 Bio- and Chem-informatics.

In the �eld of Bio-informatics, graphs are used to model DNA, protein sequences and enzymes.
This enables analyzing biological structures. A very important example is the ability of detecting
cancerous tissues. Tissues are modeled by graphs and then a classi�er is built to classify normal,
low-grade and high-grade cancerous tissues [Ozdemir and Gunduz-Demir, 2013]. In chemistry �eld
and precisely when considering chemical molecules, graphs form a natural representation of the
atom-bond structure of molecules. Each vertex of the graph then represents an atom, while an edge
represents a molecular bond [Raymond and Willett, 2002]. By using graph matching, it provides
a way to compare molecules between each other and to detect similar activities and properties,
which answers a major question in this �eld.
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2.4.1.5 Malware detection.

The e�ciency of using graphs to construct relational models for malicious executables of the same
family, makes it suitable to employ graph matching in the task of malware detection in Anti-viruses.
Graphs are called call graphs and represent a malware sample with certain variations. Then, based
on graph matching solutions after comparing the graphs, certain properties can be extracted based
on the similarities found [Bourquin et al., 2013, Ahmed et al., 2012]. In those examples, the graph
matching problem is not the main problem, but it is used for graphs comparison and then builds
up on it to achieve the objectives of detecting malicious executables.

2.4.2 Graph-based representations

While describing the applications, we have also depicted some graph-based modelling, we now
propose to organize them. Graph-based representations can be split into two parts whether raw
data is structured or not.

2.4.2.1 Native representations

A native representation appears when data are naturally or explicitly expressed into graphs. Struc-
tured or relational data fall in this category. Prominent examples of classes of patterns, which can
be formally represented in a more suitable and natural way by means of graphs rather than with
feature vectors, are chemical compounds, digital-born documents, and networks.

2.4.2.2 Graph constructed from non-relational data

Built-based representations are graph-based representation built on top of unstructured data such
as Euclidean data (Audio signals, images). At the low level, such data can be represented by a
grid. For example, an image can be represented by a 2D-grid where each pixel is a vertex and each
vertex is connected to its 4 or 8 neighbours. In image analysis, graphs can be built from higher
levels such as skeletons, silhouettes, irregular partitions of regions.
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2.4.3 Why pattern recognition based on graphs ?

In this section, we give an insight about the main motivations to use graph-based pattern recog-
nition methods.

1. Detect and recognize at the same time. Object detection is one of the problems of image
analysis. This type of problem is more di�cult than the recognition of isolated objects as
it is necessary to simultaneously segment and recognize the object. Subgraph maching can
be helpful to solve at once the detection and recognition problems. Subgraph isomorhpism
can be employed to spot where a subgraph pattern is located within a larger graph.

2. Graphs by nature. Relational data or structured data are designed as graphs. Non-vectorial
methods can guarantee to preserve the topological information.

3. Combining sources of data. A graph can help at combining di�erent sources of information.
For instance, an image can be merged with a knowledge graph to bring semantic to an
image annotation procedure. Reversely, a graph of an image can be mixed with a question
graph to solve the visual question answering problem [Teney et al., 2017, Lee et al., 2018,
Marino et al., 2017].

4. Beyond Euclidean data. Considering Euclidean data like images, graphs can be used to
develop non-local approaches and to go beyond the standard 8x8 connectivity. While a
pixel is linked to its 8 neighbours in a image, in a graph it is possible to be non-local and
to extend the neighborhood de�nition. A pixel can be connected to every pixel in the image
and each relation can be enriched by a set of features.

5. Matching matter. Graphs are crucial when the matching between components of the two
graphs must be analysis to interpreter the results. For instance, when parts of an object
must be tracked to understand the object behaviour.

6. Relation matter. Finally, graphs are essential when relationship between components is
fundamental and relationship brings sense to the data. The data are characterized by
complex structural relationships rather than the statistical distribution of a �xed set of
features.

Graph-based representations are of pivotal importance in computer vision, pattern recognition
and machine learning. Graph representations also pose unique problems in machine learning,
since they are non-vectorial in nature and require new methodology to be developed. For these
reasons the design of e�cient graph-based algorithms for pattern recognition will certainly be
one of the major challenges over the next decades.

2.5 Surveys and organization

The use of graphs in Pattern Recognition (PR) dates back to the early 70s [Fischler and Elschlager,
1973, Ullmann, 1976]; Good surveys of graph based techniques have been published up to now on
di�erent areas: graph-based representations, graph matching, graph edit distance, graph embed-
ding and graph kernels [Hancock and Wilson, 2012, Gao et al., 2010, Bunke and Riesen, 2012,
Wilson and Zhu, 2008, Conte et al., 2004, Riesen and Bunke, 2010b, Riesen, 2015, Vento, 2015]
provide an extensive overview of the literature over the last 40 years by introducing a detailed
categorization of graph-based methods.

In this dissertation, we propose to organize the literature on graph matching and graph-based
search in two parts. The �rst part (Section 3) is dedicated to learning-free proposals where methods
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concentrate their e�ort on the solution of optimization problems. In the second part (Section
4), a learning phase is required by the approaches and machine learning techniques are of �rst
importance.
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This section is split into two parts graph matching (Section 3.1) and graph classi�cation (Section
3.2). Each part is then broken down in three steps. First, the state of the art is summed up. Second,
deadlocks and open problems are expressed. Finally, contributions are presented. References about
our work are given at the end of each section 3.1 and 3.2 through a quick summary. Note that
the state of the arts do not include our work. This is intentionally done to highlight how our
contributions help to lift the deadlocks.

3.1 Graph matching

In this section, we focus on error-tolerant graph matching methods. Such methods are more
convenient for pattern recognition. In reality, graphs su�er from the presence of both noise and
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distortions due to the graph extraction process or due to the presence of noise in the raw data.
Thus, exact graph matching problems fail to answer whether two graphs G1 and G2 are similar or
not.

3.1.1 State of the art

The sate of the art is split into 4 parts. First, graph matching problems are linked to other
fundamental problems in Operational Research and Machine Learning. Second, graph matching
problems are expressed in terms of mathematical models. Third, the main solving methods are
explained. Finally, an analysis is given.

3.1.1.1 Related problems

The aim of this section is to show the equivalence between the graph matching problems and other
important problems from the communities of Operational Research and Machine Learning.

3.1.1.1.1 Quadratic Assignment Problem (QAP) The QAP was introduced by Koopmans
and Beckmann in 1955 [Koopmans and Beckmann, 1955] and extended by [Lawler, 1963] as a
mathematical problem for the location of a set of indivisible economical activities. Consider the
problem of allocating a set of facilities to a set of locations, with the cost being a function of the
distance and �ow between the facilities, plus costs associated with a facility being placed at a
certain location. The objective is to assign each facility to a location such that the total cost is
minimized. QAP is a very important problem and covers a large range of applications: Bandwith
minimization of a graph, Economics, Molecular conformations in chemistry, Scheduling, Supply
Chains, Manufacturing lines, ...

The formal de�nition of the quadratic assignment problem is as follows:

Problem 6. Quadratic Assignment Problem (QAP)
Speci�cally, we are given three N ×N input matrices with real elements F , C and B, where Fij is
the �ow between the facility i and facility j, Ckl is the distance between the location k and location
l, and Bik is the cost of placing facility i at location k. The Koopmans-Beckmann version of the
QAP can be formulated as follows: Let N be the number of facilities and locations and denote by
pe the set pe = {1, 2, ..., N}.

min
φ∈Sn

N∑
i=1

N∑
j=1

Fij · Cφ(i)φ(j) +

N∑
i=1

Biφ(i)

where Sn is the set of all permutations and φ is a function φ : pe→ pe.

The QAP is known to be NP-hard [Sahni and Gonzalez, 1976].

To re�ect the error-tolerant graph matching problem, the matrices F, C and B must be rede�ned
along with the role of the function φ. φ(i) represents an assignment of i with k, ∀i ∈ V1 and ∀k ∈ V2.
Biφ(i) must denote the vertex matching cost between vertices i and k. Similarly, φ(i)φ(j) is the
matching of an edge (i, j) with an edge (k, l), ∀(i, j) ∈ V1 × V1 and ∀(k, l) ∈ V2 × V2. By setting
Di,k,j,l = fijCkl, Diφ(i),jφ(j) is the cost to match (i, j) with (k, l).

Problem 7. Error-tolerant graph matching as a QAP (QAPGM)

min
φ∈Sn

N∑
i=1

N∑
j=1

Diφ(i),jφ(j) +

N∑
i=1

Biφ(i)

where Sn is the set of all permutations and φ is a function φ : pe→ pe.
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Figure 3.1: An example of graph matching modelled as a QAP.

Under this formalism, the error-correcting graph matching problem (Problem 4) and the QAP
(Problem 7) are equivalent (see [Riesen, 2015] for more details).

An example is depicted in Figure 3.1.

Now let us take a look to another interesting problem called Maximum a posteriori(MAP)-
inference problem for Conditional Random Field (CRF) and see how it is related to graph matching.

3.1.1.1.2 Maximum a posteriori (MAP)-inference problem for Conditional Random
Field (CRF) Finding the most likely con�guration of a Conditional Random Field (CRF), also
called MAP-inference or energy minimization problem for graphical models, is of big importance
in computer vision, bioinformatics, communication theory, statistical physics, combinatorial opti-
mization, signal processing, information retrieval and statistical machine learning.

De�nition 9. Conditional random �elds (CRF)
Let G = (V,E) be an undirected graph. For each node i ∈ V , a variable yi is associated to i. yi
takes its values in a �nite set of labels Yi ⊂ {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}. Hence, each
label corresponds to a unit vector. Notation, YV denotes the Cartesian product Πi∈V Yi. A vector
y ∈ YV with coordinates (yi, · · · , yj) ∀i, j ∈ V is called a labeling. Likewise, Yij = Yi×Yj indicates
the label set of an edge (i, j). Functions θi : Yi → R ∀i ∈ V , and θij : Yij → R ∀(i, j) ∈ E,
are the unary and pairwise potentials associated with the nodes and edges of G which de�ne a local
quality of labels and label pairs.

Problem 8. MAP-inference problem (MAPCRF)
min
x∈YV

∑
i∈V θi(yi) +

∑
ij∈E θij(yij)

The MAP-inference problem is the problem of �nding the minimum cost labeling. The MAP-
inference problem is known to be NP-hard [La�erty et al., 2001]. To �t to the error-correcting
graph matching problem (Problem ECGM), V must be equal to V1. The label yi must be equal to
a possible matching between i ∈ V1 and k ∈ V2. This matching can be encoded by a one-hot vector
to ensure that each label corresponds to a unit vector. For instance, yi = (0, 0, 1, 0) represents the
matching of node i with the third node in V2. By extension, Yi represents for node i all the possible
matching: (i→ k)∀k ∈ V2. YV1 denotes the Cartesian product Πi∈V1Yi. The Problem MAPCRF
must be re�ned because in the graph matching problem no label can be taken twice.

Let a common universe L of labels be given such that Yi = L ∀i ∈ V1. We require each label
la ∈ L to be taken only once, i.e. |{i ∈ V1|yi = la}| = 1. In other words, the problem is to �nd a
mapping V1 → L. This problem can be stated as
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Figure 3.2: An example of graph matching modelled as a CRF.

Problem 9. Error-tolerant graph matching as a MAP-inference problem (MAPCRFGM)

min
y∈YV1

∑
i∈V1

θi(yi) +
∑
ij∈E1

θij(yij)

subject to yi 6= yj ∀i 6= j

This problem transformation has been slightly discussed in [Swoboda et al., 2017] but here we
have presented a more concrete relation between both problems.

An example is depicted in Figure 3.2.

3.1.1.1.3 Summary of the related problems

In general, the error-tolerant graph matching problems are equivalent to the QAP without any
modi�cation. The error-tolerant graph matching problems are equivalent to a modi�ed version
of the MAP-inference problem. The error-tolerant graph matching problems are equivalent to
a constrained version of the GED problem. The relation between problems are pictured out in
Figure 3.3. Positioning the graph matching problems with respect to other fundamental problems
is important because QAP or MAP-inference problems are well studied. QAP or MAP-inference
solvers could be useful to solve the graph matching problems.

3.1.1.2 Related models

In Section 2.2, mathematical descriptions of graph matching problems were given.

From these descriptions, mathematical models can be expressed. A mathematical model is
composed of variables, constraints and an objective functions. From this rigorous formulation, no
ambiguity is left behind but a single problem can be expressed by many di�erent models. An
Integer Quadratic Programm (IQP) is a model with a quadratic objective function of the variables
and linear constraints of the variables.

A graph matching solution is de�ned as a subset of possible correspondences y ⊂ V1 × V2,
which are represented by a binary assignment matrix Y ∈ {0, 1}N×N , where N denotes the size of
V1 and V2, respectively. If ui ∈ V1 matches with vk ∈ V2, then Yi,k = 1, or Yi,k = 0 otherwise.
We denote by y ∈ {0, 1}N2

, a column-wise vectorized replica of Y . With this notation, the error-
correcting graph matching problem (Problem ECGM) can be expressed as the problem of �nding
the assignment vector y∗ that minimizes a score function d(G1, G2, y) as follows:
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Figure 3.3: A relation between the Graph Edit Distance (GED), Quadratic Assignment (QAP),
Maximum-a posteriori (MAP) inference and error-tolerant graph matching (ETSGM and ECGM)
problems.

Model 1. Error-correcting graph matching model : Integer Quadratic Program (GMIQP)

y∗ =argmin
y

d(G1, G2, y) (3.1a)

subject to y ∈ {0, 1}N ·N (3.1b)
N∑
i=1

yik = 1 ∀k ∈ [1, · · · , N ] (3.1c)

N∑
k=1

yik = 1 ∀i ∈ [1, · · · , N ] (3.1d)

Where G1 = (V1, E1, µ1, ζ1) and G2 = (V2, E2, µ2, ζ2) are two graphs. N = |V1| = |V2|.
Constraints 3.1c and 3.1d indicate that each vertex of a graph must be matched with only one vertex
of the other graph. The function d(G1, G2, y) measures the dissimilarity of graph attributes, and
is typically decomposed into a �rst order dissimilarity function c(ui → vk) for a node pair ui ∈ V1

and vk ∈ V2, and a second-order similarity function c(eij → ekl) for an edge pair eij ∈ V1 × V1

and ekl ∈ V2 × V2. Dissimilarity functions are usually represented by a symmetric dissimilarity
matrix D ∈ RN2×N2

with N = |V1| = |V2|. A non-diagonal element Dik,jl = c(eij → ekl) contains
the edge dissimilarity and a diagonal term Dik,ik = c(ui → vk) represents the vertex dissimilarity.
Thus, the objective function of graph matching is de�ned as:

d(G1, G2, y) =

N∑
i=1

N∑
k=1

c(ui → uk) · yik +

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

c(eij → ekl) · yik · yjl

=

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

Dik,jl · yik · yjl

=yTDy

(3.2)

In essence, the score accumulates all the dissimilarity values that are relevant to the assignment.
Remember that a vertex can be matched to only one other vertex so Dik,jl = cst a large constant
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value when i = j and k 6= l. In addition, matching two not existing edges in E1 and E2 should not
lead to any cost so if (i, j) 6∈ E1 and (k, l) 6∈ E2 then Dik,jl = 0. More details about the model can
be found in [Bougleux et al., 2017a].

Model 1(GMIQP) models the error-correcting graph matching problem. Other quadratic ob-
jective functions does exist in the literature [Lyzinski et al., 2016]:

tr(A1Y
TA2Y ) (3.3)

and
‖A1 − Y TA2Y ‖2 = ‖A1Y − Y A2‖2 (3.4)

where tr(.) is the trace of a matrix. A1, A2 ∈ RN×N are the weighted adjacency matrices of
the graphs and Y ∈ {0, 1}N×N is a permutation matrix. In equation 3.4, the problem consists
in determining the permutation matrix minimizing the Frobenius norm of the di�erence between
weighted adjacency matrix of the input graph and the permuted adjacency matrix of the target
one.

Equations 3.4 and 3.3 only rely on weighted adjacency matrices and cannot deal with richly
attributed graphs.

Di�erent IQP models exist in the literature to model di�erent problems such as subgraph
matching (Problem 3 (ETSGM)) and maximum common sugraph (Problem 2 (MCS)) [Cho et al.,
2014]. In particular, theses models de�ne K ∈ R|V1|.|V2|×|V1|.|V2|, it is called an a�nity matrix or
compatibility matrix. K is similar to D but stores similarities instead of costs or dissimilarities. In
this representation, Kij,kl = 0 means an impossible matching or a very dissimilar matching. The
problem becomes a maximization problem as follows :

Model 2. Error-tolerant subgraph matching model : Integer Quadratic Program (SGMIQP)

y∗ =argmax
y

yTKy (3.5a)

subject to y ∈ {0, 1}|V1|·|V2| (3.5b)
|V1|∑
i=1

yik ≤ 1 ∀k ∈ [1, · · · , |V2|] (3.5c)

|V2|∑
k=1

yik ≤ 1 ∀i ∈ [1, · · · , |V1|] (3.5d)

A part from IQP models, very di�erent models of the error-tolerant graph matching problem can
be observed in the literature. An Integer Linear Program (ILP) formulation of GED was proposed
in [Justice and Hero, 2006]. An ILP is a mathematical model where the objective function is a
linear combination of the variables. The objective function is constrained by linear combinations
of the variables.

Model 3. Error-correcting graph matching model : Integer Linear Program (ECGMILP)

d(G1, G2) = min
Y,S,T∈{0,1}NXN

N∑
i=1

N∑
k=1

{c(ui → vk)Yi,k +
K
2

(Si,k + Ti,k)} (3.6a)

29



3.1. GRAPH MATCHING

s.t.

N∑
j=1

A1i,j · Yj,k −
N∑
l=1

A2l,k · Yi,l + Si,k − Ti,k = 0 ∀i, k ∈ [1, 2, · · · , N ] (3.6b)

N∑
i=1

Yi,m =

N∑
k=1

Ym,k = 1 ∀m ∈ [1, 2, · · · , N ] (3.6c)

where Y is a permutation matrix representing all possible permutations of the vertices. Two
matrices, S and T , are introduced (inspired by [Almohamad and Du�uaa, 1993]) to manage edges
matching. A{n} ∈ {0, 1}NXN is the modi�ed adjacency matrix corresponding to Gn (see [Justice
and Hero, 2006] for modi�cations). K is a constant cost for edges insertions and deletions. Two
types of constraints are de�ned. Constraint 3.6b makes sure that when matching two couples of
vertices, the edges between them have to be matched as well. Constraint 3.6c states that one vertex
of G1 (i.e., vertex) must be permuted with exactly one vertex of G2.

This model has a limitation. It does not consider the attributes on edges, so edge substitution
cost is 0 while deletion and insertion have a K �xed cost.

This is only one model to give some intuition but more ILP models can be found [Bodic et al.,
2012].

QAP and MAP-inference problems hold their own IQP and ILP models. These models could be
useful to model the error-tolerant graph matching problems too.

3.1.1.3 Related methods

Methods can be divided into two categories: exact methods and heuristic methods. An exact
method computes an optimal solution of a given problem. On the opposite, heuristic methods
compute sub-optimal solutions.

3.1.1.3.1 Exact methods For the family of error-tolerant graph matching problems, the run-
time complexity of exact methods is not polynomial but exponential with respect to the number
of vertices of the graphs.

3.1.1.3.1.1 Tree-based methods Pioneer approaches of graph matching algorithms are
based on tree search [Tsai et al., 1979, Shapiro and Haralick, 1981]. In tree-based methods proceed
to an implicit enumeration of all possible solutions without explicitly evaluating all of them by
means of an ordered tree. It is constructed dynamically at run time by iteratively creating successor
tree nodes. A tree node p here corresponds to a partial matching. At each iteration, the choice of
the next tree node to be expanded is important. There are many strategies such that:

1. Depth-�rst: The most promising tree node that is a child of p is chosen.

2. Breadth-�rst: The most promising tree node that is at the same level of p is chosen.

3. Best-�rst: The most promising tree node is chosen without constraints (at the same level or
not).

These search strategies require having a function g(p)+h(p) to compute heuristically an estimation
of the cost of exploring a given node further. g(p) represents the cost of the partial matching
accumulated so far whereas h(p) denotes the estimated cost from p to a leaf node representing
a complete solution. The sum g(p) + h(p) is referred to as a lower bound lb(p) [Fischer et al.,
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2017]. Given that the estimation of the future costs h(p) is lower than, or equal to, the real costs,
an optimal matching from the root node to a leaf node is guaranteed to be found. Leaf nodes
correspond to feasible solutions. In the simplest scenario, the estimation of the lower bound h(p)
of the future costs for the current node p is set to zero for all p. In the other extreme h(p) would
return the exact future costs in exponential time complexity which is unreasonable, of course. A
good heuristic (h(p)) helps at pruning unfruitful branches. This family of methods belongs to the
Branch and Bound methods.

3.1.1.3.1.2 ILP and IQP solvers In general, ILP and IQP formulations are solved by
black-box solvers such as CPLEX, Gurobi, etc. These solvers are equipped with an arsenal of
e�ective algorithms. Theses algorithms can be applied at two di�erent moments: 1) a preprocessing
stage before searching for a solution and 2) during the solving. For instance, let us mention two
preprocessings that are embedded into the solvers. 1) Automatic cuts are sets of constraints added
to the model for a given instance. Cuts are expected to reduce the search space (Gomory cuts,
Disjunctive cuts, ... ). 2) Preprocessing consists in analyzing an instance and �gures out if some
variables can be �xed to 0 or 1 in the graph matching model (with respect to Driebek penalty for
instance). The aim is to reduce the number of variables to be fed to solving methods. A model
is usually solved by a tree-based methods as mentioned in the prior paragraph. However, these
algorithms di�er by taking advantage of the mathematical formulation. During the search, lower
bounds (lb(p) = g(p) + h(p)) are computed by continuous relaxation and problem decomposition
for instance. Upper bounds can be computed by fast local searches. Cuts can be added to the
model (Branch and Cut [Gomory, 1958]). Generally speaking, ILP are better solved than IQP by
black-box solvers.Graph matching problems modeled as an ILP and solved by a black box solver
can be found in [Justice and Hero, 2006] and [Bodic et al., 2012].

3.1.1.3.2 Heuristics methods Heuristics methods can be grouped into two families: problem
reformulation and heuristic optimization. In the problem reformulation paradigm, the GM problem
is reduced into a simpler problem. However, the optimal solution of the simpler problem is not the
optimal solution of the original problem. In the heuristic optimization category, the GM problem is
solved by an heuristic algorithms that only explore sub-parts of the solution space and thus leads to
�nd near-optimal solutions. Each heuristic method can also be divided between deterministic and
non-deterministic. The characteristic of deterministic strategies is that under the same conditions
the same solution is always obtained.

3.1.1.3.2.1 Tree-based methods Heuristic methods can be derived from exact tree-based
methods by truncating the search tree or over-estimating h(p). Truncation of the search tree can
be achieved by limiting the number of tree nodes (p) in memory (BeamSearch, PathLength, ... see
[Neuhaus et al., 2006]) or by limiting the solution time.

3.1.1.3.2.2 QAP-based method As presented in Model GMIQP, graph matching prob-
lems can be modeled by a QAP (Problem 7). A number of problems such as traveling salesman and
graph partitioning can be straightforwardly reduced to QAP. Due to its generality and �exibility,
many solver paradigms were put to the test for QAP. These include, but are not limited to, con-
vex relaxations based on Lagrangean decompositions [Karisch and Rendl, 1995], linear [Hahn and
Grant, 1998], convex quadratic [Anstreicher and Brixius, 2001] and semi-de�nite Zhao et al. [1998]
relaxations, which can be used either directly to obtain approximate solutions or just to provide
lower bounds. Graph matching modeled as a QAP has been favored in recent graph matching
researches. Many e�cient approximate algorithms have been applied to graph matching instances
: Graduated Assignment (GA)[Gold and Rangarajan, 1996], Spectral Matching (SM) [Leordeanu
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and Hebert, 2005], Spectral Matching with A�ne Constraint (SMAC) [Cour et al., 2007], Inte-
ger Projected Fixed Point (IPFP) [Leordeanu et al., 2009], Reweighted Random Walks Matching
(RRWM) [Cho et al., 2010b], and Max-Pooling Matching (MPM) [Cho et al., 2014].

3.1.1.3.2.3 Continuous relaxation As presented in Models GMIQP and GMILP, error-
tolerant graph matching problems are discrete optimization problems (y ∈ {0, 1}|V1|·|V2| ). A way
to simplify the problem is to relax discrete variables to obtain continuous variables (for instance
y ∈ [0, 1]

|V1|·|V2| ). The continuous version of an ILP model is referred as an Linear Program (LP).
A LP can be solved optimally in polynomial time by the interior points method [Potra and Wright,
2000] or e�ciently solved by the simplex method.

The graph matching problems can be equivalent to the NP-hard QAP. In general, the relaxed
QAP is also a NP-hard problem [Lyzinski et al., 2016]. If the dissimilarity matrix (D) is symmetric
and negative de�nite then the relaxed QAP is convex and can be solved in polynomial time [Burkard
et al., 1999, Lyzinski et al., 2016]. Nonetheless, the QAP relaxation can be e�ciently approximately
solved with Frank-Wolfe (F-W) methodology [Frank and Wolfe].

3.1.1.3.2.4 Franck-Wolfe based methods The Frank�Wolfe algorithm is an iterative
�rst-order optimization algorithm for constrained convex optimization. In each iteration, the
Frank�Wolfe algorithm considers a linear approximation of the objective function (given by the
�rst order Taylor expansion), and moves towards a minimizer of this linear function. It is similar
to the gradient descent algorithm but at each iteration, a linear program is solved. Franck-Wolfe
algorithm is a relaxed QAP solver and the methods Path-following [Zaslavskiy et al., 2009] and
Factorized Graph Matching (FGM) [Zhou and la Torre, 2016] rely on the expensive Franck-Wolfe
algorithms.

3.1.1.3.2.5 Linear Sum Assignment Problem (LSAP) The Model GMIQP can be
turned into a LSAP model, if Dik,jl = 0 when ik 6= jl ∀i, j ∈ V1 and k, l ∈ V2. The linear assign-
ment problem (LSAP) is exactly solvable in worst-case cubic time by the Hungarian method [Kuhn
and Yaw, 1955]. In such a scenario, Dik,ik can be enriched to take into account the local neigh-
bours of vertices i, k [Riesen and Bunke, 2009, Serratosa, 2015, Raveaux et al., 2010]. In [Riesen
and Bunke, 2009], the memory requirements and execution times of this method are respectively
proportional to (n1 + n2)2 and (n1 + n2)3 where n1 and n2 are the sizes of vertex sets (n1 = |V1|
and n2 = |V2|). In [Bougleux et al., 2017b], for the same results, the algorithm requires O(n1n2)
memory space and O(min(n1, n2)2 max(n1, n2)) execution times. In [Serratosa, 2015], a reduction
of the the execution times O(min(n1, n2)3) is achieved but at the price of an approximated solution
of the LSAP problem.

3.1.1.3.2.6 Integer Projected Fixed Point (IPFP) In [Leordeanu et al., 2009], the
Franck-Wolfe methodology is adapted to solve the discrete QAP. The method is named Inte-
ger Projected Fixed Point (IPFP). It is an algorithm initially proposed to �nd a solution to the
quadratic assignment problem in the context of graph matching and MAP- inference problems.
The algorithm tries to �nd a solution to both relaxed and discrete QAP. Given an initial continu-
ous or binary candidate solution y(0), it improves iteratively the corresponding quadratic objective
function (S(y) = yTKy). At each iteration, a LSAP problem needs to be solved.

3.1.1.3.2.7 Path following methods Graduated NonConvexity and Concativity Proce-
dure (GNCCP) [Liu and Qiao, 2014, Zaslavskiy et al., 2009, Bougleux et al., 2017a] is a path
following algorithm which aims at approximating the solution of a QAP by considering a convex-
concave relaxation through the modi�ed quadratic function: GNCCP�Graduated NonConvexity
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and Concavity Procedure.
Sξ(y) = (1− |ξ|)S(y) + ξ(yT y)

where ξ ∈ [−1, 1]. When ξ = 1, Sξ(y) = yT y is fully convex, and when ξ = −1, Sξ(y) = −yT y
is concave. GNCCP algorithm starts with ξ = −1 and it leads to the maximization of a concave
problem. Any initial solution can be chosen to solve the concave problem and it has no in�uence
on the result. So, unlike IPFP algorithm, no initial matching is required. Then GNCCP algorithm
smoothly interpolates concave and convex relaxations by iteratively increasing ξ from -1 to 1 with
step size α (equal to 0.1). For each iteration corresponding to a ξ, the maximization of Sξ is
achieved by IPFP.

3.1.1.3.2.8 Spectral graph matching Spectral methods consist of studying the similar-
ities between the spectra of the adjacency or Laplacian matrices of the graphs and using them
for matching. The matrix K ∈ R|V1|.|V2|×|V1|.|V2| (see Model SGMIQP) is used for this purpose.
This matrix has to be non-negative, symmetric. K can be seen as a weighted adjacency ma-
trix of the graph GX = G1 × G2 where Gx is obtained by direct graph product. Given two
attributed graphs G1 = (V1, E1, µ1, ζ1) and G2 = (V2, E2, µ2, ζ2), GX is the complete non-directed
graph that associates a vertex to each couple (i, k) ∈ V1 × V2. The problem is then recast to a
node clustering problem that is solved by spectral method using the principal eigenvector of K
and imposing the mapping constraints (one-to-one mapping) [Leordeanu and Hebert, 2005, Cour
et al., 2007]. Similarly, the Laplacian matrix ∇X of GX can be computed. The second-smallest
eigenvalue of ΩX is called Fiedler eigenvalue. The eigenvector associated with Fiedler eigenvalue
has been named the Fiedler vector. The Fiedler vector can be used to partition a graph. The
negative values are associated with the poorly connected cluster while the positive values are as-
sociated with the connected cluster. The signs of the values in the Fiedler vector can therefore be
used to partition this graph into two clusters. Eigenvectors are independent to the permutation of
vertices in the matrices ∇X and K .

3.1.1.3.2.9 MAP-inference-based methods MAP-inference problem (Problem 8) on a
discrete pairwise graphical model, also called Conditional Random Field (CRF) in the literature,
is related to error-tolerant graph matching (see Problem 9). It di�ers in an additional uniqueness
constraint: Each label can be taken only once. Also, the graph matching problem, after possibly
introducing many additional variables, can be stated as a MAP-inference problem in a standard
pairwise CRF. The uniqueness constraint prevents naive application of e�cient solvers for MAP-
inference to this problem. For this reason, many dedicated graph matching solvers were developed.
On the other hand, e�cient dual block-coordinate ascent (also known as message passing) algo-
rithms like TRW-S [Kolmogorov, 2006] count among the most e�cient solvers for MAP-inference in
conditional random �elds. The key idea is to use techniques from the MAP-inference community to
gain computational e�ciency. On the high level, the idea is to decompose the original problem into
several "easier" subproblems, for which an e�cient global minimum (or a good lower bound) can
be computed. Combining the lower bounds for individual subproblems will then provide a lower
bound for the original problem. The decomposition and the corresponding lower bound will depend
on a parameter vector. The goal is to �nd a vector that maximizes the bound. This approach
is well-known in combinatorial optimization; sometimes it is referred to as "dual decomposition".
The dual decomposition solver [Torresani et al., 2013] represents the problem as a combination of
MAP-inference for binary CRFs (labels are 0 or 1), or a combination of linear assignment problems
or a combination of small-sized QAPs. Lagrange multipliers connecting these subproblems are
updated with the sub-gradient method [Kappes et al., 2012, Zhang et al., 2016a, Wright, 2015].

3.1.1.3.2.10 Factorized graph matching Factorized graph matching is a framework for
interpreting and optimizing graph matching problems. The a�nity matrixK (see Model SGMIQP)
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Figure 3.4: Example of graph matching and related matrices [Zhou and la Torre, 2016]. (a) Two
synthetic graphs. (b) The correspondence matrix X. (c) The �rst graph's incidence matrix G1. (d)
The second graph's incidence matrix G2. (e) The node a�nity matrix Kp. (f) The edge a�nity
matrix Kq. (g) The global a�nity matrix K.

can be factorized as a Kronecker1 product of smaller matrices. There is a main bene�ts of using
this factorization in graph matching: There is no need to compute the costly (in space and time)
pair-wise a�nity matrix. K can be factorized because

• it is organized in |V2| × |V2| blocs of size |V1| × |V1|.

• Many Kij contain only zero-value elements and their positions are indexed by V2.

The full details of the factorization can be found in [Zhou and la Torre, 2016]. We propose to
explain the key elements of the decomposition as follows :

K ∝ Structure×Affinity

This principles is presented in Figure 3.4. Observe that this factorization decouples the graph
structure from the pairwise similarity. The Structure is expressed by products of incident matrices
of G1 and G2 while Affinity hold two sub-matrices to denote vertex-to-vertex similarities and
edge-to-edge similarities independently.

Such a decomposition avoids the computation of the cumbersome a�nity matrix (K) and hence
potentially allows for a more e�cient implementation, especially for large graphs. The factorization
leads to a new heuristic of the subgraph matching problem.

3.1.1.3.2.11 Evolutionary algorithms (non-deterministic) Evolutionary Algorithms
(EAs) are nature inspired heuristics, which are widely used to tackle many NP-hard problems.
The key idea behind EAs is mimicking the rule "survival-of-the-�ttest" on a population of di�erent
individuals. Two major EAs, genetic algorithms and ant colonies, have been applied to solve the
graph matching problems. In genetic algorithms [Riesen, 2015, Cross et al., 1997, Bengoetxea
et al., 2002], an individual is a set of integers pe as in Problem QAPGM. pe represents a solution.
The �tness function measures the suitability of an individual. To do so, the objective function

1If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is the mp × nq block
matrix
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of the graph matching problem is a usual choice. If pe is an unfeasible solution then a very high
cost is associated to pe. The group of individuals (also known as population) evolves towards
more promising areas of the search space while the algorithm carries on with the next generation.
New individuals result from inheriting parts of solutions from its parents. Iteratively, the new
population of individuals is generated by using crossover or mutation operators. For instance, a
mutation is applied to a single individual, a swap between two elements in pe is performed. It can
be interpreted as a change of the two matchings (i→ k) and (j → l) in (i→ l) and (j → k). These
principles have been applied to solve the GED problem in [Ibragimov et al., 2013, Riesen, 2015].

In [Sammoud et al., 2005], an Ant Colony Optimization (ACO) algorithm for solving graph
matching problems is proposed. The main idea is to model the problem as the search for a minimum
cost path in a graph�called construction graph� and to use arti�cial ants to search for good paths.
The construction graph GX is the complete non-directed graph that associates a vertex to each
couple (i, k) ∈ V1×V2. The behavior of arti�cial ants is inspired from real ants. They lay pheromone
trails on graph components and they choose their path with respect to probabilities that depend on
pheromone trails that have been previously laid. These pheromone trails progressively decrease by
evaporation. Intuitively, this indirect communication aims at giving information about the quality
of path components in order to attract ants, in the following iterations, towards the corresponding
areas of the search space. The amount of pheromone on an edge ((i, k), (j, l)) represents the
desirability of matching together i→ k and j → l.

3.1.1.3.2.12 Probabilistic framework (non-deterministic) In [Myers et al., 2000], a
Bayesian Graph Edit Distance is proposed. Myers et al shows how the Levenshtein distance can
be used to model the probability distribution for structural errors in graph matching problems.
Let f be a matching function f : V1 → V2. The posterior probability of f given G1 and G2 can be
written as follows:

pr(f |G1, G2) =
Pr(G1, G2|f)p(f)

Pr(G1, G2)

The local optimum of the a posteriori probability may be located by applying the following iterative
decision rule to update the matching con�guration:

f(u) = arg max
v∈V2

Pr(u, v|µ1(u), µ2(v))

Pr(u, v)
Pr(f) ∀u ∈ V1

In [Zass and Shashua, 2008], a probabilistic model is presented for soft graph matching between
complex feature sets. The key idea is transform the matrix K into a probability matrix for any
possible match between the edges and vertices between G1 and G2. K is modi�ed to become a dou-
bly stochastic matrix. To turn compatibility measures into probabilities, the Sinkhorn algorithm
[Sinkhorn and Knopp, 1967] for �nding the nearest doubly stochastic matrix is performed.

In [Cho et al., 2010a], the graph matching solution is obtained by simulating random walks in
GX = G1×G2 that is the direct graph product between G1 and G2. K can be seen as the weighted
adjacency matrix of GX taking into account a�nities of the graph component correspondences. K

is then row-normalized such that each row sums to one (K̃). Therefore, K̃ij
2
provides, from node

i to node j, the probability of walks of length 2 based on a�nities. By extending this principle
to the n-th power and searching for the most probable path, the algorithm achieves noise-robust
graph matching.

The last type of non-deterministic methods is called Estimation of distribution algorithms
(EDAs). EDAS combine two technical disciplines of soft computing methodologies: probabilistic
reasoning and evolutionary computing. In brief, EDA are population-based search algorithms
based on probabilistic modelling of promising solutions. In EDA the new population of individuals
is not generated by using crossover nor mutation operators. Instead, the new individuals are
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Figure 3.5: State of the art on graph matching.#papers is the number of papers according to the
criteria: model type and heuristic or exact methods. A paper is cited for each category to give an
example.

sampled starting from a probability distribution estimated from the database containing only
selected individuals from the previous generation. In [Bengoetxea et al., 2002, 2001], EDAs are
used to solve matching problems.

3.1.1.4 Summary

To conclude, the methods are tabulated in Table 3.1 according the following criteria:

• The graph matching problem to be addressed.

• The related problem (QAP or MAP-inference problems).

• The mathematical model used to represent the problem.

• Is the method an heuristic or an exact method ?

• Is the method deterministic or not ?

• The method family (tree-based, spectral, evolutionary, ...).

Figures 3.5 and 3.6 give a synthetic view of the literature. Figure 3.5 displays the number
of research papers according to the model they use and the method family. Figure 3.6 shows the
number of research papers by the solving method types. From these �gures two facts can be stated.
Exact methods are rarely study (only 1 paper) and few works have paid attention to ILP models.

From Table 3.1, we can observe that people working on Problem 3(ETSGM) have concentrated
their e�orts on the QAP and MAP-inference solvers (Frank-Wolfe like methodology, dual decompo-
sition methods, ...). Research community working on Problem 4(ECGM) have favored LSAP-based
and tree-based methods.

3.1.1.5 Discussions on the literature of graph matching

The discussion is organized in three main steps. First, a discussion is led about the Model GMIQP
and Model SGMIQP. Theses two models have split the researchers into two communities working
on di�erent methods. It is interesting to study the relation between the two models. Second,
performance evaluation metrics are put forward along with the data sets. Third, considerations
about e�ciency and e�ectiveness of the methods are highlighted.
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Methods GM Problem Higher Problem Model Exact or
heuristic

Determinist Method Family

IPFP
[Leordeanu
et al., 2009]

ETSGM QAP IQP heuristic yes Frank-Wolfe like

Factorized
Graph Match-
ing [Zhou and
la Torre, 2016]

ETSGM QAP IQP heuristic yes Iterative +
Frank-Wolfe
like

PATH [Za-
slavskiy et al.,
2009]

ETSGM QAP IQP heuristic yes Iterative +
Frank-Wolfe
like

GNCCP [Liu
and Qiao, 2014]

ETSGM QAP IQP heuristic yes Iterative +
Frank-Wolfe
like

SM[Leordeanu
and Hebert,
2005]

ETSGM QAP IQP heuristic yes Spectral

SMAC [Cour
et al., 2007]

ETSGM QAP IQP heuristic yes Spectral

Probabilistic
[Zass and
Shashua, 2008]

ETSGM QAP IQP heuristic no Sinkhorn algo-
rithm

DD [Torresani
et al., 2013]

ETSGM MAP-inference IQP heuristic yes Dual decompo-
sition

Hungarian-BP
[Zhang et al.,
2016a]

ETSGM MAP-inference IQP heuristic yes Dual decompo-
sition

DDLagrange
[Kappes et al.,
2012]

ETSGM MAP-inference IQP heuristic yes Dual decompo-
sition

A* [Riesen
et al., 2007]

ECGM exact yes Tree-based

BP [Riesen and
Bunke, 2009]

ECGM heuristic yes Hunagrian like

FBP [Serratosa,
2015]

ECGM heuristic yes Hunagrian like

LSAPE
[Bougleux
et al., 2017b]

ECGM heuristic yes Hunagrian like

GeneticSearch
[Riesen, 2015]

ECGM heuristic no Genetic algo-
rithm

GEDEVO
[Ibragimov
et al., 2013]

ECGM heuristic no Genetic algo-
rithm

LocalSearch
[Riesen, 2015]

ECGM heuristic yes Beam Local
Search

BS [Neuhaus
and Bunke.,
2007]

ECGM heuristic yes Beam Search

Bayesian GED
[Myers et al.,
2000]

ECGM heuristic no Expectation
Maximization

mIPFP
[Bougleux
et al., 2017a]

ECGM QAP IQP heuristic yes Frank-Wolfe like

mGNCCP
[Bougleux et al.,
2017a]

ECGM QAP IQP heuristic yes Iterative +
Frank-Wolfe
like

ILP [Justice and
Hero, 2006]

ECGM QAP ILP exact and
heuristic

yes black Box solver

AntAlgo [Sam-
moud et al.,
2005]

Multi-valent heuristic no Ant Colonny

Table 3.1: Graph matching literature
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Figure 3.6: State of the art on graph matching.#papers is the number of papers according to the
type methods. A paper is cited for each category to give an example.

3.1.1.5.1 Model GMIQPvs Model SGMIQP Here we would like to discuss the relation
between Model GMIQP and Model SGMIQP. Model GMIQP models Problem ECGM while Model
SGMIQP models Problem ETSGM. First to make a fair comparison, let us assume that the cost
function (c(·)) is related to the a�nity function (s(·)) by a large constant cst as follows: s = cst−c.
Without loss of generality, let us write down the �owing hypothesis : c(.) ≥ 0 and s(.) ≥ 0. The
costs to delete or to insert vertices or edges are explicitly introduced in Model GMIQP. In Model
SGMIQP, deletion costs are implicitly set to 0.

Proposition 1. Solving Model GMIQP and Model SGMIQP is equivalent in terms of solution for
any arbitrary cost function.

Sketch of proof. If we can prove that Proposition 1 is wrong for one example then we can admit
that Proposition 1 is wrong in the general case. Let G1 be a graph with a single vertex (i) and
no edges. Let G2 be a graph with a two vertices (k and l) and no edges as depicted in Figure 3.7.
Let us de�ne the costs as follows : c(i → k) = 0, c(i → l) = 10, c(i → ε) = 10, c(ε → k) = 10,
c(ε→ l) = 30. Since inserting k is cheaper than inserting l, the optimal solution of Model GMIQP
is i → l and ε → k with a total cost of 20. Let cst = 100 then the compatibilities are as follows:
s(i → ε) = 100 − 10, s(ε → k) = 100 − 10, s(ε → l) = 100 − 30, s(i → k) = 100 − 0 and
s(i → l) = 100 − 10. The optimal solution of Model SGMIQP is i → k. The two solutions are
di�erent so Proposition 1 is wrong. In this case, deletion costs are discriminative and so they are
important to perform the matching.

Proposition 2. Solving Model GMIQP and Model SGMIQP is equivalent in terms of solution if
deletion and insertion costs are identical for any vertex or edge and higher than any substitution
cost.

Sketch of proof. This is the speci�c case of the MCS problem (Problem 2) as stated in [Bunke,
1997, 1999, Brun et al., 2012]. Both models can express the MCS problem. Since deletion and
insertion costs are identical and higher than any substitution, an explicit or implicit de�nition of
deletion and insertion costs are equivalent. Proposition 2 is right. An example is presented in
Figure 3.8.

3.1.1.5.2 Performance evaluation metric Performance evaluation is a major subject. In
most of the cases, three performance evaluation metrics are used. The �rst metric is the called
"Deviation" or "Objective Ratio". It is the relative error between the objective function values
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Figure 3.7: A comparison of the sugbraph matching and error-correcting graph matching problems.
The solutions 1 are the best in the two cases.

39



3.1. GRAPH MATCHING

Figure 3.8: A comparison of the sugbraph matching and error-correcting graph matching prob-
lems when deletion and insertion costs are identical for any vertex or edge and higher than any
substitution cost.
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of a given method and a reference method on a single instance (a pair of graphs). Let D be a
graph data set that consists of M graphs, D = {G1, G2, ..., GM}. Let P be the set of all of the
methods. Given a method pm ∈ P, the square distance matrix Qpm ∈MM×M , which holds every
pairwise comparison Qpmi,j = dpm(Gi, Gj), where the distance dpm(Gi, Gj) is the value returned by
the method pm on the graph pair (Gi, Gj).

deviation(i, j)pm =
|Qpmi,j −Ri,j |

Ri,j
,∀i, j ∈ [1, · · · ,M ] ,∀pm ∈ P (3.7)

where Ri,j is de�ned in Equation 3.8.

Ri,j = min
pm∈P

{Qpmi,j }, ∀i, j ∈ [1, · · · ,M ] (3.8)

Ri,j is either the best upper bound or the optimal solution (if available). For a given method, the
deviation can express the error made by a method in terms of the percentage of the best method.
The second metric is called "accuracy" or "Dissimilarity Matching" in the literature. It denotes the
dissimilarity between a computer-generated matching (y(computer)) and a Human-made matching
(y(human)). A matching is represented by a vector of binary values (y) so the dissimilarity matching
can be computed as the Hamming distance between y(computer) and y(human).
The last metric is the speed of a given method.

When comparing a computer generated matching and the human ground-truth, there could be
two reasons to explain missmatches. The �rst reason is that graph matching solver is not an exact
method and thus the computed matching is not the optimal one. The suboptimal solution is far
from the expected matching. A second reason is that the graph matching solver has computed a
very good solution (the best minimum) but the de�ned cost functions are not in adequacy with
the Human need or goal. Consequently, dissimilarity Matching is not a good criterion to assess
graph matching solvers. Bridging the gap between Human ground-truth and computer-generated
matchings is more linked to the machine learning community. However, fast and e�ective solvers
are a key element in this objective.

A speci�c metric appears when solving Problem ECGM. Solving Problem ECGM leads to a
dissimilarity measure between graphs. This dissimilarity measure can be involved in a classi�cation
step. The classi�cation rate is then used as a metric to gauge the solver e�ectiveness. The
assumption is that better the solver higher the classi�cation rate. This assumption is wrong and
an heuristic can give a higher classi�cation rate than an exact method. It is dependent on the data
distribution and the classi�er. It will be discussed in the graph classi�cation section (Section 3.2.

3.1.1.5.3 Data sets Data sets to evaluate graph matching methods can be analyzed through
three di�erent angles. First, the question of the ground-truth matching availability. Three cases
can appear:

1. The ground-truth matching is available.

2. The ground-truth matching is not available.

3. The ground-truth matching is indirectly available. It is available through some properties
of the �nal application. The ground-truth is usually computed by an application-dependent
method.

Second, data sets can also be split according to the cost function view point :

1. The cost function is provided and so the comparison is reproducible.
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2. The cost function is not de�ned and it should be found to �t the application need.

Finally, graph matching methods are impacted by some intrinsic characteristics of the datasets :

1. The number of vertices.

2. The connectivity or the density of the graphs: A dense graph is a graph in which the number
of edges is close to the maximal number of edges. At the opposite, a graph with only a few
edges is a sparse graph. The distinction between sparse and dense graphs is rather vague,
and depends on the context. For undirected simple graphs, the graph density is de�ned as:
Density = 2|E|

|V | (|V |−1)

3. The type of cost functions: Cost functions can be very di�erent. Especially, their outputs can
be binary (0 or 1) or continuous and everything in between. In addition, the discriminative
power or the distribution of the costs according to the graph component pairs is crucial for
graph matching solvers. Roughly speaking and to give an example, a discriminative cost
function is a function answering 0 for a given pair of vertices (i → k) and high values for
other vertex matches (i → l). A cost function that discriminates between vertices can be
helpful. At the opposite, a cost function making each vertex comparison identical is somehow
not informative for the solver and so it makes the graph matching more challenging. A binary
cost function re-casts the problem to an exact matching problem.

Below, we propose a list of the main data sets used for error-tolerant graph matching. These
datasets have been chosen by carefully reviewing all of the publicly available datasets that have
been used in the reference works mentioned in the state of the art section.

1. CMU House/Hotel: house [cmu] and hotel [cmu] with costs as in [Torresani et al., 2013]. The
task is to �nd a matching between two images. This dataset consists of 111 frames of a house,
each of which has been manually labeled with 30 landmarks. The Delaunay triangulation is
used to connect the landmarks. Each frame represents the same object but with di�erent
rotation angles. Frame number 0 and frame number 10 represent the same object but with
a rotation of 10 degrees. Intuitively, the gap between rotation angles controls the matching
di�culty.

2. VOC car and motorbike: in [Leordeanu et al., 2012], this data sets contain pairs of cars and
motorbikes with keypoints to be matched. Delaunay triangulation is used to connect the
keypoints inside an image. The images are taken from the VOC PASCAL 2007 challenge.
Costs are computed from features [Leordeanu et al., 2012]. Graphs contain outliers (points
of the background or from other objects). Intuitively, the number of outliers controls the
matching di�culty.

3. Graph �ow: the graph �ow dataset [gra, 2015] comes from a tracking problem with large
displacements [Abu Alhaija et al., 2015]. Keypoints in frames of RGB-D images obtained
by a Kinect camera are matched. The depth information provided by the Kinect camera is
taken into account when computing the cost functions.

4. MUTA [Riesen and Bunke, 2008] ata set comes from the IAM Graph Database Repository
[Riesen and Bunke, 2008]. Alkane, Acyclic, PAH, MAO are from the GREYC database
repository [gre]. These graphs are mainly purely structural datasets representing chemical
molecules. Vertices represent atoms and edges are valence bounds.

5. GREC data set comes from the IAM Graph Database Repository [Riesen and Bunke, 2008].
The GREC data set consists of graphs representing symbols from architectural and electronic
drawings. The images occur at �ve di�erent distortion levels.
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Dataset # graphs |V | |E| max |V| Density GT Cost Application Cost type

MUTA 4337 30.3 30.7 417 2.02 no yes Classi�cation Binary
Acyclic 185 8.1 7.1 11 1.7 no yes Classi�cation Binary
Alkane 150 8.8 7.8 10 1.78 no yes Classi�cation Binary
MAO 68 18.3 19.6 27 2.13 no yes Classi�cation Binary
PAH 94 20.7 24.4 28 2.3 no yes Classi�cation Binary
GREC 1100 11.5 11.9 24 2.0 no yes Classi�cation Continuous

LETTER 3x750 4.7 3.9 9 0.8 no yes Classi�cation Continuous
CMU House 111 30 79.1 30 5.27 yes yes Classi�cation Continuous
CMU Hotel 105 30 79.1 30 5.27 yes yes Classi�cation Continuous
VOC CAR 30 34 85 49 5.77 yes yes Matching Continuous
VOC MOTO 20 33.5 76 52 5.45 yes yes Matching Continuous
Graph �ow 6 88 126 sparse indirectly no Matching -

CUB 11 000 200 256 dense indirectly no Matching -

Table 3.2: Dataset description for graph matching assessments.

6. LETTER [Riesen and Bunke, 2008]: LETTER is broken down into three parts (LOW, MED,
HIGH) which corresponds to distortion levels. Assessing methods according to the noise level
is an interesting viewpoint when dealing with pattern recognition problems. The LETTER
dataset is useful because it holds graphs of rather small size (i.e maximum of 9 nodes). This
property is interesting to compute optimal solutions.

7. CUB [Zan�r and Sminchisescu, 2018]: This dataset contains 11,788 images of 200 bird cate-
gories, with bounding box object localization and 15 annotated key points per image.

8. Most of the databases come can be found on the IAPR TC-15 website2

The main characteristics of the data sets are tabulated in 3.2.

3.1.1.5.4 Graph matching library Here are some of the graph matching libraries :

• Path Following: http://projects.cbio.mines-paristech.fr/graphm/

• Factorized graph matching: http://www.f-zhou.com/gm_code.html

• IPFP, SMAC, SM: https://sites.google.com/site/graphmatchingmethods/

• Message passing methods: https://github.com/pawelswoboda/LP_MP-QAP and http://

paulswoboda.net/publications

• LSAP: https://bougleux.users.greyc.fr/lsape/

• RRWM: https://cv.snu.ac.kr/research/~RRWM/

• QAPLib: http://anjos.mgi.polymtl.ca/qaplib/

• GED Evolutionary: http://gedevo.mpi-inf.mpg.de/

• Feature Correspondence via Graph Matching: Models and Global Optimization: http://

pub.ist.ac.at/~vnk/software/GraphMatching-v1.02.src.zip

• MAP CRF solvers: http://hciweb2.iwr.uni-heidelberg.de/opengm/index.php

The large volume of code available is an index to measure the maturity of the community. The
problems, the input and output are well de�ned and it makes comparisons between methods easier.

2http://www.greyc.ensicaen.fr/iapr-tc15/index.php
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Figure 3.9: From [Zhang et al., 2016a]. The x-axis is the rotation angle gap between frames. The
"Acc" axis represents the similarities between matchings. The normalized Obj axis represents the
normalized objective function values.

3.1.1.5.5 Discussion on the running times In this paragraph, our ambition is not to bench-
mark all the methods but rather to provide intuition about the speed of the methods.

First let us take a look to methods solving Problem ETSGM. PATH [Zaslavskiy et al., 2009],
IPFP [Leordeanu et al., 2009], GNCCP [Liu and Qiao, 2014] call the Hungarian method at each
iteration. Factorized Graph Matching (FGM) [Zhou and la Torre, 2016] relies on the expensive
of the Frank-Wolfe algorithm. All these methods have a worst case of O(n3) per iteration time
complexity. The Dual Decomposition (DD) [Torresani et al., 2013] algorithm is more computational
expensive. In the papers of recent graph matching algorithms [Zaslavskiy et al., 2009, Zhou and
la Torre, 2016, Leordeanu et al., 2009, Liu and Qiao, 2014, Cour et al., 2007, Leordeanu and
Hebert, 2005, Torresani et al., 2013, Kolmogorov, 2006], the experiments were done on graphs with
a number of nodes from 20 to 200.

Second let us take a look to methods solving Problem ECGM. Many fast heuristics have been
designed. In [Riesen and Bunke, 2009], the memory requirements and execution times of this
method are respectively proportional to (n1 + n2)2 and (n1 + n2)3 where n1 and n2 are the order
of the graphs. In [Bougleux et al., 2017b], for the same results, the algorithm requires O(n1n2)
memory space and O(min(n1, n2)2 max(n1, n2)) execution times. In [Serratosa, 2015], a reduction
of the the execution times O(min(n1, n2)3) is achieved but at the price of an approximated solution
of the LSAP problem. Tree-based methods such as BeamSearch can be very fast if the beam size
is small. To the extreme, if the beam size is equal to one then the method is called a greedy search
and the exploration is limited to a single branch of tree. Other methods tend to be more time
consuming but it is not possible to conclude about a clear ranking.

3.1.1.5.6 E�ectiveness analysis This paragraph is not about an exhaustive evaluation of
the methods but we compare the most frequent methods of the literature on two important and
challenging data sets. First let us take a look to methods solving Problem ETSGM. Results are
shown in Figure 3.9 about the house CMU data set. The task is to �nd a matching between two
images. This dataset consists of 111 frames of a house, each of which has been manually labeled
with 30 landmarks. The Delaunay triangulation is used to connect the landmarks. Each frame
represents the same object but with di�erent rotation angles. Frame number 0 and frame number
10 represent the same object but with a rotation of 10 degrees. Intuitively, the gap between rotation
angles controls the matching di�culty. In this experiment, the node-a�nity Kik,ik was set to zero

and the edge-a�nity Kik,jl was set to Kik,jl = exp(− (ζ(ij)−ζ(kl))2
2500 ) where ζ(ij) is the distance

between two keypoints in the image. In Figure 3.9, note that as the separation between frames
increases, the accuracy of several algorithms drops precipitously. The four methods: IPFP-S,
RRWM, FGM, and Hungarian-BP exactly identify the correct match in all scenarios.

Results are shown in Figure 3.10 about the VOC data sets. Each node feature µ(i) is an
orientation angle. Each edge was represented by a couple of values, ζ(ij) = [d, θ], where d is the
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Figure 3.10: From [Zhang et al., 2016a]. Matching results on VOC images. Typical matching
result are shown on the left. Yellow lines indicate correct matches, blue lines indicates incorrect
matches, and green lines indicate matches between outliers. The results of DD are not shown due
to the prohibitive execution time

BS-100 LSAPE mIPFP

Deviation (%) 15 80.6 0
Time (s) 0.779 0.144 0.191

Table 3.3: Results on PAH dataset of error-correcting graph matching methods with a time limit
of 300s.

pairwise distance between the connected nodes and θ is the absolute angle between the edge. Thus,
for each pair of images, we computed the node a�nity as Kik,ik = exp(−||µ(i)− µ(k)||1) and the
edge a�nity asKik,jl = exp(− 1

2 ||dij−dkl||1−
1
2 ||θij−θkl||1). VOC datasets contains vertex and edge

outliers. Without outliers, Hungarian-BP always achieves the highest accuracy. It also achieves
the best objective in the �Motorbikes� dataset, and the second best in the �Car� dataset. The speed
of the Hungarian-BP is also quite competitive. In the Motorbike dataset, DD achieves the second
best accuracy, but its speed is hundreds of times slower than that of Hungarian-BP method. In the
Car dataset, FGM achieves the second best accuracy, but its speed is 10 times slower than that of
Hungarian-BP. When outliers exist, the running time of Hungarian-BP algorithm increases with
the number of outliers. However it is sill faster than the FGM method.

Second let us take a look to methods solving Problem ECGM. Results on PAH and CMU
House data sets are reported on Table 3.3 and Table 3.4, respectively. Costs associated with these
experiments are reported in Table 3.5. According to these results, mIPFP seem to be the fastest
and the most accurate. mIPFP dominates other methods on the two data sets.

3.1.1.5.7 Reasoning about e�ectiveness and speed-up

BS-5 SBPBeam-5 mIPFP mGNCCP

Deviation (%) 103.6 5.24 0 20
Time (s) 0.14 8.50 0.18 9.61

Table 3.4: Results on CMU House dataset of error-correcting graph matching methods with a time
limit of 10s.
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Operation cots PAH CMU-House

c(i→ k) 1 0
c(i→ ε) 3 1000
c(ε→ k) 3 1000
c(ij → kl) 1 ||ζ(ij)− ζ(ij)||1
c(ij → ε) 3 ||ζ(ij)||1
c(ε→ kl) 3 ||ζ(ij)||1

Table 3.5: Cost functions for PAH and CMU House data sets.

As it is usual for NP-hard problems, no single method can e�ectively address all QAP instances.
Di�erent applications require di�erent methods and we concentrate here on problem instances
speci�c for computer vision and pattern recognition. Traditionally, within this community pre-
dominantly heuristics are used, since demand for low computational time usually dominates the
need to obtain optimality guarantees.

3.1.2 Open problems

As previously stated, the computer vision and pattern recognition are mainly focused on heuristic
methods. Consequently, exact methods are not well studied in the literature. There is only one
ILP [Justice and Hero, 2006] to solve the error-correcting graph matching problem but it does not
solve the general case because edge attributes are not taken into account. However, exact methods
are important because they can help to evaluate heuristics methods in terms of e�ectiveness. In
addition, exact methods can be used to solve e�ciently "not large" instances. To �nish on this
aspect, heuristics can be derived from exact methods. For all theses reasons, we think that it
is important to study exact methods. Graph matching benchmarks are well-established in the
community, especially, VOC and CMU databases. However, these data sets do not re�ect all the
parameters that impact graph matching methods such as:

1. The number of vertices.

2. The density of the graphs.

3. The type of cost functions.

There is a room to enrich graph matching benchmarks to better �t with real applications as well
as better characterize the behaviour of graph matching solvers. Finally, researchers working on
error-correcting graph matching and error-tolerant subgraph matching problems are not the same.
They form two distinct communities with their own benchmarks and methods. It is crucial to
bridge the gap between the Problem ETSGM and Problem ECGM. A �rst step forward has been
done by [Bougleux et al., 2017a] by modelling Problem ECGM as a QAP and using solvers from
the subgraph matching community. In this direction, more investigations could be led to compare
ETSGM and ECGM problems. The goal would be to unify methods and benchmarks. To sum up,
here are the fours deadlocks to be opened:

1. There is a need to study exact methods.

2. There is a need to work on the performance evaluation of graph matching methods.

(a) Performance evaluation of heuristics with respect to optimal solutions (thanks to dead-
lock 1).

(b) To enrich graph matching benchmarks and to better characterize their behaviors.

46



3.1. GRAPH MATCHING

3. Like any NP-hard problem there is always a trade-o� to be found between speed and e�ec-
tiveness. There is a need to study heuristics according to speed and e�ectiveness criteria.

4. There is a need to draw links between Problem ETSGM and Problem ECGM to gather people
from both communities.

3.1.3 Contribution

The �rst deadlock to be released is about exact methods. It is addressed through the design of
new models and a branch and bound methods. The second deadlock is about the performance
evaluation. A benchmark was proposed and latter used in an international contest. Accurate and
fast heuristics is a Graal, we proposed to develop accurate and �exible heuristics to cope with a
wide range of applications. Finally, we propose a theoretical study to relate Model SGMIQP and
Model GMIQP.

3.1.3.1 Deadlock 1: models and algorithms for exact methods

3.1.3.1.1 Motivation Exact methods to solve Problem ECGM are not well studied. As an
illustration, computing the optimal solution of Problem ECGM using A∗ is only feasible for graphs
of a rather small size (typically 10 vertices) because of the its memory consumption. Another exact
method exists named JH [Justice and Hero, 2006], it is based on ILP but does not solve the general
problem. We tackle the question of designing exact methods for Problem ECGM by adopting two
strategies: the design of new ILP models and the design of memory e�cient algorithms.

3.1.3.1.2 Exact methods: mathematical models A BLP is a restriction of integer linear
programming (ILP) where the variables are binary. Hence, its general form is :

min
x

cTx (3.9a)

subject to Ax ≤ b (3.9b)

x ∈ {0, 1}n (3.9c)

where c ∈ Rn, A ∈ Rn×m and b ∈ Rm are data of the problem. A feasible solution is a vector x
of n binary variables (3.9c) which respects linear inequality constraints (3.9b). If the program has
at least a feasible solution, then the optimal solutions are the ones that minimize the objective
function (3.9a) which is a linear combination of variables of x weighted by the components of the
vector c.

In the GED de�nition provided in Problem 5, the edit operations that are allowed to transform
the graphs G1 and G2 are (i) the substitution of a vertex (respectively an edge) of G1 with a vertex
(resp. an edge) of G2, (ii) the deletion of a vertex (or an edge) from G1 and (iii) the insertion of a
vertex (or an edge) in G1. For each type of edit operation, we de�ne a set of corresponding binary
variables:

• ∀(i, k) ∈ V1 × V2,

xi,k =

{
1 if i is substituted with k,
0 otherwise.

• ∀(ij, kl) ∈ E1 × E2,

zij,kl =

{
1 if ij is substituted with kl,
0 otherwise.

• ∀i ∈ V1, ui =

{
1 if i is deleted from G1

0 otherwise.
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• ∀ij ∈ E1, eij =

{
1 if ij is deleted from G1

0 otherwise.

• ∀k ∈ V2, vk =

{
1 if k is inserted in G1

0 otherwise.

• ∀kl ∈ E2, fkl =

{
1 if kl is inserted in G1

0 otherwise.

In order to evaluate the global cost of an edit path, elementary costs for each edit operation
must be de�ned. We adopt the following notations for these costs:

• ∀(i, k) ∈ V1 × V2, c(i→ k) is the cost of substituting the vertex i with k,

• ∀(ij, kl) ∈ E1 × E2, c(ij → kl) is the cost of substituting the edge ij with kl,

• ∀i ∈ V1, c(i→ ε) is the cost of deleting the vertex i from G1,

• ∀ij ∈ E1, c(ij → ε) is the cost of deleting the edge ij from G1,

• ∀k ∈ V2, c(ε→ k) is the cost of inserting the vertex k in G1,

• ∀kl ∈ E2, c(ε→ kl) is the cost of inserting the edge kl in G1.

The objective function (3.10) is the overall cost induced by an edit path (x, z, u, v, e, f) that
transforms a graph G1 into a graph G2. In order to get the graph edit distance between G1 and
G2, this objective function must be minimized.

C(x, z, u, v, e, f) =

(∑
i∈V1

∑
k∈V2

c(i→ k) · xi,k

+
∑
ij∈E1

∑
kl∈E2

c(ij → kl) · zij,kl

+
∑
i∈V1

c(i→ ε) · ui +
∑
k∈V2

c(ε→ k) · vk

+
∑
ij∈E1

c(ij → ε) · eij +
∑
kl∈E2

c(ε→ kl) · fkl

)
(3.10)

Now let us present the constraints to guarantee that the admissible solutions of the BLP are
edit paths that transform G1 in G2.

3.1.3.1.2.1 Vertices mapping constraints The constraint (3.11) ensures that each vertex
of G1 is either mapped to exactly one vertex of G2 or deleted from G1, while the constraint (3.12)
ensures that each vertex of G2 is either mapped to exactly one vertex of G1 or inserted in G1:

ui +
∑
k∈V2

xi,k = 1 ∀i ∈ V1 (3.11)

vk +
∑
i∈V1

xi,k = 1 ∀k ∈ V2 (3.12)
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3.1.3.1.2.2 Edges mapping constraints Similarly to the vertex mapping constraints, the
constraints (3.13) and (3.14) guarantee a valid mapping between the edges:

eij +
∑
kl∈E2

zij,kl = 1 ∀ij ∈ E1 (3.13)

fkl +
∑
ij∈E1

zij,kl = 1 ∀kl ∈ E2 (3.14)

3.1.3.1.2.3 Topological constraints The respect of the graph topology in the mapping
of the vertices and of the edges is described in the following proposition :

Proposition 3. An edge ij ∈ E1 can be mapped to an edge kl ∈ E2 only if the head vertices i ∈ V1

and k ∈ V2, on the one hand, and if the tail vertices j ∈ V1 and l ∈ V2, on the other hand, are
respectively mapped.

This quadratic constraint can be expressed linearly with the following constraints (3.15) and
(3.16):

• ij and kl can be mapped only if their head vertices are mapped:

zij,kl ≤ xi,k ∀(ij, kl) ∈ E1 × E2 (3.15)

• ij and kl can be mapped only if their tail vertices are mapped:

zij,kl ≤ xj,l ∀(ij, kl) ∈ E1 × E2 (3.16)

3.1.3.1.2.4 Reducing the number of constraints and variables The variables u, v, e
and f help the reader to understand how the objective function and the constraints were obtained,
but they are unnecessary to solve the GED problem.

Replacing in Equation 3.10 the variables u, v, e and f by their expressions deduced from equa-
tions 3.11,3.12, 3.13 and 3.14, we get a new objective function:

C ′(x, z) =
∑
i∈V1

∑
k∈V2

(
c(i→ k)− c(i→ ε)− c(ε→ k)

)
· xi,k

+
∑
ij∈E1

∑
kl∈E2

(
c(ij → kl)− c(ij → ε)− c(ε→ kl)

)
· zij,kl

+ γ(
with γ =

∑
i∈V1

c(i→ ε) +
∑
k∈V2

c(ε→ k) +
∑
ij∈E1

c(ij → ε) +
∑
kl∈E2

c(ε→ kl)

)
(3.17)

We transform the vertex mapping constraints 3.11 and 3.12 into inequality constraints, without
changing their role in the program. As a side e�ect, it removes the u and v variables from the
constraints: ∑

k∈V2

xi,k ≤ 1 ∀i ∈ V1 (3.18)

∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (3.19)
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We do the same for edge mapping constraints 3.13 and 3.14:∑
kl∈E2

zij,kl ≤ 1 ∀ij ∈ E1 (3.20)

∑
ij∈E1

yij,kl ≤ 1 ∀kl ∈ E2 (3.21)

Equation 3.17 shows that the GED can be obtained without explicitly computing the variables
u, v, e and f . Once the formulation solved, all insertion and deletion variables can be a posteriori
deduced from the substitution variables.

The number of topological constraints, 3.15 and 3.16, is |E1| · |E2|. Therefore, in average,
the number of constraints grows quadratically with the density of the graphs. We show that it is
possible to formulate the GED problem with potentially less constraints, leaving,the set of solutions
unchanged. To this end, we propose to mathematically express Proposition 3 in another way. We
replace the constraints 3.15 and 3.16 by the following ones:

• Given an edge ij ∈ E1 and a vertex k ∈ V2, there is at most one edge whose initial vertex is
k that can be mapped with ij:∑

kl∈E2

zij,kl ≤ xi,k ∀k ∈ V2,∀ij ∈ E1 (3.22)

• Given an edge ij ∈ E1 and a vertex l ∈ V2, there is at most one edge whose terminal vertex
is l that can be mapped with ij:∑

kl∈E2

zij,kl ≤ xj,l ∀l ∈ V2,∀ij ∈ E1 (3.23)

The entire formulation called F2 is described as follows :

Model 4. F2

min
x,z

(∑
i∈V1

∑
k∈V2

(
c(i→ k)− c(i→ ε)− c(ε→ k)

)
· xi,k

+
∑
ij∈E1

∑
kl∈E2

(
c(ij → kl)− c(ij → ε)− c(ε→ kl)

)
· zij,kl)

+ γ

(3.24a)
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subject to
∑
k∈V2

xi,k ≤ 1 ∀i ∈ V1 (3.24b)

∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (3.24c)

∑
kl∈E2

zij,kl ≤ xi,k ∀k ∈ V2,∀ij ∈ E1 (3.24d)

∑
kl∈E2

zij,kl ≤ xj,l ∀l ∈ V2,∀ij ∈ E1 (3.24e)

with xi,k ∈ {0, 1} ∀(i, k) ∈ V1 × V2 (3.24f)

zij,kl ∈ {0, 1} ∀(ij, kl) ∈ E1 × E2 (3.24g)

where γ =
∑
i∈V1

c(i→ ε) +
∑
k∈V2

c(ε→ k) +
∑
ij∈E1

c(ij → ε) +
∑
kl∈E2

c(ε→ kl) (3.24h)

γ is not a function of x and z. It does not impact the minimization problem. However, γ is
mandatory to obtain the GED value.

3.1.3.1.3 Exact method: Branch and Bound algorithm (DF) A part from mathematical
models, A∗ is another exact method. A∗ is a tree-based method adopting a best-�rst exploration.
A∗ stores candidate solutions to be explored while traversing the search tree. It is memory expen-
sive, so we decided to investigate an algorithm with a memory e�cient framework. To overcome
the high memory load, we propose a depth-�rst graph edit distance (called DF) algorithm which
requires less memory and search time. The search space is organized as an ordered tree which is
explored in a depth-�rst way. Each tree node is a complete or a partial solution of the GED prob-
lem. For example, the �rst �oor (F) of the tree is obtained by creating a node for each substitution
(i→ k, ∀k ∈ V2) and a last tree node is added to the �oor representing the deletion (i→ ε). The
choice of the most promising tree node is achieved by selecting the minimum cost tree node within
the �oor F (i.e., pmin = arg min

p∈F
(g(p) + h(p))). g(p) is the sum of the costs of the graph compo-

nents in p. h(p) is an estimation of the remaining cost of the unmatched graph components. After
comparing several heuristics h(p) from the literature, we selected the bipartite graph matching
heuristic proposed in [Riesen et al., 2007]. The complexity of such a method is O(max(|V1|, |V2|)3).
For each tree node p, the unmatched vertices and edges are handled completely independently.
Unmatched vertices of G1 and unmatched vertices of G2 are matched at best by solving an linear
sum assignment problem. Unmatched edges of both graphs are handled analogously. Obviously,
this procedure allows multiple substitutions involving the same vertex or edge and, therefore, it
possibly represents an invalid way to edit the remaining part of G1 into the remaining part of G2.
However, the estimated cost certainly constitutes a lower bound of the optimal cost. Once pmin
is selected then the child tree nodes are created by substituting (j → l, ∀l ∈ V2 \ {k}) and so on.
While traversing the search tree, each leaf node is a feasible solution and provides an upper bound.
The best found upper bound is saved in a variable called UB. A backtrack to the parent node is
performed when a leaf node is reached. Finally, during the search, if g(p) + h(p) is greater than
UB then p is discarded. In the worst case, |V1|.|V2| partial solutions to be explored are stored and
hence the memory consumption is not exhausted. This method is called DF .

3.1.3.2 Deadlock 2: Performance evaluation of graph matching methods

3.1.3.2.1 Motivation The error-correcting graph matching problem is often evaluated in a
classi�cation context and less deeply assessed in terms of deviation to the optimal solution. So, we
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Figure 3.11: Graph data repository for error correcting graph matching

Database #subsets Max Graphs
Size

#graphs per
subset

#comparisons
per subset

#optimal so-
lutions

GREC 5 20 10 100 441
MUTA 8 70 10 100 189
Protein 5 40 10 100 47
CMU 1 30 111 660 128

Table 3.6: Overview about the subsets included in the repository

propose to provide publicly available data sets for assessing GED methods in term of deviation to
the optimal solution or to the best known solution.

3.1.3.2.2 Graph data repository for error tolerant graph matching This proposal con-
sists of three parts. First, we provide a graph database repository annotated with low level infor-
mation like graph edit distances and their matching correspondences. Second, we propose a set
of performance evaluation metrics to assess the performance of GED methods. Third, sub data
sets were created considering the number of vertices of the graphs. The sub sets were designed
to evaluate the behaviour of the methods as the number of vertices increases. The data bases
are pictured out in Figure 3.11. For each graph pair, two ground truth elements are added: the
distance between each pair of graphs and Vertex-to-Vertex matching. Theses values can come from
an optimal solution or the best solution found so far among the methods that were put to the
test. The number of optimal solutions is Tabulated in Table 3.6. Finally, a set of metrics was
proposed. Especially, for a given data set, each method can be projected into a 2-Dimensional
space corresponding to its average deviation and its average running time. Therefore, each method
is a point in this space and a method is said to be dominated in the sens of Pareto if a method is
not better than any other on one of the two criteria (average deviation and average running time).

The benchmark is available online http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/
home.html. It is composed of metrics, sub sets, low level information (distance and matching) and
well-de�ned cost functions.

3.1.3.2.3 ICPR 2016 - graph edit distance contest (GDC) This new benchmark gave
birth to a contest during the ICPR conference in 2016. Its main challenge was to inspect and
report performances and e�ectiveness of exact and approximate graph edit distance methods by
comparison with a ground truth. The time constraint used in the contest was �xed to 30 s. That
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Figure 3.12: Average speed-deviation scores on MUTA Dataset.

is, the methods that needed more than 30 s were stopped, and the best answer found so far was
outputted. Several data sets composed of graphs with symbolic and numeric attributes were used
in the experiments. Table 3.7 summarizes the GED methods that were included in the contest.

Acronym Reference Details

BS-100 Neuhaus and Bunke. [2007] Beam-search of size 100
LSAPE Bougleux et al. [2017b] Linear Sum Assignment Problem

with Edition
QAPE=mIPFP Bougleux et al. [2017a] Quadratic Assignment Problem

with Edition
F2 Lerouge et al. [2017] Exact binary linear program-

ming formulation
F24threads Abu-Aisheh et al. [2017a] Parallel version of F2

F2LP Abu-Aisheh et al. [2017a] Upper bound of F2
DF Abu-Aisheh et al. [2015b] Depth-�rst algorithm

DFUB Abu-Aisheh et al. [2017a] Upper bound of DF
PDFS Abu-Aisheh et al. [2018] Parallel version of DF

Table 3.7: Methods included in the graph edit distance contest of ICPR 2016.

For the sake of clarity, we synthesize our di�erent conclusions via �gures. For exhaustive and
numerical results, we refer the interested reader to the contest website: http://gdc2016.greyc.fr.
Results on MUTA and CMU House data sets are depicted in Figure 3.12 and Figure 3.13.

From the contest, an interesting remark came out. Time-truncated exact methods based on
mathematical programming are really e�ective (accurate) while time-truncated exact methods
based on a search tree can be fast (DFUB).
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Figure 3.13: Average speed-deviation scores on GREC Dataset.

3.1.3.3 Deadlock 3: heuristics performance according to speed and e�ectiveness cri-
teria

In this paragraph, we talk about accuracy and speed of heuristics. To create accurate heuristics,
methods based on mathematical models are investigated. Seconds, to design fast and polyvalent
methods, the modi�cation of a tree-based method is studied.

3.1.3.3.1 Heuristics-based on a mathematical model

3.1.3.3.1.1 Motivation The e�ectiveness of the ILP formulations for the error-correcting
graph matching was shown in [Lerouge et al., 2017]. Solving optimally the GED problem is lim-
ited to small-size instances. Lately, a new family of heuristics, namely matheuristics, has been
introduced in Operation Research community. They involve both ILP formulations and solvers
in a de�ned scheme with a mutual goal. The goal is to explore the solution space e�ciently and
compute very good quality solutions. One well-known matheuristics, called local branching, was
introduced by [Fischetti and Lodi, 2003]. Its main idea is to perform a series of local searches
in the solution space. The method focuses the search in de�ned regions looking for good quality
solutions of an ILP formulation. Starting from an initial solution, it de�nes the neighborhood
around it and performs an intensi�cation step looking form better solutions. Local branching can
deal with the problem of local optima by introducing a diversi�cation step to escape them. This
heuristic combines several techniques (neighborhood de�nition, intensi�cation and diversi�cation)
in a branching scheme. Local branching was used to solve many optimization problems and has
obtained very good results. Such a heuristic has not yet been tested on the GED problem in the
literature. Furthermore, the diversi�cation mechanism is modi�ed to �t the GED problem.

3.1.3.3.1.2 Local branching details As presented in [Fischetti and Lodi, 2003], LocBra
heuristic is a local search approach that makes use of ILP solver to explore the neighborhoods of
solutions through a branching scheme. In addition, it involves mechanisms such as intensi�cation
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Figure 3.14: Local branching �ow. a) depicts the left and right branching. b) shows the neighbor-
hoods in the solution space

and diversi�cation. Starting from an initial solution x0, it de�nes the k-opt neighborhood N(x0, k),
with k a given integer. In other words, the neighborhood set contains the solutions that are within
a distance no more than k from x0 (in the sense of Hamming distance). This implies adding the
following local branching constraint to the ILP model:

∆(x, x0) =
∑
j∈S0

(1− xj) +
∑

j∈B\S0

xj ≤ k (3.25)

such that, B is the index set of binary variables de�ned in the model, and S0 = {j ∈ B : x0
j = 1}. ∆

is a Hamming distance between two feasible solutions x and x0. The basis of LocBra is illustrated
in Figure 3.14.

The original version of local branching is designed to solve any optimization problem with
existing ILP formulations. Of course, integrating GED properties and information about the
instance in the heuristic will help in improving its performance. The improvements are integrated
by adapting certain mechanisms of the method. The �rst particularization relates to the choice of
the variables for de�ning the search space. Traditionally, in a local branching heuristic all boolean
variables are considered to de�ne the local branching constraint Equation 3.25. For the GED
problem, it turns out that the crucial variables are x that model the vertices matching. Another
important improvement is proposed for the diversi�cation mechanism, where also not all binary
variables are included but a smaller set of "important variables" is used instead. The notion of
important variables is based on the idea that when changing its value from 1→ 0 (or the opposite),
it highly impacts the objective function value.

3.1.3.3.2 Anytime Branch and Bound (ADF)

3.1.3.3.2.1 Motivation We establish a compromise between exact and approximate error-
correcting GM algorithms, referred to here as anytime algorithms. The concept of anytime algo-
rithms was �rst reported in [Zilberstein and Russell, 1995]. The desirable properties of anytime
algorithms are as follows:
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Figure 3.15: Characteristics of anytime algorithms

• Interruptibility: After some small amount of setup time3, a suboptimal solution can be
provided by stopping the algorithm at time t.

• Monotonicity: The quality of the result increases as a function of computational time.

• Measurable quality: We can always measure the quality of a suboptimal result.

• Preemptability: Anytime algorithms can be suspended and resumed with minimal overhead.

Anytime algorithms have a trade-o� between quality and execution time, see Figure 3.15. They
can �nd the �rst best-so-far solution after some setup time at the beginning of the execution. From
Figure 3.15, one can see that the quality of the solution improves with increasing execution time.
Users have the choice of stopping the algorithm at anytime and thus getting an answer that is
satisfactory, or they can run their algorithm until its completion when it is important to �nd the
optimal solution.

3.1.3.3.2.2 Details The anytime algorithm for GED is named ADF and it is based on DF .
During traversal of the search tree when a �rst complete solution is reached, it is outputted and
made available for the application or the user. Thereafter, when a better solution is found (a better
upper bound UB) then it is outputted and made available too. This process is repeated until the
optimal solution is found or the user stops the method. ADF can start from a pre-computed upper
bound. In such a case, ADF is called ADF − UB.

Figure 3.16 depicts the list of improved solutions (i.e., distances) found by the anytime methods
ADF-UB and ADF on one random pair of graphs taken from MUTA. One can observe that in the
�rst few milliseconds ADF-UB does not output any solution while ADF succeeds in outputting
several solutions, however, with the delight of time both of them reach the same distance. Such a
fact reveals the importance of anytime algorithms, since they are able to improve their solutions
in a few milliseconds.

Whenever an improved solution is found, it is made available for the �nal application that uses
the anytime method as a service. This way of understanding the problem makes the anytime
method very �exible and applicable when the time constraints of the �nal application are not
known in advance.

3The time needed to output a �rst solution by an anytime method.
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Figure 3.16: A random pair of graphs taken from MUTA-70 database illustrating the improvement
of found solutions with the delight of time

3.1.3.3.2.3 Deviation evolution through time In the graph edit distance contest, a
time limit was set to stop methods after a certain time (for instance 30s). However, to provide a
better understanding of the algorithms it is important to consider a time analysis at di�erent time
steps.

Figure 3.17 pictures out results on MUTA-70 that is a challenging data set with graphs of
70 nodes. The left part of Figure 3.17 shows that when time matters, FBP was the fastest in
outputting solutions, followed by BP, SBP-Beam and ADF-UB. After 40 ms (right of Figure 3.17),
both ADF and ADF-UB beat BP. For instance, when the time limit was equal to 400 ms, the
deviation of BP was 45.24% whereas the deviation of ADF and ADF-UB was 35.12% and 33.02%,
respectively.

3.1.3.4 Deadlock 4: Relation between Problem ETSGM and Problem ECGM

In this paragraph, we propose to draw a tighter relation between both problems. Especially, we
create a link between both models Model GMIQP and Model SGMIQP. Our proposition goes as
follows:

Proposition 4. Model GMIQP and Model SGMIQP are equivalent in terms of solutions under a
reformulation of the cost function s(i→ k) = − (c(i→ k)− c(i→ ε)− c(ε→ k)).

To intuitively demonstrate the exactness of the proposition, we proceed as follows :

1. We start from Model GMIQP.

2. From this quadratic model, we express the Model F2 which is a linear model.

3. We perform a change of cost functions linking s with c.
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Figure 3.17: MUTA deviation: left (up to 40 ms), right (up to 400 ms).

4. Under this cost function s, we show that F2 turns to be a maximization problem and we call
this new model F2'.

5. F2' is then modify to get a quadratic model called GMIQP'.

6. We obtain GMIQP' = Model SGMIQP and it is su�cient to show that both models solve
the same problem.

Sketch of proof. Let Γ1 be the set of solutions (edit paths between G1 and G2) implied by the set
of admissible solutions of the Model GMIQP. Let Γ2 be the set of solutions implied by the set of
admissible solutions of F2 (Model 4).

1. Model GMIQP and Model F2 solve the error-correcting graph matching problem so Γ1 = Γ2.

2. By setting d(i → k) = (c(i→ k)− c(i→ ε)− c(ε→ k)) and d(ij → kl) = (c(ij → kl) −
c(ij → ε)− c(ε→ kl)), we can rewrite the objective function of F2 as follows :

C ′(x, z) =
∑
i∈V1

∑
k∈V2

d(i→ k) · xi,k +
∑
ij∈E1

∑
kl∈E2

d(ij → kl) · zij,kl + γ

(
with γ =

∑
i∈V1

c(i→ ε) +
∑
k∈V2

c(ε→ k) +
∑
ij∈E1

c(ij → ε) +
∑
kl∈E2

c(ε→ kl)

) (3.26)

3. γ does not depend on variables so it does not impact the optimization problem. Therefore γ
can be removed.

4. By setting s(i → k) = −d(i → k) = −(c(i → k) − c(i → ε) − c(ε → k)) and s(ij → kl) =
−d(ij → kl), we can rewrite the objective function C ′ of the model F2 to obtain C ′′.

C ′′(x, z) =
∑
i∈V1

∑
k∈V2

s(i→ k) · xi,k +
∑
ij∈E1

∑
kl∈E2

s(ij → kl) · zij,kl (3.27)

5. Minimizing f(x) is equivalent to maximize -f(x). So, minimizing C ′ is equivalent to maximize
C ′′.
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6. The linear objective function C ′′ can be turned into a quadratic function by removing vari-
ables z and replacing them by product of x variables.

C ′′′(x) =
∑
i∈V1

∑
k∈V2

s(i→ k) · xi,k +
∑
ij∈E1

∑
kl∈E2

s(ij → kl) · xi,k · xj,l (3.28)

7. Topological constraints (Equations 3.24d and 3.24e (see below)) in F2 are not necessary
anymore and they can be removed. The product of xi,k and xj,l is enough to ensure that ab
edge ij ∈ E1 can be matched to an edge kl ∈ E2 only if the head vertices i ∈ V1 and k ∈ V2,
on the one hand, and if the tail vertices j ∈ V1 and l ∈ V2, on the other hand, are respectively
matched. ∑

kl∈E2

zij,kl ≤ xi,k ∀k ∈ V2,∀ij ∈ E1∑
kl∈E2

zij,kl ≤ xj,l ∀l ∈ V2,∀ij ∈ E1

8. We obtain the new model named GMIQP':

Model 5. GMIQP'

max
x

C ′′′ (3.29a)

subject to
∑
k∈V2

xi,k ≤ 1 ∀i ∈ V1 (3.29b)

∑
i∈V1

xi,k ≤ 1 ∀k ∈ V2 (3.29c)

with xi,k ∈ {0, 1} ∀(i, k) ∈ V1 × V2 (3.29d)

(3.29e)

9. Model SGMIQP = Model GMIQP'. This was to be demonstrated. Proposition 4 is right.

Under condition of Proposition 4, the optimal assignment obtains when solving Model SGMIQP
allows to reconstruct an optimal solution for the Model GMIQP and to compute the associated
GED. This process is depicted in Figure 3.18. Note that in some case, the function s() has to be
positive then s() can rewrite s(i → k) = cst − (c(i → k) − c(i → ε) − c(ε → k)) with cst a large
constant value.

Proposition 4 is a �rst attempt toward the uni�cation of two communities working respectively on
GED and subgraph matching problems. The proposition needs to be validated and fully proved
with more examples and numerical experiments. All the methods solving the Problem ETSGM
represented by Model SGMIQP can be used to solve the Problem ECGM under a speci�c cost
function s(i→ k) = −(c(i→ k)− c(i→ ε)− c(ε→ k)).
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3.1. GRAPH MATCHING

Figure 3.18: A comparison of the sugbraph matching and error-correcting graph matching problems
when the similarity function s(i→ k) = −{c(i→ k)− c(i→ ε)− c(ε→ k)}
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3.1.4 Summary

In the PhD thesis of Zeina Abu-Aisheh [Abu-Aisheh, 2016], an exact graph matching method was
developed based on a memory e�cient Branch and Bound technique [Abu-Aisheh et al., 2015b].
This method was turned into an anytime algorithm to cope with uncertainty of the time required by
the �nal applications [Abu-Aisheh et al., 2016]. To gain in e�ciency, a parallel version was designed
[Abu-Aisheh et al., 2018]. A benchmark was made by annotating existing data sets with low level
information (distance, vertex matching) and proposing new metrics [Abu-Aisheh et al., 2015a]. A
ILP model was proposed in [Lerouge et al., 2017]. An exact method based on this mathematical
model was designed [Lerouge et al., 2016] along with a time-truncated heuristic [Lerouge et al.,
2017]. All these methods were put to the test in the ICPR 2016 graph edit distance contest [Abu-
Aisheh et al., 2017a]. In the PhD thesis of Mostafa Darwiche, an heuristic based on mathematical
models was proposed [Darwiche et al., 2018, in pressa]. An attempt was made to link researchers
working on error-tolerant subgraph matching and error-correcting graph matching. Our codes are
available at:

• Anytime Graph Matching http://www.rfai.li.univ-tours.fr/PublicData/GraphLib/home.
html

• Local Branching https://sites.google.com/view/orspr/
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3.2. GRAPH CLASSIFICATION

3.2 Graph classi�cation

This section is decomposed into three parts: Section 3.2.1, the state of the art where problems are
expressed along with the methods from the literature. Section 3.2.2, the deadlocks to be released
are stated about the combinatorial aspect of the graph classi�cation. Section 3.2.3, answers and
analysis of the open problems are proposed.

3.2.1 State of the art

Graph classi�ers can be categorized into two categories whether the classi�er operates in graph
space or in vector space. In this manuscript, we only focus on methods operating in graph space
without projecting the graphs into a vector space. This strong assumption is motivated by the aim
of capturing as much as possible structural distortions. Graph matching is a way to compare graphs
in graph space and a standard approach to GED-based pattern recognition is given by the k-nearest
neighbors (kNN) classi�cation [Serratosa, 2019, Riesen, 2015, Serratosa, 2015, Cortés and Serratosa,
2015]. In contrast with other classi�ers such as arti�cial neural networks, Bayes classi�ers, or
decision trees, the underlying pattern space need not be rich in mathematical operations for nearest-
neighbor classi�ers to be applicable. In this scenario, a test graph from the test set (TeS) is
compared to all the graphs in the training set with the aim of de�ning a neighborhood based on
a dissimilarity measure between graphs. Finally, the test graph is assigned to the most common
class among its neighborhood.

3.2.1.1 Problem de�nition

Let us recall some notations. Let D be the set of graphs and let T be the set of classes. Given a
graph training set TrS = {(Gj , tj)}Mj=1, where Gj ∈ D is a graph and tj ∈ T is the class of the
graph.

The 1-nearest neighbor problem can be de�ned as follows:

Problem 10. 1-Nearest Neighbor Problem (1NN)

(G∗, t∗) = arg min
(Gj ,tj)∈TrS

d(G,Gj) (3.30)

Where d(G,Gj) is an arbitrary function to calculate a dissimilarity between G and Gj.

To extend Problem 10 to k-nearest neighbors, we introduce K, the set of the kNN from a query
graph G ∈ TeS. Let K = {(G1, t1), · · · , (Gj , tj), · · · , (Gk, tk)} be a set of graphs along with their
class labels with (Gj , tj) ∈ TrS. The k-Nearest Neighbors problem can be de�ned by:

Problem 11. k-Nearest Neighbors Problem (kNN)

K = arg sort
(Gj ,tj)∈TrS

(d(G,Gj), k) (3.31)

Where sort is a function that performs an ascending sort of d(Gi, Gj) values. k is the number of
retained values to choose the number of nearest neighbors of G.

Complexity of Problem 11 is O(Mσ) with σ the complexity of the dissimilarity function. In the
literature, the complexity of the dissimilarity function is often ignored to focus on the complexity
of the kNN.

To exploit the Problem 11 in a classi�cation context, a voting operator has to be de�ned. The
max voting operator is a function ρ : K → T de�ned by:
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3.2. GRAPH CLASSIFICATION

De�nition 10. Max Voting Operator: ρ

t∗j = argmax
tj∈T

count(K, tj) (3.32)

Where count(.) is a function that counts the number of observations that fall into each class tj.

Problem 10 and Problem 11 put forward that d(G,Gj) is computed between G and each graph
Gj in the training set.

The optimal kNN can be found by an exact kNN algorithm when :

1. Solving d(G,Gj) by an exact graph matching method,

2. and comparing G with all the training set.

The kNN classi�er has many advantages thanks to three properties: i) It is non-parametric. It
means that it does not depend on a speci�c distribution of the data (i.e. Gaussian distribution).
ii) Only one parameter k is needed. iii) The kNN classi�er is intuitive. It means that a wrong or
a good decision can be easily understood by a human by looking at the set of nearest neighbors.
However, its time consumption cannot be ignored especially when the number of graphs in the
training set is big.

The �rst use of the kNN classi�er is reported in [Cover and Hart, 1967]. It is stated that the
probability of error of the nearest neighbor rule is bounded above by twice the Bayes probability
of error. In this sense, it may be said that half the classi�cation information in an in�nite sample
set is contained in the nearest neighbor. In its origin the kNN problem is a type of lazy learning
algorithms such that training is not needed. In machine learning, this kind of method is referred
to instance-based learning. The parameter k has an important impact on the classi�cation rate of
kNN. This impact was deeply studied in [Batista and Silva, 2009]. The boundary between classes
becomes smoother with increasing value of k. A small value of k (i.e k = 1) could lead to an over-
�tting phenomena while a large value of k could lead to under-�tting of the data (under-�tting
and over-�tting are de�ned in Appendix B). k is usually empirically tuned by checking the error
rate on a validation data set.

3.2.1.2 kNN methods

The literature about the kNN algorithms can be split into two parts : exact or approximate nearest
neighbor search. Does a method return the optimal nearest neighbors or not? The quality and
usefulness of the algorithms are determined by the time complexity of queries as well as the space
complexity of any search data structures that must be maintained. A survey of nearest neighbor
techniques can be found in [Bhatia and Vandana, 2010].

3.2.1.2.1 Exact methods

3.2.1.2.1.1 Linear search (structure less) The �rst method is called "Linear search".
The simplest solution to the kNN problem is to compute the distance from the query to every other
data in the database, keeping track of the "best so far". This algorithm, sometimes referred to as
the naive approach, has a running time of O(M)4 where M is the cardinality of D. There are no
search data structures to maintain, so linear search has no space complexity beyond the storage of
the database.

4The complexity is given regardless to the dissimilarity function complexity.
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3.2.1.2.1.2 Space partitioning Several space-partitioning methods have been developed
for solving the kNN problem. Perhaps the simplest is the k-d tree, which iteratively bisects the
search space into two regions containing half of the points of the parent region. Queries are
performed via traversal of the tree from the root to a leaf by evaluating the query point at each
split. k-d-trees are restricted to euclidean space. A limitation of these multidimensional search
structures is that they are only de�ned for searching over objects that can be treated as vectors.
They aren't applicable for the more general case in which the algorithm is given only a collection
of objects and a function for measuring the distance or similarity between two objects. However
in case of general metric space, branch and bound approaches are still applicable and thy are
known under the name of metric trees. The �rst use of the term "metric tree" was published in
[Uhlmann, 1991]. Particular examples include vp-tree and BK-tree [Yianilos, 1993]. However, the
dissimilarity function must satisfy the triangle inequality then the result of each comparison
can be used to prune the set of graph candidates to be examined. The triangle inequality allows
to compute bounds on various distances without having to evaluate the distance function itself
[Kumar et al., 2008]. The graph edit distance can satisfy the triangle inequality property if the
graph edit distance is turned into a distance. To do so, the cost function associated with the edit
operations satis�es the distance conditions of non-negativity, symmetry, and the triangle inequality
then the GED is a distance [Neuhaus and Bunke., 2007] that respects the four axioms:

De�nition 11. Distance function
A distance function d : G × G → R is a distance if for all graphs (Gi,Gj) the four axioms are
respected:

• Non-negativity: d(Gi, Gj) ≥ 0

• Identity: d(Gi, Gj) = 0 =⇒ Gi = Gj

• Symmetry: d(Gi, Gj) = d(Gj , Gi)

• Triangle inequality: d(Gi, Gj) ≤ d(Gi, Gk) + d(Gk, Gj)

The bounding of distances thanks to the triangle inequality is illustrated by the use case of
Figure 3.19. Considering the four graphs G1, G2, G3, G4, the �rst axiom implies that d(G1, G4) ≥ 0
and d(G4, G1) ≥ 0. The third axiom implies that d(G1, G4) = d(G4, G1). The fourth axiom implies
that :

d(G1, G4) ≤ d(G1, G2) + d(G2, G4) =⇒ d(G1, G4) ≤ 2 (3.33a)

d(G1, G3) ≤ d(G1, G4) + d(G4, G3) =⇒ d(G1, G4) ≥ d(G1, G3)− d(G4, G3) (3.33b)

So, we can conclude that
√

5− 1 ≤ d(G1, G4) ≤ 2. A method based on a metric tree can use these
bounds to prune the search space.

3.2.1.2.2 Heuristic methods

3.2.1.2.2.1 Greedy search in proximity neighborhood graphs Proximity graph meth-
ods (such as HNSW[Malkov and Yashunin, 2016]) are considered as the current state-of-the-art for
the approximate nearest neighbors search. The methods are based on greedy traversing in proxim-
ity neighborhood graphs G = (V,E) in which every data Gi ∈ D is uniquely associated with vertex
vi ∈ V . The search for the nearest neighbors to a query q in the set D takes the form of searching
for a speci�c vertex in the graph G = (V,E). The basic algorithm is a greedy search and it works
as follows: the search starts from an enter-data vertex vi ∈ V by computing the distances from
the query q to each vertex of its neighborhood {vj |(vi, vj) ∈ E}, and then �nds a vertex with the
minimal distance value. If the distance value between the query and the selected vertex is smaller
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Figure 3.19: Four graphs and the distance between each graph.

than the one between the query and the current element, then the algorithm moves to the selected
vertex, and it becomes new enter-data. The algorithm stops when it reaches a local minimum: a
vertex whose neighborhood does not contain a vertex that is closer to the query than the vertex
itself.

3.2.1.2.2.2 Locality sensitive hashing Locality sensitive hashing (LSH) is a technique
for grouping points in space into 'buckets' based on some distance metric operating on the data.
Data that are close to each other under the chosen metric are mapped to the same bucket with
high probability [Rajaraman and Ullman, 2011].

3.2.1.2.2.3 Compression/clustering based search The database space can be cluster
or structured to avoid comparing a test graph with all the graphs in the training set. It can be
achieved by clustering algorithm operating in dissimilarity space such as Partition Around Medoids
(PAM) [Kaufman and Rousseeuw, 1987] or hierarchical cluster analysis. More speci�cally, some
methods have been adapted to graphs [Musmanno and Ribeiro, 2016, Chaieb et al., 2017, Ferrer
et al., 2010, 2009, 2011, Borzeshi et al., 2013]. Globally, the aim is to construct prototypes that are
representatives for D. Clearly, this part is more related to the machine learning �eld and it will be
developed in Section 4. One of the main limitations of such methods is the loss of information as
they imply a signi�cant reduction of the training set (with the use of the representatives of clusters
instead of all the labeled samples). Boundaries between classes can then become less precise.

3.2.1.2.2.4 Fast heuristics for the GED problem Another approach to speed up the
kNN computation is to �nd a fast (heuristic) GED algorithm. In Section 3.1, a review of heuristics
for the GED problem have been proposed. Methods [Riesen and Bunke, 2009, Serratosa, 2015,
Neuhaus et al., 2006, Riesen, 2015] have been applied to the kNN problem.

3.2.1.3 Analysis

To summarize, all the methods are tabulated in Table 3.8 according to the following criteria :

• Exact: Is the method exact or not ?

• Category : The family of the methods: linear search or space partitioning methods.

• Generic: Is the method generic operating in a metric space or is it adapted to graph space ?

• Learning: Does the method require a learning phase or not?
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Method Exact Category Generic Learning

Brute force search
[Cover and Hart,
1967]

yes Line search yes no

Metric tree
[Uhlmann, 1991]

yes Space Partition yes no

Vp-tree [Yianilos,
1993]

yes Space Partition yes no

Lower bound kNN
[Kumar et al., 2008]

yes Space Partition yes no

HNSW[Malkov and
Yashunin, 2016]

no Proximity graph yes yes

LSH [Rajaraman
and Ullman, 2011]

no Hash table yes yes

Clustering-kNN
[Kaufman and
Rousseeuw, 1987]

no Clustering yes yes

Prototype-kNN
[Musmanno and
Ribeiro, 2016,
Chaieb et al.,
2017, Ferrer et al.,
2010, 2009, 2011,
Borzeshi et al.,
2013]

no Line search no yes

FastGED-kNN
[Riesen and Bunke,
2009, Serratosa,
2015, Neuhaus
et al., 2006, Riesen,
2015, Abu-Aisheh
et al., 2018]

no Prototype no no

Table 3.8: A summary of kNN methods.
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Figure 3.20: Speeding up the kNN problem : State of the art of kNN methods operating in
dissimilarity space.

In Figure 3.20 methods are synthesized according to either methods are generic or dedicated
to graphs. From Table 3.8 and Figure 3.20, several remarks can be drawn. Learning-free methods
based on metric trees (i.e. vp-tree) imposes that the triangle inequality property holds true for the
distance function. This constraint is very conservative and may lead to low recognition rates and a
small speed up in practice [Serratosa, 2019]. Structuring the search space lies at the art of machine
learning techniques and many kNN methods require a learning phase to structure the database.
In the meantime, many kNN methods are learning-free and rely on fast GED solvers.

From these three remarks, we can observe the complementary of discrete optimization and ma-
chine learning. The two aspects can be combined to achieve a common goal : a good kNN
method. The organization of the search space by means of machine learning techniques and the
design of e�cient graph matching solvers thanks to combinatorial optimization.

3.2.2 Open problems

From the literature review and focusing on learning-free methods, the methods are divided in two
parts: i) the methods based on fast GED heuristics and ii) the methods based on a line search
operating on a generic dissimilarity space. Speaking about the �rst category, fast GED heuristics
are key elements of kNN methods but there is no clear conclusion in the literature about the
impact of the suboptimality on the kNN methods. The same observation can be drawn about the
classi�ers based on kNN methods. On the other category of methods, they are based on a linear
search among all the graph in the database. The line search methods do not take advantage of the
graph space to structure the kNN search and so to speed up the methods. From these conclusions,
three open problems can be drawn:

1. What is the impact of GED heuristics on the kNN problem?

2. Is there a way to specialize a line search method to operate in graph space instead of the
generic dissimilarity space?

3. What is the impact of GED heuristics in a classi�cation context?

3.2.3 Contribution

This section is built on the three open problems mentioned in Section 3.2.2.

3.2.3.1 Deadlock 5: What is the impact of GED heuristics on the kNN problem?

An important question is brought up: what is the impact of GED heuristics on the (dis)similarity
search? This question can be answered experimentally by evaluating the ranking of graphs, which
is considered as an important task in graph retrieval. A query graph is compared to each graph
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of a database thanks to a given GED heuristic used as a distance. Then, distances are sorted
in ascending order to obtain a ranking. The goal of this experiment is to compare the ranking
given by all the heuristics against the optimal ranking given by an exact method. Consequently,
the experiment aims at comparing the orders provided by the heuristics and the order provided
by an exact method. It proceeds as follows: assuming a graph database with 5 graphs D =
{G1, G2, · · · , G5}. Starting with graph G1, the optimal and heuristics solutions (distances) are
computed for all possible pairs of graphs e.g. d(G1, G1); d(G1, G2); · · · ; d(G1, G5). Then, graphs are
ordered by ascending order based on the distances. For instance, assuming that the optimal order
for G1 is Oopt1 = {G1, G2, G4, G3, G5} and a heuristic pm order is Opm1 = {G1, G5, G4, G3, G2}.
Then, the metric used is the Kendall rank correlation coe�cient τb: it is a statistic used to study
the correlation between two ranked/sorted ordinal variables [Kendall, 1948]. Computing τb consists
in measuring the degree of concordance between the two ranked variables. The correlation τb is
computed between Oopt1 and Opm1 . The τb statistic makes adjustments for ties. Ties means that
data that have the same value. For instance, the pair ((G1, G1), (G1, G2)) is tied if d(G1, G1) =
d(G1, G2). A tied pair is neither concordant nor discordant. When tied pairs arise in the data, the
coe�cient may be modi�ed in a number of ways to keep it in the range [−1, 1]. Values of τb range
from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or
perfect agreement). A value of zero indicates the absence of association. The Kendall τb coe�cient
is de�ned as:

τb =
nc − nd√

(n0 − n1)(n0 − n2)

where

n0 = n(n− 1)/2

n1 =
∑
i

ti(ti − 1)/2

n2 =
∑
j

uj(uj − 1)/2

nc = Number of concordant pairs

nd = Number of discordant pairs

ti = Number of tied values in the ith group of ties for the �rst quantity

uj = Number of tied values in the jth group of ties for the second quantity

By repeating this procedure for each graph of the database, |D| values of τb are computed for
an heuristic pm.

For a given heuristic (pm), it is interesting to analyze the distribution of τb values computed
for di�erent graph query. Such a goal can be achieved by a statistical test. The hypothesis to be
tested is H0: two variables Oopt1 and Opm1 are not correlated and τb = 0. The alternative hypothesis
(H1) is that the variables are correlated, and τb is non-zero. A p-value test is applied to evaluate
these hypothesis. The p-value is de�ned as the probability of obtaining a result equal to or "more
extreme" than what was actually observed, when the null hypothesis is true. It is the error of
the second kind, to accept the null hypothesis while H1 is true (false positive). If the p-value is
less than a chosen risk level (5% for example), then the null hypothesis (H0) is rejected. On the
contrary, if the p-value is greater than the chosen alpha level, then the null hypothesis (H0) cannot
be rejected. In any case, it never leads to accept H1. A p-value is computed for each τb value, it
represents the probability of obtaining results similar or better to what was observed if the null
hypothesis is true. For each p-value under 5%, we can say that the hypothesis H0 is rejected.

The MUTA subset with graph size 30 is picked in this experiment, because all optimal solutions
are known for these instances (100 instances) and 30 is the average graph sizes. All PAH instances
(8836) are selected to be part of this experiment as well.
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Method Percentage

LocBra 100
SBPBeam 14
IPFP 21

GNCCP 2

Table 3.9: Percentage of the number of times, the H0 hypothesis (τb = 0) was rejected for each
heuristic on PAH instances

Method Percentage

LocBra 100
SBPBeam 50
IPFP 50

GNCCP 70

Table 3.10: Percentage of the number of times, the H0 hypothesis (τb = 0) was rejected for each
heuristic on MUTA-30 instances

In Table 3.9, the percentage p-value under 5% is reported for the PAH data set. Local Branching
heuristic (LocBra) is at 100%, so the null hypothesis is always rejected for all instances. LocBra
has a very strong correlation with the optimal ranking. The other heuristics have lower percentages
and are far from LocBra, the highest (23%) being obtained by GNCCP. In Figure 3.21 chart(b)
shows τb distribution for PAH instances. LocBra has correlation values between [0.6; 1] and all the
other heuristics are below those values. This proves that the ranking obtained by LocBra is very
similar to the optimal ranking. In the second place comes GNCCP, followed by IPFP and then
SBPBeam at last.

In Table 3.10, the percentage p-value under 5% is reported for the MUTA-30 data set. The
average p-value is 100% for LocBra. Hence, there is a strong correlation between the ranking
of LocBra and the optimal ranking. Moreover, GNCCP has scored 70%, higher than SBPBeam
and IPFP (both 50%). GNCCP should reject the null hypothesis in 70% of the cases. Regarding
the correlation distribution shown in Figure 3.21 chart (a), all the values obtained by LocBra
are uniformly in bin 1. This means that LocBra ranking is perfectly correlated with the optimal
ranking. GNCCP comes in the second place but the correlation values are distributed in a wide
range between [0.2; 1]. IPFP shows poor correlation with the optimal and has negative value (-0.2)
for one instance.

These experiments have empirically demonstrated that LocBra ranking is strongly correlated
with the optimal ranking. But more importantly, we could show that the type of heuristics has
a strong impact on the the ranking and so on the kNN methods based on GED heuristics.

3.2.3.2 Deadlock 6: Is there a way to specialize a line search method to operate in
graph space?

3.2.3.2.1 Motivation As stated earlier, complexity of Problem 11(kNN) depends on M = |D|
and σ the complexity of the dissimilarity function. In a learning-free context, we cannot reduce the
factor M (the size of the database). Many researchers decided then to reduce σ thanks to GED
heuristics. However, non of the previous work tries to reduce σ considering that the GED solver
is involved in a kNN problem. In other words, to the best of our knowledge, all the existing works
compared the query graph to each graph in the training set separately without considering the
entire problem (GED + kNN problems). When using a kNN method based on a line search, the
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(a)

(b)

Figure 3.21: Histograms showing τb distribution for each heuristic for MUTA-30 (a) and PAH (b)
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Figure 3.22: Multi graph edit distance in a single picture.

comparison of G ∈ TeS and each Gj ∈ TrS is achieved independently. Each distance is treated
individually that is the result of a prior comparison cannot help in solving the next comparison.
To tackle this issue, we propose a new problem called multi graph edit distance (MGED) where
the kNN problem and the GED problem are combined in a single problem. Figure 3.22 expresses
the main idea of this new problem. Furthermore, we show that the kNN problem is a special case
of the MGED problem.

3.2.3.2.2 MGED problem The MGED can be seen as a merge of the two problems formulated
in Problems 11(kNN) and 5(GED). First, let us recall that Γ(G,Gj) = {λ1

G,Gj
, λ2
G,Gj

, · · · , λbG,Gj
}

is the set of all possible matchings between G ∈ TeS and Gj ∈ TrS. The number of possible
matchings b is exponential with respect to the number of vertices in G and Gj .
Now, let L = {(t1,Γ(G,G1)), · · · , (tj ,Γ(G,Gj)), · · · , (tM ,Γ(G,GM ))} be the set of all possible
matchings between G and each graph Gj ∈ TrS where tj is the class of the graph Gj . The set L can
be expanded by developing the Γ sets. L = {(t1, λ1

G,G1
), (t1, λ

2
G,G1

), · · · , (t1, λbG,G1
), · · · , tj , λ1

G,Gj
),

(tj , λ
2
G,Gj

), · · · , (tj , λqG,Gj
), · · · , (tM , λ1

G,GM
), (tM , λ

2
G,GM

), · · · ,
(tM , λ

r
G,GM

)}. The MGED problem can be de�ned as follows:

Problem 12. Multi Graph Edit Distance Problem (MGED)

(G∗, t∗) = arg min
(tj ,λG,Gj

)∈L

∑
o∈λG,Gj

c(o) (3.34)

The former Problem 12(MGED) can be seen as searching the minimum matching (or edit path)
among all the matchings between one query graph G and a graph collection. The MGED problem
can be extended to �nd the k minimum matchings by using the sort function. The kMGED
problem can be de�ned as follows:

Problem 13. k-Multi Graph Edit Distance Problem (kMGED)

K = arg sort
(tj ,λG,Gj)

∈L

 ∑
o∈λG,Gj

c(o)

 , k

 (3.35)

where sort is a function that performs an ascending sort. The kMGED problem expresses the
search of the k matchings with the cheapest costs. K can contain di�erent matchings that belong
to a single graph Gj . To respect the kNN problem each matching λG,Gj

∈ K should belong to
di�erent graphs (λ1

G,Gj
and λ2

G,Gj
are forbidden). In other words, Gj should appear only once in

K. This is modeled by the Constraint 3.36b.
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Problem 14. Constrained k-Multi Graph Edit Distance Problem (CkMGED)

K = arg sort
(tj ,λG,Gj

)∈L

 ∑
o∈λG,Gj

c(o)

 , k

 (3.36a)

Subject to ∃!Gj ∈ K ∀(tj , λG,Gj
) ∈ K (3.36b)

where K is the set of graphs along with their class labels with (Gj , tj) ∈ TrS. Constraint 3.36b
ensures that the pair (Gj , tj) cannot appear twice. That is, only the best feasible solutions of each
GED computation (G and Gj) is selected and thus (Gj , tj) appears only once. In the worst case,
the time complexity of solving the problem of kMGED is exponential in the number of vertices of
the graphs G and Gj multiplied by the number of graphs in TrS. In other words, the complexity
at the worst case equals to the complexity of the kNN problem O(Mσ). Apparently, we did not
achieve our goal to reduce the kNN complexity thanks to the MGED problem. It is true for the
complexity at the worst case. However, experimentally, we can expect that an heuristic algorithm
takes advantage of the MGED problem.

3.2.3.2.3 One-tree depth �rst algorithm to solve the kMGED problem Now, we
present a �rst algorithm to solve the kMGED problem de�ned in Problem 14(CkMGED). As
a �nal application, the algorithm classi�es a query graph G by searching within a single search
space.

Algorithm 1 depicts the main steps of the proposed algorithm, called One-Tree-kMGED. Lines 1
to 3 correspond to the initialization step. The GED solver is called for the comparison between Gq
and Gj (Line 5). The obtained distance d is then added to the list Dmin at the location k+1 (line
7). The list of distances is sorted in ascending order while keeping track of IDs (Line 8). In Line
9, the upper bound UB is updated and is given the value of the kth element saved in the distance
list Dmin (i.e., Dmin[k]). After all the aforementioned steps, the algorithm One-Tree-kMGED
returns the graphs along with their associated class label (GIDmin[k], cIDmin[k]).

Algorithm 1 One-Tree-kMGED Algorithm
Input: The set TrS: {(G1, t1), · · · , (GM , cM )}, the unknown query graph Gq and the parameter
k
Output: The k nearest graphs to Gq from the set TrS with their associated class

1: Dmin = [+∞, · · · ,+∞] A distance of k + 1 elements
2: IDmin = [+∞, · · · ,+∞] A graph ID list
3: UB = +∞ The initial upper bound
4: for j = 1 to M do
5: d = GED (Gq,Gj ,UB)
6: Dmin[k + 1] = d
7: IDmin[k + 1] = j
8: (IDmin,Dmin) = sortDmin(IDmin,Dmin) sort in an ascending order
9: UB = Dmin[k]
10: end for
11: Return (GIDmin[1], tIDmin[1]), · · · , (GIDmin[k], tIDmin[k])

3.2.3.2.4 Used GED solver In line 5 of Algorithm 1, any GED solver that takes an upper
bound as an input is suitable. We propose to use the depth �rst algorithm DF in [Abu-Aisheh
et al., 2015b] (see Section 3.1). It is a branch and bound method and it has the ability to prune
the search space thanks to its upper and lower bounds. The solution space is organized as a search
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tree. The exploration of the search tree is performed in a depth-�rst way. Bounding is performed
when �nding a leaf node with a cost smaller than UB. Pruning is performed by cutting nodes
with a larger cost than UB. A node p has a cost lb(p) = g(p) + h(p) where g(p) is the cost of the
partial edit path and h(p) is an estimation of the future cost to obtain a complete edit path. If
lb(p) ≥ UB then the branch is discarded. In order to simply illustrate One-Tree-kMGED, Figure
3.23 highlights its idea for k = 1. Given a query graph Gq and a learning database TrS, the idea
is to consider each search tree Sqj of the GED(Gq,Gj) as a sub-tree of the global tree dedicated to
the query Gq. The global tree is referred to as Tq. For instance, in Figure 3.23, one can see that
the �rst UB found while exploring the sub-tree Sq1 of GED(Gq,G1) is 2. UB is then used as an
initial UB of the sub-tree Sq2 of GED(Gq,G2) and so on. Such an operation helps in pruning the
sub-trees as fast as possible while searching for the nearest neighbor of Gq.

Figure 3.23: one-Tree-kMGED when k = 1. Given a query graph Gq and graphs in the training
set, the problems GED(Gq,G1), GED(Gq,G2) and GED(Gq,G3) are considered as sub-trees of
the global tree (Tq). The sub-tree of GED(Gq,Gj) is pruned thanks to UB that is found via
GED(Gq,G1).

3.2.3.2.5 Complexity and time constraint In the worst case, the time complexity of one-
Tree-kMGED is exponential in the number of vertices of the involved graphs. This case occurs when
the �rst UB does not help in pruning the rest of the search tree and thus all the TrS subtrees need
to be explored. One should notice that the complexity in the worst case equals to the complexity
of the line search method.

Conceptually speaking, a line search based on DF and One-Tree-kMGED provide the same
neighbors. This statement is true under one assumption that is the time constraint to solve each
graph comparison is in�nite. Another way to view this assumption is to say that the time limit is
never reached by the solvers and the solutions are optimal. On the other hand, One-Tree-kMGED
does not output the distance of each graph pair (Gq,Gj). The GED computation of each (Gq,Gj)
is stopped as soon as the solver proved that no better solutions than the global upper bound
UB could be found. In such a case, the UB value is returned as an output of the given graph
comparison. The only distances that are guaranteed to be outputted are the GED values of the
kNN. The global UB could accelerate the classi�cation time and maybe improve the classi�cation
rate.

3.2.3.2.6 Theoretical discussion around the impacts of the parameters As depicted
in Algorithm 1, one-Tree-kMGED has 3 parameters: the test graph Gq, the training set TrS and
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the parameter k for the selection of the nearest neighbors. In this section, a discussion about the
impact of Trs and k is provided.

3.2.3.2.6.1 Parameter k Regarding One-Tree-kMGED, having a big value of k, could have
a big impact not only on the classi�cation rate but also on the execution time. The reason is that,
the upper bound will be the kth one in the {dmin} list and not the best upper bound found so far.
The kth upper bound is higher than the �rst upper bound. Consequently, the kth upper bound is
likely less capable of cutting the search tree. Such a fact could slow down the algorithm depending
on the di�culty of the classi�cation problems.

3.2.3.2.6.2 Ordering the graphs in the training set In Algorithm 1, the graphs in TrS
were supposed to be already ordered. However, the question arises: Which order of training graphs
should be taken into account in order to prune the search tree as soon as possible? We propose 3
di�erent orderings:

1. RO: TrS is randomly shu�ed.

2. CACO: TrS samples are ordered by class.

3. SGPCO: TrS is organized by batches containing one graph of each class.

3.2.3.3 Deadlock 7: What is the impact of GED heuristics in a classi�cation context
?

We aim at answering the question whether the resulting sub-optimal graph edit distances remain
su�ciently accurate for classi�cation tasks. On its own, a kNN classi�er does not aim at maximizing
a classi�cation rate. A kNN classi�er relies on a dissimilarity function that drives its objective. In
our context, the dissimilarity function is a GED method. All the GED methods aim at minimizing
the sum of the edit operations costs. The cost is the piece of information that link the GED
problem to the classi�cation problem. From this statement, two sub questions can arise. 1) Are
heuristics su�ciently accurate for classi�cation tasks when cost functions are chosen based on expert
knowledge? 2) Are heuristics su�ciently accurate for classi�cation tasks when cost functions are
learned to maximize a classi�cation rate?

To answer these questions, classi�cation experiments must be performed. Heuristics should be
compared with exact methods.

3.2.3.3.1 1) Are heuristics su�ciently accurate for classi�cation tasks when cost func-
tions are chosen based on expert knowledge? This paragraph is organized as follows: First
the data sets are presented. Then the way of computing the cost functions is described. Classi�-
cation rate are summarized and an analysis is given.

Table 3.11 synthesizes the characteristics of each of the selected data sets in terms of the number
of graphs in both train and test sets and the number of classes. The data sets are selected because
the computation of optimal solutions is possible.

The cost functions c(·) for each data set are summed up in Table 3.12. These cost functions are
not chosen randomly. Solving the GED with these cost functions correspond to solve the Maximum
Common Subgraph (Problem 2).

The selected classi�er is a 1NN classi�er which has the advantage of being parameter free.
Classi�cation results are presented in Table 3.13. JH is an exact method. All optimal solutions
were computed by JH. BP and BS-10 are two heuristics. Acc is the classi�cation rate on the test
set. time is the average time in milliseconds to classify a query. From this table, we can make some
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Database # Train # Test Comment

PAH 22 22 2 classes
MAO 16 16 2 classes

LETTER-HIGH 750 16 10 classes

Table 3.11: Data sets selected from the ICPR'2016 contest.

Node Cost
function

Edge Cost
function

Node/Edge
substitu-
tion

Node/Edge
Insertion

Node/Edge
Deletion

PAH Kronecker
delta

Kronecker
delta

0 3 3

MAO Kronecker
delta

Kronecker
delta

0 or 3 3 3

LETTER-HIGH Euclidean
distance

Kronecker
delta

L2 norm
for nodes.
Edge are
with-
out at-
tributes.

1 1

Table 3.12: Learning-free cost functions.

comments. Classi�cation rates are not negatively impacted by heuristics. Heuristics can obtain
higher classi�cation rates than exact methods.

Now, we can try to analyze this behaviour.

3.2.3.3.2 Why heuristics can provide good classi�cation results? As mentioned before,
the distances found by heuristic methods are equal to, or larger than, the optimal distances. Such
distances are feasible solutions and represent upper bounds of the GED problem. The correlation
between optimal and suboptimal methods can be seen in Figure 3.24. These scatter plots give a
visual representation of the accuracy of the two heuristics BS-10 (BeamSearch) and BP (LSAP-
based) on the LETTER-HIGH data set. The optimal solution were computed by the method
called JH. Based on the scatter plots given in Figure 3.24, we �nd that BS approximates small
distance values accurately, i.e. all small suboptimal distances are equal to the optimal distances.
On the other hand, large distance values are overestimated quite strongly. Based on the fact that
graphs within the same class usually have a smaller distance than graphs belonging to two di�erent
classes. This means that the suboptimality of BS mainly increases interclass distances, while intra-
class distances are not strongly a�ected. A similar conclusion can be drawn for BP. Many of the
small distance values are not overestimated, while higher distance values are increased due to the
suboptimal nature of the approach.

Method PAH MAO LETTER-High
Acc time (ms) Acc time (ms) Acc time (ms)

JH 0.6363 31765.5 0.8125 11009 0.8346 534.66
BP 0.6363 34.81 0.75 26.75 0.836 80.63

BS-10 0.6818 2928.04 0.8125 57.68 0.8346 227.44

Table 3.13: Classi�cation rate obtained by exact and heuristic methods.
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Moreover, for a nearest-neighbor classi�er, small distances have more in�uence on the decision
than large distances. Hence no serious deterioration of the classi�cation accuracy occurs when
heuristic algorithms are used instead of an exact method.

We can conclude that on the tested data sets, the classi�cation accuracy of the 1NN classi�er is
not negatively a�ected by using the suboptimal distances. This is due to the fact that most of the
overestimated distances belong to inter-class pairs of graphs, while intra-class distances are not
strongly a�ected. Obviously, intraclass distances are of much higher importance for a distance
based classi�er than inter-class distances. In other words, through the approximation of the edit
distances, the graphs are rearranged with respect to each other such that a better classi�cation
becomes possible. Graphs which belong to the same class (according to the ground truth) often
remain near, while graphs from di�erent classes are pulled apart from each other. Obviously, if
the approximation is too inaccurate, the similarity measure and the underlying classi�er will be
unfavorably disturbed. Probably, the concerned data sets are not di�cult enough to put forward
the impact of heuristics in a classi�cation context. A distance of zero is likely to appear and
these distances are well computed by heuristics. Extending the number of k nearest neighbors
could be a way to see the di�erences between exact and heuristic methods. The computation of
distances between farther neighbors could be more challenging for heuristics.

BP(left) and BS-10(right) on the LETTER dataset.

Figure 3.24: Scatter plots of the optimal edit distances (x-axis) and the suboptimal edit distances
(y-axis). Orange dots are optimal distances.

3.2.3.3.3 Question 2: Are heuristics su�ciently accurate for classi�cation tasks when
cost functions are learned? First the data set and the cost functions are presented. Then the
way of computing the cost functions (c) is described. Classi�cation rate are summarized and an
analysis is given.

Table 3.14 synthesizes the characteristics of each of the selected data sets in terms of the number
of graphs in both train and test sets, the average and maximum number of vertices and edges and
the attributes on both of them.

Each data set has speci�c edit cost functions that de�ne how the insertion, deletion and sub-
stitution are achieved [Riesen and Bunke, 2010b]. In most of the datasets, two non-negative meta
parameters are associated: (τvertex ∈ R and τedge ∈ R) where τvertex denotes a vertex deletion or
insertion costs whereas τedge denotes an edge deletion or insertion costs. A third meta parameter
α ∈ [0, 1] is integrated to control whether the edit operation cost on the vertices or on the edges
is more important. Table 3.15 reports the cost functions of each of the included data sets as well
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Table 3.14: The characteristics of the datasets included in the experiments.

Dataset GREC Protein Muta Fingerprint Webpage House-
Hotel

#train
graphs

286 200 1500 378 780 51

#valid
graphs

286 200 500 3OO 780 20

#test
graphs

528 200 2337 1532 780 70

vertices 11.5 32.6 30.3 5.38 186.04 30
edges 12.2 30.8 79 8.8 104.03 62.1
Max ver-
tices

25 40 71 26 785 30

Max edges 30 149 112 48 524 79
Vertex
labels

x,y coor-
dinates

Type
and
amino
acid se-
quences

Chemical
symbol

None Word's fre-
quency

60 size fea-
ture

Edge labels Line
type

Type
and
length

Valence Orientation Section la-
bel

Distance

as their meta parameters. Each database is divided into three disjoint subsets, viz. the training,
the validation, and the test set. The elements of the training set are used as prototypes in the
1NN classi�er. The validation set is used to determine the values of the meta parameters τnode,
τedge and α that maximizes a classi�cation rate for the method called BP . The cost function is
parametrized with τnode, τedge and α (.i.e. c(i, k; τnode, τedge, α)). This cost function is optimized
only for the BP heuristic. Is the learned cost function useful for other heuristics? This is open
question. This general question can be re�ned if a link does exist between methods. For example,
if BP is an upper bound of the method called DF then does the optimized cost function c∗(.)
maximizes a classi�cation rate for DF?

Table 3.15: The cost functions and meta parameters of the datasets.

Dataset GREC Muta Protein Fingerprint Webpage House-
Hotel

τvertex 90 11 11 0.7 2 3
τedge 15 1.1 1 0.5 2 3
α 0.5 0.25 0.75 0.75 0.5 0.5
Vertex sub-
stitution
function

Extended
eu-
clidean
distance

Dirac
function

Extended
string
edit
distance

Absolute
value

Dirac
function

Dirac
function

Edge sub-
stitution
function

Dirac
function

Dirac
function

Dirac
function

Absolute
value

Absolute
Value

Dirac
function

Reference
of cost
functions

Riesen
and
Bunke
[2010b]

Riesen
and
Bunke
[2010b]

Riesen
and
Bunke
[2010b]

Riesen
and
Bunke
[2010b]

Riesen
and
Bunke
[2010b]

Moreno-
García
et al.
[2016]

In Table 3.16, the results achieved on all the datasets are presented. Note that the computation
time corresponds to the average time needed per dissimilarity in milliseconds (ms).

The results show that on all the datasets, one-Tree-kMGED was always faster than the classical
DF approach. It also improved the classi�cation rate of DF on both Protein and Muta. one-Tree-
kMGED could improve UB while moving from one comparison to another. As a consequence, it
pruned unfruitful parts of the global search tree and found smaller distances. As mentioned in the
previous Paragraph 3.2.3.3.3, a better minimization of the GED or the MGED problems does not
always lead to a higher classi�cation rate even when the cost function is optimized to improve a
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Table 3.16: Classi�cation results on �ve datasets where time refers to the average time in millisec-
onds needed by each dissimilarity computation whereas Acc refers to the classi�cation accuracy.
The best results are marked in bold style. Note that k was �xed to 1.

GREC Protein Muta Fingerprint WebPage House-Hotel
time Acc time Acc time Acc time Acc time Acc time Acc

one-Tree-k-DF (CAFO) 136.31 98.5 320.77 47 70.56 72.41 30.25 61.68 152.48 21 395.66 98,57
one-Tree-k-DF (SGPCO) 51.01 98.5 306.48 47 69.23 71.05 29.06 61.68 48.91 21 370.43 98,57
one-Tree-k-DF (RO) 54.13 98.5 291.60 47 69.45 71.28 28.76 61.68 51.61 21 363.37 98,57

DF 491.87 98.5 426.90 42 487.43 70 168.45 63.83 470.03 21 485.05 98,57
BS-1 242.08 98.5 127.35 42.5 434.61 55.5 74.35 62.46 426.22 12.4 108.18 98.57
BS-100 293.45 58.7 475.69 31.0 486.71 55.5 211.74 10.3 499.21 4.3 478.91 98,57
BP 217.81 98.5 295.20 52 352.36 70 42.60 60.40 466.81 21 308.71 98.57
FBP 97.63 98.5 197.12 38.5 250.57 70 36.53 61.35 449.06 15 189.07 98.57

classi�cation rate.

When comparing one-Tree-kMGED to BP, one can see that one-Tree-kMGED was 4.2 times
faster (on GREC), 3.6 times faster (on Muta) and 9.5 times faster (on WebPage). On the other
hand, on Fingerprint and House-Hotel, the speed results of the two methods were quite similar.
This is due to the small number of graphs in these datasets and thus the advantage of using
prior UB in one-Tree-kMGED cannot be fully revealed. Moreover, on House-Hotel, BS-1 was
the fastest. House-Hotel has easy graphs to classify (with only 2 classes) and that is why all the
methods obtained 98.5% as a classi�cation rate. Another interesting remark is that one-Tree-
kMGED succeeded in improving the classi�cation rate on Muta. However, on Protein, it was less
accurate than BP. Despite the fact that BS-1 was faster than one-Tree-kMGED on Protein, the
accuracy of BS-1 was lower. As a general conclusion, one-Tree-kMGED was the fastest algorithm,
except on Protein and CMU where FBP won. This point is explained by the fact that the number
of train graphs in both of them was quite small so that the interest of merging all sub-problems
into a unique one is not useful, see Table 3.14.

The results of Table 3.16 con�rms that a cost function originally optimized for the method
called BP can be applied to di�erent heuristics. Results obtained by BP can also be improved
thanks to an e�ective GED solver or a MGED algorithm.

3.2.4 Summary

During the thesis of Mostafa Darwiche, the ranking experiment showed that the type of heuristics
has a great impact on the order of the graphs returned by a kNN method [Darwiche et al., 2018,
in pressb]. During the PhD of Zeina Abu-aisheh, a new problem referred to as multi graph edit
distance (MGED) was de�ned. The MGED can be seen as searching the k minimum matchings (or
edit paths) among all the matchings between one query graph G and a graph collection D. Under
some constraints, the problem of �nding kNN falls within the MGED problem [Abu-Aisheh et al.,
2017a]. A classi�cation task was led to evaluate GED solvers and the MGED solver. In this test,
the cost function is of �rst interest. It has been showed that cost functions, optimized for a given
GED method, could be transferred with success to di�erent GED methods.

Finally, a comparison between exact and heuristic methods in a classi�cation context has shown
that the classi�cation accuracy of the 1NN classi�er is not negatively a�ected by suboptimal dis-
tances. However, it cannot be generalized unconditionally since if the approximation is too inac-
curate, the similarity measure and the underlying classi�er will be unfavorably disturbed. In the
same vein, we must take caution because conclusions that are drawn for 1NN might be di�erent
if the number of neighbors gets larger. The computation of distances between farther neighbors
could be more challenging for heuristics.
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This section is split into two parts graph matching (Section 4.1) and graph classi�cation (Section
4.2). Each part is then broken down in three steps. First, the state of the art is summed up.
Second, deadlocks and open problems are expressed. Finally, contributions are presented. The
section is focused on machine learning techniques. An introduction that presents the foundations
of the learning theory is presented in Appendix B. References about our contributions are given
in the summary sections (Section 4.1.4 and Section 4.2.4). Note that the state of the arts do not
include our work. This is intentionally done to highlight how our contributions help to release the
deadlocks.

4.1 Graph matching

4.1.1 State of the art of learning graph matching

The learning graph matching problem can be framed as the minimization of an error rate on
the number of correctly matched graph components. This can be seen as minimizing the average
Hamming distance between ground-truth's correspondences and the computer generated correspon-
dences on a data set of graph pairs. The training set is then de�ned as TrS = {((G1, G2)k, y

gt
k )}Mk=1.

(G1, G2) is a graph pair and ygt is the ground-truth's correspondences. A computer generated
matching that is considered as a prediction is written y from the machine learning viewpoint.
A graph matching solution is de�ned as a subset of possible correspondences y ⊂ V1 × V2 or
y ⊂ V1 × V2 depending on the graph matching problem. Correspondences are represented by a
binary assignment matrix Y ∈ {0, 1}n1×n2 , where n1, n2 denote the sizes of the vertex sets. We
denote by y ∈ {0, 1}n1.n2 , a column-wise vectorized replica of Y . Generally speaking, the learning
problem can be stated as follows:

Problem 15. Learning graph matching problem (LGM)

min
W

∑
((G1,G2),ygt)∈TrS

min
y∈Γ(G1,G2)

l(y, ygt,W ) (4.1)

Where Γ is the set of all possible matchings between G1 and G2. l is the loss function and a possible
choice is the Hamming distance l = ‖ygt − y(W )‖1. W are invariants (trainable parameters) over
the data set TrS and y are variables of the graph matching problem.

Inside this problem, many learning problems arise. Node/edge attributes can be learned. This
procedure is assimilated to a feature extraction step. Another area where learning algorithms
can be applied is the learning of node/edge (di)ssimilarity function. Finally, the graph matching
algorithm itself can be improved or replaced by a machine learning algorithm. In Figure 4.1, an
overview of these three concepts is provided. The literature about graph matching is decomposed
into two parts: shallow and deep methods. Deep methods refers to models composed of a hierarchy
of sub-models (representations). "Deep" architectures take advantages of properties of the data
such as compositionality. That is data can be represented by a composition of (simple) models.
There are many di�erent methods for learning graph matching but the general learning scheme is
depicted in Figure 4.2. The ML method takes a graph pair as an input and output matching that
depends on parameters W. The predicted matching is compared to the ground-truth and errors
are given back to the ML method to adapt its parameters.
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Figure 4.1: An overview of the learning graph matching problem. Three sub-problems arise as
learning features, learning dissimilarity and learning to match.

Figure 4.2: A general framework for supervised learning of graph matching.
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In addition, we only focus on techniques producing a matching at the end. Techniques such as
metric learning methods that do not cope with this constraint are not detailed [Riba et al., 2018].

The papers in the literature mainly di�er on three aspects :

• How the Problem15 (LGM) is minimized.

• How the losses are employed.

• How the parameters are introduced.

• How the node/edge insertions and deletions are considered.

• Does the method involves a graph matching solver or not ?

Now, we present a deeper insight of the di�erent methods.

4.1.1.1 Shallow methods

The shallow methods focuses on learning the cost functions (c(.))). To better characterize the state
of the art, we introduce two notations dV (.) and dE(.) that are derived from the cost function c(.).
dV (.) and dE(.) denote speci�c cost functions between vertices and edges, respectively. With this
consideration, the objective function de�ned in Equation 3.2 of the Model GMIQP can be rewritten
as follows :

d(G1, G2, y) =
∑
yik=1

dV (i, k) +
∑
yik=1

∑
yjl=1

dE(ij, kl) (4.2)

Equation 4.2 must be understood as the sum of vertex and edge dissimilarities when y variables
equal to 1. Equation 4.2 must be minimized.

In this the same way of splitting cost functions for nodes and edges, the matching problem
based on similarity (sV (.) and sE(.)) de�ned in the Model SGMIQP can be rewritten as follows :

s(G1, G2, y) =
∑
yik=1

sV (i, k) +
∑
yik=1

∑
yjl=1

sE(ij, kl) (4.3)

Equation 4.3 must be maximized.

The �rst series of papers are learning methods dedicated to the problem expressed by the Model
SGMIQP. It means that only substitutions are concerned.

The method of Caetano et al. [Caetano et al., 2009] aims at learning global features to facilitate
the matching. Parameters to be learned are located on the node and edge features as shown in
Equation 4.4. Parameters wE and wV are vectors of real values whose sizes are equal to the size
of the vertex or edge features.

s(G1, G2, y, wV , wE) =
∑
yik=1

sV (i, k, wV ) +
∑
yik=1

∑
yjl=1

sE(ij, kl, wE) (4.4)

They use graphs with numeric attributes so sv is a 60-dimensional node similarity function for
appearance similarity and sv is a simple binary edge similarity for edges. The learning procedure
is iterative and aims at maximizing the number of correctly matched graph components between
the ground-truth ygt and the estimated matching y. At each iteration the graph matching problem
is solved by a branch and price method and the parameters w = [wV , wE ] are updated by the
gradient descent method. Weights are global over the whole data set. The results reveal that
learning can substantially improve the performance of standard graph matching algorithms. In
particular, they found that simple linear assignment with such a learning scheme outperforms
the Graduated Assignment method.
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Leordeanu et al. [Leordeanu and Hebert, 2009, Leordeanu et al., 2012] used the same strategy
than Caetano et al. [Caetano et al., 2009]. They parametrized functions sV and sE with weight
vectors. They showed for the �rst time how to perform parameter learning in an unsupervised
fashion, that is when no correct correspondences between graphs are given during training. The
assumption is that the expected values of the second order scores s(ij, kl) do not depend on the
particular assignments ij or kl, but only on whether these assignments are correct or not. In
average over many matchings, the pairs of correct assignments are expected to agree in appearance
and so E[s(ij, kl)] should be high. The leading eigenvector (v ∈ Rn1.n2) of the a�nity matrix
K ∈ Rn1.n2×n1.n2 (Model SGMIQP) should follow the same principle. In average over many
matchings, all correct assignments ik must have high values vik and wrong assignments (jl) should
have low value vjl. In other words, authors assume that eigenvector values are higher on average for
correct assignments than for wrong ones. Then the objective is to maximize the correlation between
v and its binary version b(v) (that is, the binary solution returned by the matching algorithm):
maxW

∑M
i=1 transpose(v

(i)
W )b(v

(i)
W ). Note that the construction of K depends on parameters W

through sV and sE functions so the leading eigenvector v depends on W too. So the notation vW
appears.

They showed empirically that unsupervised learning is comparable in e�ciency and quality with
the supervised one, while avoiding the tedious manual labeling of ground truth correspondences.
They also veri�ed experimentally that the unsupervised learning method can improve the per-
formance of several state-of-the art graph matching algorithms. This statement was observed on
graphs built from images (CMU-House/ Hotel, VOC-Cars/Motorbikes).

In [Leordeanu et al., 2009], the paper focused on a Frank-Wolfe like method called IPFP but also a
learning procedure is activated. They used the supervised version of the graph matching learning
method from [Leordeanu and Hebert, 2009].

On speci�c data sets, learning was e�ective, improving the performance by more than 15% on
average, for all learning-free methods.

The work of Torresani et al. [Torresani et al., 2008] formulated the matching task as an energy
minimization problem by de�ning a complex objective function of the appearance and the spatial
arrangement of the features. The objective function is parametrized by 4 weights to be learned.
This approach can be viewed as adopting 4-dimensional sV (sV : R4 × R4 → R) and sE functions
for measuring appearance dissimilarity, geometric compatibility, and occlusion likelihood. As pre-
sented in Section 3.1, the paper [Torresani et al., 2008] is mainly focused on solving the graph
matching problem formulated as a CRF problem. The method is called DD and is based on
dual decomposition. However, they used the method of Liu et al. [Liu et al., 2005] to learn the
parameter values for the graph matching model from examples. They applied Nonlinear Inverse
Optimization [Liu et al., 2005] (NIO) to learn non-negative parameters. They used DD within
NIO to optimize the learning objective.

In the next bunch of papers, the learning techniques are dedicated to the graph edit distance
and so a special attention is given to deletion and insertion costs. In [Cortés and Serratosa, 2015],
a method for learning the real numbers for the insertion c(ε → k) and deletion c(i → ε) costs
on nodes and edges is proposed. An extension to substitution costs is presented in [Cortés and
Serratosa, 2016]. The training set is composed ofM observations. Each observation is composed of
a pair of graphs (G1, G2)i and also the ground truth correspondence ygt. The computer-generated
correspondence y depends on the costs KV ∈ R and KE ∈ R. KV = dV (ε, k) = dV (i, ε) and
KE = dE(ε, kl) = dE(ij, ε) are scalar values to be learned. The loss function is expressed as
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Figure 4.3: Local parametrization of graph matching.

follows:

l(KV ,KE) = 1
M

∑
(G1,G2),ygt∈TrS l0(G1, G2, y

gt, y,KV ,KE) + λΩ(KV ,KE)(4.5)

l0(G1, G2, y
gt, y,KV ,KE) = (d(G1, G2, y,KV ,KE)− d(G1, G2, y

gt,KV ,KE))
2 (4.6)

Ω(KV ,KE) = || [KV ,KE ] ||22 (4.7)

The loss function l is composed of a data-oriented function l0 and a regularization term. Please
see Appendix B for more details about these terms. l0 gauges how far the computer generated
matching is from the ground-truth matching. Clearly, using this loss function, authors assume
that two correspondences that are close to each other (small Hamming distance) tend to achieve
similar costs. Although this relation is not true for all graphs and correspondences, the empirical
evaluation tends to show that it is true for most of the graphs and correspondences in the considered
datasets. Ω is the quadratic regularization term based on the inner product of the weights to be
optimized in order to prevent over�tting and under�tting (see Appendix B). The loss function l
is minimized by the Nelder�Mead method also called downhill simplex method [Nelder and Mead,
1965] that is a non-linear optimization heuristic.

All the previous works aimed at learning common weights shared among all the edges' and nodes.
Weights are global over a graph pair and not local to a given pair of nodes or edges. In other
words with an analogy to probability, it could be more appealing to compute the conditional
probability Pr(ygt|node, parameters) rather than Pr(ygt|parameters)

To overcome this problem, the discriminative weight formulation was introduced by [Cho et al.,
2013] and it can assign di�erent parameters for individual node and edge matching as follows :

s(G1, G2, y, β) =
∑
yik=1

βi.sV (i, k) +
∑
yik=1

∑
yjl=1

βij .sE(ij, kl) (4.8)

β is in this case a vector of parameters indexed by the edge/node matching. Equation 4.8 can
be used to parametrize a graph matching problem. The Figure 4.3 depicts this mechanism. The
learning problem is to learn the parameters to �t a given objective speci�ed by the loss function.
The learning problem turns into the minimization of the Hamming distance measuring the quality
of a predicted matching y against its ground truth ygt. The Hamming distance ‖ygt − y‖1 is not
continuous anywhere and makes the problem not convex. To leverage this di�culty, the normalized
Hamming distance is favored and it can be rewritten as follows:

l(y, ygt) = 1− 1

‖y‖2F
y.ygt (4.9)
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Finally, the learning problem is minimized by a constraint quadratic programming method [Joachims
et al., 2009]. The discriminative weight formulation can be seen as a generalization of previous
methods [Caetano et al., 2009, Torresani et al., 2008]. The paper [Cho et al., 2013] goes beyond the
graph matching problem because the authors proposed also a way to learn/generate the graph G1.
The features and the structure of G1 are involved in the optimization procedure. The similarity
function is the dot product of two attributes:

sV (i, k) = sV (µ1(i), µ2(k)) = sV (ai, ak) = aTi .ak

Where ai is a numeric feature vector of node i. Then, the attributes (ai) of the graph G1 can be
factored out and combined with the weights to be learned:

s(G∗1, G2, y, β) =
∑
yik=1

(βi � ai)T .ak +
∑
yik=1

∑
yjl=1

(βij � aij)T .akl

s(G2, y,W ) =
∑
yik=1

(Wi)
T .ak +

∑
yik=1

∑
yjl=1

(Wij)
T .akl

(4.10)

� is an element-wise product. The parameters to be learned are βi, ai, βij and aij . They are
combined in the matrix W to cope with the multidimensional nature of graph attributes. The
graph G∗1 is a fully-connected graph where node and edge features are learned.

In [Riesen and Ferrer, 2016], a completely di�erent framework was designed. The main contri-
bution is the prediction of whether two nodes match or not thanks to conventional machine learning
tools. The node assignment is represented by a vector of 24 features. These numerical features are
extracted from the node-to-node cost matrix C which was used for the original matching process
(called BP algorithm). Then, using the assignments derived from exact graph edit distance com-
putation as the ground truth, each computed node assignment is labeled correct or incorrect. This
set of labeled assignments is used to train an SVM endowed with a Gaussian kernel to classify the
assignments computed by the approximation as correct or incorrect. This method does not require
solving a graph matching problem to predict pairwise node assignment however no guarantee is
given to output a feasible solution. The prediction does not rely on a graph matching method.

4.1.1.2 Deep methods

A part from the graph matching community, A. Nowak et al in [Nowak et al., 2017, Nowak et al.,
2017] presented a note on learning algorithms for the QAP. They studied data driven approxi-
mations to solve it. Especially, since the QAP can be modelled by a graph, they focused on a
Graph Neural Network (GNN) model [Scarselli et al., 2009]. An introduction and a review about
GNN methods are presented in Appendix C. A graph is processed by a set of units. Each unit
corresponds to a node of the graph. Units are linked according to the input graph connectivity.
This neural network alternates between applying linear combinations of local graph operators, such
as the graph Laplacian, and node-wise non-linearities, and has the ability to model some forms
of non-linear message passing from a layer to another. This GNN model can answer both graph
regression 1 f(G) ∈ Rd and node regression problems f(G,n) ∈ Rd. f(G,n) maps a graph and one
of its nodes into an d-dimensional Euclidean space. An application to subgraph isomorhpism is
prensented in [Scarselli et al., 2009]. Given a subgraph S in a larger graph G, the function f(G,n)
that has to be learned is such that f(Gi, ni,j) = 1 if the node ni,j belongs to a subgraph of Gi,
which is isomorphic to S, and, f(Gi, ni,j) = −1 otherwise. The presented results are not good and
cannot be compared with those achievable by other speci�c methods for subgraph isomorhpism,
which are faster and more accurate. In [Nowak et al., 2017], a simpler GNN is presented. Note

1Note that in most regression problems, the mapping is to a vector of reals while in classi�cation problems, the
mapping is to a vector of integers. Here, for simplicity of exposition, we will denote only the regression case. See
Appendix B for more details about classi�cation and regression. See Appendix C for node classi�cation with GNN.

85



4.1. GRAPH MATCHING

Figure 4.4: Siamese architecture: a structural de�nition.

that this architecture is detailed in Appendix C. They consider this GNN and train it to solve
random instances of the QAP. Given a pair of graphs G1, G2 with N nodes each, they consider a
siamese GNN encoder producing normalized embeddings E1, E2 ∈ RN×d. Siamese neural network
is a class of neural network architectures that contain two or more identical networks. Identical
here means they have the same con�guration with the same parameters and weights. Parameter
updating is mirrored across both networks (see Figure 4.4 for a structural de�nition).

Clearly, the siamese GNN produces node embeddings. Those embeddings are used to predict
a matching as follows. They �rst computed the outer product Z = E1E

T
2 , that they then mapped

to a stochastic matrix by taking the softmax along each row/column (Sinkhorn-Knopp algorithm
2). Let us assume that the results is a bi-stochastic matrix Z ∈ RN×N represents node-to-node
matching similarity. Finally, they used standard cross-entropy loss to predict the corresponding
permutation index. The loss function can be written as follows :

l = −
∑

(G1,G2),ygt∈TrS

|G1|∑
i=0

|G2|∑
k=0

Y gti,k logZi,k

where Y gt is the ground-truth matching for the graph pair G1, G2. Figure 4.5 depicts the overall
architecture.

To build the data set TrS, they considered G1 to be a random Erdos-Renyi graph. The graph
G2 is a small perturbation of G1 so the matching can be trivially deduced as the Identity matrix
I ∈ {0, 1}N×N . All graphs have 50 nodes and the density is around 0.2. The GNN method is out

2A simple iterative method to approach the double stochastic matrix is to alternately rescale all rows and all
columns of E1.ET

2 to sum to 1
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Figure 4.5: Siamese architecture for graph matching.
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performed on these graphs by classical QAP solvers. Similarly, another experiment is performed on
regular graphs with more symmetric structures. On these regular graphs, the GNN outperformed
classical QAP solvers. The source code is available3.

Recently, [Zan�r and Sminchisescu, 2018] present an end-to-end model that makes it possible
to learn all parameters of the graph matching process, including the node and edge features,
represented as deep feature extraction hierarchies. The challenge is in the formulation of the
di�erent matrix computation layers of the model in a way that enables the consistent, e�cient
propagation of gradients in the complete pipeline from the loss function, through the combinatorial
optimization layer solving the matching problem, and the feature extraction hierarchy. The NP-
hard graph matching problem is relaxed by dropping both the binary and the mapping constraints.
The model to be solved is then :

Model 6. L2-norm relaxed QAP (RSGMIQP)

y∗ =argmax
y

yTKy (4.11a)

subject to y ∈ [0, 1]|V1|·|V2| (4.11b)

‖y‖2 = 1 (4.11c)

The optimal y∗ is then given by the leading eigenvector of the matrix K. The main components
of the approach are shown in Figure 4.6. One may notice that the inputs are two images and two
graphs of keypoints. In fact, the approach is dedicated to image because nodes represent keypoints
in the image and node/edge features are extracted and learned to perform graph matching. The
second step is the a�nity computation of matrix K (see Model 6(RSGMIQP)). Since K is large,
it is computed as in [Zhou and la Torre, 2016] thanks to a factorization of the matrix K. K is
decomposed into smaller matrices: Node-edge incidence matrix, node-to-node similarity matrix
and edge-to-edge similarity matrix. Then the relaxed graph matching (see Model 6(RSGMIQP))
is solved thank to a spectral method that computes the leading eigenvector of the matrix K. The
solution y∗ of the relaxed graph matching problem is further re�ned by adding L1 constraints
(one-to-one mapping constraints) ∀i,

∑
i yik = 1 and ∀k,

∑
k yik = 1. This is performed by the

Sinkhorn-Knopp algorithm [Sinkhorn and Knopp, 1967, Knight, 2007]. The �fth step goes back to
the image by measuring the 2D-displacement di between two matched node i and k. Finally a loss
is computed by computing a distance between d and the ground-truth displacement dgt from the
source point to the correct assignment. The key contribution is the construction of the di�erent
matrix layers, obtaining analytic derivatives all the way from the loss function down to the feature
layers in the framework of matrix backpropagation.

The model is designed to establish correspondences between two images. The method scales
up to a�nity matrices K of size 106 × 106. The method is evaluated by the Percentage of Correct
Keypoints metric.

4.1.1.3 Summary

Structural machine learning su�er from a main issue is how to confer learning capability. How
to improve matching by learning? A hand-crafted matching cost function may perform poorly
in practical problems. It means that the optimal solution, in term of graph matching objective
function, does not lead to a low hamming distance with respect to the human ground-truth. A key
idea is then to learn parameters of the matching cost function in order to better match two graphs
G1, G2. A high level picture of the literature is provided in Figure 4.7. It is useful to capture
at glance the paper distributions withing several families of methods. However, a more precise
representation is needed to understand the new trends and issues.

3https://github.com/alexnowakvila/QAP_pt

88

https://github.com/alexnowakvila/QAP_pt


4.1. GRAPH MATCHING

Figure 4.6: Computational pipeline of the fully trainable graph matching model.
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Figure 4.7: A literature review of machine learning techniques for graph matching.

The literature is organized with greater details according to the following criteria:

• The minimizer of the learning problem: This criterion corresponds to the learning algorithm
used to minimize the loss function.

• Graph matching solver: The graph matching solver involved. Some approaches do not used
any graph matching solver.

• The type of loss to be minimized.

• The parameterization level: Where are trainable parameters introduced? Are they global to
the whole graph or local to nodes and edges?

• Distance or Feature Learning: Does the method learn node/edge distance? Or are node and
edge features learned to better match?

• Are node/edge insertion and deletion considered explicitly?

• Supervised or unsupervised learning: Do the data set need to be labeled or ground-truthed
and what kind of ground-truth is needed.

• Attribute types: Is a method benchmarked on richly attributed graphs (node/edge labelled
with numeric vector, symbolic value, ...)?

• Scalability/Graph size: What is the graph size of the graphs involved in the experiments?

A literature summary is tabled in Table 4.1. Focusing on the learning problem, it is often
solved by constraint quadratic programming or by gradient descent algorithms. Recently, the
later is gaining importance thanks to deep neural networks and consequently the need to compute
gradients e�ciently is increasing.

Focusing on the GM module, the GM solvers are based on the QAP or the MAP-inference
problems. All models are based on quadratic programming. However, the instances are often
solved in the relaxed domain. At the opposite, some methods do not involve any matching solver.
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Ref Learning
mini-
mizer

GM
solver

Loss Parameter
level

Feature
Learning

Node/edge
insertion

Supervised Attribute
type

Graph
size

[Caetano
et al.,
2009]

Gradient
descent

Mathematical
solver

Hamming
distance

Global Features No Supervised Numeric 200

[Leordeanu
et al.,
2012]

Gradient
descent

spectral
GM

Hamming
distance

Global Features No UnsupervisedNumeric 50

[Leordeanu
et al.,
2009]

Gradient
descent

IPFP Hamming
distance

Global Features No Supervised Numeric 50

[Torresani
et al.,
2008]

Nonlinear
Inverse
Opti-
mization

Dual
Decom-
position

? Global Distance No ? Numeric 100

[Cortés
and Ser-
ratosa,
2015]

Constraint
Quadratic
program-
ming

BP GED gap Global Distance Yes Supervised Numeric 100

Cho
et al.
[2013]

Constraint
Quadratic
program-
ming

Reweighted
random
walks for
GM

Hamming
distance

Local Distance Yes Supervised Numeric 100

[Riesen
and
Ferrer,
2016]

Constraint
Quadratic
program-
ming

No Hamming
distance

Local Distance Yes Supervised Numeric ?

[Scarselli
et al.,
2009]

Gradient
descent

No Hamming
distance

Local Feature No Supervised Nothing ?

[Nowak
et al.,
2017]

Gradient
descent

No Hamming
distance

Local Feature No Supervised Nothing 50

Zan�r
and
Smin-
chisescu
[2018]

Gradient
descent

Spectral
GM

XY-
displacement

Local Feature No Supervised Numeric 1000

Table 4.1: Synthesis of the literature on learning graph matching. The double horizontal lines
separate between shallow and deep methods.

These methods rely on local statistics to capture the combinatorial nature of the graph matching
problem.

The losses are mainly focused on the Hamming distance. A method ([Zan�r and Sminchisescu,
2018]) is specialized to work on images where graph nodes are 2D-points.

Chronologically speaking, �rst, methods focused on the global parameters by learning node
and edge features globally over the entire graph. It means that global parameters are shared for
all nodes and edges. Then, a set of local parameters that are node or edge dependent have been
learned with success. First, the goal was to learn node-to-node distances and then the ambition
was extended to node features and edge features learning. Recent methods go beyond graph
matching where the two input graphs are given. The tendency is to learn the structure and the
features to better match. None of the papers reported graph matching experiments with symbolic
attributed graphs (meaning graphs with symbolic attributes). However, it does not mean that
symbolic attributes are intractable for the methods. In the machine learning community, symbolic
values, like words, letters for instance, are often represented by sparse one-hot vectors. Such an
approach could be considered to deal with symbolic attributed graphs. Graph sizes range from 50
nodes to 1000 nodes. Graph matching based on deep learning is not completely mature in terms of
performance evaluation. Data sets are often made of synthetic graphs. For the shallow methods,
the experimental parts is often much stronger with a clearer comparison between learning-free and
learning-based methods. A comparison of graph matching methods with and without learning are
provided in Table 4.2 and Table 4.3. Table 4.2 presents results where an unsupervised, learning
procedure improves accuracy of the two graph matching methods Graduated Assignment (GA
[Gold and Rangarajan, 1996]) and Spectral Matching (SM [Leordeanu and Hebert, 2005]). In
the experiment the spectral graph matching takes more advantage of the learning scheme. At
the opposite, Table 4.3 reports performance evaluation of a supervised learning method against a
learning-free method. Accuracy improvements are observed (around 10%-15%) for the learning-
based methods against the learning-free method. When the gain in accuracy thanks to learning
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Matching methods
Dataset SM GA

Cars: no learning 26.3% 31.9%
Cars: with learning 62.2% 47.5%

Motorbikes: no learning 29.5% 34.2%
Motorbikes: with learning 52.7% 45.9%

Table 4.2: Taken from [Leordeanu et al., 2012]: Comparison of matching rates for 2 graph matching
algorithms before and after unsupervised learning on Cars and Motorbikes from Pascal07 database,
with all outliers from the right image allowed and no outliers in the left image.

Matching methods
SM IPFP

Learning methods Accuracy (%) Accuracy (%)

w/o learning 60.4 61.4
DW-SSVM [Cho et al., 2013] 66.2 69.0

Table 4.3: Taken from [Cho et al., 2013]: Performance on synthetic point sets. A learning approach
and a learning-free method (shown in each row) are evaluated with the state of the art graph
matching algorithms (in columns)

methods seem well evaluated, the impact on the convergence speed of the learning algorithm is not
discussed. Running time are rarely reported in the experiments so it is hard to draw conclusion
about it. However, in the deep learning architecture of [Zan�r and Sminchisescu, 2018], for graphs
with 1000 nodes, a complete forward and backward pass runs in roughly 2 seconds on a 3.2 Ghz
Intel Xeon machine, with Titan X Pascal GPU.

Finally, the amount of data to do the training is not really discussed. In [Cho et al., 2013], for
images of identical objects, such as these House/Hotel sequences, only a few number of images are
su�cient for the method to learn the model graph and its features.

4.1.2 Open problems

In some applications for instance Computer Aided Drawing, the graph G2 can be a perfect model
of a symbol and G1 a noisy graph. However, in realistic situations, the source of information
cannot be accessed directly (i.e. there is no ideal model graph available). So, the model graph
can only be sampled from the source (the data set). Although it is useful to learn a matching
function for two graphs of a certain class, a more appealing goal would be to learn a graph model
to match, which provides an optimal matching to all instances of the class. Such a learned graph
would better model the inherent structure in the target class, thus resulting in better performance
for matching. So the new question is merging graph learning and graph matching: How to obtain
a graph model for matching ? This question that has been discussed in [Cho et al., 2013, Zan�r
and Sminchisescu, 2018]. Another way of thinking is to explicitly learn insertion/deletions costs to
cope with noisy model graphs. If a model graph G2 holds unnecessary vertices then their insertion
costs should be small. This was not investigated yet. Other interesting questions are still opened
about the accuracy of predicted matchings. Is it possible to parametrize an heuristic method to
reach solutions close the optimal solutions? Can we learn to approximate an exact method? Can
we speed up an heuristic method thanks to trained cost function? Does a trained cost function
makes instances easier to solve? These questions lead to the following deadlocks:

1. Deadlock 8 : How to deal at a �ne level with insertion and deletion costs? Can we model
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noisy referent graph thanks to these costs.

2. Deadlock 9 : Can an heuristic output solutions closer to optimality thanks to machine learn-
ing?

These two deadlocks will be discussed in the next section. In addition, from the literature review,
wider problems appear:

1. How to deal with symbolic attributes? Are one-hot vector a possible solution?

2. What is the amount of data required to do the learning?

3. Benchmarking, common data sets and evaluation protocol.

4. A better understanding of the training impact, generalization power and size of the training
set.

These questions and remarks will be developed in the perspective section (Section 5) of this
manuscript.

4.1.3 Contributions

4.1.3.1 Deadlock 8 : How to deal at a �ne level with insertion and deletion costs?

4.1.3.1.1 Motivation In the context of the ECGM problem, an interesting question arises:
Can insertion/deletions cost function be learned to cope with noisy sample graphs? How to
parametrize the graph edit distance to learn node/edge dependent insertion/deletion costs? Start-
ing from the disrcrimitative weight formulation proposed in [Cho et al., 2013], we proposed to
extend it to take into account also insertion/deletions costs. Finally, in our proposal, the learning
problem is not solved by constraint quadratic programming method like in [Cho et al., 2013] but
by gradient descent.

4.1.3.1.2 Details Let G1 = (V1,E1,µ1,ζ1) and G2 = (V2,E2,µ2,ζ2) be two graphs, with |V1| =
n1 and |V2| = n2. To apply removal or insertion operations on nodes, node sets are augmented
by dummy elements. The removal of each node i ∈ V1 is modeled as a mapping i → ε2,i where
ε2,i is the dummy element that is associated with i. As a consequence, the set V2 is increased by
n1 dummy elements ε2 to form a new set V2 = V2 ∪ ε2. The node set V1 is increased similarly by
n2 dummy elements ε1 to form V1 = V1 ∪ ε1. Note that V1 and V2 have the same cardinality :
N = n1 + n2. Each element of the two graphs can be edited only once.

Now, we explain how we parameterize Equation 4.2. Let π(k) = i denote an assignment of
node k ∈ G2 to node i ∈ G1, i.e. yik = 1. A joint feature map Φ(G1;G2; y) is de�ned by
aligning the relevant dissimilarity values of Equation 3.2 into a vector form as: Φ(G1, G2, y) =
[· · · , dV (π(k), k), · · · , dE((π(k), π(l)), (k, l)), · · · ]. By introducing a real-valued vector β to weight
all elements of this feature map, we obtain a discriminative objective function:

d(G1, G2, y, β) =βTΦ(G1, G2, y) (4.12a)

= · · ·+ βk · dV (π(k), k)+

+ βkl · dE((π(k), π(l)), (k, l)) + · · · (4.12b)

where β is a weight vector that encodes the importance of node and edge dissimilarity values. In the
case of uniform weights, i.e. β = 1, all elements of vector β are 1, and Equation 4.12a is reduced to
the conventional graph matching score function of Equation 3.2: d(G1, G2, y) = d(G1, G2, y,1). An
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Figure 4.8: Illustration of the parametrized score function computation.

example of the parametrized objective function is given in Figure 4.8. The discriminative weight
formulation is general in the sense that it can assign di�erent parameters to individual nodes and
edges. However, it does not learn a graph model that underlies the feature map, and requires a
reference graph G2 at query time, whose attributes cannot be modi�ed in the learning phase. The
new discrete optimization problem can be rewritten from Model GMIQP as follows:

Model 7. Parametrized graph edit distance (PGED)

y∗ = argmin
y

d(G1, G2, y, β) (4.13a)

subject to y ∈ {0, 1}N.N (4.13b)
N∑
i=1

yi,k = 1 ∀k ∈ [1, · · · , N ] (4.13c)

N∑
k=1

yi,k = 1 ∀i ∈ [1, · · · , N ] (4.13d)

Fixed parametrized graph matching for machine learning To perform conventional
machine learning techniques such as Support Vector Machines (SVM) or Deep Neural Networks
(DNN) on a data set, a �xed feature vector size is often mandatory. In the context of machine
learning, G2 is the model graph and is considered to be �xed during the learning phase. Conse-
quently, G2 is renamed Gm in the manuscript. To obtain a �xed size, in Equation 4.12b, the sizes
of the vectors β and Φ(G,Gm, y) must only depend on the size of Gm and not on the query graph
G.

The graph elements of G and the components of graph Gm = (Vm, Em) are aligned into a
vectorial form by the function Φ. Φ(G,Gm, y) is a vector ∈ R|Vm|+|Em|+2. Two extra components
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Figure 4.9: Parametrized matching function where G1 has 7 graph components (4 nodes and 3
edges).

are added to accumulate node and edge deletion costs. For instance, it can occur that a node or
an edge of G is mapped to a dummy element ε (node deletion or edge deletion). In such a case,
the node deletion costs are mapped in the penultimate component of the vector Φ(·). The edge
deletion costs are mapped in the last component of the vector Φ(·).

β is a vector ∈ R|Nm|+|Em|+2. Individual weights are associated with each component of Gm.
Two extra components are added to parametrize the node and edge deletion costs, respectively.
A shared weight is associated with all node deletion costs. The same strategy is applied for edge
deletions.

The value of the objective function remains the same. Substitutions and insertions have indi-
vidual weights. Deletions share a mutual parameter. In Figure 4.8, G1 holds 5 graph components
and in Figure 4.9, G1 holds 7 graph components. However, in both �gures Φ(·) and β are vectors
of size 5 that only depend on model graph G2.

Now that we have a parametrized version of the error-correcting graph matching problem. We
can use it in a learning scheme that it explained in the next section (Section 4.1.3.2).

4.1.3.2 Deadlock 9: Can an heuristic output solutions closer to optimality thanks to
machine learning?

4.1.3.2.1 Motivation Heuristics are known to be fast (polynomial time) but their solutions
can be far from the optimal solutions. The key idea is to take advantage of fast heuristics but to
use machine learning to increase their e�ectiveness. E�ectiveness is to be understood in terms of
matching accuracy.

4.1.3.2.2 Details Starting, from the parametrized graph edit distance presented in Model
7(PGED), we use it to predict the optimal matchings between input graphs G and a �xed model
graph Gm. Optimal matchings are computed thanks to an exact algorithm (F2 in our case).

95



4.1. GRAPH MATCHING

Optimal matchings are the target values of the learning algorithm so they are denoted by ygt.
Therefore, TrS = {(Gk, Gm), ygti }Mi=1 and we want to predict y. From the viewpoint of machine
learning this problem falls into a structured regression problem also called structured prediction.
The term "structured" refers to the fact that the output of the predictor is not a simple scalar
value but a structured output (see Appendix B). Thanks to the joint-feature map Φ de�ned in the
previous section, we can write structured prediction problem :

min
β,y

∑
(G,Gm),ygt∈TrS

l(G, ygt, Gm, y, β) (4.14)

l =
1

2
(Φ(G,Gm, y

gt)− Φ(G,Gm, y))2 (4.15)

The learning problem is a minimization problem where appears both variables β and y. Both
are involved into the minimization of an empirical risk guided by the loss function l. However,
β is wanted to be invariant across the whole data set while y is computed for every input graph.
The goal is to produce a feature map Φ(G,Gm, y) that is close to the ground-truth feature map
Φ(G,Gm, y

gt).

4.1.3.2.2.1 Learning algorithm One of the easiest ways to understand algorithms for
general structured prediction is the structured perceptron of Collins [Collins, 2002]. This algo-
rithm combines the perceptron algorithm for learning linear regressor with an inference algorithm
(classically the Viterbi algorithm when used on sequence data) and can be described abstractly as
follows. First de�ne a "joint feature function" Φ(x, y) that maps a training sample x and a feasible
solution y to a vector of length d (x and y may have any structure; d is problem-dependent, but
must be �xed for each model). Let GEN be a function that generates a set of feasible solutions
and α is the learning rate.

• Let β be a weight vector of length d.

• For a pre-determined number of iterations:

� For each sample x in the training set with true output ygt:

∗ Find a feasible solution y∗ = argmin
y∈GEN(x)

(βT Φ(x, y))

∗ Update β, from y∗ to ygt: β = β + α(−Φ(x, y∗) + Φ(x, ygt))

Now, let us design our perceptron-based learning algorithm for graph matching. Algorithm 2
is a deterministic algorithm. #iter is the maximum number of iterations or also called epochs
in the literature. The parametrized graph matching problem is solved in Line 9. Line 10 applies
the learning rule de�ned in Equation 4.16. To show the time-dependence of β, we use β(i) as the
weight at time i.

4.1.3.2.2.2 Learning rule. The learning rule aims at modifying β. The weights should be
updated in cases of wrong predictions. The correction must take into account the amount and the
sign of the committed error.

β(i+ 1) = β(i)− α∂l(G,Gm, y
gt)

∂β(i)

β(i+ 1) = β(i)− α
(
(Φ(y∗)− Φ(ygt)).Φ(y∗)

) (4.16)

This rule is obtained by deriving the the computation graph shown in Figure 4.10 with respect to
parameters β.
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Figure 4.10: Computation graph of our learning problem from the inputs to the loss.

The calculus of the derivation goes as follows :

∂l

∂e
= e ;

∂e

∂y∗
= −1 ;

∂y∗

∂β
≈ Φ(y∗) (4.17a)

∂l

∂β
≈ ∂l

∂e
.
∂e

∂y∗
.
∂y∗

∂β
(4.17b)

∂l

∂β
≈ −e.Φ(y∗) (4.17c)

∂l

∂β
≈ −(Φ(ygt)− Φ(y∗)).Φ(y∗) (4.17d)

∂l

∂β
≈ (Φ(y∗)− Φ(ygt)).Φ(y∗) (4.17e)

(4.17f)

Parameters are updated in the opposite direction of the gradient. The goal is to get closer and
closer to the best parameter values βmin as shown in Figure 4.11. We decided to not propagate
gradients through the graph matching method (inside each iteration of the solver) but we do it
only once at convergence (∂y

∗

∂β ). We are aware of that shortcut. The goal was to be faster maybe
at the cost of a noisier or unstable gradient.

Algorithm 2 Training the graph-based perceptron for matching.

1: INPUT: TrS = {(Gk, ygtk )}Mk=1 and Gm
2: INPUT: #iter is the maximum number of iterations
3: INPUT: α learning rate
4: OUTPUT: Learned β. A weight vector
5: Init: β ← 1 and iter ← 0
6: while iter< #iter do
7: i ← 0
8: for (G, ygt) ∈ TrS do
9: y∗ ← arg min

y∈Γ(G,Gm)

β(i)T · Φ(G,Gm, y) // Solve Model 7(PGED)

10: β(i+ 1) = β(i)− α ((Φ(y∗)− Φ(ygt)).Φ(y∗))
11: i ← i +1
12: end for
13: iter ← iter +1
14: end while
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Figure 4.11: Principle of the gradient descent.

Methods Accuracy

Optimal 1
BP learned 0.58

BP w/t learning 0.48

Table 4.4: Test: Mean matching accuracy on unseen graphs.

4.1.3.2.2.3 Experiments Algorithm 2 requires a GED heuristic. The method called BP
[Riesen and Bunke, 2009] has been chosen because it is fast but other could be applied. Algorithm
2 was run on CMU House data set. The model graph is the kth graph of the data set and k varies
from 1 to 100. Nodes have no attributes and edges convey information about the distance between
two points. Distance between two edges dE is the L1 norm between two scalar values. Such graphs
represent a challenging task for the matching algorithms. Three methods are considered. 1) The
matching given by an exact method (optimal matching), 2) and 3) The matching provided by BP
with and without learning. For the learning free method, the matching costs were taken from the
GED contest [Abu-Aisheh et al., 2017a]. Half of the data set was used for training and the other
half for testing. Results of the Algorithm 2 are reported in Table 4.4 and Figure 4.13. In Figure
4.13, the average matching accuracy is depicted in function of the iterations of the algorithm. The
learning scheme can improve the matching accuracy by 25% in average on the training set. Results
obtained during the test phase are reported in Table 4.4, the gain is about 20%. The gain is
smaller due to the di�culty to generalize on unseen graphs. However, results are still far from the
exact method in terms of accuracy but the heuristic remains much faster. On CMU instances, the
heuristic had a running time about 80 ms when the exact method took 1500 seconds. In Figure
4.12 graph matching results are presented for a given pair of graphs at iteration 0 and iteration
200.

Finally, a main drawback of such an approach is that parameters are dependent on the model
graph Gm. Parameters must be found and stored for each model graphs. Another issue is that
this method does not learn the features but only the local dissimilarities. The β weight vector
could be extended to be a matrix in order to weight each feature component of a given node or
edge.
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Figure 4.12: Matching evolution from iteration 0 (top) to 200 (bottom).

Figure 4.13: Training: Accuracy in function of the number of epochs.
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4.1.4 Summary

During the PhD of Maxime Martineau, we have worked on parametrizing the GED problem to
cope with noisy reference graphs [Raveaux et al., 2017]. Then, a learning scheme was designed to
include the parametrized GED formulation. The goal to be achieved by the learning scheme is to
approximate an exact GED solver.

Now let us outline some drawbacks. Learning from examples (supervised learning) might be
undesirable for NP-hard problems because (1) the performance of the model is tied to the
quality of the supervised labels, (2) getting high-quality labeled data is expensive and may be
infeasible for some instances, (3) one cares more about �nding a competitive solution more than
replicating the results of another algorithm. This last statement opens the door to a whole area
of research. It will be discussed in the perspectives.
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Figure 4.14: Machine learning techniques for graph classi�cation and a focus on bridging the gap
between graph matching and embedding techniques.

4.2 Graph classi�cation

4.2.1 State of the art from a machine learning viewpoint

As mentioned in Section 2.3, graph classi�ers can be categorized into two categories whether the
classi�er operates in a vector space or in a graph space. Vector space methods are fast but e�ciency
comes at a price: feature vector transformation leads to loss of topological information. The graph
space paradigm is characterized by the fact that graphs are compared in a graph space. Whereas,
this de�nition was straightforward in a learning free context (Section 3.2). In a machine learning
context, the boundaries are less clear. So, we come up with a de�nition of machine learning in
graph space as follows:

De�nition 12. Machine learning in graph space
Machine learning techniques that rely on graph matching to extract features.

This manuscript is focused on the methods that respect this de�nition.

Typically, kNN, kernel machines and explicit embeddings can be compliant with De�nition 12
if they rely on graph matching. Figure 4.14 draws a picture at a coarse level of machine learning
techniques for graph classi�cation. In addition, Figure 4.14 illustrates the links between techniques
operating in graph space and vector space.

Let us comment this important statement thanks to Table 4.5 where the families of classi�cation
methods are categorized according to their compliance to De�nition 12.

Both graph kernels and graph embeddings provide a powerful vectorial description of the under-
lying graphs. While graph kernels produce an implicit embedding of graphs into a Hilbert space,
graph embeddings result in an explicit feature vector in a real vector space. Yet, both approaches
crucially depend on similarity or dissimilarity computation on graphs. In Appendix D, a review of
kernels based on graph matching is provided. In a classi�cation context, the training set is de�ned
as TrS = {(Gi, ti)}Mi=1, where Gi ∈ D is a graph and ti ∈ T is the class of the graph. One of
the signi�cant limitation of (dis)similarity based algorithms is that the kernel or distance functions
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Machine
learning in
graph space

Family of methods

No Explicit graph embedding [Luqman et al., 2013]: each graph is
mapped to a feature vector (φ : G → Rn). Thereafter it is not
trivial to return in a graph space. The function φ is explicitly
de�ned. By analogy with the image processing �eld, such meth-
ods can be seen as handcrafted methods to extract features from
graphs. Classi�ers are trained on vectors.

No Graph kernels [Gärtner, 2003]: They are similarity measures cor-
responding to a scalar product in a vector space that is not neces-
sary known explicitly (k :< G,G >→ R)). Each pair of graphs is
compared thanks to substructures that are computable in polyno-
mial time. Substructures are used to compute the scalar product
of the graph pair. The kernel must encode a measure of relevant
similarity between the graphs while limiting the complexity of cal-
culation and respecting the di�erent properties de�ning a kernel.
Classi�ers are trained in a kernel space.

No Graph neural networks [Kipf and Welling, 2016]: They can be cat-
egorized as explicit graph embedding techniques but the function
φ is not handcrafted but learned.

Yes The graph kernel is based on GED (i.e. k(G1, G2) =
exp(−GED(G1, G2))) [Neuhaus and Bunke., 2007]. kNN or SVM
classi�ers can be employed for instance. In such a case, graph
comparisons are performed in a kernel space but the kernels rely
on graph matching.

Yes kNN based on GED [Riesen, 2015].
Yes The explicit graph embedding de�ned by φ(G) =

[GED(G,G1), · · · , GED(G,GM )] [Riesen and Bunke, 2010b]. In
this case, the graph comparisons are performed in a vector space.
However, each component of the vector is the result of a graph
matching algorithm.

Table 4.5: Categorization of high level methods for comparing graphs.
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Figure 4.15: Taxonomy of graph prototypes.

must be evaluated for all possible pairs (G,Gi) where G is a graph from the test set and Gi is a
graph from the training set. All these evaluations can lead to excessive computation times when
making predictions for new graphs. So, from this statement arises a new problem how to reduce the
training set to make the decision faster. This problem is referred in this dissertation as learning
graph prototypes.

4.2.1.1 Learning graph prototypes

Graph prototypes can be categorized according to the space they belong to. Prototypes that nec-
essarily belongs to the training set are called "set graphs". At the opposite, prototypes that do not
necessarily belong to the training set are called "generalized graphs". Generalized graphs can be
arti�cially generated and do not necessarily represent real objects. Each prototype family can then
be re�ned according to the computation criteria. We distinguish between generative and discrimi-
native prototypes. Generative prototypes model the data distribution (Pr(D) or Pr(D|t) ) while
discriminative prototypes maximize a classi�cation rate (equivalent to the conditional probability
p(t|D)) if t is the ground-truth class label. Generative prototypes are obtained in a unsupervised
manner. However, such prototypes do not take into account the inter-class distribution of learning
samples. Discriminative prototypes require a supervised scheme to be computed.

The Figure 4.15 pictures out the graph prototype taxonomy.

The objectives of graph prototypes are (i) to overcome the well-known disadvantages of a
(dis)similarity-based classi�er, i.e. the large storage requirements, the large computational ef-
fort and the sensitivity to noisy examples and (ii) to keep classi�cation performance as high as
possible.
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4.2.1.1.1 Set prototypes SVM [Vapnik, 1998, Neuhaus and Bunke., 2007] based methods
have sparse solutions, so that predictions for new inputs depend only on the similarity/kernel
function evaluated at a subset of the training data. In Appendix D, an introduction to SVM is
presented to illustrate this principle.

In order to classify new graph using the SVM trained model, the sign of the classi�er f(G)
is expressed in terms of the Lagrange multipliers {an} and the kernel function. {an ∈ R+} are
parameters and they are found by solving the dual formulation of SVM (Equation D.8). According
to a training set TrS = {(Gi, ti)}Mi=1 where t is the class label, the classi�cation is then expressed
by :

t̂ =

M∑
i=1

aitik(G,Gi)

t̂ is the predicted class. Any graph for which an = 0 will not appear in the sum in and hence plays
no role in making predictions for new graphs. The remaining graphs are called support vectors and
because they satisfy t.t̂ = 1, they correspond to graphs that lie on the hyperplane of separation
between classes. This property is central to the practical applicability of support vector machines.
Once the model is trained, a signi�cant proportion of the training data can be discarded and only
the support vectors are retained.

t̂ =
∑
i∈S

aitik(G,Gi)

Where S denotes the set of indices of the support vectors. According to the taxonomy explained
in Figure 4.15, SVM-based prototypes are discriminative set prototypes. Similarly to SVM, in
[Borzeshi et al., 2013], another framework for selecting a set of prototypes is proposed. It selects
graphs from a labelled graph set taking their discriminative power into account.

Another kind of set prototypes are set median graphs [Ferrer et al., 2009, 2011, Jiang et al.,
2001]. In a classi�cation context, median graphs are computed independently in each class through
a minimization process of the sum of distances to all graphs within a given class. The set median
graph for the class i is de�ned as follows:

De�nition 13. Set median graph
Let S = {Trs|t = i} be the set containing all the graphs of the class i.

smg = arg min
(G2,t)∈S

∑
(G1,t)∈S

d(G1, G2)

The concepts presented above involve the generation of a single prototype for each class. In
some particular applications, it may be interesting to generate m prototypes for each class in order
to obtain a better description of data. In what follows, we give the de�nition of such prototypes
called msmg [Raveaux et al., 2011]:

De�nition 14. Multiple set median graphs
Let S = {Trs|t = i} be the set containing all the graphs of the class i. Let Proto = {Gk}mk=1 ⊂ S
be a subset of S with m graphs. Let dmin(G,Proto) be the smallest distance between a graph G
and Proto de�ned as follows:

dmin(G,Proto) = min
Gj∈Proto

d(G,Gj)

Then, the set of multiple median graphs is de�ned by:

msmg = arg min
Proto⊂S

∑
G1∈S

dmin(G1, P roto)
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The problem of �nding the msmg is known in the literature as the p−median problem. The
p −median problem is a combinatorial problem known to be NP-hard [Mladenovic et al., 2007].
A variation of the msmg are the spanning set graphs (mspg) [Riesen and Bunke, 2010a]. Contrary
to multiple median graphs, the spanning prototypes can be computed in polynomial time. This
set of graphs is built by iterations. At the �rst iteration, the �rst prototype selected is the set
median graph and then each additional prototype is selected by the spanning prototype selector.
The spanning prototype selector is the graph the furthest away from the already selected prototype
graphs. Such a graph set can be de�ned as follows:

De�nition 15. Spanning set graphs
Let S = {Trs|t = i} be the set containing all the graphs of the class i. Let mspg = {Gk}mk=1 ⊂ S
be a subset of S with m graphs. Let dmin(G,mspg) be the smallest distance between a graph G and
mspg de�ned as follows:

dmin(G,mspg) = min
Gj∈mspg

d(G,Gj)

Then, the set of spanning graphs can be iteratively constructed as follows:

mspgj =

{
smg if j = 1
mspgj−1 ∪ {Gj} if 1 < j ≤ m where Gj = arg max

G∈{S\mspgj−1}
dmin(G,mspgj−1)

mspgj denotes the set at iteration j.

Finally set prototypes can also be obtained by any distance based clustering algorithm. For
instance, the PAM algorithm [Kaufman and Rousseeuw, 1987] is a clustering algorithm operating
on a distance matrix to compute medoids. In contrast to the k-means algorithm, PAM can be used
with arbitrary distances.

4.2.1.1.2 Generalized prototypes The generalized median graph of a set of graph S is a
graph that minimizes the sum of the distances to all graphs in S. The generalized median graph
di�ers from the set median graph because it does not necessary lie in S [Musmanno and Ribeiro,
2016, Ferrer et al., 2010, Chaieb et al., 2017]. It is de�ned by :

De�nition 16. Generalized median graph
Let U be the in�nite set of graphs that can be built using the labels from LV and LE. Let S =
{G1, · · · , GM} ⊂ U be a subset of U . The generalized median graph (gmg) of the subset S is
de�ned by:

gmg = arg min
G2∈U

∑
G1∈S

d(G1, G2)

Using median graphs, essential information of each class is captured. However, such prototypes
do not take into account the inter-class distribution of learning samples. In order to overcome this
problem, discriminative graphs [Raveaux et al., 2011] (dg) has been proposed as prototypes for
graph classi�cation. The main di�erence between median graphs and discriminative graphs lies in
the criterion which is used to generate the prototypes. In the case of dg, rather than optimizing a
sum of intra-class distances, prototypes are generated in order to optimize the classi�cation error
rate obtained on a test dataset.

De�nition 17. Generalized discriminative graphs
Let N be the number of classes of the classi�cation problem. Let TrS be a training set and let

∆(TrS, {Gi}Ni=1) be the error rate obtained by a 1NN classi�er on TrS using the graph prototypes
{Gi}Ni=1 ⊂ U as learning samples. Then the set GDG composed of the gdg of each class is given
by:

GDG = {sdg1, · · · , sdgN}
GDG = arg min{Gi}i=1]N∈U ∆(TrS, {Gi}i=1]N )
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The concepts presented above involve the generation of a single prototype but it can be extended
to m prototypes.

Note that in [Cho et al., 2013], generalized prototypes are learned. However, the criterion to
generate them is to maximize a matching rate and not a classi�cation rate.

As it is explicitly mentioned in De�nitions 13, 14, 15, 16, 17, a (dis)similarity measure is required
to compute prototypes. However, as discussed in Section 4.1, the (dis)similarity measure can also
be learned to �t a speci�c objective. So, the next section is devoted to this topic called "Learning
graph (dis)similarity measure".

4.2.1.2 Learning graph (dis)similarity measure

Another room, where learning algorithms can be introduced, is the learning of the (dis)similarity
measure. This topic is often called metric learning. Metric learning can be achieved by many
means such that :

• learning kernel parameters [Gärtner, 2003]

• learning a graph embedding [Riba et al., 2018]

• learning a distance in the vector space where the graphs are projected

• metric learning for structured data [Collins, 2002]

However, we may focus on metric learning for structured data to be compliant with the De�nition
12(LGM). Note that when kernels rely on graph matching, learning kernel parameters can also be
compliant with De�nition 12(LGM). However, kernels based on graph matching need cost functions.
So the question of learning graph matching cost function is still crucial. In [Riesen and Bunke, 2009],
a grid search on a validation set is used to determine the values of the parameters KV ∈ R, which
corresponds to the cost of a node deletion or insertion, and KE ∈ R, which corresponds to the cost
of an edge deletion or insertion. The main drawback of the grid search is the empirical de�nitions
of intervals and bounds of the grid, which require expertise on the problem. The speed can also
drastically decrease as the grid becomes larger in function of the size parameter space. The method
aimed at learning common weights for all the edges and nodes and only distinguishes weights by
type of operations: deletion, insertion or substitution. Neuhaus et al. [Neuhaus and Bunke, 2005]
address the issue of learning dissimilarity functions for numerically labeled graphs from a corpus of
sample graphs. A system of self-organizing maps (SOMs) that represent the dissimilarity spaces of
node and edge labels was proposed. The learning process adapts the edit costs in such a way that
the similarity of graphs from the same class is increased. The matching are computed only once
before learning the costs and each edit operation is considered independently from the matching
it belongs. From the same authors, in [Neuhaus and Bunke, 2007], the graph matching process is
formulated in a stochastic context. A maximum likelihood parameter estimation of the distribution
of matching operations is performed. The underlying distortion model is a mixture of multivariate
Gaussians. The model is learned using an Expectation Maximization algorithm. The matching
costs are adapted to decrease the distances between graphs from the same class, thereby leading to
compact graph clusters. The method requires the summation over all possible edit paths between
two graphs which is not tractable in practice. But it can be approximated by GED heuristics (A
beam search for instance).

4.2.2 Open problems

By reviewing the literature about classi�cation operating in graph space, machine learning can be
introduced in two locations:
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Figure 4.16: Bridging the gap between end-to-end graph embedding and graph space techniques
by learning graph matching and prototypes.

1. Learning graph distance

2. Learning graph prototypes

The literature about learning graph distance aimed at learning common weights shared among all
the edges' and nodes. Weights are global over a graph pair and not local to a given pair of nodes
or edges. To overcome this problem, the discriminative weight formulation used in graph matching
context in Equation 4.12 can be of �rst interest but the learning remains to be designed. Another,
room for improvement could be to learn the graph prototypes along with the graph distance.
To our knowledge, in the literature, there is no paper about learning graph matching and graph
prototypes, at the same time, in the graph space. The most similar idea lies in [Cho et al., 2013]
where graph prototypes and graph matching are learned at the same time. However, the approach
do not tackle a classi�cation problem and furthermore, the method is not hierarchical. Such that
the complicated learning problem must be addressed in a single step. At the opposite, GNNs [Kipf
and Welling, 2016, Monti et al., 2016] are organized in a hierarchical manner but graphs are locally
projected in the Euclidean space to compute local statistics. This feature vector transformation
leads to loss of topological information. Here comes a great objective, to create a GNN operating
in the graph space in order to, at once, learn graph matching and graph prototypes. Pictorially,
our research direction is showed in Figure 4.16.

The deadlocks to be addressed are :

1. Deadlock 10: Learning graph distance for classi�cation with local parameters for nodes and
edges.

2. Deadlock 11: Learning graph matching and graph prototypes in a hierarchical manner.

4.2.3 Contributions

4.2.3.1 Deadlock 10: Learning graph distance for classi�cation with local parameters
for nodes and edges

4.2.3.1.1 Motivation Previous works [Neuhaus and Bunke, 2007, Riesen and Bunke, 2009,
Cortés and Serratosa, 2015] have considered a global parametrization of the graph distance. Here,
we take bene�t of the parametrized graph edit distance described in Model 7(PGED) to built a
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Figure 4.17: Overview of the perceptron and a modi�ed perceptron for graph classi�cation. I in
this �gure is an input vector.

perceptron neuron operating in graph space for a classi�cation purpose. A weight is associated
to each nodes and edges of a graph prototype. The choice of the perceptron may seem dated
compared to recent deep neural network architectures [Lecun et al., 1998]. However, the simple
perceptron neuron can be stacked to create a multilayer perceptron (MLP). The MLP is a renown
algorithm which is still in use in the latest deep learning architectures and is especially involved in
the dense layers.

4.2.3.1.2 Details In the context of neural networks, a perceptron is an arti�cial neuron using
the Heaviside step function as the activation function. A global picture of the graph-based per-
ceptron is depicted in Figure 4.17. The conventional perceptron is adapted to graphs thanks to
three main features : a) the learning rule for updating the weight vector β, b) the graph matching
algorithm for �nding y∗, and c) the graph model Gm.

TrS = {(Gi, ti)}Mi=1 is the training set composed of graphs and their associated class ti ∈ {0, 1}.
We �rst consider a binary or two-class classi�cation problem. The Algorithm 3 is designed to train
the perceptron model. The algorithm is operating on the graph set TrS through a change of
variable from G to Φ(G,Gm, y

∗). Φ(G,Gm, y
∗) is the joint feature map, the vector of minimal

edit costs for each element in the prototype graph Gm. Any type of prototypes could be involved
but discriminative graph prototypes could be more suited for the classi�cation task. Then, the
weights β are optimized with respect to classi�cation loss through the perceptron algorithm. But
β is also implied in �nding y∗ as y∗ = argmin

y
d(G,Gm, y, β). It means modifying β is not only

acting on the linear projection of Φ(G,Gm, y
∗) but also on the graph matching operator, which is

a non-linear operation. Reinterpreting the minimization problem, it appears that both variables β
and y are involved into the minimization of an empirical risk guided by the loss function l:

min
β,y

∑
(Gi,ti)∈TrS

l(Gi, ti, Gm, yi, β) (4.18)

l =
1

2

(
ti − heaviside(βT · Φ(Gi, Gm, y

∗
i ))
)2

(4.19)

The heaviside : R→ {0, 1} is a decision function de�ned as

heaviside =

{
1 if βT · Φ(G,Gm, y) + b > 0

0 otherwise
with Gm a prototype

Such an output is suitable for a binary classi�cation problem.

Now, let us get a closer look to the learning algorithm of the graph-based perceptron for
classi�cation. Algorithm 3 is a deterministic algorithm. #iter is the maximum number of iterations
or also called epochs in the literature. The parametrized graph matching problem is solved in Line
9. Lines 10 to 14 apply the learning rule de�ned in Equation 4.20 when the prediction is wrong.
To show the time-dependence of β, we use β(i) as the weight at time i.
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Figure 4.18: Computation graph of our graph-based classi�er from the inputs to the loss.

4.2.3.1.2.1 Learning rule. The learning rule aims at modifying β. The weights should be
updated in cases of wrong predictions. The correction must take into account the amount and the
sign of the committed error.

β(i+ 1) ≈ β(i)− α ∂l(.)
∂β(i)

β(i+ 1) ≈ β(i)− α(t̂− t)Φ(G,Gm, y
∗)

(4.20)

This rule is obtained by deriving the computation graph shown in Figure 4.18 with respect to
parameters β.

The calculus of the derivation goes as follows :

∂l

∂e
= e ;

∂e

∂t̂
= −1 ;

∂t̂

∂z
≈ 1 ;

∂z

∂β
≈ φ(y∗) (4.21a)

∂l

∂β
=
∂l

∂e
.
∂e

∂t̂
.
∂t̂

∂z

∂z

∂β
(4.21b)

∂l

∂β
≈ −e.Φ(y∗) (4.21c)

∂l

∂β
≈ (t̂− t).Φ(y∗) (4.21d)

(4.21e)

The gradient calculation is not the exact gradient. The Heaviside is no di�erentiable anywhere.
So we approximate it as a linear function to let the gradient �ow through the graph matching
algorithm. We decided to not propagate gradients inside each iteration of the solver but we do it
only once at convergence (∂y

∗

∂β ). We are aware of that shortcut. The goal was to be faster maybe
at the cost of a noisier or unstable gradient. Parameters are updated in the opposite direction of
the gradient. The goal is to get closer and closer to the best parameter values βmin as shown in
Figure 4.11.

Algorithm 3 is a deterministic algorithm whose complexity in terms of calls to the matching
solver is O(#iter · |TrS|) where #iter is the number of iterations. In addition, the entire test
set (TeS) is classi�ed by only |TeS| calls to the graph matching algorithm. This linear complex-
ity makes the decision procedure a fast graph classi�er. Classical kNN graph classi�ers require
generally |TrS| × |TeS| calls to the graph matching solver.

The methods can also be seen as learning a discriminative distance function between a training
set and a graph prototype (Gm).
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Algorithm 3 Training the graph-based perceptron for classi�cation.

1: INPUT: TrS = {(G, t)} and Gm
2: INPUT: #iter is the maximum number of iterations
3: INPUT: α learning rate
4: OUTPUT: Learned β. A weight vector
5: Init: β ← 1 and iter ← 0
6: while iter< #iter do
7: i ← 0
8: for (G, t) ∈ TrS do
9: y∗ ← arg min

y∈Γ(G,Gm)

β(i)T · Φ(G,Gm, y) // Solve Model 7

10: z ← β(i)T · Φ(G,Gm, y
∗)

11: t̂← heaviside(z)
12: if t̂ 6= t then
13: β(i+ 1)← β(i)− α(t− t̂)Φ(G,Gm, y

∗)
14: end if
15: i ← i +1
16: end for
17: iter ← iter +1
18: end while

The perceptron provides a natural extension to the multiclass problem. The Heaviside function
could be replaced by a Relu(z) = max(0, z). Then, instead of having only one neuron with binary
output, we could have m neurons leading to multiclass classi�cation. A set of functions f(G, t)
map each possible input/output pair to a real value that represents the �tness of the pair (G, t).
The resulting score is used to choose among many possible outputs: t̂ = argmint f(G, t).

One drawback of the method is the a priori choice of the prototype graph (Gm). We have seen
in the state of the art that computing a prototype (Gm) is dependent on a distance function.
The distance is exactly what our method aims to learn. So we face a chicken-egg problem.
Consequently, the choice of Gm is made based on a arbitrary selected distance function. In other
words, the prototype graph computation requires pre-de�ned weights. To overcome this issue,
a looping process with 2 phases could be envisaged but is not applied here : 1) compute the
prototype graph, 2) learn the distance parameters and loop to step 1).

4.2.3.1.2.2 Experiments The proposed approach stands and falls with the answer to the
overall question, whether or not we are able to outperform traditional pattern recognition systems
that are directly applied in the graph domain. That is, the essential and sole quality criterion to
be applied to the novel approach is the degree of improvement in the recognition accuracy. More
pessimistically one might ask, is there any improvement at all?

Algorithm 3 requires a GED heuristic. The method called BP [Riesen and Bunke, 2009] has
been chosen because it is fast but another could be chosen. Prototypes are computed according to
the De�nition 13 of the set median graphs. Prede�ned β parameters are required to compute the
median graphs of the G-M-Perceptron method. A vanilla plain solution was adopted with β = 1.
Let us recall that β = 1 is the initialization value of our algorithms.

The datasets are described in Table 4.6. These databases are representative of a wide range of
learning problems that occur in Computer Vision. Matching functions dV and dE were taken from
[Riesen and Bunke, 2010b] and [Moreno-García et al., 2016].

A commonly used approach in pattern classi�cation is based on nearest-neighbor classi�cation.
That is, an unknown object is assigned the class of its closest known element, or nearest neighbor
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(1NN). Two versions were utilized in the tests. R-1NN [Riesen and Bunke, 2009] and C-1NN [Cortés
and Serratosa, 2015] where the values of KV = c(i→ ε) = c(ε→ k) and KE = c(ij → ε) = c(ε→
kl) were borrowed from [Riesen and Bunke, 2010b] and [Moreno-García et al., 2016], respectively.
KN corresponds to the cost of a node deletion or insertion, and KE corresponds to the cost of an
edge deletion or insertion. The aforementioned methods hold a meta parameter α ∈ [0, 1] which
corresponds to the weighting parameter that controls whether the cost on the nodes or on the edges
is more important. In Table 4.7, the best values of parameters (α,KN ,KE) are summarized.

In Figure 4.19, the impact of the learning rate is depicted for the median models. A very high
learning rate (α = 0.1) leads to poor results. The search space exploration is too fast and saddle
points are missed. A high learning rate (α = 0.01) leads to unstable results with many oscillations
while a low learning rate implies a slow but smooth convergence. A trade-o� can be achieved with
an intermediate value (α = 0.001). For the rest of the experiments, α = 0.001 was chosen and the
number of iterations was set to 300.

To summarize the results of theses experiments, the classi�cation rates (η) during the training
and the test phases are reported in Table 4.9 along with the time, in milliseconds, for classifying
all test instances. Table 4.9, the classi�cation rates obtained during the learning phase are tab-
ulated (column ηTrS). The learning ability is demonstrated on all data sets. The classi�cation
rate is always higher on the training set than on the test set except on the CMU and Fingerprint
databases where the number of classes is small. The gap between the training and test recognition
rates is 3% on average. This result demonstrates the good generalization ability of our algorithms.

Classi�cation results on 7 publicly available datasets demonstrated a large speed-up during the
test phase (60 times faster in average) with a loss of accuracy of 6% on average compared to a 1NN
classi�er based on an optimized graph distance.

Database size (TrS,TeS) ]classes node labels edge labels |V | |E| max |V | max |E| balanced
LETTER-HIGH (750,750) 15 x,y none 4.7 4.5 9 9 Y
LETTER-MED (750,750) 15 x,y none 4.7 3.2 9 9 Y
LETTER-LOW (750,750) 15 x,y none 4.7 3.1 9 9 Y

CMU (71,70) 2 Shape none 30 154.4 30 158 Y
GREC (286,528) 22 x,y Line types 11.5 12.2 25 30 Y

Fingerprint (378,1533) 4 none angle 5.42 4.42 26 24 N
COIL-DEL (2400,1000) 100 x,y none 21.5 54.2 77 222 Y

Table 4.6: Summary of graph data set characteristics.

4.2.3.2 Deadlock 11: Learning graph matching and graph prototypes in a hierarchical
manner

4.2.3.2.1 Motivation A �rst drawback of the graph-based perceptron is that it does not learn
the prototype graph. The latter must be computed before. Second, the graph-based perceptron

Database R-1-NN C-1-NN
α Kn Ke From α Kn Ke From

LETTER-LOW 0.3 0.1 0.25 Paper I 0.5 1 1 Paper II
LETTER-MED 0.7 01.9 0.75 Paper I 0.5 1 1 Paper II
LETTER-HIGH 0.9 1.7 0.75 Paper I 0.5 1 1 Paper II

CMU NA NA NA NA 0.5 1000 1 Paper II
Fingerprint 0.75 0.7 0.5 Paper I NA NA NA NA
COIL-DEL NA NA NA NA NA NA NA NA

Table 4.7: Best parameters according to learning strategies R-1-NN and C-1-NN taken from Paper
I: [Riesen and Bunke, 2010b] and from Paper II: [Moreno-García et al., 2016]
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Table 4.8: Taxonomy of the compared methods

Classi�er Parameter learning Model graph Method's Name

1NN

R [Riesen and Bunke, 2009]
M R-M-1NN

TrS R-1NN

C [Cortés and Serratosa, 2015]
M C-M-1NN

TrS C-1NN

Perceptron Gradient descent M G-M-Perceptron

1 21 41 61 81 101
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Figure 4.19: Letter-HIGH : Impact of the learning rate on the convergence.

output a scalar value. By replacing the heaviside function by a Relu(z) = max(0, z), the graph-
based perceptron could be plugged/stacked with standard MLP units. Therefore, the the graph-
based perceptron would only play the role of a �rst input layer absorbing the graph data structure.
Here comes the need to have graph-based neurons at each layer of a deep learning architecture.

GNN that are reviewed, in Appendix C, rely mainly on a vector space de�nition of locality
in graphs, we propose to stay in graph space by using a convolution operator based on graph
matching. The parametrized convolution operator based on graph matching is depicted in Figure
4.21. A convolution �lter is an attributed graph. The result of our convolution operator on an
input graph is, for a given node i, the matching similarity between N(i) the neighbourhood of i
and the graph �lter. The intuition is that the local response of a convolution �lter on euclidean
data is analog to graph similarity between a node neighbourhood and the �lter graph. A �lter
graph can be seen as a prototype dedicated to react to a pattern within the input graph. To
illustrate this principle, we propose some toy examples on images represented by regular grids.
In Figure 4.20, the results of convolutions is displayed. The �lter graph is a simple graph with 2
nodes and one edge. Nodes are labelled with values -1 and 1 respectively. By analogy with image
processing, this �lter graph can be seen as a simple gradient kernel. The convolution operator
endowed with this speci�c �lter will �nd the maximum contrast (pairwise pixel di�erences) inside
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Table 4.9: Classi�cation results. The best classi�cation rates are marked in blue while the best pro-
cessing times are in red. "Best" means an improvement over other methods statistically signi�cant
according to a z-test with a con�dence level of 70%

G-M-Perceptron R-1NN C-1NN R-M-1NN C-M-1NN

Database ηTrS ηTeS Time ηTeS Time ηTeS Time ηTeS Time ηTeS Time

LETTER-LOW 1 0.98 1436 0.99 69700 0.96 71869 0.97 1341 0.98 1341
LETTER-MED 0.90 0.87 1404 0.92 74506 0.93 72150 0.86 1388 0.81 1310
LETTER-HIGH 0.86 0.81 1669 0.83 86377 0.84 84911 0.82 1731 0.71 1498

CMU 1 0.99 11029 NA NA 0.99 427955 NA NA 0.99 10780
GREC 0.84 0.75 14370 0.98 199087 NA NA 0.96 14726 NA NA

Fingerprint 0.74 0.76 1576 0.58 260816 NA NA 0.73 2138 NA NA
Coil-DEL 0.52 0.52 471575 NA NA NA NA NA NA NA NA

a given neighbourhood N(i). The key di�erence, with the image domain, is that the �lter does not
need to be "spatialised". There is no need to apply the �lter vertically (y axis) and horizontally
(x axis). Therefore the convolution is rotation invariant.

Several graph �lters can be added to compose a convolution layer as shown in Figure 4.22.
Finally, in the GNN review (Appendix C), we have seen that edge attributes were not fully handled.
They were either restricted to be a scalar value or merely aggregated with the node features.

GNN described in the literature outputs node embeddings but never edge embedddings. When
describing the convolution with an error-tolerant graph matching operator, this problem is solved.
Graph matching can manage complex edge attributes. The outputs of our graph matching based
neural network are node and edge embedddings.

4.2.3.2.2 Details Now, that we have drawn a global picture of our GNN based on graph
matching. Let us de�ne in greater detail the framework that is at its early stage of development.
To de�ne our convolution operator, we must de�ne the graph matching function that will be
pointwisely used.

De�nition 18. Graph Matching Similarity

Let G1 and G2 be attributed graphs: G1 = (V1, E1, µ1, ζ1) and G2 = (V2, E2, µ2, ζ2). n1 and n2

are the size of the sets V1 and V2, respectively.

GMS(G1, G2) = max
y

s(G1, G2, y), (4.22a)

subject to y ∈ {0, 1}n1n2 (4.22b)
n1∑
i=1

yi,k ≤ 1 ∀k ∈ [1, · · · , n2] (4.22c)

n2∑
k=1

yi,k ≤ 1 ∀i ∈ [1, · · · , n1] (4.22d)

(4.22e)

The choice of this graph matching problem is driven by the analogy with the CNN. Where a
convolution response is maximum when the �lter �ts well to the input signal.
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Figure 4.20: Top: Original images. Bottom: Results of a �lter graph convolves on regular grids of
images (8-connexity). The neighbourhood is a one hop neighbourhood.

Figure 4.21: Two graphs are convolved. GI is the input graph and GF is the �lter graph. Attributes
of GF are parameters W . Convolution is based on matching GF at di�erent locations of the input
graph.
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Figure 4.22: Graph matching based convolution layer.

The similarity function s is de�ned as follows:

s(G1, G2, y) =
∑
yik=1

sV (i, k) +
∑
yik=1

∑
yjl=1

sE(ij, kl) (4.23a)

sV (i, k) = µ(i).µ(k) (4.23b)

sE(ij, kl) = ζ(ij).ζ(kl) (4.23c)

Similarity between nodes and edges are de�ned as dot products.

Now that our matching operator is formulated, we can apply it over an input graph to compute
the result of convolution.

Let GI and GF be attributed graphs: GI = (VI , EI , µI , ζI) and GF = (VF , EF , µF , ζF ). GI
and GF are respectively referred to as the input graph and the �lter graph.

De�nition 19. Graph convolution operator �

GI �GF = (VI , EI , µ, ζ) (4.24a)

with µ : VI → R such that µ(i) = GMS(giI , GF )∀ i ∈ VI (4.24b)

ζ : EI → R such that ζ(ij) = score(ij,GI , GF )∀ ij ∈ EI (4.24c)

.

giI is de�ning the neighbourhood (which is a subgraph) for vertex i in GI .

The results of the convolution operator is a graph with the same topology/structure than GI
but with di�erent attributes on edges and nodes.

4.2.3.2.2.1 Edge attribute in convolved graph score is a function mapping an edge to
its matching score in the found GMS. The problem is that it might be assigned multiple times:

let Pij = {ij ∈ giI |giI ∀i ∈ VI} ∀ij ∈ EI (4.25)

Pij potentially contains more than one element. Therefore, a score can be de�ned as follows:

score(ij,GI , GF ) = θ ({sE(ij, kl).yij,kl ∀kl ∈ EF ∀gI ∈ Pij}) (4.26a)

with θ : some statistical estimator (max or avg) (4.26b)

Now that the convolution operator is de�ned, it is possible to use it as a base to build a
convolution layer. This layer can be included in a graph neural network.
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De�nition 20. Filter graph
A �lter graph is an attributed graph GWF . Every attribute function is parametrized with respect
to weight vector W ∈ R|V |+|E|+2. The extra parameters (noted W b1 and W b2) correspond to the
biases w.r.t vertex and edges outputs.

GWF = (VF , EF , µ
W
F , ζ

W
F ) (4.27a)

with µWF (k) = Wk (4.27b)

ζWF (kl) = Wkl (4.27c)

De�nition 21. Graph convolution �lter
A graph convolution �lter is a convolution operation based on a �lter graph. The output of graph
convolution �lter convfilter : G×G→ G is de�ned as follows:

convfilter(GI , G
W
F ) = GI �GWF +W b· (4.28a)

(4.28b)

De�nition 22. Graph convolution layer
A convolution layer is a set of �lter graphs {GkF }kk=1 endowed with a convolution operator and
applied on a same input graph GI .

The output function of the layer is a graph with same topology as GI but with attributes as
vectors composed by attributes of every �lters outputs.

Now let us how this layer can be integrated into a deep learning architecture.

4.2.3.2.2.2 Architecture GNN based on our graph convolution layer can perform both
graph classi�cation or node classi�cation. Graph convolution layers can be stacked and combined
with conventional layers or activation functions like RelU or Softmax. Only the pooling layer
should be adapted to graphs. The graph pooling goals are: a) pool similar local features (max
pooling or average pooling) and b) series of pooling layers create invariance to global geometric
deformations (translation invariance for instance). The main challenge is to design a multi-scale
coarsening algorithm that preserves non-linear graph structures. Graph coarsening decomposes GI
into smaller meaningful clusters. This problem is combinatorial and is NP-hard. In the literature,
some graph clustering algorithm have been favored such as Graclus or the Louvain method [Dhillon
et al., 2007, Blondel et al., 2008].

4.2.3.2.2.3 Hyperparameters Like any traditional convolution layer, hyperparameters of
our graph convolution layer are the number of �lter graphs and their size. Moreover, another
hyperparameter is introduced. The number of hops (n-hops) that de�nes a node neighborhood.
This hyperparameter n− hops is involved in the creation of the subgraph gkI rooted in node k. In
the experiment, the n − hops parameter is set to one. The choice of the graph maching solver is
also an important element. In the experiment, the BP algorithm was chosen [Riesen and Bunke,
2009]. This choices are made arbitrary to establish preliminary results. A deeper study about
these hyper parameters should be carried out in a near future.

4.2.3.2.2.4 Experiments We applied the proposed method on a classical task of hand-
written digit classi�cation in the MNIST dataset. While almost trivial by todays standards, we
nevertheless use this example to obtain preliminary results of our approach. Our experimental
setup followed [Monti et al., 2016]. The 28 × 28 images were represented as graphs, where vertices
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Figure 4.23: MNIST digits classi�cation (Regular grid, Superpixels) (Taken from CVPR 2017
tutorial http://geometricdeeplearning.com/ ).

Table 4.10: Recognition rates on MNIST 2class

Representation Dataset CNN MoNet Ours
Valid Test Valid Test Valid Test

1
4 grid MNIST 100 % 99.88 % 97.56 % 99.40 % 99.51 % 97.76 %
75 superpixels MNIST 94.13 % 92.70 % 94.13 % 89.53 %

correspond to (super)pixels and edges represent their spatial relations. We considered two con-
structions: all images represented on the same graph (regular grid) and each image represented as
a di�erent graph (see Figure 4.23 left and right, respectively). Furthermore, the grids contain 196
vertices and the superpixel-based graphs contain 75 vertices.

Three methods were compared: classical CNN LeNet5 architecture [Lecun et al., 1998] (con-
taining two convolutional, two max pooling, and one fully-connected layer, applied on regular grids
only), MoNet [Monti et al., 2016] that is a recent and e�ective GNN and our proposal. We used
a standard splitting of the MNIST dataset into training, testing, and validation sets of sizes 55K,
10K, and 5K images, respectively. LeNet used 2× 2 max-pooling; and for MoNet and our method,
we used three convolutional layers, interleaved with pooling layers based on the Graclus method
[Dhillon et al., 2007] to coarsen the graph by a factor of four.

Training was done with 350K iterations of Adam optimizer, initial learning rate 10−4 regular-
ization factor 10−4 dropout probability 0.5, and batch size of 10.

Results on MNIST 2class are reported in Table 4.10.

The overall tendency of results show a clear advantage for the CNN when dealing with grid
graphs. MoNet is the best when dealing with the irregular graphs. Nevertheless, our method is
just at the early stage of development. The n−hops parameter was set to one. Higher value could
be a plus to capture more structural information. In addition, �lter sizes were set up like in the
LeNET5 network. The �lter size is 5 nodes so graph prototypes are rather small. Larger graph
prototypes could capture more structural information too. Better graph matching solver could be
investigated. Especially, the GM solver adopted in [Zan�r and Sminchisescu, 2018] could be a good
choice. It seems to be faster and easier to optimize by back propagation.
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4.2.4 Summary

In the PhD of Maxime Martineau, the research direction of bridging the gap between graph space
and explicit embedding was investigated. A �rst step in this direction was to propose a graph-based
perceptron for learning discriminative graph matching in a classi�cation context [Martineau et al.,
2018, in press]. Graph matching was parametrized to build a weighted formulation. This weighted
formulation was used to de�ne a perceptron classi�er, in which each neuron is composed of a pro-
totype graph and a vector of parameters. Each weight is associated with a graph component of
the prototype graph. Weights are learned using the gradient descent algorithm. A main drawback
is that the prototype graph is not learned and the method is not hierarchical. So secondly, a con-
volution operator based on graph matching was proposed and integrated into a GNN architecture.
Convolution �lters play the role of prototypes graphs to be learned. Such a GNN model o�er an
elegant solution to output both node and edge embeddings.
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Chapter 5

Conclusion and perspectives

5.1 Conclusion

This manuscript addresses the issue of matching and classifying graphs. In structural pattern
recognition based on graphs, the idea is to transform patterns into graphs and then perform the
analysis and classi�cation of patterns in the domain of graphs.

Graphs are very �exible computer data structures that allow a very rich and very detailed
description of a very wide range of objects, ranging from chemical molecules to images, via social
networks. Paradoxically, despite the important power of representation of graphs, the Machine
Learning and Operational Research communities have not mixed closely to develop powerful algo-
rithms for analyzing data represented by graphs.

My research activities are focused around pattern recognition using structural methods. Two
axes are developed during my research: discrete optimization and learning in the space of graphs.
The applications are matching and classifying graphs.

5.1.1 Discrete optimization for graph matching and graph classi�cation

In this section are discussed the issues related to the calculation of graph matching as well as the
classi�cation of graphs.

5.1.1.1 Graph comparison

Many applications, such as information retrieval or classi�cation, require measuring the distance
or similarity between two graphs, ie, matching - the vertices of the graphs to identify their common
points and their di�erences. A �rst objective was to de�ne new mathematical models to represent
the problem of the graph edit distance. In a collaboration with LITIS Lab (in Rouen) [Lerouge
et al., 2017, 2016] and also the PhD of Mostafa Darwiche [Darwiche et al., 2018, in pressa], three
models based on integer linear programming were developed. This formalism makes possible to
bene�t from e�cient solving methods that can be easily exploited thanks to solvers. A solver is a
computer software capable of solving mathematical equations or logic problems.

The graph edit distance is an NP-hard optimization problem. Its solution time increases
exponentially according to the number of nodes of the two graphs. Therefore, two challenges
arise for this type of problem. First, the development of exact methods to obtain the optimal
solution of the problem quickly. Exact solving is not always possible in practice because of the
combinatorial explosion caused by the complexity of the problem. From this observation arose the
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second challenge, the design of heuristic methods able to quickly provide a sub-optimal solution of
quality.

We have proposed two exact methods to calculate the optimal solution of the optimization
problem. In Zeina Abu-aisheh thesis [Abu-Aisheh et al., 2015b], a branch and bound method was
proposed. An evaluation of all possible solutions is performed without explicitly listing them. Par-
tial solutions are removed using the lower and upper bounds. In the PhD of Mostafa Darwiche,
the use of a mathematical solver solved the three formulations based on the integer linear program-
ming. The couple integer linear programming and mathematical solver allowed to obtain the best
results. To date, the LITIS and LIFAT have among the best exact methods for solving the graph
edit distance problem. Since exact solving is not always possible in practice, we are interested in
heuristic methods. In my thesis [Raveaux, 2010], I explored the possibility of simplifying the initial
problem to transform it into a linear subgraph assignment problem whose solving is in polynomial
time and no longer in exponential time. Of course, this time reduction is not without consequence
on the quality of the solution obtained. There is no free lunch 1. In Zeina Abu-aisheh's thesis
[Abu-Aisheh, 2016] and in collaboration with the LITIS [Lerouge et al., 2017], heuristics are ob-
tained simply by limiting execution time of exact methods. In doing so, it is easy to meet the time
constraints of certain applications but no information on the quality of the returned solution is
taken into account to stop the method. This drawback is raised in the PhD of Mostafa Darwiche
[Darwiche et al., 2018, in pressa], two local searches, in the sense of a neighborhood operator in the
solution space, based on the linear programming and a mathematical solver have been proposed.
These methods explore the solution space locally around a neighborhood and stop if no improved
solution is found. These heuristics are among the most accurate of the literature. In addition,
mathematical solvers, such as IBM CPLEX for example, are constantly evolving and become more
and more e�cient from year to year. This suggests that the approaches developed by LIFAT will
become even more e�ective in the future.

Taking a step back on the methods helped to bring closer the notions of exact method and
heuristic by proposing the methods called anytime [Abu-Aisheh et al., 2017a]. This type of method
is capable of delivering a �rst feasible solution very quickly and then gradually improving it to
converge towards an optimal solution. Whenever an improved solution is found, it is made available
for the �nal application that uses the anytime method as a service of solutions. This way of
understanding the problem makes the anytime method very �exible and applicable when the time
constraints of the �nal application are not known in advance.

Finally, a solid methodological benchmark consisting of graphs and metrics has been proposed
for the performance evaluation [Abu-Aisheh et al., 2015a] of the graph edit distance. From this
approach was born a competition on this problem within the framework of the international confer-
ence in pattern recognition ICPR 2016 in collaboration with colleagues of the GREYC laboratory
in Caen.

5.1.1.2 Graph distance based classi�cation

This part deals with the problem of supervised classi�cation of graphs. In many applications, it is
necessary to assign a class (category) to an unknown graph (G). This classi�cation step is based
on a set of graphs whose class is known. This set of graphs is called the training set. One of the
signi�cant limitations of (dis)similarity based algorithms is that the kernel or distance functions
must be evaluated for all possible pairs G and Gi of training data. It can be computationally
infeasible during training and it can lead to excessive computation times when making predictions
for new graphs. Three di�erent methodological angles correct these defects:

• 1) The use of a fast heuristic to compute the graph edit distance. This solution has been

1Economist Milton Friedman's sentence
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used in the PhD of Zeina Abu-aisheh [Abu-Aisheh et al., 2018, in press] as well as in my
thesis [Raveaux et al., 2010, 2013a].

• 2) It is also possible to "reduce" the training set by selecting or generating representatives
from the initial database. In my thesis and in a collaboration with the LITIS, I was inter-
ested in calculating median graphs (modeling a class) and prototype graphs (discriminant)
[Raveaux et al., 2011]. These aspects of selection or generation of prototypes fall under the
learning section that will be developed after.

• 3) Finally, the last angle of attack is to model the problem of computing classi�cation problem
as a discrete optimization problem and to solve it heuristically. This original methodology
was validated in a work with Zeina Abu-aisheh [Abu-Aisheh et al., 2018, in press]. The
graph edit distance problem was generalized to comparing a graph G1 with an entire training
set. This approach enables a branch and bound procedure which eliminates comparisons of
non-promising graphs thanks to the upper and lower bounds calculated on the classi�cation
problem. The result is an optimized exploration of the comparison tree.

5.1.2 Graph matching and graph classi�cation in graph space

In this section is discussed the development and use of learning methods to solve problems of graph
matching and graph classi�cation.

5.1.2.1 Graph matching

In Maxime Martineau's thesis, the problem of the graph edit distance has been parametrized to be
suitable for learning [Raveaux et al., 2017]. The parameters w weight the cost functions between
two nodes or two edges so the problem of matching "node to node" or "edge to edge" is dependent
on continuous (real) parameters. The objective of the learning algorithm is to �nd the values of the
parameters that minimize a criterion de�ned on the training data (empirical risk). An example of
a criterion to be minimized is the sum of squared errors between suboptimal and exact matchings.
The goal is to have an heuristic as accurate as an exact method. This problem is similar to a
structured regression problem. An e�ective tool for solving a regression problem is a model based
on a neural network. Such a model is trained by the gradient descent method. In this context,
learning consists of �nding the values of the parameters w. The parameterized editing distance
can be seen as a particular layer called a combinational layer that is integrated into a neural
network. This combinatorial layer requires one hyper-parameter: a prototype graph that must be
�xed during the learning phase. The disadvantage of this method is that it does not generalize the
learned parameters to several prototype graphs. The parameters w are therefore associated with
a particular prototype graph.

5.1.2.2 Graph classi�cation

The previous approach has been adapted to classify graphs [Martineau et al., 2018, in press]. The
criterion to be minimized is a misclassi�cation rate. In the context of a two-class problem {0,1
}, the output of the combinatorial layer feeds an function (H : R → {0, 1}) to predict the class.
The inputs of the combinatorial layer remain similar to the previous approach: a �xed prototype
graph during the learning phase. In my thesis and in collaboration with the LITIS [Raveaux
et al., 2011], we de�ned four types of prototype graph: 1) the set graphs belonging to the training
set, 2) the generalized prototypes that do not to belong to the training set, generalized graphs are
synthetic graphs resulting from a generation process. Each of these two large families is divided into
two parts: 3) the median graphs are constructed with respect to a single class of the classi�cation
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Figure 5.1: The combinatorial optimization (CO) solves a machine learning problem.

problem without taking into consideration the other classes. In contrast, 4) the discriminant graphs
are constructed taking into account the entire training set in order to minimize a misclassi�cation
rate. In [Martineau et al., 2018, in press], the prototype graph is chosen a priori by calculating a
set median graph. In Maxime Martineau's thesis, the previous perceptron architecture has been
extended to the concept of convolutional neural network (GCNN). This strategy allow to get rid o�
a priori prototypes for the bene�t of discriminating graphs determined during the learning phase.
All of this work constitutes a solid foundation for extending deep learning networks in graph space.

5.1.3 Interplay between machine learning and combinatorial optimiza-
tion

As we have seen in this manuscript, machine learning and combinatorial optimization are closely
coupled. Some learning problems can be formulated as combinatorial optimization problems as
shown in Figure 5.1. It is the case of learning prototype graphs for instance. Here are some other
examples that fall in this category:

• k-medians clustering.

• The graph partition problems (Graph cut).

• The MAP-inference problem of a discrete variable CRF.

Combinatorial optimization is then very important for the machine learning community. Better
solving methods can lead to better learning scheme. The reverse is also true. Heuristic methods
can be improved when they integrate machine learning methods. This idea is presented in Figure
5.2. It is the case of learning schemes for structured outputs that generalize traditional machine
learning approaches to structured outputs:

• SVMs → Structured SVM [Tsochantaridis et al., 2004]

• Logistic Regression → Conditional Random Fields [La�erty et al., 2001]

• Perceptron → Structured Perceptron [Collins, 2002]

All these algorithms learn parameters of a combinatorial optimization problem in order to guide its
solving. Studying the bene�ts of embedding machine learning algorithms into discrete optimization
methods is important to create new e�cient optimization approaches. Such learning methods is of
interest to the discrete optimization community and machine learning community.

Finally, ML can be used to directly output solutions of combinatorial optimization problems
[Nowak et al., 2017, Scarselli et al., 2009]. This kind of approach is depicted in Figure 5.3. Such
an approach can be guided by the nature of the application that requires to output solutions in
real time. ML turns out to be suitable for obtaining accurate solutions in short computing times
because some of the complexity is addressed o�ine.
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Figure 5.2: The combinatorial optimization (CO) algorithm repeatedly queries the same ML model
to make decisions. The ML model takes as input the current state of the combinatorial algorithm.

Figure 5.3: Machine learning acts alone to provide a solution to the problem.

5.2 Short term perspectives

This section is concerned by short term perspectives that could lead to PhD subjects. First, we
draw our attention on new ideas in the �eld of learning-free graph matching methods.

5.2.1 Learning-free graph matching problems

5.2.1.1 Higher order graph matching

The graph matching problems consider unary and binary relations so that the matching costs
depend on very local information. In pattern recognition, it could be interesting to extend the
context to capture a more global information. The matching cost could carry more semantic
because the subgraphs to be matched represent larger parts of an object. This paradigm is depicted
in Figure 5.4 and modeled by Equation 5.1. Note that only the 3rd order extension is presented
for clarity reasons but it could be extended to higher orders.

d(G1, G2, y) =
∑
i∈V1
k∈V2

c(i, k).yik +
∑

ij∈V1×V1
kl∈V2×V2

c(ij, kl).yik,kl +
∑

hij∈V 3
1

mkl∈V 3
2

c(hij,mkl).yhik,mkl (5.1)

To my knowledge, the solving of higher order graph matching for pattern recognition has not
been (well) investigated in the literature.

5.2.1.2 A "robust" graph matching model

In the same vein, new models could be investigated. Graph matching problems aims at minimizing
a sum of costs. In a pattern recognition context, it could be great to integrate an additional
criterion to make the matching more robust to large distortions or outliers. In this objective, the
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Figure 5.4: Extension of the graph matching problem to a higher order

addition of a penalization term, such that the maximum distortion is small, is of �rst interest. This
intuition is modeled by Equation 5.2.

d(G1, G2) = min
λ∈Γ(G1,G2)

[
1

|λ|
∑
oi∈λ

c(oi) + max
oi∈λ

c(oi)

]
(5.2)

5.2.1.3 Multivalent matching

In graph matching, the constraints implies that each node can be assigned at most once. In many
real-world applications, comparing patterns described at di�erent granularity levels is of great
interest. For instance, in the �eld of image analysis, an over-segmentation of some images might
occur whereas an under-estimation occurs in some other images resulting in allowing several regions
of one image to be correspondent, or related to, a single region of another image. Based on this
fact, multivalent matching problem emerged to be one of the interesting problems in graph theory
[Sorlin et al., 2007]. Multivalent matching drops the condition that vertices in the source graph are
to be mapped to distinct vertices of the target graph. Thus, in multivalent matching, vertex in the
�rst graph can be matched with an empty set of vertices, one vertex or even multiple vertices in the
other graph. Even if the multivalent matching problem has been studied, it is still at the its early
stage. Similarly to what we have done for the graph edit distance, mathematical programming and
machine learning could be investigated to deal with this problem.

5.2.1.4 Multiple occurrences graph matching

This problem deal with the search of multiple occurrences of a given pattern represented as a
input graph within a larger graph. Few works address this problem [Bodic et al., 2012] and
usually the methods are iterative and the algorithms are con�gured so that any vertex mapping
in a previous solution is excluded from the search space. At the opposite, the Multi Graph Edit
Distance Problem de�ned in Problem KMGED could be used in a single pass to search for the k
most similar matchings and providing a speed up.

Second, we discuss the perspective on the side of learning graph matching.
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5.2.2 Learning-based graph matching

We now discuss the possibility to merge combinatorial optimization and machine learning for the
purpose of graph matching.

5.2.2.1 Hierarchical feature learning for graph matching methods

We have seen that a big trend is to learn graph matching with graph neural networks. The Siamese
architecture for graph matching presented in [Nowak et al., 2017] su�ers from a main drawback
that no graph matching solver is involved to maintain the constraints consistency. The learning
algorithm must learn on its own the combinatorial nature of the problem. At the opposite, in [Zan�r
and Sminchisescu, 2018], a feed-forward architecture is proposed and it relies on a graph matching
solver. However, the feature extraction is completely domain-dependent and it is dedicated to
image processing. Our proposal would be to replace the feature extraction step of [Zan�r and
Sminchisescu, 2018] by a Siamese architecture based on graph neural networks. In this way, we
would obtain a complete end-to-end graph matching learning scheme. In this direction, we could
exploit our graph-matching based neural network. The global architecture is depicted in Figure
5.5. In this strategy, the ML serves as a feature extractor. The extracted features are used to
generate an a�nity matrix (K) on which operates the graph matching method. Another way of
seeing this mechanism is a data generation scheme to facilitate the graph matching. Figure 5.1
illustrates this mechanism.

5.2.2.2 Learning to branch in a branch and bound

In [Zan�r and Sminchisescu, 2018], the graph matching solver does not have any parameter to be
learned. The learning stage is located before by extracting features that will facilitate the graph
matching stage. In the methods based on structured prediction [Martineau et al., 2018, in press,
Raveaux et al., 2017, Cho et al., 2013], ML and CO collaborate together (see Figure 5.2). However,
these methods remain shallow. We would like to extend the concept to structured prediction to
deep architecture. Especially, we would like to couple structured prediction and a branch bound
procedure. In our branch and bound [Abu-Aisheh et al., 2015b], each tree node (p) is either a
partial matching plus the remaining nodes/edges to be matched or a feasible matching. We would
like to design a predictor as a function fθ with parameters θ. This predictor would take as an
input the tree node p, and outputs both move probabilities and a value, (m, ˆopt) = fθ(p). The
vector of move probabilities m represents the probability of selecting each move (next child node)
a, ma = Pr(a|p). The value ˆopt is a scalar evaluation, estimating the probability of the current
state p to lead to an optimal solution. At test time, the predictor fθ will be called by the branch
and bound procedure to drive the exploration of the search space to the most promising solution.
An illustration is provided in Figure 5.7. In this way, the branch and bound will be equipped with
trainable parameters. The predictor fθ could be a deep architecture such as a GNN.

5.2.3 Learning graph matching for classi�cation

Graph neural networks achieve graph classi�cation by averaging the node embeddings. We have the
intuition that this step induces a loose of information. A research direction is to stacked our graph-
based perceptron after a graph neural network. Once again, we could exploit our graph-matching
based convolution neural network to constantly operate in graph space. The global architecture is
depicted in Figure 5.8.
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Figure 5.5: A proposal of end-to-end learning graph matching scheme based on a combinatorial
layer. Red parts are new components compared to [Nowak et al., 2017]

Figure 5.6: The ML method extracts information from the problem. This information (features)
is fed to a combinatorial optimization (CO) algorithm.
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Figure 5.7: A branch and bound algorithm guided by a learned predictor.

Figure 5.8: A proposal of end-to-end learning graph classi�cation in the graph space. The left part
of the image (the GNN) is taken from [Kipf and Welling, 2016]
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5.3 Long term perspectives

Now, that we have explained some promising hanging fruits, we can expose some more long term
perspectives.

5.3.1 Bringing semantic to computer vision task thanks to graphs

One characteristic that sets humans apart from modern learning-based computer vision algorithms
is the ability to acquire knowledge about the world and use that knowledge to reason about the
visual world. Humans can learn about the characteristics of objects and the relationships that occur
between them to learn a large variety of visual concepts, often with few examples. Our future work
will investigate the use of structured prior knowledge in the form of knowledge graphs to improve
performance on image classi�cation. Such additional information could help to deal with ambiguity
and to bring the context into the classi�er. Graph neural networks will be a key component to
represent the image and the semantic knowledge about the classi�cation task (classi�cation of
documents, scene images or medical images for instance). Graph neural network could be a way of
e�ciently incorporating knowledge graphs into a vision classi�cation pipeline. A key challenge to
require joint reasoning over the visual and knowledge graph domains. The question is even more
widely open: how could we built graph neural networks that deal with multiple graphs? Visual
question answering is another task where this situation appears. In visual question answering
with structured representations of both scene contents and the textual questions are presented
by graphs. Structures and features of both graphs are completely di�erent so that they cannot
be input to the graph neural network in a straightforward manner. A way to tackle this issue
could be to train several neural networks together with a mutual goal. Very promising works in
this direction has emerged [Marino et al., 2017, Lee et al., 2018, Teney et al., 2017]. With our
insight on graph matching, we could create cost functions for the image graph that depend on the
knowledge graph.

5.3.2 On the relation between graph matching and Optimal Transport

Optimal Transport (OT) problems have recently raised interest in several �elds, in particular
because OT theory can be used for computing distances between probability distributions. These
distances have important properties:

• They can be evaluated directly on empirical estimates of the distributions.

• By exploiting the geometry of the underlying metric space, they provide meaningful distances.

Graph matching and OT are related in the sense that both consider interactions (edges) between
data.

An optimal transport-like distance [Villani, 2008] can be obtained by comparing the metric
spaces directly: It calculates distances between pairs of samples within each domain and measures
how these distances compare to those in the other domain. The Gromov-Wasserstein distance is
an optimal transport distance and it can be applied to model a graph matching problem : Let G1,
G2 be two graphs. Let A1, A2 be the weighted adjacency matrix of these two graphs. Note that
a weight may not be between 0 and 1 but they have to express the similarity between two nodes
(the appearances of the interaction). Let Pm1 ∈ R|V1| be the empirical distribution of nodes of
G1, which counts the appearance of each node in E1. Pm2 is built in the same way.

d(Pm1, Pm2) = min
Pr∈Π(Pm1,Pm2)

∑
(i,k)∈V1×V2

∑
(j,l)∈V1×V2

||A1
i,j −A2

k,l||.P r(i, k).P r(j, l) (5.3)
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Pr ∈ R|V1|×|V2| is the joint probability of nodes i ∈ V1 and k ∈ V2. Pr and Pm1 are related. Pm1

is the marginal of Pr such that Pm1
i =

∑
k∈V2

Pr(i, k). Π(Pm1, Pm2) is the set of all possible
joint probabilities Pr that can be obtained from Pm1 and Pm2. By choosing the largest Pr(i, k)
for each i, the matching that minimizes the Gromov-Wasserstein distance between the two graphs
can be obtained. However, the results may not ful�ll binary mapping constraints.

Modelling graph matching problems by OT problems is interesting because OT problems
have strong solution methods with linear convergence ( Sinkhorn-Knopp algorithm [Sinkhorn and
Knopp, 1967, Altschuler et al., 2017] ). A �rst step in this direction was made in [Xu et al., 2019]
(pre-print of Lawrence Carin).

5.3.3 Graph matching for domain adaptation

Modern data analytics are based on the availability of large volumes of data, sensed by a variety of
acquisition devices and at high temporal frequency. But this large amounts of heterogeneous data
also make the task of learning semantic concepts more di�cult, since the data used for learning a de-
cision function and those used for inference tend not to follow the same distribution. Discrepancies
(also known as drift) in data distribution are due to several reasons and are application-dependent.
In computer vision, this problem is known as the visual adaptation domain problem, where do-
main drifts occur when changing lighting conditions, acquisition devices, or by considering the
presence or absence of backgrounds. For those reasons, several works have coped with these drift
problems by developing learning methods able to transfer knowledge from a source domain to a
target domain. Learning in this discrepancy context is denoted as the domain adaptation prob-
lem. A variant of domain adaptation is unsupervised domain adaptation, where data labels are
only available in the source domain. This problem can be tackled by assuming that the e�ects of
the drifts can be reduced if data undergo a phase of adaptation (typically, a non-linear mapping)
where both domains look more alike. The question is then how to transform data so as to make
their distributions �closer�, and use the label information available in the source domain to learn
a classi�er in the transformed domain ? If the source domain and the target domain are modeled
as graphs then �nding matches between samples of the source and target domains can be achieved
by graph matching. This process is depicted in Figure 5.9. This idea was investigated in [Das and
Lee, 2018] but it could be further developed thanks to graph neural networks. Nodes embeddings
and graph matching could be learned in the objective to better classify in the target domain.

5.3.4 The rise of the edge classi�cation

Traditional structural pattern recognition techniques were mainly focused on graph classi�cation
and matching. With the rapid emergence of the graph neural networks, new interesting applications
come to the surface. In fact graph neural networks provide a common framework to perform
classi�cation at node and graph levels. This enables new perspectives such as semantic image
segmentation (pixel classi�cation). However, edges are left behind and it is not possible to perform
classi�cation at edge level. It could very useful to use our graph matching based neural network
for such a purpose because our model outputs node and edge embeddings. A direct applications
could be to classify the types of relation between atoms in a molecule graph or to perfom graph
factorization.

5.3.5 Benchmarking

This topic is of great importance if we want to take into account the mistakes that have been made
in the past within the research on edge detection (some authors proposed many new optimal edge
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Figure 5.9: Illustration of the domain adaptation. (left) dataset for training, i.e. source domain,
and testing, i.e. target domain. Note that a classi�er estimated on the training examples clearly
does not �t the target data. (middle) a matching Y is estimated and used to transfer the training
samples onto the target domain.(right) the transferred labeled samples are used for estimating a
classi�er in the target domain.

detectors only because we had no tools to make them compete, or just to compare and classify
them, on the basis of real data).

5.3.5.1 Learning graph matching

On the side of learning graph matching, none of the papers reported experiments with symbolic
attributed graphs. It is true that the focus was given to computer vision methods but is it possible
to make all this methods work on graph with discrete attributes? It could be interesting to include
in the benchmark graphs with discrete attributes to answer this question. Moreover, running time
are rarely reported in the experiments so it is hard to draw conclusion about the scalability of the
methods. The amount of data to perform the training is not really discussed. Generally, there is
a lack of common benchmarks with precised metrics and various graph data sets.

5.3.5.2 Graph classi�cation

If I would ask myself what is it the best methods to classify graphs, I would get to the point that the
answer is not obvious. It would depend on the graphs (density, attributes type, the size) and on the
number graphs at hand. There is no clear consensus. Graph neural networks seem very promising
but they are not the ultimate weapon. In [Xu et al., 2018], a recent benchmark is proposed to
compare graph kernels and graph neural networks. Data sets are made of social networks and
molecules. Graph kernels (based random walks) achieve very good results. They are competitive
with graph neural networks and sometimes better, especially on molecule graphs. So the debate
is not closed. There are rooms to enrich performance evaluation tools and better characterize the
methods. This will come up with graphs from di�erent domains (scene images, document images,
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medical images, mesh, computer-aided-drawing models, ...) and a common library supporting the
di�erent methods would be a plus.

5.3.6 Deep reinforcement learning

Learning from examples (supervised learning) might be undesirable for NP-hard problems because
(1) the performance of the model is tied to the quality of the supervised labels, (2) getting high-
quality labeled data is expensive and may be infeasible for new problem statements, (3) one cares
more about �nding a competitive solution more than replicating the results of another algorithm.
Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn
in an interactive environment by trial and error using feedback from its own actions and experiences
[Silver et al., 2016]. Though both supervised and reinforcement learning use the same paradigm but
no. Unlike supervised learning where the feedback (the ground-truth label) provided is complete
(in term of information) and correct (i.e. t = [0, 0, 1] for a three class problem), reinforcement
learning uses rewards and punishment to drive the learning process (i.e. t = −1 or 1 to warn the
system in case of wrong or good classi�cation, respectively). Standard RL algorithms do not have
the ability to estimate values for unseen states. This can be overcome by more advanced algorithms
based on deep learning called deep reinforcement learning. Deep reinforcement learning is getting
more and more attention thanks to interesting successes. AlphaGo Zero [Silver et al., 2016] is the
�rst computer program to defeat a world champion in the ancient Chinese game of Go. AlphaStar
is the �rst Arti�cial Intelligence to defeat a top professional player at the Real-Time Strategy game
called Starcraft 2. RL requires a lot of (weakly) labelled data, therefore it is most applicable in
domains where simulated data. Graph matching problems fall into this category. Many solutions
can be generated. Each solution can be evaluated/labelled by its objective function value. The
couple RL and deep learning has been applied to solve combinatorial problems such as the traveling
salesman problem or knacksack [Bello et al., 2016]. Thanks to the combination of graph neural
networks, search tree algorithms and RL, new heuristics for the graph matching problems could
appear. One could think about the Siamese architecture [Nowak et al., 2017] and the search tree
method [Abu-Aisheh et al., 2015b] trained by RL. The deep reinforcement algorithm would learn
how to explore the search tree.

5.3.7 Graph matching for multi-object tracking in videos and document
analysis

Tracking multiple objects in videos is an important problem in computer vision which has wide
applications in various video analysis scenarios, such as visual surveillance. In particular, we would
like to focus on tracking people and cars moving within a video. In this case, category detector
can be utilized to facilitate tracking. The major challenge in objects tracking is how to associate
noisy detected objects in the current video frame with previously tracked objects. We propose the
use of graph-based representations and graph matching to deal with the data association problem.

Many tasks in Pattern Recognition and Document Image Analysis are formulated as graph
matching problems. Therefore learning graph-based representations and related techniques is a
real interest for the community. Image of documents are likely to be structured because they are
images made by humans to humans. Recent work on the problem of subgraph spotting in graph-
representation of comic book images (SSGCI) have been published [Le et al., 2018]. We could
participate to this applicative problem thanks to our GED methods.
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5.3.8 Scalability

5.3.8.1 Graph matching and GPU

Nowadays, when developing graph matching methods to be integrated in a deep neural network,
it is important to take into account the explosion of the computing power (GPU and CPU vector-
ization). GPU compatible methods are more than welcome. Graph matching implementations in
a computationally e�cient manner thanks to complex matrix calculation is a big challenge.

5.3.8.2 Strategies for matching graphs having large set of nodes

Graph comparison in graph space is a challenging task. Input graphs can be huge. Very powerful
tools already exist for matching graphs. However, due to their complexity, these algorithms cannot
be used e�ciently (in less than a second) for graphs having very large sets of nodes (let us say more
than 1000). In such as case, an interesting challenge could be to partition the graph. It could be
achieved either by optimization methods based on some graph properties or by learning to partition
thanks to paremetrized graph pooling layers for instance. The major advantages would be to create
higher level of representations while reducing the computational cost of the graph comparison.

5.3.8.3 Increasing the "intelligence" of a pixel-based graph

When working with image based features, we often end up with a RAG-like graph which is very
useful for image analysis but not for image classi�cation, because it takes only into account very low
level relations. How can we enhance such a graph without loosing of course its useful properties? A
key challenge is then to build methods that can deal directly at pixel levels without data reduction
as a preprocessing. Considering Euclidean data like images, graphs can be used to develop non-
local approaches and to go beyond the standard 8x8 connectivity. While a pixel is linked to its 8
neighbours in a image, in a graph it is possible to be non-local and to extend to neighborhood
de�nition. A pixel can be connected to every pixel in the image and each relation can be enriched by
a set of features. As an example the VGG neural network that works well for image classi�cation,
its input is a grid of 224×224 = 50176 pixels. Extending this concept to a kNN graph (k = 16 for
instance to double the neighborhood compared to a grid) would lead to a graph wit 50176 nodes and
802816 edges. Roughly speaking, this the size of data, we could likely face. A hierarchical method
(deep) could then build a higher level of representation based non-local information. Fast graph
neural networks will be an important element in the development of such pixel-based approach.

5.4 Synthesis

To conclude, we provide a synthesis of our perspectives under the form of a mind map. Figure
5.10 shows the relations between the key concepts. Short term perspectives are split into two
balanced categories combinatorial optimization and machine learning. The long term perspec-
tives are grouped into three parts: application, performance evaluation and fundamental. On the
application side, object tracking in videos, domain adaptation and edge classi�cation for graph
factorization are targeted. Concerning performance evaluation, the creation of data sets and eval-
uation metrics as well as scalability tests are considered. Finally, the fundamental aspects concern
deep reinforcement learning, optimal transport and semantic computer vision thanks to graphs.
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Appendix A

More graph matching problems

A.1 Graph isomorphism

The mapping, or matching, between the vertices of the two graphs must be edge-preserving in
the sense that if two vertices in the �rst graph are linked by an edge, they are mapped to two
vertices in the second graph that are linked by an edge as well. This condition must be held in
both directions, and the mapping must be bijective. That is, a one-to-one correspondence must be
found between each vertex of the �rst graph and each vertex of the second graph. When graphs
are attributed, attributes have to be identical. More formally, when comparing two graphs G1 =
(V1,E1,µ1,ζ1) and G2 = (V2,E2,µ2,ζ2), we are looking for a bijective function f : V1 → V2 which
maps each vertex ui ∈ V1 onto a vertex vk ∈ V2 such that certain conditions are ful�lled:

De�nition 23. Graph isomorphism
A bijective function f : V1 → V2 is a graph isomorphism from G1 to G2 if:

1. ∀ui ∈ V1, µ1(ui) = µ2(f(ui))

2. ∀ui, uj ∈ V1, (ui, uj) ∈ E1 ⇔ (f(ui), f(uj)) ∈ E2

3. ∀(ui, uj) ∈ E1, ζ1((ui, uj)) = ζ2((f(ui), f(uj)))

In the dissertation, the term source graph refers to graph G1 while target graph refers to G2.
Graph isomorphism is one of the problems for which it has not yet been demonstrated if it belongs to
NP-complete or not. However, there is still no algorithm that can solve the problem in polynomial
time. Yet, readers who are aware of the recent rise of graph isomorphism might have heard about
the claim of L. Babai in [Babai, 2015] of solving graph isomorphism in quasipolynomial time.

A.2 Monomorphism

Monomorphism, also known as partial subgraph isomorphism, is a light form of induced subgraph
isomorphism. It also drops the condition that the mapping should be edge-preserving in both
directions. It requires that each vertex of the source graph is mapped to a distinct vertex of the
target graph, and each edge of the source graph has a corresponding edge in the target graph.
However, the target graph may have both extra vertices and extra edges.

The subgraph monomorphism problem between a pattern graph G1 and a target graph G2 is
de�ned by:
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A.3. SUBSTITUTION-TOLERANT SUBGRAPH ISOMORPHISM

De�nition 24. Monomorphism
An injective function f : V1 → V2 is a subgraph isomorphism from G1 to G2 if:

1. ∀ui ∈ V1, µ1(ui) = µ2(f(ui))

2. ∀ui, uj ∈ V1, (ui, uj) ∈ E1 ⇒ (f(ui), f(uj)) ∈ E2

3. ∀(ui, uj) ∈ E1, ζ1((ui, uj)) = ζ2((f(ui), f(uj)))

A.3 Substitution-Tolerant Subgraph Isomorphism

Substitution-Tolerant Subgraph Isomorphism [Bodic et al., 2012] aims at �nding a subgraph iso-
morphism of a pattern graph Gs in a target graph G. This isomorphism only considers label
substitutions and forbids vertex and edge insertion in G. This kind of subgraph isomorphism is
often needed in PR problems when graphs are attributed with real values and no exact GM can be
found between attributes due to noise. A subgraph isomorphism is said to be substitution-tolerant
when the mapping does not a�ect the topology. That is, each vertex and each edge of the pattern
graph has a one-to-one mapping into the target graph, however, two vertices and/or edges can be
matched (or substituted) even if their attributes are not similar. A substitution-tolerant mapping
is generally needed when no exact mapping between vertex and/or edge attributes can be found,
but when the mapping can be associated to penalty cost. For example, this case occurs when vertex
and edge attributes are numerical values (scalar or vectorial) resulting from a feature extraction
step as often in pattern analysis.

De�nition 25. Substitution-Tolerant Subgraph Isomorphism
An injective function f : V1 → V2 is a subgraph isomorphism of G1 = (V1,E1,LV1

,LE1
,µ1,ζ1) and

G2 = (V2,E2,LV2
,LE2

,µ2,ζ2) if the following conditions are satis�ed:

1. ∀ui ∈ V1, µ1(ui) ≈ µ2(f(ui))

2. ∀ui, uj ∈ V1, (ui, uj) ∈ E1 ⇔ (f(ui), f(uj)) ∈ E2

3. ∀(ui, uj) ∈ E1, ζ1((ui, uj)) ≈ ζ2((f(ui), f(uj)))

In PR applications, where vertices and edges are labeled with measures which may be a�ected by
noise, a substitution-tolerant formulation which allows di�erences between attributes of mapped
vertices and edges is mandatory. However, these di�erences are associated to costs where the
objective is to �nd the mapping corresponding to the minimal global cost, if one exists. i.e.,
µ1(ui) ≈ µ2(vk) and ζ1(e(ui, uj)) ≈ ζ2(e(vk, vz)).

A.4 Multivalent Matching

All the aforementioned matching problems, whether exact or error-tolerant ones, belong to the
univalent family in the sense of allowing one vertex or one edge of one graph to be substituted with
one and only one vertex or edge in the other graph.

In many real-world applications, comparing patterns described at di�erent granularity levels is
of great interest. For instance, in the �eld of image analysis, an over-segmentation of some images
might occur whereas an under-estimation occurs in some other images resulting in allowing several
regions of one image to be correspondent, or related to, a single region of another image. Based
on this fact, multivalent matching problem emerged to be one of the interesting problems in graph
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theory [Sorlin et al., 2007]. Multivalent matching drops the condition that vertices in the source
graph are to be mapped to distinct vertices of the target graph. Thus, in multivalent matching,
vertex in the �rst graph can be matched with an empty set of vertices, one vertex or even multiple
vertices in the other graph. This matching problem is also called relational matching since GM is
no longer a function but rather a relation m ⊆ V1×V2. The objective of this kind of matching is to
minimize the number of split vertices (i.e., vertices that are matched with more than one vertex).

Mathematically, the relation m associating a vertex of one graph to a set of vertices of the other
graph can be de�ned as follows:

De�nition 26. Multivalent Matching
A relation m ⊆ V1 × V2 is a multivalent matching from G1 to G2 if:

1. ∀ui ∈ V1, m(ui) ≈ {vk ∈ V2|(ui, vk) ∈ m}

2. ∀vk ∈ V2, m(vk) ≈ {ui ∈ V1|(ui, vk) ∈ m}

where m(v∗) denotes the set of vertices that are associated with a vertex v∗ by the relation m.
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Appendix B

Machine learning theory

The �eld of pattern recognition is concerned with the automatic discovery of regularities in data
through the use of computer algorithms and with the use of these regularities to take actions such
as classifying the data into di�erent categories or predicting continuous variables, then the task is
called regression. A set of examples {x1, ·, xM} along with their corresponding target (categories
or real value) {t1, ·, tM} is called a training set. Targets are also called ground-truth or predictions
in machine learning. The training set is used to tune the parameters of an adaptive model. The
learning algorithm is concerned by the adaptation of the parameters of model. A model or a learning
algorithm can have meta-parameters that are not learned by the learning algorithm. Applications
in which the training data comprises examples along with their corresponding target are known as
supervised learning problems. In other pattern recognition problems, the training data consists of
a set of input x without any corresponding target values. The goal in such unsupervised learning
problems may be to discover groups of similar examples within the data then it is called clustering or
to determine the distribution of data. Finally, the technique of reinforcement learning is concerned
with the problem of �nding suitable actions to take in a given situation in order to maximize a
reward. Here the learning algorithm is not given examples and neither the target, but must instead
discover them by a process of trial and error.

The ability to predict or classify correctly new examples that di�er from those used for training
is known as generalization. In practical applications, the variability of the input vectors will be
such that the training data can comprise only a tiny fraction of all possible examples, and so
generalization is a central goal in pattern recognition.

The over�tting problem occurs when the model fails to generalize on new unseen data. This
means that the accuracy of the prediction on the training data set are very high while it performs
poorly on a new data set. The reverse problem exists also, the inability of a learning algorithm
to reach an acceptable level of accuracy on the training data set. To be able to measure these
problems, usually, an entire data set is split into three parts :

• Train data set: It is the data set used directly by the learning algorithm. On this data set,
parameters are updated in order to achieve a goal.

• Validation data set: on this data set, the learning process does not occur. This means that
parameters are �xed and will never be updated using this data set. However, this data set is
still useful because it helps to validate the model on pieces of data unseen during the learning
process. Validation data set is meaningful to adapt the meta-parameters of the learning
algorithm.

• Test data set: After the learning process has been completed, the test data set comes into
play. Its objective is to test the model on completely new and unseen data. Parameters and
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Figure B.1: Selection of the best parameters and meta parameters.

meta parameters are �xed. No learning mechanism occurs on this data set.

On these three data sets an error measure of the model can be computed (i.e. a classi�cation
error). The error measure can help to identify the best parameter and meta-parameter values as
pictured out in Figure B.1.

Error measures depend on the goal to be achieve by the learning algorithm. The learning
algorithm is often stated as a minimization problem where the objective function represent the
goal to be reached. The objective function is also called loss function or cost function in machine
learning.

B.1 The basics of losses

Many loss functions have been designed. We take a closer look to two loss functions. The cross
entropy that is well suited for classi�cation tasks and the least square errors that is good for
regression task.

B.1.1 Cross-entropy loss

This paragraph describes how minimizing the cross-entropy is related with maximizing the likeli-
hood of the model according to the training set. This consideration was �rst explained by Vapnik
in [Vapnik, 1998]. When we develop a model for classi�cation, we aim to map the model's inputs
to targets. The targets can be encoded by integers or by an encoding called one-hot vector. For
example, if we're interested in determining whether an image is best described as a landscape
or as a house or car. The target of the �rst sample t1 can be represented as t1 ∈ [1, 2, 3] or
t1 ∈ {0, 1}3. If an image is a house then t1 = [1, 0, 0]. A prediction made by the classi�er could be
t̂1 = [0.2, 0.3, 0.5]. The notation t̂11 refers to the �rst value of the vector t̂1.

In cross-entropy there is entropy. The entropy of the discrete random variable t1 is de�ned as :

H(t1) =
∑
i

Pr(ti1) log2

1

Pr(ti1)
= −

∑
i

Pr(ti1) log2 Pr(t
i
1)
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If we assume that ti1 is already a probability then :

H(t1) =
∑
i

ti1 log2

1

ti1
= −

∑
i

ti1 log2 t
i
1

The entropy measures the number of bits needed to encode the classes of t1. In contrast, the cross
entropy is the number of bits we need if we encode classes from t1 using t̂1.

H(t1, t̂1) =
∑
i

ti1 log2

1

t̂i1
= −

∑
i

ti1 log2 t̂
i
1

Cross-entropy is always larger than entropy; encoding classes according to the wrong distribution
t̂1 will always make us use more bits. The only exception is the trivial case where t1 and t̂1 are
equal, and in this case entropy and cross entropy are equal. The Kullback�Leibler (KL) divergence
from t̂1 to t1 is simply the di�erence between cross-entropy and entropy:

KL(t1 || t̂1) =
∑
i

ti1 log
1

t̂i1
−
∑
i

ti1 log
1

ti1
=
∑
i

ti1 log
ti1

t̂1
i

(B.1)

It measures the number of extra bits we'll need on average if we encode classes from t1 according
to t̂1.

It's never negative, and it's 0 only when t1 and t̂1 are the same.

Note that minimizing cross entropy is the same as minimizing the KL divergence from t̂1 to t1.

Now we can use the cross entropy over all training examples as our loss. In particular, if we let
n index training examples, the overall loss would be

H(t, t̂) =

M∑
n=1

H(tn, t̂n)

We have de�ne the cross entropy, and it seems quite relevant but is there any reason?

B.1.1.1 The cross entropy, a probabilistic reasoning

But let's look at another approach. What if we want our objective function to be a direct measure
of our model's predictive power, at least with respect to our training data? One common approach
is to tune our parameters so that the likelihood of our data under the model is maximized.

maxPr(t|t̂)

We usually assume that our samples are independent and identically distributed (iid), each
measure is independent from the other, so, the likelihood over all of our examples decomposes into
a product over the likelihoods of individual examples:

maxPr(t|t̂) = ΠM
n=1 max Pr(tn|t̂n)

Going back to the original example, if the �rst training image is of a landscape, then t1 =
(1.0, 0.0, 0.0)T , which tells us that the likelihood Pr(t1, t̂1) is just the �rst entry of t̂1 = (0.2, 0.3, 0.5)T ,
which is t̂11 = 0.2.

Let's play a bit with the likelihood expression above.

First, since the logarithm is monotonic, we know that maximizing the likelihood is equivalent to
maximizing the log likelihood, which is in turn equivalent to minimizing the negative log likelihood:

− logPr(t|t̂) = −
M∑
n=1

logPr(tn|t̂n)
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But from our discussion above, we also know that the log likelihood of tn is just the log of a
particular entry of t̂n. In fact, it's the entry i which satis�es tin = 1. We can therefore rewrite the
log likelihood for the n-th training example in the following way:

logPr(tn|t̂n) =

3∑
i=1

tin log t̂in

which gives us an overall negative log likelihood of

− logPr(t|t̂) = −
M∑
n=1

3∑
i=1

tin log t̂in

This is precisely cross entropy, summed over all training examples:

− logPr(t|t̂) =

M∑
n=1

[
−

3∑
i=1

tin log t̂in
]

=

M∑
n=1

H(tn, t̂n)

In the context of a discriminative model for probabilistic classi�cation, minimizing the cross
entropy is equivalent to maximize the likelihood of Pr(t|t̂) without any assumption on the dis-
tributions t and t̂ .

B.1.2 Mean square error loss

We shall see that the least squares approach to �nding the model parameters represents a speci�c
case of maximum likelihood. We now use the training data {x, t} where the encoding of tn is not
the one-hot vector but an integer tn ∈ N. The least square error can be de�ned as follows :

MSE =
1

M

M∑
n=1

{t̂n − tn}2 =
1

M
||t̂n − tn||22

We now use the training data to determine the values of the unknown parameters w of our
predictor f(x,w) by maximum likelihood. For this purpose, we shall assume that, given the value
of x, the corresponding value of t has a Gaussian distribution with a mean equal to the value
t̂n = f(xn, w).

Pr(t|x,w, σ) = Pr(t|t̂, σ) = N (t|t̂n, σ)

σ is the variance of the distribution. We just recall the equation of a Gaussian distribution.

Pr(x|µ, σ) = N (x|µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

If the data are assumed to be drawn independently from the distribution, then the likelihood
function is given by

Pr(t|t̂, σ) = ΠM
n=1N (tn|t̂n, σ)

As we did in the case of the cross-entropy, it is convenient to maximize the logarithm of the
likelihood function.

logPr(t|t̂, σ) = − 1

2σ

M∑
n=1

{t̂n − tn}2 −
M

2
log σ − M

2
log(2π) (B.2)

logPr(t|x,w, σ) = − 1

2σ

M∑
n=1

{f(xn, w)− tn}2 −
M

2
log σ − M

2
log(2π) (B.3)
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Consider �rst the determination of the maximum likelihood solution which will be denoted by
w∗. These are determined by maximizing EquationB.3 with respect to w. For this purpose, we can
omit the last two terms on the right-hand side of Equation B.3 because they do not depend on w.

Also, we note that scaling the log likelihood by a positive constant coe�cient does not alter
the location of the maximum with respect to w, and so we can replace the coe�cient 1

2σ with 1
M .

Finally, instead of maximizing the log likelihood, we can equivalently minimize the negative log
likelihood.

∂ − logPr(t|x,w, σ)

∂w
= − 1

σ

M∑
n=1

{f(xn, w)− tn} = 0 (B.4)

We therefore see that maximizing likelihood is equivalent, so far as determining w is concerned, to
minimizing the sum-of-squares error function de�ned by Equation B.4.

Thus the sum-of-squares error function has arisen as a consequence of maximizing likelihood
under the assumption of a Gaussian noise distribution.

B.1.3 Regularization of loss functions

Regularization is a common feature of machine learning technique to deal with generalization
problem. One technique that is often used to control the over-�tting phenomenon in such cases
is that of regularization, which involves adding a penalty term to the error function in order to
discourage the coe�cients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coe�cients, leading to a modi�ed error function of the form:

Loss =
1

M

M∑
n=1

{f(xn, w)− tn}2 +
λ

2
||w||22

where ||w||22 and the coe�cient λ governs the relative importance of the regularization term com-
pared with the sum-of-squares error term. The L2 norm regularization can be explained by a
Bayesian approach.

Therefore we introduce a prior distribution over the coe�cients w. Let us consider a Gaussian
distribution of the form

Pr(w|α) = N (w|0, α) = exp (−α
2
wTw)

where alpha is the variance of the distribution. Variables such as α, which control the distribution
of model parameters, are called hyperparameters. Using Bayes' theorem, the posterior distribution
for w is proportional to the product of the prior distribution and the likelihood function

Posterior ∝ Likelihood× Prior

Pr(w|x, t, α, σ) ∝ Pr(t|t̂, σ)Pr(w|α)

We can now determine w by �nding the most probable value of w given the data, in other words by
maximizing the posterior distribution. This technique is called Maximum A Posteriori, or simply
MAP. Taking the negative logarithm, we �nd that the maximum of the posterior is given by the
minimum of

1

2σ

M∑
n=1

{f(xn, w)− tn}2 +
α

2
wTw
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We see that maximizing the posterior distribution is equivalent to minimizing the regularized
sum-of-squares error function with a regularization parameter given by λ = σα. This statement
can be found in [Bishop, 2006]. Many other regularization terms can be found in the literature
such as L1 norm or the pseudo norm L0. Classically, the cost function in a learning problem can
be written as :

Cost Function= Loss (i.e. MSE or cross entropy) + Regularization term

B.2 Probably Approximately Correct (PAC)

This has its origins with Valiant [1984] who formulated the probably approximately correct, or
PAC, learning framework. The goal of the PAC framework is to understand how large a data set
needs to be in order to give good generalization. It also gives bounds for the computational cost
of learning.

Suppose that a data set D of size M is drawn from some joint distribution Pr(x, t) where
x is the input variable and t represents the class label, and that we restrict attention to `noise
free' situations in which the class labels are determined by some (unknown) deterministic function
t = f(x). In PAC learning we say that a function g(x,D), drawn from a space F of such functions
on the basis of the training set D, has good generalization if its expected error rate is below some
pre-speci�ed threshold ε, so that

Ex,t[I(g(x;D) = t)] < ε

where I(.) is the indicator function, and the expectation is with respect to the distribution Pr(x, t).
PAC learning aims to provide bounds on the minimum size M of data set needed to meet this
criterion. A key quantity in PAC learning is the Vapnik-Chervonenkis dimension, or VC dimension,
which provides a measure of the complexity of a space of functions. The bounds derived within
the PAC framework are often described as worst case, because they apply to any choice for the
distribution Pr(x, t), so long as both the training and the test examples are drawn (independently)
from the same distribution, and for any choice for the function g(x) so long as it belongs to F .
The PAC bounds are very conservative, in other words they strongly over-estimate the size of data
sets required to achieve a given generalization performance.

In real-world applications of machine learning, we deal with distributions that have signi�cant
regularity, for example in which large regions of input space carry the same class label.

B.3 Structured prediction

Generalize classi�cation/regression methods to deal with structured outputs and/or with multiple,
interdependent outputs. Outputs are either

• Structured objects such as sequences, strings, trees, etc.

• Variables that are interdependent (e.g. dependencies modeled by probabilistic graphical
models)

One of the easiest ways to understand algorithms for general structured prediction is the structured
perceptron of Collins [Collins, 2002]. This algorithm combines the perceptron algorithm for learn-
ing linear regressor with an inference algorithm (classically the Viterbi algorithm when used on
sequence data) and can be described abstractly as follows. First de�ne a "joint feature function"
Φ(x, y) that maps a training sample x and a feasible solution y to a vector of length d (x and y
may have any structure; d is problem-dependent, but must be �xed for each model). Let GEN be
a function that generates a set of feasible solutions and α is the learning rate.
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• Let β be a weight vector of length n.

• For a pre-determined number of iterations:

� For each sample x in the training set with true output t:

∗ Find a feasible solution y∗ = argmin
y∈GEN(x)

(βT φ(x, y))

∗ Update β, from y∗ to t: β = β + α(−Φ(x, y∗) + Φ(x, t))

This simple paradigm can be extended to the large margin framework [Tsochantaridis et al.,
2005]:

minβ
1
2 ||β||

2
2 (B.5)

Such that: (B.6)

β.Φ(x, y∗)− β.Φ(x, t) ≥ 1 (B.7)

∀(x, t) ∈ D and y∗ ∈ Y (B.8)

There are an exponential number of constraints for each input.
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Appendix C

Graph neural networks

C.1 History

One of the key reasons for the success of deep neural networks is their ability to leverage statistical
properties of the data such as stationarity and compositionality through local statistics.

So, a lot of attention has been devoted to the generalization of neural network models to
structured datasets.

In the last �ve years, a number of papers re-visited this problem of generalizing neural networks
to work on arbitrarily structured graphs [Bruna et al., 2013, Hena� et al., 2015, Duvenaud et al.,
2015, Li et al., 2015, Kipf and Welling, 2016], some of them now achieving very promising re-
sults in domains that have previously been dominated by, e.g., kernel-based methods, graph-based
regularization techniques. These former methods were based on a two-step pipeline:

1. Get embedding for every node or graph

2. Train a classi�er on node/graph embedding

At the opposite, Graph Neural Networks (GNN) perform an end-to-end learning including feature
extraction and classi�cation.

A time-line about graph neural networks is depicted on Figure C.1.

C.2 The basics of arti�cial neural networks

An arti�cial neural networks is a model of data. It is composed of layers organized hierarchically.
Each layer is composed of a set arti�cial neurons. Inside a layer, the neurons are not structured
and do not communicate. Between layers, neurons can communicate by sending their output to
the input of the next layer.

Let x ∈ R1×m be a vector considered as an input data. It is also called the input signal.

Let a layer be de�ned as :
H(l+1) = f(H(l))

H(l+1) = σ(H(l)W (l)) ∀l > 0

W (l) ∈ Rml×ml+1 is a matrix of trainable parameters. ml is the number of neurons of the layer l.
For the layer 0, H(0) = x. Layer l + 1 produces a vector H(l+1) ∈ R1×ml+1 . Finally, σ is a non
linear function. This neural network is considered as a model where parameters can be learned.
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Figure C.1: A time line about graph neural networks.

This model is also denoted as a "dense" layer or "Fully Connected (FC)" layer or a "MuLtilayer
Perceptron" (MLP). The question is how to generalize this arti�cial neural networks to graphs?
What to do when the input is a graph?

C.3 The basics of graph neural networks

C.3.1 De�nitions

Assume we have a graph G:

• V is the vertex set.

• E is the edge set.

• A is the adjacency matrix (assume binary). A ∈ {0, 1}|V |×|V |

• F ∈ R|V |×m is a matrix of node features.

� Categorical attributes, text, image data

� Node degrees, clustering coe�cients, etc.

� Indicator vectors (i.e., one-hot encoding of each node)

In the literature, the graph structure is also called "domain structure" while features are also
named "data on a domain" [Bronstein et al., 2016]. Some papers of the literature makes a clear
distinction between �xed domain structure [Hena� et al., 2015, De�errard et al., 2016] or variable
domain structure [Atwood and Towsley, 2015, Boscaini et al., 2016]. The last concept means that
the input graphs can have di�erent sizes and structures. The �xed domain structure problem
often appear where the input is a single (large) graph while the variable domain structure is likely
to appear when the learning set is composed of many (small) graphs. In [Scarselli et al., 2009],
both paradigms are merged into a single one. The learning set composed of many graphs can be
combined into a unique disconnected graph, and, therefore, one might think of the learning set
as a pair composed of a single graph and the targets. It is worth mentioning that this compact
de�nition is not only useful for its simplicity, but that it also captures directly the modelling power
of graphs.
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C.3.2 Intuition

The key idea is to generate node embeddings based on local neighborhoods. The intuition is to
aggregate node information from their neighbors using neural networks. Nodes have embeddings
at each layer and the neural network can be arbitrary depth. �layer-0� embedding of node u is its
input feature, i.e. Fu. A GNN produces a node-level output Z (an |V | × p feature matrix, where
p is the number of output features per node). Graph-level outputs can be modeled by introducing
some form of pooling operation (see, e.g. [Duvenaud et al., 2015]).

A graph is processed by a set of units, each one corresponding to a node of the graph, which
are linked according to the input graph connectivity. The graph structure is shared over layers.

Every graph neural network layer can then be written as a non-linear function:

H(l+1) = f(H(l), A)

with H(0) = F and H(L) = Z, L being the number of layers. The speci�c models then di�er only
in how f(., .) is chosen and parameterized.

A GNN layer receives as input a signal H(l) ∈ R|V |×ml and produces H(l+1) ∈ R|V |×ml+1 . This
output can be fed into any loss function. The training algorithm is based on stochastic gradient
descent to learn the aggregation parameters.

C.3.3 A simple example for f(., .):

As an example, let's consider the following very simple form of a layer-wise propagation rule:

f(H(l), A) = σ
(
AH(l)W (l)

)
where W (l) ∈ Rml×ml+1 is a weight matrix for the l-th neural network layer. ml is indexed by l
because it depends on the number of parameters in the layer l. Theses values are hyperparameters
of the model except for H(0) = F . σ(.) is a non-linear activation function like the ReLU. Note that
σ(.) is a element-wise non-linearity operating on a matrix. But �rst, let us address two limitations
of this simple model: multiplication with A means that, for every node, we sum up all the feature
vectors of all neighboring nodes but not the node itself (unless there are self-loops in the graph).
This can be "�xed" by enforcing self-loops in the graph: we simply add the identity matrix to A.

The second major limitation is that A is typically not normalized and therefore the multipli-
cation with A will completely change the scale of the feature vectors. Normalizing A such that all
rows sum to one, i.e. D−1A, where D is the diagonal node degree matrix, gets rid of this prob-
lem. Multiplying the input with D−1A now corresponds to taking the average of neighboring node
features from the layer l. It is also called in the literature "Average neighbor messages" passing
average node feature from one layer to another.

f(H(l), A) = σ
(
D−1AH(l)W (l)

)
After K-layers of neighborhood aggregation (compositionality), the network outputs embeddings
for each node. The GNN can be seen as an encoder that maps nodes to vector embeddings:

ENC : G→ R|V |×p

Finally, this model can be understood as many (|V |) dense layers (one for each node) working
together thanks to an aggregation operator (see Figure C.2). Inside a given layer, the parame-
ters W (l) are shared. So, the number of parameters does not depend on the number of nodes
(|V |). Neighborhood aggregation can be viewed as a center-surround �lter. It is mathematically
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Figure C.2: A general overview of a GNN.

related to spectral graph convolutions (see [Bronstein et al., 2016]). Therefore, the GNN are also
called Graph Convolutional Neural Network (GCNN). Thanks to the parameter sharing, the input
graphs can have di�erent sizes and structures. Such a model represents a prior on the data. Key
assumptions are that graph-structured data is locally stationary and expressible by compositions
(compositionality) and self-similar across the domain.

C.3.4 More complex message aggregations

C.3.4.1 Weighted aggregations

More complex functions have been applied in the literature. The key idea is to do more than
averaging the features from a neighborhood. In [Kipf and Welling, 2016], a better (symetric)
normalization of the adjacency matrix is proposed i.e. D−

1
2AD−

1
2 (as this no longer amounts to

mere averaging of neighboring nodes). A per-neighbor normalization is performed instead of simple
average, normalization varies across neighbors.

f(H(l), A) = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
with Â = A+I, where I is the identity matrix and D̂ is the diagonal node degree matrix of Â. The
complexity of this model is O(|E|) time complexity overall. However, it is not suited for regular
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graphs (see 1 for more details).

More operations have been investigated in the literature [Nowak et al., 2017]. A complete family
of operations can be used :

• I ∈ R|V |×|V |. This identity operator does not consider the structure of the graph and neither
provide any aggregation. Used alone this operator makes the GNN a composition of |V |MLP
completly independent. One MLP for each node feature vector.

• A ∈ R|V |×|V |. The adjacency operator gather information on the node neighborhood (1 hop).

• D ∈ R|V |×|V |. D = diag(A1. This degree operator gather information on the node degree.
D is node degree matrix (a diagonal matrix).

• Aj ∈ R|V |×|V |. Aj = min(1, A2j

). It encodes 2j-hop neighborhoods of each node, and allow
us to aggregate local information at di�erent scales, which is useful in regular graphs.

• U ∈ 1|V |×|V |. U is matrix �lled with ones. This average operator, which allows to broadcast
information globally at each layer, thus giving the GNN the ability to recover average degrees,
or more generally moments of local graph properties.

By denoting A = {1, D,A,A1, · · · , AJ , U}, a GNN layer is de�ned as :

f(H(l),A) = σ

(∑
B∈A

BH(l)W
(l)
B

)

Ω = {W (l)
1 , · · · ,W (l)

|A|}, W
(l)
B ∈ Rm(l)×m(l+1) are trainable parameters. All the nodes share the same

operators but it is not mandatory.

C.3.4.2 Mean, max and neural network aggregations

Key distinctions are in how di�erent approaches aggregate messages. So far, proposals have ag-
gregated the neighbor messages by taking their (weighted) average, but is it possible to do better?
In [Hamilton et al., 2017], a GNN called GraphSAGE is proposed. The aggregation of neighbors
information is more complex. The very general scheme of aggregation can written thanks to the
function AGG:

H(l+1) = σ
(
AGG(H(l))W (l)

)
Let us de�ne N (u) is the set of nodes in the 1-hop neighborhood of node u.

• mean : AGGu = 1
|N (u)|

∑
v∈N (u)H

(l)
v ∀u ∈ V =⇒ AGG = D−1AH(l).

• max : AGGu = max({H(l)
v , ∀v ∈ N (u)}) ∀u ∈ V . Transform neighbor vectors into a

matrix and apply a max pooling element-wise.

• LSTM : AGGu = LSTM([H
(l)
v , ∀v ∈ π(N (u))]) ∀u ∈ V . Where π is a random permu-

tation. The idea is to provide to the LSTM a sequence composed of neighbor embeddings.
So the input sequence is composed of vectors. The sequence is randomly permuted by the
function π.

1https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/
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C.3.4.3 A word on permutation invariance

In the case of permutation invariant graphs, it is assumed that the learning task is independent of
the order of neighbors. To generalize to unseen nodes or graphs at the decision stage, it is required
that the (aggregator AGG) function acting on the neighbors must be invariant to the orders of
neighbors under any random permutation (pi). In [Liu et al., 2018], a theorem on su�ciency and
necessity conditions of AGG functions is stated. It is trivial to check that the LSTM aggregator
in GraphSAGE is not a valid function under this condition, even though it could be possibly an
appropriate aggregator function in temporal graphs.

C.4 Applications and losses

C.4.1 Unsupervised

It is possible to train in an unsupervised manner using only the graph structure and the features
for instance. Let us recall that Z is the output the GNN. The graph factorization problem is the
problem of predicting if two nodes are linked or not. It can then be de�ned as follows:

l =
∑

(ui,uj)∈D

(ZTi Zj −Ai,j)2

Where ZTi Zj is a similarity measure between two nodes embeddings and A adjacency matrix. D is a
database containing pair of nodes from di�erent graphs or a single graph. However, the pair ui and
uj must come from the same graph. Generally speaking, instead of Ai,j , any similarity function
(S : V × V → R) between ui and uj can be used. ZTi Zj is also called a decoder (DEC(Zi, Zj)).
More complex decoder can be built. Like the matrix factorization approaches described above,
DeepWalk [Perozzi et al., 2014] and node2vec [Grover and Leskovec, 2016] rely on embedding and
use a decoder based on the inner product. However, instead of trying to decode a deterministic
node similarity measure, these approaches optimize embeddings to encode the statistics of random
walks. The basic idea behind these approaches is to learn embeddings so that :

DEC(Zi, Zj) =
exp(ZTi Zj)∑

uk∈V exp(ZTi Zk)
= pG(uj |ui)

Where pG(uj |ui) is the probability of visiting uj on a length-k random walk starting at ui.

l =
∑

(ui,uj)∈D

−S(ui, uj) log(DEC(Zi, Zj))

Where S(ui, uj) = ((D−1A)k)i,j is the value of the random walk of length k.

C.4.2 Supervised

This alternative aims at directly training the model for a supervised task (e.g node classi�cation,
node regression, graph classi�cation, · · · ).

C.4.2.1 Node classi�cation

In the context of node classi�cation, the last layer of the GNN must output an embedding of di-
mension p for each node where p is the number of classes (i.e H(l) = Z = R|V |×p). For the last layer
the activation function is a softmax activation function de�ned as softmax(Zi,j) =

exp(Zi,j)∑p
j=1 exp(Zi,j)

.
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The softmax is applied row-wise and outputs a vector similar to probability distribution over the
classes. Then the loss function is the traditional cross entropy.

l = −
∑

(ui)∈D

p∑
j=1

ti,j log(Zi,j)

Where ti ∈ {0, 1}p is a one-hot vector of the ground-truth class label for node ui and D is the data
set composed of nodes.

C.4.2.2 Graph classi�cation

In the context of graph classi�cation, a global average pooling layer must be added to gather all the
node embeddings of a given graph. This layer has no parameter. It takes as an input Z = R|V |×p
and output a vector Z ′ = R1×p. This layer is performing the average of each component Z.,j over the

number of nodes in the graphs. The average pooling layer is de�ned as Z ′1,j = 1
|V |
∑|V |
i=1 Z

′
i,j ∀j ∈

1, · · · , p. This vector Z ′ can be fed to a MLP for classi�cation. t̂ is the prediction made by this
extended version of the GNN. Consequently, the cross-entropy loss function can be used.

l = −
∑

(Gi)∈D

#classes∑
j=1

ti,j log(t̂i,j)

Where #classes is the number of classes. D is the data set composed of graphs. ti ∈ {0, 1}#classes
is a one-hot vector of the ground-truth class label for graph Gi.

C.4.3 Semi-Supervised

The semi-Supervised node classi�cation problem is the problem of classifying nodes in a graph,
where labels are only available for a small subset of nodes. This problem can be framed as semi-
supervised learning, where label information is smoothed over the graph via some form of explicit
graph-based regularization [Pang and Cheung, 2016], e.g. by using a graph adjacency or graph
Laplacian regularization term in the loss function. By using a graph Laplacian/adjacency regu-
larization term, the assumption is that connected nodes in the graph are likely to share the same
label. However, this assumption is only true if edges encode the information of node similarity.
This is true for instance for a neighborhood graph. The loss function is then closed to the one for
fully supervised node classi�cation problem (mentioned earlier) but an adjacency regularization
term is added.

l = l0 + λ lreg

l0 = −
∑

(ui)∈D

p∑
j=1

ti,j log(Zi,j)

lreg =
∑

(ui,uj)∈D

(ZTi Zj −Ai,j)2 = vec(Z)TAvec(Z)

To accomplish a graph Laplacian regularization, A must be replaced by ∆ = D − A that denotes
the unnormalized graph Laplacian of an undirected.
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Figure C.3: Statistics on citation networks (From a T. Kipf's talk http://deeploria.gforge.

inria.fr/thomasTalk.pdf).

Figure C.4: Structured matrix completion (From CVPR 2017 tutorial http://

geometricdeeplearning.com/ ).

C.4.4 Applications

C.4.4.1 Node classi�cation:

Node classi�cation on citation networks. The input is a citation network where nodes are papers,
edges are citation links and optionally bag-of-words features on nodes. The target for each node is
a paper category (e.g. stat.ML, cs.LG, ...). Datasets statistics are pictured in Figure C.3.

C.4.4.2 Graph regularization:

Matrix completion is the task of �lling in the missing entries of a partially observed matrix. A wide
range of datasets are naturally organized in matrix form. One example is the movie-ratings matrix,
as appears in the Net�ix problem: Given a ratings matrix in which each entry (i,j) represents the
rating of movie j by user i. When users and movies are organized as graphs (Pictorially Figure
C.4) then graphs can be used to regularized the matrix completion problem.
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Figure C.5: MNIST digits classi�cation (Regular grid, Superpixels) (From CVPR 2017 tutorial
http://geometricdeeplearning.com/ ).

C.4.4.3 Graph classi�cation:

An image is represented as a graph: based on raw pixels (a regular grid and all images have the
same graph) or based on superpixels (irregular graph) (see Figure C.5).

C.4.4.4 Datasets and results:

Two main sources of graphs can be found in the literature : bioinformatics and social networks
(see Table C.1 for summary statistics of these datasets)

Social networks datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets.
Each graph corresponds to an ego-network for each actor/actress, where nodes correspond to ac-
tors/actresses and an edge is drawn betwen two actors/actresses if they appear in the same movie.
Each graph is derived from a pre-speci�ed genre of movies, and the task is to classify the genre
graph it is derived from. REDDIT-BINARY and REDDIT-MULTI5K are balanced datasets where
each graph corresponds to an online discussion thread and nodes correspond to users. An edge
was drawn between two nodes if at least one of them responded to another's comment. The task
is to classify each graph to a community or a subreddit it belongs to. COLLAB is a scienti�c
collaboration dataset, derived from 3 public collaboration datasets, namely, High Energy Physics,
Condensed Matter Physics and Astro Physics. Each graph corresponds to an ego-network of dif-
ferent researchers from each �eld. The task is to classify each graph to a �eld the corresponding
researcher belongs to.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic
nitro compounds with 7 discrete labels. PROTEINS is a dataset where nodes are secondary
structure elements (SSEs) and there is an edge between two nodes if they are neighbors in the
amino-acid sequence or in 3D space. It has 3 discrete labels, representing helix, sheet or turn.
PTC is a dataset of 344 chemical compounds that reports the carcinogenicity for male and female
rats and it has 19 discrete labels. NCI1 is a dataset made publicly available by the National Cancer
Institute (NCI) and is a subset of balanced datasets of chemical compounds screened for ability to
suppress or inhibit the growth of a panel of human tumor cell lines, having 37 discrete labels.

The state-of-the-art baselines for graph classi�cation: (1) the WL subtree kernel [Shervashidze
et al., 2011] with C-SVM was used as a classi�er. (2) state-of-the-art deep learning architectures,
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Dataset Size Classes Avg.nodes Labels
MUTAG 188 2 17.9 7
PTC 344 2 25.5 19

ENZYMES 600 6 32.6 3
PROTEINS 1113 2 39.1 3

NCI1 4110 2 29.8 37
NCI109 4127 2 29.6 38

COLLAB 5000 3 74.49 -
IMDB-BINARY 1000 2 19.77 -
IMDB-MULTI 1500 3 13 -

REDDIT-BINARY 2000 2 429.61 -
REDDIT-MULTI-5K 5000 2 508.5 -
REDDIT-MULTI-12K 11929 11 391.4 -

Table C.1: Properties of the Bioinformatics and Social network datasets used in graph/node clas-
si�cation experiments.

Datasets IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1
# graphs 1000 1500 2000 5000 5000 188 1113 344 4110
# classes 2 3 2 5 3 2 2 2 2

Avg # nodes 19.8 13.0 429.6 508.5 74.5 17.9 39.1 25.5 29.8
Baselines

WL subtree 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 78.9 ± 1.9 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8
GNN variants

MEAN�1-LAYER (GCN) 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0 20.0 ± 0.0 79.0 ± 1.8 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0
MAX�1-LAYER (GraphSAGE) 72.3 ± 5.3 50.9 ± 2.2 � � � 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5

Table C.2: Test set classi�cation accuracies (%).

i.e., (GCN) [Kipf and Welling, 2016], (GraphSage) [Hamilton et al., 2017].

Table C.2 compares test accuracies of the methods.

C.5 Advanced GNN

C.5.1 Gated GNN

GNNs and GraphSAGE generally are only 2-3 layers deep. Increasing the number of layers may
lead to an over�tting phenomenon and the vanishing/exploding gradients during backpropagation.
Is it possible to go deeper? A proposal to solve this problem is described in [Li et al., 2015]. Going
deeper is possible if the number of parameters is reduced. A solution is to share parameters across
layers. It means that a single neural network is used, the same for each layer. To take into account
that the layer l impacts the layer l+1, a Recurrent Neural Network (RNN) is used where the notion
of time is replaced by the concept of layer. The global idea is that nodes aggregate �messages�
from their neighbors using a recurrent neural network. This idea is depicted in Figure C.6. The
new layer l+ 1 is computed by the taking �message� from neighbors at step l as well as the output
of the layer l.

H(l+1) = RNN(H(l), AGG(l))

This architecture can handle models with > 20 layers and it allows for complex information
about global graph structure to be propagated to all nodes.
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Figure C.6: A general overview of a Gated GNN.
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C.5.2 Graph pooling

Each layer H l outputs a graph and a node embedding. So far the graph is the same as the input
graph. To extract information at di�erent scales two schemes can be adopted:

• Adjacency operators at di�erent scales (AJ) as in [Nowak et al., 2017].

• Graph coarsening for graph pooling as in [Monti et al., 2016].

The graph pooling goals are: a) pool similar local features (max pooling or average pooling) and
b) series of pooling layers create invariance to global geometric deformations. The main challenge
is to design a multi-scale coarsening algorithm that preserves non-linear graph structures. Graph
coarsening decomposes G into smaller meaningful clusters. This problem is combinatorial and is
NP-hard.

In [Monti et al., 2016], a graph pooling layer is added. The pooling layer takes as input
[G,H l] and outputs [G′, H l+1] where |V ′| < |V | and H l+1 ∈ R|V ′|×ml . In the graph pooling layer,
some graph clustering algorithm have be favored such as [Dhillon et al., 2007, Blondel et al., 2008].
Graph pooling layers are inspired from pooling layers that appear in classical Convolutional Neural
Network (CNN).

C.5.3 Di�erentiation and training

Training a GNN is similar to standard MLP or CNN. The main idea is to minimize the loss l()
(also called cost function) according to the parameters. The minimum of the cost function is where
its derivative is equal to 0.

∂l(W,G)

∂W
= 0

C.5.3.1 Derivative (or gradient) computation

The loss is a composition of functions so its derivative is a composition of derivatives. This principle
is called the chaine rule or back propagation.

∂l(W,G)

∂W
=

∂l(W,G)

∂H(L)(W )
× ∂H(L)(W )

∂H(L−1)(W )
× ∂∂H(L−1)(W )

∂H(L−2)(W )
· · ·

If each function that composed the neural network is di�erentiable then the derivative can be
computed. Issues occur for functions that are not continuous anywhere. This is the case of ReLU
(Recti�ed Linear Units) ReLU(x) = max(0, x). The derivative is then :

ReLU ′(x) =

{
1, if x > 0

0, otherwise
(C.1)

Now what about x = 0? Technically this is unde�ned. When x = 0, there are many possible lines
(slopes) we could �t through it. So what to do here?

Basically, it is commonly accepted to impose a slope when x=0. A common choice is when x=0,
the derivative will be 0. It could be some other value, but most implementations use this (this has
a nice property that it encourages many values to be 0 i.e., sparsity in the feature map). By doing
so the ReLU function is modi�ed but apparently it does not impact the training algorithms. The
same phenomenon appears for the max pooling function. This function selects one node of G to be
part of G′ in the graph pooling layer. Nodes from G that are not in G′ will have their derivative
set to 0.
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C.5.3.2 Gradient descent

The question is �nally to �nd the parameters Wmin that leads to ∂l(Wmin,G)
∂Wmin

= 0. To achieve
this goal, the gradient descent algorithm is often selected. The algorithm is depicted in Algorithm
4. The main feature of this algorithm is to update W iteratively in the opposite direction of the
gradient. The algorithm as one parameter called α. This scalar controls the speed of the descent.
High values of α can lead to non-convergence. Based on this paradigm more complex methods has
arisen [Kingma and Ba, 2014, Marceau-Caron and Ollivier, 2016].

Algorithm 4 Graph descent algorithm
Input: #iter is the maximum number of iterations.
α is the learning rate controlling the descent step.
Output: Wmin. Learned W . Weight matrices

1: W ← random and i← 0
2: while i< #iter do
3: W (i+ 1)←W (i)− α ∂l

∂W
4: i ← i +1
5: end while

C.5.4 A word on scalability and time complexity?

Neural networks in general are successful because they can take advantage of the computational
power provided by CPU and GPU. In this direction, operations within a layer should be vectorized.
Vectorization is the process of converting an algorithm from operating on a single value at a time to
operating on a set of values at one time. Vector, matrix or tensor operations are easily vectorized.
In some �nal applications, the adjacency matrix can be sparse and there is special representations
and libraries for such matrices. For instance, the product AF can be e�ciently implemented as a
product of a sparse matrix with a dense matrix .

Secondly, computational complexity should be low. In [Kipf and Welling, 2016], the model is
trainable in O(|E|) time. Operators I, A, D and U decribed in [Nowak et al., 2017] have the same
complexity while the operator A2j

is much more greedy.

C.5.5 Spatial vs spectral convolution on graphs

There is no consensus on the convolution (operator ∗) de�nition on non-euclidean signals. Two
di�erent types of de�nitions arise from the literature [Bronstein et al., 2016].

C.5.5.1 Relation between spatial and spectral convolution

Given two functions, f and g : [−π, π]→ R their convolution is a function

(f ∗ g)(x) =

∫ π

−π
f(x′)g(x− x′)dx′

Fourier transform diagonalizes the convolution operator ⇒ Convolution can be computed in
the Fourier domain as:

(̃f ∗ g) = f̃ .g̃

Where .̃ stands for the function being in the Fourier domain.
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In matrix-vector notation, with the n× n Fourier matrix φ = [φ1, · · · , φn]:

f̃ = φT f and f = φf̃

Convolution of two vectors: f = (f1, · · · , fn)T and g = (g1, · · · , gn)T

g ∗ f =


g1 g2 · · · gn
gn g1 · · · gn−1

...
. . .

...
g2 g3 · · · g1




f1

f2

...
fn



g ∗ f = φ


g̃1

. . .
. . .

g̃n

φT f

g ∗ f = φ diag(g̃1, · · · , g̃n)φT f

C.5.5.2 Spectral convolution for graphs

Convolution will be noted as GI ∗ f with GI the input graph and f the �lter in its abstract form.

The �rst one is based on spectral graph theory, which is the equivalent of Fourier analysis for
graphs. The idea is to take advantage of the Convolution Theorem to apply convolution on a given
graph. The convolution theorem states that convolution in the spatial domain is equivalent to
product in the frequency domain. It is then possible to multiply the two signals in the frequency
domain to obtain the convolved signal. The structure that allows to work on the frequency domain
of a graph is its Laplacian:

L = D −A

with D and A respectively being the degree and adjacency matrices.

The eigenvectors of the graph Laplacian act as the Fourier basis of the graph. Convolving over
a graph from its frequency domain is as follows:

GI ∗ f = ΦIdiag(f̃)Φᵀ
IMI

where f̃ is the �lter f in the spectral domain, MI is the vector of edge attributes in graph GI
and ΦI are the Laplacian eigenvectors for graph GI [Bronstein et al., 2016].

This method is used in [Bruna et al., 2013]. However, getting access to the eigenbasis of the
graph laplacian is time-consuming as it implies matrix inversion.

A way to avoid eigenanalysis is to consider our �lter f as a polynomial of the Laplacian fθ(LI)
(LI is the laplacian for graph GI) [Bronstein et al., 2016, De�errard et al., 2016]:

GI ∗ f = fθ(LI)MI

fθ(L) =

r∑
k=0

θk.L
k
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[Kipf and Welling, 2016, De�errard et al., 2016, Scarselli et al., 2009] use this method, intro-
ducing di�erent types of polynomials.

The major drawback of spectral approaches is sensitivity to domain changes: Similar graphs
with slightly di�erent topologies will respond very di�erently to a given �lter. In other words, a
single signal de�ned on anisomorph graphs will give di�erent responses. This is due to the fact
that constructing the Fourier basis depends on the graph structure. The second type of graph
convolution de�nition relies solely on spatial domain. The common point of these approaches is to
consider the problem in a riemannian perspective: non-euclidean data can be seen as manifolds.
This allows to reduce the local structure of graphs down to a compact euclidean space on which
�lters can be easily built: a patch operator D can be de�ned. The patch operator transforms the
local space into a P -sized vector with respect to P weighting functions (w1, . . . , wP ). wk(i) is the
vector of weights for each node in the graph in the neighbourhood of i. The patch value at node i
is de�ned as follows:

(DGI)i = [wk(i)MI ]1≤k≤P

These weights are de�ned depending on the locations of the di�erent neighbours in a given local
space.

wk(i) = [ek(ζii′)]1≤i′≤N

where N is the number of nodes in the graph, ζii′ is the label for edge (i, i′) (or the location of
i′ in the local space of i) and ek(ζii′) is the weight for node i′ in the neighbourhood of i.

Once our patch operator is applied, it is possible to de�ne our convolution �lter f as a vector
f ∈ RP . The result of the convolution at node i is as follows:

(GI ∗ f)i = (DGI)i.f

Several approaches �t in this spatial framework [Boscaini et al., 2016, Monti et al., 2016]. The
way they di�er is how they de�ne the weighting functions ek.

[Monti et al., 2016] proposes to use parameterized gaussian kernels as weight functions:

ek(ζii′) = exp−1

2
(ζii′ − µk)Σ−1

k (ζii′ − µk)

Where µk and Σk are the gaussian kernel parameters for the k-th weighting function. These
parameters can be learned during the training of the neural network as it is included in the loss
function and it is di�erentiable.

Nevertheless, most of the aforementioned approaches don't take advantage fully of the graph
topology. The graph structure is locally embedded into a vector space (i.e. the tangent space at
a given point of a riemannian manifold). In a graph theory perspective, this means the notion of
neighbourhood is limited to 1-hop graph neighbourhood which is bound to be a star structure.

C.6 Summary on GNN

The key idea is to generate node embeddings based on local neighborhoods.

• Graph convolutional networks

� Average neighborhood information and stack neural networks.

• GraphSAGE
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� Generalized neighborhood aggregation.

• Gated Graph Neural Networks

� Neighborhood aggregation + RNNs

• Model wish list :

� Set W l of trainable parameters

� Trainable linear in time in function of |E| or |V |.
� Applicable even if the input graph changes
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Appendix D

Kernels and kernel machines for

graphs

The similarity between graphs are either based on a vector representation or de�ned directly in
the space of graphs. Another option is to project the graphs in a kernel space. The kernels provide
a mathematical framework for de�ning a measure of similarity between objects corresponding to
a scalar product in a vector space that is not necessary known explicitly. Therefore, the kernels
make it possible to overcome the limits induced by �xed size vectors while allowing the use of
statistical learning methods. However, the de�nition of a kernel is not trivial and must respect a
set of conditions to de�ne a scalar product.

D.1 Kernel theory

Let de�ne a kernel k : X × X → R between two objects x and x′ corresponds to a scalar product
between two projections φ(x) and φ(x′) in a Hilbert space H.

∀(x, x′) ∈ X × X , k(x, x′) =< φ(x), φ(x′) >

In order to de�ne a valid kernel, it is not necessary to explicitly de�ne the projection function
φ : X → H. However, the kernel k must verify certain properties:

De�nition 27. (Positive-de�nite kernel)
A positive-de�nite kernel on X × X is a function k : X × X → R:

k(x, x′) = k(x′, x)

and semi-de�nite positive:

{x1, · · · , xM} ∈ XM , c ∈ RM ,
M∑
i=1

M∑
j=1

cik(xi, xj)cj ≥ 0

De�nition 28. (Gram matrix)
A Gram matrix K ∈ RM×M associated to a kernel k on a �nite set X = {x1, · · · , xM}

Ki,j = k(xi, xj), (i, j) ∈ {1, ...,M}2

If k is a positive-de�nite kernel then the Gram matrix K is semi-de�nite positive. The reverse is
also true.
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D.1.1 Kernel and dissimilarity

In pattern recognition, it is desired to combine a kernel with the k-nearest neighbors algorithm. It
is therefore necessary to calculate distances. Kernels can be used to construct dissimilarities.

d(x, x′) = ||φ(x)− φ(x′)||2
= < φ(x), φ(x) > + < φ(x′), φ(x′) > −2 < φ(x), φ(x′) >

= k(x, x) + k(x′, x′)− 2k(x, x′)

Therefore, the k-nearest neighbors algorithm can be applied in the vector space without having
to calculate the projections φ(x) and φ(x′) but only the value of the kernel k(x, x′). This property
is called the kernel trick.

D.2 Kernel machines

Machine learning techniques that involve kernels are called Kernel machines. These algorithms
include, support vector machine, nearest-neighbor classi�er, principal component analysis, Fisher
discriminant analysis, k-means clustering, and many more.

The k-nearest neighbors algorithm where the distance function is based on a kernel can be
called a Kernel machine. One of the signi�cant limitations of such algorithms is that the kernel
function k(x, x′) must be evaluated for all possible pairs x and x′ of training points, which can
be computationally infeasible during training and can lead to excessive computation times when
making predictions for new data points.

Kernel machines that have sparse solutions, so that predictions for new inputs depend only
on the kernel function evaluated at a subset of the training data points. The support vector
machine (SVM), which became popular in some years ago for solving problems in classi�cation,
regression, and novelty detection. An important property of support vector machines is that the
determination of the model parameters corresponds to a convex optimization problem, and so any
local solution is also a global optimum.

D.2.1 Distance to the decision line

Let us de�ne a linear function t̂ = f(x,w, b) = wTx+b ∈ R (see Figure D.1). The distance between
a point x and the line represented by the function f() is de�ned by:

d⊥(x, f(.)) =
f(x,w, b)

||w||2
(Orthogonal projection)

Let us de�ne the true target t ∈ {−1, 1} to distinguish between two classes. A sample x is correctly
classi�ed if f(x,w, b) = t or t.f(x,w, b) > 0. The distance of correctly classi�ed sample to the line
represented by the function f() is de�ned by:

d(x, f(), t) =
t.f(x,w, b)

||w||2

D.2.2 Finding the margin

Among a data set D = {(x1, t1), · · · , (xM , tM )}, the margin is the smallest distance between the
decision line (f(.)) and the samples. Finding the closest sample to the function f is then de�ned
by:

dmin = min
i∈[1,··· ,M ]

t.f(xi, w, b)

||w||2
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Figure D.1: Orthogonal projection of the point A on the line.

D.2.3 Maximizing the margin

A key idea of SVM is to �nd the margin which is the largest. As the data cannot be modi�ed,
parameters w and b must be tuned to maximize dmin:

arg max
w,b

dmin(w, b) (D.1)

arg max
w,b

[
1
||w||2 ( min

i∈[1,··· ,M ]
wTxi + b)

]
(D.2)

Equation D.2 is the heart of the SVM problem �nding the parameters that maximize the margin.
However, this formulation is not easy to optimize.

D.2.4 Rescaling the parameters

To make the problem easier to solve, a rescaling of the data must be performed. w = cst.w and b =
cst.b where cst is a constant then the rescaling does not change the distance d(x, f(), t). If the closest
sample xmin = arg mini∈[1,··· ,M ]

t.f(xi,w,b)
||w||2 , we can use this freedom to set tmin(wTxmin + b) = 1.

And all the samples satisfy:

ti(w
Txi + b) = 1 ≥ 1,∀i ∈ [1, · · · ,M ]

D.2.5 Canonical formulation

Maximizing 1
||w||2 is equivalent to minimize 1

2 ||w||
2
2

arg min
w,b

1
2 ||w||

2
2 (D.3)

Subject to ti(w
Txi + b) ≥ 1 ∀i ∈ [1, · · · ,M ] (D.4)
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The determination of the model parameters corresponds to a convex optimization problem. This
is an example of a quadratic programming problem in which we are trying to minimize a quadratic
function subject to a set of linear inequality constraints.

D.2.6 Lagrangian formulation

In order to solve this constrained optimization problem, we introduce Lagrange multipliers an
αi ≥ 0, with one multiplier ai for each of the constraints (a = (a1, · · · , aM )).

L(a,w, b) =
1

2
||w||22 −

M∑
i=1

ai
[
ti(w

Txi + b)− 1
]

Note the minus sign in front of the Lagrange multiplier term, because we are minimizing with
respect to w and b, and maximizing with respect to a.

D.2.7 Dual formulation and kernel formulation

From the langrangian function L(.), we want to �nd its minimum according to parameters w and
b so we need to �nd where its derivative equal 0.

∂L

∂w
= 0 = w −

M∑
i=1

aitixi =⇒ w =

M∑
i=1

αitixi

∂L

∂b
= 0 =

M∑
i=1

aiti

By substituting w =
∑M
i=1 aitixi in the function L(.), we obtain the dual formulation:

L̃(a) =

M∑
i=1

ai −
1

2

M∑
i=1

M∑
j=1

aiajtitjxixj

By replacing the dot product xixj by the kernel k = (xi, xj), we obtain the SVM kernel machine:

arg max
a

L̃(a) =
∑M
i=1 ai −

1
2

∑M
i=1

∑M
j=1 aiajtitjk(xi, xj) (D.5)

Subject to (D.6)

ai ≥ 0,∀i ∈ [1, · · · ,M ] (D.7)∑M
i=1 aiti = 0,∀i ∈ [1, · · · ,M ] (D.8)

D.2.8 Solving SVM

Solutions for this optimization problem either: (i) reduce it to an equivalent polynomial-size refor-
mulation (for certain decomposable loss functions), and use methods like SMO (sequential minimal
optimization) [Taskar et al., 2003] or general-purpose solvers; or (ii) work with the original problem
by considering a subset of constraints, and employing cutting plane [Tsochantaridis et al., 2005]
or stochastic subgradient methods. The solution to a quadratic programming problem in d vari-
ables in general has computational complexity that is O(d3). In going to the dual formulation, the
original optimization problem, which involved minimizing over d variables, into the dual problem,
which has M variables. For a �xed set of basis functions whose number d is smaller than the
number M of data points, the move to the dual problem appears disadvantageous. However, it
allows the model to be reformulated using kernels, and so the maximum margin classi�er can be
applied e�ciently to feature spaces whose dimensionality exceeds the number of data points.
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D.2.9 Classi�cation

In order to classify new data points using the trained model, the sign of f(x,w, b) is evaluated,
de�ned by t̂ = wTx+ b, if the canonical formulation is solved (Equation D.4). Another possibility
can be expressed in terms of the parameters {an} and the kernel function if dual formulation was
solved (Equation D.8) :

t̂ =

M∑
i=1

aitik(x, xi) + b

Any data point for which a = 0 will not appear in the sum in and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors. This
property is central to the practical applicability of support vector machines. Once the model is
trained, a signi�cant proportion of the data points can be discarded and only the support vectors
retained.

t̂ =
∑
i∈S

aitik(x, xi) + b

Where S denotes the set of indices of the support vectors.

D.3 Graph mathing-based Kernels

On the basis that a similarity measure can be de�ned as a decreasing function of a dissimilarity
measure, some kernels are de�ned from a distance between graphs. The graph edit distance between
graphs, measures the dissimilarity between graphs: a distance high indicates a low similarity
between the two graphs while a low distance indicates a strong similarity.

Kernel functions that are derived from graph edit distance. Based on the assumption that graph
edit distance is well suited for di�cult graph matching problems, kernel functions are proposed
that are su�ciently �exible for unconstrained graph representations. Regarding kernel functions
as similarity measures, we obtain embeddings of the space of graphs into vector spaces, where the
similarity of vectors is de�ned according to the edit distance of the original graphs.

D.3.1 Trivial GED kernels

Trivial kernels [Neuhaus and Bunke., 2007] can be de�ned:

k1(G1, G2) = −GED(G1, G2)

k2(G1, G2) = −GED(G1, G2)2

k3(G1, G2) = − tanh(−GED(G1, G2))

k4(G1, G2) = exp (−GED(G1, G2))

However, the edit distance between two graphs does not de�ne a metric in a Euclidean space, so
there is no guarantee that the associated distance matrices will be negative-de�nite. The Gram ma-
trices calculated by the GED kernels are therefore not semi-de�nite positive [Neuhaus and Bunke.,
2007]. Therefore, the use of the kernel machines is limited since the function to be minimized is no
longer convex and therefore no guarantee of convergence towards the global minimum is ensured.
However, non-compliance with the semi-de�ned positivity of the kernel does not completely exclude
the use of kernel machines.
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D.3.2 Kernels based on GED embedding [Riesen and Bunke, 2010b]

The explicit graph embedding de�ned by φ(G) = [GED(G,G1), · · · , GED(G,GM )] can endow a
simple k5 = (G1, G2) =< φ(G1), φ(G2) >. Considering this embedding function, the kernel be-
tween two graphs is simply de�ned as the dot product between their embeddings. This method
therefore uses an explicit vector representation to de�ne a kernel based on editing distance. Al-
though this method uses a dissimilarity measure widely used in the �eld of comparison graphs, the
choice of reference graphs strongly in�uences the quality of the embedding.

D.3.3 Kernel from Maximum-Similarity Edit Path

In [Neuhaus and Bunke., 2007], a method is proposed to re-formulate graph edit distance as a graph
similarity measure. The idea is to turn the minimum-cost edit path condition into a maximum-
similarity edit path criterion.

k(G1, G2) = max
λ∈Γ′(G1,G2)

Π(u→v)∈λk(µ1(u), µ2(v))

Where Γ′(G1, G2) is obtained from by the set of all edit path and then by removing all deletions
and insertions of nodes and edges. Hence, the kernel function only considers the substitution of
nodes and edges. The computation of this kernel function can be carried out by means of a modi�ed
edit distance algorithm.

D.3.4 Convolution kernels and local matching kernels [Neuhaus and
Bunke., 2007]

The idea is to decompose complex objects into smaller parts, for which a similarity function can
more easily be de�ned or more e�ciently be computed. Using a convolution operation, these sim-
ilarities are then turned into a kernel function on the composite objects. Let us introduce the
decomposition R(G) = {g1, · · · , gd}. For a simple example, assume that the set of all decomposi-
tions of a graph R(G) = V . This means that each of its nodes is a valid decomposition of G. The
corresponding convolution kernel is then:

k(G1, G2) =
∑

u∈R(G1)

∑
v∈R(G2)

k(u, v) =
∑

u∈R(G1)
v∈R(G2)

k(u, v)

It simply returns the sum of similarity between pairs of nodes.

Let us de�ne R(G) = {(s, (ui, ni, e1
ui
, · · · , eni

ui
))|∀i ∈ 1, · · · smax}. The �rst component s spec-

i�es the number of nodes u1, · · · , us present in the decomposition, up to a maximum number of
nodes smax. The remaining components of type (ui, ni, e

1
ui
, · · · , eni

ui
) represent a node ui, together

with ni of the |Eui
| edges originating in ui. Clearly, components (ui, ni, e

1
ui
, · · · , eni

ui
) can be re-

garded as substructures of G each consisting of a single node and some, possibly not all, of its
adjacent edges. These local substructures of graphs, or partial subgraphs, can then be used for
graph matching. The local matching convolution kernel is de�ned by:

k(G,G′) =
∑

(s,(ui,ni,e
1
ui
,··· ,eni

ui
))∈R(G)

(s′,(u′i,n
′
i,e
′1
u′
i
,··· ,e′n

′
i

u′
i
))∈R(G′)

kδ(s, s
′)Πs

i=1k(ui, u
′
i)kδ(ni, n

′
i)Π

ni
p=1k(epui

, e′p
′

u′i
)

It is clear that for two decompositions with a di�erent number of nodes s 6= s′, the resulting
product will be zero, due to the Dirac kernel, kδ(s, s′) = 0. Similarly, if a node ui in the decom-
position contains a di�erent number of edges than the corresponding node in the other graph u′i,
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ni 6= n′i, the resulting similarity will be zero as well, due to kδ(ni, n′i). Hence, only the similarity
of decompositions that are consistent in terms of the number of nodes and edges are taken into
account, that is, contribute a non-zero similarity value to the convolution kernel.

D.3.5 Random Walk Edit Kernel [Neuhaus and Bunke., 2007]

Another class of graph kernels is based on the evaluation of random walks in graphs. These kernels
measure the similarity of two graphs by the number of (possibly in�nite) random walks in both
graphs that have all or some labels in common.

The basic idea of random walk kernels is to de�ne the similarity of graphs by comparing random
walks in two graphs. For instance, one of the most elegant random walk kernels computes the
number of matching random walks in two graphs. A key observation is that this computation can
e�ciently be realized by means of the direct product of two graphs, without having to explicitly
enumerate random walks in graphs. This enables to consider random walks of arbitrary length.
Random walk kernels are undoubtedly very e�cient, but on noisy data their accuracy is often
unsatisfactory. For this reason, an extension to a standard random walk kernel is proposed in
this section to make the kernel more robust and therefore applicable to noisy graph data as well.
The idea is to integrate information from the global matching of graphs into the otherwise locally
de�ned random walk kernel. To this end, we �rst compute the edit distance of graphs and use
the optimal edit path to de�ne the adjacency matrix of the direct product in an extended way to
enhance the robustness of the random walk kernel.

De�nition 29. (Direct graph product)
VX = {(i, k)|µ(i) = µ(k)∀i ∈ V1, k ∈ V2}
EX = {((i, k), (j, l))|ζ((i, k)) = ζ((j, l))∀(i, j) ∈ E1, (k, l) ∈ E2}

De�nition 29 is restricted to evaluating whether two discrete attributes are identical or not. An
extension of the direct graph product is welcome to consider rich attributed graphs.

De�nition 30. (Modi�ed direct graph product)
VX = {(i, k)| ∀i ∈ V1, k ∈ V2}
EX = {((i, k), (j, l))| ∀(i, j) ∈ E1, (k, l) ∈ E2}

The adjacency matrix AX of this modi�ed direct product graph can then be de�ned by :

Ax(i,k),(j,l) =

{
kedge((i, k), (j, l)) if ((i, k), (j, l)) ∈ EX
0 Otherwise

Where the kernel function kedge measuring the similarity of pairs of nodes and edges based on edit
operations. The random walk kernel enhanced by edit distance is then de�ned according to the
standard random walk kernel function. Given a decay factor 0 < Λ < 1:

k(G1, G2) =

|Vx|∑
i=1

|Vx|∑
j=1

[ ∞∑
n=0

ΛnAnx

]
ij

The edit distance enhanced random walk kernel di�ers from the random walk kernel for discretely
labeled graphs and the modi�ed random walk kernel for continuously labeled graphs only in the
de�nition of the adjacency matrix AX of the direct product.
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D.3.6 Di�usion kernel

In [Neuhaus and Bunke., 2007], the edit distance between graphs (D = {(G1, t1), · · · , (GM , tM )})
is turned into a matrix of non-negative similarities:

Bi,j = max
1≤s,t≤M

(GED(Gs, Gt))−GED(Gi, Gj) ∀i, j 1 ≤ i, j ≤M

where Bi,j denotes the similarity of graphs Gi and Gj .

Given a decay factor 0 < Λ < 1, the exponential di�usion kernel is de�ned by:

K =

∞∑
k=0

1

k!
ΛkBk = exp(ΛB)

K is a Gram matrix.
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